Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2006-2013 Solarflare Communications Inc.
 
 
 
 
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/delay.h>
 10#include <linux/interrupt.h>
 11#include <linux/pci.h>
 12#include <linux/module.h>
 13#include <linux/seq_file.h>
 14#include <linux/cpu_rmap.h>
 15#include "net_driver.h"
 16#include "bitfield.h"
 17#include "efx.h"
 18#include "nic.h"
 19#include "ef10_regs.h"
 
 20#include "io.h"
 21#include "workarounds.h"
 22#include "mcdi_pcol.h"
 23
 24/**************************************************************************
 25 *
 26 * Generic buffer handling
 27 * These buffers are used for interrupt status, MAC stats, etc.
 28 *
 29 **************************************************************************/
 30
 31int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 32			 unsigned int len, gfp_t gfp_flags)
 33{
 34	buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
 35					  &buffer->dma_addr, gfp_flags);
 36	if (!buffer->addr)
 37		return -ENOMEM;
 38	buffer->len = len;
 39	return 0;
 40}
 41
 42void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 43{
 44	if (buffer->addr) {
 45		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
 46				  buffer->addr, buffer->dma_addr);
 47		buffer->addr = NULL;
 48	}
 49}
 50
 51/* Check whether an event is present in the eventq at the current
 52 * read pointer.  Only useful for self-test.
 53 */
 54bool efx_nic_event_present(struct efx_channel *channel)
 55{
 56	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
 57}
 58
 59void efx_nic_event_test_start(struct efx_channel *channel)
 60{
 61	channel->event_test_cpu = -1;
 62	smp_wmb();
 63	channel->efx->type->ev_test_generate(channel);
 64}
 65
 66int efx_nic_irq_test_start(struct efx_nic *efx)
 67{
 68	efx->last_irq_cpu = -1;
 69	smp_wmb();
 70	return efx->type->irq_test_generate(efx);
 71}
 72
 73/* Hook interrupt handler(s)
 74 * Try MSI and then legacy interrupts.
 75 */
 76int efx_nic_init_interrupt(struct efx_nic *efx)
 77{
 78	struct efx_channel *channel;
 79	unsigned int n_irqs;
 80	int rc;
 81
 82	if (!EFX_INT_MODE_USE_MSI(efx)) {
 83		rc = request_irq(efx->legacy_irq,
 84				 efx->type->irq_handle_legacy, IRQF_SHARED,
 85				 efx->name, efx);
 86		if (rc) {
 87			netif_err(efx, drv, efx->net_dev,
 88				  "failed to hook legacy IRQ %d\n",
 89				  efx->pci_dev->irq);
 90			goto fail1;
 91		}
 92		efx->irqs_hooked = true;
 93		return 0;
 94	}
 95
 96#ifdef CONFIG_RFS_ACCEL
 97	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
 98		efx->net_dev->rx_cpu_rmap =
 99			alloc_irq_cpu_rmap(efx->n_rx_channels);
100		if (!efx->net_dev->rx_cpu_rmap) {
101			rc = -ENOMEM;
102			goto fail1;
103		}
104	}
105#endif
106
107	/* Hook MSI or MSI-X interrupt */
108	n_irqs = 0;
109	efx_for_each_channel(channel, efx) {
110		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
111				 IRQF_PROBE_SHARED, /* Not shared */
112				 efx->msi_context[channel->channel].name,
113				 &efx->msi_context[channel->channel]);
114		if (rc) {
115			netif_err(efx, drv, efx->net_dev,
116				  "failed to hook IRQ %d\n", channel->irq);
117			goto fail2;
118		}
119		++n_irqs;
120
121#ifdef CONFIG_RFS_ACCEL
122		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
123		    channel->channel < efx->n_rx_channels) {
124			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
125					      channel->irq);
126			if (rc)
127				goto fail2;
128		}
129#endif
130	}
131
132	efx->irqs_hooked = true;
133	return 0;
134
135 fail2:
136#ifdef CONFIG_RFS_ACCEL
137	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
138	efx->net_dev->rx_cpu_rmap = NULL;
139#endif
140	efx_for_each_channel(channel, efx) {
141		if (n_irqs-- == 0)
142			break;
143		free_irq(channel->irq, &efx->msi_context[channel->channel]);
144	}
145 fail1:
146	return rc;
147}
148
149void efx_nic_fini_interrupt(struct efx_nic *efx)
150{
151	struct efx_channel *channel;
152
153#ifdef CONFIG_RFS_ACCEL
154	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
155	efx->net_dev->rx_cpu_rmap = NULL;
156#endif
157
158	if (!efx->irqs_hooked)
159		return;
160	if (EFX_INT_MODE_USE_MSI(efx)) {
161		/* Disable MSI/MSI-X interrupts */
162		efx_for_each_channel(channel, efx)
163			free_irq(channel->irq,
164				 &efx->msi_context[channel->channel]);
165	} else {
166		/* Disable legacy interrupt */
167		free_irq(efx->legacy_irq, efx);
168	}
169	efx->irqs_hooked = false;
170}
171
172/* Register dump */
173
 
