Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * zpool memory storage api
  4 *
  5 * Copyright (C) 2014 Dan Streetman
  6 *
  7 * This is a common frontend for memory storage pool implementations.
  8 * Typically, this is used to store compressed memory.
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/list.h>
 14#include <linux/types.h>
 15#include <linux/mm.h>
 16#include <linux/slab.h>
 17#include <linux/spinlock.h>
 18#include <linux/module.h>
 19#include <linux/zpool.h>
 20
 21struct zpool {
 22	struct zpool_driver *driver;
 23	void *pool;
 
 
 
 
 24};
 25
 26static LIST_HEAD(drivers_head);
 27static DEFINE_SPINLOCK(drivers_lock);
 28
 
 
 
 29/**
 30 * zpool_register_driver() - register a zpool implementation.
 31 * @driver:	driver to register
 32 */
 33void zpool_register_driver(struct zpool_driver *driver)
 34{
 35	spin_lock(&drivers_lock);
 36	atomic_set(&driver->refcount, 0);
 37	list_add(&driver->list, &drivers_head);
 38	spin_unlock(&drivers_lock);
 39}
 40EXPORT_SYMBOL(zpool_register_driver);
 41
 42/**
 43 * zpool_unregister_driver() - unregister a zpool implementation.
 44 * @driver:	driver to unregister.
 45 *
 46 * Module usage counting is used to prevent using a driver
 47 * while/after unloading, so if this is called from module
 48 * exit function, this should never fail; if called from
 49 * other than the module exit function, and this returns
 50 * failure, the driver is in use and must remain available.
 51 */
 52int zpool_unregister_driver(struct zpool_driver *driver)
 53{
 54	int ret = 0, refcount;
 55
 56	spin_lock(&drivers_lock);
 57	refcount = atomic_read(&driver->refcount);
 58	WARN_ON(refcount < 0);
 59	if (refcount > 0)
 60		ret = -EBUSY;
 61	else
 62		list_del(&driver->list);
 63	spin_unlock(&drivers_lock);
 64
 65	return ret;
 66}
 67EXPORT_SYMBOL(zpool_unregister_driver);
 68
 69/* this assumes @type is null-terminated. */
 70static struct zpool_driver *zpool_get_driver(const char *type)
 71{
 72	struct zpool_driver *driver;
 73
 74	spin_lock(&drivers_lock);
 75	list_for_each_entry(driver, &drivers_head, list) {
 76		if (!strcmp(driver->type, type)) {
 77			bool got = try_module_get(driver->owner);
 78
 79			if (got)
 80				atomic_inc(&driver->refcount);
 81			spin_unlock(&drivers_lock);
 82			return got ? driver : NULL;
 83		}
 84	}
 85
 86	spin_unlock(&drivers_lock);
 87	return NULL;
 88}
 89
 90static void zpool_put_driver(struct zpool_driver *driver)
 91{
 92	atomic_dec(&driver->refcount);
 93	module_put(driver->owner);
 94}
 95
 96/**
 97 * zpool_has_pool() - Check if the pool driver is available
 98 * @type:	The type of the zpool to check (e.g. zbud, zsmalloc)
 99 *
100 * This checks if the @type pool driver is available.  This will try to load
101 * the requested module, if needed, but there is no guarantee the module will
102 * still be loaded and available immediately after calling.  If this returns
103 * true, the caller should assume the pool is available, but must be prepared
104 * to handle the @zpool_create_pool() returning failure.  However if this
105 * returns false, the caller should assume the requested pool type is not
106 * available; either the requested pool type module does not exist, or could
107 * not be loaded, and calling @zpool_create_pool() with the pool type will
108 * fail.
109 *
110 * The @type string must be null-terminated.
111 *
112 * Returns: true if @type pool is available, false if not
113 */
114bool zpool_has_pool(char *type)
115{
116	struct zpool_driver *driver = zpool_get_driver(type);
117
118	if (!driver) {
119		request_module("zpool-%s", type);
120		driver = zpool_get_driver(type);
121	}
122
123	if (!driver)
124		return false;
125
126	zpool_put_driver(driver);
127	return true;
128}
129EXPORT_SYMBOL(zpool_has_pool);
130
131/**
132 * zpool_create_pool() - Create a new zpool
133 * @type:	The type of the zpool to create (e.g. zbud, zsmalloc)
134 * @name:	The name of the zpool (e.g. zram0, zswap)
135 * @gfp:	The GFP flags to use when allocating the pool.
 
