Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014 Intel Corporation
4 */
5#include <linux/slab.h>
6#include <net/mac80211.h>
7
8#include "iwl-trans.h"
9
10#include "dev.h"
11#include "calib.h"
12#include "agn.h"
13
14/*****************************************************************************
15 * INIT calibrations framework
16 *****************************************************************************/
17
18/* Opaque calibration results */
19struct iwl_calib_result {
20 struct list_head list;
21 size_t cmd_len;
22 struct iwl_calib_cmd cmd;
23};
24
25struct statistics_general_data {
26 u32 beacon_silence_rssi_a;
27 u32 beacon_silence_rssi_b;
28 u32 beacon_silence_rssi_c;
29 u32 beacon_energy_a;
30 u32 beacon_energy_b;
31 u32 beacon_energy_c;
32};
33
34int iwl_send_calib_results(struct iwl_priv *priv)
35{
36 struct iwl_host_cmd hcmd = {
37 .id = REPLY_PHY_CALIBRATION_CMD,
38 };
39 struct iwl_calib_result *res;
40
41 list_for_each_entry(res, &priv->calib_results, list) {
42 int ret;
43
44 hcmd.len[0] = res->cmd_len;
45 hcmd.data[0] = &res->cmd;
46 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
47 ret = iwl_dvm_send_cmd(priv, &hcmd);
48 if (ret) {
49 IWL_ERR(priv, "Error %d on calib cmd %d\n",
50 ret, res->cmd.hdr.op_code);
51 return ret;
52 }
53 }
54
55 return 0;
56}
57
58int iwl_calib_set(struct iwl_priv *priv,
59 const struct iwl_calib_cmd *cmd, size_t len)
60{
61 struct iwl_calib_result *res, *tmp;
62
63 if (check_sub_overflow(len, sizeof(*cmd), &len))
64 return -ENOMEM;
65
66 res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC);
67 if (!res)
68 return -ENOMEM;
69 res->cmd = *cmd;
70 memcpy(res->cmd.data, cmd->data, len);
71 res->cmd_len = struct_size(cmd, data, len);
72
73 list_for_each_entry(tmp, &priv->calib_results, list) {
74 if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) {
75 list_replace(&tmp->list, &res->list);
76 kfree(tmp);
77 return 0;
78 }
79 }
80
81 /* wasn't in list already */
82 list_add_tail(&res->list, &priv->calib_results);
83
84 return 0;
85}
86
87void iwl_calib_free_results(struct iwl_priv *priv)
88{
89 struct iwl_calib_result *res, *tmp;
90
91 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
92 list_del(&res->list);
93 kfree(res);
94 }
95}
96
97/*****************************************************************************
98 * RUNTIME calibrations framework
99 *****************************************************************************/
100
101/* "false alarms" are signals that our DSP tries to lock onto,
102 * but then determines that they are either noise, or transmissions
103 * from a distant wireless network (also "noise", really) that get
104 * "stepped on" by stronger transmissions within our own network.
105 * This algorithm attempts to set a sensitivity level that is high
106 * enough to receive all of our own network traffic, but not so
107 * high that our DSP gets too busy trying to lock onto non-network
108 * activity/noise. */
109static int iwl_sens_energy_cck(struct iwl_priv *priv,
110 u32 norm_fa,
111 u32 rx_enable_time,
112 struct statistics_general_data *rx_info)
113{
114 u32 max_nrg_cck = 0;
115 int i = 0;
116 u8 max_silence_rssi = 0;
117 u32 silence_ref = 0;
118 u8 silence_rssi_a = 0;
119 u8 silence_rssi_b = 0;
120 u8 silence_rssi_c = 0;
121 u32 val;
122
123 /* "false_alarms" values below are cross-multiplications to assess the
124 * numbers of false alarms within the measured period of actual Rx
125 * (Rx is off when we're txing), vs the min/max expected false alarms
126 * (some should be expected if rx is sensitive enough) in a
127 * hypothetical listening period of 200 time units (TU), 204.8 msec:
128 *
129 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
130 *
131 * */
132 u32 false_alarms = norm_fa * 200 * 1024;
133 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
134 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
135 struct iwl_sensitivity_data *data = NULL;
136 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
137
138 data = &(priv->sensitivity_data);
139
140 data->nrg_auto_corr_silence_diff = 0;
141
142 /* Find max silence rssi among all 3 receivers.
143 * This is background noise, which may include transmissions from other
144 * networks, measured during silence before our network's beacon */
145 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
146 ALL_BAND_FILTER) >> 8);
147 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
148 ALL_BAND_FILTER) >> 8);
149 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
150 ALL_BAND_FILTER) >> 8);
151
152 val = max(silence_rssi_b, silence_rssi_c);
153 max_silence_rssi = max(silence_rssi_a, (u8) val);
154
155 /* Store silence rssi in 20-beacon history table */
156 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
157 data->nrg_silence_idx++;
158 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
159 data->nrg_silence_idx = 0;
160
161 /* Find max silence rssi across 20 beacon history */
162 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
163 val = data->nrg_silence_rssi[i];
164 silence_ref = max(silence_ref, val);
165 }
166 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
167 silence_rssi_a, silence_rssi_b, silence_rssi_c,
168 silence_ref);
169
170 /* Find max rx energy (min value!) among all 3 receivers,
171 * measured during beacon frame.
172 * Save it in 10-beacon history table. */
173 i = data->nrg_energy_idx;
174 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
175 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
176
177 data->nrg_energy_idx++;
178 if (data->nrg_energy_idx >= 10)
179 data->nrg_energy_idx = 0;
180
181 /* Find min rx energy (max value) across 10 beacon history.
182 * This is the minimum signal level that we want to receive well.
183 * Add backoff (margin so we don't miss slightly lower energy frames).
184 * This establishes an upper bound (min value) for energy threshold. */
185 max_nrg_cck = data->nrg_value[0];
186 for (i = 1; i < 10; i++)
187 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
188 max_nrg_cck += 6;
189
190 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
191 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
192 rx_info->beacon_energy_c, max_nrg_cck - 6);
193
194 /* Count number of consecutive beacons with fewer-than-desired
195 * false alarms. */
196 if (false_alarms < min_false_alarms)
197 data->num_in_cck_no_fa++;
198 else
199 data->num_in_cck_no_fa = 0;
200 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
201 data->num_in_cck_no_fa);
202
203 /* If we got too many false alarms this time, reduce sensitivity */
204 if ((false_alarms > max_false_alarms) &&
205 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
206 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
207 false_alarms, max_false_alarms);
208 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
209 data->nrg_curr_state = IWL_FA_TOO_MANY;
210 /* Store for "fewer than desired" on later beacon */
211 data->nrg_silence_ref = silence_ref;
212
213 /* increase energy threshold (reduce nrg value)
214 * to decrease sensitivity */
215 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
216 /* Else if we got fewer than desired, increase sensitivity */
217 } else if (false_alarms < min_false_alarms) {
218 data->nrg_curr_state = IWL_FA_TOO_FEW;
219
220 /* Compare silence level with silence level for most recent
221 * healthy number or too many false alarms */
222 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
223 (s32)silence_ref;
224
225 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
226 false_alarms, min_false_alarms,
227 data->nrg_auto_corr_silence_diff);
228
229 /* Increase value to increase sensitivity, but only if:
230 * 1a) previous beacon did *not* have *too many* false alarms
231 * 1b) AND there's a significant difference in Rx levels
232 * from a previous beacon with too many, or healthy # FAs
233 * OR 2) We've seen a lot of beacons (100) with too few
234 * false alarms */
235 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
236 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
237 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
238
239 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
240 /* Increase nrg value to increase sensitivity */
241 val = data->nrg_th_cck + NRG_STEP_CCK;
242 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
243 } else {
244 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
245 }
246
247 /* Else we got a healthy number of false alarms, keep status quo */
248 } else {
249 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
250 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
251
252 /* Store for use in "fewer than desired" with later beacon */
253 data->nrg_silence_ref = silence_ref;
254
255 /* If previous beacon had too many false alarms,
256 * give it some extra margin by reducing sensitivity again
257 * (but don't go below measured energy of desired Rx) */
258 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
259 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
260 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
261 data->nrg_th_cck -= NRG_MARGIN;
262 else
263 data->nrg_th_cck = max_nrg_cck;
264 }
265 }
266
267 /* Make sure the energy threshold does not go above the measured
268 * energy of the desired Rx signals (reduced by backoff margin),
269 * or else we might start missing Rx frames.