 
 
 
174#define REGISTER_REVISION_ED	4
175#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
176
177struct efx_nic_reg {
178	u32 offset:24;
179	u32 min_revision:3, max_revision:3;
180};
181
182#define REGISTER(name, arch, min_rev, max_rev) {			\
183	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
184	REGISTER_REVISION_ ## arch ## min_rev,				\
185	REGISTER_REVISION_ ## arch ## max_rev				\
186}
 
 
 
 
 
 
187#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
188
189static const struct efx_nic_reg efx_nic_regs[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
191	/* XX_CORE_STAT is partly RC */
192	REGISTER_DZ(BIU_HW_REV_ID),
193	REGISTER_DZ(MC_DB_LWRD),
194	REGISTER_DZ(MC_DB_HWRD),
195};
196
197struct efx_nic_reg_table {
198	u32 offset:24;
199	u32 min_revision:3, max_revision:3;
200	u32 step:6, rows:21;
201};
202
203#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
204	offset,								\
205	REGISTER_REVISION_ ## arch ## min_rev,				\
206	REGISTER_REVISION_ ## arch ## max_rev,				\
207	step, rows							\
208}
209#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
210	REGISTER_TABLE_DIMENSIONS(					\
211		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
212		arch, min_rev, max_rev,					\
213		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
214		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
 
 
 
 
 
 
 
 
 
 
 
 
215#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
216
217static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
219};
220
221size_t efx_nic_get_regs_len(struct efx_nic *efx)
222{
223	const struct efx_nic_reg *reg;
224	const struct efx_nic_reg_table *table;
225	size_t len = 0;
226
227	for (reg = efx_nic_regs;
228	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
229	     reg++)
230		if (efx->type->revision >= reg->min_revision &&
231		    efx->type->revision <= reg->max_revision)
232			len += sizeof(efx_oword_t);
233
234	for (table = efx_nic_reg_tables;
235	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
236	     table++)
237		if (efx->type->revision >= table->min_revision &&
238		    efx->type->revision <= table->max_revision)
239			len += table->rows * min_t(size_t, table->step, 16);
240
241	return len;
242}
243
244void efx_nic_get_regs(struct efx_nic *efx, void *buf)
245{
246	const struct efx_nic_reg *reg;
247	const struct efx_nic_reg_table *table;
248
249	for (reg = efx_nic_regs;
250	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
251	     reg++) {
252		if (efx->type->revision >= reg->min_revision &&
253		    efx->type->revision <= reg->max_revision) {
254			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
255			buf += sizeof(efx_oword_t);
256		}
257	}
258
259	for (table = efx_nic_reg_tables;
260	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
261	     table++) {
262		size_t size, i;
263
264		if (!(efx->type->revision >= table->min_revision &&
265		      efx->type->revision <= table->max_revision))
266			continue;
267
268		size = min_t(size_t, table->step, 16);
269
270		for (i = 0; i < table->rows; i++) {
271			switch (table->step) {
272			case 4: /* 32-bit SRAM */
273				efx_readd(efx, buf, table->offset + 4 * i);
274				break;
 
 
 
 
 
