Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
5 */
6
7#include <linux/delay.h>
8#include <linux/moduleparam.h>
9#include <linux/atomic.h>
10#include "net_driver.h"
11#include "nic.h"
12#include "io.h"
13#include "mcdi_pcol.h"
14
15/**************************************************************************
16 *
17 * Management-Controller-to-Driver Interface
18 *
19 **************************************************************************
20 */
21
22#define MCDI_RPC_TIMEOUT (10 * HZ)
23
24/* A reboot/assertion causes the MCDI status word to be set after the
25 * command word is set or a REBOOT event is sent. If we notice a reboot
26 * via these mechanisms then wait 250ms for the status word to be set.
27 */
28#define MCDI_STATUS_DELAY_US 100
29#define MCDI_STATUS_DELAY_COUNT 2500
30#define MCDI_STATUS_SLEEP_MS \
31 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
32
33#define SEQ_MASK \
34 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
35
36struct efx_mcdi_async_param {
37 struct list_head list;
38 unsigned int cmd;
39 size_t inlen;
40 size_t outlen;
41 bool quiet;
42 efx_mcdi_async_completer *complete;
43 unsigned long cookie;
44 /* followed by request/response buffer */
45};
46
47static void efx_mcdi_timeout_async(struct timer_list *t);
48static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
49 bool *was_attached_out);
50static bool efx_mcdi_poll_once(struct efx_nic *efx);
51static void efx_mcdi_abandon(struct efx_nic *efx);
52
53#ifdef CONFIG_SFC_MCDI_LOGGING
54static bool mcdi_logging_default;
55module_param(mcdi_logging_default, bool, 0644);
56MODULE_PARM_DESC(mcdi_logging_default,
57 "Enable MCDI logging on newly-probed functions");
58#endif
59
60int efx_mcdi_init(struct efx_nic *efx)
61{
62 struct efx_mcdi_iface *mcdi;
63 bool already_attached;
64 int rc = -ENOMEM;
65
66 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
67 if (!efx->mcdi)
68 goto fail;
69
70 mcdi = efx_mcdi(efx);
71 mcdi->efx = efx;
72#ifdef CONFIG_SFC_MCDI_LOGGING
73 /* consuming code assumes buffer is page-sized */
74 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
75 if (!mcdi->logging_buffer)
76 goto fail1;
77 mcdi->logging_enabled = mcdi_logging_default;
78#endif
79 init_waitqueue_head(&mcdi->wq);
80 init_waitqueue_head(&mcdi->proxy_rx_wq);
81 spin_lock_init(&mcdi->iface_lock);
82 mcdi->state = MCDI_STATE_QUIESCENT;
83 mcdi->mode = MCDI_MODE_POLL;
84 spin_lock_init(&mcdi->async_lock);
85 INIT_LIST_HEAD(&mcdi->async_list);
86 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
87
88 (void) efx_mcdi_poll_reboot(efx);
89 mcdi->new_epoch = true;
90
91 /* Recover from a failed assertion before probing */
92 rc = efx_mcdi_handle_assertion(efx);
93 if (rc)
94 goto fail2;
95
96 /* Let the MC (and BMC, if this is a LOM) know that the driver
97 * is loaded. We should do this before we reset the NIC.
98 */
99 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
100 if (rc) {
101 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
102 goto fail2;
103 }
104 if (already_attached)
105 /* Not a fatal error */
106 pci_err(efx->pci_dev, "Host already registered with MCPU\n");
107
108 if (efx->mcdi->fn_flags &
109 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
110 efx->primary = efx;
111
112 return 0;
113fail2:
114#ifdef CONFIG_SFC_MCDI_LOGGING
115 free_page((unsigned long)mcdi->logging_buffer);
116fail1:
117#endif
118 kfree(efx->mcdi);
119 efx->mcdi = NULL;
120fail:
121 return rc;
122}
123
124void efx_mcdi_detach(struct efx_nic *efx)
125{
126 if (!efx->mcdi)
127 return;
128
129 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
130
131 /* Relinquish the device (back to the BMC, if this is a LOM) */
132 efx_mcdi_drv_attach(efx, false, NULL);
133}
134
135void efx_mcdi_fini(struct efx_nic *efx)
136{
137 if (!efx->mcdi)
138 return;
139
140#ifdef CONFIG_SFC_MCDI_LOGGING
141 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
142#endif
143
144 kfree(efx->mcdi);
145}
146
147static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
148 const efx_dword_t *inbuf, size_t inlen)
149{
150 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
151#ifdef CONFIG_SFC_MCDI_LOGGING
152 char *buf = mcdi->logging_buffer; /* page-sized */
153#endif
154 efx_dword_t hdr[2];
155 size_t hdr_len;
156 u32 xflags, seqno;
157
158 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
159
160 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
161 spin_lock_bh(&mcdi->iface_lock);
162 ++mcdi->seqno;
163 seqno = mcdi->seqno & SEQ_MASK;
164 spin_unlock_bh(&mcdi->iface_lock);
165
166 xflags = 0;
167 if (mcdi->mode == MCDI_MODE_EVENTS)
168 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
169
170 if (efx->type->mcdi_max_ver == 1) {
171 /* MCDI v1 */
172 EFX_POPULATE_DWORD_7(hdr[0],
173 MCDI_HEADER_RESPONSE, 0,
174 MCDI_HEADER_RESYNC, 1,
175 MCDI_HEADER_CODE, cmd,
176 MCDI_HEADER_DATALEN, inlen,
177 MCDI_HEADER_SEQ, seqno,
178 MCDI_HEADER_XFLAGS, xflags,
179 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
180 hdr_len = 4;
181 } else {
182 /* MCDI v2 */
183 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
184 EFX_POPULATE_DWORD_7(hdr[0],
185 MCDI_HEADER_RESPONSE, 0,
186 MCDI_HEADER_RESYNC, 1,
187 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
188 MCDI_HEADER_DATALEN, 0,
189 MCDI_HEADER_SEQ, seqno,
190 MCDI_HEADER_XFLAGS, xflags,
191 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
192 EFX_POPULATE_DWORD_2(hdr[1],
193 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
194 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
195 hdr_len = 8;
196 }
197
198#ifdef CONFIG_SFC_MCDI_LOGGING
199 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
200 int bytes = 0;
201 int i;
202 /* Lengths should always be a whole number of dwords, so scream
203 * if they're not.
204 */
205 WARN_ON_ONCE(hdr_len % 4);
206 WARN_ON_ONCE(inlen % 4);
207
208 /* We own the logging buffer, as only one MCDI can be in
209 * progress on a NIC at any one time. So no need for locking.
