Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19#include <linux/module.h>
20#include <linux/ioport.h>
21#include <linux/init.h>
22#include <linux/console.h>
23#include <linux/platform_device.h>
24#include <linux/sysrq.h>
25#include <linux/device.h>
26#include <linux/tty.h>
27#include <linux/tty_flip.h>
28#include <linux/serial_core.h>
29#include <linux/serial.h>
30#include <linux/amba/bus.h>
31#include <linux/amba/serial.h>
32#include <linux/clk.h>
33#include <linux/slab.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/scatterlist.h>
37#include <linux/delay.h>
38#include <linux/types.h>
39#include <linux/of.h>
40#include <linux/pinctrl/consumer.h>
41#include <linux/sizes.h>
42#include <linux/io.h>
43#include <linux/acpi.h>
44
45#define UART_NR 14
46
47#define SERIAL_AMBA_MAJOR 204
48#define SERIAL_AMBA_MINOR 64
49#define SERIAL_AMBA_NR UART_NR
50
51#define AMBA_ISR_PASS_LIMIT 256
52
53#define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54#define UART_DUMMY_DR_RX BIT(16)
55
56enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84};
85
86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100};
101
102/* There is by now at least one vendor with differing details, so handle it */
103struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119};
120
121static unsigned int get_fifosize_arm(struct amba_device *dev)
122{
123 return amba_rev(dev) < 3 ? 16 : 32;
124}
125
126static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139};
140
141static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153};
154
155#ifdef CONFIG_ACPI_SPCR_TABLE
156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169};
170#endif
171
172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197};
198
199static unsigned int get_fifosize_st(struct amba_device *dev)
200{
201 return 64;
202}
203
204static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217};
218
219/* Deals with DMA transactions */
220
221struct pl011_dmabuf {
222 dma_addr_t dma;
223 size_t len;
224 char *buf;
225};
226
227struct pl011_dmarx_data {
228 struct dma_chan *chan;
229 struct completion complete;
230 bool use_buf_b;
231 struct pl011_dmabuf dbuf_a;
232 struct pl011_dmabuf dbuf_b;
233 dma_cookie_t cookie;
234 bool running;
235 struct timer_list timer;
236 unsigned int last_residue;
237 unsigned long last_jiffies;
238 bool auto_poll_rate;
239 unsigned int poll_rate;
240 unsigned int poll_timeout;
241};
242
243struct pl011_dmatx_data {
244 struct dma_chan *chan;
245 dma_addr_t dma;
246 size_t len;
247 char *buf;
248 bool queued;
249};
250
251/*
252 * We wrap our port structure around the generic uart_port.
253 */
254struct uart_amba_port {
255 struct uart_port port;
256 const u16 *reg_offset;
257 struct clk *clk;
258 const struct vendor_data *vendor;
259 unsigned int dmacr; /* dma control reg */
260 unsigned int im; /* interrupt mask */
261 unsigned int old_status;
262 unsigned int fifosize; /* vendor-specific */
263 unsigned int fixed_baud; /* vendor-set fixed baud rate */
264 char type[12];
265 bool rs485_tx_started;
266 unsigned int rs485_tx_drain_interval; /* usecs */
267#ifdef CONFIG_DMA_ENGINE
268 /* DMA stuff */
269 bool using_tx_dma;
270 bool using_rx_dma;
271 struct pl011_dmarx_data dmarx;
272 struct pl011_dmatx_data dmatx;
273 bool dma_probed;
274#endif
275};
276
277static unsigned int pl011_tx_empty(struct uart_port *port);
278
279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 unsigned int reg)
281{
282 return uap->reg_offset[reg];
283}
284
285static unsigned int pl011_read(const struct uart_amba_port *uap,
286 unsigned int reg)
287{
288 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289
290 return (uap->port.iotype == UPIO_MEM32) ?
291 readl_relaxed(addr) : readw_relaxed(addr);
292}
293
294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 unsigned int reg)
296{
297 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298
299 if (uap->port.iotype == UPIO_MEM32)
300 writel_relaxed(val, addr);
301 else
302 writew_relaxed(val, addr);
303}
304
305/*
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
309 */
310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311{
312 unsigned int ch, fifotaken;
313 int sysrq;
314 u16 status;
315 u8 flag;
316
317 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 status = pl011_read(uap, REG_FR);
319 if (status & UART01x_FR_RXFE)
320 break;
321
322 /* Take chars from the FIFO and update status */
323 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 flag = TTY_NORMAL;
325 uap->port.icount.rx++;
326
327 if (unlikely(ch & UART_DR_ERROR)) {
328 if (ch & UART011_DR_BE) {
329 ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 uap->port.icount.brk++;
331 if (uart_handle_break(&uap->port))
332 continue;
333 } else if (ch & UART011_DR_PE) {
334 uap->port.icount.parity++;
335 } else if (ch & UART011_DR_FE) {
336 uap->port.icount.frame++;
337 }
338 if (ch & UART011_DR_OE)
339 uap->port.icount.overrun++;
340
341 ch &= uap->port.read_status_mask;
342
343 if (ch & UART011_DR_BE)
344 flag = TTY_BREAK;
345 else if (ch & UART011_DR_PE)
346 flag = TTY_PARITY;
347 else if (ch & UART011_DR_FE)
348 flag = TTY_FRAME;
349 }
350
351 uart_port_unlock(&uap->port);
352 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
353 uart_port_lock(&uap->port);
354
355 if (!sysrq)
356 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
357 }
358
359 return fifotaken;
360}
361
362/*
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
366 */
367#ifdef CONFIG_DMA_ENGINE
368
369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370
371static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372 enum dma_data_direction dir)
373{
374 db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375 &db->dma, GFP_KERNEL);
376 if (!db->buf)
377 return -ENOMEM;
378 db->len = PL011_DMA_BUFFER_SIZE;
379
380 return 0;
381}
382
383static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384 enum dma_data_direction dir)
385{
386 if (db->buf) {
387 dma_free_coherent(chan->device->dev,
388 PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389 }
390}
391
392static void pl011_dma_probe(struct uart_amba_port *uap)
393{
394 /* DMA is the sole user of the platform data right now */
395 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396 struct device *dev = uap->port.dev;
397 struct dma_slave_config tx_conf = {
398 .dst_addr = uap->port.mapbase +
399 pl011_reg_to_offset(uap, REG_DR),
400 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401 .direction = DMA_MEM_TO_DEV,
402 .dst_maxburst = uap->fifosize >> 1,
403 .device_fc = false,
404 };
405 struct dma_chan *chan;
406 dma_cap_mask_t mask;
407
408 uap->dma_probed = true;
409 chan = dma_request_chan(dev, "tx");
410 if (IS_ERR(chan)) {
411 if (PTR_ERR(chan) == -EPROBE_DEFER) {
412 uap->dma_probed = false;
413 return;
414 }
415
416 /* We need platform data */
417 if (!plat || !plat->dma_filter) {
418 dev_dbg(uap->port.dev, "no DMA platform data\n");
419 return;
420 }
421
422 /* Try to acquire a generic DMA engine slave TX channel */
423 dma_cap_zero(mask);
424 dma_cap_set(DMA_SLAVE, mask);
425
426 chan = dma_request_channel(mask, plat->dma_filter,
427 plat->dma_tx_param);
428 if (!chan) {
429 dev_err(uap->port.dev, "no TX DMA channel!\n");
430 return;
431 }
432 }
433
434 dmaengine_slave_config(chan, &tx_conf);
435 uap->dmatx.chan = chan;
436
437 dev_info(uap->port.dev, "DMA channel TX %s\n",
438 dma_chan_name(uap->dmatx.chan));
439
440 /* Optionally make use of an RX channel as well */
441 chan = dma_request_chan(dev, "rx");
442
443 if (IS_ERR(chan) && plat && plat->dma_rx_param) {
444 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445
446 if (!chan) {
447 dev_err(uap->port.dev, "no RX DMA channel!\n");
448 return;
449 }
450 }
451
452 if (!IS_ERR(chan)) {
453 struct dma_slave_config rx_conf = {
454 .src_addr = uap->port.mapbase +
455 pl011_reg_to_offset(uap, REG_DR),
456 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457 .direction = DMA_DEV_TO_MEM,
458 .src_maxburst = uap->fifosize >> 2,
459 .device_fc = false,
460 };
461 struct dma_slave_caps caps;
462
463 /*
464 * Some DMA controllers provide information on their capabilities.
465 * If the controller does, check for suitable residue processing
466 * otherwise assime all is well.
467 */
468 if (dma_get_slave_caps(chan, &caps) == 0) {
469 if (caps.residue_granularity ==
470 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471 dma_release_channel(chan);
472 dev_info(uap->port.dev,
473 "RX DMA disabled - no residue processing\n");
474 return;
475 }
476 }
477 dmaengine_slave_config(chan, &rx_conf);
478 uap->dmarx.chan = chan;
479
480 uap->dmarx.auto_poll_rate = false;
481 if (plat && plat->dma_rx_poll_enable) {
482 /* Set poll rate if specified. */
483 if (plat->dma_rx_poll_rate) {
484 uap->dmarx.auto_poll_rate = false;
485 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486 } else {
487 /*
488 * 100 ms defaults to poll rate if not
489 * specified. This will be adjusted with
490 * the baud rate at set_termios.
491 */
492 uap->dmarx.auto_poll_rate = true;
493 uap->dmarx.poll_rate = 100;
494 }
495 /* 3 secs defaults poll_timeout if not specified. */
496 if (plat->dma_rx_poll_timeout)
497 uap->dmarx.poll_timeout =
498 plat->dma_rx_poll_timeout;
499 else
500 uap->dmarx.poll_timeout = 3000;
501 } else if (!plat && dev->of_node) {
502 uap->dmarx.auto_poll_rate =
503 of_property_read_bool(dev->of_node, "auto-poll");
504 if (uap->dmarx.auto_poll_rate) {
505 u32 x;
506
507 if (of_property_read_u32(dev->of_node, "poll-rate-ms", &x) == 0)
508 uap->dmarx.poll_rate = x;
509 else
510 uap->dmarx.poll_rate = 100;
511 if (of_property_read_u32(dev->of_node, "poll-timeout-ms", &x) == 0)
512 uap->dmarx.poll_timeout = x;
513 else
514 uap->dmarx.poll_timeout = 3000;
515 }
516 }
517 dev_info(uap->port.dev, "DMA channel RX %s\n",
518 dma_chan_name(uap->dmarx.chan));
519 }
520}
521
522static void pl011_dma_remove(struct uart_amba_port *uap)
523{
524 if (uap->dmatx.chan)
525 dma_release_channel(uap->dmatx.chan);
526 if (uap->dmarx.chan)
527 dma_release_channel(uap->dmarx.chan);
528}
529
530/* Forward declare these for the refill routine */
531static int pl011_dma_tx_refill(struct uart_amba_port *uap);
532static void pl011_start_tx_pio(struct uart_amba_port *uap);
533
534/*
535 * The current DMA TX buffer has been sent.
536 * Try to queue up another DMA buffer.
537 */
538static void pl011_dma_tx_callback(void *data)
539{
540 struct uart_amba_port *uap = data;
541 struct pl011_dmatx_data *dmatx = &uap->dmatx;
542 unsigned long flags;
543 u16 dmacr;
544
545 uart_port_lock_irqsave(&uap->port, &flags);
546 if (uap->dmatx.queued)
547 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
548 dmatx->len, DMA_TO_DEVICE);
549
550 dmacr = uap->dmacr;
551 uap->dmacr = dmacr & ~UART011_TXDMAE;
552 pl011_write(uap->dmacr, uap, REG_DMACR);
553
554 /*
555 * If TX DMA was disabled, it means that we've stopped the DMA for
556 * some reason (eg, XOFF received, or we want to send an X-char.)
557 *
558 * Note: we need to be careful here of a potential race between DMA
559 * and the rest of the driver - if the driver disables TX DMA while
560 * a TX buffer completing, we must update the tx queued status to
561 * get further refills (hence we check dmacr).
562 */
563 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
564 uart_circ_empty(&uap->port.state->xmit)) {
565 uap->dmatx.queued = false;
566 uart_port_unlock_irqrestore(&uap->port, flags);
567 return;
568 }
569
570 if (pl011_dma_tx_refill(uap) <= 0)
571 /*
572 * We didn't queue a DMA buffer for some reason, but we
573 * have data pending to be sent. Re-enable the TX IRQ.
574 */
575 pl011_start_tx_pio(uap);
576
577 uart_port_unlock_irqrestore(&uap->port, flags);
578}
579
580/*
581 * Try to refill the TX DMA buffer.
582 * Locking: called with port lock held and IRQs disabled.
583 * Returns:
584 * 1 if we queued up a TX DMA buffer.
585 * 0 if we didn't want to handle this by DMA
586 * <0 on error
587 */
588static int pl011_dma_tx_refill(struct uart_amba_port *uap)
589{
590 struct pl011_dmatx_data *dmatx = &uap->dmatx;
591 struct dma_chan *chan = dmatx->chan;
592 struct dma_device *dma_dev = chan->device;
593 struct dma_async_tx_descriptor *desc;
594 struct circ_buf *xmit = &uap->port.state->xmit;
595 unsigned int count;
596
597 /*
598 * Try to avoid the overhead involved in using DMA if the
599 * transaction fits in the first half of the FIFO, by using
600 * the standard interrupt handling. This ensures that we
601 * issue a uart_write_wakeup() at the appropriate time.
602 */
603 count = uart_circ_chars_pending(xmit);
604 if (count < (uap->fifosize >> 1)) {
605 uap->dmatx.queued = false;
606 return 0;
607 }
608
609 /*
610 * Bodge: don't send the last character by DMA, as this
611 * will prevent XON from notifying us to restart DMA.
612 */
613 count -= 1;
614
615 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
616 if (count > PL011_DMA_BUFFER_SIZE)
617 count = PL011_DMA_BUFFER_SIZE;
618
619 if (xmit->tail < xmit->head) {
620 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
621 } else {
622 size_t first = UART_XMIT_SIZE - xmit->tail;
623 size_t second;
624
625 if (first > count)
626 first = count;
627 second = count - first;
628
629 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
630 if (second)
631 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
632 }
633
634 dmatx->len = count;
635 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
636 DMA_TO_DEVICE);
637 if (dmatx->dma == DMA_MAPPING_ERROR) {
638 uap->dmatx.queued = false;
639 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
640 return -EBUSY;
641 }
642
643 desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
644 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
645 if (!desc) {
646 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
647 uap->dmatx.queued = false;
648 /*
649 * If DMA cannot be used right now, we complete this
650 * transaction via IRQ and let the TTY layer retry.
651 */
652 dev_dbg(uap->port.dev, "TX DMA busy\n");
653 return -EBUSY;
654 }
655
656 /* Some data to go along to the callback */
657 desc->callback = pl011_dma_tx_callback;
658 desc->callback_param = uap;
659
660 /* All errors should happen at prepare time */
661 dmaengine_submit(desc);
662
663 /* Fire the DMA transaction */
664 dma_dev->device_issue_pending(chan);
665
666 uap->dmacr |= UART011_TXDMAE;
667 pl011_write(uap->dmacr, uap, REG_DMACR);
668 uap->dmatx.queued = true;
669
670 /*
671 * Now we know that DMA will fire, so advance the ring buffer
672 * with the stuff we just dispatched.
673 */
674 uart_xmit_advance(&uap->port, count);
675
676 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
677 uart_write_wakeup(&uap->port);
678
679 return 1;
680}
681
682/*
683 * We received a transmit interrupt without a pending X-char but with
684 * pending characters.
685 * Locking: called with port lock held and IRQs disabled.
686 * Returns:
687 * false if we want to use PIO to transmit
688 * true if we queued a DMA buffer
689 */
690static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
691{
692 if (!uap->using_tx_dma)
693 return false;
694
695 /*
696 * If we already have a TX buffer queued, but received a
697 * TX interrupt, it will be because we've just sent an X-char.
698 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
699 */
700 if (uap->dmatx.queued) {
701 uap->dmacr |= UART011_TXDMAE;
702 pl011_write(uap->dmacr, uap, REG_DMACR);
703 uap->im &= ~UART011_TXIM;
704 pl011_write(uap->im, uap, REG_IMSC);
705 return true;
706 }
707
708 /*
709 * We don't have a TX buffer queued, so try to queue one.
710 * If we successfully queued a buffer, mask the TX IRQ.
711 */
712 if (pl011_dma_tx_refill(uap) > 0) {
713 uap->im &= ~UART011_TXIM;
714 pl011_write(uap->im, uap, REG_IMSC);
715 return true;
716 }
717 return false;
718}
719
720/*
721 * Stop the DMA transmit (eg, due to received XOFF).
722 * Locking: called with port lock held and IRQs disabled.
723 */
724static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
725{
726 if (uap->dmatx.queued) {
727 uap->dmacr &= ~UART011_TXDMAE;
728 pl011_write(uap->dmacr, uap, REG_DMACR);
729 }
730}
731
732/*
733 * Try to start a DMA transmit, or in the case of an XON/OFF
734 * character queued for send, try to get that character out ASAP.
735 * Locking: called with port lock held and IRQs disabled.
736 * Returns:
737 * false if we want the TX IRQ to be enabled
738 * true if we have a buffer queued
739 */
740static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
741{
742 u16 dmacr;
743
744 if (!uap->using_tx_dma)
745 return false;
746
747 if (!uap->port.x_char) {
748 /* no X-char, try to push chars out in DMA mode */
749 bool ret = true;
750
751 if (!uap->dmatx.queued) {
752 if (pl011_dma_tx_refill(uap) > 0) {
753 uap->im &= ~UART011_TXIM;
754 pl011_write(uap->im, uap, REG_IMSC);
755 } else {
756 ret = false;
757 }
758 } else if (!(uap->dmacr & UART011_TXDMAE)) {
759 uap->dmacr |= UART011_TXDMAE;
760 pl011_write(uap->dmacr, uap, REG_DMACR);
761 }
762 return ret;
763 }
764
765 /*
766 * We have an X-char to send. Disable DMA to prevent it loading
767 * the TX fifo, and then see if we can stuff it into the FIFO.
768 */
769 dmacr = uap->dmacr;
770 uap->dmacr &= ~UART011_TXDMAE;
771 pl011_write(uap->dmacr, uap, REG_DMACR);
772
773 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
774 /*
775 * No space in the FIFO, so enable the transmit interrupt
776 * so we know when there is space. Note that once we've
777 * loaded the character, we should just re-enable DMA.
778 */
779 return false;
780 }
781
782 pl011_write(uap->port.x_char, uap, REG_DR);
783 uap->port.icount.tx++;
784 uap->port.x_char = 0;
785
786 /* Success - restore the DMA state */
787 uap->dmacr = dmacr;
788 pl011_write(dmacr, uap, REG_DMACR);
789
790 return true;
791}
792
793/*
794 * Flush the transmit buffer.
795 * Locking: called with port lock held and IRQs disabled.
796 */
797static void pl011_dma_flush_buffer(struct uart_port *port)
798__releases(&uap->port.lock)
799__acquires(&uap->port.lock)
800{
801 struct uart_amba_port *uap =
802 container_of(port, struct uart_amba_port, port);
803
804 if (!uap->using_tx_dma)
805 return;
806
807 dmaengine_terminate_async(uap->dmatx.chan);
808
809 if (uap->dmatx.queued) {
810 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
811 uap->dmatx.len, DMA_TO_DEVICE);
812 uap->dmatx.queued = false;
813 uap->dmacr &= ~UART011_TXDMAE;
814 pl011_write(uap->dmacr, uap, REG_DMACR);
815 }
816}
817
818static void pl011_dma_rx_callback(void *data);
819
820static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
821{
822 struct dma_chan *rxchan = uap->dmarx.chan;
823 struct pl011_dmarx_data *dmarx = &uap->dmarx;
824 struct dma_async_tx_descriptor *desc;
825 struct pl011_dmabuf *dbuf;
826
827 if (!rxchan)
828 return -EIO;
829
830 /* Start the RX DMA job */
831 dbuf = uap->dmarx.use_buf_b ?
832 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
833 desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
834 DMA_DEV_TO_MEM,
835 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
836 /*
837 * If the DMA engine is busy and cannot prepare a
838 * channel, no big deal, the driver will fall back
839 * to interrupt mode as a result of this error code.
840 */
841 if (!desc) {
842 uap->dmarx.running = false;
843 dmaengine_terminate_all(rxchan);
844 return -EBUSY;
845 }
846
847 /* Some data to go along to the callback */
848 desc->callback = pl011_dma_rx_callback;
849 desc->callback_param = uap;
850 dmarx->cookie = dmaengine_submit(desc);
851 dma_async_issue_pending(rxchan);
852
853 uap->dmacr |= UART011_RXDMAE;
854 pl011_write(uap->dmacr, uap, REG_DMACR);
855 uap->dmarx.running = true;
856
857 uap->im &= ~UART011_RXIM;
858 pl011_write(uap->im, uap, REG_IMSC);
859
860 return 0;
861}
862
863/*
864 * This is called when either the DMA job is complete, or
865 * the FIFO timeout interrupt occurred. This must be called
866 * with the port spinlock uap->port.lock held.