270 * Lower value is higher energy, so we use max()!
271 */
272 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
273 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
274
275 data->nrg_prev_state = data->nrg_curr_state;
276
277 /* Auto-correlation CCK algorithm */
278 if (false_alarms > min_false_alarms) {
279
280 /* increase auto_corr values to decrease sensitivity
281 * so the DSP won't be disturbed by the noise
282 */
283 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
284 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
285 else {
286 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
287 data->auto_corr_cck =
288 min((u32)ranges->auto_corr_max_cck, val);
289 }
290 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
291 data->auto_corr_cck_mrc =
292 min((u32)ranges->auto_corr_max_cck_mrc, val);
293 } else if ((false_alarms < min_false_alarms) &&
294 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
295 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
296
297 /* Decrease auto_corr values to increase sensitivity */
298 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
299 data->auto_corr_cck =
300 max((u32)ranges->auto_corr_min_cck, val);
301 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
302 data->auto_corr_cck_mrc =
303 max((u32)ranges->auto_corr_min_cck_mrc, val);
304 }
305
306 return 0;
307}
308
309
310static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
311 u32 norm_fa,
312 u32 rx_enable_time)
313{
314 u32 val;
315 u32 false_alarms = norm_fa * 200 * 1024;
316 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
317 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
318 struct iwl_sensitivity_data *data = NULL;
319 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
320
321 data = &(priv->sensitivity_data);
322
323 /* If we got too many false alarms this time, reduce sensitivity */
324 if (false_alarms > max_false_alarms) {
325
326 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
327 false_alarms, max_false_alarms);
328
329 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
330 data->auto_corr_ofdm =
331 min((u32)ranges->auto_corr_max_ofdm, val);
332
333 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
334 data->auto_corr_ofdm_mrc =
335 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
336
337 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
338 data->auto_corr_ofdm_x1 =
339 min((u32)ranges->auto_corr_max_ofdm_x1, val);
340
341 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
342 data->auto_corr_ofdm_mrc_x1 =
343 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
344 }
345
346 /* Else if we got fewer than desired, increase sensitivity */
347 else if (false_alarms < min_false_alarms) {
348
349 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
350 false_alarms, min_false_alarms);
351
352 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
353 data->auto_corr_ofdm =
354 max((u32)ranges->auto_corr_min_ofdm, val);
355
356 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
357 data->auto_corr_ofdm_mrc =
358 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
359
360 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
361 data->auto_corr_ofdm_x1 =
362 max((u32)ranges->auto_corr_min_ofdm_x1, val);
363
364 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
365 data->auto_corr_ofdm_mrc_x1 =
366 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
367 } else {
368 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
369 min_false_alarms, false_alarms, max_false_alarms);
370 }
371 return 0;
372}
373
374static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
375 struct iwl_sensitivity_data *data,
376 __le16 *tbl)
377{
378 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
379 cpu_to_le16((u16)data->auto_corr_ofdm);
380 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
381 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
382 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
383 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
384 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
385 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
386
387 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
388 cpu_to_le16((u16)data->auto_corr_cck);
389 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
390 cpu_to_le16((u16)data->auto_corr_cck_mrc);
391
392 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
393 cpu_to_le16((u16)data->nrg_th_cck);
394 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
395 cpu_to_le16((u16)data->nrg_th_ofdm);
396
397 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
398 cpu_to_le16(data->barker_corr_th_min);
399 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
400 cpu_to_le16(data->barker_corr_th_min_mrc);
401 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
402 cpu_to_le16(data->nrg_th_cca);
403
404 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
405 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
406 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
407 data->nrg_th_ofdm);
408
409 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
410 data->auto_corr_cck, data->auto_corr_cck_mrc,
411 data->nrg_th_cck);
412}
413
414/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
415static int iwl_sensitivity_write(struct iwl_priv *priv)
416{
417 struct iwl_sensitivity_cmd cmd;
418 struct iwl_sensitivity_data *data = NULL;
419 struct iwl_host_cmd cmd_out = {
420 .id = SENSITIVITY_CMD,
421 .len = { sizeof(struct iwl_sensitivity_cmd), },
422 .flags = CMD_ASYNC,
423 .data = { &cmd, },
424 };
425
426 data = &(priv->sensitivity_data);
427
428 memset(&cmd, 0, sizeof(cmd));
429
430 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
431
432 /* Update uCode's "work" table, and copy it to DSP */
433 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
434
435 /* Don't send command to uCode if nothing has changed */
436 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
437 sizeof(u16)*HD_TABLE_SIZE)) {
438 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
439 return 0;
440 }
441
442 /* Copy table for comparison next time */
443 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
444 sizeof(u16)*HD_TABLE_SIZE);
445
446 return iwl_dvm_send_cmd(priv, &cmd_out);
447}
448
449/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
450static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
451{
452 struct iwl_enhance_sensitivity_cmd cmd;
453 struct iwl_sensitivity_data *data = NULL;
454 struct iwl_host_cmd cmd_out = {
455 .id = SENSITIVITY_CMD,
456 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
457 .flags = CMD_ASYNC,
458 .data = { &cmd, },
459 };
460
461 data = &(priv->sensitivity_data);
462
463 memset(&cmd, 0, sizeof(cmd));
464
465 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
466
467 if (priv->lib->hd_v2) {
468 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
469 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
470 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
471 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
472 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
473 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
474 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
475 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
476 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
477 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
478 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
479 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
480 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
481 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
482 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
483 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
484 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
485 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
486 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
487 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
488 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
489 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
490 } else {
491 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
492 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
493 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
494 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
495 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
496 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
497 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
498 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
499 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
500 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
501 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
502 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
503 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
504 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
505 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
506 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