210 */
211 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
212 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
213 " %08x",
214 le32_to_cpu(hdr[i].u32[0]));
215
216 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
217 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
218 " %08x",
219 le32_to_cpu(inbuf[i].u32[0]));
220
221 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
222 }
223#endif
224
225 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
226
227 mcdi->new_epoch = false;
228}
229
230static int efx_mcdi_errno(unsigned int mcdi_err)
231{
232 switch (mcdi_err) {
233 case 0:
234 return 0;
235#define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
237 return -name;
238 TRANSLATE_ERROR(EPERM);
239 TRANSLATE_ERROR(ENOENT);
240 TRANSLATE_ERROR(EINTR);
241 TRANSLATE_ERROR(EAGAIN);
242 TRANSLATE_ERROR(EACCES);
243 TRANSLATE_ERROR(EBUSY);
244 TRANSLATE_ERROR(EINVAL);
245 TRANSLATE_ERROR(EDEADLK);
246 TRANSLATE_ERROR(ENOSYS);
247 TRANSLATE_ERROR(ETIME);
248 TRANSLATE_ERROR(EALREADY);
249 TRANSLATE_ERROR(ENOSPC);
250#undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP:
252 return -EOPNOTSUPP;
253 case MC_CMD_ERR_ALLOC_FAIL:
254 return -ENOBUFS;
255 case MC_CMD_ERR_MAC_EXIST:
256 return -EADDRINUSE;
257 default:
258 return -EPROTO;
259 }
260}
261
262static void efx_mcdi_read_response_header(struct efx_nic *efx)
263{
264 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
265 unsigned int respseq, respcmd, error;
266#ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf = mcdi->logging_buffer; /* page-sized */
268#endif
269 efx_dword_t hdr;
270
271 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
272 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
273 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
274 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
275
276 if (respcmd != MC_CMD_V2_EXTN) {
277 mcdi->resp_hdr_len = 4;
278 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
279 } else {
280 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
281 mcdi->resp_hdr_len = 8;
282 mcdi->resp_data_len =
283 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
284 }
285
286#ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
288 size_t hdr_len, data_len;
289 int bytes = 0;
290 int i;
291
292 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
293 hdr_len = mcdi->resp_hdr_len / 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
296 */
297 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
298
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
301 */
302 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
303 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
304 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
305 " %08x", le32_to_cpu(hdr.u32[0]));
306 }
307
308 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
309 efx->type->mcdi_read_response(efx, &hdr,
310 mcdi->resp_hdr_len + (i * 4), 4);
311 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
312 " %08x", le32_to_cpu(hdr.u32[0]));
313 }
314
315 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
316 }
317#endif
318
319 mcdi->resprc_raw = 0;
320 if (error && mcdi->resp_data_len == 0) {
321 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
322 mcdi->resprc = -EIO;
323 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
324 netif_err(efx, hw, efx->net_dev,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq, mcdi->seqno);
327 mcdi->resprc = -EIO;
328 } else if (error) {
329 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
330 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
331 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
332 } else {
333 mcdi->resprc = 0;
334 }
335}
336
337static bool efx_mcdi_poll_once(struct efx_nic *efx)
338{
339 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
340
341 rmb();
342 if (!efx->type->mcdi_poll_response(efx))
343 return false;
344
345 spin_lock_bh(&mcdi->iface_lock);
346 efx_mcdi_read_response_header(efx);
347 spin_unlock_bh(&mcdi->iface_lock);
348
349 return true;
350}
351
352static int efx_mcdi_poll(struct efx_nic *efx)
353{
354 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
355 unsigned long time, finish;
356 unsigned int spins;
357 int rc;
358
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc = efx_mcdi_poll_reboot(efx);
361 if (rc) {
362 spin_lock_bh(&mcdi->iface_lock);
363 mcdi->resprc = rc;
364 mcdi->resp_hdr_len = 0;
365 mcdi->resp_data_len = 0;
366 spin_unlock_bh(&mcdi->iface_lock);
367 return 0;
368 }
369
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
373 */
374 spins = USER_TICK_USEC;
375 finish = jiffies + MCDI_RPC_TIMEOUT;
376
377 while (1) {
378 if (spins != 0) {
379 --spins;
380 udelay(1);
381 } else {
382 schedule_timeout_uninterruptible(1);
383 }
384
385 time = jiffies;
386
387 if (efx_mcdi_poll_once(efx))
388 break;
389
390 if (time_after(time, finish))
391 return -ETIMEDOUT;
392 }
393
394 /* Return rc=0 like wait_event_timeout() */
395 return 0;
396}
397
398/* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
400 */
401int efx_mcdi_poll_reboot(struct efx_nic *efx)
402{
403 if (!efx->mcdi)
404 return 0;
405
406 return efx->type->mcdi_poll_reboot(efx);
407}
408
409static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
410{
411 return cmpxchg(&mcdi->state,
412 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
413 MCDI_STATE_QUIESCENT;
414}
415
416static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
417{
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
420 */
421 wait_event(mcdi->wq,
422 cmpxchg(&mcdi->state,
423 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
424 MCDI_STATE_QUIESCENT);
425}
426
427static int efx_mcdi_await_completion(struct efx_nic *efx)
428{
429 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
430
431 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
432 MCDI_RPC_TIMEOUT) == 0)
433 return -ETIMEDOUT;
434
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
439 *
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
442 */
443 if (mcdi->mode == MCDI_MODE_POLL)
444 return efx_mcdi_poll(efx);
445
446 return 0;
447}
448
449/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
451 */
452static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
453{
454 if (cmpxchg(&mcdi->state,
455 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
456 MCDI_STATE_RUNNING_SYNC) {
457 wake_up(&mcdi->wq);
458 return true;
459 }
460
461 return false;
462}
463
464static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
465{
466 if (mcdi->mode == MCDI_MODE_EVENTS) {
467 struct efx_mcdi_async_param *async;
468 struct efx_nic *efx = mcdi->efx;
469
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi->async_lock);
472 async = list_first_entry_or_null(
473 &mcdi->async_list, struct efx_mcdi_async_param, list);
474 if (async) {
475 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
476 efx_mcdi_send_request(efx, async->cmd,
477 (const efx_dword_t *)(async + 1),
478 async->inlen);
479 mod_timer(&mcdi->async_timer,
480 jiffies + MCDI_RPC_TIMEOUT);
481 }
482 spin_unlock_bh(&mcdi->async_lock);
483
484 if (async)
485 return;
486 }
487
488 mcdi->state = MCDI_STATE_QUIESCENT;
489 wake_up(&mcdi->wq);
490}
491
492/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
496 */
497static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
498{
499 struct efx_nic *efx = mcdi->efx;
500 struct efx_mcdi_async_param *async;
501 size_t hdr_len, data_len, err_len;
502 efx_dword_t *outbuf;
503 MCDI_DECLARE_BUF_ERR(errbuf);
504 int rc;
505
506 if (cmpxchg(&mcdi->state,
507 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
508 MCDI_STATE_RUNNING_ASYNC)
509 return false;
510
511 spin_lock(&mcdi->iface_lock);
512 if (timeout) {
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
515 */
516 ++mcdi->seqno;
517 ++mcdi->credits;
518 rc = -ETIMEDOUT;
519 hdr_len = 0;
520 data_len = 0;
521 } else {
522 rc = mcdi->resprc;
523 hdr_len = mcdi->resp_hdr_len;
524 data_len = mcdi->resp_data_len;
525 }
526 spin_unlock(&mcdi->iface_lock);
527
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
531 */
532 if (!timeout)
533 del_timer_sync(&mcdi->async_timer);
534
535 spin_lock(&mcdi->async_lock);
536 async = list_first_entry(&mcdi->async_list,
537 struct efx_mcdi_async_param, list);
538 list_del(&async->list);
539 spin_unlock(&mcdi->async_lock);
540
541 outbuf = (efx_dword_t *)(async + 1);
542 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
543 min(async->outlen, data_len));
544 if (!timeout && rc && !async->quiet) {
545 err_len = min(sizeof(errbuf), data_len);
546 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
547 sizeof(errbuf));
548 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
549 err_len, rc);
550 }
551
552 if (async->complete)
553 async->complete(efx, async->cookie, rc, outbuf,
554 min(async->outlen, data_len));
555 kfree(async);
556
557 efx_mcdi_release(mcdi);
558
559 return true;
560}
561
562static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
563 unsigned int datalen, unsigned int mcdi_err)
564{
565 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
566 bool wake = false;
567
568 spin_lock(&mcdi->iface_lock);
569
570 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
571 if (mcdi->credits)
572 /* The request has been cancelled */
573 --mcdi->credits;
574 else
575 netif_err(efx, hw, efx->net_dev,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno, mcdi->seqno);
578 } else {
579 if (efx->type->mcdi_max_ver >= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx);
582 } else {
583 mcdi->resprc = efx_mcdi_errno(mcdi_err);
584 mcdi->resp_hdr_len = 4;
585 mcdi->resp_data_len = datalen;
586 }
587
588 wake = true;
589 }
590
591 spin_unlock(&mcdi->iface_lock);
592
593 if (wake) {
594 if (!efx_mcdi_complete_async(mcdi, false))
595 (void) efx_mcdi_complete_sync(mcdi);
596
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
602 */
603 }
604}
605
606static void efx_mcdi_timeout_async(struct timer_list *t)