867 */
868static void pl011_dma_rx_chars(struct uart_amba_port *uap,
869 u32 pending, bool use_buf_b,
870 bool readfifo)
871{
872 struct tty_port *port = &uap->port.state->port;
873 struct pl011_dmabuf *dbuf = use_buf_b ?
874 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
875 int dma_count = 0;
876 u32 fifotaken = 0; /* only used for vdbg() */
877
878 struct pl011_dmarx_data *dmarx = &uap->dmarx;
879 int dmataken = 0;
880
881 if (uap->dmarx.poll_rate) {
882 /* The data can be taken by polling */
883 dmataken = dbuf->len - dmarx->last_residue;
884 /* Recalculate the pending size */
885 if (pending >= dmataken)
886 pending -= dmataken;
887 }
888
889 /* Pick the remain data from the DMA */
890 if (pending) {
891 /*
892 * First take all chars in the DMA pipe, then look in the FIFO.
893 * Note that tty_insert_flip_buf() tries to take as many chars
894 * as it can.
895 */
896 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken, pending);
897
898 uap->port.icount.rx += dma_count;
899 if (dma_count < pending)
900 dev_warn(uap->port.dev,
901 "couldn't insert all characters (TTY is full?)\n");
902 }
903
904 /* Reset the last_residue for Rx DMA poll */
905 if (uap->dmarx.poll_rate)
906 dmarx->last_residue = dbuf->len;
907
908 /*
909 * Only continue with trying to read the FIFO if all DMA chars have
910 * been taken first.
911 */
912 if (dma_count == pending && readfifo) {
913 /* Clear any error flags */
914 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
915 UART011_FEIS, uap, REG_ICR);
916
917 /*
918 * If we read all the DMA'd characters, and we had an
919 * incomplete buffer, that could be due to an rx error, or
920 * maybe we just timed out. Read any pending chars and check
921 * the error status.
922 *
923 * Error conditions will only occur in the FIFO, these will
924 * trigger an immediate interrupt and stop the DMA job, so we
925 * will always find the error in the FIFO, never in the DMA
926 * buffer.
927 */
928 fifotaken = pl011_fifo_to_tty(uap);
929 }
930
931 dev_vdbg(uap->port.dev,
932 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
933 dma_count, fifotaken);
934 tty_flip_buffer_push(port);
935}
936
937static void pl011_dma_rx_irq(struct uart_amba_port *uap)
938{
939 struct pl011_dmarx_data *dmarx = &uap->dmarx;
940 struct dma_chan *rxchan = dmarx->chan;
941 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
942 &dmarx->dbuf_b : &dmarx->dbuf_a;
943 size_t pending;
944 struct dma_tx_state state;
945 enum dma_status dmastat;
946
947 /*
948 * Pause the transfer so we can trust the current counter,
949 * do this before we pause the PL011 block, else we may
950 * overflow the FIFO.
951 */
952 if (dmaengine_pause(rxchan))
953 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
954 dmastat = rxchan->device->device_tx_status(rxchan,
955 dmarx->cookie, &state);
956 if (dmastat != DMA_PAUSED)
957 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
958
959 /* Disable RX DMA - incoming data will wait in the FIFO */
960 uap->dmacr &= ~UART011_RXDMAE;
961 pl011_write(uap->dmacr, uap, REG_DMACR);
962 uap->dmarx.running = false;
963
964 pending = dbuf->len - state.residue;
965 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
966 /* Then we terminate the transfer - we now know our residue */
967 dmaengine_terminate_all(rxchan);
968
969 /*
970 * This will take the chars we have so far and insert
971 * into the framework.
972 */
973 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
974
975 /* Switch buffer & re-trigger DMA job */
976 dmarx->use_buf_b = !dmarx->use_buf_b;
977 if (pl011_dma_rx_trigger_dma(uap)) {
978 dev_dbg(uap->port.dev,
979 "could not retrigger RX DMA job fall back to interrupt mode\n");
980 uap->im |= UART011_RXIM;
981 pl011_write(uap->im, uap, REG_IMSC);
982 }
983}
984
985static void pl011_dma_rx_callback(void *data)
986{
987 struct uart_amba_port *uap = data;
988 struct pl011_dmarx_data *dmarx = &uap->dmarx;
989 struct dma_chan *rxchan = dmarx->chan;
990 bool lastbuf = dmarx->use_buf_b;
991 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
992 &dmarx->dbuf_b : &dmarx->dbuf_a;
993 size_t pending;
994 struct dma_tx_state state;
995 int ret;
996
997 /*
998 * This completion interrupt occurs typically when the
999 * RX buffer is totally stuffed but no timeout has yet
1000 * occurred. When that happens, we just want the RX
1001 * routine to flush out the secondary DMA buffer while
1002 * we immediately trigger the next DMA job.
1003 */
1004 uart_port_lock_irq(&uap->port);
1005 /*
1006 * Rx data can be taken by the UART interrupts during
1007 * the DMA irq handler. So we check the residue here.
1008 */
1009 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1010 pending = dbuf->len - state.residue;
1011 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1012 /* Then we terminate the transfer - we now know our residue */
1013 dmaengine_terminate_all(rxchan);
1014
1015 uap->dmarx.running = false;
1016 dmarx->use_buf_b = !lastbuf;
1017 ret = pl011_dma_rx_trigger_dma(uap);
1018
1019 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1020 uart_port_unlock_irq(&uap->port);
1021 /*
1022 * Do this check after we picked the DMA chars so we don't
1023 * get some IRQ immediately from RX.
1024 */
1025 if (ret) {
1026 dev_dbg(uap->port.dev,
1027 "could not retrigger RX DMA job fall back to interrupt mode\n");
1028 uap->im |= UART011_RXIM;
1029 pl011_write(uap->im, uap, REG_IMSC);
1030 }
1031}
1032
1033/*
1034 * Stop accepting received characters, when we're shutting down or
1035 * suspending this port.
1036 * Locking: called with port lock held and IRQs disabled.
1037 */
1038static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1039{
1040 if (!uap->using_rx_dma)
1041 return;
1042
1043 /* FIXME. Just disable the DMA enable */
1044 uap->dmacr &= ~UART011_RXDMAE;
1045 pl011_write(uap->dmacr, uap, REG_DMACR);
1046}
1047
1048/*
1049 * Timer handler for Rx DMA polling.
1050 * Every polling, It checks the residue in the dma buffer and transfer
1051 * data to the tty. Also, last_residue is updated for the next polling.
1052 */
1053static void pl011_dma_rx_poll(struct timer_list *t)
1054{
1055 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1056 struct tty_port *port = &uap->port.state->port;
1057 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1058 struct dma_chan *rxchan = uap->dmarx.chan;
1059 unsigned long flags;
1060 unsigned int dmataken = 0;
1061 unsigned int size = 0;
1062 struct pl011_dmabuf *dbuf;
1063 int dma_count;
1064 struct dma_tx_state state;
1065
1066 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1067 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1068 if (likely(state.residue < dmarx->last_residue)) {
1069 dmataken = dbuf->len - dmarx->last_residue;
1070 size = dmarx->last_residue - state.residue;
1071 dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1072 size);
1073 if (dma_count == size)
1074 dmarx->last_residue = state.residue;
1075 dmarx->last_jiffies = jiffies;
1076 }
1077 tty_flip_buffer_push(port);
1078
1079 /*
1080 * If no data is received in poll_timeout, the driver will fall back
1081 * to interrupt mode. We will retrigger DMA at the first interrupt.
1082 */
1083 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1084 > uap->dmarx.poll_timeout) {
1085 uart_port_lock_irqsave(&uap->port, &flags);
1086 pl011_dma_rx_stop(uap);
1087 uap->im |= UART011_RXIM;
1088 pl011_write(uap->im, uap, REG_IMSC);
1089 uart_port_unlock_irqrestore(&uap->port, flags);
1090
1091 uap->dmarx.running = false;
1092 dmaengine_terminate_all(rxchan);
1093 del_timer(&uap->dmarx.timer);
1094 } else {
1095 mod_timer(&uap->dmarx.timer,
1096 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1097 }
1098}
1099
1100static void pl011_dma_startup(struct uart_amba_port *uap)
1101{
1102 int ret;
1103
1104 if (!uap->dma_probed)
1105 pl011_dma_probe(uap);
1106
1107 if (!uap->dmatx.chan)
1108 return;
1109
1110 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1111 if (!uap->dmatx.buf) {
1112 uap->port.fifosize = uap->fifosize;
1113 return;
1114 }
1115
1116 uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1117
1118 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1119 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1120 uap->using_tx_dma = true;
1121
1122 if (!uap->dmarx.chan)
1123 goto skip_rx;
1124
1125 /* Allocate and map DMA RX buffers */
1126 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1127 DMA_FROM_DEVICE);
1128 if (ret) {
1129 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1130 "RX buffer A", ret);
1131 goto skip_rx;
1132 }
1133
1134 ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1135 DMA_FROM_DEVICE);
1136 if (ret) {
1137 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138 "RX buffer B", ret);
1139 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1140 DMA_FROM_DEVICE);
1141 goto skip_rx;
1142 }
1143
1144 uap->using_rx_dma = true;
1145
1146skip_rx:
1147 /* Turn on DMA error (RX/TX will be enabled on demand) */
1148 uap->dmacr |= UART011_DMAONERR;
1149 pl011_write(uap->dmacr, uap, REG_DMACR);
1150
1151 /*
1152 * ST Micro variants has some specific dma burst threshold
1153 * compensation. Set this to 16 bytes, so burst will only
1154 * be issued above/below 16 bytes.
1155 */
1156 if (uap->vendor->dma_threshold)
1157 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1158 uap, REG_ST_DMAWM);
1159
1160 if (uap->using_rx_dma) {
1161 if (pl011_dma_rx_trigger_dma(uap))
1162 dev_dbg(uap->port.dev,
1163 "could not trigger initial RX DMA job, fall back to interrupt mode\n");
1164 if (uap->dmarx.poll_rate) {
1165 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1166 mod_timer(&uap->dmarx.timer,
1167 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1168 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1169 uap->dmarx.last_jiffies = jiffies;
1170 }
1171 }
1172}
1173
1174static void pl011_dma_shutdown(struct uart_amba_port *uap)
1175{
1176 if (!(uap->using_tx_dma || uap->using_rx_dma))
1177 return;
1178
1179 /* Disable RX and TX DMA */
1180 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1181 cpu_relax();
1182
1183 uart_port_lock_irq(&uap->port);
1184 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1185 pl011_write(uap->dmacr, uap, REG_DMACR);
1186 uart_port_unlock_irq(&uap->port);
1187
1188 if (uap->using_tx_dma) {
1189 /* In theory, this should already be done by pl011_dma_flush_buffer */
1190 dmaengine_terminate_all(uap->dmatx.chan);
1191 if (uap->dmatx.queued) {
1192 dma_unmap_single(uap->dmatx.chan->device->dev,
1193 uap->dmatx.dma, uap->dmatx.len,
1194 DMA_TO_DEVICE);
1195 uap->dmatx.queued = false;
1196 }
1197
1198 kfree(uap->dmatx.buf);
1199 uap->using_tx_dma = false;
1200 }
1201
1202 if (uap->using_rx_dma) {
1203 dmaengine_terminate_all(uap->dmarx.chan);
1204 /* Clean up the RX DMA */
1205 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1206 pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1207 if (uap->dmarx.poll_rate)
1208 del_timer_sync(&uap->dmarx.timer);
1209 uap->using_rx_dma = false;
1210 }
1211}
1212
1213static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1214{
1215 return uap->using_rx_dma;
1216}
1217
1218static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1219{
1220 return uap->using_rx_dma && uap->dmarx.running;
1221}
1222
1223#else
1224/* Blank functions if the DMA engine is not available */
1225static inline void pl011_dma_remove(struct uart_amba_port *uap)
1226{
1227}
1228
1229static inline void pl011_dma_startup(struct uart_amba_port *uap)
1230{
1231}
1232
1233static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1234{
1235}
1236
1237static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1238{
1239 return false;
1240}
1241
1242static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1243{
1244}
1245
1246static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1247{
1248 return false;
1249}
1250
1251static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1256{
1257}
1258
1259static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1260{
1261 return -EIO;
1262}
1263
1264static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1265{
1266 return false;
1267}
1268
1269static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1270{
1271 return false;
1272}
1273
1274#define pl011_dma_flush_buffer NULL
1275#endif
1276
1277static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1278{
1279 /*
1280 * To be on the safe side only time out after twice as many iterations
1281 * as fifo size.
1282 */
1283 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1284 struct uart_port *port = &uap->port;
1285 int i = 0;
1286 u32 cr;
1287
1288 /* Wait until hardware tx queue is empty */
1289 while (!pl011_tx_empty(port)) {
1290 if (i > MAX_TX_DRAIN_ITERS) {
1291 dev_warn(port->dev,
1292 "timeout while draining hardware tx queue\n");
1293 break;
1294 }
1295
1296 udelay(uap->rs485_tx_drain_interval);
1297 i++;
1298 }
1299
1300 if (port->rs485.delay_rts_after_send)
1301 mdelay(port->rs485.delay_rts_after_send);
1302
1303 cr = pl011_read(uap, REG_CR);
1304
1305 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1306 cr &= ~UART011_CR_RTS;
1307 else
1308 cr |= UART011_CR_RTS;
1309
1310 /* Disable the transmitter and reenable the transceiver */
1311 cr &= ~UART011_CR_TXE;
1312 cr |= UART011_CR_RXE;
1313 pl011_write(cr, uap, REG_CR);
1314
1315 uap->rs485_tx_started = false;
1316}
1317
1318static void pl011_stop_tx(struct uart_port *port)
1319{
1320 struct uart_amba_port *uap =
1321 container_of(port, struct uart_amba_port, port);
1322
1323 uap->im &= ~UART011_TXIM;
1324 pl011_write(uap->im, uap, REG_IMSC);
1325 pl011_dma_tx_stop(uap);
1326
1327 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1328 pl011_rs485_tx_stop(uap);
1329}
1330
1331static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1332
1333/* Start TX with programmed I/O only (no DMA) */
1334static void pl011_start_tx_pio(struct uart_amba_port *uap)
1335{
1336 if (pl011_tx_chars(uap, false)) {
1337 uap->im |= UART011_TXIM;
1338 pl011_write(uap->im, uap, REG_IMSC);
1339 }
1340}
1341
1342static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1343{
1344 struct uart_port *port = &uap->port;
1345 u32 cr;
1346
1347 /* Enable transmitter */
1348 cr = pl011_read(uap, REG_CR);
1349 cr |= UART011_CR_TXE;
1350
1351 /* Disable receiver if half-duplex */
1352 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1353 cr &= ~UART011_CR_RXE;
1354
1355 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1356 cr &= ~UART011_CR_RTS;
1357 else
1358 cr |= UART011_CR_RTS;
1359
1360 pl011_write(cr, uap, REG_CR);
1361
1362 if (port->rs485.delay_rts_before_send)
1363 mdelay(port->rs485.delay_rts_before_send);
1364
1365 uap->rs485_tx_started = true;
1366}
1367
1368static void pl011_start_tx(struct uart_port *port)
1369{
1370 struct uart_amba_port *uap =
1371 container_of(port, struct uart_amba_port, port);
1372
1373 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1374 !uap->rs485_tx_started)
1375 pl011_rs485_tx_start(uap);
1376
1377 if (!pl011_dma_tx_start(uap))
1378 pl011_start_tx_pio(uap);
1379}
1380
1381static void pl011_stop_rx(struct uart_port *port)
1382{
1383 struct uart_amba_port *uap =
1384 container_of(port, struct uart_amba_port, port);
1385
1386 uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1387 UART011_PEIM | UART011_BEIM | UART011_OEIM);
1388 pl011_write(uap->im, uap, REG_IMSC);
1389
1390 pl011_dma_rx_stop(uap);
1391}
1392
1393static void pl011_throttle_rx(struct uart_port *port)
1394{
1395 unsigned long flags;
1396
1397 uart_port_lock_irqsave(port, &flags);
1398 pl011_stop_rx(port);
1399 uart_port_unlock_irqrestore(port, flags);
1400}
1401
1402static void pl011_enable_ms(struct uart_port *port)
1403{
1404 struct uart_amba_port *uap =
1405 container_of(port, struct uart_amba_port, port);
1406
1407 uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1408 pl011_write(uap->im, uap, REG_IMSC);
1409}
1410
1411static void pl011_rx_chars(struct uart_amba_port *uap)
1412__releases(&uap->port.lock)
1413__acquires(&uap->port.lock)
1414{
1415 pl011_fifo_to_tty(uap);
1416
1417 uart_port_unlock(&uap->port);
1418 tty_flip_buffer_push(&uap->port.state->port);
1419 /*
1420 * If we were temporarily out of DMA mode for a while,
1421 * attempt to switch back to DMA mode again.
1422 */
1423 if (pl011_dma_rx_available(uap)) {
1424 if (pl011_dma_rx_trigger_dma(uap)) {
1425 dev_dbg(uap->port.dev,
1426 "could not trigger RX DMA job fall back to interrupt mode again\n");
1427 uap->im |= UART011_RXIM;
1428 pl011_write(uap->im, uap, REG_IMSC);
1429 } else {
1430#ifdef CONFIG_DMA_ENGINE
1431 /* Start Rx DMA poll */
1432 if (uap->dmarx.poll_rate) {
1433 uap->dmarx.last_jiffies = jiffies;
1434 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1435 mod_timer(&uap->dmarx.timer,
1436 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1437 }
1438#endif
1439 }
1440 }
1441 uart_port_lock(&uap->port);
1442}
1443
1444static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1445 bool from_irq)
1446{
1447 if (unlikely(!from_irq) &&
1448 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1449 return false; /* unable to transmit character */
1450
1451 pl011_write(c, uap, REG_DR);
1452 uap->port.icount.tx++;
1453
1454 return true;
1455}
1456
1457/* Returns true if tx interrupts have to be (kept) enabled */
1458static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1459{
1460 struct circ_buf *xmit = &uap->port.state->xmit;
1461 int count = uap->fifosize >> 1;
1462
1463 if (uap->port.x_char) {
1464 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1465 return true;
1466 uap->port.x_char = 0;
1467 --count;
1468 }
1469 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1470 pl011_stop_tx(&uap->port);
1471 return false;
1472 }
1473
1474 /* If we are using DMA mode, try to send some characters. */
1475 if (pl011_dma_tx_irq(uap))
1476 return true;
1477
1478 do {
1479 if (likely(from_irq) && count-- == 0)
1480 break;
1481
1482 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1483 break;
1484
1485 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1486 } while (!uart_circ_empty(xmit));
1487
1488 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1489 uart_write_wakeup(&uap->port);
1490
1491 if (uart_circ_empty(xmit)) {
1492 pl011_stop_tx(&uap->port);
1493 return false;
1494 }
1495 return true;
1496}
1497
1498static void pl011_modem_status(struct uart_amba_port *uap)
1499{
1500 unsigned int status, delta;
1501
1502 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1503
1504 delta = status ^ uap->old_status;
1505 uap->old_status = status;
1506
1507 if (!delta)
1508 return;
1509
1510 if (delta & UART01x_FR_DCD)
1511 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1512
1513 if (delta & uap->vendor->fr_dsr)
1514 uap->port.icount.dsr++;
1515
1516 if (delta & uap->vendor->fr_cts)
1517 uart_handle_cts_change(&uap->port,
1518 status & uap->vendor->fr_cts);
1519
1520 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1521}
1522
1523static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1524{
1525 if (!uap->vendor->cts_event_workaround)
1526 return;
1527
1528 /* workaround to make sure that all bits are unlocked.. */
1529 pl011_write(0x00, uap, REG_ICR);
1530
1531 /*
1532 * WA: introduce 26ns(1 uart clk) delay before W1C;
1533 * single apb access will incur 2 pclk(133.12Mhz) delay,
1534 * so add 2 dummy reads
1535 */
1536 pl011_read(uap, REG_ICR);
1537 pl011_read(uap, REG_ICR);
1538}
1539
1540static irqreturn_t pl011_int(int irq, void *dev_id)
1541{
1542 struct uart_amba_port *uap = dev_id;
1543 unsigned long flags;
1544 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1545 int handled = 0;
1546
1547 uart_port_lock_irqsave(&uap->port, &flags);
1548 status = pl011_read(uap, REG_RIS) & uap->im;
1549 if (status) {
1550 do {
1551 check_apply_cts_event_workaround(uap);
1552
1553 pl011_write(status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1554 uap, REG_ICR);
1555
1556 if (status & (UART011_RTIS | UART011_RXIS)) {
1557 if (pl011_dma_rx_running(uap))
1558 pl011_dma_rx_irq(uap);
1559 else
1560 pl011_rx_chars(uap);
1561 }
1562 if (status & (UART011_DSRMIS | UART011_DCDMIS |
1563 UART011_CTSMIS | UART011_RIMIS))
1564 pl011_modem_status(uap);
1565 if (status & UART011_TXIS)
1566 pl011_tx_chars(uap, true);
1567
1568 if (pass_counter-- == 0)
1569 break;
1570
1571 status = pl011_read(uap, REG_RIS) & uap->im;
1572 } while (status != 0);
1573 handled = 1;
1574 }
1575
1576 uart_port_unlock_irqrestore(&uap->port, flags);
1577
1578 return IRQ_RETVAL(handled);
1579}
1580
1581static unsigned int pl011_tx_empty(struct uart_port *port)
1582{
1583 struct uart_amba_port *uap =
1584 container_of(port, struct uart_amba_port, port);
1585
1586 /* Allow feature register bits to be inverted to work around errata */
1587 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588
1589 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590 0 : TIOCSER_TEMT;
1591}
1592
1593static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1594{
1595 if (cond)
1596 *ptr |= mask;
1597}
1598
1599static unsigned int pl011_get_mctrl(struct uart_port *port)
1600{
1601 struct uart_amba_port *uap =
1602 container_of(port, struct uart_amba_port, port);
1603 unsigned int result = 0;
1604 unsigned int status = pl011_read(uap, REG_FR);
1605
1606 pl011_maybe_set_bit(status & UART01x_FR_DCD, &result, TIOCM_CAR);
1607 pl011_maybe_set_bit(status & uap->vendor->fr_dsr, &result, TIOCM_DSR);
1608 pl011_maybe_set_bit(status & uap->vendor->fr_cts, &result, TIOCM_CTS);
1609 pl011_maybe_set_bit(status & uap->vendor->fr_ri, &result, TIOCM_RNG);
1610
1611 return result;
1612}
1613
1614static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1615{
1616 if (cond)
1617 *ptr |= mask;
1618 else
1619 *ptr &= ~mask;
1620}
1621
1622static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1623{
1624 struct uart_amba_port *uap =
1625 container_of(port, struct uart_amba_port, port);
1626 unsigned int cr;
1627
1628 cr = pl011_read(uap, REG_CR);
1629
1630 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTS);
1631 pl011_assign_bit(mctrl & TIOCM_DTR, &cr, UART011_CR_DTR);
1632 pl011_assign_bit(mctrl & TIOCM_OUT1, &cr, UART011_CR_OUT1);
1633 pl011_assign_bit(mctrl & TIOCM_OUT2, &cr, UART011_CR_OUT2);
1634 pl011_assign_bit(mctrl & TIOCM_LOOP, &cr, UART011_CR_LBE);
1635
1636 if (port->status & UPSTAT_AUTORTS) {
1637 /* We need to disable auto-RTS if we want to turn RTS off */
1638 pl011_assign_bit(mctrl & TIOCM_RTS, &cr, UART011_CR_RTSEN);
1639 }
1640
1641 pl011_write(cr, uap, REG_CR);
1642}
1643
1644static void pl011_break_ctl(struct uart_port *port, int break_state)
1645{
1646 struct uart_amba_port *uap =
1647 container_of(port, struct uart_amba_port, port);
1648 unsigned long flags;
1649 unsigned int lcr_h;
1650
1651 uart_port_lock_irqsave(&uap->port, &flags);
1652 lcr_h = pl011_read(uap, REG_LCRH_TX);
1653 if (break_state == -1)
1654 lcr_h |= UART01x_LCRH_BRK;
1655 else
1656 lcr_h &= ~UART01x_LCRH_BRK;
1657 pl011_write(lcr_h, uap, REG_LCRH_TX);
1658 uart_port_unlock_irqrestore(&uap->port, flags);
1659}
1660
1661#ifdef CONFIG_CONSOLE_POLL
1662
1663static void pl011_quiesce_irqs(struct uart_port *port)
1664{
1665 struct uart_amba_port *uap =
1666 container_of(port, struct uart_amba_port, port);
1667
1668 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669 /*
1670 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671 * we simply mask it. start_tx() will unmask it.