275			case 16: /* 128-bit-readable register */
276				efx_reado_table(efx, buf, table->offset, i);
277				break;
278			case 32: /* 128-bit register, interleaved */
279				efx_reado_table(efx, buf, table->offset, 2 * i);
280				break;
281			default:
282				WARN_ON(1);
283				return;
284			}
285			buf += size;
286		}
287	}
288}
289
290/**
291 * efx_nic_describe_stats - Describe supported statistics for ethtool
292 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
293 * @count: Length of the @desc array
294 * @mask: Bitmask of which elements of @desc are enabled
295 * @names: Buffer to copy names to, or %NULL.  The names are copied
296 *	starting at intervals of %ETH_GSTRING_LEN bytes.
297 *
298 * Returns the number of visible statistics, i.e. the number of set
299 * bits in the first @count bits of @mask for which a name is defined.
300 */
301size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
302			      const unsigned long *mask, u8 *names)
303{
304	size_t visible = 0;
305	size_t index;
306
307	for_each_set_bit(index, mask, count) {
308		if (desc[index].name) {
309			if (names) {
310				strscpy(names, desc[index].name,
311					ETH_GSTRING_LEN);
312				names += ETH_GSTRING_LEN;
313			}
314			++visible;
315		}
316	}
317
318	return visible;
319}
320
321/**
322 * efx_nic_copy_stats - Copy stats from the DMA buffer in to an
323 *	intermediate buffer. This is used to get a consistent
324 *	set of stats while the DMA buffer can be written at any time
325 *	by the NIC.
326 * @efx: The associated NIC.
327 * @dest: Destination buffer. Must be the same size as the DMA buffer.
328 */
329int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest)
330{
331	__le64 *dma_stats = efx->stats_buffer.addr;
332	__le64 generation_start, generation_end;
333	int rc = 0, retry;
334
335	if (!dest)
336		return 0;
337
338	if (!dma_stats)
339		goto return_zeroes;
340
341	/* If we're unlucky enough to read statistics during the DMA, wait
342	 * up to 10ms for it to finish (typically takes <500us)
343	 */
344	for (retry = 0; retry < 100; ++retry) {
345		generation_end = dma_stats[efx->num_mac_stats - 1];
346		if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
347			goto return_zeroes;
348		rmb();
349		memcpy(dest, dma_stats, efx->num_mac_stats * sizeof(__le64));
350		rmb();
351		generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
352		if (generation_end == generation_start)
353			return 0; /* return good data */
354		udelay(100);
355	}
356
357	rc = -EIO;
358
359return_zeroes:
360	memset(dest, 0, efx->num_mac_stats * sizeof(u64));
361	return rc;
362}
363
364/**
365 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
366 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
367 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
368 *	the width is specified as 0 the corresponding element of
369 *	@stats is not updated.
370 * @count: Length of the @desc array
371 * @mask: Bitmask of which elements of @desc are enabled
372 * @stats: Buffer to update with the converted statistics.  The length
373 *	of this array must be at least @count.
374 * @dma_buf: DMA buffer containing hardware statistics
375 * @accumulate: If set, the converted values will be added rather than
376 *	directly stored to the corresponding elements of @stats
377 */
378void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
379			  const unsigned long *mask,
380			  u64 *stats, const void *dma_buf, bool accumulate)
381{
382	size_t index;
383
384	for_each_set_bit(index, mask, count) {
385		if (desc[index].dma_width) {
386			const void *addr = dma_buf + desc[index].offset;
387			u64 val;
388
389			switch (desc[index].dma_width) {
390			case 16:
391				val = le16_to_cpup((__le16 *)addr);
392				break;
393			case 32:
394				val = le32_to_cpup((__le32 *)addr);
395				break;
396			case 64:
397				val = le64_to_cpup((__le64 *)addr);
398				break;
399			default:
400				WARN_ON(1);
401				val = 0;
402				break;
403			}
404
405			if (accumulate)
406				stats[index] += val;
407			else
408				stats[index] = val;
409		}
410	}
411}
412
413void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
414{
415	/* if down, or this is the first update after coming up */
416	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
417		efx->rx_nodesc_drops_while_down +=
418			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
419	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
420	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
421	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
422}
v4.17
 