607{
608 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
609
610 efx_mcdi_complete_async(mcdi, true);
611}
612
613static int
614efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
615{
616 if (efx->type->mcdi_max_ver < 0 ||
617 (efx->type->mcdi_max_ver < 2 &&
618 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
619 return -EINVAL;
620
621 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
622 (efx->type->mcdi_max_ver < 2 &&
623 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
624 return -EMSGSIZE;
625
626 return 0;
627}
628
629static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
630 size_t hdr_len, size_t data_len,
631 u32 *proxy_handle)
632{
633 MCDI_DECLARE_BUF_ERR(testbuf);
634 const size_t buflen = sizeof(testbuf);
635
636 if (!proxy_handle || data_len < buflen)
637 return false;
638
639 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
640 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
641 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
642 return true;
643 }
644
645 return false;
646}
647
648static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
649 size_t inlen,
650 efx_dword_t *outbuf, size_t outlen,
651 size_t *outlen_actual, bool quiet,
652 u32 *proxy_handle, int *raw_rc)
653{
654 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
655 MCDI_DECLARE_BUF_ERR(errbuf);
656 int rc;
657
658 if (mcdi->mode == MCDI_MODE_POLL)
659 rc = efx_mcdi_poll(efx);
660 else
661 rc = efx_mcdi_await_completion(efx);
662
663 if (rc != 0) {
664 netif_err(efx, hw, efx->net_dev,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd, (int)inlen, mcdi->mode);
667
668 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
669 netif_err(efx, hw, efx->net_dev,
670 "MCDI request was completed without an event\n");
671 rc = 0;
672 }
673
674 efx_mcdi_abandon(efx);
675
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
679 */
680 spin_lock_bh(&mcdi->iface_lock);
681 ++mcdi->seqno;
682 ++mcdi->credits;
683 spin_unlock_bh(&mcdi->iface_lock);
684 }
685
686 if (proxy_handle)
687 *proxy_handle = 0;
688
689 if (rc != 0) {
690 if (outlen_actual)
691 *outlen_actual = 0;
692 } else {
693 size_t hdr_len, data_len, err_len;
694
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi->iface_lock);
700 rc = mcdi->resprc;
701 if (raw_rc)
702 *raw_rc = mcdi->resprc_raw;
703 hdr_len = mcdi->resp_hdr_len;
704 data_len = mcdi->resp_data_len;
705 err_len = min(sizeof(errbuf), data_len);
706 spin_unlock_bh(&mcdi->iface_lock);
707
708 BUG_ON(rc > 0);
709
710 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
711 min(outlen, data_len));
712 if (outlen_actual)
713 *outlen_actual = data_len;
714
715 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
716
717 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc == -EIO || rc == -EINTR) {
720 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
721 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
722 cmd, -rc);
723 if (efx->type->mcdi_reboot_detected)
724 efx->type->mcdi_reboot_detected(efx);
725 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
726 } else if (proxy_handle && (rc == -EPROTO) &&
727 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
728 proxy_handle)) {
729 mcdi->proxy_rx_status = 0;
730 mcdi->proxy_rx_handle = 0;
731 mcdi->state = MCDI_STATE_PROXY_WAIT;
732 } else if (rc && !quiet) {
733 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
734 rc);
735 }
736
737 if (rc == -EIO || rc == -EINTR) {
738 msleep(MCDI_STATUS_SLEEP_MS);
739 efx_mcdi_poll_reboot(efx);
740 mcdi->new_epoch = true;
741 }
742 }
743
744 if (!proxy_handle || !*proxy_handle)
745 efx_mcdi_release(mcdi);
746 return rc;
747}
748
749static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
750{
751 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
752 /* Interrupt the proxy wait. */
753 mcdi->proxy_rx_status = -EINTR;
754 wake_up(&mcdi->proxy_rx_wq);
755 }
756}
757
758static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
759 u32 handle, int status)
760{
761 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
762
763 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
764
765 mcdi->proxy_rx_status = efx_mcdi_errno(status);
766 /* Ensure the status is written before we update the handle, since the
767 * latter is used to check if we've finished.
768 */
769 wmb();
770 mcdi->proxy_rx_handle = handle;
771 wake_up(&mcdi->proxy_rx_wq);
772}
773
774static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
775{
776 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
777 int rc;
778
779 /* Wait for a proxy event, or timeout. */
780 rc = wait_event_timeout(mcdi->proxy_rx_wq,
781 mcdi->proxy_rx_handle != 0 ||
782 mcdi->proxy_rx_status == -EINTR,
783 MCDI_RPC_TIMEOUT);
784
785 if (rc <= 0) {
786 netif_dbg(efx, hw, efx->net_dev,
787 "MCDI proxy timeout %d\n", handle);
788 return -ETIMEDOUT;
789 } else if (mcdi->proxy_rx_handle != handle) {
790 netif_warn(efx, hw, efx->net_dev,
791 "MCDI proxy unexpected handle %d (expected %d)\n",
792 mcdi->proxy_rx_handle, handle);
793 return -EINVAL;
794 }
795
796 return mcdi->proxy_rx_status;
797}
798
799static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
800 const efx_dword_t *inbuf, size_t inlen,
801 efx_dword_t *outbuf, size_t outlen,
802 size_t *outlen_actual, bool quiet, int *raw_rc)
803{
804 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
805 int rc;
806
807 if (inbuf && inlen && (inbuf == outbuf)) {
808 /* The input buffer can't be aliased with the output. */
809 WARN_ON(1);
810 return -EINVAL;
811 }
812
813 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
814 if (rc)
815 return rc;
816
817 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
818 outlen_actual, quiet, &proxy_handle, raw_rc);
819
820 if (proxy_handle) {
821 /* Handle proxy authorisation. This allows approval of MCDI
822 * operations to be delegated to the admin function, allowing
823 * fine control over (eg) multicast subscriptions.
824 */
825 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
826
827 netif_dbg(efx, hw, efx->net_dev,
828 "MCDI waiting for proxy auth %d\n",
829 proxy_handle);
830 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
831
832 if (rc == 0) {
833 netif_dbg(efx, hw, efx->net_dev,
834 "MCDI proxy retry %d\n", proxy_handle);
835
836 /* We now retry the original request. */
837 mcdi->state = MCDI_STATE_RUNNING_SYNC;
838 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
839
840 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
841 outbuf, outlen, outlen_actual,
842 quiet, NULL, raw_rc);
843 } else {
844 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
845 "MC command 0x%x failed after proxy auth rc=%d\n",
846 cmd, rc);
847
848 if (rc == -EINTR || rc == -EIO)
849 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
850 efx_mcdi_release(mcdi);
851 }
852 }
853
854 return rc;
855}
856
857static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
858 const efx_dword_t *inbuf, size_t inlen,
859 efx_dword_t *outbuf, size_t outlen,
860 size_t *outlen_actual, bool quiet)
861{
862 int raw_rc = 0;
863 int rc;
864
865 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
866 outbuf, outlen, outlen_actual, true, &raw_rc);
867
868 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
869 efx->type->is_vf) {
870 /* If the EVB port isn't available within a VF this may
871 * mean the PF is still bringing the switch up. We should
872 * retry our request shortly.
873 */
874 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
875 unsigned int delay_us = 10000;
876
877 netif_dbg(efx, hw, efx->net_dev,
878 "%s: NO_EVB_PORT; will retry request\n",
879 __func__);
880
881 do {
882 usleep_range(delay_us, delay_us + 10000);
883 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
884 outbuf, outlen, outlen_actual,
885 true, &raw_rc);
886 if (delay_us < 100000)
887 delay_us <<= 1;
888 } while ((rc == -EPROTO) &&
889 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
890 time_before(jiffies, abort_time));
891 }
892
893 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
894 efx_mcdi_display_error(efx, cmd, inlen,
895 outbuf, outlen, rc);
896
897 return rc;
898}
899
900/**
901 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
902 * @efx: NIC through which to issue the command
903 * @cmd: Command type number
904 * @inbuf: Command parameters
905 * @inlen: Length of command parameters, in bytes. Must be a multiple
906 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
907 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
908 * @outlen: Length of response buffer, in bytes. If the actual
909 * response is longer than @outlen & ~3, it will be truncated
910 * to that length.
911 * @outlen_actual: Pointer through which to return the actual response
912 * length. May be %NULL if this is not needed.
913 *
914 * This function may sleep and therefore must be called in an appropriate
915 * context.
916 *
917 * Return: A negative error code, or zero if successful. The error
918 * code may come from the MCDI response or may indicate a failure
919 * to communicate with the MC. In the former case, the response
920 * will still be copied to @outbuf and *@outlen_actual will be
921 * set accordingly. In the latter case, *@outlen_actual will be
922 * set to zero.
923 */
924int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
925 const efx_dword_t *inbuf, size_t inlen,
926 efx_dword_t *outbuf, size_t outlen,
927 size_t *outlen_actual)
928{
929 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
930 outlen_actual, false);
931}
932
933/* Normally, on receiving an error code in the MCDI response,
934 * efx_mcdi_rpc will log an error message containing (among other
935 * things) the raw error code, by means of efx_mcdi_display_error.
936 * This _quiet version suppresses that; if the caller wishes to log
937 * the error conditionally on the return code, it should call this
938 * function and is then responsible for calling efx_mcdi_display_error
939 * as needed.