1672 *
1673 * Note we can race with start_tx(), and if the race happens, the
1674 * polling user might get another interrupt just after we clear it.
1675 * But it should be OK and can happen even w/o the race, e.g.
1676 * controller immediately got some new data and raised the IRQ.
1677 *
1678 * And whoever uses polling routines assumes that it manages the device
1679 * (including tx queue), so we're also fine with start_tx()'s caller
1680 * side.
1681 */
1682 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683 REG_IMSC);
1684}
1685
1686static int pl011_get_poll_char(struct uart_port *port)
1687{
1688 struct uart_amba_port *uap =
1689 container_of(port, struct uart_amba_port, port);
1690 unsigned int status;
1691
1692 /*
1693 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694 * debugger.
1695 */
1696 pl011_quiesce_irqs(port);
1697
1698 status = pl011_read(uap, REG_FR);
1699 if (status & UART01x_FR_RXFE)
1700 return NO_POLL_CHAR;
1701
1702 return pl011_read(uap, REG_DR);
1703}
1704
1705static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1706{
1707 struct uart_amba_port *uap =
1708 container_of(port, struct uart_amba_port, port);
1709
1710 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1711 cpu_relax();
1712
1713 pl011_write(ch, uap, REG_DR);
1714}
1715
1716#endif /* CONFIG_CONSOLE_POLL */
1717
1718static int pl011_hwinit(struct uart_port *port)
1719{
1720 struct uart_amba_port *uap =
1721 container_of(port, struct uart_amba_port, port);
1722 int retval;
1723
1724 /* Optionaly enable pins to be muxed in and configured */
1725 pinctrl_pm_select_default_state(port->dev);
1726
1727 /*
1728 * Try to enable the clock producer.
1729 */
1730 retval = clk_prepare_enable(uap->clk);
1731 if (retval)
1732 return retval;
1733
1734 uap->port.uartclk = clk_get_rate(uap->clk);
1735
1736 /* Clear pending error and receive interrupts */
1737 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1738 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1739 uap, REG_ICR);
1740
1741 /*
1742 * Save interrupts enable mask, and enable RX interrupts in case if
1743 * the interrupt is used for NMI entry.
1744 */
1745 uap->im = pl011_read(uap, REG_IMSC);
1746 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1747
1748 if (dev_get_platdata(uap->port.dev)) {
1749 struct amba_pl011_data *plat;
1750
1751 plat = dev_get_platdata(uap->port.dev);
1752 if (plat->init)
1753 plat->init();
1754 }
1755 return 0;
1756}
1757
1758static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1759{
1760 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1761 pl011_reg_to_offset(uap, REG_LCRH_TX);
1762}
1763
1764static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1765{
1766 pl011_write(lcr_h, uap, REG_LCRH_RX);
1767 if (pl011_split_lcrh(uap)) {
1768 int i;
1769 /*
1770 * Wait 10 PCLKs before writing LCRH_TX register,
1771 * to get this delay write read only register 10 times
1772 */
1773 for (i = 0; i < 10; ++i)
1774 pl011_write(0xff, uap, REG_MIS);
1775 pl011_write(lcr_h, uap, REG_LCRH_TX);
1776 }
1777}
1778
1779static int pl011_allocate_irq(struct uart_amba_port *uap)
1780{
1781 pl011_write(uap->im, uap, REG_IMSC);
1782
1783 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1784}
1785
1786/*
1787 * Enable interrupts, only timeouts when using DMA
1788 * if initial RX DMA job failed, start in interrupt mode
1789 * as well.
1790 */
1791static void pl011_enable_interrupts(struct uart_amba_port *uap)
1792{
1793 unsigned long flags;
1794 unsigned int i;
1795
1796 uart_port_lock_irqsave(&uap->port, &flags);
1797
1798 /* Clear out any spuriously appearing RX interrupts */
1799 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800
1801 /*
1802 * RXIS is asserted only when the RX FIFO transitions from below
1803 * to above the trigger threshold. If the RX FIFO is already
1804 * full to the threshold this can't happen and RXIS will now be
1805 * stuck off. Drain the RX FIFO explicitly to fix this:
1806 */
1807 for (i = 0; i < uap->fifosize * 2; ++i) {
1808 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809 break;
1810
1811 pl011_read(uap, REG_DR);
1812 }
1813
1814 uap->im = UART011_RTIM;
1815 if (!pl011_dma_rx_running(uap))
1816 uap->im |= UART011_RXIM;
1817 pl011_write(uap->im, uap, REG_IMSC);
1818 uart_port_unlock_irqrestore(&uap->port, flags);
1819}
1820
1821static void pl011_unthrottle_rx(struct uart_port *port)
1822{
1823 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1824 unsigned long flags;
1825
1826 uart_port_lock_irqsave(&uap->port, &flags);
1827
1828 uap->im = UART011_RTIM;
1829 if (!pl011_dma_rx_running(uap))
1830 uap->im |= UART011_RXIM;
1831
1832 pl011_write(uap->im, uap, REG_IMSC);
1833
1834 uart_port_unlock_irqrestore(&uap->port, flags);
1835}
1836
1837static int pl011_startup(struct uart_port *port)
1838{
1839 struct uart_amba_port *uap =
1840 container_of(port, struct uart_amba_port, port);
1841 unsigned int cr;
1842 int retval;
1843
1844 retval = pl011_hwinit(port);
1845 if (retval)
1846 goto clk_dis;
1847
1848 retval = pl011_allocate_irq(uap);
1849 if (retval)
1850 goto clk_dis;
1851
1852 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1853
1854 uart_port_lock_irq(&uap->port);
1855
1856 cr = pl011_read(uap, REG_CR);
1857 cr &= UART011_CR_RTS | UART011_CR_DTR;
1858 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1859
1860 if (!(port->rs485.flags & SER_RS485_ENABLED))
1861 cr |= UART011_CR_TXE;
1862
1863 pl011_write(cr, uap, REG_CR);
1864
1865 uart_port_unlock_irq(&uap->port);
1866
1867 /*
1868 * initialise the old status of the modem signals
1869 */
1870 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1871
1872 /* Startup DMA */
1873 pl011_dma_startup(uap);
1874
1875 pl011_enable_interrupts(uap);
1876
1877 return 0;
1878
1879 clk_dis:
1880 clk_disable_unprepare(uap->clk);
1881 return retval;
1882}
1883
1884static int sbsa_uart_startup(struct uart_port *port)
1885{
1886 struct uart_amba_port *uap =
1887 container_of(port, struct uart_amba_port, port);
1888 int retval;
1889
1890 retval = pl011_hwinit(port);
1891 if (retval)
1892 return retval;
1893
1894 retval = pl011_allocate_irq(uap);
1895 if (retval)
1896 return retval;
1897
1898 /* The SBSA UART does not support any modem status lines. */
1899 uap->old_status = 0;
1900
1901 pl011_enable_interrupts(uap);
1902
1903 return 0;
1904}
1905
1906static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1907{
1908 unsigned long val;
1909
1910 val = pl011_read(uap, lcrh);
1911 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1912 pl011_write(val, uap, lcrh);
1913}
1914
1915/*
1916 * disable the port. It should not disable RTS and DTR.
1917 * Also RTS and DTR state should be preserved to restore
1918 * it during startup().
1919 */
1920static void pl011_disable_uart(struct uart_amba_port *uap)
1921{
1922 unsigned int cr;
1923
1924 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1925 uart_port_lock_irq(&uap->port);
1926 cr = pl011_read(uap, REG_CR);
1927 cr &= UART011_CR_RTS | UART011_CR_DTR;
1928 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1929 pl011_write(cr, uap, REG_CR);
1930 uart_port_unlock_irq(&uap->port);
1931
1932 /*
1933 * disable break condition and fifos
1934 */
1935 pl011_shutdown_channel(uap, REG_LCRH_RX);
1936 if (pl011_split_lcrh(uap))
1937 pl011_shutdown_channel(uap, REG_LCRH_TX);
1938}
1939
1940static void pl011_disable_interrupts(struct uart_amba_port *uap)
1941{
1942 uart_port_lock_irq(&uap->port);
1943
1944 /* mask all interrupts and clear all pending ones */
1945 uap->im = 0;
1946 pl011_write(uap->im, uap, REG_IMSC);
1947 pl011_write(0xffff, uap, REG_ICR);
1948
1949 uart_port_unlock_irq(&uap->port);
1950}
1951
1952static void pl011_shutdown(struct uart_port *port)
1953{
1954 struct uart_amba_port *uap =
1955 container_of(port, struct uart_amba_port, port);
1956
1957 pl011_disable_interrupts(uap);
1958
1959 pl011_dma_shutdown(uap);
1960
1961 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1962 pl011_rs485_tx_stop(uap);
1963
1964 free_irq(uap->port.irq, uap);
1965
1966 pl011_disable_uart(uap);
1967
1968 /*
1969 * Shut down the clock producer
1970 */
1971 clk_disable_unprepare(uap->clk);
1972 /* Optionally let pins go into sleep states */
1973 pinctrl_pm_select_sleep_state(port->dev);
1974
1975 if (dev_get_platdata(uap->port.dev)) {
1976 struct amba_pl011_data *plat;
1977
1978 plat = dev_get_platdata(uap->port.dev);
1979 if (plat->exit)
1980 plat->exit();
1981 }
1982
1983 if (uap->port.ops->flush_buffer)
1984 uap->port.ops->flush_buffer(port);
1985}
1986
1987static void sbsa_uart_shutdown(struct uart_port *port)
1988{
1989 struct uart_amba_port *uap =
1990 container_of(port, struct uart_amba_port, port);
1991
1992 pl011_disable_interrupts(uap);
1993
1994 free_irq(uap->port.irq, uap);
1995
1996 if (uap->port.ops->flush_buffer)
1997 uap->port.ops->flush_buffer(port);
1998}
1999
2000static void
2001pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2002{
2003 port->read_status_mask = UART011_DR_OE | 255;
2004 if (termios->c_iflag & INPCK)
2005 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2006 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2007 port->read_status_mask |= UART011_DR_BE;
2008
2009 /*
2010 * Characters to ignore
2011 */
2012 port->ignore_status_mask = 0;
2013 if (termios->c_iflag & IGNPAR)
2014 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2015 if (termios->c_iflag & IGNBRK) {
2016 port->ignore_status_mask |= UART011_DR_BE;
2017 /*
2018 * If we're ignoring parity and break indicators,
2019 * ignore overruns too (for real raw support).
2020 */
2021 if (termios->c_iflag & IGNPAR)
2022 port->ignore_status_mask |= UART011_DR_OE;
2023 }
2024
2025 /*
2026 * Ignore all characters if CREAD is not set.
2027 */
2028 if ((termios->c_cflag & CREAD) == 0)
2029 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2030}
2031
2032static void
2033pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2034 const struct ktermios *old)
2035{
2036 struct uart_amba_port *uap =
2037 container_of(port, struct uart_amba_port, port);
2038 unsigned int lcr_h, old_cr;
2039 unsigned long flags;
2040 unsigned int baud, quot, clkdiv;
2041 unsigned int bits;
2042
2043 if (uap->vendor->oversampling)
2044 clkdiv = 8;
2045 else
2046 clkdiv = 16;
2047
2048 /*
2049 * Ask the core to calculate the divisor for us.
2050 */
2051 baud = uart_get_baud_rate(port, termios, old, 0,
2052 port->uartclk / clkdiv);
2053#ifdef CONFIG_DMA_ENGINE
2054 /*
2055 * Adjust RX DMA polling rate with baud rate if not specified.
2056 */
2057 if (uap->dmarx.auto_poll_rate)
2058 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2059#endif
2060
2061 if (baud > port->uartclk / 16)
2062 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2063 else
2064 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2065
2066 switch (termios->c_cflag & CSIZE) {
2067 case CS5:
2068 lcr_h = UART01x_LCRH_WLEN_5;
2069 break;
2070 case CS6:
2071 lcr_h = UART01x_LCRH_WLEN_6;
2072 break;
2073 case CS7:
2074 lcr_h = UART01x_LCRH_WLEN_7;
2075 break;
2076 default: // CS8
2077 lcr_h = UART01x_LCRH_WLEN_8;
2078 break;
2079 }
2080 if (termios->c_cflag & CSTOPB)
2081 lcr_h |= UART01x_LCRH_STP2;
2082 if (termios->c_cflag & PARENB) {
2083 lcr_h |= UART01x_LCRH_PEN;
2084 if (!(termios->c_cflag & PARODD))
2085 lcr_h |= UART01x_LCRH_EPS;
2086 if (termios->c_cflag & CMSPAR)
2087 lcr_h |= UART011_LCRH_SPS;
2088 }
2089 if (uap->fifosize > 1)
2090 lcr_h |= UART01x_LCRH_FEN;
2091
2092 bits = tty_get_frame_size(termios->c_cflag);
2093
2094 uart_port_lock_irqsave(port, &flags);
2095
2096 /*
2097 * Update the per-port timeout.
2098 */
2099 uart_update_timeout(port, termios->c_cflag, baud);
2100
2101 /*
2102 * Calculate the approximated time it takes to transmit one character
2103 * with the given baud rate. We use this as the poll interval when we
2104 * wait for the tx queue to empty.
2105 */
2106 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2107
2108 pl011_setup_status_masks(port, termios);
2109
2110 if (UART_ENABLE_MS(port, termios->c_cflag))
2111 pl011_enable_ms(port);
2112
2113 if (port->rs485.flags & SER_RS485_ENABLED)
2114 termios->c_cflag &= ~CRTSCTS;
2115
2116 old_cr = pl011_read(uap, REG_CR);
2117
2118 if (termios->c_cflag & CRTSCTS) {
2119 if (old_cr & UART011_CR_RTS)
2120 old_cr |= UART011_CR_RTSEN;
2121
2122 old_cr |= UART011_CR_CTSEN;
2123 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2124 } else {
2125 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2126 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2127 }
2128
2129 if (uap->vendor->oversampling) {
2130 if (baud > port->uartclk / 16)
2131 old_cr |= ST_UART011_CR_OVSFACT;
2132 else
2133 old_cr &= ~ST_UART011_CR_OVSFACT;
2134 }
2135
2136 /*
2137 * Workaround for the ST Micro oversampling variants to
2138 * increase the bitrate slightly, by lowering the divisor,
2139 * to avoid delayed sampling of start bit at high speeds,
2140 * else we see data corruption.
2141 */
2142 if (uap->vendor->oversampling) {
2143 if (baud >= 3000000 && baud < 3250000 && quot > 1)
2144 quot -= 1;
2145 else if (baud > 3250000 && quot > 2)
2146 quot -= 2;
2147 }
2148 /* Set baud rate */
2149 pl011_write(quot & 0x3f, uap, REG_FBRD);
2150 pl011_write(quot >> 6, uap, REG_IBRD);
2151
2152 /*
2153 * ----------v----------v----------v----------v-----
2154 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2155 * REG_FBRD & REG_IBRD.
2156 * ----------^----------^----------^----------^-----
2157 */
2158 pl011_write_lcr_h(uap, lcr_h);
2159
2160 /*
2161 * Receive was disabled by pl011_disable_uart during shutdown.
2162 * Need to reenable receive if you need to use a tty_driver
2163 * returns from tty_find_polling_driver() after a port shutdown.
2164 */
2165 old_cr |= UART011_CR_RXE;
2166 pl011_write(old_cr, uap, REG_CR);
2167
2168 uart_port_unlock_irqrestore(port, flags);
2169}
2170
2171static void
2172sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2173 const struct ktermios *old)
2174{
2175 struct uart_amba_port *uap =
2176 container_of(port, struct uart_amba_port, port);
2177 unsigned long flags;
2178
2179 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2180
2181 /* The SBSA UART only supports 8n1 without hardware flow control. */
2182 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2183 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2184 termios->c_cflag |= CS8 | CLOCAL;
2185
2186 uart_port_lock_irqsave(port, &flags);
2187 uart_update_timeout(port, CS8, uap->fixed_baud);
2188 pl011_setup_status_masks(port, termios);
2189 uart_port_unlock_irqrestore(port, flags);
2190}
2191
2192static const char *pl011_type(struct uart_port *port)
2193{
2194 struct uart_amba_port *uap =
2195 container_of(port, struct uart_amba_port, port);
2196 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2197}
2198
2199/*
2200 * Configure/autoconfigure the port.
2201 */
2202static void pl011_config_port(struct uart_port *port, int flags)
2203{
2204 if (flags & UART_CONFIG_TYPE)
2205 port->type = PORT_AMBA;
2206}
2207
2208/*
2209 * verify the new serial_struct (for TIOCSSERIAL).