507 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
508 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
509 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
510 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
511 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
512 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
513 }
514
515 /* Update uCode's "work" table, and copy it to DSP */
516 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
517
518 /* Don't send command to uCode if nothing has changed */
519 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
520 sizeof(u16)*HD_TABLE_SIZE) &&
521 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
522 &(priv->enhance_sensitivity_tbl[0]),
523 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
524 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
525 return 0;
526 }
527
528 /* Copy table for comparison next time */
529 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
530 sizeof(u16)*HD_TABLE_SIZE);
531 memcpy(&(priv->enhance_sensitivity_tbl[0]),
532 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
533 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
534
535 return iwl_dvm_send_cmd(priv, &cmd_out);
536}
537
538void iwl_init_sensitivity(struct iwl_priv *priv)
539{
540 int ret = 0;
541 int i;
542 struct iwl_sensitivity_data *data = NULL;
543 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
544
545 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
546 return;
547
548 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
549
550 /* Clear driver's sensitivity algo data */
551 data = &(priv->sensitivity_data);
552
553 if (ranges == NULL)
554 return;
555
556 memset(data, 0, sizeof(struct iwl_sensitivity_data));
557
558 data->num_in_cck_no_fa = 0;
559 data->nrg_curr_state = IWL_FA_TOO_MANY;
560 data->nrg_prev_state = IWL_FA_TOO_MANY;
561 data->nrg_silence_ref = 0;
562 data->nrg_silence_idx = 0;
563 data->nrg_energy_idx = 0;
564
565 for (i = 0; i < 10; i++)
566 data->nrg_value[i] = 0;
567
568 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
569 data->nrg_silence_rssi[i] = 0;
570
571 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
572 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
573 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
574 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
575 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
576 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
577 data->nrg_th_cck = ranges->nrg_th_cck;
578 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
579 data->barker_corr_th_min = ranges->barker_corr_th_min;
580 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
581 data->nrg_th_cca = ranges->nrg_th_cca;
582
583 data->last_bad_plcp_cnt_ofdm = 0;
584 data->last_fa_cnt_ofdm = 0;
585 data->last_bad_plcp_cnt_cck = 0;
586 data->last_fa_cnt_cck = 0;
587
588 if (priv->fw->enhance_sensitivity_table)
589 ret |= iwl_enhance_sensitivity_write(priv);
590 else
591 ret |= iwl_sensitivity_write(priv);
592 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
593}
594
595void iwl_sensitivity_calibration(struct iwl_priv *priv)
596{
597 u32 rx_enable_time;
598 u32 fa_cck;
599 u32 fa_ofdm;
600 u32 bad_plcp_cck;
601 u32 bad_plcp_ofdm;
602 u32 norm_fa_ofdm;
603 u32 norm_fa_cck;
604 struct iwl_sensitivity_data *data = NULL;
605 struct statistics_rx_non_phy *rx_info;
606 struct statistics_rx_phy *ofdm, *cck;
607 struct statistics_general_data statis;
608
609 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
610 return;
611
612 data = &(priv->sensitivity_data);
613
614 if (!iwl_is_any_associated(priv)) {
615 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
616 return;
617 }
618
619 spin_lock_bh(&priv->statistics.lock);
620 rx_info = &priv->statistics.rx_non_phy;
621 ofdm = &priv->statistics.rx_ofdm;
622 cck = &priv->statistics.rx_cck;
623 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
624 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
625 spin_unlock_bh(&priv->statistics.lock);
626 return;
627 }
628
629 /* Extract Statistics: */
630 rx_enable_time = le32_to_cpu(rx_info->channel_load);
631 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
632 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
633 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
634 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
635
636 statis.beacon_silence_rssi_a =
637 le32_to_cpu(rx_info->beacon_silence_rssi_a);
638 statis.beacon_silence_rssi_b =
639 le32_to_cpu(rx_info->beacon_silence_rssi_b);
640 statis.beacon_silence_rssi_c =
641 le32_to_cpu(rx_info->beacon_silence_rssi_c);
642 statis.beacon_energy_a =
643 le32_to_cpu(rx_info->beacon_energy_a);
644 statis.beacon_energy_b =
645 le32_to_cpu(rx_info->beacon_energy_b);
646 statis.beacon_energy_c =
647 le32_to_cpu(rx_info->beacon_energy_c);
648
649 spin_unlock_bh(&priv->statistics.lock);
650
651 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
652
653 if (!rx_enable_time) {
654 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
655 return;
656 }
657
658 /* These statistics increase monotonically, and do not reset
659 * at each beacon. Calculate difference from last value, or just
660 * use the new statistics value if it has reset or wrapped around. */
661 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
662 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
663 else {
664 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
665 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
666 }
667
668 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
669 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
670 else {
671 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
672 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
673 }
674
675 if (data->last_fa_cnt_ofdm > fa_ofdm)
676 data->last_fa_cnt_ofdm = fa_ofdm;
677 else {
678 fa_ofdm -= data->last_fa_cnt_ofdm;
679 data->last_fa_cnt_ofdm += fa_ofdm;
680 }
681
682 if (data->last_fa_cnt_cck > fa_cck)
683 data->last_fa_cnt_cck = fa_cck;
684 else {
685 fa_cck -= data->last_fa_cnt_cck;
686 data->last_fa_cnt_cck += fa_cck;
687 }
688
689 /* Total aborted signal locks */
690 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
691 norm_fa_cck = fa_cck + bad_plcp_cck;
692
693 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
694 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
695
696 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
697 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
698 if (priv->fw->enhance_sensitivity_table)
699 iwl_enhance_sensitivity_write(priv);
700 else
701 iwl_sensitivity_write(priv);
702}
703
704static inline u8 find_first_chain(u8 mask)
705{
706 if (mask & ANT_A)
707 return CHAIN_A;
708 if (mask & ANT_B)
709 return CHAIN_B;
710 return CHAIN_C;
711}
712
713/*
714 * Run disconnected antenna algorithm to find out which antennas are
715 * disconnected.
716 */
717static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
718 struct iwl_chain_noise_data *data)
719{
720 u32 active_chains = 0;
721 u32 max_average_sig;
722 u16 max_average_sig_antenna_i;
723 u8 num_tx_chains;
724 u8 first_chain;
725 u16 i = 0;
726
727 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
728 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
729 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
730
731 if (average_sig[0] >= average_sig[1]) {
732 max_average_sig = average_sig[0];
733 max_average_sig_antenna_i = 0;
734 active_chains = (1 << max_average_sig_antenna_i);
735 } else {
736 max_average_sig = average_sig[1];
737 max_average_sig_antenna_i = 1;
738 active_chains = (1 << max_average_sig_antenna_i);
739 }
740
741 if (average_sig[2] >= max_average_sig) {
742 max_average_sig = average_sig[2];
743 max_average_sig_antenna_i = 2;
744 active_chains = (1 << max_average_sig_antenna_i);
745 }
746
747 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
748 average_sig[0], average_sig[1], average_sig[2]);
749 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
750 max_average_sig, max_average_sig_antenna_i);
751
752 /* Compare signal strengths for all 3 receivers. */
753 for (i = 0; i < NUM_RX_CHAINS; i++) {
754 if (i != max_average_sig_antenna_i) {
755 s32 rssi_delta = (max_average_sig - average_sig[i]);
756
757 /* If signal is very weak, compared with
758 * strongest, mark it as disconnected. */
759 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
760 data->disconn_array[i] = 1;
761 else
762 active_chains |= (1 << i);
763 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
764 "disconn_array[i] = %d\n",
765 i, rssi_delta, data->disconn_array[i]);
766 }
767 }
768
769 /*
770 * The above algorithm sometimes fails when the ucode
771 * reports 0 for all chains. It's not clear why that
772 * happens to start with, but it is then causing trouble
773 * because this can make us enable more chains than the
774 * hardware really has.
775 *
776 * To be safe, simply mask out any chains that we know
777 * are not on the device.