940 */
941int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
942 const efx_dword_t *inbuf, size_t inlen,
943 efx_dword_t *outbuf, size_t outlen,
944 size_t *outlen_actual)
945{
946 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
947 outlen_actual, true);
948}
949
950int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
951 const efx_dword_t *inbuf, size_t inlen)
952{
953 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
954 int rc;
955
956 rc = efx_mcdi_check_supported(efx, cmd, inlen);
957 if (rc)
958 return rc;
959
960 if (efx->mc_bist_for_other_fn)
961 return -ENETDOWN;
962
963 if (mcdi->mode == MCDI_MODE_FAIL)
964 return -ENETDOWN;
965
966 efx_mcdi_acquire_sync(mcdi);
967 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
968 return 0;
969}
970
971static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
972 const efx_dword_t *inbuf, size_t inlen,
973 size_t outlen,
974 efx_mcdi_async_completer *complete,
975 unsigned long cookie, bool quiet)
976{
977 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
978 struct efx_mcdi_async_param *async;
979 int rc;
980
981 rc = efx_mcdi_check_supported(efx, cmd, inlen);
982 if (rc)
983 return rc;
984
985 if (efx->mc_bist_for_other_fn)
986 return -ENETDOWN;
987
988 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
989 GFP_ATOMIC);
990 if (!async)
991 return -ENOMEM;
992
993 async->cmd = cmd;
994 async->inlen = inlen;
995 async->outlen = outlen;
996 async->quiet = quiet;
997 async->complete = complete;
998 async->cookie = cookie;
999 memcpy(async + 1, inbuf, inlen);
1000
1001 spin_lock_bh(&mcdi->async_lock);
1002
1003 if (mcdi->mode == MCDI_MODE_EVENTS) {
1004 list_add_tail(&async->list, &mcdi->async_list);
1005
1006 /* If this is at the front of the queue, try to start it
1007 * immediately
1008 */
1009 if (mcdi->async_list.next == &async->list &&
1010 efx_mcdi_acquire_async(mcdi)) {
1011 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1012 mod_timer(&mcdi->async_timer,
1013 jiffies + MCDI_RPC_TIMEOUT);
1014 }
1015 } else {
1016 kfree(async);
1017 rc = -ENETDOWN;
1018 }
1019
1020 spin_unlock_bh(&mcdi->async_lock);
1021
1022 return rc;
1023}
1024
1025/**
1026 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1027 * @efx: NIC through which to issue the command
1028 * @cmd: Command type number
1029 * @inbuf: Command parameters
1030 * @inlen: Length of command parameters, in bytes
1031 * @outlen: Length to allocate for response buffer, in bytes
1032 * @complete: Function to be called on completion or cancellation.
1033 * @cookie: Arbitrary value to be passed to @complete.
1034 *
1035 * This function does not sleep and therefore may be called in atomic
1036 * context. It will fail if event queues are disabled or if MCDI
1037 * event completions have been disabled due to an error.
1038 *
1039 * If it succeeds, the @complete function will be called exactly once
1040 * in atomic context, when one of the following occurs:
1041 * (a) the completion event is received (in NAPI context)
1042 * (b) event queues are disabled (in the process that disables them)
1043 * (c) the request times-out (in timer context)
1044 */
1045int
1046efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1047 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1048 efx_mcdi_async_completer *complete, unsigned long cookie)
1049{
1050 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1051 cookie, false);
1052}
1053
1054int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1055 const efx_dword_t *inbuf, size_t inlen,
1056 size_t outlen, efx_mcdi_async_completer *complete,
1057 unsigned long cookie)
1058{
1059 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1060 cookie, true);
1061}
1062
1063int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1064 efx_dword_t *outbuf, size_t outlen,
1065 size_t *outlen_actual)
1066{
1067 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1068 outlen_actual, false, NULL, NULL);
1069}
1070
1071int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1072 efx_dword_t *outbuf, size_t outlen,
1073 size_t *outlen_actual)
1074{
1075 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1076 outlen_actual, true, NULL, NULL);
1077}
1078
1079void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1080 size_t inlen, efx_dword_t *outbuf,
1081 size_t outlen, int rc)
1082{
1083 int code = 0, err_arg = 0;
1084
1085 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1086 code = MCDI_DWORD(outbuf, ERR_CODE);
1087 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1088 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1089 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091 cmd, inlen, rc, code, err_arg);
1092}
1093
1094/* Switch to polled MCDI completions. This can be called in various
1095 * error conditions with various locks held, so it must be lockless.
1096 * Caller is responsible for flushing asynchronous requests later.
1097 */
1098void efx_mcdi_mode_poll(struct efx_nic *efx)
1099{
1100 struct efx_mcdi_iface *mcdi;
1101
1102 if (!efx->mcdi)
1103 return;
1104
1105 mcdi = efx_mcdi(efx);
1106 /* If already in polling mode, nothing to do.
1107 * If in fail-fast state, don't switch to polled completion.
1108 * FLR recovery will do that later.
1109 */
1110 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1111 return;
1112
1113 /* We can switch from event completion to polled completion, because
1114 * mcdi requests are always completed in shared memory. We do this by
1115 * switching the mode to POLL'd then completing the request.
1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1117 *
1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119 * which efx_mcdi_complete_sync() provides for us.
1120 */
1121 mcdi->mode = MCDI_MODE_POLL;
1122
1123 efx_mcdi_complete_sync(mcdi);
1124}
1125
1126/* Flush any running or queued asynchronous requests, after event processing
1127 * is stopped
1128 */
1129void efx_mcdi_flush_async(struct efx_nic *efx)
1130{
1131 struct efx_mcdi_async_param *async, *next;
1132 struct efx_mcdi_iface *mcdi;
1133
1134 if (!efx->mcdi)
1135 return;
1136
1137 mcdi = efx_mcdi(efx);
1138
1139 /* We must be in poll or fail mode so no more requests can be queued */
1140 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1141
1142 del_timer_sync(&mcdi->async_timer);
1143
1144 /* If a request is still running, make sure we give the MC
1145 * time to complete it so that the response won't overwrite our
1146 * next request.
1147 */
1148 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1149 efx_mcdi_poll(efx);
1150 mcdi->state = MCDI_STATE_QUIESCENT;
1151 }
1152
1153 /* Nothing else will access the async list now, so it is safe
1154 * to walk it without holding async_lock. If we hold it while
1155 * calling a completer then lockdep may warn that we have
1156 * acquired locks in the wrong order.
1157 */
1158 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1159 if (async->complete)
1160 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1161 list_del(&async->list);
1162 kfree(async);
1163 }
1164}
1165
1166void efx_mcdi_mode_event(struct efx_nic *efx)
1167{
1168 struct efx_mcdi_iface *mcdi;
1169
1170 if (!efx->mcdi)
1171 return;
1172
1173 mcdi = efx_mcdi(efx);
1174 /* If already in event completion mode, nothing to do.
1175 * If in fail-fast state, don't switch to event completion. FLR
1176 * recovery will do that later.
1177 */
1178 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1179 return;
1180
1181 /* We can't switch from polled to event completion in the middle of a
1182 * request, because the completion method is specified in the request.
1183 * So acquire the interface to serialise the requestors. We don't need
1184 * to acquire the iface_lock to change the mode here, but we do need a
1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186 * efx_mcdi_acquire() provides.
1187 */
1188 efx_mcdi_acquire_sync(mcdi);
1189 mcdi->mode = MCDI_MODE_EVENTS;
1190 efx_mcdi_release(mcdi);
1191}
1192
1193static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1194{
1195 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1196
1197 /* If there is an outstanding MCDI request, it has been terminated
1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199 * in polled mode, then do nothing because the MC reboot handler will
1200 * set the header correctly. However, if the mcdi interface is waiting
1201 * for a CMDDONE event it won't receive it [and since all MCDI events
1202 * are sent to the same queue, we can't be racing with
1203 * efx_mcdi_ev_cpl()]
1204 *
1205 * If there is an outstanding asynchronous request, we can't
1206 * complete it now (efx_mcdi_complete() would deadlock). The
1207 * reset process will take care of this.
1208 *
1209 * There's a race here with efx_mcdi_send_request(), because
1210 * we might receive a REBOOT event *before* the request has
1211 * been copied out. In polled mode (during startup) this is
1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213 * event mode, this condition is just an edge-case of
1214 * receiving a REBOOT event after posting the MCDI
1215 * request. Did the mc reboot before or after the copyout? The
1216 * best we can do always is just return failure.
1217 *
1218 * If there is an outstanding proxy response expected it is not going
1219 * to arrive. We should thus abort it.
1220 */
1221 spin_lock(&mcdi->iface_lock);
1222 efx_mcdi_proxy_abort(mcdi);
1223
1224 if (efx_mcdi_complete_sync(mcdi)) {
1225 if (mcdi->mode == MCDI_MODE_EVENTS) {
1226 mcdi->resprc = rc;
1227 mcdi->resp_hdr_len = 0;
1228 mcdi->resp_data_len = 0;
1229 ++mcdi->credits;
1230 }
1231 } else {
1232 int count;
1233
1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1235 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1236 rc = efx_mcdi_poll_reboot(efx);
1237 if (rc)
1238 break;
1239 udelay(MCDI_STATUS_DELAY_US);
1240 }
1241
1242 /* On EF10, a CODE_MC_REBOOT event can be received without the
1243 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244 * If zero was returned from the final call to
1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246 * MC has definitely rebooted so prepare for the reset.