2210 */
2211static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2212{
2213 int ret = 0;
2214
2215 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2216 ret = -EINVAL;
2217 if (ser->irq < 0 || ser->irq >= nr_irqs)
2218 ret = -EINVAL;
2219 if (ser->baud_base < 9600)
2220 ret = -EINVAL;
2221 if (port->mapbase != (unsigned long)ser->iomem_base)
2222 ret = -EINVAL;
2223 return ret;
2224}
2225
2226static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2227 struct serial_rs485 *rs485)
2228{
2229 struct uart_amba_port *uap =
2230 container_of(port, struct uart_amba_port, port);
2231
2232 if (port->rs485.flags & SER_RS485_ENABLED)
2233 pl011_rs485_tx_stop(uap);
2234
2235 /* Make sure auto RTS is disabled */
2236 if (rs485->flags & SER_RS485_ENABLED) {
2237 u32 cr = pl011_read(uap, REG_CR);
2238
2239 cr &= ~UART011_CR_RTSEN;
2240 pl011_write(cr, uap, REG_CR);
2241 port->status &= ~UPSTAT_AUTORTS;
2242 }
2243
2244 return 0;
2245}
2246
2247static const struct uart_ops amba_pl011_pops = {
2248 .tx_empty = pl011_tx_empty,
2249 .set_mctrl = pl011_set_mctrl,
2250 .get_mctrl = pl011_get_mctrl,
2251 .stop_tx = pl011_stop_tx,
2252 .start_tx = pl011_start_tx,
2253 .stop_rx = pl011_stop_rx,
2254 .throttle = pl011_throttle_rx,
2255 .unthrottle = pl011_unthrottle_rx,
2256 .enable_ms = pl011_enable_ms,
2257 .break_ctl = pl011_break_ctl,
2258 .startup = pl011_startup,
2259 .shutdown = pl011_shutdown,
2260 .flush_buffer = pl011_dma_flush_buffer,
2261 .set_termios = pl011_set_termios,
2262 .type = pl011_type,
2263 .config_port = pl011_config_port,
2264 .verify_port = pl011_verify_port,
2265#ifdef CONFIG_CONSOLE_POLL
2266 .poll_init = pl011_hwinit,
2267 .poll_get_char = pl011_get_poll_char,
2268 .poll_put_char = pl011_put_poll_char,
2269#endif
2270};
2271
2272static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2273{
2274}
2275
2276static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2277{
2278 return 0;
2279}
2280
2281static const struct uart_ops sbsa_uart_pops = {
2282 .tx_empty = pl011_tx_empty,
2283 .set_mctrl = sbsa_uart_set_mctrl,
2284 .get_mctrl = sbsa_uart_get_mctrl,
2285 .stop_tx = pl011_stop_tx,
2286 .start_tx = pl011_start_tx,
2287 .stop_rx = pl011_stop_rx,
2288 .startup = sbsa_uart_startup,
2289 .shutdown = sbsa_uart_shutdown,
2290 .set_termios = sbsa_uart_set_termios,
2291 .type = pl011_type,
2292 .config_port = pl011_config_port,
2293 .verify_port = pl011_verify_port,
2294#ifdef CONFIG_CONSOLE_POLL
2295 .poll_init = pl011_hwinit,
2296 .poll_get_char = pl011_get_poll_char,
2297 .poll_put_char = pl011_put_poll_char,
2298#endif
2299};
2300
2301static struct uart_amba_port *amba_ports[UART_NR];
2302
2303#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2304
2305static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2306{
2307 struct uart_amba_port *uap =
2308 container_of(port, struct uart_amba_port, port);
2309
2310 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2311 cpu_relax();
2312 pl011_write(ch, uap, REG_DR);
2313}
2314
2315static void
2316pl011_console_write(struct console *co, const char *s, unsigned int count)
2317{
2318 struct uart_amba_port *uap = amba_ports[co->index];
2319 unsigned int old_cr = 0, new_cr;
2320 unsigned long flags;
2321 int locked = 1;
2322
2323 clk_enable(uap->clk);
2324
2325 local_irq_save(flags);
2326 if (uap->port.sysrq)
2327 locked = 0;
2328 else if (oops_in_progress)
2329 locked = uart_port_trylock(&uap->port);
2330 else
2331 uart_port_lock(&uap->port);
2332
2333 /*
2334 * First save the CR then disable the interrupts
2335 */
2336 if (!uap->vendor->always_enabled) {
2337 old_cr = pl011_read(uap, REG_CR);
2338 new_cr = old_cr & ~UART011_CR_CTSEN;
2339 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2340 pl011_write(new_cr, uap, REG_CR);
2341 }
2342
2343 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2344
2345 /*
2346 * Finally, wait for transmitter to become empty and restore the
2347 * TCR. Allow feature register bits to be inverted to work around
2348 * errata.
2349 */
2350 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2351 & uap->vendor->fr_busy)
2352 cpu_relax();
2353 if (!uap->vendor->always_enabled)
2354 pl011_write(old_cr, uap, REG_CR);
2355
2356 if (locked)
2357 uart_port_unlock(&uap->port);
2358 local_irq_restore(flags);
2359
2360 clk_disable(uap->clk);
2361}
2362
2363static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2364 int *parity, int *bits)
2365{
2366 unsigned int lcr_h, ibrd, fbrd;
2367
2368 if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2369 return;
2370
2371 lcr_h = pl011_read(uap, REG_LCRH_TX);
2372
2373 *parity = 'n';
2374 if (lcr_h & UART01x_LCRH_PEN) {
2375 if (lcr_h & UART01x_LCRH_EPS)
2376 *parity = 'e';
2377 else
2378 *parity = 'o';
2379 }
2380
2381 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2382 *bits = 7;
2383 else
2384 *bits = 8;
2385
2386 ibrd = pl011_read(uap, REG_IBRD);
2387 fbrd = pl011_read(uap, REG_FBRD);
2388
2389 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2390
2391 if (uap->vendor->oversampling &&
2392 (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2393 *baud *= 2;
2394}
2395
2396static int pl011_console_setup(struct console *co, char *options)
2397{
2398 struct uart_amba_port *uap;
2399 int baud = 38400;
2400 int bits = 8;
2401 int parity = 'n';
2402 int flow = 'n';
2403 int ret;
2404
2405 /*
2406 * Check whether an invalid uart number has been specified, and
2407 * if so, search for the first available port that does have
2408 * console support.
2409 */
2410 if (co->index >= UART_NR)
2411 co->index = 0;
2412 uap = amba_ports[co->index];
2413 if (!uap)
2414 return -ENODEV;
2415
2416 /* Allow pins to be muxed in and configured */
2417 pinctrl_pm_select_default_state(uap->port.dev);
2418
2419 ret = clk_prepare(uap->clk);
2420 if (ret)
2421 return ret;
2422
2423 if (dev_get_platdata(uap->port.dev)) {
2424 struct amba_pl011_data *plat;
2425
2426 plat = dev_get_platdata(uap->port.dev);
2427 if (plat->init)
2428 plat->init();
2429 }
2430
2431 uap->port.uartclk = clk_get_rate(uap->clk);
2432
2433 if (uap->vendor->fixed_options) {
2434 baud = uap->fixed_baud;
2435 } else {
2436 if (options)
2437 uart_parse_options(options,
2438 &baud, &parity, &bits, &flow);
2439 else
2440 pl011_console_get_options(uap, &baud, &parity, &bits);
2441 }
2442
2443 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2444}
2445
2446/**
2447 * pl011_console_match - non-standard console matching
2448 * @co: registering console
2449 * @name: name from console command line
2450 * @idx: index from console command line
2451 * @options: ptr to option string from console command line
2452 *
2453 * Only attempts to match console command lines of the form:
2454 * console=pl011,mmio|mmio32,<addr>[,<options>]
2455 * console=pl011,0x<addr>[,<options>]
2456 * This form is used to register an initial earlycon boot console and
2457 * replace it with the amba_console at pl011 driver init.
2458 *
2459 * Performs console setup for a match (as required by interface)
2460 * If no <options> are specified, then assume the h/w is already setup.
2461 *
2462 * Returns 0 if console matches; otherwise non-zero to use default matching
2463 */
2464static int pl011_console_match(struct console *co, char *name, int idx,
2465 char *options)
2466{
2467 unsigned char iotype;
2468 resource_size_t addr;
2469 int i;
2470
2471 /*
2472 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2473 * have a distinct console name, so make sure we check for that.
2474 * The actual implementation of the erratum occurs in the probe
2475 * function.
2476 */
2477 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2478 return -ENODEV;
2479
2480 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2481 return -ENODEV;
2482
2483 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2484 return -ENODEV;
2485
2486 /* try to match the port specified on the command line */
2487 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2488 struct uart_port *port;
2489
2490 if (!amba_ports[i])
2491 continue;
2492
2493 port = &amba_ports[i]->port;
2494
2495 if (port->mapbase != addr)
2496 continue;
2497
2498 co->index = i;
2499 port->cons = co;
2500 return pl011_console_setup(co, options);
2501 }
2502
2503 return -ENODEV;
2504}
2505
2506static struct uart_driver amba_reg;
2507static struct console amba_console = {
2508 .name = "ttyAMA",
2509 .write = pl011_console_write,
2510 .device = uart_console_device,
2511 .setup = pl011_console_setup,
2512 .match = pl011_console_match,
2513 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2514 .index = -1,
2515 .data = &amba_reg,
2516};
2517
2518#define AMBA_CONSOLE (&amba_console)
2519
2520static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2521{
2522 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2523 cpu_relax();
2524 writel(c, port->membase + UART01x_DR);
2525 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2526 cpu_relax();
2527}
2528
2529static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2530{
2531 struct earlycon_device *dev = con->data;
2532
2533 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2534}
2535
2536static void pl011_putc(struct uart_port *port, unsigned char c)
2537{
2538 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2539 cpu_relax();
2540 if (port->iotype == UPIO_MEM32)
2541 writel(c, port->membase + UART01x_DR);
2542 else
2543 writeb(c, port->membase + UART01x_DR);
2544 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2545 cpu_relax();
2546}
2547
2548static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2549{
2550 struct earlycon_device *dev = con->data;
2551
2552 uart_console_write(&dev->port, s, n, pl011_putc);
2553}
2554
2555#ifdef CONFIG_CONSOLE_POLL
2556static int pl011_getc(struct uart_port *port)
2557{
2558 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2559 return NO_POLL_CHAR;
2560
2561 if (port->iotype == UPIO_MEM32)
2562 return readl(port->membase + UART01x_DR);
2563 else
2564 return readb(port->membase + UART01x_DR);
2565}
2566
2567static int pl011_early_read(struct console *con, char *s, unsigned int n)
2568{
2569 struct earlycon_device *dev = con->data;
2570 int ch, num_read = 0;
2571
2572 while (num_read < n) {
2573 ch = pl011_getc(&dev->port);
2574 if (ch == NO_POLL_CHAR)
2575 break;
2576
2577 s[num_read++] = ch;
2578 }
2579
2580 return num_read;
2581}
2582#else
2583#define pl011_early_read NULL
2584#endif
2585
2586/*
2587 * On non-ACPI systems, earlycon is enabled by specifying
2588 * "earlycon=pl011,<address>" on the kernel command line.
2589 *
2590 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2591 * by specifying only "earlycon" on the command line. Because it requires
2592 * SPCR, the console starts after ACPI is parsed, which is later than a
2593 * traditional early console.
2594 *
2595 * To get the traditional early console that starts before ACPI is parsed,
2596 * specify the full "earlycon=pl011,<address>" option.
2597 */
2598static int __init pl011_early_console_setup(struct earlycon_device *device,
2599 const char *opt)
2600{
2601 if (!device->port.membase)
2602 return -ENODEV;
2603
2604 device->con->write = pl011_early_write;
2605 device->con->read = pl011_early_read;
2606
2607 return 0;
2608}
2609
2610OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2611
2612OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2613
2614/*
2615 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2616 * Erratum 44, traditional earlycon can be enabled by specifying
2617 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2618 *
2619 * Alternatively, you can just specify "earlycon", and the early console
2620 * will be enabled with the information from the SPCR table. In this
2621 * case, the SPCR code will detect the need for the E44 work-around,
2622 * and set the console name to "qdf2400_e44".
2623 */
2624static int __init
2625qdf2400_e44_early_console_setup(struct earlycon_device *device,
2626 const char *opt)
2627{
2628 if (!device->port.membase)
2629 return -ENODEV;
2630
2631 device->con->write = qdf2400_e44_early_write;
2632 return 0;
2633}
2634
2635EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2636
2637#else
2638#define AMBA_CONSOLE NULL
2639#endif
2640
2641static struct uart_driver amba_reg = {
2642 .owner = THIS_MODULE,
2643 .driver_name = "ttyAMA",
2644 .dev_name = "ttyAMA",
2645 .major = SERIAL_AMBA_MAJOR,
2646 .minor = SERIAL_AMBA_MINOR,
2647 .nr = UART_NR,
2648 .cons = AMBA_CONSOLE,
2649};
2650
2651static int pl011_probe_dt_alias(int index, struct device *dev)
2652{
2653 struct device_node *np;
2654 static bool seen_dev_with_alias;
2655 static bool seen_dev_without_alias;
2656 int ret = index;
2657
2658 if (!IS_ENABLED(CONFIG_OF))
2659 return ret;
2660
2661 np = dev->of_node;
2662 if (!np)
2663 return ret;
2664
2665 ret = of_alias_get_id(np, "serial");
2666 if (ret < 0) {
2667 seen_dev_without_alias = true;
2668 ret = index;
2669 } else {
2670 seen_dev_with_alias = true;
2671 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2672 dev_warn(dev, "requested serial port %d not available.\n", ret);
2673 ret = index;
2674 }
2675 }
2676
2677 if (seen_dev_with_alias && seen_dev_without_alias)
2678 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2679
2680 return ret;
2681}
2682
2683/* unregisters the driver also if no more ports are left */
2684static void pl011_unregister_port(struct uart_amba_port *uap)
2685{
2686 int i;
2687 bool busy = false;
2688
2689 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2690 if (amba_ports[i] == uap)
2691 amba_ports[i] = NULL;
2692 else if (amba_ports[i])
2693 busy = true;
2694 }
2695 pl011_dma_remove(uap);
2696 if (!busy)
2697 uart_unregister_driver(&amba_reg);
2698}
2699
2700static int pl011_find_free_port(void)
2701{
2702 int i;
2703
2704 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2705 if (!amba_ports[i])
2706 return i;
2707
2708 return -EBUSY;
2709}
2710
2711static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2712{
2713 struct uart_port *port = &uap->port;
2714 int ret;
2715
2716 ret = uart_get_rs485_mode(port);
2717 if (ret)
2718 return ret;
2719
2720 return 0;
2721}
2722
2723static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2724 struct resource *mmiobase, int index)
2725{
2726 void __iomem *base;
2727 int ret;
2728
2729 base = devm_ioremap_resource(dev, mmiobase);
2730 if (IS_ERR(base))
2731 return PTR_ERR(base);
2732
2733 index = pl011_probe_dt_alias(index, dev);
2734
2735 uap->port.dev = dev;
2736 uap->port.mapbase = mmiobase->start;
2737 uap->port.membase = base;
2738 uap->port.fifosize = uap->fifosize;
2739 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2740 uap->port.flags = UPF_BOOT_AUTOCONF;
2741 uap->port.line = index;
2742
2743 ret = pl011_get_rs485_mode(uap);
2744 if (ret)
2745 return ret;
2746
2747 amba_ports[index] = uap;
2748
2749 return 0;
2750}
2751
2752static int pl011_register_port(struct uart_amba_port *uap)
2753{
2754 int ret, i;
2755
2756 /* Ensure interrupts from this UART are masked and cleared */
2757 pl011_write(0, uap, REG_IMSC);
2758 pl011_write(0xffff, uap, REG_ICR);
2759
2760 if (!amba_reg.state) {
2761 ret = uart_register_driver(&amba_reg);
2762 if (ret < 0) {
2763 dev_err(uap->port.dev,
2764 "Failed to register AMBA-PL011 driver\n");
2765 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2766 if (amba_ports[i] == uap)
2767 amba_ports[i] = NULL;
2768 return ret;
2769 }
2770 }
2771
2772 ret = uart_add_one_port(&amba_reg, &uap->port);
2773 if (ret)
2774 pl011_unregister_port(uap);
2775
2776 return ret;
2777}
2778
2779static const struct serial_rs485 pl011_rs485_supported = {
2780 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2781 SER_RS485_RX_DURING_TX,
2782 .delay_rts_before_send = 1,
2783 .delay_rts_after_send = 1,
2784};
2785
2786static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2787{
2788 struct uart_amba_port *uap;
2789 struct vendor_data *vendor = id->data;
2790 int portnr, ret;
2791 u32 val;
2792
2793 portnr = pl011_find_free_port();
2794 if (portnr < 0)
2795 return portnr;
2796
2797 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2798 GFP_KERNEL);
2799 if (!uap)
2800 return -ENOMEM;
2801
2802 uap->clk = devm_clk_get(&dev->dev, NULL);
2803 if (IS_ERR(uap->clk))
2804 return PTR_ERR(uap->clk);
2805
2806 uap->reg_offset = vendor->reg_offset;
2807 uap->vendor = vendor;
2808 uap->fifosize = vendor->get_fifosize(dev);
2809 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2810 uap->port.irq = dev->irq[0];
2811 uap->port.ops = &amba_pl011_pops;
2812 uap->port.rs485_config = pl011_rs485_config;
2813 uap->port.rs485_supported = pl011_rs485_supported;
2814 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2815
2816 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2817 switch (val) {
2818 case 1:
2819 uap->port.iotype = UPIO_MEM;
2820 break;
2821 case 4:
2822 uap->port.iotype = UPIO_MEM32;
2823 break;
2824 default:
2825 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2826 val);
2827 return -EINVAL;
2828 }
2829 }
2830
2831 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2832 if (ret)
2833 return ret;
2834
2835 amba_set_drvdata(dev, uap);
2836
2837 return pl011_register_port(uap);
2838}
2839
2840static void pl011_remove(struct amba_device *dev)
2841{
2842 struct uart_amba_port *uap = amba_get_drvdata(dev);
2843
2844 uart_remove_one_port(&amba_reg, &uap->port);
2845 pl011_unregister_port(uap);
2846}
2847
2848#ifdef CONFIG_PM_SLEEP
2849static int pl011_suspend(struct device *dev)
2850{
2851 struct uart_amba_port *uap = dev_get_drvdata(dev);
2852
2853 if (!uap)
2854 return -EINVAL;
2855
2856 return uart_suspend_port(&amba_reg, &uap->port);
2857}
2858
2859static int pl011_resume(struct device *dev)
2860{
2861 struct uart_amba_port *uap = dev_get_drvdata(dev);
2862
2863 if (!uap)
2864 return -EINVAL;
2865
2866 return uart_resume_port(&amba_reg, &uap->port);
2867}
2868#endif
2869
2870static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2871
2872#ifdef CONFIG_ACPI_SPCR_TABLE
2873static void qpdf2400_erratum44_workaround(struct device *dev,
2874 struct uart_amba_port *uap)
2875{
2876 if (!qdf2400_e44_present)
2877 return;
2878
2879 dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2880 uap->vendor = &vendor_qdt_qdf2400_e44;
2881}
2882#else
2883static void qpdf2400_erratum44_workaround(struct device *dev,
2884 struct uart_amba_port *uap)
2885{ /* empty */ }
2886#endif
2887
2888static int sbsa_uart_probe(struct platform_device *pdev)
2889{
2890 struct uart_amba_port *uap;
2891 struct resource *r;
2892 int portnr, ret;
2893 int baudrate;
2894
2895 /*
2896 * Check the mandatory baud rate parameter in the DT node early
2897 * so that we can easily exit with the error.
