Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * Copyright (c) 2012 Neratec Solutions AG
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include <linux/slab.h>
 18#include <linux/spinlock.h>
 19
 20#include "ath.h"
 21#include "dfs_pattern_detector.h"
 22#include "dfs_pri_detector.h"
 23
 24struct ath_dfs_pool_stats global_dfs_pool_stats = {};
 25
 26#define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
 27#define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
 28#define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \
 29	(MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \
 30	MIN + PRI_TOLERANCE : RUNTIME)
 31
 32/*
 33 * struct pulse_elem - elements in pulse queue
 
 34 */
 35struct pulse_elem {
 36	struct list_head head;
 37	u64 ts;
 38};
 39
 40/*
 41 * pde_get_multiple() - get number of multiples considering a given tolerance
 42 * Return value: factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
 43 */
 44static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
 45{
 46	u32 remainder;
 47	u32 factor;
 48	u32 delta;
 49
 50	if (fraction == 0)
 51		return 0;
 52
 53	delta = (val < fraction) ? (fraction - val) : (val - fraction);
 54
 55	if (delta <= tolerance)
 56		/* val and fraction are within tolerance */
 57		return 1;
 58
 59	factor = val / fraction;
 60	remainder = val % fraction;
 61	if (remainder > tolerance) {
 62		/* no exact match */
 63		if ((fraction - remainder) <= tolerance)
 64			/* remainder is within tolerance */
 65			factor++;
 66		else
 67			factor = 0;
 68	}
 69	return factor;
 70}
 71
 72/*
 73 * DOC: Singleton Pulse and Sequence Pools
 74 *
 75 * Instances of pri_sequence and pulse_elem are kept in singleton pools to
 76 * reduce the number of dynamic allocations. They are shared between all
 77 * instances and grow up to the peak number of simultaneously used objects.
 78 *
 79 * Memory is freed after all references to the pools are released.
 80 */
 81static u32 singleton_pool_references;
 82static LIST_HEAD(pulse_pool);
 83static LIST_HEAD(pseq_pool);
 84static DEFINE_SPINLOCK(pool_lock);
 85
 86static void pool_register_ref(void)
 87{
 88	spin_lock_bh(&pool_lock);
 89	singleton_pool_references++;
 90	DFS_POOL_STAT_INC(pool_reference);
 91	spin_unlock_bh(&pool_lock);
 92}
 93
 94static void pool_deregister_ref(void)
 95{
 96	spin_lock_bh(&pool_lock);
 97	singleton_pool_references--;
 98	DFS_POOL_STAT_DEC(pool_reference);
 99	if (singleton_pool_references == 0) {
100		/* free singleton pools with no references left */
101		struct pri_sequence *ps, *ps0;
102		struct pulse_elem *p, *p0;
103
104		list_for_each_entry_safe(p, p0, &pulse_pool, head) {
105			list_del(&p->head);
106			DFS_POOL_STAT_DEC(pulse_allocated);
107			kfree(p);
108		}
109		list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
110			list_del(&ps->head);
111			DFS_POOL_STAT_DEC(pseq_allocated);
112			kfree(ps);
113		}
114	}
115	spin_unlock_bh(&pool_lock);
116}
117
118static void pool_put_pulse_elem(struct pulse_elem *pe)
119{
120	spin_lock_bh(&pool_lock);
121	list_add(&pe->head, &pulse_pool);
122	DFS_POOL_STAT_DEC(pulse_used);
123	spin_unlock_bh(&pool_lock);
124}
125
126static void pool_put_pseq_elem(struct pri_sequence *pse)
127{
128	spin_lock_bh(&pool_lock);
129	list_add(&pse->head, &pseq_pool);
130	DFS_POOL_STAT_DEC(pseq_used);
131	spin_unlock_bh(&pool_lock);
132}
133
134static struct pri_sequence *pool_get_pseq_elem(void)
135{