1247 */
1248 if (!rc && efx->type->mcdi_reboot_detected)
1249 efx->type->mcdi_reboot_detected(efx);
1250
1251 mcdi->new_epoch = true;
1252
1253 /* Nobody was waiting for an MCDI request, so trigger a reset */
1254 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1255 }
1256
1257 spin_unlock(&mcdi->iface_lock);
1258}
1259
1260/* The MC is going down in to BIST mode. set the BIST flag to block
1261 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1262 * (which doesn't actually execute a reset, it waits for the controlling
1263 * function to reset it).
1264 */
1265static void efx_mcdi_ev_bist(struct efx_nic *efx)
1266{
1267 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1268
1269 spin_lock(&mcdi->iface_lock);
1270 efx->mc_bist_for_other_fn = true;
1271 efx_mcdi_proxy_abort(mcdi);
1272
1273 if (efx_mcdi_complete_sync(mcdi)) {
1274 if (mcdi->mode == MCDI_MODE_EVENTS) {
1275 mcdi->resprc = -EIO;
1276 mcdi->resp_hdr_len = 0;
1277 mcdi->resp_data_len = 0;
1278 ++mcdi->credits;
1279 }
1280 }
1281 mcdi->new_epoch = true;
1282 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1283 spin_unlock(&mcdi->iface_lock);
1284}
1285
1286/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1287 * to recover.
1288 */
1289static void efx_mcdi_abandon(struct efx_nic *efx)
1290{
1291 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1292
1293 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1294 return; /* it had already been done */
1295 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1296 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1297}
1298
1299static void efx_handle_drain_event(struct efx_nic *efx)
1300{
1301 if (atomic_dec_and_test(&efx->active_queues))
1302 wake_up(&efx->flush_wq);
1303
1304 WARN_ON(atomic_read(&efx->active_queues) < 0);
1305}
1306
1307/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1308void efx_mcdi_process_event(struct efx_channel *channel,
1309 efx_qword_t *event)
1310{
1311 struct efx_nic *efx = channel->efx;
1312 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1313 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1314
1315 switch (code) {
1316 case MCDI_EVENT_CODE_BADSSERT:
1317 netif_err(efx, hw, efx->net_dev,
1318 "MC watchdog or assertion failure at 0x%x\n", data);
1319 efx_mcdi_ev_death(efx, -EINTR);
1320 break;
1321
1322 case MCDI_EVENT_CODE_PMNOTICE:
1323 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1324 break;
1325
1326 case MCDI_EVENT_CODE_CMDDONE:
1327 efx_mcdi_ev_cpl(efx,
1328 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1329 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1330 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1331 break;
1332
1333 case MCDI_EVENT_CODE_LINKCHANGE:
1334 efx_mcdi_process_link_change(efx, event);
1335 break;
1336 case MCDI_EVENT_CODE_SENSOREVT:
1337 efx_sensor_event(efx, event);
1338 break;
1339 case MCDI_EVENT_CODE_SCHEDERR:
1340 netif_dbg(efx, hw, efx->net_dev,
1341 "MC Scheduler alert (0x%x)\n", data);
1342 break;
1343 case MCDI_EVENT_CODE_REBOOT:
1344 case MCDI_EVENT_CODE_MC_REBOOT:
1345 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1346 efx_mcdi_ev_death(efx, -EIO);
1347 break;
1348 case MCDI_EVENT_CODE_MC_BIST:
1349 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1350 efx_mcdi_ev_bist(efx);
1351 break;
1352 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1353 /* MAC stats are gather lazily. We can ignore this. */
1354 break;
1355 case MCDI_EVENT_CODE_PTP_FAULT:
1356 case MCDI_EVENT_CODE_PTP_PPS:
1357 efx_ptp_event(efx, event);
1358 break;
1359 case MCDI_EVENT_CODE_PTP_TIME:
1360 efx_time_sync_event(channel, event);
1361 break;
1362 case MCDI_EVENT_CODE_TX_FLUSH:
1363 case MCDI_EVENT_CODE_RX_FLUSH:
1364 /* Two flush events will be sent: one to the same event
1365 * queue as completions, and one to event queue 0.
1366 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1367 * flag will be set, and we should ignore the event
1368 * because we want to wait for all completions.
1369 */
1370 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1371 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1372 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1373 efx_handle_drain_event(efx);
1374 break;
1375 case MCDI_EVENT_CODE_TX_ERR:
1376 case MCDI_EVENT_CODE_RX_ERR:
1377 netif_err(efx, hw, efx->net_dev,
1378 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1379 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1380 EFX_QWORD_VAL(*event));
1381 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1382 break;
1383 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1384 efx_mcdi_ev_proxy_response(efx,
1385 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1386 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1387 break;
1388 default:
1389 netif_err(efx, hw, efx->net_dev,
1390 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1391 EFX_QWORD_VAL(*event));
1392 }
1393}
1394
1395/**************************************************************************
1396 *
1397 * Specific request functions
1398 *
1399 **************************************************************************
1400 */
1401
1402void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1403{
1404 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1405 size_t outlength;
1406 const __le16 *ver_words;
1407 size_t offset;
1408 int rc;
1409
1410 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1411 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1412 outbuf, sizeof(outbuf), &outlength);
1413 if (rc)
1414 goto fail;
1415 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1416 rc = -EIO;
1417 goto fail;
1418 }
1419
1420 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1421 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1422 le16_to_cpu(ver_words[0]),
1423 le16_to_cpu(ver_words[1]),
1424 le16_to_cpu(ver_words[2]),
1425 le16_to_cpu(ver_words[3]));
1426
1427 if (efx->type->print_additional_fwver)
1428 offset += efx->type->print_additional_fwver(efx, buf + offset,
1429 len - offset);
1430
1431 /* It's theoretically possible for the string to exceed 31
1432 * characters, though in practice the first three version
1433 * components are short enough that this doesn't happen.
1434 */
1435 if (WARN_ON(offset >= len))
1436 buf[0] = 0;
1437
1438 return;
1439
1440fail:
1441 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1442 buf[0] = 0;
1443}
1444
1445static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1446 bool *was_attached)
1447{
1448 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1449 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1450 size_t outlen;
1451 int rc;
1452
1453 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1454 driver_operating ? 1 : 0);
1455 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1456 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1457
1458 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1459 outbuf, sizeof(outbuf), &outlen);
1460 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1461 * specified will fail with EPERM, and we have to tell the MC we don't
1462 * care what firmware we get.
1463 */
1464 if (rc == -EPERM) {
1465 pci_dbg(efx->pci_dev,
1466 "%s with fw-variant setting failed EPERM, trying without it\n",
1467 __func__);
1468 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1469 MC_CMD_FW_DONT_CARE);
1470 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471 sizeof(inbuf), outbuf, sizeof(outbuf),
1472 &outlen);
1473 }
1474 if (rc) {
1475 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1476 outbuf, outlen, rc);
1477 goto fail;
1478 }
1479 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1480 rc = -EIO;
1481 goto fail;
1482 }
1483
1484 if (driver_operating) {
1485 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1486 efx->mcdi->fn_flags =
1487 MCDI_DWORD(outbuf,
1488 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1489 } else {
1490 /* Synthesise flags for Siena */
1491 efx->mcdi->fn_flags =
1492 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1494 (efx_port_num(efx) == 0) <<
1495 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1496 }
1497 }
1498
1499 /* We currently assume we have control of the external link
1500 * and are completely trusted by firmware. Abort probing
1501 * if that's not true for this function.
1502 */
1503
1504 if (was_attached != NULL)
1505 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1506 return 0;
1507
1508fail:
1509 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1510 return rc;
1511}
1512
1513int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1514 u16 *fw_subtype_list, u32 *capabilities)
1515{
1516 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1517 size_t outlen, i;
1518 int port_num = efx_port_num(efx);
1519 int rc;
1520
1521 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1522 /* we need __aligned(2) for ether_addr_copy */
1523 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1525
1526 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1527 outbuf, sizeof(outbuf), &outlen);
1528 if (rc)
1529 goto fail;
1530
1531 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1532 rc = -EIO;
1533 goto fail;
1534 }
1535
1536 if (mac_address)
1537 ether_addr_copy(mac_address,
1538 port_num ?