  1/****************************************************************************
  2 * Driver for Solarflare network controllers and boards
  3 * Copyright 2005-2006 Fen Systems Ltd.
  4 * Copyright 2006-2013 Solarflare Communications Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published
  8 * by the Free Software Foundation, incorporated herein by reference.
  9 */
 10
 11#include <linux/bitops.h>
 12#include <linux/delay.h>
 13#include <linux/interrupt.h>
 14#include <linux/pci.h>
 15#include <linux/module.h>
 16#include <linux/seq_file.h>
 17#include <linux/cpu_rmap.h>
 18#include "net_driver.h"
 19#include "bitfield.h"
 20#include "efx.h"
 21#include "nic.h"
 22#include "ef10_regs.h"
 23#include "farch_regs.h"
 24#include "io.h"
 25#include "workarounds.h"
 
 26
 27/**************************************************************************
 28 *
 29 * Generic buffer handling
 30 * These buffers are used for interrupt status, MAC stats, etc.
 31 *
 32 **************************************************************************/
 33
 34int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 35			 unsigned int len, gfp_t gfp_flags)
 36{
 37	buffer->addr = dma_zalloc_coherent(&efx->pci_dev->dev, len,
 38					   &buffer->dma_addr, gfp_flags);
 39	if (!buffer->addr)
 40		return -ENOMEM;
 41	buffer->len = len;
 42	return 0;
 43}
 44
 45void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
 46{
 47	if (buffer->addr) {
 48		dma_free_coherent(&efx->pci_dev->dev, buffer->len,
 49				  buffer->addr, buffer->dma_addr);
 50		buffer->addr = NULL;
 51	}
 52}
 53
 54/* Check whether an event is present in the eventq at the current
 55 * read pointer.  Only useful for self-test.
 56 */
 57bool efx_nic_event_present(struct efx_channel *channel)
 58{
 59	return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
 60}
 61
 62void efx_nic_event_test_start(struct efx_channel *channel)
 63{
 64	channel->event_test_cpu = -1;
 65	smp_wmb();
 66	channel->efx->type->ev_test_generate(channel);
 67}
 68
 69int efx_nic_irq_test_start(struct efx_nic *efx)
 70{
 71	efx->last_irq_cpu = -1;
 72	smp_wmb();
 73	return efx->type->irq_test_generate(efx);
 74}
 75
 76/* Hook interrupt handler(s)
 77 * Try MSI and then legacy interrupts.
 78 */
 79int efx_nic_init_interrupt(struct efx_nic *efx)
 80{
 81	struct efx_channel *channel;
 82	unsigned int n_irqs;
 83	int rc;
 84
 85	if (!EFX_INT_MODE_USE_MSI(efx)) {
 86		rc = request_irq(efx->legacy_irq,
 87				 efx->type->irq_handle_legacy, IRQF_SHARED,
 88				 efx->name, efx);
 89		if (rc) {
 90			netif_err(efx, drv, efx->net_dev,
 91				  "failed to hook legacy IRQ %d\n",
 92				  efx->pci_dev->irq);
 93			goto fail1;
 94		}
 
 95		return 0;
 96	}
 97
 98#ifdef CONFIG_RFS_ACCEL
 99	if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
100		efx->net_dev->rx_cpu_rmap =
101			alloc_irq_cpu_rmap(efx->n_rx_channels);
102		if (!efx->net_dev->rx_cpu_rmap) {
103			rc = -ENOMEM;
104			goto fail1;
105		}
106	}
107#endif
108
109	/* Hook MSI or MSI-X interrupt */
110	n_irqs = 0;
111	efx_for_each_channel(channel, efx) {
112		rc = request_irq(channel->irq, efx->type->irq_handle_msi,
113				 IRQF_PROBE_SHARED, /* Not shared */
114				 efx->msi_context[channel->channel].name,
115				 &efx->msi_context[channel->channel]);
116		if (rc) {
117			netif_err(efx, drv, efx->net_dev,
118				  "failed to hook IRQ %d\n", channel->irq);
119			goto fail2;
120		}
121		++n_irqs;
122
123#ifdef CONFIG_RFS_ACCEL
124		if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
125		    channel->channel < efx->n_rx_channels) {
126			rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
127					      channel->irq);
128			if (rc)
129				goto fail2;
130		}
131#endif
132	}
133
 