136	struct pri_sequence *pse = NULL;
137	spin_lock_bh(&pool_lock);
138	if (!list_empty(&pseq_pool)) {
139		pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
140		list_del(&pse->head);
141		DFS_POOL_STAT_INC(pseq_used);
142	}
143	spin_unlock_bh(&pool_lock);
144	return pse;
145}
146
147static struct pulse_elem *pool_get_pulse_elem(void)
148{
149	struct pulse_elem *pe = NULL;
150	spin_lock_bh(&pool_lock);
151	if (!list_empty(&pulse_pool)) {
152		pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
153		list_del(&pe->head);
154		DFS_POOL_STAT_INC(pulse_used);
155	}
156	spin_unlock_bh(&pool_lock);
157	return pe;
158}
159
160static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
161{
162	struct list_head *l = &pde->pulses;
163	if (list_empty(l))
164		return NULL;
165	return list_entry(l->prev, struct pulse_elem, head);
166}
167
168static bool pulse_queue_dequeue(struct pri_detector *pde)
169{
170	struct pulse_elem *p = pulse_queue_get_tail(pde);
171	if (p != NULL) {
172		list_del_init(&p->head);
173		pde->count--;
174		/* give it back to pool */
175		pool_put_pulse_elem(p);
176	}
177	return (pde->count > 0);
178}
179
180/* remove pulses older than window */
181static void pulse_queue_check_window(struct pri_detector *pde)
182{
183	u64 min_valid_ts;
184	struct pulse_elem *p;
185
186	/* there is no delta time with less than 2 pulses */
187	if (pde->count < 2)
188		return;
189
190	if (pde->last_ts <= pde->window_size)
191		return;
192
193	min_valid_ts = pde->last_ts - pde->window_size;
194	while ((p = pulse_queue_get_tail(pde)) != NULL) {
195		if (p->ts >= min_valid_ts)
196			return;
197		pulse_queue_dequeue(pde);
198	}
199}
200
201static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
202{
203	struct pulse_elem *p = pool_get_pulse_elem();
204	if (p == NULL) {
205		p = kmalloc(sizeof(*p), GFP_ATOMIC);
206		if (p == NULL) {
207			DFS_POOL_STAT_INC(pulse_alloc_error);
208			return false;
209		}
210		DFS_POOL_STAT_INC(pulse_allocated);
211		DFS_POOL_STAT_INC(pulse_used);
212	}
213	INIT_LIST_HEAD(&p->head);
214	p->ts = ts;
215	list_add(&p->head, &pde->pulses);
216	pde->count++;
217	pde->last_ts = ts;
218	pulse_queue_check_window(pde);
219	if (pde->count >= pde->max_count)
220		pulse_queue_dequeue(pde);
221	return true;
222}
223
224static bool pseq_handler_create_sequences(struct pri_detector *pde,
225					  u64 ts, u32 min_count)
226{
227	struct pulse_elem *p;
228	list_for_each_entry(p, &pde->pulses, head) {
229		struct pri_sequence ps, *new_ps;
230		struct pulse_elem *p2;
231		u32 tmp_false_count;
232		u64 min_valid_ts;
233		u32 delta_ts = ts - p->ts;
234
235		if (delta_ts < pde->rs->pri_min)
236			/* ignore too small pri */
237			continue;
238
239		if (delta_ts > pde->rs->pri_max)
240			/* stop on too large pri (sorted list) */
241			break;
242
243		/* build a new sequence with new potential pri */
244		ps.count = 2;
245		ps.count_falses = 0;
246		ps.first_ts = p->ts;
247		ps.last_ts = ts;
248		ps.pri = GET_PRI_TO_USE(pde->rs->pri_min,
249			pde->rs->pri_max, ts - p->ts);
250		ps.dur = ps.pri * (pde->rs->ppb - 1)
251				+ 2 * pde->rs->max_pri_tolerance;
252
253		p2 = p;
254		tmp_false_count = 0;
255		min_valid_ts = ts - ps.dur;
256		/* check which past pulses are candidates for new sequence */
257		list_for_each_entry_continue(p2, &pde->pulses, head) {
258			u32 factor;
259			if (p2->ts < min_valid_ts)
260				/* stop on crossing window border */
261				break;