136 *
137 * This creates a new zpool of the specified type.  The gfp flags will be
138 * used when allocating memory, if the implementation supports it.  If the
139 * ops param is NULL, then the created zpool will not be evictable.
140 *
141 * Implementations must guarantee this to be thread-safe.
142 *
143 * The @type and @name strings must be null-terminated.
144 *
145 * Returns: New zpool on success, NULL on failure.
146 */
147struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp)
 
148{
149	struct zpool_driver *driver;
150	struct zpool *zpool;
151
152	pr_debug("creating pool type %s\n", type);
153
154	driver = zpool_get_driver(type);
155
156	if (!driver) {
157		request_module("zpool-%s", type);
158		driver = zpool_get_driver(type);
159	}
160
161	if (!driver) {
162		pr_err("no driver for type %s\n", type);
163		return NULL;
164	}
165
166	zpool = kmalloc(sizeof(*zpool), gfp);
167	if (!zpool) {
168		pr_err("couldn't create zpool - out of memory\n");
169		zpool_put_driver(driver);
170		return NULL;
171	}
172
173	zpool->driver = driver;
174	zpool->pool = driver->create(name, gfp);
 
 
175
176	if (!zpool->pool) {
177		pr_err("couldn't create %s pool\n", type);
178		zpool_put_driver(driver);
179		kfree(zpool);
180		return NULL;
181	}
182
183	pr_debug("created pool type %s\n", type);
184
 
 
 
 
185	return zpool;
186}
187
188/**
189 * zpool_destroy_pool() - Destroy a zpool
190 * @zpool:	The zpool to destroy.
191 *
192 * Implementations must guarantee this to be thread-safe,
193 * however only when destroying different pools.  The same
194 * pool should only be destroyed once, and should not be used
195 * after it is destroyed.
196 *
197 * This destroys an existing zpool.  The zpool should not be in use.
198 */
199void zpool_destroy_pool(struct zpool *zpool)
200{
201	pr_debug("destroying pool type %s\n", zpool->driver->type);
202
 
 
 