134	return 0;
135
136 fail2:
137#ifdef CONFIG_RFS_ACCEL
138	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
139	efx->net_dev->rx_cpu_rmap = NULL;
140#endif
141	efx_for_each_channel(channel, efx) {
142		if (n_irqs-- == 0)
143			break;
144		free_irq(channel->irq, &efx->msi_context[channel->channel]);
145	}
146 fail1:
147	return rc;
148}
149
150void efx_nic_fini_interrupt(struct efx_nic *efx)
151{
152	struct efx_channel *channel;
153
154#ifdef CONFIG_RFS_ACCEL
155	free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
156	efx->net_dev->rx_cpu_rmap = NULL;
157#endif
158
 
 
159	if (EFX_INT_MODE_USE_MSI(efx)) {
160		/* Disable MSI/MSI-X interrupts */
161		efx_for_each_channel(channel, efx)
162			free_irq(channel->irq,
163				 &efx->msi_context[channel->channel]);
164	} else {
165		/* Disable legacy interrupt */
166		free_irq(efx->legacy_irq, efx);
167	}
 
168}
169
170/* Register dump */
171
172#define REGISTER_REVISION_FA	1
173#define REGISTER_REVISION_FB	2
174#define REGISTER_REVISION_FC	3
175#define REGISTER_REVISION_FZ	3	/* last Falcon arch revision */
176#define REGISTER_REVISION_ED	4
177#define REGISTER_REVISION_EZ	4	/* latest EF10 revision */
178
179struct efx_nic_reg {
180	u32 offset:24;
181	u32 min_revision:3, max_revision:3;
182};
183
184#define REGISTER(name, arch, min_rev, max_rev) {			\
185	arch ## R_ ## min_rev ## max_rev ## _ ## name,			\
186	REGISTER_REVISION_ ## arch ## min_rev,				\
187	REGISTER_REVISION_ ## arch ## max_rev				\
188}
189#define REGISTER_AA(name) REGISTER(name, F, A, A)
190#define REGISTER_AB(name) REGISTER(name, F, A, B)
191#define REGISTER_AZ(name) REGISTER(name, F, A, Z)
192#define REGISTER_BB(name) REGISTER(name, F, B, B)
193#define REGISTER_BZ(name) REGISTER(name, F, B, Z)
194#define REGISTER_CZ(name) REGISTER(name, F, C, Z)
195#define REGISTER_DZ(name) REGISTER(name, E, D, Z)
196
197static const struct efx_nic_reg efx_nic_regs[] = {
198	REGISTER_AZ(ADR_REGION),
199	REGISTER_AZ(INT_EN_KER),
200	REGISTER_BZ(INT_EN_CHAR),
201	REGISTER_AZ(INT_ADR_KER),
202	REGISTER_BZ(INT_ADR_CHAR),
203	/* INT_ACK_KER is WO */
204	/* INT_ISR0 is RC */
205	REGISTER_AZ(HW_INIT),
206	REGISTER_CZ(USR_EV_CFG),
207	REGISTER_AB(EE_SPI_HCMD),
208	REGISTER_AB(EE_SPI_HADR),
209	REGISTER_AB(EE_SPI_HDATA),
210	REGISTER_AB(EE_BASE_PAGE),
211	REGISTER_AB(EE_VPD_CFG0),
212	/* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
213	/* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
214	/* PCIE_CORE_INDIRECT is indirect */
215	REGISTER_AB(NIC_STAT),
216	REGISTER_AB(GPIO_CTL),
217	REGISTER_AB(GLB_CTL),
218	/* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
219	REGISTER_BZ(DP_CTRL),
220	REGISTER_AZ(MEM_STAT),
221	REGISTER_AZ(CS_DEBUG),
222	REGISTER_AZ(ALTERA_BUILD),
223	REGISTER_AZ(CSR_SPARE),
224	REGISTER_AB(PCIE_SD_CTL0123),
225	REGISTER_AB(PCIE_SD_CTL45),
226	REGISTER_AB(PCIE_PCS_CTL_STAT),
227	/* DEBUG_DATA_OUT is not used */
228	/* DRV_EV is WO */
229	REGISTER_AZ(EVQ_CTL),
230	REGISTER_AZ(EVQ_CNT1),
231	REGISTER_AZ(EVQ_CNT2),
232	REGISTER_AZ(BUF_TBL_CFG),
233	REGISTER_AZ(SRM_RX_DC_CFG),
234	REGISTER_AZ(SRM_TX_DC_CFG),
235	REGISTER_AZ(SRM_CFG),
236	/* BUF_TBL_UPD is WO */
237	REGISTER_AZ(SRM_UPD_EVQ),
238	REGISTER_AZ(SRAM_PARITY),
239	REGISTER_AZ(RX_CFG),
240	REGISTER_BZ(RX_FILTER_CTL),
241	/* RX_FLUSH_DESCQ is WO */
242	REGISTER_AZ(RX_DC_CFG),
243	REGISTER_AZ(RX_DC_PF_WM),