778 */
779 active_chains &= priv->nvm_data->valid_rx_ant;
780
781 num_tx_chains = 0;
782 for (i = 0; i < NUM_RX_CHAINS; i++) {
783 /* loops on all the bits of
784 * priv->hw_setting.valid_tx_ant */
785 u8 ant_msk = (1 << i);
786 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
787 continue;
788
789 num_tx_chains++;
790 if (data->disconn_array[i] == 0)
791 /* there is a Tx antenna connected */
792 break;
793 if (num_tx_chains == priv->hw_params.tx_chains_num &&
794 data->disconn_array[i]) {
795 /*
796 * If all chains are disconnected
797 * connect the first valid tx chain
798 */
799 first_chain =
800 find_first_chain(priv->nvm_data->valid_tx_ant);
801 data->disconn_array[first_chain] = 0;
802 active_chains |= BIT(first_chain);
803 IWL_DEBUG_CALIB(priv,
804 "All Tx chains are disconnected W/A - declare %d as connected\n",
805 first_chain);
806 break;
807 }
808 }
809
810 if (active_chains != priv->nvm_data->valid_rx_ant &&
811 active_chains != priv->chain_noise_data.active_chains)
812 IWL_DEBUG_CALIB(priv,
813 "Detected that not all antennas are connected! "
814 "Connected: %#x, valid: %#x.\n",
815 active_chains,
816 priv->nvm_data->valid_rx_ant);
817
818 /* Save for use within RXON, TX, SCAN commands, etc. */
819 data->active_chains = active_chains;
820 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
821 active_chains);
822}
823
824static void iwlagn_gain_computation(struct iwl_priv *priv,
825 u32 average_noise[NUM_RX_CHAINS],
826 u8 default_chain)
827{
828 int i;
829 s32 delta_g;
830 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
831
832 /*
833 * Find Gain Code for the chains based on "default chain"
834 */
835 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
836 if ((data->disconn_array[i])) {
837 data->delta_gain_code[i] = 0;
838 continue;
839 }
840
841 delta_g = (priv->lib->chain_noise_scale *
842 ((s32)average_noise[default_chain] -
843 (s32)average_noise[i])) / 1500;
844
845 /* bound gain by 2 bits value max, 3rd bit is sign */
846 data->delta_gain_code[i] =
847 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
848
849 if (delta_g < 0)
850 /*
851 * set negative sign ...
852 * note to Intel developers: This is uCode API format,
853 * not the format of any internal device registers.
854 * Do not change this format for e.g. 6050 or similar
855 * devices. Change format only if more resolution
856 * (i.e. more than 2 bits magnitude) is needed.
857 */
858 data->delta_gain_code[i] |= (1 << 2);
859 }
860
861 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
862 data->delta_gain_code[1], data->delta_gain_code[2]);
863
864 if (!data->radio_write) {
865 struct iwl_calib_chain_noise_gain_cmd cmd;
866
867 memset(&cmd, 0, sizeof(cmd));
868
869 iwl_set_calib_hdr(&cmd.hdr,
870 priv->phy_calib_chain_noise_gain_cmd);
871 cmd.delta_gain_1 = data->delta_gain_code[1];
872 cmd.delta_gain_2 = data->delta_gain_code[2];
873 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
874 CMD_ASYNC, sizeof(cmd), &cmd);
875
876 data->radio_write = 1;
877 data->state = IWL_CHAIN_NOISE_CALIBRATED;
878 }
879}
880
881/*
882 * Accumulate 16 beacons of signal and noise statistics for each of
883 * 3 receivers/antennas/rx-chains, then figure out:
884 * 1) Which antennas are connected.
885 * 2) Differential rx gain settings to balance the 3 receivers.
886 */
887void iwl_chain_noise_calibration(struct iwl_priv *priv)
888{
889 struct iwl_chain_noise_data *data = NULL;
890
891 u32 chain_noise_a;
892 u32 chain_noise_b;
893 u32 chain_noise_c;
894 u32 chain_sig_a;
895 u32 chain_sig_b;
896 u32 chain_sig_c;
897 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
898 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
899 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
900 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
901 u16 i = 0;
902 u16 rxon_chnum = INITIALIZATION_VALUE;
903 u16 stat_chnum = INITIALIZATION_VALUE;
904 u8 rxon_band24;
905 u8 stat_band24;
906 struct statistics_rx_non_phy *rx_info;
907
908 /*
909 * MULTI-FIXME:
910 * When we support multiple interfaces on different channels,
911 * this must be modified/fixed.
912 */
913 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
914
915 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
916 return;
917
918 data = &(priv->chain_noise_data);
919
920 /*
921 * Accumulate just the first "chain_noise_num_beacons" after
922 * the first association, then we're done forever.
923 */
924 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
925 if (data->state == IWL_CHAIN_NOISE_ALIVE)
926 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
927 return;
928 }
929
930 spin_lock_bh(&priv->statistics.lock);
931
932 rx_info = &priv->statistics.rx_non_phy;
933
934 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
935 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
936 spin_unlock_bh(&priv->statistics.lock);
937 return;
938 }
939
940 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
941 rxon_chnum = le16_to_cpu(ctx->staging.channel);
942 stat_band24 =
943 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
944 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
945
946 /* Make sure we accumulate data for just the associated channel
947 * (even if scanning). */
948 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
949 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
950 rxon_chnum, rxon_band24);
951 spin_unlock_bh(&priv->statistics.lock);
952 return;
953 }
954
955 /*
956 * Accumulate beacon statistics values across
957 * "chain_noise_num_beacons"
958 */
959 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
960 IN_BAND_FILTER;
961 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
962 IN_BAND_FILTER;
963 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
964 IN_BAND_FILTER;
965
966 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
967 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
968 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
969
970 spin_unlock_bh(&priv->statistics.lock);
971
972 data->beacon_count++;
973
974 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
975 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
976 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
977
978 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
979 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
980 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
981
982 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
983 rxon_chnum, rxon_band24, data->beacon_count);
984 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
985 chain_sig_a, chain_sig_b, chain_sig_c);
986 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
987 chain_noise_a, chain_noise_b, chain_noise_c);
988
989 /* If this is the "chain_noise_num_beacons", determine:
990 * 1) Disconnected antennas (using signal strengths)
991 * 2) Differential gain (using silence noise) to balance receivers */
992 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
993 return;
994
995 /* Analyze signal for disconnected antenna */
996 if (priv->lib->bt_params &&
997 priv->lib->bt_params->advanced_bt_coexist) {
998 /* Disable disconnected antenna algorithm for advanced
999 bt coex, assuming valid antennas are connected */
1000 data->active_chains = priv->nvm_data->valid_rx_ant;
1001 for (i = 0; i < NUM_RX_CHAINS; i++)
1002 if (!(data->active_chains & (1<<i)))
1003 data->disconn_array[i] = 1;
1004 } else
1005 iwl_find_disconn_antenna(priv, average_sig, data);
1006
1007 /* Analyze noise for rx balance */
1008 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1009 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1010 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1011
1012 for (i = 0; i < NUM_RX_CHAINS; i++) {
1013 if (!(data->disconn_array[i]) &&
1014 (average_noise[i] <= min_average_noise)) {
1015 /* This means that chain i is active and has
1016 * lower noise values so far: */
1017 min_average_noise = average_noise[i];
1018 min_average_noise_antenna_i = i;
1019 }
1020 }
1021
1022 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1023 average_noise[0], average_noise[1],
1024 average_noise[2]);
1025
1026 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1027 min_average_noise, min_average_noise_antenna_i);
1028
1029 iwlagn_gain_computation(
1030 priv, average_noise,
1031 find_first_chain(priv->nvm_data->valid_rx_ant));
1032
1033 /* Some power changes may have been made during the calibration.
