Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992 obz under the linux copyright
4 *
5 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
6 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
7 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
8 * Some code moved for less code duplication - Andi Kleen - Mar 1997
9 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
10 */
11
12#include <linux/types.h>
13#include <linux/errno.h>
14#include <linux/sched/signal.h>
15#include <linux/tty.h>
16#include <linux/timer.h>
17#include <linux/kernel.h>
18#include <linux/compat.h>
19#include <linux/module.h>
20#include <linux/kd.h>
21#include <linux/vt.h>
22#include <linux/string.h>
23#include <linux/slab.h>
24#include <linux/major.h>
25#include <linux/fs.h>
26#include <linux/console.h>
27#include <linux/consolemap.h>
28#include <linux/signal.h>
29#include <linux/suspend.h>
30#include <linux/timex.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34
35#include <linux/nospec.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/vt_kern.h>
39#include <linux/kbd_diacr.h>
40#include <linux/selection.h>
41
42bool vt_dont_switch;
43
44static inline bool vt_in_use(unsigned int i)
45{
46 const struct vc_data *vc = vc_cons[i].d;
47
48 /*
49 * console_lock must be held to prevent the vc from being deallocated
50 * while we're checking whether it's in-use.
51 */
52 WARN_CONSOLE_UNLOCKED();
53
54 return vc && kref_read(&vc->port.kref) > 1;
55}
56
57static inline bool vt_busy(int i)
58{
59 if (vt_in_use(i))
60 return true;
61 if (i == fg_console)
62 return true;
63 if (vc_is_sel(vc_cons[i].d))
64 return true;
65
66 return false;
67}
68
69/*
70 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
71 * experimentation and study of X386 SYSV handling.
72 *
73 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
74 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
75 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
76 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
77 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
78 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
79 * to the current console is done by the main ioctl code.
80 */
81
82#ifdef CONFIG_X86
83#include <asm/syscalls.h>
84#endif
85
86static void complete_change_console(struct vc_data *vc);
87
88/*
89 * User space VT_EVENT handlers
90 */
91
92struct vt_event_wait {
93 struct list_head list;
94 struct vt_event event;
95 int done;
96};
97
98static LIST_HEAD(vt_events);
99static DEFINE_SPINLOCK(vt_event_lock);
100static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
101
102/**
103 * vt_event_post
104 * @event: the event that occurred
105 * @old: old console
106 * @new: new console
107 *
108 * Post an VT event to interested VT handlers
109 */
110
111void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
112{
113 struct list_head *pos, *head;
114 unsigned long flags;
115 int wake = 0;
116
117 spin_lock_irqsave(&vt_event_lock, flags);
118 head = &vt_events;
119
120 list_for_each(pos, head) {
121 struct vt_event_wait *ve = list_entry(pos,
122 struct vt_event_wait, list);
123 if (!(ve->event.event & event))
124 continue;
125 ve->event.event = event;
126 /* kernel view is consoles 0..n-1, user space view is
127 console 1..n with 0 meaning current, so we must bias */
128 ve->event.oldev = old + 1;
129 ve->event.newev = new + 1;
130 wake = 1;
131 ve->done = 1;
132 }
133 spin_unlock_irqrestore(&vt_event_lock, flags);
134 if (wake)
135 wake_up_interruptible(&vt_event_waitqueue);
136}
137
138static void __vt_event_queue(struct vt_event_wait *vw)
139{
140 unsigned long flags;
141 /* Prepare the event */
142 INIT_LIST_HEAD(&vw->list);
143 vw->done = 0;
144 /* Queue our event */
145 spin_lock_irqsave(&vt_event_lock, flags);
146 list_add(&vw->list, &vt_events);
147 spin_unlock_irqrestore(&vt_event_lock, flags);
148}
149
150static void __vt_event_wait(struct vt_event_wait *vw)
151{
152 /* Wait for it to pass */
153 wait_event_interruptible(vt_event_waitqueue, vw->done);
154}
155
156static void __vt_event_dequeue(struct vt_event_wait *vw)
157{
158 unsigned long flags;
159
160 /* Dequeue it */
161 spin_lock_irqsave(&vt_event_lock, flags);
162 list_del(&vw->list);
163 spin_unlock_irqrestore(&vt_event_lock, flags);
164}
165
166/**
167 * vt_event_wait - wait for an event
168 * @vw: our event
169 *
170 * Waits for an event to occur which completes our vt_event_wait
171 * structure. On return the structure has wv->done set to 1 for success
172 * or 0 if some event such as a signal ended the wait.
173 */
174
175static void vt_event_wait(struct vt_event_wait *vw)
176{
177 __vt_event_queue(vw);
178 __vt_event_wait(vw);
179 __vt_event_dequeue(vw);
180}
181
182/**
183 * vt_event_wait_ioctl - event ioctl handler
184 * @event: argument to ioctl (the event)
185 *
186 * Implement the VT_WAITEVENT ioctl using the VT event interface
187 */
188
189static int vt_event_wait_ioctl(struct vt_event __user *event)
190{
191 struct vt_event_wait vw;
192
193 if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
194 return -EFAULT;
195 /* Highest supported event for now */
196 if (vw.event.event & ~VT_MAX_EVENT)
197 return -EINVAL;
198
199 vt_event_wait(&vw);
200 /* If it occurred report it */
201 if (vw.done) {
202 if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
203 return -EFAULT;
204 return 0;
205 }
206 return -EINTR;
207}
208
209/**
210 * vt_waitactive - active console wait
211 * @n: new console
212 *
213 * Helper for event waits. Used to implement the legacy
214 * event waiting ioctls in terms of events
215 */
216
217int vt_waitactive(int n)
218{
219 struct vt_event_wait vw;
220 do {
221 vw.event.event = VT_EVENT_SWITCH;
222 __vt_event_queue(&vw);
223 if (n == fg_console + 1) {
224 __vt_event_dequeue(&vw);
225 break;
226 }
227 __vt_event_wait(&vw);
228 __vt_event_dequeue(&vw);
229 if (vw.done == 0)
230 return -EINTR;
231 } while (vw.event.newev != n);
232 return 0;
233}
234
235/*
236 * these are the valid i/o ports we're allowed to change. they map all the
237 * video ports
238 */
239#define GPFIRST 0x3b4
240#define GPLAST 0x3df
241#define GPNUM (GPLAST - GPFIRST + 1)
242
243/*
244 * currently, setting the mode from KD_TEXT to KD_GRAPHICS doesn't do a whole
245 * lot. i'm not sure if it should do any restoration of modes or what...
246 *
247 * XXX It should at least call into the driver, fbdev's definitely need to
248 * restore their engine state. --BenH
249 *
250 * Called with the console lock held.
251 */
252static int vt_kdsetmode(struct vc_data *vc, unsigned long mode)
253{
254 switch (mode) {
255 case KD_GRAPHICS:
256 break;
257 case KD_TEXT0:
258 case KD_TEXT1:
259 mode = KD_TEXT;
260 fallthrough;
261 case KD_TEXT:
262 break;
263 default:
264 return -EINVAL;
265 }
266
267 if (vc->vc_mode == mode)
268 return 0;
269
270 vc->vc_mode = mode;
271 if (vc->vc_num != fg_console)
272 return 0;
273
274 /* explicitly blank/unblank the screen if switching modes */
275 if (mode == KD_TEXT)
276 do_unblank_screen(1);
277 else
278 do_blank_screen(1);
279
280 return 0;
281}
282
283static int vt_k_ioctl(struct tty_struct *tty, unsigned int cmd,
284 unsigned long arg, bool perm)
285{
286 struct vc_data *vc = tty->driver_data;
287 void __user *up = (void __user *)arg;
288 unsigned int console = vc->vc_num;
289 int ret;
290
291 switch (cmd) {
292 case KIOCSOUND:
293 if (!perm)
294 return -EPERM;
295 /*
296 * The use of PIT_TICK_RATE is historic, it used to be
297 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
298 * and 2.6.36, which was a minor but unfortunate ABI
299 * change. kd_mksound is locked by the input layer.
300 */
301 if (arg)
302 arg = PIT_TICK_RATE / arg;
303 kd_mksound(arg, 0);
304 break;
305
306 case KDMKTONE:
307 if (!perm)
308 return -EPERM;
309 {
310 unsigned int ticks, count;
311
312 /*
313 * Generate the tone for the appropriate number of ticks.
314 * If the time is zero, turn off sound ourselves.
315 */
316 ticks = msecs_to_jiffies((arg >> 16) & 0xffff);
317 count = ticks ? (arg & 0xffff) : 0;
318 if (count)
319 count = PIT_TICK_RATE / count;
320 kd_mksound(count, ticks);
321 break;
322 }
323
324 case KDGKBTYPE:
325 /*
326 * this is naïve.
327 */
328 return put_user(KB_101, (char __user *)arg);
329
330 /*
331 * These cannot be implemented on any machine that implements
332 * ioperm() in user level (such as Alpha PCs) or not at all.
333 *
334 * XXX: you should never use these, just call ioperm directly..
335 */
336#ifdef CONFIG_X86
337 case KDADDIO:
338 case KDDELIO:
339 /*
340 * KDADDIO and KDDELIO may be able to add ports beyond what
341 * we reject here, but to be safe...
342 *
343 * These are locked internally via sys_ioperm
344 */
345 if (arg < GPFIRST || arg > GPLAST)
346 return -EINVAL;
347
348 return ksys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
349
350 case KDENABIO:
351 case KDDISABIO:
352 return ksys_ioperm(GPFIRST, GPNUM,
353 (cmd == KDENABIO)) ? -ENXIO : 0;
354#endif
355
356 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
357
358 case KDKBDREP:
359 {
360 struct kbd_repeat kbrep;
361
362 if (!capable(CAP_SYS_TTY_CONFIG))
363 return -EPERM;
364
365 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat)))
366 return -EFAULT;
367
368 ret = kbd_rate(&kbrep);
369 if (ret)
370 return ret;
371 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
372 return -EFAULT;
373 break;
374 }
375
376 case KDSETMODE:
377 if (!perm)
378 return -EPERM;
379
380 console_lock();
381 ret = vt_kdsetmode(vc, arg);
382 console_unlock();
383 return ret;
384
385 case KDGETMODE:
386 return put_user(vc->vc_mode, (int __user *)arg);
387
388 case KDMAPDISP:
389 case KDUNMAPDISP:
390 /*
391 * these work like a combination of mmap and KDENABIO.
392 * this could be easily finished.