244	REGISTER_BZ(RX_RSS_TKEY),
245	/* RX_NODESC_DROP is RC */
246	REGISTER_AA(RX_SELF_RST),
247	/* RX_DEBUG, RX_PUSH_DROP are not used */
248	REGISTER_CZ(RX_RSS_IPV6_REG1),
249	REGISTER_CZ(RX_RSS_IPV6_REG2),
250	REGISTER_CZ(RX_RSS_IPV6_REG3),
251	/* TX_FLUSH_DESCQ is WO */
252	REGISTER_AZ(TX_DC_CFG),
253	REGISTER_AA(TX_CHKSM_CFG),
254	REGISTER_AZ(TX_CFG),
255	/* TX_PUSH_DROP is not used */
256	REGISTER_AZ(TX_RESERVED),
257	REGISTER_BZ(TX_PACE),
258	/* TX_PACE_DROP_QID is RC */
259	REGISTER_BB(TX_VLAN),
260	REGISTER_BZ(TX_IPFIL_PORTEN),
261	REGISTER_AB(MD_TXD),
262	REGISTER_AB(MD_RXD),
263	REGISTER_AB(MD_CS),
264	REGISTER_AB(MD_PHY_ADR),
265	REGISTER_AB(MD_ID),
266	/* MD_STAT is RC */
267	REGISTER_AB(MAC_STAT_DMA),
268	REGISTER_AB(MAC_CTRL),
269	REGISTER_BB(GEN_MODE),
270	REGISTER_AB(MAC_MC_HASH_REG0),
271	REGISTER_AB(MAC_MC_HASH_REG1),
272	REGISTER_AB(GM_CFG1),
273	REGISTER_AB(GM_CFG2),
274	/* GM_IPG and GM_HD are not used */
275	REGISTER_AB(GM_MAX_FLEN),
276	/* GM_TEST is not used */
277	REGISTER_AB(GM_ADR1),
278	REGISTER_AB(GM_ADR2),
279	REGISTER_AB(GMF_CFG0),
280	REGISTER_AB(GMF_CFG1),
281	REGISTER_AB(GMF_CFG2),
282	REGISTER_AB(GMF_CFG3),
283	REGISTER_AB(GMF_CFG4),
284	REGISTER_AB(GMF_CFG5),
285	REGISTER_BB(TX_SRC_MAC_CTL),
286	REGISTER_AB(XM_ADR_LO),
287	REGISTER_AB(XM_ADR_HI),
288	REGISTER_AB(XM_GLB_CFG),
289	REGISTER_AB(XM_TX_CFG),
290	REGISTER_AB(XM_RX_CFG),
291	REGISTER_AB(XM_MGT_INT_MASK),
292	REGISTER_AB(XM_FC),
293	REGISTER_AB(XM_PAUSE_TIME),
294	REGISTER_AB(XM_TX_PARAM),
295	REGISTER_AB(XM_RX_PARAM),
296	/* XM_MGT_INT_MSK (note no 'A') is RC */
297	REGISTER_AB(XX_PWR_RST),
298	REGISTER_AB(XX_SD_CTL),
299	REGISTER_AB(XX_TXDRV_CTL),
300	/* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
301	/* XX_CORE_STAT is partly RC */
302	REGISTER_DZ(BIU_HW_REV_ID),
303	REGISTER_DZ(MC_DB_LWRD),
304	REGISTER_DZ(MC_DB_HWRD),
305};
306
307struct efx_nic_reg_table {
308	u32 offset:24;
309	u32 min_revision:3, max_revision:3;
310	u32 step:6, rows:21;
311};
312
313#define REGISTER_TABLE_DIMENSIONS(_, offset, arch, min_rev, max_rev, step, rows) { \
314	offset,								\
315	REGISTER_REVISION_ ## arch ## min_rev,				\
316	REGISTER_REVISION_ ## arch ## max_rev,				\
317	step, rows							\
318}
319#define REGISTER_TABLE(name, arch, min_rev, max_rev)			\
320	REGISTER_TABLE_DIMENSIONS(					\
321		name, arch ## R_ ## min_rev ## max_rev ## _ ## name,	\
322		arch, min_rev, max_rev,					\
323		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _STEP,	\
324		arch ## R_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
325#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, F, A, A)
326#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, F, A, Z)
327#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, F, B, B)
328#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, F, B, Z)
329#define REGISTER_TABLE_BB_CZ(name)					\
330	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, B, B,	\
331				  FR_BZ_ ## name ## _STEP,		\
332				  FR_BB_ ## name ## _ROWS),		\
333	REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, F, C, Z,	\
334				  FR_BZ_ ## name ## _STEP,		\
335				  FR_CZ_ ## name ## _ROWS)
336#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, F, C, Z)
337#define REGISTER_TABLE_DZ(name) REGISTER_TABLE(name, E, D, Z)
338
339static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