1034 * Update and commit the RXON
1035 */
1036 iwl_update_chain_flags(priv);
1037
1038 data->state = IWL_CHAIN_NOISE_DONE;
1039 iwl_power_update_mode(priv, false);
1040}
1041
1042void iwl_reset_run_time_calib(struct iwl_priv *priv)
1043{
1044 int i;
1045 memset(&(priv->sensitivity_data), 0,
1046 sizeof(struct iwl_sensitivity_data));
1047 memset(&(priv->chain_noise_data), 0,
1048 sizeof(struct iwl_chain_noise_data));
1049 for (i = 0; i < NUM_RX_CHAINS; i++)
1050 priv->chain_noise_data.delta_gain_code[i] =
1051 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1052
1053 /* Ask for statistics now, the uCode will send notification
1054 * periodically after association */
1055 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1056}
1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <linuxwifi@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
62
63#include <linux/slab.h>
64#include <net/mac80211.h>
65
66#include "iwl-trans.h"
67
68#include "dev.h"
69#include "calib.h"
70#include "agn.h"
71
72/*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
75
76/* Opaque calibration results */
77struct iwl_calib_result {
78 struct list_head list;
79 size_t cmd_len;
80 struct iwl_calib_hdr hdr;
81 /* data follows */
82};
83
84struct statistics_general_data {
85 u32 beacon_silence_rssi_a;
86 u32 beacon_silence_rssi_b;
87 u32 beacon_silence_rssi_c;
88 u32 beacon_energy_a;
89 u32 beacon_energy_b;
90 u32 beacon_energy_c;
91};
92
93int iwl_send_calib_results(struct iwl_priv *priv)
94{
95 struct iwl_host_cmd hcmd = {
96 .id = REPLY_PHY_CALIBRATION_CMD,
97 };
98 struct iwl_calib_result *res;
99
100 list_for_each_entry(res, &priv->calib_results, list) {
101 int ret;
102
103 hcmd.len[0] = res->cmd_len;
104 hcmd.data[0] = &res->hdr;
105 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
106 ret = iwl_dvm_send_cmd(priv, &hcmd);
107 if (ret) {
108 IWL_ERR(priv, "Error %d on calib cmd %d\n",
109 ret, res->hdr.op_code);
110 return ret;
111 }
112 }
113
114 return 0;
115}
116
117int iwl_calib_set(struct iwl_priv *priv,
118 const struct iwl_calib_hdr *cmd, int len)
119{
120 struct iwl_calib_result *res, *tmp;
121
122 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
123 GFP_ATOMIC);
124 if (!res)
125 return -ENOMEM;
126 memcpy(&res->hdr, cmd, len);
127 res->cmd_len = len;
128
129 list_for_each_entry(tmp, &priv->calib_results, list) {
130 if (tmp->hdr.op_code == res->hdr.op_code) {
131 list_replace(&tmp->list, &res->list);
132 kfree(tmp);
133 return 0;
134 }
135 }
136
137 /* wasn't in list already */
138 list_add_tail(&res->list, &priv->calib_results);
139
140 return 0;
141}
142
143void iwl_calib_free_results(struct iwl_priv *priv)
144{
145 struct iwl_calib_result *res, *tmp;
146
147 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
148 list_del(&res->list);
149 kfree(res);
150 }
151}
152
153/*****************************************************************************
154 * RUNTIME calibrations framework
155 *****************************************************************************/
156
157/* "false alarms" are signals that our DSP tries to lock onto,
158 * but then determines that they are either noise, or transmissions
159 * from a distant wireless network (also "noise", really) that get
160 * "stepped on" by stronger transmissions within our own network.
161 * This algorithm attempts to set a sensitivity level that is high
162 * enough to receive all of our own network traffic, but not so
163 * high that our DSP gets too busy trying to lock onto non-network
164 * activity/noise. */
165static int iwl_sens_energy_cck(struct iwl_priv *priv,
166 u32 norm_fa,
167 u32 rx_enable_time,
168 struct statistics_general_data *rx_info)
169{
170 u32 max_nrg_cck = 0;
171 int i = 0;
172 u8 max_silence_rssi = 0;
173 u32 silence_ref = 0;
174 u8 silence_rssi_a = 0;
175 u8 silence_rssi_b = 0;
176 u8 silence_rssi_c = 0;
177 u32 val;
178
179 /* "false_alarms" values below are cross-multiplications to assess the
180 * numbers of false alarms within the measured period of actual Rx
181 * (Rx is off when we're txing), vs the min/max expected false alarms
182 * (some should be expected if rx is sensitive enough) in a
183 * hypothetical listening period of 200 time units (TU), 204.8 msec:
184 *
185 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
186 *
187 * */
188 u32 false_alarms = norm_fa * 200 * 1024;
189 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
190 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
191 struct iwl_sensitivity_data *data = NULL;
192 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
193
194 data = &(priv->sensitivity_data);
195
196 data->nrg_auto_corr_silence_diff = 0;
197
198 /* Find max silence rssi among all 3 receivers.
199 * This is background noise, which may include transmissions from other
200 * networks, measured during silence before our network's beacon */
201 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
202 ALL_BAND_FILTER) >> 8);
203 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
204 ALL_BAND_FILTER) >> 8);
205 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
206 ALL_BAND_FILTER) >> 8);
207
208 val = max(silence_rssi_b, silence_rssi_c);
209 max_silence_rssi = max(silence_rssi_a, (u8) val);
210
211 /* Store silence rssi in 20-beacon history table */
212 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
213 data->nrg_silence_idx++;
214 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
215 data->nrg_silence_idx = 0;
216
217 /* Find max silence rssi across 20 beacon history */
218 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
219 val = data->nrg_silence_rssi[i];
220 silence_ref = max(silence_ref, val);
221 }
222 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
223 silence_rssi_a, silence_rssi_b, silence_rssi_c,
224 silence_ref);
225
226 /* Find max rx energy (min value!) among all 3 receivers,
227 * measured during beacon frame.
228 * Save it in 10-beacon history table. */
229 i = data->nrg_energy_idx;
230 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
231 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
232
233 data->nrg_energy_idx++;
234 if (data->nrg_energy_idx >= 10)
235 data->nrg_energy_idx = 0;
236
237 /* Find min rx energy (max value) across 10 beacon history.
238 * This is the minimum signal level that we want to receive well.
239 * Add backoff (margin so we don't miss slightly lower energy frames).
240 * This establishes an upper bound (min value) for energy threshold. */
241 max_nrg_cck = data->nrg_value[0];
242 for (i = 1; i < 10; i++)
243 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
244 max_nrg_cck += 6;
245
246 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
247 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
248 rx_info->beacon_energy_c, max_nrg_cck - 6);
249
250 /* Count number of consecutive beacons with fewer-than-desired
251 * false alarms. */
252 if (false_alarms < min_false_alarms)
253 data->num_in_cck_no_fa++;
254 else
255 data->num_in_cck_no_fa = 0;
256 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
257 data->num_in_cck_no_fa);
258
259 /* If we got too many false alarms this time, reduce sensitivity */
260 if ((false_alarms > max_false_alarms) &&
261 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
262 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
263 false_alarms, max_false_alarms);
264 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
265 data->nrg_curr_state = IWL_FA_TOO_MANY;
266 /* Store for "fewer than desired" on later beacon */
267 data->nrg_silence_ref = silence_ref;
268
269 /* increase energy threshold (reduce nrg value)
270 * to decrease sensitivity */
271 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
272 /* Else if we got fewer than desired, increase sensitivity */
273 } else if (false_alarms < min_false_alarms) {
274 data->nrg_curr_state = IWL_FA_TOO_FEW;
275
276 /* Compare silence level with silence level for most recent
277 * healthy number or too many false alarms */
278 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
279 (s32)silence_ref;
280
281 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
282 false_alarms, min_false_alarms,
283 data->nrg_auto_corr_silence_diff);
284
285 /* Increase value to increase sensitivity, but only if:
286 * 1a) previous beacon did *not* have *too many* false alarms
287 * 1b) AND there's a significant difference in Rx levels
288 * from a previous beacon with too many, or healthy # FAs
289 * OR 2) We've seen a lot of beacons (100) with too few
290 * false alarms */
291 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
292 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
293 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
294
295 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
296 /* Increase nrg value to increase sensitivity */
297 val = data->nrg_th_cck + NRG_STEP_CCK;
298 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
299 } else {
300 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
301 }
302
303 /* Else we got a healthy number of false alarms, keep status quo */
304 } else {
305 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
306 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
307
308 /* Store for use in "fewer than desired" with later beacon */
309 data->nrg_silence_ref = silence_ref;
310
311 /* If previous beacon had too many false alarms,
312 * give it some extra margin by reducing sensitivity again
313 * (but don't go below measured energy of desired Rx) */
314 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
315 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
316 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
317 data->nrg_th_cck -= NRG_MARGIN;
318 else
319 data->nrg_th_cck = max_nrg_cck;
320 }
321 }
322
323 /* Make sure the energy threshold does not go above the measured
324 * energy of the desired Rx signals (reduced by backoff margin),
325 * or else we might start missing Rx frames.