393 */
394 return -EINVAL;
395
396 case KDSKBMODE:
397 if (!perm)
398 return -EPERM;
399 ret = vt_do_kdskbmode(console, arg);
400 if (ret)
401 return ret;
402 tty_ldisc_flush(tty);
403 break;
404
405 case KDGKBMODE:
406 return put_user(vt_do_kdgkbmode(console), (int __user *)arg);
407
408 /* this could be folded into KDSKBMODE, but for compatibility
409 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
410 case KDSKBMETA:
411 return vt_do_kdskbmeta(console, arg);
412
413 case KDGKBMETA:
414 /* FIXME: should review whether this is worth locking */
415 return put_user(vt_do_kdgkbmeta(console), (int __user *)arg);
416
417 case KDGETKEYCODE:
418 case KDSETKEYCODE:
419 if(!capable(CAP_SYS_TTY_CONFIG))
420 perm = 0;
421 return vt_do_kbkeycode_ioctl(cmd, up, perm);
422
423 case KDGKBENT:
424 case KDSKBENT:
425 return vt_do_kdsk_ioctl(cmd, up, perm, console);
426
427 case KDGKBSENT:
428 case KDSKBSENT:
429 return vt_do_kdgkb_ioctl(cmd, up, perm);
430
431 /* Diacritical processing. Handled in keyboard.c as it has
432 to operate on the keyboard locks and structures */
433 case KDGKBDIACR:
434 case KDGKBDIACRUC:
435 case KDSKBDIACR:
436 case KDSKBDIACRUC:
437 return vt_do_diacrit(cmd, up, perm);
438
439 /* the ioctls below read/set the flags usually shown in the leds */
440 /* don't use them - they will go away without warning */
441 case KDGKBLED:
442 case KDSKBLED:
443 case KDGETLED:
444 case KDSETLED:
445 return vt_do_kdskled(console, cmd, arg, perm);
446
447 /*
448 * A process can indicate its willingness to accept signals
449 * generated by pressing an appropriate key combination.
450 * Thus, one can have a daemon that e.g. spawns a new console
451 * upon a keypress and then changes to it.
452 * See also the kbrequest field of inittab(5).
453 */
454 case KDSIGACCEPT:
455 if (!perm || !capable(CAP_KILL))
456 return -EPERM;
457 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
458 return -EINVAL;
459
460 spin_lock_irq(&vt_spawn_con.lock);
461 put_pid(vt_spawn_con.pid);
462 vt_spawn_con.pid = get_pid(task_pid(current));
463 vt_spawn_con.sig = arg;
464 spin_unlock_irq(&vt_spawn_con.lock);
465 break;
466
467 case KDFONTOP: {
468 struct console_font_op op;
469
470 if (copy_from_user(&op, up, sizeof(op)))
471 return -EFAULT;
472 if (!perm && op.op != KD_FONT_OP_GET)
473 return -EPERM;
474 ret = con_font_op(vc, &op);
475 if (ret)
476 return ret;
477 if (copy_to_user(up, &op, sizeof(op)))
478 return -EFAULT;
479 break;
480 }
481
482 default:
483 return -ENOIOCTLCMD;
484 }
485
486 return 0;
487}
488
489static inline int do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud,
490 bool perm, struct vc_data *vc)
491{
492 struct unimapdesc tmp;
493
494 if (copy_from_user(&tmp, user_ud, sizeof tmp))
495 return -EFAULT;
496 switch (cmd) {
497 case PIO_UNIMAP:
498 if (!perm)
499 return -EPERM;
500 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
501 case GIO_UNIMAP:
502 if (!perm && fg_console != vc->vc_num)
503 return -EPERM;
504 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct),
505 tmp.entries);
506 }
507 return 0;
508}
509
510static int vt_io_ioctl(struct vc_data *vc, unsigned int cmd, void __user *up,
511 bool perm)
512{
513 switch (cmd) {
514 case PIO_CMAP:
515 if (!perm)
516 return -EPERM;
517 return con_set_cmap(up);
518
519 case GIO_CMAP:
520 return con_get_cmap(up);
521
522 case PIO_SCRNMAP:
523 if (!perm)
524 return -EPERM;
525 return con_set_trans_old(up);
526
527 case GIO_SCRNMAP:
528 return con_get_trans_old(up);
529
530 case PIO_UNISCRNMAP:
531 if (!perm)
532 return -EPERM;
533 return con_set_trans_new(up);
534
535 case GIO_UNISCRNMAP:
536 return con_get_trans_new(up);
537
538 case PIO_UNIMAPCLR:
539 if (!perm)
540 return -EPERM;
541 con_clear_unimap(vc);
542 break;
543
544 case PIO_UNIMAP:
545 case GIO_UNIMAP:
546 return do_unimap_ioctl(cmd, up, perm, vc);
547
548 default:
549 return -ENOIOCTLCMD;
550 }
551
552 return 0;
553}
554
555static int vt_reldisp(struct vc_data *vc, unsigned int swtch)
556{
557 int newvt, ret;
558
559 if (vc->vt_mode.mode != VT_PROCESS)
560 return -EINVAL;
561
562 /* Switched-to response */
563 if (vc->vt_newvt < 0) {
564 /* If it's just an ACK, ignore it */
565 return swtch == VT_ACKACQ ? 0 : -EINVAL;
566 }
567
568 /* Switching-from response */
569 if (swtch == 0) {
570 /* Switch disallowed, so forget we were trying to do it. */
571 vc->vt_newvt = -1;
572 return 0;
573 }
574
575 /* The current vt has been released, so complete the switch. */
576 newvt = vc->vt_newvt;
577 vc->vt_newvt = -1;
578 ret = vc_allocate(newvt);
579 if (ret)
580 return ret;
581
582 /*
583 * When we actually do the console switch, make sure we are atomic with
584 * respect to other console switches..
585 */
586 complete_change_console(vc_cons[newvt].d);
587
588 return 0;
589}
590
591static int vt_setactivate(struct vt_setactivate __user *sa)
592{
593 struct vt_setactivate vsa;
594 struct vc_data *nvc;
595 int ret;
596
597 if (copy_from_user(&vsa, sa, sizeof(vsa)))
598 return -EFAULT;
599 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
600 return -ENXIO;
601
602 vsa.console--;
603 vsa.console = array_index_nospec(vsa.console, MAX_NR_CONSOLES);
604 console_lock();
605 ret = vc_allocate(vsa.console);
606 if (ret) {
607 console_unlock();
608 return ret;
609 }
610
611 /*
612 * This is safe providing we don't drop the console sem between
613 * vc_allocate and finishing referencing nvc.
614 */
615 nvc = vc_cons[vsa.console].d;
616 nvc->vt_mode = vsa.mode;
617 nvc->vt_mode.frsig = 0;
618 put_pid(nvc->vt_pid);
619 nvc->vt_pid = get_pid(task_pid(current));
620 console_unlock();
621
622 /* Commence switch and lock */
623 /* Review set_console locks */
624 set_console(vsa.console);
625
626 return 0;
627}
628
629/* deallocate a single console, if possible (leave 0) */
630static int vt_disallocate(unsigned int vc_num)
631{
632 struct vc_data *vc = NULL;
633 int ret = 0;
634
635 console_lock();
636 if (vt_busy(vc_num))
637 ret = -EBUSY;
638 else if (vc_num)
639 vc = vc_deallocate(vc_num);
640 console_unlock();
641
642 if (vc && vc_num >= MIN_NR_CONSOLES)
643 tty_port_put(&vc->port);
644
645 return ret;
646}
647
648/* deallocate all unused consoles, but leave 0 */
649static void vt_disallocate_all(void)
650{
651 struct vc_data *vc[MAX_NR_CONSOLES];
652 int i;
653
654 console_lock();
655 for (i = 1; i < MAX_NR_CONSOLES; i++)
656 if (!vt_busy(i))
657 vc[i] = vc_deallocate(i);
658 else
659 vc[i] = NULL;
660 console_unlock();
661
662 for (i = 1; i < MAX_NR_CONSOLES; i++) {
663 if (vc[i] && i >= MIN_NR_CONSOLES)
664 tty_port_put(&vc[i]->port);
665 }
666}
667
668static int vt_resizex(struct vc_data *vc, struct vt_consize __user *cs)
669{
670 struct vt_consize v;
671 int i;
672
673 if (copy_from_user(&v, cs, sizeof(struct vt_consize)))
674 return -EFAULT;
675
676 /* FIXME: Should check the copies properly */
677 if (!v.v_vlin)
678 v.v_vlin = vc->vc_scan_lines;
679
680 if (v.v_clin) {
681 int rows = v.v_vlin / v.v_clin;
682 if (v.v_rows != rows) {
683 if (v.v_rows) /* Parameters don't add up */
684 return -EINVAL;
685 v.v_rows = rows;
686 }
687 }
688
689 if (v.v_vcol && v.v_ccol) {
690 int cols = v.v_vcol / v.v_ccol;
691 if (v.v_cols != cols) {
692 if (v.v_cols)
693 return -EINVAL;
694 v.v_cols = cols;
695 }
696 }
697
698 if (v.v_clin > 32)
699 return -EINVAL;
700
701 for (i = 0; i < MAX_NR_CONSOLES; i++) {
702 struct vc_data *vcp;
703
704 if (!vc_cons[i].d)
705 continue;
706 console_lock();
707 vcp = vc_cons[i].d;
708 if (vcp) {
709 int ret;
710 int save_scan_lines = vcp->vc_scan_lines;
711 int save_cell_height = vcp->vc_cell_height;
712
713 if (v.v_vlin)
714 vcp->vc_scan_lines = v.v_vlin;
715 if (v.v_clin)
716 vcp->vc_cell_height = v.v_clin;
717 vcp->vc_resize_user = 1;
718 ret = vc_resize(vcp, v.v_cols, v.v_rows);
719 if (ret) {
720 vcp->vc_scan_lines = save_scan_lines;
721 vcp->vc_cell_height = save_cell_height;
722 console_unlock();
723 return ret;
724 }
725 }
726 console_unlock();
727 }
728
729 return 0;
730}
731
732/*
733 * We handle the console-specific ioctl's here. We allow the
734 * capability to modify any console, not just the fg_console.