1539 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1540 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1541 if (fw_subtype_list) {
1542 for (i = 0;
1543 i < MCDI_VAR_ARRAY_LEN(outlen,
1544 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1545 i++)
1546 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1547 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1548 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1549 fw_subtype_list[i] = 0;
1550 }
1551 if (capabilities) {
1552 if (port_num)
1553 *capabilities = MCDI_DWORD(outbuf,
1554 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1555 else
1556 *capabilities = MCDI_DWORD(outbuf,
1557 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1558 }
1559
1560 return 0;
1561
1562fail:
1563 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1564 __func__, rc, (int)outlen);
1565
1566 return rc;
1567}
1568
1569int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1570{
1571 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1572 u32 dest = 0;
1573 int rc;
1574
1575 if (uart)
1576 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1577 if (evq)
1578 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1579
1580 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1581 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1582
1583 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1584
1585 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1586 NULL, 0, NULL);
1587 return rc;
1588}
1589
1590int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1591{
1592 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1593 size_t outlen;
1594 int rc;
1595
1596 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1597
1598 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1599 outbuf, sizeof(outbuf), &outlen);
1600 if (rc)
1601 goto fail;
1602 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1603 rc = -EIO;
1604 goto fail;
1605 }
1606
1607 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1608 return 0;
1609
1610fail:
1611 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1612 __func__, rc);
1613 return rc;
1614}
1615
1616/* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1617static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1618 u32 *nvram_types)
1619{
1620 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1621 GFP_KERNEL);
1622 size_t outlen;
1623 int rc;
1624
1625 if (!outbuf)
1626 return -ENOMEM;
1627
1628 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1629
1630 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1631 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1632 if (rc)
1633 goto fail;
1634
1635 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1636
1637 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1638 *number * sizeof(u32));
1639
1640fail:
1641 kfree(outbuf);
1642 return rc;
1643}
1644
1645int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1646 size_t *size_out, size_t *erase_size_out,
1647 bool *protected_out)
1648{
1649 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1650 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1651 size_t outlen;
1652 int rc;
1653
1654 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1655
1656 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1657 outbuf, sizeof(outbuf), &outlen);
1658 if (rc)
1659 goto fail;
1660 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1661 rc = -EIO;
1662 goto fail;
1663 }
1664
1665 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1666 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1667 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1668 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1669 return 0;
1670
1671fail:
1672 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1673 return rc;
1674}
1675
1676static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1677{
1678 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1679 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1680 int rc;
1681
1682 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1683
1684 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1685 outbuf, sizeof(outbuf), NULL);
1686 if (rc)
1687 return rc;
1688
1689 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1690 case MC_CMD_NVRAM_TEST_PASS:
1691 case MC_CMD_NVRAM_TEST_NOTSUPP:
1692 return 0;
1693 default:
1694 return -EIO;
1695 }
1696}
1697
1698/* This function tests nvram partitions using the new mcdi partition lookup scheme */
1699int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1700{
1701 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1702 GFP_KERNEL);
1703 unsigned int number;
1704 int rc, i;
1705
1706 if (!nvram_types)
1707 return -ENOMEM;
1708
1709 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1710 if (rc)
1711 goto fail;
1712
1713 /* Require at least one check */
1714 rc = -EAGAIN;
1715
1716 for (i = 0; i < number; i++) {
1717 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1718 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1719 continue;
1720
1721 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1722 if (rc)
1723 goto fail;
1724 }
1725
1726fail:
1727 kfree(nvram_types);
1728 return rc;
1729}
1730
1731int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1732{
1733 u32 nvram_types;
1734 unsigned int type;
1735 int rc;
1736
1737 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1738 if (rc)
1739 goto fail1;
1740
1741 type = 0;
1742 while (nvram_types != 0) {
1743 if (nvram_types & 1) {
1744 rc = efx_mcdi_nvram_test(efx, type);
1745 if (rc)
1746 goto fail2;
1747 }
1748 type++;
1749 nvram_types >>= 1;
1750 }
1751
1752 return 0;
1753
1754fail2:
1755 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1756 __func__, type);
1757fail1:
1758 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1759 return rc;
1760}
1761
1762/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1763 * negative on error.
1764 */
1765static int efx_mcdi_read_assertion(struct efx_nic *efx)
1766{
1767 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1768 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1769 unsigned int flags, index;
1770 const char *reason;
1771 size_t outlen;
1772 int retry;
1773 int rc;
1774
1775 /* Attempt to read any stored assertion state before we reboot
1776 * the mcfw out of the assertion handler. Retry twice, once
1777 * because a boot-time assertion might cause this command to fail
1778 * with EINTR. And once again because GET_ASSERTS can race with
1779 * MC_CMD_REBOOT running on the other port. */
1780 retry = 2;
1781 do {
1782 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1783 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1784 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1785 outbuf, sizeof(outbuf), &outlen);
1786 if (rc == -EPERM)
1787 return 0;
1788 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1789
1790 if (rc) {
1791 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1792 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1793 outlen, rc);
1794 return rc;
1795 }
1796 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1797 return -EIO;
1798
1799 /* Print out any recorded assertion state */
1800 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1801 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1802 return 0;
1803
1804 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1805 ? "system-level assertion"
1806 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1807 ? "thread-level assertion"
1808 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1809 ? "watchdog reset"
1810 : "unknown assertion";
1811 netif_err(efx, hw, efx->net_dev,
1812 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1813 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1814 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1815
1816 /* Print out the registers */
1817 for (index = 0;
1818 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1819 index++)
1820 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1821 1 + index,
1822 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1823 index));
1824
1825 return 1;
1826}
1827
1828static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1829{
1830 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1831 int rc;
1832
1833 /* If the MC is running debug firmware, it might now be
1834 * waiting for a debugger to attach, but we just want it to
1835 * reboot. We set a flag that makes the command a no-op if it
1836 * has already done so.
1837 * The MCDI will thus return either 0 or -EIO.
1838 */
1839 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1840 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1841 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1842 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1843 NULL, 0, NULL);
1844 if (rc == -EIO)
1845 rc = 0;
1846 if (rc)
1847 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1848 NULL, 0, rc);
1849 return rc;
1850}
1851
1852int efx_mcdi_handle_assertion(struct efx_nic *efx)
1853{
1854 int rc;
1855
1856 rc = efx_mcdi_read_assertion(efx);
1857 if (rc <= 0)
1858 return rc;
1859
1860 return efx_mcdi_exit_assertion(efx);
1861}
1862
1863int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1864{
1865 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1866
1867 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1868 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1869 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1870
1871 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1872
1873 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1874
1875 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1876}
1877
1878static int efx_mcdi_reset_func(struct efx_nic *efx)
1879{
1880 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1881 int rc;
1882
1883 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1884 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1885 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1886 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1887 NULL, 0, NULL);
1888 return rc;
1889}
1890
1891static int efx_mcdi_reset_mc(struct efx_nic *efx)
1892{
1893 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1894 int rc;
1895
1896 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1897 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1898 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1899 NULL, 0, NULL);
1900 /* White is black, and up is down */
1901 if (rc == -EIO)
1902 return 0;
1903 if (rc == 0)
1904 rc = -EIO;
1905 return rc;
1906}
1907
1908enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1909{
1910 return RESET_TYPE_RECOVER_OR_ALL;
1911}
1912
1913int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1914{
1915 int rc;
1916
1917 /* If MCDI is down, we can't handle_assertion */
1918 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1919 rc = pci_reset_function(efx->pci_dev);
1920 if (rc)
1921 return rc;
1922 /* Re-enable polled MCDI completion */
1923 if (efx->mcdi) {
1924 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1925 mcdi->mode = MCDI_MODE_POLL;
1926 }
1927 return 0;
1928 }
1929
1930 /* Recover from a failed assertion pre-reset */
1931 rc = efx_mcdi_handle_assertion(efx);
1932 if (rc)
1933 return rc;
1934
1935 if (method == RESET_TYPE_DATAPATH)
1936 return 0;
1937 else if (method == RESET_TYPE_WORLD)
1938 return efx_mcdi_reset_mc(efx);
1939 else
1940 return efx_mcdi_reset_func(efx);
1941}
1942
1943static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1944 const u8 *mac, int *id_out)
1945{
1946 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1947 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1948 size_t outlen;
1949 int rc;
1950
1951 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1952 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1953 MC_CMD_FILTER_MODE_SIMPLE);
1954 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1955
1956 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1957 outbuf, sizeof(outbuf), &outlen);
1958 if (rc)
1959 goto fail;
1960
1961 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1962 rc = -EIO;
1963 goto fail;
1964 }
1965
1966 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1967
1968 return 0;
1969
1970fail:
1971 *id_out = -1;
1972 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1973 return rc;
1974
1975}
1976
1977
1978int
1979efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1980{
1981 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1982}
1983
1984
1985int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1986{
1987 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1988 size_t outlen;
1989 int rc;
1990
1991 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1992 outbuf, sizeof(outbuf), &outlen);
1993 if (rc)
1994 goto fail;
1995
1996 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1997 rc = -EIO;
1998 goto fail;
1999 }
2000
2001 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2002
2003 return 0;
2004
2005fail:
2006 *id_out = -1;
2007 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2008 return rc;
2009}
2010
2011
2012int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2013{
2014 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2015 int rc;
2016
2017 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2018
2019 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2020 NULL, 0, NULL);
2021 return rc;
2022}
2023
2024int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2025{
2026 struct efx_channel *channel;
2027 struct efx_rx_queue *rx_queue;
2028 MCDI_DECLARE_BUF(inbuf,
2029 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2030 int rc, count;
2031
2032 BUILD_BUG_ON(EFX_MAX_CHANNELS >
2033 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2034
2035 count = 0;
2036 efx_for_each_channel(channel, efx) {
2037 efx_for_each_channel_rx_queue(rx_queue, channel) {
2038 if (rx_queue->flush_pending) {
2039 rx_queue->flush_pending = false;
2040 atomic_dec(&efx->rxq_flush_pending);
2041 MCDI_SET_ARRAY_DWORD(
2042 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2043 count, efx_rx_queue_index(rx_queue));
2044 count++;
2045 }
2046 }
2047 }
2048
2049 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2050 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2051 WARN_ON(rc < 0);
2052
2053 return rc;
2054}
2055
2056int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2057{
2058 int rc;
2059
2060 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2061 return rc;
2062}
2063
2064int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2065 unsigned int *flags)
2066{
2067 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2068 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2069 size_t outlen;
2070 int rc;
2071
2072 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2073 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2074 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2075 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2076 outbuf, sizeof(outbuf), &outlen);
2077 if (rc)
2078 return rc;
2079
2080 if (!flags)
2081 return 0;
2082
2083 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2084 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2085 else
2086 *flags = 0;
2087
2088 return 0;
2089}
2090
2091int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2092 unsigned int *enabled_out)
2093{
2094 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2095 size_t outlen;
2096 int rc;
2097
2098 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2099 outbuf, sizeof(outbuf), &outlen);
2100 if (rc)
2101 goto fail;
2102
2103 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2104 rc = -EIO;
2105 goto fail;
2106 }
2107
2108 if (impl_out)
2109 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2110
2111 if (enabled_out)
2112 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2113
2114 return 0;
2115
2116fail:
2117 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2118 * terrifying. The call site will have to deal with it though.