2898 */
2899 if (pdev->dev.of_node) {
2900 struct device_node *np = pdev->dev.of_node;
2901
2902 ret = of_property_read_u32(np, "current-speed", &baudrate);
2903 if (ret)
2904 return ret;
2905 } else {
2906 baudrate = 115200;
2907 }
2908
2909 portnr = pl011_find_free_port();
2910 if (portnr < 0)
2911 return portnr;
2912
2913 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2914 GFP_KERNEL);
2915 if (!uap)
2916 return -ENOMEM;
2917
2918 ret = platform_get_irq(pdev, 0);
2919 if (ret < 0)
2920 return ret;
2921 uap->port.irq = ret;
2922
2923 uap->vendor = &vendor_sbsa;
2924 qpdf2400_erratum44_workaround(&pdev->dev, uap);
2925
2926 uap->reg_offset = uap->vendor->reg_offset;
2927 uap->fifosize = 32;
2928 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2929 uap->port.ops = &sbsa_uart_pops;
2930 uap->fixed_baud = baudrate;
2931
2932 snprintf(uap->type, sizeof(uap->type), "SBSA");
2933
2934 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2935
2936 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2937 if (ret)
2938 return ret;
2939
2940 platform_set_drvdata(pdev, uap);
2941
2942 return pl011_register_port(uap);
2943}
2944
2945static void sbsa_uart_remove(struct platform_device *pdev)
2946{
2947 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2948
2949 uart_remove_one_port(&amba_reg, &uap->port);
2950 pl011_unregister_port(uap);
2951}
2952
2953static const struct of_device_id sbsa_uart_of_match[] = {
2954 { .compatible = "arm,sbsa-uart", },
2955 {},
2956};
2957MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2958
2959static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2960 { "ARMH0011", 0 },
2961 { "ARMHB000", 0 },
2962 {},
2963};
2964MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2965
2966static struct platform_driver arm_sbsa_uart_platform_driver = {
2967 .probe = sbsa_uart_probe,
2968 .remove_new = sbsa_uart_remove,
2969 .driver = {
2970 .name = "sbsa-uart",
2971 .pm = &pl011_dev_pm_ops,
2972 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2973 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2974 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2975 },
2976};
2977
2978static const struct amba_id pl011_ids[] = {
2979 {
2980 .id = 0x00041011,
2981 .mask = 0x000fffff,
2982 .data = &vendor_arm,
2983 },
2984 {
2985 .id = 0x00380802,
2986 .mask = 0x00ffffff,
2987 .data = &vendor_st,
2988 },
2989 { 0, 0 },
2990};
2991
2992MODULE_DEVICE_TABLE(amba, pl011_ids);
2993
2994static struct amba_driver pl011_driver = {
2995 .drv = {
2996 .name = "uart-pl011",
2997 .pm = &pl011_dev_pm_ops,
2998 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2999 },
3000 .id_table = pl011_ids,
3001 .probe = pl011_probe,
3002 .remove = pl011_remove,
3003};
3004
3005static int __init pl011_init(void)
3006{
3007 pr_info("Serial: AMBA PL011 UART driver\n");
3008
3009 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3010 pr_warn("could not register SBSA UART platform driver\n");
3011 return amba_driver_register(&pl011_driver);
3012}
3013
3014static void __exit pl011_exit(void)
3015{
3016 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3017 amba_driver_unregister(&pl011_driver);
3018}
3019
3020/*
3021 * While this can be a module, if builtin it's most likely the console
3022 * So let's leave module_exit but move module_init to an earlier place
3023 */
3024arch_initcall(pl011_init);
3025module_exit(pl011_exit);
3026
3027MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3028MODULE_DESCRIPTION("ARM AMBA serial port driver");
3029MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19
20#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21#define SUPPORT_SYSRQ
22#endif
23
24#include <linux/module.h>
25#include <linux/ioport.h>
26#include <linux/init.h>
27#include <linux/console.h>
28#include <linux/sysrq.h>
29#include <linux/device.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/serial_core.h>
33#include <linux/serial.h>
34#include <linux/amba/bus.h>
35#include <linux/amba/serial.h>
36#include <linux/clk.h>
37#include <linux/slab.h>
38#include <linux/dmaengine.h>
39#include <linux/dma-mapping.h>
40#include <linux/scatterlist.h>
41#include <linux/delay.h>
42#include <linux/types.h>
43#include <linux/of.h>
44#include <linux/of_device.h>
45#include <linux/pinctrl/consumer.h>
46#include <linux/sizes.h>
47#include <linux/io.h>
48#include <linux/acpi.h>
49
50#include "amba-pl011.h"
51
52#define UART_NR 14
53
54#define SERIAL_AMBA_MAJOR 204
55#define SERIAL_AMBA_MINOR 64
56#define SERIAL_AMBA_NR UART_NR
57
58#define AMBA_ISR_PASS_LIMIT 256
59
60#define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61#define UART_DUMMY_DR_RX (1 << 16)
62
63static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
64 [REG_DR] = UART01x_DR,
65 [REG_FR] = UART01x_FR,
66 [REG_LCRH_RX] = UART011_LCRH,
67 [REG_LCRH_TX] = UART011_LCRH,
68 [REG_IBRD] = UART011_IBRD,
69 [REG_FBRD] = UART011_FBRD,
70 [REG_CR] = UART011_CR,
71 [REG_IFLS] = UART011_IFLS,
72 [REG_IMSC] = UART011_IMSC,
73 [REG_RIS] = UART011_RIS,
74 [REG_MIS] = UART011_MIS,
75 [REG_ICR] = UART011_ICR,
76 [REG_DMACR] = UART011_DMACR,
77};
78
79/* There is by now at least one vendor with differing details, so handle it */
80struct vendor_data {
81 const u16 *reg_offset;
82 unsigned int ifls;
83 unsigned int fr_busy;
84 unsigned int fr_dsr;
85 unsigned int fr_cts;
86 unsigned int fr_ri;
87 unsigned int inv_fr;
88 bool access_32b;
89 bool oversampling;
90 bool dma_threshold;
91 bool cts_event_workaround;
92 bool always_enabled;
93 bool fixed_options;
94
95 unsigned int (*get_fifosize)(struct amba_device *dev);
96};
97
98static unsigned int get_fifosize_arm(struct amba_device *dev)
99{
100 return amba_rev(dev) < 3 ? 16 : 32;
101}
102
103static struct vendor_data vendor_arm = {
104 .reg_offset = pl011_std_offsets,
105 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 .fr_busy = UART01x_FR_BUSY,
107 .fr_dsr = UART01x_FR_DSR,
108 .fr_cts = UART01x_FR_CTS,
109 .fr_ri = UART011_FR_RI,
110 .oversampling = false,
111 .dma_threshold = false,
112 .cts_event_workaround = false,
113 .always_enabled = false,
114 .fixed_options = false,
115 .get_fifosize = get_fifosize_arm,
116};
117
118static const struct vendor_data vendor_sbsa = {
119 .reg_offset = pl011_std_offsets,
120 .fr_busy = UART01x_FR_BUSY,
121 .fr_dsr = UART01x_FR_DSR,
122 .fr_cts = UART01x_FR_CTS,
123 .fr_ri = UART011_FR_RI,
124 .access_32b = true,
125 .oversampling = false,
126 .dma_threshold = false,
127 .cts_event_workaround = false,
128 .always_enabled = true,
129 .fixed_options = true,
130};
131
132#ifdef CONFIG_ACPI_SPCR_TABLE
133static const struct vendor_data vendor_qdt_qdf2400_e44 = {
134 .reg_offset = pl011_std_offsets,
135 .fr_busy = UART011_FR_TXFE,
136 .fr_dsr = UART01x_FR_DSR,
137 .fr_cts = UART01x_FR_CTS,
138 .fr_ri = UART011_FR_RI,
139 .inv_fr = UART011_FR_TXFE,
140 .access_32b = true,
141 .oversampling = false,
142 .dma_threshold = false,
143 .cts_event_workaround = false,
144 .always_enabled = true,
145 .fixed_options = true,
146};
147#endif
148
149static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
150 [REG_DR] = UART01x_DR,
151 [REG_ST_DMAWM] = ST_UART011_DMAWM,
152 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
153 [REG_FR] = UART01x_FR,
154 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
155 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
156 [REG_IBRD] = UART011_IBRD,
157 [REG_FBRD] = UART011_FBRD,
158 [REG_CR] = UART011_CR,
159 [REG_IFLS] = UART011_IFLS,
160 [REG_IMSC] = UART011_IMSC,
161 [REG_RIS] = UART011_RIS,
162 [REG_MIS] = UART011_MIS,
163 [REG_ICR] = UART011_ICR,
164 [REG_DMACR] = UART011_DMACR,
165 [REG_ST_XFCR] = ST_UART011_XFCR,
166 [REG_ST_XON1] = ST_UART011_XON1,
167 [REG_ST_XON2] = ST_UART011_XON2,
168 [REG_ST_XOFF1] = ST_UART011_XOFF1,
169 [REG_ST_XOFF2] = ST_UART011_XOFF2,
170 [REG_ST_ITCR] = ST_UART011_ITCR,
171 [REG_ST_ITIP] = ST_UART011_ITIP,
172 [REG_ST_ABCR] = ST_UART011_ABCR,
173 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
174};
175
176static unsigned int get_fifosize_st(struct amba_device *dev)
177{
178 return 64;
179}
180
181static struct vendor_data vendor_st = {
182 .reg_offset = pl011_st_offsets,
183 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
184 .fr_busy = UART01x_FR_BUSY,
185 .fr_dsr = UART01x_FR_DSR,
186 .fr_cts = UART01x_FR_CTS,
187 .fr_ri = UART011_FR_RI,
188 .oversampling = true,
189 .dma_threshold = true,
190 .cts_event_workaround = true,
191 .always_enabled = false,
192 .fixed_options = false,
193 .get_fifosize = get_fifosize_st,
194};
195
196static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
197 [REG_DR] = ZX_UART011_DR,
198 [REG_FR] = ZX_UART011_FR,
199 [REG_LCRH_RX] = ZX_UART011_LCRH,
200 [REG_LCRH_TX] = ZX_UART011_LCRH,
201 [REG_IBRD] = ZX_UART011_IBRD,
202 [REG_FBRD] = ZX_UART011_FBRD,
203 [REG_CR] = ZX_UART011_CR,
204 [REG_IFLS] = ZX_UART011_IFLS,
205 [REG_IMSC] = ZX_UART011_IMSC,
206 [REG_RIS] = ZX_UART011_RIS,
207 [REG_MIS] = ZX_UART011_MIS,
208 [REG_ICR] = ZX_UART011_ICR,
209 [REG_DMACR] = ZX_UART011_DMACR,
210};
211
212static unsigned int get_fifosize_zte(struct amba_device *dev)
213{
214 return 16;
215}
216
217static struct vendor_data vendor_zte = {
218 .reg_offset = pl011_zte_offsets,
219 .access_32b = true,
220 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
221 .fr_busy = ZX_UART01x_FR_BUSY,
222 .fr_dsr = ZX_UART01x_FR_DSR,
223 .fr_cts = ZX_UART01x_FR_CTS,
224 .fr_ri = ZX_UART011_FR_RI,
225 .get_fifosize = get_fifosize_zte,
226};
227
228/* Deals with DMA transactions */
229
230struct pl011_sgbuf {
231 struct scatterlist sg;
232 char *buf;
233};
234
235struct pl011_dmarx_data {
236 struct dma_chan *chan;
237 struct completion complete;
238 bool use_buf_b;
239 struct pl011_sgbuf sgbuf_a;
240 struct pl011_sgbuf sgbuf_b;
241 dma_cookie_t cookie;
242 bool running;
243 struct timer_list timer;
244 unsigned int last_residue;
245 unsigned long last_jiffies;
246 bool auto_poll_rate;
247 unsigned int poll_rate;
248 unsigned int poll_timeout;
249};
250
251struct pl011_dmatx_data {
252 struct dma_chan *chan;
253 struct scatterlist sg;
254 char *buf;
255 bool queued;
256};
257
258/*
259 * We wrap our port structure around the generic uart_port.
260 */
261struct uart_amba_port {
262 struct uart_port port;
263 const u16 *reg_offset;
264 struct clk *clk;
265 const struct vendor_data *vendor;
266 unsigned int dmacr; /* dma control reg */
267 unsigned int im; /* interrupt mask */
268 unsigned int old_status;
269 unsigned int fifosize; /* vendor-specific */
270 unsigned int old_cr; /* state during shutdown */
271 unsigned int fixed_baud; /* vendor-set fixed baud rate */
272 char type[12];
273#ifdef CONFIG_DMA_ENGINE
274 /* DMA stuff */
275 bool using_tx_dma;
276 bool using_rx_dma;
277 struct pl011_dmarx_data dmarx;
278 struct pl011_dmatx_data dmatx;
279 bool dma_probed;
280#endif
281};
282
283static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
284 unsigned int reg)
285{
286 return uap->reg_offset[reg];
287}
288
289static unsigned int pl011_read(const struct uart_amba_port *uap,
290 unsigned int reg)
291{
292 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
293
294 return (uap->port.iotype == UPIO_MEM32) ?
295 readl_relaxed(addr) : readw_relaxed(addr);
296}
297
298static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
299 unsigned int reg)
300{
301 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
302
303 if (uap->port.iotype == UPIO_MEM32)
304 writel_relaxed(val, addr);
305 else
306 writew_relaxed(val, addr);
307}
308
309/*
310 * Reads up to 256 characters from the FIFO or until it's empty and
311 * inserts them into the TTY layer. Returns the number of characters
312 * read from the FIFO.
313 */
314static int pl011_fifo_to_tty(struct uart_amba_port *uap)
315{
316 u16 status;
317 unsigned int ch, flag, fifotaken;
318
319 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
320 status = pl011_read(uap, REG_FR);
321 if (status & UART01x_FR_RXFE)
322 break;
323
324 /* Take chars from the FIFO and update status */
325 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
326 flag = TTY_NORMAL;
327 uap->port.icount.rx++;
328
329 if (unlikely(ch & UART_DR_ERROR)) {
330 if (ch & UART011_DR_BE) {
331 ch &= ~(UART011_DR_FE | UART011_DR_PE);
332 uap->port.icount.brk++;
333 if (uart_handle_break(&uap->port))
334 continue;
335 } else if (ch & UART011_DR_PE)
336 uap->port.icount.parity++;
337 else if (ch & UART011_DR_FE)
338 uap->port.icount.frame++;
339 if (ch & UART011_DR_OE)
340 uap->port.icount.overrun++;
341
342 ch &= uap->port.read_status_mask;
343
344 if (ch & UART011_DR_BE)
345 flag = TTY_BREAK;
346 else if (ch & UART011_DR_PE)
347 flag = TTY_PARITY;
348 else if (ch & UART011_DR_FE)
349 flag = TTY_FRAME;
350 }
351
352 if (uart_handle_sysrq_char(&uap->port, ch & 255))
353 continue;
354
355 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 }
357
358 return fifotaken;
359}
360
361
362/*
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
366 */
367#ifdef CONFIG_DMA_ENGINE
368
369#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370
371static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
372 enum dma_data_direction dir)
373{
374 dma_addr_t dma_addr;
375
376 sg->buf = dma_alloc_coherent(chan->device->dev,
377 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
378 if (!sg->buf)
379 return -ENOMEM;
380
381 sg_init_table(&sg->sg, 1);
382 sg_set_page(&sg->sg, phys_to_page(dma_addr),
383 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
384 sg_dma_address(&sg->sg) = dma_addr;
385 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
386
387 return 0;
388}
389
390static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
391 enum dma_data_direction dir)
392{
393 if (sg->buf) {
394 dma_free_coherent(chan->device->dev,
395 PL011_DMA_BUFFER_SIZE, sg->buf,
396 sg_dma_address(&sg->sg));
397 }
398}
399
400static void pl011_dma_probe(struct uart_amba_port *uap)
401{
402 /* DMA is the sole user of the platform data right now */
403 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
404 struct device *dev = uap->port.dev;
405 struct dma_slave_config tx_conf = {
406 .dst_addr = uap->port.mapbase +
407 pl011_reg_to_offset(uap, REG_DR),
408 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
409 .direction = DMA_MEM_TO_DEV,
410 .dst_maxburst = uap->fifosize >> 1,
411 .device_fc = false,
412 };
413 struct dma_chan *chan;
414 dma_cap_mask_t mask;
415
416 uap->dma_probed = true;
417 chan = dma_request_slave_channel_reason(dev, "tx");
418 if (IS_ERR(chan)) {
419 if (PTR_ERR(chan) == -EPROBE_DEFER) {
420 uap->dma_probed = false;
421 return;
422 }
423
424 /* We need platform data */
425 if (!plat || !plat->dma_filter) {
426 dev_info(uap->port.dev, "no DMA platform data\n");
427 return;
428 }
429
430 /* Try to acquire a generic DMA engine slave TX channel */
431 dma_cap_zero(mask);
432 dma_cap_set(DMA_SLAVE, mask);
433
434 chan = dma_request_channel(mask, plat->dma_filter,
435 plat->dma_tx_param);
436 if (!chan) {
437 dev_err(uap->port.dev, "no TX DMA channel!\n");
438 return;
439 }
440 }
441
442 dmaengine_slave_config(chan, &tx_conf);
443 uap->dmatx.chan = chan;
444
445 dev_info(uap->port.dev, "DMA channel TX %s\n",
446 dma_chan_name(uap->dmatx.chan));
447
448 /* Optionally make use of an RX channel as well */
449 chan = dma_request_slave_channel(dev, "rx");
450
451 if (!chan && plat && plat->dma_rx_param) {
452 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
453
454 if (!chan) {
455 dev_err(uap->port.dev, "no RX DMA channel!\n");
456 return;
457 }
458 }
459
460 if (chan) {
461 struct dma_slave_config rx_conf = {
462 .src_addr = uap->port.mapbase +
463 pl011_reg_to_offset(uap, REG_DR),
464 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
465 .direction = DMA_DEV_TO_MEM,
466 .src_maxburst = uap->fifosize >> 2,
467 .device_fc = false,
468 };
469 struct dma_slave_caps caps;
470
471 /*
472 * Some DMA controllers provide information on their capabilities.
473 * If the controller does, check for suitable residue processing
474 * otherwise assime all is well.
475 */
476 if (0 == dma_get_slave_caps(chan, &caps)) {
477 if (caps.residue_granularity ==
478 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
479 dma_release_channel(chan);
480 dev_info(uap->port.dev,
481 "RX DMA disabled - no residue processing\n");
482 return;
483 }
484 }
485 dmaengine_slave_config(chan, &rx_conf);
486 uap->dmarx.chan = chan;
487
488 uap->dmarx.auto_poll_rate = false;
489 if (plat && plat->dma_rx_poll_enable) {
490 /* Set poll rate if specified. */
491 if (plat->dma_rx_poll_rate) {
492 uap->dmarx.auto_poll_rate = false;
493 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
494 } else {
495 /*
496 * 100 ms defaults to poll rate if not
497 * specified. This will be adjusted with
498 * the baud rate at set_termios.
499 */
500 uap->dmarx.auto_poll_rate = true;
501 uap->dmarx.poll_rate = 100;
502 }
503 /* 3 secs defaults poll_timeout if not specified. */
504 if (plat->dma_rx_poll_timeout)
505 uap->dmarx.poll_timeout =
506 plat->dma_rx_poll_timeout;
507 else
508 uap->dmarx.poll_timeout = 3000;
509 } else if (!plat && dev->of_node) {
510 uap->dmarx.auto_poll_rate = of_property_read_bool(
511 dev->of_node, "auto-poll");
512 if (uap->dmarx.auto_poll_rate) {
513 u32 x;
514
515 if (0 == of_property_read_u32(dev->of_node,
516 "poll-rate-ms", &x))
517 uap->dmarx.poll_rate = x;
518 else
519 uap->dmarx.poll_rate = 100;
520 if (0 == of_property_read_u32(dev->of_node,
521 "poll-timeout-ms", &x))
522 uap->dmarx.poll_timeout = x;
523 else
524 uap->dmarx.poll_timeout = 3000;
525 }
526 }
527 dev_info(uap->port.dev, "DMA channel RX %s\n",
528 dma_chan_name(uap->dmarx.chan));
529 }
530}
531
532static void pl011_dma_remove(struct uart_amba_port *uap)
533{
534 if (uap->dmatx.chan)
535 dma_release_channel(uap->dmatx.chan);
536 if (uap->dmarx.chan)
537 dma_release_channel(uap->dmarx.chan);
538}
539
540/* Forward declare these for the refill routine */
541static int pl011_dma_tx_refill(struct uart_amba_port *uap);
542static void pl011_start_tx_pio(struct uart_amba_port *uap);
543
544/*
545 * The current DMA TX buffer has been sent.
546 * Try to queue up another DMA buffer.
547 */
548static void pl011_dma_tx_callback(void *data)
549{
550 struct uart_amba_port *uap = data;
551 struct pl011_dmatx_data *dmatx = &uap->dmatx;
552 unsigned long flags;
553 u16 dmacr;
554
555 spin_lock_irqsave(&uap->port.lock, flags);
556 if (uap->dmatx.queued)
557 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
558 DMA_TO_DEVICE);
559
560 dmacr = uap->dmacr;
561 uap->dmacr = dmacr & ~UART011_TXDMAE;
562 pl011_write(uap->dmacr, uap, REG_DMACR);
563
564 /*
565 * If TX DMA was disabled, it means that we've stopped the DMA for
566 * some reason (eg, XOFF received, or we want to send an X-char.)
567 *
568 * Note: we need to be careful here of a potential race between DMA
569 * and the rest of the driver - if the driver disables TX DMA while
570 * a TX buffer completing, we must update the tx queued status to
571 * get further refills (hence we check dmacr).
572 */
573 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
574 uart_circ_empty(&uap->port.state->xmit)) {
575 uap->dmatx.queued = false;
576 spin_unlock_irqrestore(&uap->port.lock, flags);
577 return;
578 }
579
580 if (pl011_dma_tx_refill(uap) <= 0)
581 /*
582 * We didn't queue a DMA buffer for some reason, but we
583 * have data pending to be sent. Re-enable the TX IRQ.
584 */
585 pl011_start_tx_pio(uap);
586
587 spin_unlock_irqrestore(&uap->port.lock, flags);
588}
589
590/*
591 * Try to refill the TX DMA buffer.
592 * Locking: called with port lock held and IRQs disabled.
593 * Returns:
594 * 1 if we queued up a TX DMA buffer.
595 * 0 if we didn't want to handle this by DMA
596 * <0 on error
597 */
598static int pl011_dma_tx_refill(struct uart_amba_port *uap)
599{
600 struct pl011_dmatx_data *dmatx = &uap->dmatx;
601 struct dma_chan *chan = dmatx->chan;
602 struct dma_device *dma_dev = chan->device;
603 struct dma_async_tx_descriptor *desc;
604 struct circ_buf *xmit = &uap->port.state->xmit;
605 unsigned int count;
606
607 /*
608 * Try to avoid the overhead involved in using DMA if the
609 * transaction fits in the first half of the FIFO, by using
610 * the standard interrupt handling. This ensures that we
611 * issue a uart_write_wakeup() at the appropriate time.
612 */
613 count = uart_circ_chars_pending(xmit);
614 if (count < (uap->fifosize >> 1)) {
615 uap->dmatx.queued = false;
616 return 0;
617 }
618
619 /*
620 * Bodge: don't send the last character by DMA, as this
621 * will prevent XON from notifying us to restart DMA.
622 */
623 count -= 1;
624
625 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
626 if (count > PL011_DMA_BUFFER_SIZE)
627 count = PL011_DMA_BUFFER_SIZE;
628
629 if (xmit->tail < xmit->head)
630 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
631 else {
632 size_t first = UART_XMIT_SIZE - xmit->tail;
633 size_t second;
634
635 if (first > count)
636 first = count;
637 second = count - first;
638
639 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
640 if (second)
641 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
642 }
643
644 dmatx->sg.length = count;
645
646 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
647 uap->dmatx.queued = false;
648 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
649 return -EBUSY;
650 }
651
652 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
653 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
654 if (!desc) {
655 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
656 uap->dmatx.queued = false;
657 /*
658 * If DMA cannot be used right now, we complete this
659 * transaction via IRQ and let the TTY layer retry.