203	zpool->driver->destroy(zpool->pool);
204	zpool_put_driver(zpool->driver);
205	kfree(zpool);
206}
207
208/**
209 * zpool_get_type() - Get the type of the zpool
210 * @zpool:	The zpool to check
211 *
212 * This returns the type of the pool.
213 *
214 * Implementations must guarantee this to be thread-safe.
215 *
216 * Returns: The type of zpool.
217 */
218const char *zpool_get_type(struct zpool *zpool)
219{
220	return zpool->driver->type;
221}
222
223/**
224 * zpool_malloc_support_movable() - Check if the zpool supports
225 *	allocating movable memory
226 * @zpool:	The zpool to check
227 *
228 * This returns if the zpool supports allocating movable memory.
229 *
230 * Implementations must guarantee this to be thread-safe.
231 *
232 * Returns: true if the zpool supports allocating movable memory, false if not
233 */
234bool zpool_malloc_support_movable(struct zpool *zpool)
235{
236	return zpool->driver->malloc_support_movable;
237}
238
239/**
240 * zpool_malloc() - Allocate memory
241 * @zpool:	The zpool to allocate from.
242 * @size:	The amount of memory to allocate.
243 * @gfp:	The GFP flags to use when allocating memory.
244 * @handle:	Pointer to the handle to set
245 *
246 * This allocates the requested amount of memory from the pool.
247 * The gfp flags will be used when allocating memory, if the
248 * implementation supports it.  The provided @handle will be
249 * set to the allocated object handle.
250 *
251 * Implementations must guarantee this to be thread-safe.
252 *
253 * Returns: 0 on success, negative value on error.
254 */
255int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
256			unsigned long *handle)
257{
258	return zpool->driver->malloc(zpool->pool, size, gfp, handle);
259}
260
261/**
262 * zpool_free() - Free previously allocated memory
263 * @zpool:	The zpool that allocated the memory.
264 * @handle:	The handle to the memory to free.
265 *
266 * This frees previously allocated memory.  This does not guarantee
267 * that the pool will actually free memory, only that the memory
268 * in the pool will become available for use by the pool.
269 *
270 * Implementations must guarantee this to be thread-safe,
271 * however only when freeing different handles.  The same
272 * handle should only be freed once, and should not be used
273 * after freeing.
274 */
275void zpool_free(struct zpool *zpool, unsigned long handle)
276{
277	zpool->driver->free(zpool->pool, handle);
278}
279
280/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281 * zpool_map_handle() - Map a previously allocated handle into memory
282 * @zpool:	The zpool that the handle was allocated from
283 * @handle:	The handle to map
284 * @mapmode:	How the memory should be mapped
285 *
286 * This maps a previously allocated handle into memory.  The @mapmode
287 * param indicates to the implementation how the memory will be
288 * used, i.e. read-only, write-only, read-write.  If the
289 * implementation does not support it, the memory will be treated
290 * as read-write.
291 *
292 * This may hold locks, disable interrupts, and/or preemption,
293 * and the zpool_unmap_handle() must be called to undo those
294 * actions.  The code that uses the mapped handle should complete
295 * its operations on the mapped handle memory quickly and unmap
296 * as soon as possible.  As the implementation may use per-cpu
297 * data, multiple handles should not be mapped concurrently on
298 * any cpu.
299 *
300 * Returns: A pointer to the handle's mapped memory area.
301 */
302void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
303			enum zpool_mapmode mapmode)
304{
305	return zpool->driver->map(zpool->pool, handle, mapmode);
306}
307
308/**
309 * zpool_unmap_handle() - Unmap a previously mapped handle
310 * @zpool:	The zpool that the handle was allocated from
311 * @handle:	The handle to unmap
312 *
313 * This unmaps a previously mapped handle.  Any locks or other
314 * actions that the implementation took in zpool_map_handle()
315 * will be undone here.  The memory area returned from
316 * zpool_map_handle() should no longer be used after this.
317 */
318void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
319{
320	zpool->driver->unmap(zpool->pool, handle);
321}
322
323/**
324 * zpool_get_total_size() - The total size of the pool
325 * @zpool:	The zpool to check
326 *
327 * This returns the total size in bytes of the pool.
328 *
329 * Returns: Total size of the zpool in bytes.
330 */
331u64 zpool_get_total_size(struct zpool *zpool)
332{
333	return zpool->driver->total_size(zpool->pool);
334}
335
336/**
337 * zpool_can_sleep_mapped - Test if zpool can sleep when do mapped.
338 * @zpool:	The zpool to test
339 *
340 * Some allocators enter non-preemptible context in ->map() callback (e.g.
341 * disable pagefaults) and exit that context in ->unmap(), which limits what
342 * we can do with the mapped object. For instance, we cannot wait for
343 * asynchronous crypto API to decompress such an object or take mutexes
344 * since those will call into the scheduler. This function tells us whether
345 * we use such an allocator.
346 *
347 * Returns: true if zpool can sleep; false otherwise.
348 */
349bool zpool_can_sleep_mapped(struct zpool *zpool)
350{
351	return zpool->driver->sleep_mapped;
352}
353
 
354MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
355MODULE_DESCRIPTION("Common API for compressed memory storage");
v4.17
 