326 * Lower value is higher energy, so we use max()!
327 */
328 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
329 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
330
331 data->nrg_prev_state = data->nrg_curr_state;
332
333 /* Auto-correlation CCK algorithm */
334 if (false_alarms > min_false_alarms) {
335
336 /* increase auto_corr values to decrease sensitivity
337 * so the DSP won't be disturbed by the noise
338 */
339 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
340 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
341 else {
342 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
343 data->auto_corr_cck =
344 min((u32)ranges->auto_corr_max_cck, val);
345 }
346 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
347 data->auto_corr_cck_mrc =
348 min((u32)ranges->auto_corr_max_cck_mrc, val);
349 } else if ((false_alarms < min_false_alarms) &&
350 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
351 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
352
353 /* Decrease auto_corr values to increase sensitivity */
354 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
355 data->auto_corr_cck =
356 max((u32)ranges->auto_corr_min_cck, val);
357 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
358 data->auto_corr_cck_mrc =
359 max((u32)ranges->auto_corr_min_cck_mrc, val);
360 }
361
362 return 0;
363}
364
365
366static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
367 u32 norm_fa,
368 u32 rx_enable_time)
369{
370 u32 val;
371 u32 false_alarms = norm_fa * 200 * 1024;
372 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
373 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
374 struct iwl_sensitivity_data *data = NULL;
375 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
376
377 data = &(priv->sensitivity_data);
378
379 /* If we got too many false alarms this time, reduce sensitivity */
380 if (false_alarms > max_false_alarms) {
381
382 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
383 false_alarms, max_false_alarms);
384
385 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
386 data->auto_corr_ofdm =
387 min((u32)ranges->auto_corr_max_ofdm, val);
388
389 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
390 data->auto_corr_ofdm_mrc =
391 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
392
393 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
394 data->auto_corr_ofdm_x1 =
395 min((u32)ranges->auto_corr_max_ofdm_x1, val);
396
397 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
398 data->auto_corr_ofdm_mrc_x1 =
399 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
400 }
401
402 /* Else if we got fewer than desired, increase sensitivity */
403 else if (false_alarms < min_false_alarms) {
404
405 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
406 false_alarms, min_false_alarms);
407
408 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
409 data->auto_corr_ofdm =
410 max((u32)ranges->auto_corr_min_ofdm, val);
411
412 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
413 data->auto_corr_ofdm_mrc =
414 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
415
416 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
417 data->auto_corr_ofdm_x1 =
418 max((u32)ranges->auto_corr_min_ofdm_x1, val);
419
420 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
421 data->auto_corr_ofdm_mrc_x1 =
422 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
423 } else {
424 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
425 min_false_alarms, false_alarms, max_false_alarms);
426 }
427 return 0;
428}
429
430static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
431 struct iwl_sensitivity_data *data,
432 __le16 *tbl)
433{
434 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
435 cpu_to_le16((u16)data->auto_corr_ofdm);
436 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
437 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
438 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
439 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
440 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
441 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
442
443 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
444 cpu_to_le16((u16)data->auto_corr_cck);
445 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
446 cpu_to_le16((u16)data->auto_corr_cck_mrc);
447
448 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
449 cpu_to_le16((u16)data->nrg_th_cck);
450 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
451 cpu_to_le16((u16)data->nrg_th_ofdm);
452
453 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
454 cpu_to_le16(data->barker_corr_th_min);
455 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
456 cpu_to_le16(data->barker_corr_th_min_mrc);
457 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
458 cpu_to_le16(data->nrg_th_cca);
459
460 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
461 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
462 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
463 data->nrg_th_ofdm);
464
465 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
466 data->auto_corr_cck, data->auto_corr_cck_mrc,
467 data->nrg_th_cck);
468}
469
470/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
471static int iwl_sensitivity_write(struct iwl_priv *priv)
472{
473 struct iwl_sensitivity_cmd cmd;
474 struct iwl_sensitivity_data *data = NULL;
475 struct iwl_host_cmd cmd_out = {
476 .id = SENSITIVITY_CMD,
477 .len = { sizeof(struct iwl_sensitivity_cmd), },
478 .flags = CMD_ASYNC,
479 .data = { &cmd, },
480 };
481
482 data = &(priv->sensitivity_data);
483
484 memset(&cmd, 0, sizeof(cmd));
485
486 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
487
488 /* Update uCode's "work" table, and copy it to DSP */
489 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
490
491 /* Don't send command to uCode if nothing has changed */
492 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
493 sizeof(u16)*HD_TABLE_SIZE)) {
494 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
495 return 0;
496 }
497
498 /* Copy table for comparison next time */
499 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
500 sizeof(u16)*HD_TABLE_SIZE);
501
502 return iwl_dvm_send_cmd(priv, &cmd_out);
503}
504
505/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
506static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
507{
508 struct iwl_enhance_sensitivity_cmd cmd;
509 struct iwl_sensitivity_data *data = NULL;
510 struct iwl_host_cmd cmd_out = {
511 .id = SENSITIVITY_CMD,
512 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
513 .flags = CMD_ASYNC,
514 .data = { &cmd, },
515 };
516
517 data = &(priv->sensitivity_data);
518
519 memset(&cmd, 0, sizeof(cmd));
520
521 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
522
523 if (priv->lib->hd_v2) {
524 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
525 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
526 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
527 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
528 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
529 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
530 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
531 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
532 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
533 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
534 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
535 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
536 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
537 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
538 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
539 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
540 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
541 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
542 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
543 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
544 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
545 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
546 } else {
547 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
548 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
549 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
550 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
551 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
552 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
553 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
554 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
555 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
556 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
557 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
558 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
559 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
560 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
561 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
562 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