660 */
661 dev_dbg(uap->port.dev, "TX DMA busy\n");
662 return -EBUSY;
663 }
664
665 /* Some data to go along to the callback */
666 desc->callback = pl011_dma_tx_callback;
667 desc->callback_param = uap;
668
669 /* All errors should happen at prepare time */
670 dmaengine_submit(desc);
671
672 /* Fire the DMA transaction */
673 dma_dev->device_issue_pending(chan);
674
675 uap->dmacr |= UART011_TXDMAE;
676 pl011_write(uap->dmacr, uap, REG_DMACR);
677 uap->dmatx.queued = true;
678
679 /*
680 * Now we know that DMA will fire, so advance the ring buffer
681 * with the stuff we just dispatched.
682 */
683 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
684 uap->port.icount.tx += count;
685
686 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
687 uart_write_wakeup(&uap->port);
688
689 return 1;
690}
691
692/*
693 * We received a transmit interrupt without a pending X-char but with
694 * pending characters.
695 * Locking: called with port lock held and IRQs disabled.
696 * Returns:
697 * false if we want to use PIO to transmit
698 * true if we queued a DMA buffer
699 */
700static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
701{
702 if (!uap->using_tx_dma)
703 return false;
704
705 /*
706 * If we already have a TX buffer queued, but received a
707 * TX interrupt, it will be because we've just sent an X-char.
708 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
709 */
710 if (uap->dmatx.queued) {
711 uap->dmacr |= UART011_TXDMAE;
712 pl011_write(uap->dmacr, uap, REG_DMACR);
713 uap->im &= ~UART011_TXIM;
714 pl011_write(uap->im, uap, REG_IMSC);
715 return true;
716 }
717
718 /*
719 * We don't have a TX buffer queued, so try to queue one.
720 * If we successfully queued a buffer, mask the TX IRQ.
721 */
722 if (pl011_dma_tx_refill(uap) > 0) {
723 uap->im &= ~UART011_TXIM;
724 pl011_write(uap->im, uap, REG_IMSC);
725 return true;
726 }
727 return false;
728}
729
730/*
731 * Stop the DMA transmit (eg, due to received XOFF).
732 * Locking: called with port lock held and IRQs disabled.
733 */
734static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
735{
736 if (uap->dmatx.queued) {
737 uap->dmacr &= ~UART011_TXDMAE;
738 pl011_write(uap->dmacr, uap, REG_DMACR);
739 }
740}
741
742/*
743 * Try to start a DMA transmit, or in the case of an XON/OFF
744 * character queued for send, try to get that character out ASAP.
745 * Locking: called with port lock held and IRQs disabled.
746 * Returns:
747 * false if we want the TX IRQ to be enabled
748 * true if we have a buffer queued
749 */
750static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
751{
752 u16 dmacr;
753
754 if (!uap->using_tx_dma)
755 return false;
756
757 if (!uap->port.x_char) {
758 /* no X-char, try to push chars out in DMA mode */
759 bool ret = true;
760
761 if (!uap->dmatx.queued) {
762 if (pl011_dma_tx_refill(uap) > 0) {
763 uap->im &= ~UART011_TXIM;
764 pl011_write(uap->im, uap, REG_IMSC);
765 } else
766 ret = false;
767 } else if (!(uap->dmacr & UART011_TXDMAE)) {
768 uap->dmacr |= UART011_TXDMAE;
769 pl011_write(uap->dmacr, uap, REG_DMACR);
770 }
771 return ret;
772 }
773
774 /*
775 * We have an X-char to send. Disable DMA to prevent it loading
776 * the TX fifo, and then see if we can stuff it into the FIFO.
777 */
778 dmacr = uap->dmacr;
779 uap->dmacr &= ~UART011_TXDMAE;
780 pl011_write(uap->dmacr, uap, REG_DMACR);
781
782 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
783 /*
784 * No space in the FIFO, so enable the transmit interrupt
785 * so we know when there is space. Note that once we've
786 * loaded the character, we should just re-enable DMA.
787 */
788 return false;
789 }
790
791 pl011_write(uap->port.x_char, uap, REG_DR);
792 uap->port.icount.tx++;
793 uap->port.x_char = 0;
794
795 /* Success - restore the DMA state */
796 uap->dmacr = dmacr;
797 pl011_write(dmacr, uap, REG_DMACR);
798
799 return true;
800}
801
802/*
803 * Flush the transmit buffer.
804 * Locking: called with port lock held and IRQs disabled.
805 */
806static void pl011_dma_flush_buffer(struct uart_port *port)
807__releases(&uap->port.lock)
808__acquires(&uap->port.lock)
809{
810 struct uart_amba_port *uap =
811 container_of(port, struct uart_amba_port, port);
812
813 if (!uap->using_tx_dma)
814 return;
815
816 /* Avoid deadlock with the DMA engine callback */
817 spin_unlock(&uap->port.lock);
818 dmaengine_terminate_all(uap->dmatx.chan);
819 spin_lock(&uap->port.lock);
820 if (uap->dmatx.queued) {
821 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
822 DMA_TO_DEVICE);
823 uap->dmatx.queued = false;
824 uap->dmacr &= ~UART011_TXDMAE;
825 pl011_write(uap->dmacr, uap, REG_DMACR);
826 }
827}
828
829static void pl011_dma_rx_callback(void *data);
830
831static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
832{
833 struct dma_chan *rxchan = uap->dmarx.chan;
834 struct pl011_dmarx_data *dmarx = &uap->dmarx;
835 struct dma_async_tx_descriptor *desc;
836 struct pl011_sgbuf *sgbuf;
837
838 if (!rxchan)
839 return -EIO;
840
841 /* Start the RX DMA job */
842 sgbuf = uap->dmarx.use_buf_b ?
843 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
844 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
845 DMA_DEV_TO_MEM,
846 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 /*
848 * If the DMA engine is busy and cannot prepare a
849 * channel, no big deal, the driver will fall back
850 * to interrupt mode as a result of this error code.
851 */
852 if (!desc) {
853 uap->dmarx.running = false;
854 dmaengine_terminate_all(rxchan);
855 return -EBUSY;
856 }
857
858 /* Some data to go along to the callback */
859 desc->callback = pl011_dma_rx_callback;
860 desc->callback_param = uap;
861 dmarx->cookie = dmaengine_submit(desc);
862 dma_async_issue_pending(rxchan);
863
864 uap->dmacr |= UART011_RXDMAE;
865 pl011_write(uap->dmacr, uap, REG_DMACR);
866 uap->dmarx.running = true;
867
868 uap->im &= ~UART011_RXIM;
869 pl011_write(uap->im, uap, REG_IMSC);
870
871 return 0;
872}
873
874/*
875 * This is called when either the DMA job is complete, or
876 * the FIFO timeout interrupt occurred. This must be called
877 * with the port spinlock uap->port.lock held.
878 */
879static void pl011_dma_rx_chars(struct uart_amba_port *uap,
880 u32 pending, bool use_buf_b,
881 bool readfifo)
882{
883 struct tty_port *port = &uap->port.state->port;
884 struct pl011_sgbuf *sgbuf = use_buf_b ?
885 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
886 int dma_count = 0;
887 u32 fifotaken = 0; /* only used for vdbg() */
888
889 struct pl011_dmarx_data *dmarx = &uap->dmarx;
890 int dmataken = 0;
891
892 if (uap->dmarx.poll_rate) {
893 /* The data can be taken by polling */
894 dmataken = sgbuf->sg.length - dmarx->last_residue;
895 /* Recalculate the pending size */
896 if (pending >= dmataken)
897 pending -= dmataken;
898 }
899
900 /* Pick the remain data from the DMA */
901 if (pending) {
902
903 /*
904 * First take all chars in the DMA pipe, then look in the FIFO.
905 * Note that tty_insert_flip_buf() tries to take as many chars
906 * as it can.
907 */
908 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
909 pending);
910
911 uap->port.icount.rx += dma_count;
912 if (dma_count < pending)
913 dev_warn(uap->port.dev,
914 "couldn't insert all characters (TTY is full?)\n");
915 }
916
917 /* Reset the last_residue for Rx DMA poll */
918 if (uap->dmarx.poll_rate)
919 dmarx->last_residue = sgbuf->sg.length;
920
921 /*
922 * Only continue with trying to read the FIFO if all DMA chars have
923 * been taken first.
924 */
925 if (dma_count == pending && readfifo) {
926 /* Clear any error flags */
927 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
928 UART011_FEIS, uap, REG_ICR);
929
930 /*
931 * If we read all the DMA'd characters, and we had an
932 * incomplete buffer, that could be due to an rx error, or
933 * maybe we just timed out. Read any pending chars and check
934 * the error status.
935 *
936 * Error conditions will only occur in the FIFO, these will
937 * trigger an immediate interrupt and stop the DMA job, so we
938 * will always find the error in the FIFO, never in the DMA
939 * buffer.
940 */
941 fifotaken = pl011_fifo_to_tty(uap);
942 }
943
944 spin_unlock(&uap->port.lock);
945 dev_vdbg(uap->port.dev,
946 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
947 dma_count, fifotaken);
948 tty_flip_buffer_push(port);
949 spin_lock(&uap->port.lock);
950}
951
952static void pl011_dma_rx_irq(struct uart_amba_port *uap)
953{
954 struct pl011_dmarx_data *dmarx = &uap->dmarx;
955 struct dma_chan *rxchan = dmarx->chan;
956 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
957 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
958 size_t pending;
959 struct dma_tx_state state;
960 enum dma_status dmastat;
961
962 /*
963 * Pause the transfer so we can trust the current counter,
964 * do this before we pause the PL011 block, else we may
965 * overflow the FIFO.
966 */
967 if (dmaengine_pause(rxchan))
968 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
969 dmastat = rxchan->device->device_tx_status(rxchan,
970 dmarx->cookie, &state);
971 if (dmastat != DMA_PAUSED)
972 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
973
974 /* Disable RX DMA - incoming data will wait in the FIFO */
975 uap->dmacr &= ~UART011_RXDMAE;
976 pl011_write(uap->dmacr, uap, REG_DMACR);
977 uap->dmarx.running = false;
978
979 pending = sgbuf->sg.length - state.residue;
980 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
981 /* Then we terminate the transfer - we now know our residue */
982 dmaengine_terminate_all(rxchan);
983
984 /*
985 * This will take the chars we have so far and insert
986 * into the framework.
987 */
988 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
989
990 /* Switch buffer & re-trigger DMA job */
991 dmarx->use_buf_b = !dmarx->use_buf_b;
992 if (pl011_dma_rx_trigger_dma(uap)) {
993 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
994 "fall back to interrupt mode\n");
995 uap->im |= UART011_RXIM;
996 pl011_write(uap->im, uap, REG_IMSC);
997 }
998}
999
1000static void pl011_dma_rx_callback(void *data)
1001{
1002 struct uart_amba_port *uap = data;
1003 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1004 struct dma_chan *rxchan = dmarx->chan;
1005 bool lastbuf = dmarx->use_buf_b;
1006 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1007 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1008 size_t pending;
1009 struct dma_tx_state state;
1010 int ret;
1011
1012 /*
1013 * This completion interrupt occurs typically when the
1014 * RX buffer is totally stuffed but no timeout has yet
1015 * occurred. When that happens, we just want the RX
1016 * routine to flush out the secondary DMA buffer while
1017 * we immediately trigger the next DMA job.
1018 */
1019 spin_lock_irq(&uap->port.lock);
1020 /*
1021 * Rx data can be taken by the UART interrupts during
1022 * the DMA irq handler. So we check the residue here.
1023 */
1024 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1025 pending = sgbuf->sg.length - state.residue;
1026 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1027 /* Then we terminate the transfer - we now know our residue */
1028 dmaengine_terminate_all(rxchan);
1029
1030 uap->dmarx.running = false;
1031 dmarx->use_buf_b = !lastbuf;
1032 ret = pl011_dma_rx_trigger_dma(uap);
1033
1034 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1035 spin_unlock_irq(&uap->port.lock);
1036 /*
1037 * Do this check after we picked the DMA chars so we don't
1038 * get some IRQ immediately from RX.
1039 */
1040 if (ret) {
1041 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1042 "fall back to interrupt mode\n");
1043 uap->im |= UART011_RXIM;
1044 pl011_write(uap->im, uap, REG_IMSC);
1045 }
1046}
1047
1048/*
1049 * Stop accepting received characters, when we're shutting down or
1050 * suspending this port.
1051 * Locking: called with port lock held and IRQs disabled.
1052 */
1053static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1054{
1055 /* FIXME. Just disable the DMA enable */
1056 uap->dmacr &= ~UART011_RXDMAE;
1057 pl011_write(uap->dmacr, uap, REG_DMACR);
1058}
1059
1060/*
1061 * Timer handler for Rx DMA polling.
1062 * Every polling, It checks the residue in the dma buffer and transfer
1063 * data to the tty. Also, last_residue is updated for the next polling.
1064 */
1065static void pl011_dma_rx_poll(struct timer_list *t)
1066{
1067 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1068 struct tty_port *port = &uap->port.state->port;
1069 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1070 struct dma_chan *rxchan = uap->dmarx.chan;
1071 unsigned long flags = 0;
1072 unsigned int dmataken = 0;
1073 unsigned int size = 0;
1074 struct pl011_sgbuf *sgbuf;
1075 int dma_count;
1076 struct dma_tx_state state;
1077
1078 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1079 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1080 if (likely(state.residue < dmarx->last_residue)) {
1081 dmataken = sgbuf->sg.length - dmarx->last_residue;
1082 size = dmarx->last_residue - state.residue;
1083 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1084 size);
1085 if (dma_count == size)
1086 dmarx->last_residue = state.residue;
1087 dmarx->last_jiffies = jiffies;
1088 }
1089 tty_flip_buffer_push(port);
1090
1091 /*
1092 * If no data is received in poll_timeout, the driver will fall back
1093 * to interrupt mode. We will retrigger DMA at the first interrupt.
1094 */
1095 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1096 > uap->dmarx.poll_timeout) {
1097
1098 spin_lock_irqsave(&uap->port.lock, flags);
1099 pl011_dma_rx_stop(uap);
1100 uap->im |= UART011_RXIM;
1101 pl011_write(uap->im, uap, REG_IMSC);
1102 spin_unlock_irqrestore(&uap->port.lock, flags);
1103
1104 uap->dmarx.running = false;
1105 dmaengine_terminate_all(rxchan);
1106 del_timer(&uap->dmarx.timer);
1107 } else {
1108 mod_timer(&uap->dmarx.timer,
1109 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1110 }
1111}
1112
1113static void pl011_dma_startup(struct uart_amba_port *uap)
1114{
1115 int ret;
1116
1117 if (!uap->dma_probed)
1118 pl011_dma_probe(uap);
1119
1120 if (!uap->dmatx.chan)
1121 return;
1122
1123 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1124 if (!uap->dmatx.buf) {
1125 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1126 uap->port.fifosize = uap->fifosize;
1127 return;
1128 }
1129
1130 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1131
1132 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1133 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1134 uap->using_tx_dma = true;
1135
1136 if (!uap->dmarx.chan)
1137 goto skip_rx;
1138
1139 /* Allocate and map DMA RX buffers */
1140 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1141 DMA_FROM_DEVICE);
1142 if (ret) {
1143 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1144 "RX buffer A", ret);
1145 goto skip_rx;
1146 }
1147
1148 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1149 DMA_FROM_DEVICE);
1150 if (ret) {
1151 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1152 "RX buffer B", ret);
1153 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1154 DMA_FROM_DEVICE);
1155 goto skip_rx;
1156 }
1157
1158 uap->using_rx_dma = true;
1159
1160skip_rx:
1161 /* Turn on DMA error (RX/TX will be enabled on demand) */
1162 uap->dmacr |= UART011_DMAONERR;
1163 pl011_write(uap->dmacr, uap, REG_DMACR);
1164
1165 /*
1166 * ST Micro variants has some specific dma burst threshold
1167 * compensation. Set this to 16 bytes, so burst will only
1168 * be issued above/below 16 bytes.
1169 */
1170 if (uap->vendor->dma_threshold)
1171 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1172 uap, REG_ST_DMAWM);
1173
1174 if (uap->using_rx_dma) {
1175 if (pl011_dma_rx_trigger_dma(uap))
1176 dev_dbg(uap->port.dev, "could not trigger initial "
1177 "RX DMA job, fall back to interrupt mode\n");
1178 if (uap->dmarx.poll_rate) {
1179 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1180 mod_timer(&uap->dmarx.timer,
1181 jiffies +
1182 msecs_to_jiffies(uap->dmarx.poll_rate));
1183 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184 uap->dmarx.last_jiffies = jiffies;
1185 }
1186 }
1187}
1188
1189static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190{
1191 if (!(uap->using_tx_dma || uap->using_rx_dma))
1192 return;
1193
1194 /* Disable RX and TX DMA */
1195 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196 cpu_relax();
1197
1198 spin_lock_irq(&uap->port.lock);
1199 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200 pl011_write(uap->dmacr, uap, REG_DMACR);
1201 spin_unlock_irq(&uap->port.lock);
1202
1203 if (uap->using_tx_dma) {
1204 /* In theory, this should already be done by pl011_dma_flush_buffer */
1205 dmaengine_terminate_all(uap->dmatx.chan);
1206 if (uap->dmatx.queued) {
1207 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208 DMA_TO_DEVICE);
1209 uap->dmatx.queued = false;
1210 }
1211
1212 kfree(uap->dmatx.buf);
1213 uap->using_tx_dma = false;
1214 }
1215
1216 if (uap->using_rx_dma) {
1217 dmaengine_terminate_all(uap->dmarx.chan);
1218 /* Clean up the RX DMA */
1219 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221 if (uap->dmarx.poll_rate)
1222 del_timer_sync(&uap->dmarx.timer);
1223 uap->using_rx_dma = false;
1224 }
1225}
1226
1227static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228{
1229 return uap->using_rx_dma;
1230}
1231
1232static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233{
1234 return uap->using_rx_dma && uap->dmarx.running;
1235}
1236
1237#else
1238/* Blank functions if the DMA engine is not available */
1239static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244{
1245}
1246
1247static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248{
1249}
1250
1251static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252{
1253}
1254
1255static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256{
1257 return false;
1258}
1259
1260static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261{
1262}
1263
1264static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265{
1266 return false;
1267}
1268
1269static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270{
1271}
1272
1273static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274{
1275}
1276
1277static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278{
1279 return -EIO;
1280}
1281
1282static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283{
1284 return false;
1285}
1286
1287static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288{
1289 return false;
1290}
1291
1292#define pl011_dma_flush_buffer NULL
1293#endif
1294
1295static void pl011_stop_tx(struct uart_port *port)
1296{
1297 struct uart_amba_port *uap =
1298 container_of(port, struct uart_amba_port, port);
1299
1300 uap->im &= ~UART011_TXIM;
1301 pl011_write(uap->im, uap, REG_IMSC);
1302 pl011_dma_tx_stop(uap);
1303}
1304
1305static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306
1307/* Start TX with programmed I/O only (no DMA) */
1308static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309{
1310 if (pl011_tx_chars(uap, false)) {
1311 uap->im |= UART011_TXIM;
1312 pl011_write(uap->im, uap, REG_IMSC);
1313 }
1314}
1315
1316static void pl011_start_tx(struct uart_port *port)
1317{
1318 struct uart_amba_port *uap =
1319 container_of(port, struct uart_amba_port, port);
1320
1321 if (!pl011_dma_tx_start(uap))
1322 pl011_start_tx_pio(uap);
1323}
1324
1325static void pl011_stop_rx(struct uart_port *port)
1326{
1327 struct uart_amba_port *uap =
1328 container_of(port, struct uart_amba_port, port);
1329
1330 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332 pl011_write(uap->im, uap, REG_IMSC);
1333
1334 pl011_dma_rx_stop(uap);
1335}
1336
1337static void pl011_enable_ms(struct uart_port *port)
1338{
1339 struct uart_amba_port *uap =
1340 container_of(port, struct uart_amba_port, port);
1341
1342 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343 pl011_write(uap->im, uap, REG_IMSC);
1344}
1345
1346static void pl011_rx_chars(struct uart_amba_port *uap)
1347__releases(&uap->port.lock)
1348__acquires(&uap->port.lock)
1349{
1350 pl011_fifo_to_tty(uap);
1351
1352 spin_unlock(&uap->port.lock);
1353 tty_flip_buffer_push(&uap->port.state->port);
1354 /*
1355 * If we were temporarily out of DMA mode for a while,
1356 * attempt to switch back to DMA mode again.