2119 */
2120 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2121 "%s: failed rc=%d\n", __func__, rc);
2122 return rc;
2123}
2124
2125/* Failure to read a privilege mask is never fatal, because we can always
2126 * carry on as though we didn't have the privilege we were interested in.
2127 * So use efx_mcdi_rpc_quiet().
2128 */
2129int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
2130{
2131 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2132 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
2133 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2134 size_t outlen;
2135 u16 pf, vf;
2136 int rc;
2137
2138 if (!efx || !mask)
2139 return -EINVAL;
2140
2141 /* Get our function number */
2142 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
2143 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
2144 &outlen);
2145 if (rc != 0)
2146 return rc;
2147 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
2148 return -EIO;
2149
2150 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
2151 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
2152
2153 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
2154 PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2155 PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2156
2157 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
2158 pm_inbuf, sizeof(pm_inbuf),
2159 pm_outbuf, sizeof(pm_outbuf), &outlen);
2160
2161 if (rc != 0)
2162 return rc;
2163 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
2164 return -EIO;
2165
2166 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
2167
2168 return 0;
2169}
2170
2171int efx_mcdi_nvram_metadata(struct efx_nic *efx, unsigned int type,
2172 u32 *subtype, u16 version[4], char *desc,
2173 size_t descsize)
2174{
2175 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
2176 efx_dword_t *outbuf;
2177 size_t outlen;
2178 u32 flags;
2179 int rc;
2180
2181 outbuf = kzalloc(MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2, GFP_KERNEL);
2182 if (!outbuf)
2183 return -ENOMEM;
2184
2185 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
2186
2187 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_NVRAM_METADATA, inbuf,
2188 sizeof(inbuf), outbuf,
2189 MC_CMD_NVRAM_METADATA_OUT_LENMAX_MCDI2,
2190 &outlen);
2191 if (rc)
2192 goto out_free;
2193 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN) {
2194 rc = -EIO;
2195 goto out_free;
2196 }
2197
2198 flags = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS);
2199
2200 if (desc && descsize > 0) {
2201 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_VALID_LBN)) {
2202 if (descsize <=
2203 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen)) {
2204 rc = -E2BIG;
2205 goto out_free;
2206 }
2207
2208 strscpy(desc,
2209 MCDI_PTR(outbuf, NVRAM_METADATA_OUT_DESCRIPTION),
2210 MC_CMD_NVRAM_METADATA_OUT_DESCRIPTION_NUM(outlen));
2211 } else {
2212 desc[0] = '\0';
2213 }
2214 }
2215
2216 if (subtype) {
2217 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
2218 *subtype = MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_SUBTYPE);
2219 else
2220 *subtype = 0;
2221 }
2222
2223 if (version) {
2224 if (flags & BIT(MC_CMD_NVRAM_METADATA_OUT_VERSION_VALID_LBN)) {
2225 version[0] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_W);
2226 version[1] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_X);
2227 version[2] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Y);
2228 version[3] = MCDI_WORD(outbuf, NVRAM_METADATA_OUT_VERSION_Z);
2229 } else {
2230 version[0] = 0;
2231 version[1] = 0;
2232 version[2] = 0;
2233 version[3] = 0;
2234 }
2235 }
2236
2237out_free:
2238 kfree(outbuf);
2239 return rc;
2240}
2241
2242#ifdef CONFIG_SFC_MTD
2243
2244#define EFX_MCDI_NVRAM_LEN_MAX 128
2245
2246static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2247{
2248 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2249 int rc;
2250
2251 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2252 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2253 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2254 1);
2255
2256 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2257
2258 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2259 NULL, 0, NULL);
2260
2261 return rc;
2262}
2263
2264static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2265 loff_t offset, u8 *buffer, size_t length)
2266{
2267 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2268 MCDI_DECLARE_BUF(outbuf,
2269 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2270 size_t outlen;
2271 int rc;
2272
2273 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2274 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2275 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2276 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2277 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2278
2279 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2280 outbuf, sizeof(outbuf), &outlen);
2281 if (rc)
2282 return rc;
2283
2284 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2285 return 0;
2286}
2287
2288static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2289 loff_t offset, const u8 *buffer, size_t length)
2290{
2291 MCDI_DECLARE_BUF(inbuf,
2292 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2293 int rc;
2294
2295 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2296 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2297 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2298 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2299
2300 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2301
2302 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2303 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2304 NULL, 0, NULL);
2305 return rc;
2306}
2307
2308static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2309 loff_t offset, size_t length)
2310{
2311 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2312 int rc;
2313
2314 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2315 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2316 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2317
2318 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2319
2320 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2321 NULL, 0, NULL);
2322 return rc;
2323}
2324
2325static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2326{
2327 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2328 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2329 size_t outlen;
2330 int rc, rc2;
2331
2332 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2333 /* Always set this flag. Old firmware ignores it */
2334 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2335 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2336 1);
2337
2338 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2339 outbuf, sizeof(outbuf), &outlen);
2340 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2341 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2342 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2343 netif_err(efx, drv, efx->net_dev,
2344 "NVRAM update failed verification with code 0x%x\n",
2345 rc2);
2346 switch (rc2) {
2347 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2348 break;
2349 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2350 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2351 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2352 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2353 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2354 rc = -EIO;
2355 break;
2356 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2357 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2358 rc = -EINVAL;
2359 break;
2360 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2361 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2362 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2363 rc = -EPERM;
2364 break;
2365 default:
2366 netif_err(efx, drv, efx->net_dev,
2367 "Unknown response to NVRAM_UPDATE_FINISH\n");
2368 rc = -EIO;
2369 }
2370 }
2371
2372 return rc;
2373}
2374
2375int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2376 size_t len, size_t *retlen, u8 *buffer)
2377{
2378 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2379 struct efx_nic *efx = mtd->priv;
2380 loff_t offset = start;
2381 loff_t end = min_t(loff_t, start + len, mtd->size);
2382 size_t chunk;
2383 int rc = 0;
2384
2385 while (offset < end) {
2386 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2387 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2388 buffer, chunk);
2389 if (rc)
2390 goto out;