735 */
736int vt_ioctl(struct tty_struct *tty,
737 unsigned int cmd, unsigned long arg)
738{
739 struct vc_data *vc = tty->driver_data;
740 void __user *up = (void __user *)arg;
741 int i, perm;
742 int ret;
743
744 /*
745 * To have permissions to do most of the vt ioctls, we either have
746 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
747 */
748 perm = 0;
749 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
750 perm = 1;
751
752 ret = vt_k_ioctl(tty, cmd, arg, perm);
753 if (ret != -ENOIOCTLCMD)
754 return ret;
755
756 ret = vt_io_ioctl(vc, cmd, up, perm);
757 if (ret != -ENOIOCTLCMD)
758 return ret;
759
760 switch (cmd) {
761 case TIOCLINUX:
762 return tioclinux(tty, arg);
763 case VT_SETMODE:
764 {
765 struct vt_mode tmp;
766
767 if (!perm)
768 return -EPERM;
769 if (copy_from_user(&tmp, up, sizeof(struct vt_mode)))
770 return -EFAULT;
771 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS)
772 return -EINVAL;
773
774 console_lock();
775 vc->vt_mode = tmp;
776 /* the frsig is ignored, so we set it to 0 */
777 vc->vt_mode.frsig = 0;
778 put_pid(vc->vt_pid);
779 vc->vt_pid = get_pid(task_pid(current));
780 /* no switch is required -- saw@shade.msu.ru */
781 vc->vt_newvt = -1;
782 console_unlock();
783 break;
784 }
785
786 case VT_GETMODE:
787 {
788 struct vt_mode tmp;
789 int rc;
790
791 console_lock();
792 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
793 console_unlock();
794
795 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
796 if (rc)
797 return -EFAULT;
798 break;
799 }
800
801 /*
802 * Returns global vt state. Note that VT 0 is always open, since
803 * it's an alias for the current VT, and people can't use it here.
804 * We cannot return state for more than 16 VTs, since v_state is short.
805 */
806 case VT_GETSTATE:
807 {
808 struct vt_stat __user *vtstat = up;
809 unsigned short state, mask;
810
811 if (put_user(fg_console + 1, &vtstat->v_active))
812 return -EFAULT;
813
814 state = 1; /* /dev/tty0 is always open */
815 console_lock(); /* required by vt_in_use() */
816 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
817 ++i, mask <<= 1)
818 if (vt_in_use(i))
819 state |= mask;
820 console_unlock();
821 return put_user(state, &vtstat->v_state);
822 }
823
824 /*
825 * Returns the first available (non-opened) console.
826 */
827 case VT_OPENQRY:
828 console_lock(); /* required by vt_in_use() */
829 for (i = 0; i < MAX_NR_CONSOLES; ++i)
830 if (!vt_in_use(i))
831 break;
832 console_unlock();
833 i = i < MAX_NR_CONSOLES ? (i+1) : -1;
834 return put_user(i, (int __user *)arg);
835
836 /*
837 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
838 * with num >= 1 (switches to vt 0, our console, are not allowed, just
839 * to preserve sanity).
840 */
841 case VT_ACTIVATE:
842 if (!perm)
843 return -EPERM;
844 if (arg == 0 || arg > MAX_NR_CONSOLES)
845 return -ENXIO;
846
847 arg--;
848 arg = array_index_nospec(arg, MAX_NR_CONSOLES);
849 console_lock();
850 ret = vc_allocate(arg);
851 console_unlock();
852 if (ret)
853 return ret;
854 set_console(arg);
855 break;
856
857 case VT_SETACTIVATE:
858 if (!perm)
859 return -EPERM;
860
861 return vt_setactivate(up);
862
863 /*
864 * wait until the specified VT has been activated
865 */
866 case VT_WAITACTIVE:
867 if (!perm)
868 return -EPERM;
869 if (arg == 0 || arg > MAX_NR_CONSOLES)
870 return -ENXIO;
871 return vt_waitactive(arg);
872
873 /*
874 * If a vt is under process control, the kernel will not switch to it
875 * immediately, but postpone the operation until the process calls this
876 * ioctl, allowing the switch to complete.
877 *
878 * According to the X sources this is the behavior:
879 * 0: pending switch-from not OK
880 * 1: pending switch-from OK
881 * 2: completed switch-to OK
882 */
883 case VT_RELDISP:
884 if (!perm)
885 return -EPERM;
886
887 console_lock();
888 ret = vt_reldisp(vc, arg);
889 console_unlock();
890
891 return ret;
892
893
894 /*
895 * Disallocate memory associated to VT (but leave VT1)
896 */
897 case VT_DISALLOCATE:
898 if (arg > MAX_NR_CONSOLES)
899 return -ENXIO;
900
901 if (arg == 0) {
902 vt_disallocate_all();
903 break;
904 }
905
906 arg = array_index_nospec(arg - 1, MAX_NR_CONSOLES);
907 return vt_disallocate(arg);
908
909 case VT_RESIZE:
910 {
911 struct vt_sizes __user *vtsizes = up;
912 struct vc_data *vc;
913 ushort ll,cc;
914
915 if (!perm)
916 return -EPERM;
917 if (get_user(ll, &vtsizes->v_rows) ||
918 get_user(cc, &vtsizes->v_cols))
919 return -EFAULT;
920
921 console_lock();
922 for (i = 0; i < MAX_NR_CONSOLES; i++) {
923 vc = vc_cons[i].d;
924
925 if (vc) {
926 vc->vc_resize_user = 1;
927 /* FIXME: review v tty lock */
928 vc_resize(vc_cons[i].d, cc, ll);
929 }
930 }
931 console_unlock();
932 break;
933 }
934
935 case VT_RESIZEX:
936 if (!perm)
937 return -EPERM;
938
939 return vt_resizex(vc, up);
940
941 case VT_LOCKSWITCH:
942 if (!capable(CAP_SYS_TTY_CONFIG))
943 return -EPERM;
944 vt_dont_switch = true;
945 break;
946 case VT_UNLOCKSWITCH:
947 if (!capable(CAP_SYS_TTY_CONFIG))
948 return -EPERM;
949 vt_dont_switch = false;
950 break;
951 case VT_GETHIFONTMASK:
952 return put_user(vc->vc_hi_font_mask,
953 (unsigned short __user *)arg);
954 case VT_WAITEVENT:
955 return vt_event_wait_ioctl((struct vt_event __user *)arg);
956 default:
957 return -ENOIOCTLCMD;
958 }
959
960 return 0;
961}
962
963void reset_vc(struct vc_data *vc)
964{
965 vc->vc_mode = KD_TEXT;
966 vt_reset_unicode(vc->vc_num);
967 vc->vt_mode.mode = VT_AUTO;
968 vc->vt_mode.waitv = 0;
969 vc->vt_mode.relsig = 0;
970 vc->vt_mode.acqsig = 0;
971 vc->vt_mode.frsig = 0;
972 put_pid(vc->vt_pid);
973 vc->vt_pid = NULL;
974 vc->vt_newvt = -1;
975 reset_palette(vc);
976}
977
978void vc_SAK(struct work_struct *work)
979{
980 struct vc *vc_con =
981 container_of(work, struct vc, SAK_work);
982 struct vc_data *vc;
983 struct tty_struct *tty;
984
985 console_lock();
986 vc = vc_con->d;
987 if (vc) {
988 /* FIXME: review tty ref counting */
989 tty = vc->port.tty;
990 /*
991 * SAK should also work in all raw modes and reset
992 * them properly.
993 */
994 if (tty)
995 __do_SAK(tty);
996 reset_vc(vc);
997 }
998 console_unlock();
999}
1000
1001#ifdef CONFIG_COMPAT
1002
1003struct compat_console_font_op {
1004 compat_uint_t op; /* operation code KD_FONT_OP_* */
1005 compat_uint_t flags; /* KD_FONT_FLAG_* */
1006 compat_uint_t width, height; /* font size */
1007 compat_uint_t charcount;
1008 compat_caddr_t data; /* font data with height fixed to 32 */
1009};
1010
1011static inline int
1012compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1013 int perm, struct console_font_op *op, struct vc_data *vc)
1014{
1015 int i;
1016
1017 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1018 return -EFAULT;
1019 if (!perm && op->op != KD_FONT_OP_GET)
1020 return -EPERM;
1021 op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1022 i = con_font_op(vc, op);
1023 if (i)
1024 return i;
1025 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1026 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1027 return -EFAULT;
1028 return 0;
1029}
1030
1031struct compat_unimapdesc {
1032 unsigned short entry_ct;
1033 compat_caddr_t entries;
1034};
1035
1036static inline int
1037compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1038 int perm, struct vc_data *vc)
1039{
1040 struct compat_unimapdesc tmp;
1041 struct unipair __user *tmp_entries;
1042
1043 if (copy_from_user(&tmp, user_ud, sizeof tmp))
1044 return -EFAULT;
1045 tmp_entries = compat_ptr(tmp.entries);
1046 switch (cmd) {
1047 case PIO_UNIMAP:
1048 if (!perm)
1049 return -EPERM;
1050 return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1051 case GIO_UNIMAP:
1052 if (!perm && fg_console != vc->vc_num)
1053 return -EPERM;
1054 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1055 }
1056 return 0;
1057}
1058
1059long vt_compat_ioctl(struct tty_struct *tty,
1060 unsigned int cmd, unsigned long arg)
1061{
1062 struct vc_data *vc = tty->driver_data;
1063 struct console_font_op op; /* used in multiple places here */
1064 void __user *up = compat_ptr(arg);
1065 int perm;
1066
1067 /*
1068 * To have permissions to do most of the vt ioctls, we either have
1069 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1070 */
1071 perm = 0;
1072 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1073 perm = 1;
1074
1075 switch (cmd) {
1076 /*
1077 * these need special handlers for incompatible data structures
1078 */
1079
1080 case KDFONTOP:
1081 return compat_kdfontop_ioctl(up, perm, &op, vc);
1082
1083 case PIO_UNIMAP:
1084 case GIO_UNIMAP:
1085 return compat_unimap_ioctl(cmd, up, perm, vc);
1086
1087 /*
1088 * all these treat 'arg' as an integer
1089 */
1090 case KIOCSOUND:
1091 case KDMKTONE:
1092#ifdef CONFIG_X86
1093 case KDADDIO:
1094 case KDDELIO:
1095#endif
1096 case KDSETMODE:
1097 case KDMAPDISP:
1098 case KDUNMAPDISP:
1099 case KDSKBMODE:
1100 case KDSKBMETA:
1101 case KDSKBLED:
1102 case KDSETLED:
1103 case KDSIGACCEPT:
1104 case VT_ACTIVATE:
1105 case VT_WAITACTIVE:
1106 case VT_RELDISP:
1107 case VT_DISALLOCATE:
1108 case VT_RESIZE:
1109 case VT_RESIZEX:
1110 return vt_ioctl(tty, cmd, arg);
1111
1112 /*
1113 * the rest has a compatible data structure behind arg,
1114 * but we have to convert it to a proper 64 bit pointer.