262			/* check if pulse match (multi)PRI */
263			factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
264						  pde->rs->max_pri_tolerance);
265			if (factor > 0) {
266				ps.count++;
267				ps.first_ts = p2->ts;
268				/*
269				 * on match, add the intermediate falses
270				 * and reset counter
271				 */
272				ps.count_falses += tmp_false_count;
273				tmp_false_count = 0;
274			} else {
275				/* this is a potential false one */
276				tmp_false_count++;
277			}
278		}
279		if (ps.count <= min_count)
280			/* did not reach minimum count, drop sequence */
281			continue;
282
283		/* this is a valid one, add it */
284		ps.deadline_ts = ps.first_ts + ps.dur;
285		new_ps = pool_get_pseq_elem();
286		if (new_ps == NULL) {
287			new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
288			if (new_ps == NULL) {
289				DFS_POOL_STAT_INC(pseq_alloc_error);
290				return false;
291			}
292			DFS_POOL_STAT_INC(pseq_allocated);
293			DFS_POOL_STAT_INC(pseq_used);
294		}
295		memcpy(new_ps, &ps, sizeof(ps));
296		INIT_LIST_HEAD(&new_ps->head);
297		list_add(&new_ps->head, &pde->sequences);
298	}
299	return true;
300}
301
302/* check new ts and add to all matching existing sequences */
303static u32
304pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
305{
306	u32 max_count = 0;
307	struct pri_sequence *ps, *ps2;
308	list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
309		u32 delta_ts;
310		u32 factor;
311
312		/* first ensure that sequence is within window */
313		if (ts > ps->deadline_ts) {
314			list_del_init(&ps->head);
315			pool_put_pseq_elem(ps);
316			continue;
317		}
318
319		delta_ts = ts - ps->last_ts;
320		factor = pde_get_multiple(delta_ts, ps->pri,
321					  pde->rs->max_pri_tolerance);
322		if (factor > 0) {
323			ps->last_ts = ts;
324			ps->count++;
325
326			if (max_count < ps->count)
327				max_count = ps->count;
328		} else {
329			ps->count_falses++;
330		}
331	}
332	return max_count;
333}
334
335static struct pri_sequence *
336pseq_handler_check_detection(struct pri_detector *pde)
337{
338	struct pri_sequence *ps;
339
340	if (list_empty(&pde->sequences))
341		return NULL;
342
343	list_for_each_entry(ps, &pde->sequences, head) {
344		/*
345		 * we assume to have enough matching confidence if we
346		 * 1) have enough pulses
347		 * 2) have more matching than false pulses
348		 */
349		if ((ps->count >= pde->rs->ppb_thresh) &&
350		    (ps->count * pde->rs->num_pri >= ps->count_falses))
351			return ps;
352	}
353	return NULL;
354}
355
356
357/* free pulse queue and sequences list and give objects back to pools */
358static void pri_detector_reset(struct pri_detector *pde, u64 ts)
359{
360	struct pri_sequence *ps, *ps0;
361	struct pulse_elem *p, *p0;
362	list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
363		list_del_init(&ps->head);
364		pool_put_pseq_elem(ps);
365	}
366	list_for_each_entry_safe(p, p0, &pde->pulses, head) {
367		list_del_init(&p->head);
368		pool_put_pulse_elem(p);
369	}
370	pde->count = 0;
371	pde->last_ts = ts;
372}
373
374static void pri_detector_exit(struct pri_detector *de)
375{
376	pri_detector_reset(de, 0);
377	pool_deregister_ref();
378	kfree(de);
379}
380
381static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
382						   struct pulse_event *event)
383{
384	u32 max_updated_seq;
385	struct pri_sequence *ps;
386	u64 ts = event->ts;
387	const struct radar_detector_specs *rs = de->rs;
388