  1/*
  2 * zpool memory storage api
  3 *
  4 * Copyright (C) 2014 Dan Streetman
  5 *
  6 * This is a common frontend for memory storage pool implementations.
  7 * Typically, this is used to store compressed memory.
  8 */
  9
 10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 11
 12#include <linux/list.h>
 13#include <linux/types.h>
 14#include <linux/mm.h>
 15#include <linux/slab.h>
 16#include <linux/spinlock.h>
 17#include <linux/module.h>
 18#include <linux/zpool.h>
 19
 20struct zpool {
 21	struct zpool_driver *driver;
 22	void *pool;
 23	const struct zpool_ops *ops;
 24	bool evictable;
 25
 26	struct list_head list;
 27};
 28
 29static LIST_HEAD(drivers_head);
 30static DEFINE_SPINLOCK(drivers_lock);
 31
 32static LIST_HEAD(pools_head);
 33static DEFINE_SPINLOCK(pools_lock);
 34
 35/**
 36 * zpool_register_driver() - register a zpool implementation.
 37 * @driver:	driver to register
 38 */
 39void zpool_register_driver(struct zpool_driver *driver)
 40{
 41	spin_lock(&drivers_lock);
 42	atomic_set(&driver->refcount, 0);
 43	list_add(&driver->list, &drivers_head);
 44	spin_unlock(&drivers_lock);
 45}
 46EXPORT_SYMBOL(zpool_register_driver);
 47
 48/**
 49 * zpool_unregister_driver() - unregister a zpool implementation.
 50 * @driver:	driver to unregister.
 51 *
 52 * Module usage counting is used to prevent using a driver
 53 * while/after unloading, so if this is called from module
 54 * exit function, this should never fail; if called from
 55 * other than the module exit function, and this returns
 56 * failure, the driver is in use and must remain available.
 57 */
 58int zpool_unregister_driver(struct zpool_driver *driver)
 59{
 60	int ret = 0, refcount;
 61
 62	spin_lock(&drivers_lock);
 63	refcount = atomic_read(&driver->refcount);
 64	WARN_ON(refcount < 0);
 65	if (refcount > 0)
 66		ret = -EBUSY;
 67	else
 68		list_del(&driver->list);
 69	spin_unlock(&drivers_lock);
 70
 71	return ret;
 72}
 73EXPORT_SYMBOL(zpool_unregister_driver);
 74
 75/* this assumes @type is null-terminated. */
 76static struct zpool_driver *zpool_get_driver(const char *type)
 77{
 78	struct zpool_driver *driver;
 79
 80	spin_lock(&drivers_lock);
 81	list_for_each_entry(driver, &drivers_head, list) {
 82		if (!strcmp(driver->type, type)) {
 83			bool got = try_module_get(driver->owner);
 84
 85			if (got)
 86				atomic_inc(&driver->refcount);
 87			spin_unlock(&drivers_lock);
 88			return got ? driver : NULL;
 89		}
 90	}
 91
 92	spin_unlock(&drivers_lock);
 93	return NULL;
 94}
 95
 96static void zpool_put_driver(struct zpool_driver *driver)
 97{
 98	atomic_dec(&driver->refcount);
 99	module_put(driver->owner);
100}
101
102/**
103 * zpool_has_pool() - Check if the pool driver is available
104 * @type:	The type of the zpool to check (e.g. zbud, zsmalloc)
105 *
106 * This checks if the @type pool driver is available.  This will try to load
107 * the requested module, if needed, but there is no guarantee the module will
108 * still be loaded and available immediately after calling.  If this returns
109 * true, the caller should assume the pool is available, but must be prepared
110 * to handle the @zpool_create_pool() returning failure.  However if this
111 * returns false, the caller should assume the requested pool type is not
112 * available; either the requested pool type module does not exist, or could
113 * not be loaded, and calling @zpool_create_pool() with the pool type will
114 * fail.
115 *
116 * The @type string must be null-terminated.
117 *
118 * Returns: true if @type pool is available, false if not
119 */
120bool zpool_has_pool(char *type)
121{
122	struct zpool_driver *driver = zpool_get_driver(type);
123
124	if (!driver) {
125		request_module("zpool-%s", type);
126		driver = zpool_get_driver(type);
127	}
128
129	if (!driver)
130		return false;
131
132	zpool_put_driver(driver);
133	return true;
134}
135EXPORT_SYMBOL(zpool_has_pool);
136
137/**
138 * zpool_create_pool() - Create a new zpool
139 * @type:	The type of the zpool to create (e.g. zbud, zsmalloc)