1115 */
1116 default:
1117 return vt_ioctl(tty, cmd, (unsigned long)up);
1118 }
1119}
1120
1121
1122#endif /* CONFIG_COMPAT */
1123
1124
1125/*
1126 * Performs the back end of a vt switch. Called under the console
1127 * semaphore.
1128 */
1129static void complete_change_console(struct vc_data *vc)
1130{
1131 unsigned char old_vc_mode;
1132 int old = fg_console;
1133
1134 last_console = fg_console;
1135
1136 /*
1137 * If we're switching, we could be going from KD_GRAPHICS to
1138 * KD_TEXT mode or vice versa, which means we need to blank or
1139 * unblank the screen later.
1140 */
1141 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1142 switch_screen(vc);
1143
1144 /*
1145 * This can't appear below a successful kill_pid(). If it did,
1146 * then the *blank_screen operation could occur while X, having
1147 * received acqsig, is waking up on another processor. This
1148 * condition can lead to overlapping accesses to the VGA range
1149 * and the framebuffer (causing system lockups).
1150 *
1151 * To account for this we duplicate this code below only if the
1152 * controlling process is gone and we've called reset_vc.
1153 */
1154 if (old_vc_mode != vc->vc_mode) {
1155 if (vc->vc_mode == KD_TEXT)
1156 do_unblank_screen(1);
1157 else
1158 do_blank_screen(1);
1159 }
1160
1161 /*
1162 * If this new console is under process control, send it a signal
1163 * telling it that it has acquired. Also check if it has died and
1164 * clean up (similar to logic employed in change_console())
1165 */
1166 if (vc->vt_mode.mode == VT_PROCESS) {
1167 /*
1168 * Send the signal as privileged - kill_pid() will
1169 * tell us if the process has gone or something else
1170 * is awry
1171 */
1172 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1173 /*
1174 * The controlling process has died, so we revert back to
1175 * normal operation. In this case, we'll also change back
1176 * to KD_TEXT mode. I'm not sure if this is strictly correct
1177 * but it saves the agony when the X server dies and the screen
1178 * remains blanked due to KD_GRAPHICS! It would be nice to do
1179 * this outside of VT_PROCESS but there is no single process
1180 * to account for and tracking tty count may be undesirable.
1181 */
1182 reset_vc(vc);
1183
1184 if (old_vc_mode != vc->vc_mode) {
1185 if (vc->vc_mode == KD_TEXT)
1186 do_unblank_screen(1);
1187 else
1188 do_blank_screen(1);
1189 }
1190 }
1191 }
1192
1193 /*
1194 * Wake anyone waiting for their VT to activate
1195 */
1196 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1197 return;
1198}
1199
1200/*
1201 * Performs the front-end of a vt switch
1202 */
1203void change_console(struct vc_data *new_vc)
1204{
1205 struct vc_data *vc;
1206
1207 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1208 return;
1209
1210 /*
1211 * If this vt is in process mode, then we need to handshake with
1212 * that process before switching. Essentially, we store where that
1213 * vt wants to switch to and wait for it to tell us when it's done
1214 * (via VT_RELDISP ioctl).
1215 *
1216 * We also check to see if the controlling process still exists.
1217 * If it doesn't, we reset this vt to auto mode and continue.
1218 * This is a cheap way to track process control. The worst thing
1219 * that can happen is: we send a signal to a process, it dies, and
1220 * the switch gets "lost" waiting for a response; hopefully, the
1221 * user will try again, we'll detect the process is gone (unless
1222 * the user waits just the right amount of time :-) and revert the
1223 * vt to auto control.
1224 */
1225 vc = vc_cons[fg_console].d;
1226 if (vc->vt_mode.mode == VT_PROCESS) {
1227 /*
1228 * Send the signal as privileged - kill_pid() will
1229 * tell us if the process has gone or something else
1230 * is awry.
1231 *
1232 * We need to set vt_newvt *before* sending the signal or we
1233 * have a race.
1234 */
1235 vc->vt_newvt = new_vc->vc_num;
1236 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1237 /*
1238 * It worked. Mark the vt to switch to and
1239 * return. The process needs to send us a
1240 * VT_RELDISP ioctl to complete the switch.
1241 */
1242 return;
1243 }
1244
1245 /*
1246 * The controlling process has died, so we revert back to
1247 * normal operation. In this case, we'll also change back
1248 * to KD_TEXT mode. I'm not sure if this is strictly correct
1249 * but it saves the agony when the X server dies and the screen
1250 * remains blanked due to KD_GRAPHICS! It would be nice to do
1251 * this outside of VT_PROCESS but there is no single process
1252 * to account for and tracking tty count may be undesirable.
1253 */
1254 reset_vc(vc);
1255
1256 /*
1257 * Fall through to normal (VT_AUTO) handling of the switch...
1258 */
1259 }
1260
1261 /*
1262 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1263 */
1264 if (vc->vc_mode == KD_GRAPHICS)
1265 return;
1266
1267 complete_change_console(new_vc);
1268}
1269
1270/* Perform a kernel triggered VT switch for suspend/resume */
1271
1272static int disable_vt_switch;
1273
1274int vt_move_to_console(unsigned int vt, int alloc)
1275{
1276 int prev;
1277
1278 console_lock();
1279 /* Graphics mode - up to X */
1280 if (disable_vt_switch) {
1281 console_unlock();
1282 return 0;
1283 }
1284 prev = fg_console;
1285
1286 if (alloc && vc_allocate(vt)) {
1287 /* we can't have a free VC for now. Too bad,
1288 * we don't want to mess the screen for now. */
1289 console_unlock();
1290 return -ENOSPC;
1291 }
1292
1293 if (set_console(vt)) {
1294 /*
1295 * We're unable to switch to the SUSPEND_CONSOLE.
1296 * Let the calling function know so it can decide
1297 * what to do.
1298 */
1299 console_unlock();
1300 return -EIO;
1301 }
1302 console_unlock();
1303 if (vt_waitactive(vt + 1)) {
1304 pr_debug("Suspend: Can't switch VCs.");
1305 return -EINTR;
1306 }
1307 return prev;
1308}
1309
1310/*
1311 * Normally during a suspend, we allocate a new console and switch to it.
1312 * When we resume, we switch back to the original console. This switch
1313 * can be slow, so on systems where the framebuffer can handle restoration
1314 * of video registers anyways, there's little point in doing the console
1315 * switch. This function allows you to disable it by passing it '0'.
1316 */
1317void pm_set_vt_switch(int do_switch)
1318{
1319 console_lock();
1320 disable_vt_switch = !do_switch;
1321 console_unlock();
1322}
1323EXPORT_SYMBOL(pm_set_vt_switch);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992 obz under the linux copyright
4 *
5 * Dynamic diacritical handling - aeb@cwi.nl - Dec 1993
6 * Dynamic keymap and string allocation - aeb@cwi.nl - May 1994
7 * Restrict VT switching via ioctl() - grif@cs.ucr.edu - Dec 1995
8 * Some code moved for less code duplication - Andi Kleen - Mar 1997
9 * Check put/get_user, cleanups - acme@conectiva.com.br - Jun 2001
10 */
11
12#include <linux/types.h>
13#include <linux/errno.h>
14#include <linux/sched/signal.h>
15#include <linux/tty.h>
16#include <linux/timer.h>
17#include <linux/kernel.h>
18#include <linux/compat.h>
19#include <linux/module.h>
20#include <linux/kd.h>
21#include <linux/vt.h>
22#include <linux/string.h>
23#include <linux/slab.h>
24#include <linux/major.h>
25#include <linux/fs.h>
26#include <linux/console.h>
27#include <linux/consolemap.h>
28#include <linux/signal.h>
29#include <linux/suspend.h>
30#include <linux/timex.h>
31
32#include <asm/io.h>
33#include <linux/uaccess.h>
34
35#include <linux/kbd_kern.h>
36#include <linux/vt_kern.h>
37#include <linux/kbd_diacr.h>
38#include <linux/selection.h>
39
40char vt_dont_switch;
41extern struct tty_driver *console_driver;
42
43#define VT_IS_IN_USE(i) (console_driver->ttys[i] && console_driver->ttys[i]->count)
44#define VT_BUSY(i) (VT_IS_IN_USE(i) || i == fg_console || vc_cons[i].d == sel_cons)
45
46/*
47 * Console (vt and kd) routines, as defined by USL SVR4 manual, and by
48 * experimentation and study of X386 SYSV handling.
49 *
50 * One point of difference: SYSV vt's are /dev/vtX, which X >= 0, and
51 * /dev/console is a separate ttyp. Under Linux, /dev/tty0 is /dev/console,
52 * and the vc start at /dev/ttyX, X >= 1. We maintain that here, so we will
53 * always treat our set of vt as numbered 1..MAX_NR_CONSOLES (corresponding to
54 * ttys 0..MAX_NR_CONSOLES-1). Explicitly naming VT 0 is illegal, but using
55 * /dev/tty0 (fg_console) as a target is legal, since an implicit aliasing
56 * to the current console is done by the main ioctl code.
57 */
58
59#ifdef CONFIG_X86
60#include <asm/syscalls.h>
61#endif
62
63static void complete_change_console(struct vc_data *vc);
64
65/*
66 * User space VT_EVENT handlers
67 */
68
69struct vt_event_wait {
70 struct list_head list;
71 struct vt_event event;
72 int done;
73};
74
75static LIST_HEAD(vt_events);
76static DEFINE_SPINLOCK(vt_event_lock);
77static DECLARE_WAIT_QUEUE_HEAD(vt_event_waitqueue);
78
79/**
80 * vt_event_post
81 * @event: the event that occurred
82 * @old: old console
83 * @new: new console
84 *
85 * Post an VT event to interested VT handlers
86 */
87
88void vt_event_post(unsigned int event, unsigned int old, unsigned int new)
89{
90 struct list_head *pos, *head;
91 unsigned long flags;
92 int wake = 0;
93
94 spin_lock_irqsave(&vt_event_lock, flags);
95 head = &vt_events;
96
97 list_for_each(pos, head) {
98 struct vt_event_wait *ve = list_entry(pos,
99 struct vt_event_wait, list);
100 if (!(ve->event.event & event))
101 continue;
102 ve->event.event = event;
103 /* kernel view is consoles 0..n-1, user space view is
104 console 1..n with 0 meaning current, so we must bias */
105 ve->event.oldev = old + 1;
106 ve->event.newev = new + 1;
107 wake = 1;
108 ve->done = 1;
109 }
110 spin_unlock_irqrestore(&vt_event_lock, flags);
111 if (wake)
112 wake_up_interruptible(&vt_event_waitqueue);
113}
114
115static void __vt_event_queue(struct vt_event_wait *vw)
116{
117 unsigned long flags;
118 /* Prepare the event */
119 INIT_LIST_HEAD(&vw->list);
120 vw->done = 0;
121 /* Queue our event */
122 spin_lock_irqsave(&vt_event_lock, flags);
123 list_add(&vw->list, &vt_events);
124 spin_unlock_irqrestore(&vt_event_lock, flags);
125}
126
127static void __vt_event_wait(struct vt_event_wait *vw)
128{
129 /* Wait for it to pass */
130 wait_event_interruptible(vt_event_waitqueue, vw->done);
131}
132
133static void __vt_event_dequeue(struct vt_event_wait *vw)
134{
135 unsigned long flags;
136
137 /* Dequeue it */
138 spin_lock_irqsave(&vt_event_lock, flags);
139 list_del(&vw->list);
140 spin_unlock_irqrestore(&vt_event_lock, flags);
141}
142
143/**
144 * vt_event_wait - wait for an event
145 * @vw: our event
146 *
147 * Waits for an event to occur which completes our vt_event_wait
148 * structure. On return the structure has wv->done set to 1 for success
149 * or 0 if some event such as a signal ended the wait.