389	/* ignore pulses not within width range */
390	if ((rs->width_min > event->width) || (rs->width_max < event->width))
391		return NULL;
392
393	if ((ts - de->last_ts) < rs->max_pri_tolerance)
394		/* if delta to last pulse is too short, don't use this pulse */
395		return NULL;
396	/* radar detector spec needs chirp, but not detected */
397	if (rs->chirp && rs->chirp != event->chirp)
398		return NULL;
399
400	de->last_ts = ts;
401
402	max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
403
404	if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
405		pri_detector_reset(de, ts);
406		return NULL;
407	}
408
409	ps = pseq_handler_check_detection(de);
410
411	if (ps == NULL)
412		pulse_queue_enqueue(de, ts);
413
414	return ps;
415}
416
417struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
418{
419	struct pri_detector *de;
420
421	de = kzalloc(sizeof(*de), GFP_ATOMIC);
422	if (de == NULL)
423		return NULL;
424	de->exit = pri_detector_exit;
425	de->add_pulse = pri_detector_add_pulse;
426	de->reset = pri_detector_reset;
427
428	INIT_LIST_HEAD(&de->sequences);
429	INIT_LIST_HEAD(&de->pulses);
430	de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
431	de->max_count = rs->ppb * 2;
432	de->rs = rs;
433
434	pool_register_ref();
435	return de;
436}
v4.17
  1/*
  2 * Copyright (c) 2012 Neratec Solutions AG
  3 *
  4 * Permission to use, copy, modify, and/or distribute this software for any
  5 * purpose with or without fee is hereby granted, provided that the above
  6 * copyright notice and this permission notice appear in all copies.
  7 *
  8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 15 */
 16
 17#include <linux/slab.h>
 18#include <linux/spinlock.h>
 19
 20#include "ath.h"
 21#include "dfs_pattern_detector.h"
 22#include "dfs_pri_detector.h"
 23
 24struct ath_dfs_pool_stats global_dfs_pool_stats = {};
 25
 26#define DFS_POOL_STAT_INC(c) (global_dfs_pool_stats.c++)
 27#define DFS_POOL_STAT_DEC(c) (global_dfs_pool_stats.c--)
 28#define GET_PRI_TO_USE(MIN, MAX, RUNTIME) \
 29	(MIN + PRI_TOLERANCE == MAX - PRI_TOLERANCE ? \
 30	MIN + PRI_TOLERANCE : RUNTIME)
 31
 32/**
 33 * struct pulse_elem - elements in pulse queue
 34 * @ts: time stamp in usecs
 35 */
 36struct pulse_elem {
 37	struct list_head head;
 38	u64 ts;
 39};
 40
 41/**
 42 * pde_get_multiple() - get number of multiples considering a given tolerance
 43 * @return factor if abs(val - factor*fraction) <= tolerance, 0 otherwise
 44 */
 45static u32 pde_get_multiple(u32 val, u32 fraction, u32 tolerance)
 46{
 47	u32 remainder;
 48	u32 factor;
 49	u32 delta;
 50
 51	if (fraction == 0)
 52		return 0;
 53
 54	delta = (val < fraction) ? (fraction - val) : (val - fraction);
 55
 56	if (delta <= tolerance)
 57		/* val and fraction are within tolerance */
 58		return 1;
 59
 60	factor = val / fraction;
 61	remainder = val % fraction;
 62	if (remainder > tolerance) {
 63		/* no exact match */
 64		if ((fraction - remainder) <= tolerance)
 65			/* remainder is within tolerance */
 66			factor++;
 67		else
 68			factor = 0;
 69	}
 70	return factor;
 71}
 72
 73/**
 74 * DOC: Singleton Pulse and Sequence Pools
 75 *
 76 * Instances of pri_sequence and pulse_elem are kept in singleton pools to
 77 * reduce the number of dynamic allocations. They are shared between all
 78 * instances and grow up to the peak number of simultaneously used objects.
 79 *
 80 * Memory is freed after all references to the pools are released.