140 * @name:	The name of the zpool (e.g. zram0, zswap)
141 * @gfp:	The GFP flags to use when allocating the pool.
142 * @ops:	The optional ops callback.
143 *
144 * This creates a new zpool of the specified type.  The gfp flags will be
145 * used when allocating memory, if the implementation supports it.  If the
146 * ops param is NULL, then the created zpool will not be evictable.
147 *
148 * Implementations must guarantee this to be thread-safe.
149 *
150 * The @type and @name strings must be null-terminated.
151 *
152 * Returns: New zpool on success, NULL on failure.
153 */
154struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp,
155		const struct zpool_ops *ops)
156{
157	struct zpool_driver *driver;
158	struct zpool *zpool;
159
160	pr_debug("creating pool type %s\n", type);
161
162	driver = zpool_get_driver(type);
163
164	if (!driver) {
165		request_module("zpool-%s", type);
166		driver = zpool_get_driver(type);
167	}
168
169	if (!driver) {
170		pr_err("no driver for type %s\n", type);
171		return NULL;
172	}
173
174	zpool = kmalloc(sizeof(*zpool), gfp);
175	if (!zpool) {
176		pr_err("couldn't create zpool - out of memory\n");
177		zpool_put_driver(driver);
178		return NULL;
179	}
180
181	zpool->driver = driver;
182	zpool->pool = driver->create(name, gfp, ops, zpool);
183	zpool->ops = ops;
184	zpool->evictable = driver->shrink && ops && ops->evict;
185
186	if (!zpool->pool) {
187		pr_err("couldn't create %s pool\n", type);
188		zpool_put_driver(driver);
189		kfree(zpool);
190		return NULL;
191	}
192
193	pr_debug("created pool type %s\n", type);
194
195	spin_lock(&pools_lock);
196	list_add(&zpool->list, &pools_head);
197	spin_unlock(&pools_lock);
198
199	return zpool;
200}
201
202/**
203 * zpool_destroy_pool() - Destroy a zpool
204 * @zpool:	The zpool to destroy.
205 *
206 * Implementations must guarantee this to be thread-safe,
207 * however only when destroying different pools.  The same
208 * pool should only be destroyed once, and should not be used
209 * after it is destroyed.
210 *
211 * This destroys an existing zpool.  The zpool should not be in use.
212 */
213void zpool_destroy_pool(struct zpool *zpool)
214{
215	pr_debug("destroying pool type %s\n", zpool->driver->type);
216
217	spin_lock(&pools_lock);
218	list_del(&zpool->list);
219	spin_unlock(&pools_lock);
220	zpool->driver->destroy(zpool->pool);
221	zpool_put_driver(zpool->driver);
222	kfree(zpool);
223}
224
225/**
226 * zpool_get_type() - Get the type of the zpool
227 * @zpool:	The zpool to check
228 *
229 * This returns the type of the pool.
230 *
231 * Implementations must guarantee this to be thread-safe.
232 *
233 * Returns: The type of zpool.
234 */
235const char *zpool_get_type(struct zpool *zpool)
236{
237	return zpool->driver->type;
238}
239
240/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241 * zpool_malloc() - Allocate memory
242 * @zpool:	The zpool to allocate from.
243 * @size:	The amount of memory to allocate.
244 * @gfp:	The GFP flags to use when allocating memory.
245 * @handle:	Pointer to the handle to set
246 *
247 * This allocates the requested amount of memory from the pool.
248 * The gfp flags will be used when allocating memory, if the
249 * implementation supports it.  The provided @handle will be
250 * set to the allocated object handle.
251 *
252 * Implementations must guarantee this to be thread-safe.
253 *
254 * Returns: 0 on success, negative value on error.
255 */
256int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp,
257			unsigned long *handle)
258{
259	return zpool->driver->malloc(zpool->pool, size, gfp, handle);
260}
261
262/**
263 * zpool_free() - Free previously allocated memory
264 * @zpool:	The zpool that allocated the memory.
265 * @handle:	The handle to the memory to free.
266 *
267 * This frees previously allocated memory.  This does not guarantee
268 * that the pool will actually free memory, only that the memory
269 * in the pool will become available for use by the pool.
270 *
271 * Implementations must guarantee this to be thread-safe,