150 */
151
152static void vt_event_wait(struct vt_event_wait *vw)
153{
154 __vt_event_queue(vw);
155 __vt_event_wait(vw);
156 __vt_event_dequeue(vw);
157}
158
159/**
160 * vt_event_wait_ioctl - event ioctl handler
161 * @arg: argument to ioctl
162 *
163 * Implement the VT_WAITEVENT ioctl using the VT event interface
164 */
165
166static int vt_event_wait_ioctl(struct vt_event __user *event)
167{
168 struct vt_event_wait vw;
169
170 if (copy_from_user(&vw.event, event, sizeof(struct vt_event)))
171 return -EFAULT;
172 /* Highest supported event for now */
173 if (vw.event.event & ~VT_MAX_EVENT)
174 return -EINVAL;
175
176 vt_event_wait(&vw);
177 /* If it occurred report it */
178 if (vw.done) {
179 if (copy_to_user(event, &vw.event, sizeof(struct vt_event)))
180 return -EFAULT;
181 return 0;
182 }
183 return -EINTR;
184}
185
186/**
187 * vt_waitactive - active console wait
188 * @event: event code
189 * @n: new console
190 *
191 * Helper for event waits. Used to implement the legacy
192 * event waiting ioctls in terms of events
193 */
194
195int vt_waitactive(int n)
196{
197 struct vt_event_wait vw;
198 do {
199 vw.event.event = VT_EVENT_SWITCH;
200 __vt_event_queue(&vw);
201 if (n == fg_console + 1) {
202 __vt_event_dequeue(&vw);
203 break;
204 }
205 __vt_event_wait(&vw);
206 __vt_event_dequeue(&vw);
207 if (vw.done == 0)
208 return -EINTR;
209 } while (vw.event.newev != n);
210 return 0;
211}
212
213/*
214 * these are the valid i/o ports we're allowed to change. they map all the
215 * video ports
216 */
217#define GPFIRST 0x3b4
218#define GPLAST 0x3df
219#define GPNUM (GPLAST - GPFIRST + 1)
220
221
222
223static inline int
224do_fontx_ioctl(int cmd, struct consolefontdesc __user *user_cfd, int perm, struct console_font_op *op)
225{
226 struct consolefontdesc cfdarg;
227 int i;
228
229 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct consolefontdesc)))
230 return -EFAULT;
231
232 switch (cmd) {
233 case PIO_FONTX:
234 if (!perm)
235 return -EPERM;
236 op->op = KD_FONT_OP_SET;
237 op->flags = KD_FONT_FLAG_OLD;
238 op->width = 8;
239 op->height = cfdarg.charheight;
240 op->charcount = cfdarg.charcount;
241 op->data = cfdarg.chardata;
242 return con_font_op(vc_cons[fg_console].d, op);
243 case GIO_FONTX: {
244 op->op = KD_FONT_OP_GET;
245 op->flags = KD_FONT_FLAG_OLD;
246 op->width = 8;
247 op->height = cfdarg.charheight;
248 op->charcount = cfdarg.charcount;
249 op->data = cfdarg.chardata;
250 i = con_font_op(vc_cons[fg_console].d, op);
251 if (i)
252 return i;
253 cfdarg.charheight = op->height;
254 cfdarg.charcount = op->charcount;
255 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct consolefontdesc)))
256 return -EFAULT;
257 return 0;
258 }
259 }
260 return -EINVAL;
261}
262
263static inline int
264do_unimap_ioctl(int cmd, struct unimapdesc __user *user_ud, int perm, struct vc_data *vc)
265{
266 struct unimapdesc tmp;
267
268 if (copy_from_user(&tmp, user_ud, sizeof tmp))
269 return -EFAULT;
270 switch (cmd) {
271 case PIO_UNIMAP:
272 if (!perm)
273 return -EPERM;
274 return con_set_unimap(vc, tmp.entry_ct, tmp.entries);
275 case GIO_UNIMAP:
276 if (!perm && fg_console != vc->vc_num)
277 return -EPERM;
278 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp.entries);
279 }
280 return 0;
281}
282
283/* deallocate a single console, if possible (leave 0) */
284static int vt_disallocate(unsigned int vc_num)
285{
286 struct vc_data *vc = NULL;
287 int ret = 0;
288
289 console_lock();
290 if (VT_BUSY(vc_num))
291 ret = -EBUSY;
292 else if (vc_num)
293 vc = vc_deallocate(vc_num);
294 console_unlock();
295
296 if (vc && vc_num >= MIN_NR_CONSOLES) {
297 tty_port_destroy(&vc->port);
298 kfree(vc);
299 }
300
301 return ret;
302}
303
304/* deallocate all unused consoles, but leave 0 */
305static void vt_disallocate_all(void)
306{
307 struct vc_data *vc[MAX_NR_CONSOLES];
308 int i;
309
310 console_lock();
311 for (i = 1; i < MAX_NR_CONSOLES; i++)
312 if (!VT_BUSY(i))
313 vc[i] = vc_deallocate(i);
314 else
315 vc[i] = NULL;
316 console_unlock();
317
318 for (i = 1; i < MAX_NR_CONSOLES; i++) {
319 if (vc[i] && i >= MIN_NR_CONSOLES) {
320 tty_port_destroy(&vc[i]->port);
321 kfree(vc[i]);
322 }
323 }
324}
325
326
327/*
328 * We handle the console-specific ioctl's here. We allow the
329 * capability to modify any console, not just the fg_console.
330 */
331int vt_ioctl(struct tty_struct *tty,
332 unsigned int cmd, unsigned long arg)
333{
334 struct vc_data *vc = tty->driver_data;
335 struct console_font_op op; /* used in multiple places here */
336 unsigned int console;
337 unsigned char ucval;
338 unsigned int uival;
339 void __user *up = (void __user *)arg;
340 int i, perm;
341 int ret = 0;
342
343 console = vc->vc_num;
344
345
346 if (!vc_cons_allocated(console)) { /* impossible? */
347 ret = -ENOIOCTLCMD;
348 goto out;
349 }
350
351
352 /*
353 * To have permissions to do most of the vt ioctls, we either have
354 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
355 */
356 perm = 0;
357 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
358 perm = 1;
359
360 switch (cmd) {
361 case TIOCLINUX:
362 ret = tioclinux(tty, arg);
363 break;
364 case KIOCSOUND:
365 if (!perm)
366 return -EPERM;
367 /*
368 * The use of PIT_TICK_RATE is historic, it used to be
369 * the platform-dependent CLOCK_TICK_RATE between 2.6.12
370 * and 2.6.36, which was a minor but unfortunate ABI
371 * change. kd_mksound is locked by the input layer.
372 */
373 if (arg)
374 arg = PIT_TICK_RATE / arg;
375 kd_mksound(arg, 0);
376 break;
377
378 case KDMKTONE:
379 if (!perm)
380 return -EPERM;
381 {
382 unsigned int ticks, count;
383
384 /*
385 * Generate the tone for the appropriate number of ticks.
386 * If the time is zero, turn off sound ourselves.
387 */
388 ticks = msecs_to_jiffies((arg >> 16) & 0xffff);
389 count = ticks ? (arg & 0xffff) : 0;
390 if (count)
391 count = PIT_TICK_RATE / count;
392 kd_mksound(count, ticks);
393 break;
394 }
395
396 case KDGKBTYPE:
397 /*
398 * this is naïve.
399 */
400 ucval = KB_101;
401 ret = put_user(ucval, (char __user *)arg);
402 break;
403
404 /*
405 * These cannot be implemented on any machine that implements
406 * ioperm() in user level (such as Alpha PCs) or not at all.
407 *
408 * XXX: you should never use these, just call ioperm directly..
409 */
410#ifdef CONFIG_X86
411 case KDADDIO:
412 case KDDELIO:
413 /*
414 * KDADDIO and KDDELIO may be able to add ports beyond what
415 * we reject here, but to be safe...
416 *
417 * These are locked internally via sys_ioperm
418 */
419 if (arg < GPFIRST || arg > GPLAST) {
420 ret = -EINVAL;
421 break;
422 }
423 ret = ksys_ioperm(arg, 1, (cmd == KDADDIO)) ? -ENXIO : 0;
424 break;
425
426 case KDENABIO:
427 case KDDISABIO:
428 ret = ksys_ioperm(GPFIRST, GPNUM,
429 (cmd == KDENABIO)) ? -ENXIO : 0;
430 break;
431#endif
432
433 /* Linux m68k/i386 interface for setting the keyboard delay/repeat rate */
434
435 case KDKBDREP:
436 {
437 struct kbd_repeat kbrep;
438
439 if (!capable(CAP_SYS_TTY_CONFIG))
440 return -EPERM;
441
442 if (copy_from_user(&kbrep, up, sizeof(struct kbd_repeat))) {
443 ret = -EFAULT;
444 break;
445 }
446 ret = kbd_rate(&kbrep);
447 if (ret)
448 break;
449 if (copy_to_user(up, &kbrep, sizeof(struct kbd_repeat)))
450 ret = -EFAULT;
451 break;
452 }
453
454 case KDSETMODE:
455 /*
456 * currently, setting the mode from KD_TEXT to KD_GRAPHICS
457 * doesn't do a whole lot. i'm not sure if it should do any
458 * restoration of modes or what...