 81 */
 82static u32 singleton_pool_references;
 83static LIST_HEAD(pulse_pool);
 84static LIST_HEAD(pseq_pool);
 85static DEFINE_SPINLOCK(pool_lock);
 86
 87static void pool_register_ref(void)
 88{
 89	spin_lock_bh(&pool_lock);
 90	singleton_pool_references++;
 91	DFS_POOL_STAT_INC(pool_reference);
 92	spin_unlock_bh(&pool_lock);
 93}
 94
 95static void pool_deregister_ref(void)
 96{
 97	spin_lock_bh(&pool_lock);
 98	singleton_pool_references--;
 99	DFS_POOL_STAT_DEC(pool_reference);
100	if (singleton_pool_references == 0) {
101		/* free singleton pools with no references left */
102		struct pri_sequence *ps, *ps0;
103		struct pulse_elem *p, *p0;
104
105		list_for_each_entry_safe(p, p0, &pulse_pool, head) {
106			list_del(&p->head);
107			DFS_POOL_STAT_DEC(pulse_allocated);
108			kfree(p);
109		}
110		list_for_each_entry_safe(ps, ps0, &pseq_pool, head) {
111			list_del(&ps->head);
112			DFS_POOL_STAT_DEC(pseq_allocated);
113			kfree(ps);
114		}
115	}
116	spin_unlock_bh(&pool_lock);
117}
118
119static void pool_put_pulse_elem(struct pulse_elem *pe)
120{
121	spin_lock_bh(&pool_lock);
122	list_add(&pe->head, &pulse_pool);
123	DFS_POOL_STAT_DEC(pulse_used);
124	spin_unlock_bh(&pool_lock);
125}
126
127static void pool_put_pseq_elem(struct pri_sequence *pse)
128{
129	spin_lock_bh(&pool_lock);
130	list_add(&pse->head, &pseq_pool);
131	DFS_POOL_STAT_DEC(pseq_used);
132	spin_unlock_bh(&pool_lock);
133}
134
135static struct pri_sequence *pool_get_pseq_elem(void)
136{
137	struct pri_sequence *pse = NULL;
138	spin_lock_bh(&pool_lock);
139	if (!list_empty(&pseq_pool)) {
140		pse = list_first_entry(&pseq_pool, struct pri_sequence, head);
141		list_del(&pse->head);
142		DFS_POOL_STAT_INC(pseq_used);
143	}
144	spin_unlock_bh(&pool_lock);
145	return pse;
146}
147
148static struct pulse_elem *pool_get_pulse_elem(void)
149{
150	struct pulse_elem *pe = NULL;
151	spin_lock_bh(&pool_lock);
152	if (!list_empty(&pulse_pool)) {
153		pe = list_first_entry(&pulse_pool, struct pulse_elem, head);
154		list_del(&pe->head);
155		DFS_POOL_STAT_INC(pulse_used);
156	}
157	spin_unlock_bh(&pool_lock);
158	return pe;
159}
160
161static struct pulse_elem *pulse_queue_get_tail(struct pri_detector *pde)
162{
163	struct list_head *l = &pde->pulses;
164	if (list_empty(l))
165		return NULL;
166	return list_entry(l->prev, struct pulse_elem, head);
167}
168
169static bool pulse_queue_dequeue(struct pri_detector *pde)
170{
171	struct pulse_elem *p = pulse_queue_get_tail(pde);
172	if (p != NULL) {
173		list_del_init(&p->head);
174		pde->count--;
175		/* give it back to pool */
176		pool_put_pulse_elem(p);
177	}
178	return (pde->count > 0);
179}
180
181/* remove pulses older than window */
182static void pulse_queue_check_window(struct pri_detector *pde)
183{
184	u64 min_valid_ts;
185	struct pulse_elem *p;
186
187	/* there is no delta time with less than 2 pulses */
188	if (pde->count < 2)
189		return;
190
191	if (pde->last_ts <= pde->window_size)
192		return;
193
194	min_valid_ts = pde->last_ts - pde->window_size;
195	while ((p = pulse_queue_get_tail(pde)) != NULL) {
196		if (p->ts >= min_valid_ts)
197			return;
198		pulse_queue_dequeue(pde);
199	}
200}
201
202static bool pulse_queue_enqueue(struct pri_detector *pde, u64 ts)