563 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
564 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
565 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
566 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
567 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
568 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
569 }
570
571 /* Update uCode's "work" table, and copy it to DSP */
572 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
573
574 /* Don't send command to uCode if nothing has changed */
575 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
576 sizeof(u16)*HD_TABLE_SIZE) &&
577 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
578 &(priv->enhance_sensitivity_tbl[0]),
579 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
580 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
581 return 0;
582 }
583
584 /* Copy table for comparison next time */
585 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
586 sizeof(u16)*HD_TABLE_SIZE);
587 memcpy(&(priv->enhance_sensitivity_tbl[0]),
588 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
589 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
590
591 return iwl_dvm_send_cmd(priv, &cmd_out);
592}
593
594void iwl_init_sensitivity(struct iwl_priv *priv)
595{
596 int ret = 0;
597 int i;
598 struct iwl_sensitivity_data *data = NULL;
599 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
600
601 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
602 return;
603
604 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
605
606 /* Clear driver's sensitivity algo data */
607 data = &(priv->sensitivity_data);
608
609 if (ranges == NULL)
610 return;
611
612 memset(data, 0, sizeof(struct iwl_sensitivity_data));
613
614 data->num_in_cck_no_fa = 0;
615 data->nrg_curr_state = IWL_FA_TOO_MANY;
616 data->nrg_prev_state = IWL_FA_TOO_MANY;
617 data->nrg_silence_ref = 0;
618 data->nrg_silence_idx = 0;
619 data->nrg_energy_idx = 0;
620
621 for (i = 0; i < 10; i++)
622 data->nrg_value[i] = 0;
623
624 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
625 data->nrg_silence_rssi[i] = 0;
626
627 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
628 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
629 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
630 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
631 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
632 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
633 data->nrg_th_cck = ranges->nrg_th_cck;
634 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
635 data->barker_corr_th_min = ranges->barker_corr_th_min;
636 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
637 data->nrg_th_cca = ranges->nrg_th_cca;
638
639 data->last_bad_plcp_cnt_ofdm = 0;
640 data->last_fa_cnt_ofdm = 0;
641 data->last_bad_plcp_cnt_cck = 0;
642 data->last_fa_cnt_cck = 0;
643
644 if (priv->fw->enhance_sensitivity_table)
645 ret |= iwl_enhance_sensitivity_write(priv);
646 else
647 ret |= iwl_sensitivity_write(priv);
648 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
649}
650
651void iwl_sensitivity_calibration(struct iwl_priv *priv)
652{
653 u32 rx_enable_time;
654 u32 fa_cck;
655 u32 fa_ofdm;
656 u32 bad_plcp_cck;
657 u32 bad_plcp_ofdm;
658 u32 norm_fa_ofdm;
659 u32 norm_fa_cck;
660 struct iwl_sensitivity_data *data = NULL;
661 struct statistics_rx_non_phy *rx_info;
662 struct statistics_rx_phy *ofdm, *cck;
663 struct statistics_general_data statis;
664
665 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
666 return;
667
668 data = &(priv->sensitivity_data);
669
670 if (!iwl_is_any_associated(priv)) {
671 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
672 return;
673 }
674
675 spin_lock_bh(&priv->statistics.lock);
676 rx_info = &priv->statistics.rx_non_phy;
677 ofdm = &priv->statistics.rx_ofdm;
678 cck = &priv->statistics.rx_cck;
679 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
680 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
681 spin_unlock_bh(&priv->statistics.lock);
682 return;
683 }
684
685 /* Extract Statistics: */
686 rx_enable_time = le32_to_cpu(rx_info->channel_load);
687 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
688 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
689 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
690 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
691
692 statis.beacon_silence_rssi_a =
693 le32_to_cpu(rx_info->beacon_silence_rssi_a);
694 statis.beacon_silence_rssi_b =
695 le32_to_cpu(rx_info->beacon_silence_rssi_b);
696 statis.beacon_silence_rssi_c =
697 le32_to_cpu(rx_info->beacon_silence_rssi_c);
698 statis.beacon_energy_a =
699 le32_to_cpu(rx_info->beacon_energy_a);
700 statis.beacon_energy_b =
701 le32_to_cpu(rx_info->beacon_energy_b);
702 statis.beacon_energy_c =
703 le32_to_cpu(rx_info->beacon_energy_c);
704
705 spin_unlock_bh(&priv->statistics.lock);
706
707 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
708
709 if (!rx_enable_time) {
710 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
711 return;
712 }
713
714 /* These statistics increase monotonically, and do not reset
715 * at each beacon. Calculate difference from last value, or just
716 * use the new statistics value if it has reset or wrapped around. */
717 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
718 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
719 else {
720 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
721 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
722 }
723
724 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
725 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
726 else {
727 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
728 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
729 }
730
731 if (data->last_fa_cnt_ofdm > fa_ofdm)
732 data->last_fa_cnt_ofdm = fa_ofdm;
733 else {
734 fa_ofdm -= data->last_fa_cnt_ofdm;
735 data->last_fa_cnt_ofdm += fa_ofdm;
736 }
737
738 if (data->last_fa_cnt_cck > fa_cck)
739 data->last_fa_cnt_cck = fa_cck;
740 else {
741 fa_cck -= data->last_fa_cnt_cck;
742 data->last_fa_cnt_cck += fa_cck;
743 }
744
745 /* Total aborted signal locks */
746 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
747 norm_fa_cck = fa_cck + bad_plcp_cck;
748
749 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
750 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
751
752 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
753 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
754 if (priv->fw->enhance_sensitivity_table)
755 iwl_enhance_sensitivity_write(priv);
756 else
757 iwl_sensitivity_write(priv);
758}
759
760static inline u8 find_first_chain(u8 mask)
761{
762 if (mask & ANT_A)
763 return CHAIN_A;
764 if (mask & ANT_B)
765 return CHAIN_B;
766 return CHAIN_C;
767}
768
769/**
770 * Run disconnected antenna algorithm to find out which antennas are
771 * disconnected.
772 */
773static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
774 struct iwl_chain_noise_data *data)
775{
776 u32 active_chains = 0;
777 u32 max_average_sig;
778 u16 max_average_sig_antenna_i;
779 u8 num_tx_chains;
780 u8 first_chain;
781 u16 i = 0;
782
783 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
784 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
785 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
786
787 if (average_sig[0] >= average_sig[1]) {
788 max_average_sig = average_sig[0];
789 max_average_sig_antenna_i = 0;
790 active_chains = (1 << max_average_sig_antenna_i);
791 } else {
792 max_average_sig = average_sig[1];
793 max_average_sig_antenna_i = 1;
794 active_chains = (1 << max_average_sig_antenna_i);
795 }
796
797 if (average_sig[2] >= max_average_sig) {
798 max_average_sig = average_sig[2];
799 max_average_sig_antenna_i = 2;
800 active_chains = (1 << max_average_sig_antenna_i);
801 }
802
803 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
804 average_sig[0], average_sig[1], average_sig[2]);
805 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
806 max_average_sig, max_average_sig_antenna_i);
807
808 /* Compare signal strengths for all 3 receivers. */
809 for (i = 0; i < NUM_RX_CHAINS; i++) {
810 if (i != max_average_sig_antenna_i) {
811 s32 rssi_delta = (max_average_sig - average_sig[i]);
812
813 /* If signal is very weak, compared with
814 * strongest, mark it as disconnected. */
815 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
816 data->disconn_array[i] = 1;
817 else
818 active_chains |= (1 << i);
819 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
820 "disconn_array[i] = %d\n",
821 i, rssi_delta, data->disconn_array[i]);
822 }
823 }
824
825 /*
826 * The above algorithm sometimes fails when the ucode
827 * reports 0 for all chains. It's not clear why that
828 * happens to start with, but it is then causing trouble
829 * because this can make us enable more chains than the
830 * hardware really has.
831 *
832 * To be safe, simply mask out any chains that we know
833 * are not on the device.