1357 */
1358 if (pl011_dma_rx_available(uap)) {
1359 if (pl011_dma_rx_trigger_dma(uap)) {
1360 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361 "fall back to interrupt mode again\n");
1362 uap->im |= UART011_RXIM;
1363 pl011_write(uap->im, uap, REG_IMSC);
1364 } else {
1365#ifdef CONFIG_DMA_ENGINE
1366 /* Start Rx DMA poll */
1367 if (uap->dmarx.poll_rate) {
1368 uap->dmarx.last_jiffies = jiffies;
1369 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1370 mod_timer(&uap->dmarx.timer,
1371 jiffies +
1372 msecs_to_jiffies(uap->dmarx.poll_rate));
1373 }
1374#endif
1375 }
1376 }
1377 spin_lock(&uap->port.lock);
1378}
1379
1380static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381 bool from_irq)
1382{
1383 if (unlikely(!from_irq) &&
1384 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385 return false; /* unable to transmit character */
1386
1387 pl011_write(c, uap, REG_DR);
1388 uap->port.icount.tx++;
1389
1390 return true;
1391}
1392
1393/* Returns true if tx interrupts have to be (kept) enabled */
1394static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395{
1396 struct circ_buf *xmit = &uap->port.state->xmit;
1397 int count = uap->fifosize >> 1;
1398
1399 if (uap->port.x_char) {
1400 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401 return true;
1402 uap->port.x_char = 0;
1403 --count;
1404 }
1405 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406 pl011_stop_tx(&uap->port);
1407 return false;
1408 }
1409
1410 /* If we are using DMA mode, try to send some characters. */
1411 if (pl011_dma_tx_irq(uap))
1412 return true;
1413
1414 do {
1415 if (likely(from_irq) && count-- == 0)
1416 break;
1417
1418 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419 break;
1420
1421 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422 } while (!uart_circ_empty(xmit));
1423
1424 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425 uart_write_wakeup(&uap->port);
1426
1427 if (uart_circ_empty(xmit)) {
1428 pl011_stop_tx(&uap->port);
1429 return false;
1430 }
1431 return true;
1432}
1433
1434static void pl011_modem_status(struct uart_amba_port *uap)
1435{
1436 unsigned int status, delta;
1437
1438 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439
1440 delta = status ^ uap->old_status;
1441 uap->old_status = status;
1442
1443 if (!delta)
1444 return;
1445
1446 if (delta & UART01x_FR_DCD)
1447 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448
1449 if (delta & uap->vendor->fr_dsr)
1450 uap->port.icount.dsr++;
1451
1452 if (delta & uap->vendor->fr_cts)
1453 uart_handle_cts_change(&uap->port,
1454 status & uap->vendor->fr_cts);
1455
1456 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457}
1458
1459static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460{
1461 unsigned int dummy_read;
1462
1463 if (!uap->vendor->cts_event_workaround)
1464 return;
1465
1466 /* workaround to make sure that all bits are unlocked.. */
1467 pl011_write(0x00, uap, REG_ICR);
1468
1469 /*
1470 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472 * so add 2 dummy reads
1473 */
1474 dummy_read = pl011_read(uap, REG_ICR);
1475 dummy_read = pl011_read(uap, REG_ICR);
1476}
1477
1478static irqreturn_t pl011_int(int irq, void *dev_id)
1479{
1480 struct uart_amba_port *uap = dev_id;
1481 unsigned long flags;
1482 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1483 int handled = 0;
1484
1485 spin_lock_irqsave(&uap->port.lock, flags);
1486 status = pl011_read(uap, REG_RIS) & uap->im;
1487 if (status) {
1488 do {
1489 check_apply_cts_event_workaround(uap);
1490
1491 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1492 UART011_RXIS),
1493 uap, REG_ICR);
1494
1495 if (status & (UART011_RTIS|UART011_RXIS)) {
1496 if (pl011_dma_rx_running(uap))
1497 pl011_dma_rx_irq(uap);
1498 else
1499 pl011_rx_chars(uap);
1500 }
1501 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1502 UART011_CTSMIS|UART011_RIMIS))
1503 pl011_modem_status(uap);
1504 if (status & UART011_TXIS)
1505 pl011_tx_chars(uap, true);
1506
1507 if (pass_counter-- == 0)
1508 break;
1509
1510 status = pl011_read(uap, REG_RIS) & uap->im;
1511 } while (status != 0);
1512 handled = 1;
1513 }
1514
1515 spin_unlock_irqrestore(&uap->port.lock, flags);
1516
1517 return IRQ_RETVAL(handled);
1518}
1519
1520static unsigned int pl011_tx_empty(struct uart_port *port)
1521{
1522 struct uart_amba_port *uap =
1523 container_of(port, struct uart_amba_port, port);
1524
1525 /* Allow feature register bits to be inverted to work around errata */
1526 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1527
1528 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1529 0 : TIOCSER_TEMT;
1530}
1531
1532static unsigned int pl011_get_mctrl(struct uart_port *port)
1533{
1534 struct uart_amba_port *uap =
1535 container_of(port, struct uart_amba_port, port);
1536 unsigned int result = 0;
1537 unsigned int status = pl011_read(uap, REG_FR);
1538
1539#define TIOCMBIT(uartbit, tiocmbit) \
1540 if (status & uartbit) \
1541 result |= tiocmbit
1542
1543 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1544 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1545 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1546 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1547#undef TIOCMBIT
1548 return result;
1549}
1550
1551static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1552{
1553 struct uart_amba_port *uap =
1554 container_of(port, struct uart_amba_port, port);
1555 unsigned int cr;
1556
1557 cr = pl011_read(uap, REG_CR);
1558
1559#define TIOCMBIT(tiocmbit, uartbit) \
1560 if (mctrl & tiocmbit) \
1561 cr |= uartbit; \
1562 else \
1563 cr &= ~uartbit
1564
1565 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1566 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1567 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1568 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1569 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1570
1571 if (port->status & UPSTAT_AUTORTS) {
1572 /* We need to disable auto-RTS if we want to turn RTS off */
1573 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1574 }
1575#undef TIOCMBIT
1576
1577 pl011_write(cr, uap, REG_CR);
1578}
1579
1580static void pl011_break_ctl(struct uart_port *port, int break_state)
1581{
1582 struct uart_amba_port *uap =
1583 container_of(port, struct uart_amba_port, port);
1584 unsigned long flags;
1585 unsigned int lcr_h;
1586
1587 spin_lock_irqsave(&uap->port.lock, flags);
1588 lcr_h = pl011_read(uap, REG_LCRH_TX);
1589 if (break_state == -1)
1590 lcr_h |= UART01x_LCRH_BRK;
1591 else
1592 lcr_h &= ~UART01x_LCRH_BRK;
1593 pl011_write(lcr_h, uap, REG_LCRH_TX);
1594 spin_unlock_irqrestore(&uap->port.lock, flags);
1595}
1596
1597#ifdef CONFIG_CONSOLE_POLL
1598
1599static void pl011_quiesce_irqs(struct uart_port *port)
1600{
1601 struct uart_amba_port *uap =
1602 container_of(port, struct uart_amba_port, port);
1603
1604 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1605 /*
1606 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607 * we simply mask it. start_tx() will unmask it.
1608 *
1609 * Note we can race with start_tx(), and if the race happens, the
1610 * polling user might get another interrupt just after we clear it.
1611 * But it should be OK and can happen even w/o the race, e.g.
1612 * controller immediately got some new data and raised the IRQ.
1613 *
1614 * And whoever uses polling routines assumes that it manages the device
1615 * (including tx queue), so we're also fine with start_tx()'s caller
1616 * side.
1617 */
1618 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1619 REG_IMSC);
1620}
1621
1622static int pl011_get_poll_char(struct uart_port *port)
1623{
1624 struct uart_amba_port *uap =
1625 container_of(port, struct uart_amba_port, port);
1626 unsigned int status;
1627
1628 /*
1629 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1630 * debugger.
1631 */
1632 pl011_quiesce_irqs(port);
1633
1634 status = pl011_read(uap, REG_FR);
1635 if (status & UART01x_FR_RXFE)
1636 return NO_POLL_CHAR;
1637
1638 return pl011_read(uap, REG_DR);
1639}
1640
1641static void pl011_put_poll_char(struct uart_port *port,
1642 unsigned char ch)
1643{
1644 struct uart_amba_port *uap =
1645 container_of(port, struct uart_amba_port, port);
1646
1647 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1648 cpu_relax();
1649
1650 pl011_write(ch, uap, REG_DR);
1651}
1652
1653#endif /* CONFIG_CONSOLE_POLL */
1654
1655static int pl011_hwinit(struct uart_port *port)
1656{
1657 struct uart_amba_port *uap =
1658 container_of(port, struct uart_amba_port, port);
1659 int retval;
1660
1661 /* Optionaly enable pins to be muxed in and configured */
1662 pinctrl_pm_select_default_state(port->dev);
1663
1664 /*
1665 * Try to enable the clock producer.
1666 */
1667 retval = clk_prepare_enable(uap->clk);
1668 if (retval)
1669 return retval;
1670
1671 uap->port.uartclk = clk_get_rate(uap->clk);
1672
1673 /* Clear pending error and receive interrupts */
1674 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1675 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1676 uap, REG_ICR);
1677
1678 /*
1679 * Save interrupts enable mask, and enable RX interrupts in case if
1680 * the interrupt is used for NMI entry.
1681 */
1682 uap->im = pl011_read(uap, REG_IMSC);
1683 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1684
1685 if (dev_get_platdata(uap->port.dev)) {
1686 struct amba_pl011_data *plat;
1687
1688 plat = dev_get_platdata(uap->port.dev);
1689 if (plat->init)
1690 plat->init();
1691 }
1692 return 0;
1693}
1694
1695static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1696{
1697 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1698 pl011_reg_to_offset(uap, REG_LCRH_TX);
1699}
1700
1701static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1702{
1703 pl011_write(lcr_h, uap, REG_LCRH_RX);
1704 if (pl011_split_lcrh(uap)) {
1705 int i;
1706 /*
1707 * Wait 10 PCLKs before writing LCRH_TX register,
1708 * to get this delay write read only register 10 times
1709 */
1710 for (i = 0; i < 10; ++i)
1711 pl011_write(0xff, uap, REG_MIS);
1712 pl011_write(lcr_h, uap, REG_LCRH_TX);
1713 }
1714}
1715
1716static int pl011_allocate_irq(struct uart_amba_port *uap)
1717{
1718 pl011_write(uap->im, uap, REG_IMSC);
1719
1720 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1721}
1722
1723/*
1724 * Enable interrupts, only timeouts when using DMA
1725 * if initial RX DMA job failed, start in interrupt mode
1726 * as well.
1727 */
1728static void pl011_enable_interrupts(struct uart_amba_port *uap)
1729{
1730 spin_lock_irq(&uap->port.lock);
1731
1732 /* Clear out any spuriously appearing RX interrupts */
1733 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1734 uap->im = UART011_RTIM;
1735 if (!pl011_dma_rx_running(uap))
1736 uap->im |= UART011_RXIM;
1737 pl011_write(uap->im, uap, REG_IMSC);
1738 spin_unlock_irq(&uap->port.lock);
1739}
1740
1741static int pl011_startup(struct uart_port *port)
1742{
1743 struct uart_amba_port *uap =
1744 container_of(port, struct uart_amba_port, port);
1745 unsigned int cr;
1746 int retval;
1747
1748 retval = pl011_hwinit(port);
1749 if (retval)
1750 goto clk_dis;
1751
1752 retval = pl011_allocate_irq(uap);
1753 if (retval)
1754 goto clk_dis;
1755
1756 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1757
1758 spin_lock_irq(&uap->port.lock);
1759
1760 /* restore RTS and DTR */
1761 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1762 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1763 pl011_write(cr, uap, REG_CR);
1764
1765 spin_unlock_irq(&uap->port.lock);
1766
1767 /*
1768 * initialise the old status of the modem signals
1769 */
1770 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1771
1772 /* Startup DMA */
1773 pl011_dma_startup(uap);
1774
1775 pl011_enable_interrupts(uap);
1776
1777 return 0;
1778
1779 clk_dis:
1780 clk_disable_unprepare(uap->clk);
1781 return retval;
1782}
1783
1784static int sbsa_uart_startup(struct uart_port *port)
1785{
1786 struct uart_amba_port *uap =
1787 container_of(port, struct uart_amba_port, port);
1788 int retval;
1789
1790 retval = pl011_hwinit(port);
1791 if (retval)
1792 return retval;
1793
1794 retval = pl011_allocate_irq(uap);
1795 if (retval)
1796 return retval;
1797
1798 /* The SBSA UART does not support any modem status lines. */
1799 uap->old_status = 0;
1800
1801 pl011_enable_interrupts(uap);
1802
1803 return 0;
1804}
1805
1806static void pl011_shutdown_channel(struct uart_amba_port *uap,
1807 unsigned int lcrh)
1808{
1809 unsigned long val;
1810
1811 val = pl011_read(uap, lcrh);
1812 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1813 pl011_write(val, uap, lcrh);
1814}
1815
1816/*
1817 * disable the port. It should not disable RTS and DTR.
1818 * Also RTS and DTR state should be preserved to restore
1819 * it during startup().
1820 */
1821static void pl011_disable_uart(struct uart_amba_port *uap)
1822{
1823 unsigned int cr;
1824
1825 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1826 spin_lock_irq(&uap->port.lock);
1827 cr = pl011_read(uap, REG_CR);
1828 uap->old_cr = cr;
1829 cr &= UART011_CR_RTS | UART011_CR_DTR;
1830 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1831 pl011_write(cr, uap, REG_CR);
1832 spin_unlock_irq(&uap->port.lock);
1833
1834 /*
1835 * disable break condition and fifos
1836 */
1837 pl011_shutdown_channel(uap, REG_LCRH_RX);
1838 if (pl011_split_lcrh(uap))
1839 pl011_shutdown_channel(uap, REG_LCRH_TX);
1840}
1841
1842static void pl011_disable_interrupts(struct uart_amba_port *uap)
1843{
1844 spin_lock_irq(&uap->port.lock);
1845
1846 /* mask all interrupts and clear all pending ones */
1847 uap->im = 0;
1848 pl011_write(uap->im, uap, REG_IMSC);
1849 pl011_write(0xffff, uap, REG_ICR);
1850
1851 spin_unlock_irq(&uap->port.lock);
1852}
1853
1854static void pl011_shutdown(struct uart_port *port)
1855{
1856 struct uart_amba_port *uap =
1857 container_of(port, struct uart_amba_port, port);
1858
1859 pl011_disable_interrupts(uap);
1860
1861 pl011_dma_shutdown(uap);
1862
1863 free_irq(uap->port.irq, uap);
1864
1865 pl011_disable_uart(uap);
1866
1867 /*
1868 * Shut down the clock producer
1869 */
1870 clk_disable_unprepare(uap->clk);
1871 /* Optionally let pins go into sleep states */
1872 pinctrl_pm_select_sleep_state(port->dev);
1873
1874 if (dev_get_platdata(uap->port.dev)) {
1875 struct amba_pl011_data *plat;
1876
1877 plat = dev_get_platdata(uap->port.dev);
1878 if (plat->exit)
1879 plat->exit();
1880 }
1881
1882 if (uap->port.ops->flush_buffer)
1883 uap->port.ops->flush_buffer(port);
1884}
1885
1886static void sbsa_uart_shutdown(struct uart_port *port)
1887{
1888 struct uart_amba_port *uap =
1889 container_of(port, struct uart_amba_port, port);
1890
1891 pl011_disable_interrupts(uap);
1892
1893 free_irq(uap->port.irq, uap);
1894
1895 if (uap->port.ops->flush_buffer)
1896 uap->port.ops->flush_buffer(port);
1897}
1898
1899static void
1900pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1901{
1902 port->read_status_mask = UART011_DR_OE | 255;
1903 if (termios->c_iflag & INPCK)
1904 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1905 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1906 port->read_status_mask |= UART011_DR_BE;
1907
1908 /*
1909 * Characters to ignore
1910 */
1911 port->ignore_status_mask = 0;
1912 if (termios->c_iflag & IGNPAR)
1913 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1914 if (termios->c_iflag & IGNBRK) {
1915 port->ignore_status_mask |= UART011_DR_BE;
1916 /*
1917 * If we're ignoring parity and break indicators,
1918 * ignore overruns too (for real raw support).
1919 */
1920 if (termios->c_iflag & IGNPAR)
1921 port->ignore_status_mask |= UART011_DR_OE;
1922 }
1923
1924 /*
1925 * Ignore all characters if CREAD is not set.
1926 */
1927 if ((termios->c_cflag & CREAD) == 0)
1928 port->ignore_status_mask |= UART_DUMMY_DR_RX;
1929}
1930
1931static void
1932pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1933 struct ktermios *old)
1934{
1935 struct uart_amba_port *uap =
1936 container_of(port, struct uart_amba_port, port);
1937 unsigned int lcr_h, old_cr;
1938 unsigned long flags;
1939 unsigned int baud, quot, clkdiv;
1940
1941 if (uap->vendor->oversampling)
1942 clkdiv = 8;
1943 else
1944 clkdiv = 16;
1945
1946 /*
1947 * Ask the core to calculate the divisor for us.
1948 */
1949 baud = uart_get_baud_rate(port, termios, old, 0,
1950 port->uartclk / clkdiv);
1951#ifdef CONFIG_DMA_ENGINE
1952 /*
1953 * Adjust RX DMA polling rate with baud rate if not specified.
1954 */
1955 if (uap->dmarx.auto_poll_rate)
1956 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1957#endif
1958
1959 if (baud > port->uartclk/16)
1960 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1961 else
1962 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1963
1964 switch (termios->c_cflag & CSIZE) {
1965 case CS5:
1966 lcr_h = UART01x_LCRH_WLEN_5;
1967 break;
1968 case CS6:
1969 lcr_h = UART01x_LCRH_WLEN_6;
1970 break;
1971 case CS7:
1972 lcr_h = UART01x_LCRH_WLEN_7;
1973 break;
1974 default: // CS8
1975 lcr_h = UART01x_LCRH_WLEN_8;
1976 break;
1977 }
1978 if (termios->c_cflag & CSTOPB)
1979 lcr_h |= UART01x_LCRH_STP2;
1980 if (termios->c_cflag & PARENB) {
1981 lcr_h |= UART01x_LCRH_PEN;
1982 if (!(termios->c_cflag & PARODD))
1983 lcr_h |= UART01x_LCRH_EPS;
1984 if (termios->c_cflag & CMSPAR)
1985 lcr_h |= UART011_LCRH_SPS;
1986 }
1987 if (uap->fifosize > 1)
1988 lcr_h |= UART01x_LCRH_FEN;
1989
1990 spin_lock_irqsave(&port->lock, flags);
1991
1992 /*
1993 * Update the per-port timeout.
1994 */
1995 uart_update_timeout(port, termios->c_cflag, baud);
1996
1997 pl011_setup_status_masks(port, termios);
1998
1999 if (UART_ENABLE_MS(port, termios->c_cflag))
2000 pl011_enable_ms(port);
2001
2002 /* first, disable everything */
2003 old_cr = pl011_read(uap, REG_CR);
2004 pl011_write(0, uap, REG_CR);
2005
2006 if (termios->c_cflag & CRTSCTS) {
2007 if (old_cr & UART011_CR_RTS)
2008 old_cr |= UART011_CR_RTSEN;
2009
2010 old_cr |= UART011_CR_CTSEN;
2011 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2012 } else {
2013 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2014 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2015 }
2016
2017 if (uap->vendor->oversampling) {
2018 if (baud > port->uartclk / 16)
2019 old_cr |= ST_UART011_CR_OVSFACT;
2020 else
2021 old_cr &= ~ST_UART011_CR_OVSFACT;
2022 }
2023
2024 /*
2025 * Workaround for the ST Micro oversampling variants to
2026 * increase the bitrate slightly, by lowering the divisor,
2027 * to avoid delayed sampling of start bit at high speeds,
2028 * else we see data corruption.
2029 */
2030 if (uap->vendor->oversampling) {
2031 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2032 quot -= 1;
2033 else if ((baud > 3250000) && (quot > 2))
2034 quot -= 2;
2035 }
2036 /* Set baud rate */
2037 pl011_write(quot & 0x3f, uap, REG_FBRD);
2038 pl011_write(quot >> 6, uap, REG_IBRD);
2039
2040 /*
2041 * ----------v----------v----------v----------v-----
2042 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2043 * REG_FBRD & REG_IBRD.
2044 * ----------^----------^----------^----------^-----
2045 */
2046 pl011_write_lcr_h(uap, lcr_h);
2047 pl011_write(old_cr, uap, REG_CR);
2048
2049 spin_unlock_irqrestore(&port->lock, flags);
2050}
2051
2052static void
2053sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2054 struct ktermios *old)
2055{
2056 struct uart_amba_port *uap =
2057 container_of(port, struct uart_amba_port, port);
2058 unsigned long flags;
2059
2060 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2061
2062 /* The SBSA UART only supports 8n1 without hardware flow control. */
2063 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2064 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2065 termios->c_cflag |= CS8 | CLOCAL;
2066
2067 spin_lock_irqsave(&port->lock, flags);
2068 uart_update_timeout(port, CS8, uap->fixed_baud);
2069 pl011_setup_status_masks(port, termios);
2070 spin_unlock_irqrestore(&port->lock, flags);
2071}
2072
2073static const char *pl011_type(struct uart_port *port)
2074{
2075 struct uart_amba_port *uap =
2076 container_of(port, struct uart_amba_port, port);
2077 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2078}
2079
2080/*
2081 * Release the memory region(s) being used by 'port'
2082 */
2083static void pl011_release_port(struct uart_port *port)
2084{
2085 release_mem_region(port->mapbase, SZ_4K);
2086}
2087
2088/*
2089 * Request the memory region(s) being used by 'port'
2090 */
2091static int pl011_request_port(struct uart_port *port)
2092{
2093 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2094 != NULL ? 0 : -EBUSY;
2095}
2096
2097/*
2098 * Configure/autoconfigure the port.