459 *
460 * XXX It should at least call into the driver, fbdev's definitely
461 * need to restore their engine state. --BenH
462 */
463 if (!perm)
464 return -EPERM;
465 switch (arg) {
466 case KD_GRAPHICS:
467 break;
468 case KD_TEXT0:
469 case KD_TEXT1:
470 arg = KD_TEXT;
471 case KD_TEXT:
472 break;
473 default:
474 ret = -EINVAL;
475 goto out;
476 }
477 /* FIXME: this needs the console lock extending */
478 if (vc->vc_mode == (unsigned char) arg)
479 break;
480 vc->vc_mode = (unsigned char) arg;
481 if (console != fg_console)
482 break;
483 /*
484 * explicitly blank/unblank the screen if switching modes
485 */
486 console_lock();
487 if (arg == KD_TEXT)
488 do_unblank_screen(1);
489 else
490 do_blank_screen(1);
491 console_unlock();
492 break;
493
494 case KDGETMODE:
495 uival = vc->vc_mode;
496 goto setint;
497
498 case KDMAPDISP:
499 case KDUNMAPDISP:
500 /*
501 * these work like a combination of mmap and KDENABIO.
502 * this could be easily finished.
503 */
504 ret = -EINVAL;
505 break;
506
507 case KDSKBMODE:
508 if (!perm)
509 return -EPERM;
510 ret = vt_do_kdskbmode(console, arg);
511 if (ret == 0)
512 tty_ldisc_flush(tty);
513 break;
514
515 case KDGKBMODE:
516 uival = vt_do_kdgkbmode(console);
517 ret = put_user(uival, (int __user *)arg);
518 break;
519
520 /* this could be folded into KDSKBMODE, but for compatibility
521 reasons it is not so easy to fold KDGKBMETA into KDGKBMODE */
522 case KDSKBMETA:
523 ret = vt_do_kdskbmeta(console, arg);
524 break;
525
526 case KDGKBMETA:
527 /* FIXME: should review whether this is worth locking */
528 uival = vt_do_kdgkbmeta(console);
529 setint:
530 ret = put_user(uival, (int __user *)arg);
531 break;
532
533 case KDGETKEYCODE:
534 case KDSETKEYCODE:
535 if(!capable(CAP_SYS_TTY_CONFIG))
536 perm = 0;
537 ret = vt_do_kbkeycode_ioctl(cmd, up, perm);
538 break;
539
540 case KDGKBENT:
541 case KDSKBENT:
542 ret = vt_do_kdsk_ioctl(cmd, up, perm, console);
543 break;
544
545 case KDGKBSENT:
546 case KDSKBSENT:
547 ret = vt_do_kdgkb_ioctl(cmd, up, perm);
548 break;
549
550 /* Diacritical processing. Handled in keyboard.c as it has
551 to operate on the keyboard locks and structures */
552 case KDGKBDIACR:
553 case KDGKBDIACRUC:
554 case KDSKBDIACR:
555 case KDSKBDIACRUC:
556 ret = vt_do_diacrit(cmd, up, perm);
557 break;
558
559 /* the ioctls below read/set the flags usually shown in the leds */
560 /* don't use them - they will go away without warning */
561 case KDGKBLED:
562 case KDSKBLED:
563 case KDGETLED:
564 case KDSETLED:
565 ret = vt_do_kdskled(console, cmd, arg, perm);
566 break;
567
568 /*
569 * A process can indicate its willingness to accept signals
570 * generated by pressing an appropriate key combination.
571 * Thus, one can have a daemon that e.g. spawns a new console
572 * upon a keypress and then changes to it.
573 * See also the kbrequest field of inittab(5).
574 */
575 case KDSIGACCEPT:
576 {
577 if (!perm || !capable(CAP_KILL))
578 return -EPERM;
579 if (!valid_signal(arg) || arg < 1 || arg == SIGKILL)
580 ret = -EINVAL;
581 else {
582 spin_lock_irq(&vt_spawn_con.lock);
583 put_pid(vt_spawn_con.pid);
584 vt_spawn_con.pid = get_pid(task_pid(current));
585 vt_spawn_con.sig = arg;
586 spin_unlock_irq(&vt_spawn_con.lock);
587 }
588 break;
589 }
590
591 case VT_SETMODE:
592 {
593 struct vt_mode tmp;
594
595 if (!perm)
596 return -EPERM;
597 if (copy_from_user(&tmp, up, sizeof(struct vt_mode))) {
598 ret = -EFAULT;
599 goto out;
600 }
601 if (tmp.mode != VT_AUTO && tmp.mode != VT_PROCESS) {
602 ret = -EINVAL;
603 goto out;
604 }
605 console_lock();
606 vc->vt_mode = tmp;
607 /* the frsig is ignored, so we set it to 0 */
608 vc->vt_mode.frsig = 0;
609 put_pid(vc->vt_pid);
610 vc->vt_pid = get_pid(task_pid(current));
611 /* no switch is required -- saw@shade.msu.ru */
612 vc->vt_newvt = -1;
613 console_unlock();
614 break;
615 }
616
617 case VT_GETMODE:
618 {
619 struct vt_mode tmp;
620 int rc;
621
622 console_lock();
623 memcpy(&tmp, &vc->vt_mode, sizeof(struct vt_mode));
624 console_unlock();
625
626 rc = copy_to_user(up, &tmp, sizeof(struct vt_mode));
627 if (rc)
628 ret = -EFAULT;
629 break;
630 }
631
632 /*
633 * Returns global vt state. Note that VT 0 is always open, since
634 * it's an alias for the current VT, and people can't use it here.
635 * We cannot return state for more than 16 VTs, since v_state is short.
636 */
637 case VT_GETSTATE:
638 {
639 struct vt_stat __user *vtstat = up;
640 unsigned short state, mask;
641
642 /* Review: FIXME: Console lock ? */
643 if (put_user(fg_console + 1, &vtstat->v_active))
644 ret = -EFAULT;
645 else {
646 state = 1; /* /dev/tty0 is always open */
647 for (i = 0, mask = 2; i < MAX_NR_CONSOLES && mask;
648 ++i, mask <<= 1)
649 if (VT_IS_IN_USE(i))
650 state |= mask;
651 ret = put_user(state, &vtstat->v_state);
652 }
653 break;
654 }
655
656 /*
657 * Returns the first available (non-opened) console.
658 */
659 case VT_OPENQRY:
660 /* FIXME: locking ? - but then this is a stupid API */
661 for (i = 0; i < MAX_NR_CONSOLES; ++i)
662 if (! VT_IS_IN_USE(i))
663 break;
664 uival = i < MAX_NR_CONSOLES ? (i+1) : -1;
665 goto setint;
666
667 /*
668 * ioctl(fd, VT_ACTIVATE, num) will cause us to switch to vt # num,
669 * with num >= 1 (switches to vt 0, our console, are not allowed, just
670 * to preserve sanity).
671 */
672 case VT_ACTIVATE:
673 if (!perm)
674 return -EPERM;
675 if (arg == 0 || arg > MAX_NR_CONSOLES)
676 ret = -ENXIO;
677 else {
678 arg--;
679 console_lock();
680 ret = vc_allocate(arg);
681 console_unlock();
682 if (ret)
683 break;
684 set_console(arg);
685 }
686 break;
687
688 case VT_SETACTIVATE:
689 {
690 struct vt_setactivate vsa;
691
692 if (!perm)
693 return -EPERM;
694
695 if (copy_from_user(&vsa, (struct vt_setactivate __user *)arg,
696 sizeof(struct vt_setactivate))) {
697 ret = -EFAULT;
698 goto out;
699 }
700 if (vsa.console == 0 || vsa.console > MAX_NR_CONSOLES)
701 ret = -ENXIO;
702 else {
703 vsa.console--;
704 console_lock();
705 ret = vc_allocate(vsa.console);
706 if (ret == 0) {
707 struct vc_data *nvc;
708 /* This is safe providing we don't drop the
709 console sem between vc_allocate and
710 finishing referencing nvc */
711 nvc = vc_cons[vsa.console].d;
712 nvc->vt_mode = vsa.mode;
713 nvc->vt_mode.frsig = 0;
714 put_pid(nvc->vt_pid);
715 nvc->vt_pid = get_pid(task_pid(current));
716 }
717 console_unlock();
718 if (ret)
719 break;
720 /* Commence switch and lock */
721 /* Review set_console locks */
722 set_console(vsa.console);
723 }
724 break;
725 }
726
727 /*
728 * wait until the specified VT has been activated
729 */
730 case VT_WAITACTIVE:
731 if (!perm)
732 return -EPERM;
733 if (arg == 0 || arg > MAX_NR_CONSOLES)
734 ret = -ENXIO;
735 else
736 ret = vt_waitactive(arg);
737 break;
738
739 /*
740 * If a vt is under process control, the kernel will not switch to it
741 * immediately, but postpone the operation until the process calls this
742 * ioctl, allowing the switch to complete.
743 *
744 * According to the X sources this is the behavior:
745 * 0: pending switch-from not OK
746 * 1: pending switch-from OK
747 * 2: completed switch-to OK
748 */
749 case VT_RELDISP:
750 if (!perm)
751 return -EPERM;
752
753 console_lock();
754 if (vc->vt_mode.mode != VT_PROCESS) {
755 console_unlock();
756 ret = -EINVAL;
757 break;
758 }
759 /*
760 * Switching-from response
761 */
762 if (vc->vt_newvt >= 0) {
763 if (arg == 0)
764 /*
765 * Switch disallowed, so forget we were trying
766 * to do it.
767 */
768 vc->vt_newvt = -1;
769
770 else {
771 /*
772 * The current vt has been released, so
773 * complete the switch.
774 */
775 int newvt;
776 newvt = vc->vt_newvt;
777 vc->vt_newvt = -1;
778 ret = vc_allocate(newvt);
779 if (ret) {
780 console_unlock();
781 break;
782 }
783 /*
784 * When we actually do the console switch,
785 * make sure we are atomic with respect to
786 * other console switches..