340	/* DRIVER is not used */
341	/* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
342	REGISTER_TABLE_BB(TX_IPFIL_TBL),
343	REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
344	REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
345	REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
346	REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
347	REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
348	REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
349	REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
350	/* We can't reasonably read all of the buffer table (up to 8MB!).
351	 * However this driver will only use a few entries.  Reading
352	 * 1K entries allows for some expansion of queue count and
353	 * size before we need to change the version. */
354	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
355				  F, A, A, 8, 1024),
356	REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
357				  F, B, Z, 8, 1024),
358	REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
359	REGISTER_TABLE_BB_CZ(TIMER_TBL),
360	REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
361	REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
362	/* TX_FILTER_TBL0 is huge and not used by this driver */
363	REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
364	REGISTER_TABLE_CZ(MC_TREG_SMEM),
365	/* MSIX_PBA_TABLE is not mapped */
366	/* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
367	REGISTER_TABLE_BZ(RX_FILTER_TBL0),
368	REGISTER_TABLE_DZ(BIU_MC_SFT_STATUS),
369};
370
371size_t efx_nic_get_regs_len(struct efx_nic *efx)
372{
373	const struct efx_nic_reg *reg;
374	const struct efx_nic_reg_table *table;
375	size_t len = 0;
376
377	for (reg = efx_nic_regs;
378	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
379	     reg++)
380		if (efx->type->revision >= reg->min_revision &&
381		    efx->type->revision <= reg->max_revision)
382			len += sizeof(efx_oword_t);
383
384	for (table = efx_nic_reg_tables;
385	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
386	     table++)
387		if (efx->type->revision >= table->min_revision &&
388		    efx->type->revision <= table->max_revision)
389			len += table->rows * min_t(size_t, table->step, 16);
390
391	return len;
392}
393
394void efx_nic_get_regs(struct efx_nic *efx, void *buf)
395{
396	const struct efx_nic_reg *reg;
397	const struct efx_nic_reg_table *table;
398
399	for (reg = efx_nic_regs;
400	     reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
401	     reg++) {
402		if (efx->type->revision >= reg->min_revision &&
403		    efx->type->revision <= reg->max_revision) {
404			efx_reado(efx, (efx_oword_t *)buf, reg->offset);
405			buf += sizeof(efx_oword_t);
406		}
407	}
408
409	for (table = efx_nic_reg_tables;
410	     table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
411	     table++) {
412		size_t size, i;
413
414		if (!(efx->type->revision >= table->min_revision &&
415		      efx->type->revision <= table->max_revision))
416			continue;
417
418		size = min_t(size_t, table->step, 16);
419
420		for (i = 0; i < table->rows; i++) {
421			switch (table->step) {
422			case 4: /* 32-bit SRAM */
423				efx_readd(efx, buf, table->offset + 4 * i);
424				break;
425			case 8: /* 64-bit SRAM */
426				efx_sram_readq(efx,
427					       efx->membase + table->offset,
428					       buf, i);
429				break;