2099 */
2100static void pl011_config_port(struct uart_port *port, int flags)
2101{
2102 if (flags & UART_CONFIG_TYPE) {
2103 port->type = PORT_AMBA;
2104 pl011_request_port(port);
2105 }
2106}
2107
2108/*
2109 * verify the new serial_struct (for TIOCSSERIAL).
2110 */
2111static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2112{
2113 int ret = 0;
2114 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2115 ret = -EINVAL;
2116 if (ser->irq < 0 || ser->irq >= nr_irqs)
2117 ret = -EINVAL;
2118 if (ser->baud_base < 9600)
2119 ret = -EINVAL;
2120 return ret;
2121}
2122
2123static const struct uart_ops amba_pl011_pops = {
2124 .tx_empty = pl011_tx_empty,
2125 .set_mctrl = pl011_set_mctrl,
2126 .get_mctrl = pl011_get_mctrl,
2127 .stop_tx = pl011_stop_tx,
2128 .start_tx = pl011_start_tx,
2129 .stop_rx = pl011_stop_rx,
2130 .enable_ms = pl011_enable_ms,
2131 .break_ctl = pl011_break_ctl,
2132 .startup = pl011_startup,
2133 .shutdown = pl011_shutdown,
2134 .flush_buffer = pl011_dma_flush_buffer,
2135 .set_termios = pl011_set_termios,
2136 .type = pl011_type,
2137 .release_port = pl011_release_port,
2138 .request_port = pl011_request_port,
2139 .config_port = pl011_config_port,
2140 .verify_port = pl011_verify_port,
2141#ifdef CONFIG_CONSOLE_POLL
2142 .poll_init = pl011_hwinit,
2143 .poll_get_char = pl011_get_poll_char,
2144 .poll_put_char = pl011_put_poll_char,
2145#endif
2146};
2147
2148static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2149{
2150}
2151
2152static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2153{
2154 return 0;
2155}
2156
2157static const struct uart_ops sbsa_uart_pops = {
2158 .tx_empty = pl011_tx_empty,
2159 .set_mctrl = sbsa_uart_set_mctrl,
2160 .get_mctrl = sbsa_uart_get_mctrl,
2161 .stop_tx = pl011_stop_tx,
2162 .start_tx = pl011_start_tx,
2163 .stop_rx = pl011_stop_rx,
2164 .startup = sbsa_uart_startup,
2165 .shutdown = sbsa_uart_shutdown,
2166 .set_termios = sbsa_uart_set_termios,
2167 .type = pl011_type,
2168 .release_port = pl011_release_port,
2169 .request_port = pl011_request_port,
2170 .config_port = pl011_config_port,
2171 .verify_port = pl011_verify_port,
2172#ifdef CONFIG_CONSOLE_POLL
2173 .poll_init = pl011_hwinit,
2174 .poll_get_char = pl011_get_poll_char,
2175 .poll_put_char = pl011_put_poll_char,
2176#endif
2177};
2178
2179static struct uart_amba_port *amba_ports[UART_NR];
2180
2181#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2182
2183static void pl011_console_putchar(struct uart_port *port, int ch)
2184{
2185 struct uart_amba_port *uap =
2186 container_of(port, struct uart_amba_port, port);
2187
2188 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2189 cpu_relax();
2190 pl011_write(ch, uap, REG_DR);
2191}
2192
2193static void
2194pl011_console_write(struct console *co, const char *s, unsigned int count)
2195{
2196 struct uart_amba_port *uap = amba_ports[co->index];
2197 unsigned int old_cr = 0, new_cr;
2198 unsigned long flags;
2199 int locked = 1;
2200
2201 clk_enable(uap->clk);
2202
2203 local_irq_save(flags);
2204 if (uap->port.sysrq)
2205 locked = 0;
2206 else if (oops_in_progress)
2207 locked = spin_trylock(&uap->port.lock);
2208 else
2209 spin_lock(&uap->port.lock);
2210
2211 /*
2212 * First save the CR then disable the interrupts
2213 */
2214 if (!uap->vendor->always_enabled) {
2215 old_cr = pl011_read(uap, REG_CR);
2216 new_cr = old_cr & ~UART011_CR_CTSEN;
2217 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2218 pl011_write(new_cr, uap, REG_CR);
2219 }
2220
2221 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2222
2223 /*
2224 * Finally, wait for transmitter to become empty and restore the
2225 * TCR. Allow feature register bits to be inverted to work around
2226 * errata.
2227 */
2228 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2229 & uap->vendor->fr_busy)
2230 cpu_relax();
2231 if (!uap->vendor->always_enabled)
2232 pl011_write(old_cr, uap, REG_CR);
2233
2234 if (locked)
2235 spin_unlock(&uap->port.lock);
2236 local_irq_restore(flags);
2237
2238 clk_disable(uap->clk);
2239}
2240
2241static void __init
2242pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2243 int *parity, int *bits)
2244{
2245 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2246 unsigned int lcr_h, ibrd, fbrd;
2247
2248 lcr_h = pl011_read(uap, REG_LCRH_TX);
2249
2250 *parity = 'n';
2251 if (lcr_h & UART01x_LCRH_PEN) {
2252 if (lcr_h & UART01x_LCRH_EPS)
2253 *parity = 'e';
2254 else
2255 *parity = 'o';
2256 }
2257
2258 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2259 *bits = 7;
2260 else
2261 *bits = 8;
2262
2263 ibrd = pl011_read(uap, REG_IBRD);
2264 fbrd = pl011_read(uap, REG_FBRD);
2265
2266 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2267
2268 if (uap->vendor->oversampling) {
2269 if (pl011_read(uap, REG_CR)
2270 & ST_UART011_CR_OVSFACT)
2271 *baud *= 2;
2272 }
2273 }
2274}
2275
2276static int __init pl011_console_setup(struct console *co, char *options)
2277{
2278 struct uart_amba_port *uap;
2279 int baud = 38400;
2280 int bits = 8;
2281 int parity = 'n';
2282 int flow = 'n';
2283 int ret;
2284
2285 /*
2286 * Check whether an invalid uart number has been specified, and
2287 * if so, search for the first available port that does have
2288 * console support.
2289 */
2290 if (co->index >= UART_NR)
2291 co->index = 0;
2292 uap = amba_ports[co->index];
2293 if (!uap)
2294 return -ENODEV;
2295
2296 /* Allow pins to be muxed in and configured */
2297 pinctrl_pm_select_default_state(uap->port.dev);
2298
2299 ret = clk_prepare(uap->clk);
2300 if (ret)
2301 return ret;
2302
2303 if (dev_get_platdata(uap->port.dev)) {
2304 struct amba_pl011_data *plat;
2305
2306 plat = dev_get_platdata(uap->port.dev);
2307 if (plat->init)
2308 plat->init();
2309 }
2310
2311 uap->port.uartclk = clk_get_rate(uap->clk);
2312
2313 if (uap->vendor->fixed_options) {
2314 baud = uap->fixed_baud;
2315 } else {
2316 if (options)
2317 uart_parse_options(options,
2318 &baud, &parity, &bits, &flow);
2319 else
2320 pl011_console_get_options(uap, &baud, &parity, &bits);
2321 }
2322
2323 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2324}
2325
2326/**
2327 * pl011_console_match - non-standard console matching
2328 * @co: registering console
2329 * @name: name from console command line
2330 * @idx: index from console command line
2331 * @options: ptr to option string from console command line
2332 *
2333 * Only attempts to match console command lines of the form:
2334 * console=pl011,mmio|mmio32,<addr>[,<options>]
2335 * console=pl011,0x<addr>[,<options>]
2336 * This form is used to register an initial earlycon boot console and
2337 * replace it with the amba_console at pl011 driver init.
2338 *
2339 * Performs console setup for a match (as required by interface)
2340 * If no <options> are specified, then assume the h/w is already setup.
2341 *
2342 * Returns 0 if console matches; otherwise non-zero to use default matching
2343 */
2344static int __init pl011_console_match(struct console *co, char *name, int idx,
2345 char *options)
2346{
2347 unsigned char iotype;
2348 resource_size_t addr;
2349 int i;
2350
2351 /*
2352 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2353 * have a distinct console name, so make sure we check for that.
2354 * The actual implementation of the erratum occurs in the probe
2355 * function.
2356 */
2357 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2358 return -ENODEV;
2359
2360 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2361 return -ENODEV;
2362
2363 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2364 return -ENODEV;
2365
2366 /* try to match the port specified on the command line */
2367 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2368 struct uart_port *port;
2369
2370 if (!amba_ports[i])
2371 continue;
2372
2373 port = &amba_ports[i]->port;
2374
2375 if (port->mapbase != addr)
2376 continue;
2377
2378 co->index = i;
2379 port->cons = co;
2380 return pl011_console_setup(co, options);
2381 }
2382
2383 return -ENODEV;
2384}
2385
2386static struct uart_driver amba_reg;
2387static struct console amba_console = {
2388 .name = "ttyAMA",
2389 .write = pl011_console_write,
2390 .device = uart_console_device,
2391 .setup = pl011_console_setup,
2392 .match = pl011_console_match,
2393 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2394 .index = -1,
2395 .data = &amba_reg,
2396};
2397
2398#define AMBA_CONSOLE (&amba_console)
2399
2400static void qdf2400_e44_putc(struct uart_port *port, int c)
2401{
2402 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2403 cpu_relax();
2404 writel(c, port->membase + UART01x_DR);
2405 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2406 cpu_relax();
2407}
2408
2409static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2410{
2411 struct earlycon_device *dev = con->data;
2412
2413 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2414}
2415
2416static void pl011_putc(struct uart_port *port, int c)
2417{
2418 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2419 cpu_relax();
2420 if (port->iotype == UPIO_MEM32)
2421 writel(c, port->membase + UART01x_DR);
2422 else
2423 writeb(c, port->membase + UART01x_DR);
2424 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2425 cpu_relax();
2426}
2427
2428static void pl011_early_write(struct console *con, const char *s, unsigned n)
2429{
2430 struct earlycon_device *dev = con->data;
2431
2432 uart_console_write(&dev->port, s, n, pl011_putc);
2433}
2434
2435/*
2436 * On non-ACPI systems, earlycon is enabled by specifying
2437 * "earlycon=pl011,<address>" on the kernel command line.
2438 *
2439 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2440 * by specifying only "earlycon" on the command line. Because it requires
2441 * SPCR, the console starts after ACPI is parsed, which is later than a
2442 * traditional early console.
2443 *
2444 * To get the traditional early console that starts before ACPI is parsed,
2445 * specify the full "earlycon=pl011,<address>" option.
2446 */
2447static int __init pl011_early_console_setup(struct earlycon_device *device,
2448 const char *opt)
2449{
2450 if (!device->port.membase)
2451 return -ENODEV;
2452
2453 device->con->write = pl011_early_write;
2454
2455 return 0;
2456}
2457OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2458OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2459
2460/*
2461 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2462 * Erratum 44, traditional earlycon can be enabled by specifying
2463 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2464 *
2465 * Alternatively, you can just specify "earlycon", and the early console
2466 * will be enabled with the information from the SPCR table. In this
2467 * case, the SPCR code will detect the need for the E44 work-around,
2468 * and set the console name to "qdf2400_e44".
2469 */
2470static int __init
2471qdf2400_e44_early_console_setup(struct earlycon_device *device,
2472 const char *opt)
2473{
2474 if (!device->port.membase)
2475 return -ENODEV;
2476
2477 device->con->write = qdf2400_e44_early_write;
2478 return 0;
2479}
2480EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2481
2482#else
2483#define AMBA_CONSOLE NULL
2484#endif
2485
2486static struct uart_driver amba_reg = {
2487 .owner = THIS_MODULE,
2488 .driver_name = "ttyAMA",
2489 .dev_name = "ttyAMA",
2490 .major = SERIAL_AMBA_MAJOR,
2491 .minor = SERIAL_AMBA_MINOR,
2492 .nr = UART_NR,
2493 .cons = AMBA_CONSOLE,
2494};
2495
2496static int pl011_probe_dt_alias(int index, struct device *dev)
2497{
2498 struct device_node *np;
2499 static bool seen_dev_with_alias = false;
2500 static bool seen_dev_without_alias = false;
2501 int ret = index;
2502
2503 if (!IS_ENABLED(CONFIG_OF))
2504 return ret;
2505
2506 np = dev->of_node;
2507 if (!np)
2508 return ret;
2509
2510 ret = of_alias_get_id(np, "serial");
2511 if (ret < 0) {
2512 seen_dev_without_alias = true;
2513 ret = index;
2514 } else {
2515 seen_dev_with_alias = true;
2516 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2517 dev_warn(dev, "requested serial port %d not available.\n", ret);
2518 ret = index;
2519 }
2520 }
2521
2522 if (seen_dev_with_alias && seen_dev_without_alias)
2523 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2524
2525 return ret;
2526}
2527
2528/* unregisters the driver also if no more ports are left */
2529static void pl011_unregister_port(struct uart_amba_port *uap)
2530{
2531 int i;
2532 bool busy = false;
2533
2534 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2535 if (amba_ports[i] == uap)
2536 amba_ports[i] = NULL;
2537 else if (amba_ports[i])
2538 busy = true;
2539 }
2540 pl011_dma_remove(uap);
2541 if (!busy)
2542 uart_unregister_driver(&amba_reg);
2543}
2544
2545static int pl011_find_free_port(void)
2546{
2547 int i;
2548
2549 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2550 if (amba_ports[i] == NULL)
2551 return i;
2552
2553 return -EBUSY;
2554}
2555
2556static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2557 struct resource *mmiobase, int index)
2558{
2559 void __iomem *base;
2560
2561 base = devm_ioremap_resource(dev, mmiobase);
2562 if (IS_ERR(base))
2563 return PTR_ERR(base);
2564
2565 index = pl011_probe_dt_alias(index, dev);
2566
2567 uap->old_cr = 0;
2568 uap->port.dev = dev;
2569 uap->port.mapbase = mmiobase->start;
2570 uap->port.membase = base;
2571 uap->port.fifosize = uap->fifosize;
2572 uap->port.flags = UPF_BOOT_AUTOCONF;
2573 uap->port.line = index;
2574
2575 amba_ports[index] = uap;
2576
2577 return 0;
2578}
2579
2580static int pl011_register_port(struct uart_amba_port *uap)
2581{
2582 int ret;
2583
2584 /* Ensure interrupts from this UART are masked and cleared */
2585 pl011_write(0, uap, REG_IMSC);
2586 pl011_write(0xffff, uap, REG_ICR);
2587
2588 if (!amba_reg.state) {
2589 ret = uart_register_driver(&amba_reg);
2590 if (ret < 0) {
2591 dev_err(uap->port.dev,
2592 "Failed to register AMBA-PL011 driver\n");
2593 return ret;
2594 }
2595 }
2596
2597 ret = uart_add_one_port(&amba_reg, &uap->port);
2598 if (ret)
2599 pl011_unregister_port(uap);
2600
2601 return ret;
2602}
2603
2604static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2605{
2606 struct uart_amba_port *uap;
2607 struct vendor_data *vendor = id->data;
2608 int portnr, ret;
2609
2610 portnr = pl011_find_free_port();
2611 if (portnr < 0)
2612 return portnr;
2613
2614 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2615 GFP_KERNEL);
2616 if (!uap)
2617 return -ENOMEM;
2618
2619 uap->clk = devm_clk_get(&dev->dev, NULL);
2620 if (IS_ERR(uap->clk))
2621 return PTR_ERR(uap->clk);
2622
2623 uap->reg_offset = vendor->reg_offset;
2624 uap->vendor = vendor;
2625 uap->fifosize = vendor->get_fifosize(dev);
2626 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2627 uap->port.irq = dev->irq[0];
2628 uap->port.ops = &amba_pl011_pops;
2629
2630 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2631
2632 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2633 if (ret)
2634 return ret;
2635
2636 amba_set_drvdata(dev, uap);
2637
2638 return pl011_register_port(uap);
2639}
2640
2641static int pl011_remove(struct amba_device *dev)
2642{
2643 struct uart_amba_port *uap = amba_get_drvdata(dev);
2644
2645 uart_remove_one_port(&amba_reg, &uap->port);
2646 pl011_unregister_port(uap);
2647 return 0;
2648}
2649
2650#ifdef CONFIG_PM_SLEEP
2651static int pl011_suspend(struct device *dev)
2652{
2653 struct uart_amba_port *uap = dev_get_drvdata(dev);
2654
2655 if (!uap)
2656 return -EINVAL;
2657
2658 return uart_suspend_port(&amba_reg, &uap->port);
2659}
2660
2661static int pl011_resume(struct device *dev)
2662{
2663 struct uart_amba_port *uap = dev_get_drvdata(dev);
2664
2665 if (!uap)
2666 return -EINVAL;
2667
2668 return uart_resume_port(&amba_reg, &uap->port);
2669}
2670#endif
2671
2672static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2673
2674static int sbsa_uart_probe(struct platform_device *pdev)
2675{
2676 struct uart_amba_port *uap;
2677 struct resource *r;
2678 int portnr, ret;
2679 int baudrate;
2680
2681 /*
2682 * Check the mandatory baud rate parameter in the DT node early
2683 * so that we can easily exit with the error.
2684 */
2685 if (pdev->dev.of_node) {
2686 struct device_node *np = pdev->dev.of_node;
2687
2688 ret = of_property_read_u32(np, "current-speed", &baudrate);
2689 if (ret)
2690 return ret;
2691 } else {
2692 baudrate = 115200;
2693 }
2694
2695 portnr = pl011_find_free_port();
2696 if (portnr < 0)
2697 return portnr;
2698
2699 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2700 GFP_KERNEL);
2701 if (!uap)
2702 return -ENOMEM;
2703
2704 ret = platform_get_irq(pdev, 0);
2705 if (ret < 0) {
2706 if (ret != -EPROBE_DEFER)
2707 dev_err(&pdev->dev, "cannot obtain irq\n");
2708 return ret;
2709 }
2710 uap->port.irq = ret;
2711
2712#ifdef CONFIG_ACPI_SPCR_TABLE
2713 if (qdf2400_e44_present) {
2714 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2715 uap->vendor = &vendor_qdt_qdf2400_e44;
2716 } else
2717#endif
2718 uap->vendor = &vendor_sbsa;
2719
2720 uap->reg_offset = uap->vendor->reg_offset;
2721 uap->fifosize = 32;
2722 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2723 uap->port.ops = &sbsa_uart_pops;
2724 uap->fixed_baud = baudrate;
2725
2726 snprintf(uap->type, sizeof(uap->type), "SBSA");
2727
2728 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2729
2730 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2731 if (ret)
2732 return ret;
2733
2734 platform_set_drvdata(pdev, uap);
2735
2736 return pl011_register_port(uap);
2737}
2738
2739static int sbsa_uart_remove(struct platform_device *pdev)
2740{
2741 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2742
2743 uart_remove_one_port(&amba_reg, &uap->port);
2744 pl011_unregister_port(uap);
2745 return 0;
2746}
2747
2748static const struct of_device_id sbsa_uart_of_match[] = {
2749 { .compatible = "arm,sbsa-uart", },
2750 {},
2751};
2752MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2753
2754static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2755 { "ARMH0011", 0 },
2756 {},
2757};
2758MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2759
2760static struct platform_driver arm_sbsa_uart_platform_driver = {
2761 .probe = sbsa_uart_probe,
2762 .remove = sbsa_uart_remove,
2763 .driver = {
2764 .name = "sbsa-uart",
2765 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2766 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2767 },
2768};
2769
2770static const struct amba_id pl011_ids[] = {
2771 {
2772 .id = 0x00041011,
2773 .mask = 0x000fffff,
2774 .data = &vendor_arm,
2775 },
2776 {
2777 .id = 0x00380802,
2778 .mask = 0x00ffffff,
2779 .data = &vendor_st,
2780 },
2781 {
2782 .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2783 .mask = 0x00ffffff,
2784 .data = &vendor_zte,
2785 },
2786 { 0, 0 },
2787};
2788
2789MODULE_DEVICE_TABLE(amba, pl011_ids);
2790
2791static struct amba_driver pl011_driver = {
2792 .drv = {
2793 .name = "uart-pl011",
2794 .pm = &pl011_dev_pm_ops,
2795 },
2796 .id_table = pl011_ids,
2797 .probe = pl011_probe,
2798 .remove = pl011_remove,
2799};
2800
2801static int __init pl011_init(void)
2802{
2803 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2804
2805 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2806 pr_warn("could not register SBSA UART platform driver\n");
2807 return amba_driver_register(&pl011_driver);
2808}
2809
2810static void __exit pl011_exit(void)
2811{
2812 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2813 amba_driver_unregister(&pl011_driver);
2814}
2815
2816/*
2817 * While this can be a module, if builtin it's most likely the console
2818 * So let's leave module_exit but move module_init to an earlier place
2819 */
2820arch_initcall(pl011_init);
2821module_exit(pl011_exit);
2822
2823MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2824MODULE_DESCRIPTION("ARM AMBA serial port driver");
2825MODULE_LICENSE("GPL");