272 * however only when freeing different handles.  The same
273 * handle should only be freed once, and should not be used
274 * after freeing.
275 */
276void zpool_free(struct zpool *zpool, unsigned long handle)
277{
278	zpool->driver->free(zpool->pool, handle);
279}
280
281/**
282 * zpool_shrink() - Shrink the pool size
283 * @zpool:	The zpool to shrink.
284 * @pages:	The number of pages to shrink the pool.
285 * @reclaimed:	The number of pages successfully evicted.
286 *
287 * This attempts to shrink the actual memory size of the pool
288 * by evicting currently used handle(s).  If the pool was
289 * created with no zpool_ops, or the evict call fails for any
290 * of the handles, this will fail.  If non-NULL, the @reclaimed
291 * parameter will be set to the number of pages reclaimed,
292 * which may be more than the number of pages requested.
293 *
294 * Implementations must guarantee this to be thread-safe.
295 *
296 * Returns: 0 on success, negative value on error/failure.
297 */
298int zpool_shrink(struct zpool *zpool, unsigned int pages,
299			unsigned int *reclaimed)
300{
301	return zpool->driver->shrink ?
302	       zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL;
303}
304
305/**
306 * zpool_map_handle() - Map a previously allocated handle into memory
307 * @zpool:	The zpool that the handle was allocated from
308 * @handle:	The handle to map
309 * @mapmode:	How the memory should be mapped
310 *
311 * This maps a previously allocated handle into memory.  The @mapmode
312 * param indicates to the implementation how the memory will be
313 * used, i.e. read-only, write-only, read-write.  If the
314 * implementation does not support it, the memory will be treated
315 * as read-write.
316 *
317 * This may hold locks, disable interrupts, and/or preemption,
318 * and the zpool_unmap_handle() must be called to undo those
319 * actions.  The code that uses the mapped handle should complete
320 * its operatons on the mapped handle memory quickly and unmap
321 * as soon as possible.  As the implementation may use per-cpu
322 * data, multiple handles should not be mapped concurrently on
323 * any cpu.
324 *
325 * Returns: A pointer to the handle's mapped memory area.
326 */
327void *zpool_map_handle(struct zpool *zpool, unsigned long handle,
328			enum zpool_mapmode mapmode)
329{
330	return zpool->driver->map(zpool->pool, handle, mapmode);
331}
332
333/**
334 * zpool_unmap_handle() - Unmap a previously mapped handle
335 * @zpool:	The zpool that the handle was allocated from
336 * @handle:	The handle to unmap
337 *
338 * This unmaps a previously mapped handle.  Any locks or other
339 * actions that the implementation took in zpool_map_handle()
340 * will be undone here.  The memory area returned from
341 * zpool_map_handle() should no longer be used after this.
342 */
343void zpool_unmap_handle(struct zpool *zpool, unsigned long handle)
344{
345	zpool->driver->unmap(zpool->pool, handle);
346}
347
348/**
349 * zpool_get_total_size() - The total size of the pool
350 * @zpool:	The zpool to check
351 *
352 * This returns the total size in bytes of the pool.
353 *
354 * Returns: Total size of the zpool in bytes.
355 */
356u64 zpool_get_total_size(struct zpool *zpool)
357{
358	return zpool->driver->total_size(zpool->pool);
359}
360
361/**
362 * zpool_evictable() - Test if zpool is potentially evictable
363 * @zpool:	The zpool to test
364 *
365 * Zpool is only potentially evictable when it's created with struct
366 * zpool_ops.evict and its driver implements struct zpool_driver.shrink.
367 *
368 * However, it doesn't necessarily mean driver will use zpool_ops.evict
369 * in its implementation of zpool_driver.shrink. It could do internal
370 * defragmentation instead.
371 *
372 * Returns: true if potentially evictable; false otherwise.
373 */
374bool zpool_evictable(struct zpool *zpool)
375{
376	return zpool->evictable;
377}
378
379MODULE_LICENSE("GPL");
380MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");
381MODULE_DESCRIPTION("Common API for compressed memory storage");