430			case 16: /* 128-bit-readable register */
431				efx_reado_table(efx, buf, table->offset, i);
432				break;
433			case 32: /* 128-bit register, interleaved */
434				efx_reado_table(efx, buf, table->offset, 2 * i);
435				break;
436			default:
437				WARN_ON(1);
438				return;
439			}
440			buf += size;
441		}
442	}
443}
444
445/**
446 * efx_nic_describe_stats - Describe supported statistics for ethtool
447 * @desc: Array of &struct efx_hw_stat_desc describing the statistics
448 * @count: Length of the @desc array
449 * @mask: Bitmask of which elements of @desc are enabled
450 * @names: Buffer to copy names to, or %NULL.  The names are copied
451 *	starting at intervals of %ETH_GSTRING_LEN bytes.
452 *
453 * Returns the number of visible statistics, i.e. the number of set
454 * bits in the first @count bits of @mask for which a name is defined.
455 */
456size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
457			      const unsigned long *mask, u8 *names)
458{
459	size_t visible = 0;
460	size_t index;
461
462	for_each_set_bit(index, mask, count) {
463		if (desc[index].name) {
464			if (names) {
465				strlcpy(names, desc[index].name,
466					ETH_GSTRING_LEN);
467				names += ETH_GSTRING_LEN;
468			}
469			++visible;
470		}
471	}
472
473	return visible;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474}
475
476/**
477 * efx_nic_update_stats - Convert statistics DMA buffer to array of u64
478 * @desc: Array of &struct efx_hw_stat_desc describing the DMA buffer
479 *	layout.  DMA widths of 0, 16, 32 and 64 are supported; where
480 *	the width is specified as 0 the corresponding element of
481 *	@stats is not updated.
482 * @count: Length of the @desc array
483 * @mask: Bitmask of which elements of @desc are enabled
484 * @stats: Buffer to update with the converted statistics.  The length
485 *	of this array must be at least @count.
486 * @dma_buf: DMA buffer containing hardware statistics
487 * @accumulate: If set, the converted values will be added rather than
488 *	directly stored to the corresponding elements of @stats
489 */
490void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
491			  const unsigned long *mask,
492			  u64 *stats, const void *dma_buf, bool accumulate)
493{
494	size_t index;
495
496	for_each_set_bit(index, mask, count) {
497		if (desc[index].dma_width) {
498			const void *addr = dma_buf + desc[index].offset;
499			u64 val;
500
501			switch (desc[index].dma_width) {
502			case 16:
503				val = le16_to_cpup((__le16 *)addr);
504				break;
505			case 32:
506				val = le32_to_cpup((__le32 *)addr);
507				break;
508			case 64:
509				val = le64_to_cpup((__le64 *)addr);
510				break;
511			default:
512				WARN_ON(1);
513				val = 0;
514				break;
515			}
516
517			if (accumulate)
518				stats[index] += val;
519			else
520				stats[index] = val;
521		}
522	}
523}
524
525void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *rx_nodesc_drops)
526{
527	/* if down, or this is the first update after coming up */
528	if (!(efx->net_dev->flags & IFF_UP) || !efx->rx_nodesc_drops_prev_state)
529		efx->rx_nodesc_drops_while_down +=
530			*rx_nodesc_drops - efx->rx_nodesc_drops_total;
531	efx->rx_nodesc_drops_total = *rx_nodesc_drops;
532	efx->rx_nodesc_drops_prev_state = !!(efx->net_dev->flags & IFF_UP);
533	*rx_nodesc_drops -= efx->rx_nodesc_drops_while_down;
534}