203{
204	struct pulse_elem *p = pool_get_pulse_elem();
205	if (p == NULL) {
206		p = kmalloc(sizeof(*p), GFP_ATOMIC);
207		if (p == NULL) {
208			DFS_POOL_STAT_INC(pulse_alloc_error);
209			return false;
210		}
211		DFS_POOL_STAT_INC(pulse_allocated);
212		DFS_POOL_STAT_INC(pulse_used);
213	}
214	INIT_LIST_HEAD(&p->head);
215	p->ts = ts;
216	list_add(&p->head, &pde->pulses);
217	pde->count++;
218	pde->last_ts = ts;
219	pulse_queue_check_window(pde);
220	if (pde->count >= pde->max_count)
221		pulse_queue_dequeue(pde);
222	return true;
223}
224
225static bool pseq_handler_create_sequences(struct pri_detector *pde,
226					  u64 ts, u32 min_count)
227{
228	struct pulse_elem *p;
229	list_for_each_entry(p, &pde->pulses, head) {
230		struct pri_sequence ps, *new_ps;
231		struct pulse_elem *p2;
232		u32 tmp_false_count;
233		u64 min_valid_ts;
234		u32 delta_ts = ts - p->ts;
235
236		if (delta_ts < pde->rs->pri_min)
237			/* ignore too small pri */
238			continue;
239
240		if (delta_ts > pde->rs->pri_max)
241			/* stop on too large pri (sorted list) */
242			break;
243
244		/* build a new sequence with new potential pri */
245		ps.count = 2;
246		ps.count_falses = 0;
247		ps.first_ts = p->ts;
248		ps.last_ts = ts;
249		ps.pri = GET_PRI_TO_USE(pde->rs->pri_min,
250			pde->rs->pri_max, ts - p->ts);
251		ps.dur = ps.pri * (pde->rs->ppb - 1)
252				+ 2 * pde->rs->max_pri_tolerance;
253
254		p2 = p;
255		tmp_false_count = 0;
256		min_valid_ts = ts - ps.dur;
257		/* check which past pulses are candidates for new sequence */
258		list_for_each_entry_continue(p2, &pde->pulses, head) {
259			u32 factor;
260			if (p2->ts < min_valid_ts)
261				/* stop on crossing window border */
262				break;
263			/* check if pulse match (multi)PRI */
264			factor = pde_get_multiple(ps.last_ts - p2->ts, ps.pri,
265						  pde->rs->max_pri_tolerance);
266			if (factor > 0) {
267				ps.count++;
268				ps.first_ts = p2->ts;
269				/*
270				 * on match, add the intermediate falses
271				 * and reset counter
272				 */
273				ps.count_falses += tmp_false_count;
274				tmp_false_count = 0;
275			} else {
276				/* this is a potential false one */
277				tmp_false_count++;
278			}
279		}
280		if (ps.count <= min_count)
281			/* did not reach minimum count, drop sequence */
282			continue;
283
284		/* this is a valid one, add it */
285		ps.deadline_ts = ps.first_ts + ps.dur;
286		new_ps = pool_get_pseq_elem();
287		if (new_ps == NULL) {
288			new_ps = kmalloc(sizeof(*new_ps), GFP_ATOMIC);
289			if (new_ps == NULL) {
290				DFS_POOL_STAT_INC(pseq_alloc_error);
291				return false;
292			}
293			DFS_POOL_STAT_INC(pseq_allocated);
294			DFS_POOL_STAT_INC(pseq_used);
295		}
296		memcpy(new_ps, &ps, sizeof(ps));
297		INIT_LIST_HEAD(&new_ps->head);
298		list_add(&new_ps->head, &pde->sequences);
299	}
300	return true;
301}
302
303/* check new ts and add to all matching existing sequences */
304static u32
305pseq_handler_add_to_existing_seqs(struct pri_detector *pde, u64 ts)
306{
307	u32 max_count = 0;
308	struct pri_sequence *ps, *ps2;
309	list_for_each_entry_safe(ps, ps2, &pde->sequences, head) {
310		u32 delta_ts;
311		u32 factor;
312
313		/* first ensure that sequence is within window */