787 */
788 complete_change_console(vc_cons[newvt].d);
789 }
790 } else {
791 /*
792 * Switched-to response
793 */
794 /*
795 * If it's just an ACK, ignore it
796 */
797 if (arg != VT_ACKACQ)
798 ret = -EINVAL;
799 }
800 console_unlock();
801 break;
802
803 /*
804 * Disallocate memory associated to VT (but leave VT1)
805 */
806 case VT_DISALLOCATE:
807 if (arg > MAX_NR_CONSOLES) {
808 ret = -ENXIO;
809 break;
810 }
811 if (arg == 0)
812 vt_disallocate_all();
813 else
814 ret = vt_disallocate(--arg);
815 break;
816
817 case VT_RESIZE:
818 {
819 struct vt_sizes __user *vtsizes = up;
820 struct vc_data *vc;
821
822 ushort ll,cc;
823 if (!perm)
824 return -EPERM;
825 if (get_user(ll, &vtsizes->v_rows) ||
826 get_user(cc, &vtsizes->v_cols))
827 ret = -EFAULT;
828 else {
829 console_lock();
830 for (i = 0; i < MAX_NR_CONSOLES; i++) {
831 vc = vc_cons[i].d;
832
833 if (vc) {
834 vc->vc_resize_user = 1;
835 /* FIXME: review v tty lock */
836 vc_resize(vc_cons[i].d, cc, ll);
837 }
838 }
839 console_unlock();
840 }
841 break;
842 }
843
844 case VT_RESIZEX:
845 {
846 struct vt_consize v;
847 if (!perm)
848 return -EPERM;
849 if (copy_from_user(&v, up, sizeof(struct vt_consize)))
850 return -EFAULT;
851 /* FIXME: Should check the copies properly */
852 if (!v.v_vlin)
853 v.v_vlin = vc->vc_scan_lines;
854 if (v.v_clin) {
855 int rows = v.v_vlin/v.v_clin;
856 if (v.v_rows != rows) {
857 if (v.v_rows) /* Parameters don't add up */
858 return -EINVAL;
859 v.v_rows = rows;
860 }
861 }
862 if (v.v_vcol && v.v_ccol) {
863 int cols = v.v_vcol/v.v_ccol;
864 if (v.v_cols != cols) {
865 if (v.v_cols)
866 return -EINVAL;
867 v.v_cols = cols;
868 }
869 }
870
871 if (v.v_clin > 32)
872 return -EINVAL;
873
874 for (i = 0; i < MAX_NR_CONSOLES; i++) {
875 if (!vc_cons[i].d)
876 continue;
877 console_lock();
878 if (v.v_vlin)
879 vc_cons[i].d->vc_scan_lines = v.v_vlin;
880 if (v.v_clin)
881 vc_cons[i].d->vc_font.height = v.v_clin;
882 vc_cons[i].d->vc_resize_user = 1;
883 vc_resize(vc_cons[i].d, v.v_cols, v.v_rows);
884 console_unlock();
885 }
886 break;
887 }
888
889 case PIO_FONT: {
890 if (!perm)
891 return -EPERM;
892 op.op = KD_FONT_OP_SET;
893 op.flags = KD_FONT_FLAG_OLD | KD_FONT_FLAG_DONT_RECALC; /* Compatibility */
894 op.width = 8;
895 op.height = 0;
896 op.charcount = 256;
897 op.data = up;
898 ret = con_font_op(vc_cons[fg_console].d, &op);
899 break;
900 }
901
902 case GIO_FONT: {
903 op.op = KD_FONT_OP_GET;
904 op.flags = KD_FONT_FLAG_OLD;
905 op.width = 8;
906 op.height = 32;
907 op.charcount = 256;
908 op.data = up;
909 ret = con_font_op(vc_cons[fg_console].d, &op);
910 break;
911 }
912
913 case PIO_CMAP:
914 if (!perm)
915 ret = -EPERM;
916 else
917 ret = con_set_cmap(up);
918 break;
919
920 case GIO_CMAP:
921 ret = con_get_cmap(up);
922 break;
923
924 case PIO_FONTX:
925 case GIO_FONTX:
926 ret = do_fontx_ioctl(cmd, up, perm, &op);
927 break;
928
929 case PIO_FONTRESET:
930 {
931 if (!perm)
932 return -EPERM;
933
934#ifdef BROKEN_GRAPHICS_PROGRAMS
935 /* With BROKEN_GRAPHICS_PROGRAMS defined, the default
936 font is not saved. */
937 ret = -ENOSYS;
938 break;
939#else
940 {
941 op.op = KD_FONT_OP_SET_DEFAULT;
942 op.data = NULL;
943 ret = con_font_op(vc_cons[fg_console].d, &op);
944 if (ret)
945 break;
946 console_lock();
947 con_set_default_unimap(vc_cons[fg_console].d);
948 console_unlock();
949 break;
950 }
951#endif
952 }
953
954 case KDFONTOP: {
955 if (copy_from_user(&op, up, sizeof(op))) {
956 ret = -EFAULT;
957 break;
958 }
959 if (!perm && op.op != KD_FONT_OP_GET)
960 return -EPERM;
961 ret = con_font_op(vc, &op);
962 if (ret)
963 break;
964 if (copy_to_user(up, &op, sizeof(op)))
965 ret = -EFAULT;
966 break;
967 }
968
969 case PIO_SCRNMAP:
970 if (!perm)
971 ret = -EPERM;
972 else
973 ret = con_set_trans_old(up);
974 break;
975
976 case GIO_SCRNMAP:
977 ret = con_get_trans_old(up);
978 break;
979
980 case PIO_UNISCRNMAP:
981 if (!perm)
982 ret = -EPERM;
983 else
984 ret = con_set_trans_new(up);
985 break;
986
987 case GIO_UNISCRNMAP:
988 ret = con_get_trans_new(up);
989 break;
990
991 case PIO_UNIMAPCLR:
992 if (!perm)
993 return -EPERM;
994 con_clear_unimap(vc);
995 break;
996
997 case PIO_UNIMAP:
998 case GIO_UNIMAP:
999 ret = do_unimap_ioctl(cmd, up, perm, vc);
1000 break;
1001
1002 case VT_LOCKSWITCH:
1003 if (!capable(CAP_SYS_TTY_CONFIG))
1004 return -EPERM;
1005 vt_dont_switch = 1;
1006 break;
1007 case VT_UNLOCKSWITCH:
1008 if (!capable(CAP_SYS_TTY_CONFIG))
1009 return -EPERM;
1010 vt_dont_switch = 0;
1011 break;
1012 case VT_GETHIFONTMASK:
1013 ret = put_user(vc->vc_hi_font_mask,
1014 (unsigned short __user *)arg);
1015 break;
1016 case VT_WAITEVENT:
1017 ret = vt_event_wait_ioctl((struct vt_event __user *)arg);
1018 break;
1019 default:
1020 ret = -ENOIOCTLCMD;
1021 }
1022out:
1023 return ret;
1024}
1025
1026void reset_vc(struct vc_data *vc)
1027{
1028 vc->vc_mode = KD_TEXT;
1029 vt_reset_unicode(vc->vc_num);
1030 vc->vt_mode.mode = VT_AUTO;
1031 vc->vt_mode.waitv = 0;
1032 vc->vt_mode.relsig = 0;
1033 vc->vt_mode.acqsig = 0;
1034 vc->vt_mode.frsig = 0;
1035 put_pid(vc->vt_pid);
1036 vc->vt_pid = NULL;
1037 vc->vt_newvt = -1;
1038 if (!in_interrupt()) /* Via keyboard.c:SAK() - akpm */
1039 reset_palette(vc);
1040}
1041
1042void vc_SAK(struct work_struct *work)
1043{
1044 struct vc *vc_con =
1045 container_of(work, struct vc, SAK_work);
1046 struct vc_data *vc;
1047 struct tty_struct *tty;
1048
1049 console_lock();
1050 vc = vc_con->d;
1051 if (vc) {
1052 /* FIXME: review tty ref counting */
1053 tty = vc->port.tty;
1054 /*
1055 * SAK should also work in all raw modes and reset
1056 * them properly.
1057 */
1058 if (tty)
1059 __do_SAK(tty);
1060 reset_vc(vc);
1061 }
1062 console_unlock();
1063}
1064
1065#ifdef CONFIG_COMPAT
1066
1067struct compat_consolefontdesc {
1068 unsigned short charcount; /* characters in font (256 or 512) */
1069 unsigned short charheight; /* scan lines per character (1-32) */
1070 compat_caddr_t chardata; /* font data in expanded form */
1071};
1072
1073static inline int
1074compat_fontx_ioctl(int cmd, struct compat_consolefontdesc __user *user_cfd,
1075 int perm, struct console_font_op *op)
1076{
1077 struct compat_consolefontdesc cfdarg;
1078 int i;
1079
1080 if (copy_from_user(&cfdarg, user_cfd, sizeof(struct compat_consolefontdesc)))
1081 return -EFAULT;
1082
1083 switch (cmd) {
1084 case PIO_FONTX:
1085 if (!perm)
1086 return -EPERM;
1087 op->op = KD_FONT_OP_SET;
1088 op->flags = KD_FONT_FLAG_OLD;
1089 op->width = 8;
1090 op->height = cfdarg.charheight;
1091 op->charcount = cfdarg.charcount;
1092 op->data = compat_ptr(cfdarg.chardata);
1093 return con_font_op(vc_cons[fg_console].d, op);
1094 case GIO_FONTX:
1095 op->op = KD_FONT_OP_GET;
1096 op->flags = KD_FONT_FLAG_OLD;
1097 op->width = 8;
1098 op->height = cfdarg.charheight;
1099 op->charcount = cfdarg.charcount;
1100 op->data = compat_ptr(cfdarg.chardata);
1101 i = con_font_op(vc_cons[fg_console].d, op);
1102 if (i)
1103 return i;
1104 cfdarg.charheight = op->height;
1105 cfdarg.charcount = op->charcount;
1106 if (copy_to_user(user_cfd, &cfdarg, sizeof(struct compat_consolefontdesc)))
1107 return -EFAULT;
1108 return 0;
1109 }
1110 return -EINVAL;
1111}
1112
1113struct compat_console_font_op {
1114 compat_uint_t op; /* operation code KD_FONT_OP_* */
1115 compat_uint_t flags; /* KD_FONT_FLAG_* */
1116 compat_uint_t width, height; /* font size */
1117 compat_uint_t charcount;
1118 compat_caddr_t data; /* font data with height fixed to 32 */
1119};
1120
1121static inline int
1122compat_kdfontop_ioctl(struct compat_console_font_op __user *fontop,
1123 int perm, struct console_font_op *op, struct vc_data *vc)
1124{
1125 int i;
1126
1127 if (copy_from_user(op, fontop, sizeof(struct compat_console_font_op)))
1128 return -EFAULT;
1129 if (!perm && op->op != KD_FONT_OP_GET)
1130 return -EPERM;
1131 op->data = compat_ptr(((struct compat_console_font_op *)op)->data);
1132 i = con_font_op(vc, op);
1133 if (i)
1134 return i;
1135 ((struct compat_console_font_op *)op)->data = (unsigned long)op->data;
1136 if (copy_to_user(fontop, op, sizeof(struct compat_console_font_op)))
1137 return -EFAULT;
1138 return 0;
1139}
1140
1141struct compat_unimapdesc {
1142 unsigned short entry_ct;
1143 compat_caddr_t entries;
1144};
1145
1146static inline int
1147compat_unimap_ioctl(unsigned int cmd, struct compat_unimapdesc __user *user_ud,
1148 int perm, struct vc_data *vc)
1149{
1150 struct compat_unimapdesc tmp;
1151 struct unipair __user *tmp_entries;
1152
1153 if (copy_from_user(&tmp, user_ud, sizeof tmp))
1154 return -EFAULT;
1155 tmp_entries = compat_ptr(tmp.entries);
1156 switch (cmd) {
1157 case PIO_UNIMAP:
1158 if (!perm)
1159 return -EPERM;
1160 return con_set_unimap(vc, tmp.entry_ct, tmp_entries);
1161 case GIO_UNIMAP:
1162 if (!perm && fg_console != vc->vc_num)
1163 return -EPERM;
1164 return con_get_unimap(vc, tmp.entry_ct, &(user_ud->entry_ct), tmp_entries);
1165 }
1166 return 0;
1167}
1168
1169long vt_compat_ioctl(struct tty_struct *tty,
1170 unsigned int cmd, unsigned long arg)
1171{
1172 struct vc_data *vc = tty->driver_data;
1173 struct console_font_op op; /* used in multiple places here */
1174 unsigned int console;
1175 void __user *up = (void __user *)arg;
1176 int perm;
1177 int ret = 0;
1178
1179 console = vc->vc_num;
1180
1181 if (!vc_cons_allocated(console)) { /* impossible? */
1182 ret = -ENOIOCTLCMD;
1183 goto out;
1184 }
1185
1186 /*
1187 * To have permissions to do most of the vt ioctls, we either have
1188 * to be the owner of the tty, or have CAP_SYS_TTY_CONFIG.