834 */
835 active_chains &= priv->nvm_data->valid_rx_ant;
836
837 num_tx_chains = 0;
838 for (i = 0; i < NUM_RX_CHAINS; i++) {
839 /* loops on all the bits of
840 * priv->hw_setting.valid_tx_ant */
841 u8 ant_msk = (1 << i);
842 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
843 continue;
844
845 num_tx_chains++;
846 if (data->disconn_array[i] == 0)
847 /* there is a Tx antenna connected */
848 break;
849 if (num_tx_chains == priv->hw_params.tx_chains_num &&
850 data->disconn_array[i]) {
851 /*
852 * If all chains are disconnected
853 * connect the first valid tx chain
854 */
855 first_chain =
856 find_first_chain(priv->nvm_data->valid_tx_ant);
857 data->disconn_array[first_chain] = 0;
858 active_chains |= BIT(first_chain);
859 IWL_DEBUG_CALIB(priv,
860 "All Tx chains are disconnected W/A - declare %d as connected\n",
861 first_chain);
862 break;
863 }
864 }
865
866 if (active_chains != priv->nvm_data->valid_rx_ant &&
867 active_chains != priv->chain_noise_data.active_chains)
868 IWL_DEBUG_CALIB(priv,
869 "Detected that not all antennas are connected! "
870 "Connected: %#x, valid: %#x.\n",
871 active_chains,
872 priv->nvm_data->valid_rx_ant);
873
874 /* Save for use within RXON, TX, SCAN commands, etc. */
875 data->active_chains = active_chains;
876 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
877 active_chains);
878}
879
880static void iwlagn_gain_computation(struct iwl_priv *priv,
881 u32 average_noise[NUM_RX_CHAINS],
882 u8 default_chain)
883{
884 int i;
885 s32 delta_g;
886 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
887
888 /*
889 * Find Gain Code for the chains based on "default chain"
890 */
891 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
892 if ((data->disconn_array[i])) {
893 data->delta_gain_code[i] = 0;
894 continue;
895 }
896
897 delta_g = (priv->lib->chain_noise_scale *
898 ((s32)average_noise[default_chain] -
899 (s32)average_noise[i])) / 1500;
900
901 /* bound gain by 2 bits value max, 3rd bit is sign */
902 data->delta_gain_code[i] =
903 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
904
905 if (delta_g < 0)
906 /*
907 * set negative sign ...
908 * note to Intel developers: This is uCode API format,
909 * not the format of any internal device registers.
910 * Do not change this format for e.g. 6050 or similar
911 * devices. Change format only if more resolution
912 * (i.e. more than 2 bits magnitude) is needed.
913 */
914 data->delta_gain_code[i] |= (1 << 2);
915 }
916
917 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
918 data->delta_gain_code[1], data->delta_gain_code[2]);
919
920 if (!data->radio_write) {
921 struct iwl_calib_chain_noise_gain_cmd cmd;
922
923 memset(&cmd, 0, sizeof(cmd));
924
925 iwl_set_calib_hdr(&cmd.hdr,
926 priv->phy_calib_chain_noise_gain_cmd);
927 cmd.delta_gain_1 = data->delta_gain_code[1];
928 cmd.delta_gain_2 = data->delta_gain_code[2];
929 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
930 CMD_ASYNC, sizeof(cmd), &cmd);
931
932 data->radio_write = 1;
933 data->state = IWL_CHAIN_NOISE_CALIBRATED;
934 }
935}
936
937/*
938 * Accumulate 16 beacons of signal and noise statistics for each of
939 * 3 receivers/antennas/rx-chains, then figure out:
940 * 1) Which antennas are connected.
941 * 2) Differential rx gain settings to balance the 3 receivers.
942 */
943void iwl_chain_noise_calibration(struct iwl_priv *priv)
944{
945 struct iwl_chain_noise_data *data = NULL;
946
947 u32 chain_noise_a;
948 u32 chain_noise_b;
949 u32 chain_noise_c;
950 u32 chain_sig_a;
951 u32 chain_sig_b;
952 u32 chain_sig_c;
953 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
954 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
955 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
956 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
957 u16 i = 0;
958 u16 rxon_chnum = INITIALIZATION_VALUE;
959 u16 stat_chnum = INITIALIZATION_VALUE;
960 u8 rxon_band24;
961 u8 stat_band24;
962 struct statistics_rx_non_phy *rx_info;
963
964 /*
965 * MULTI-FIXME:
966 * When we support multiple interfaces on different channels,
967 * this must be modified/fixed.
968 */
969 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
970
971 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
972 return;
973
974 data = &(priv->chain_noise_data);
975
976 /*
977 * Accumulate just the first "chain_noise_num_beacons" after
978 * the first association, then we're done forever.
979 */
980 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
981 if (data->state == IWL_CHAIN_NOISE_ALIVE)
982 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
983 return;
984 }
985
986 spin_lock_bh(&priv->statistics.lock);
987
988 rx_info = &priv->statistics.rx_non_phy;
989
990 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
991 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
992 spin_unlock_bh(&priv->statistics.lock);
993 return;
994 }
995
996 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
997 rxon_chnum = le16_to_cpu(ctx->staging.channel);
998 stat_band24 =
999 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1000 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1001
1002 /* Make sure we accumulate data for just the associated channel
1003 * (even if scanning). */
1004 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1005 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1006 rxon_chnum, rxon_band24);
1007 spin_unlock_bh(&priv->statistics.lock);
1008 return;
1009 }
1010
1011 /*
1012 * Accumulate beacon statistics values across
1013 * "chain_noise_num_beacons"
1014 */
1015 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1016 IN_BAND_FILTER;
1017 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1018 IN_BAND_FILTER;
1019 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1020 IN_BAND_FILTER;
1021
1022 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1023 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1024 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1025
1026 spin_unlock_bh(&priv->statistics.lock);
1027
1028 data->beacon_count++;
1029
1030 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1031 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1032 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1033
1034 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1035 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1036 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1037
1038 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1039 rxon_chnum, rxon_band24, data->beacon_count);
1040 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1041 chain_sig_a, chain_sig_b, chain_sig_c);
1042 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1043 chain_noise_a, chain_noise_b, chain_noise_c);
1044
1045 /* If this is the "chain_noise_num_beacons", determine:
1046 * 1) Disconnected antennas (using signal strengths)
1047 * 2) Differential gain (using silence noise) to balance receivers */
1048 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1049 return;
1050
1051 /* Analyze signal for disconnected antenna */
1052 if (priv->lib->bt_params &&
1053 priv->lib->bt_params->advanced_bt_coexist) {
1054 /* Disable disconnected antenna algorithm for advanced
1055 bt coex, assuming valid antennas are connected */
1056 data->active_chains = priv->nvm_data->valid_rx_ant;
1057 for (i = 0; i < NUM_RX_CHAINS; i++)
1058 if (!(data->active_chains & (1<<i)))
1059 data->disconn_array[i] = 1;
1060 } else
1061 iwl_find_disconn_antenna(priv, average_sig, data);
1062
1063 /* Analyze noise for rx balance */
1064 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1065 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1066 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1067
1068 for (i = 0; i < NUM_RX_CHAINS; i++) {
1069 if (!(data->disconn_array[i]) &&
1070 (average_noise[i] <= min_average_noise)) {
1071 /* This means that chain i is active and has
1072 * lower noise values so far: */
1073 min_average_noise = average_noise[i];
1074 min_average_noise_antenna_i = i;
1075 }
1076 }
1077
1078 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1079 average_noise[0], average_noise[1],
1080 average_noise[2]);
1081
1082 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1083 min_average_noise, min_average_noise_antenna_i);
1084
1085 iwlagn_gain_computation(
1086 priv, average_noise,
1087 find_first_chain(priv->nvm_data->valid_rx_ant));
1088
1089 /* Some power changes may have been made during the calibration.
1090 * Update and commit the RXON
1091 */
1092 iwl_update_chain_flags(priv);
1093
1094 data->state = IWL_CHAIN_NOISE_DONE;
1095 iwl_power_update_mode(priv, false);
1096}
1097
1098void iwl_reset_run_time_calib(struct iwl_priv *priv)
1099{
1100 int i;
1101 memset(&(priv->sensitivity_data), 0,
1102 sizeof(struct iwl_sensitivity_data));
1103 memset(&(priv->chain_noise_data), 0,
1104 sizeof(struct iwl_chain_noise_data));
1105 for (i = 0; i < NUM_RX_CHAINS; i++)
1106 priv->chain_noise_data.delta_gain_code[i] =
1107 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1108
1109 /* Ask for statistics now, the uCode will send notification
1110 * periodically after association */
1111 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1112}