314		if (ts > ps->deadline_ts) {
315			list_del_init(&ps->head);
316			pool_put_pseq_elem(ps);
317			continue;
318		}
319
320		delta_ts = ts - ps->last_ts;
321		factor = pde_get_multiple(delta_ts, ps->pri,
322					  pde->rs->max_pri_tolerance);
323		if (factor > 0) {
324			ps->last_ts = ts;
325			ps->count++;
326
327			if (max_count < ps->count)
328				max_count = ps->count;
329		} else {
330			ps->count_falses++;
331		}
332	}
333	return max_count;
334}
335
336static struct pri_sequence *
337pseq_handler_check_detection(struct pri_detector *pde)
338{
339	struct pri_sequence *ps;
340
341	if (list_empty(&pde->sequences))
342		return NULL;
343
344	list_for_each_entry(ps, &pde->sequences, head) {
345		/*
346		 * we assume to have enough matching confidence if we
347		 * 1) have enough pulses
348		 * 2) have more matching than false pulses
349		 */
350		if ((ps->count >= pde->rs->ppb_thresh) &&
351		    (ps->count * pde->rs->num_pri >= ps->count_falses))
352			return ps;
353	}
354	return NULL;
355}
356
357
358/* free pulse queue and sequences list and give objects back to pools */
359static void pri_detector_reset(struct pri_detector *pde, u64 ts)
360{
361	struct pri_sequence *ps, *ps0;
362	struct pulse_elem *p, *p0;
363	list_for_each_entry_safe(ps, ps0, &pde->sequences, head) {
364		list_del_init(&ps->head);
365		pool_put_pseq_elem(ps);
366	}
367	list_for_each_entry_safe(p, p0, &pde->pulses, head) {
368		list_del_init(&p->head);
369		pool_put_pulse_elem(p);
370	}
371	pde->count = 0;
372	pde->last_ts = ts;
373}
374
375static void pri_detector_exit(struct pri_detector *de)
376{
377	pri_detector_reset(de, 0);
378	pool_deregister_ref();
379	kfree(de);
380}
381
382static struct pri_sequence *pri_detector_add_pulse(struct pri_detector *de,
383						   struct pulse_event *event)
384{
385	u32 max_updated_seq;
386	struct pri_sequence *ps;
387	u64 ts = event->ts;
388	const struct radar_detector_specs *rs = de->rs;
389
390	/* ignore pulses not within width range */
391	if ((rs->width_min > event->width) || (rs->width_max < event->width))
392		return NULL;
393
394	if ((ts - de->last_ts) < rs->max_pri_tolerance)
395		/* if delta to last pulse is too short, don't use this pulse */
396		return NULL;
397	/* radar detector spec needs chirp, but not detected */
398	if (rs->chirp && rs->chirp != event->chirp)
399		return NULL;
400
401	de->last_ts = ts;
402
403	max_updated_seq = pseq_handler_add_to_existing_seqs(de, ts);
404
405	if (!pseq_handler_create_sequences(de, ts, max_updated_seq)) {
406		pri_detector_reset(de, ts);
407		return NULL;
408	}
409
410	ps = pseq_handler_check_detection(de);
411
412	if (ps == NULL)
413		pulse_queue_enqueue(de, ts);
414
415	return ps;
416}
417
418struct pri_detector *pri_detector_init(const struct radar_detector_specs *rs)
419{
420	struct pri_detector *de;
421
422	de = kzalloc(sizeof(*de), GFP_ATOMIC);
423	if (de == NULL)
424		return NULL;
425	de->exit = pri_detector_exit;
426	de->add_pulse = pri_detector_add_pulse;
427	de->reset = pri_detector_reset;
428
429	INIT_LIST_HEAD(&de->sequences);
430	INIT_LIST_HEAD(&de->pulses);
431	de->window_size = rs->pri_max * rs->ppb * rs->num_pri;
432	de->max_count = rs->ppb * 2;
433	de->rs = rs;
434
435	pool_register_ref();
436	return de;
437}