1189 */
1190 perm = 0;
1191 if (current->signal->tty == tty || capable(CAP_SYS_TTY_CONFIG))
1192 perm = 1;
1193
1194 switch (cmd) {
1195 /*
1196 * these need special handlers for incompatible data structures
1197 */
1198 case PIO_FONTX:
1199 case GIO_FONTX:
1200 ret = compat_fontx_ioctl(cmd, up, perm, &op);
1201 break;
1202
1203 case KDFONTOP:
1204 ret = compat_kdfontop_ioctl(up, perm, &op, vc);
1205 break;
1206
1207 case PIO_UNIMAP:
1208 case GIO_UNIMAP:
1209 ret = compat_unimap_ioctl(cmd, up, perm, vc);
1210 break;
1211
1212 /*
1213 * all these treat 'arg' as an integer
1214 */
1215 case KIOCSOUND:
1216 case KDMKTONE:
1217#ifdef CONFIG_X86
1218 case KDADDIO:
1219 case KDDELIO:
1220#endif
1221 case KDSETMODE:
1222 case KDMAPDISP:
1223 case KDUNMAPDISP:
1224 case KDSKBMODE:
1225 case KDSKBMETA:
1226 case KDSKBLED:
1227 case KDSETLED:
1228 case KDSIGACCEPT:
1229 case VT_ACTIVATE:
1230 case VT_WAITACTIVE:
1231 case VT_RELDISP:
1232 case VT_DISALLOCATE:
1233 case VT_RESIZE:
1234 case VT_RESIZEX:
1235 goto fallback;
1236
1237 /*
1238 * the rest has a compatible data structure behind arg,
1239 * but we have to convert it to a proper 64 bit pointer.
1240 */
1241 default:
1242 arg = (unsigned long)compat_ptr(arg);
1243 goto fallback;
1244 }
1245out:
1246 return ret;
1247
1248fallback:
1249 return vt_ioctl(tty, cmd, arg);
1250}
1251
1252
1253#endif /* CONFIG_COMPAT */
1254
1255
1256/*
1257 * Performs the back end of a vt switch. Called under the console
1258 * semaphore.
1259 */
1260static void complete_change_console(struct vc_data *vc)
1261{
1262 unsigned char old_vc_mode;
1263 int old = fg_console;
1264
1265 last_console = fg_console;
1266
1267 /*
1268 * If we're switching, we could be going from KD_GRAPHICS to
1269 * KD_TEXT mode or vice versa, which means we need to blank or
1270 * unblank the screen later.
1271 */
1272 old_vc_mode = vc_cons[fg_console].d->vc_mode;
1273 switch_screen(vc);
1274
1275 /*
1276 * This can't appear below a successful kill_pid(). If it did,
1277 * then the *blank_screen operation could occur while X, having
1278 * received acqsig, is waking up on another processor. This
1279 * condition can lead to overlapping accesses to the VGA range
1280 * and the framebuffer (causing system lockups).
1281 *
1282 * To account for this we duplicate this code below only if the
1283 * controlling process is gone and we've called reset_vc.
1284 */
1285 if (old_vc_mode != vc->vc_mode) {
1286 if (vc->vc_mode == KD_TEXT)
1287 do_unblank_screen(1);
1288 else
1289 do_blank_screen(1);
1290 }
1291
1292 /*
1293 * If this new console is under process control, send it a signal
1294 * telling it that it has acquired. Also check if it has died and
1295 * clean up (similar to logic employed in change_console())
1296 */
1297 if (vc->vt_mode.mode == VT_PROCESS) {
1298 /*
1299 * Send the signal as privileged - kill_pid() will
1300 * tell us if the process has gone or something else
1301 * is awry
1302 */
1303 if (kill_pid(vc->vt_pid, vc->vt_mode.acqsig, 1) != 0) {
1304 /*
1305 * The controlling process has died, so we revert back to
1306 * normal operation. In this case, we'll also change back
1307 * to KD_TEXT mode. I'm not sure if this is strictly correct
1308 * but it saves the agony when the X server dies and the screen
1309 * remains blanked due to KD_GRAPHICS! It would be nice to do
1310 * this outside of VT_PROCESS but there is no single process
1311 * to account for and tracking tty count may be undesirable.
1312 */
1313 reset_vc(vc);
1314
1315 if (old_vc_mode != vc->vc_mode) {
1316 if (vc->vc_mode == KD_TEXT)
1317 do_unblank_screen(1);
1318 else
1319 do_blank_screen(1);
1320 }
1321 }
1322 }
1323
1324 /*
1325 * Wake anyone waiting for their VT to activate
1326 */
1327 vt_event_post(VT_EVENT_SWITCH, old, vc->vc_num);
1328 return;
1329}
1330
1331/*
1332 * Performs the front-end of a vt switch
1333 */
1334void change_console(struct vc_data *new_vc)
1335{
1336 struct vc_data *vc;
1337
1338 if (!new_vc || new_vc->vc_num == fg_console || vt_dont_switch)
1339 return;
1340
1341 /*
1342 * If this vt is in process mode, then we need to handshake with
1343 * that process before switching. Essentially, we store where that
1344 * vt wants to switch to and wait for it to tell us when it's done
1345 * (via VT_RELDISP ioctl).
1346 *
1347 * We also check to see if the controlling process still exists.
1348 * If it doesn't, we reset this vt to auto mode and continue.
1349 * This is a cheap way to track process control. The worst thing
1350 * that can happen is: we send a signal to a process, it dies, and
1351 * the switch gets "lost" waiting for a response; hopefully, the
1352 * user will try again, we'll detect the process is gone (unless
1353 * the user waits just the right amount of time :-) and revert the
1354 * vt to auto control.
1355 */
1356 vc = vc_cons[fg_console].d;
1357 if (vc->vt_mode.mode == VT_PROCESS) {
1358 /*
1359 * Send the signal as privileged - kill_pid() will
1360 * tell us if the process has gone or something else
1361 * is awry.
1362 *
1363 * We need to set vt_newvt *before* sending the signal or we
1364 * have a race.
1365 */
1366 vc->vt_newvt = new_vc->vc_num;
1367 if (kill_pid(vc->vt_pid, vc->vt_mode.relsig, 1) == 0) {
1368 /*
1369 * It worked. Mark the vt to switch to and
1370 * return. The process needs to send us a
1371 * VT_RELDISP ioctl to complete the switch.
1372 */
1373 return;
1374 }
1375
1376 /*
1377 * The controlling process has died, so we revert back to
1378 * normal operation. In this case, we'll also change back
1379 * to KD_TEXT mode. I'm not sure if this is strictly correct
1380 * but it saves the agony when the X server dies and the screen
1381 * remains blanked due to KD_GRAPHICS! It would be nice to do
1382 * this outside of VT_PROCESS but there is no single process
1383 * to account for and tracking tty count may be undesirable.
1384 */
1385 reset_vc(vc);
1386
1387 /*
1388 * Fall through to normal (VT_AUTO) handling of the switch...
1389 */
1390 }
1391
1392 /*
1393 * Ignore all switches in KD_GRAPHICS+VT_AUTO mode
1394 */
1395 if (vc->vc_mode == KD_GRAPHICS)
1396 return;
1397
1398 complete_change_console(new_vc);
1399}
1400
1401/* Perform a kernel triggered VT switch for suspend/resume */
1402
1403static int disable_vt_switch;
1404
1405int vt_move_to_console(unsigned int vt, int alloc)
1406{
1407 int prev;
1408
1409 console_lock();
1410 /* Graphics mode - up to X */
1411 if (disable_vt_switch) {
1412 console_unlock();
1413 return 0;
1414 }
1415 prev = fg_console;
1416
1417 if (alloc && vc_allocate(vt)) {
1418 /* we can't have a free VC for now. Too bad,
1419 * we don't want to mess the screen for now. */
1420 console_unlock();
1421 return -ENOSPC;
1422 }
1423
1424 if (set_console(vt)) {
1425 /*
1426 * We're unable to switch to the SUSPEND_CONSOLE.
1427 * Let the calling function know so it can decide
1428 * what to do.
1429 */
1430 console_unlock();
1431 return -EIO;
1432 }
1433 console_unlock();
1434 if (vt_waitactive(vt + 1)) {
1435 pr_debug("Suspend: Can't switch VCs.");
1436 return -EINTR;
1437 }
1438 return prev;
1439}
1440
1441/*
1442 * Normally during a suspend, we allocate a new console and switch to it.
1443 * When we resume, we switch back to the original console. This switch
1444 * can be slow, so on systems where the framebuffer can handle restoration
1445 * of video registers anyways, there's little point in doing the console
1446 * switch. This function allows you to disable it by passing it '0'.
1447 */
1448void pm_set_vt_switch(int do_switch)
1449{
1450 console_lock();
1451 disable_vt_switch = !do_switch;
1452 console_unlock();
1453}
1454EXPORT_SYMBOL(pm_set_vt_switch);