2391 offset += chunk;
2392 buffer += chunk;
2393 }
2394out:
2395 *retlen = offset - start;
2396 return rc;
2397}
2398
2399int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2400{
2401 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2402 struct efx_nic *efx = mtd->priv;
2403 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2404 loff_t end = min_t(loff_t, start + len, mtd->size);
2405 size_t chunk = part->common.mtd.erasesize;
2406 int rc = 0;
2407
2408 if (!part->updating) {
2409 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2410 if (rc)
2411 goto out;
2412 part->updating = true;
2413 }
2414
2415 /* The MCDI interface can in fact do multiple erase blocks at once;
2416 * but erasing may be slow, so we make multiple calls here to avoid
2417 * tripping the MCDI RPC timeout. */
2418 while (offset < end) {
2419 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2420 chunk);
2421 if (rc)
2422 goto out;
2423 offset += chunk;
2424 }
2425out:
2426 return rc;
2427}
2428
2429int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2430 size_t len, size_t *retlen, const u8 *buffer)
2431{
2432 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2433 struct efx_nic *efx = mtd->priv;
2434 loff_t offset = start;
2435 loff_t end = min_t(loff_t, start + len, mtd->size);
2436 size_t chunk;
2437 int rc = 0;
2438
2439 if (!part->updating) {
2440 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2441 if (rc)
2442 goto out;
2443 part->updating = true;
2444 }
2445
2446 while (offset < end) {
2447 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2448 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2449 buffer, chunk);
2450 if (rc)
2451 goto out;
2452 offset += chunk;
2453 buffer += chunk;
2454 }
2455out:
2456 *retlen = offset - start;
2457 return rc;
2458}
2459
2460int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2461{
2462 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2463 struct efx_nic *efx = mtd->priv;
2464 int rc = 0;
2465
2466 if (part->updating) {
2467 part->updating = false;
2468 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2469 }
2470
2471 return rc;
2472}
2473
2474void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2475{
2476 struct efx_mcdi_mtd_partition *mcdi_part =
2477 container_of(part, struct efx_mcdi_mtd_partition, common);
2478 struct efx_nic *efx = part->mtd.priv;
2479
2480 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2481 efx->name, part->type_name, mcdi_part->fw_subtype);
2482}
2483
2484#endif /* CONFIG_SFC_MTD */
1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include <linux/delay.h>
11#include <linux/moduleparam.h>
12#include <linux/atomic.h>
13#include "net_driver.h"
14#include "nic.h"
15#include "io.h"
16#include "farch_regs.h"
17#include "mcdi_pcol.h"
18
19/**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26#define MCDI_RPC_TIMEOUT (10 * HZ)
27
28/* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32#define MCDI_STATUS_DELAY_US 100
33#define MCDI_STATUS_DELAY_COUNT 2500
34#define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37#define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49};
50
51static void efx_mcdi_timeout_async(struct timer_list *t);
52static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54static bool efx_mcdi_poll_once(struct efx_nic *efx);
55static void efx_mcdi_abandon(struct efx_nic *efx);
56
57#ifdef CONFIG_SFC_MCDI_LOGGING
58static bool mcdi_logging_default;
59module_param(mcdi_logging_default, bool, 0644);
60MODULE_PARM_DESC(mcdi_logging_default,
61 "Enable MCDI logging on newly-probed functions");
62#endif
63
64int efx_mcdi_init(struct efx_nic *efx)
65{
66 struct efx_mcdi_iface *mcdi;
67 bool already_attached;
68 int rc = -ENOMEM;
69
70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 if (!efx->mcdi)
72 goto fail;
73
74 mcdi = efx_mcdi(efx);
75 mcdi->efx = efx;
76#ifdef CONFIG_SFC_MCDI_LOGGING
77 /* consuming code assumes buffer is page-sized */
78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 if (!mcdi->logging_buffer)
80 goto fail1;
81 mcdi->logging_enabled = mcdi_logging_default;
82#endif
83 init_waitqueue_head(&mcdi->wq);
84 init_waitqueue_head(&mcdi->proxy_rx_wq);
85 spin_lock_init(&mcdi->iface_lock);
86 mcdi->state = MCDI_STATE_QUIESCENT;
87 mcdi->mode = MCDI_MODE_POLL;
88 spin_lock_init(&mcdi->async_lock);
89 INIT_LIST_HEAD(&mcdi->async_list);
90 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
91
92 (void) efx_mcdi_poll_reboot(efx);
93 mcdi->new_epoch = true;
94
95 /* Recover from a failed assertion before probing */
96 rc = efx_mcdi_handle_assertion(efx);
97 if (rc)
98 goto fail2;
99
100 /* Let the MC (and BMC, if this is a LOM) know that the driver
101 * is loaded. We should do this before we reset the NIC.
102 */
103 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
104 if (rc) {
105 netif_err(efx, probe, efx->net_dev,
106 "Unable to register driver with MCPU\n");
107 goto fail2;
108 }
109 if (already_attached)
110 /* Not a fatal error */
111 netif_err(efx, probe, efx->net_dev,
112 "Host already registered with MCPU\n");
113
114 if (efx->mcdi->fn_flags &
115 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
116 efx->primary = efx;
117
118 return 0;
119fail2:
120#ifdef CONFIG_SFC_MCDI_LOGGING
121 free_page((unsigned long)mcdi->logging_buffer);
122fail1:
123#endif
124 kfree(efx->mcdi);
125 efx->mcdi = NULL;
126fail:
127 return rc;
128}
129
130void efx_mcdi_detach(struct efx_nic *efx)
131{
132 if (!efx->mcdi)
133 return;
134
135 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
136
137 /* Relinquish the device (back to the BMC, if this is a LOM) */
138 efx_mcdi_drv_attach(efx, false, NULL);
139}
140
141void efx_mcdi_fini(struct efx_nic *efx)
142{
143 if (!efx->mcdi)
144 return;
145
146#ifdef CONFIG_SFC_MCDI_LOGGING
147 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
148#endif
149
150 kfree(efx->mcdi);
151}
152
153static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
154 const efx_dword_t *inbuf, size_t inlen)
155{
156 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
157#ifdef CONFIG_SFC_MCDI_LOGGING
158 char *buf = mcdi->logging_buffer; /* page-sized */
159#endif
160 efx_dword_t hdr[2];
161 size_t hdr_len;
162 u32 xflags, seqno;
163
164 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
165
166 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
167 spin_lock_bh(&mcdi->iface_lock);
168 ++mcdi->seqno;
169 spin_unlock_bh(&mcdi->iface_lock);
170
171 seqno = mcdi->seqno & SEQ_MASK;
172 xflags = 0;
173 if (mcdi->mode == MCDI_MODE_EVENTS)
174 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
175
176 if (efx->type->mcdi_max_ver == 1) {
177 /* MCDI v1 */
178 EFX_POPULATE_DWORD_7(hdr[0],
179 MCDI_HEADER_RESPONSE, 0,
180 MCDI_HEADER_RESYNC, 1,
181 MCDI_HEADER_CODE, cmd,
182 MCDI_HEADER_DATALEN, inlen,
183 MCDI_HEADER_SEQ, seqno,
184 MCDI_HEADER_XFLAGS, xflags,
185 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
186 hdr_len = 4;
187 } else {
188 /* MCDI v2 */
189 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
190 EFX_POPULATE_DWORD_7(hdr[0],
191 MCDI_HEADER_RESPONSE, 0,
192 MCDI_HEADER_RESYNC, 1,
193 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
194 MCDI_HEADER_DATALEN, 0,
195 MCDI_HEADER_SEQ, seqno,
196 MCDI_HEADER_XFLAGS, xflags,
197 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
198 EFX_POPULATE_DWORD_2(hdr[1],
199 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
200 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
201 hdr_len = 8;
202 }
203
204#ifdef CONFIG_SFC_MCDI_LOGGING
205 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
206 int bytes = 0;
207 int i;
208 /* Lengths should always be a whole number of dwords, so scream
209 * if they're not.
210 */
211 WARN_ON_ONCE(hdr_len % 4);
212 WARN_ON_ONCE(inlen % 4);
213
214 /* We own the logging buffer, as only one MCDI can be in
215 * progress on a NIC at any one time. So no need for locking.
216 */
217 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 " %08x", le32_to_cpu(hdr[i].u32[0]));
220
221 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
222 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
223 " %08x", le32_to_cpu(inbuf[i].u32[0]));
224
225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 }
227#endif
228
229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230
231 mcdi->new_epoch = false;
232}
233
234static int efx_mcdi_errno(unsigned int mcdi_err)
235{
236 switch (mcdi_err) {
237 case 0:
238 return 0;
239#define TRANSLATE_ERROR(name) \
240 case MC_CMD_ERR_ ## name: \
241 return -name;
242 TRANSLATE_ERROR(EPERM);
243 TRANSLATE_ERROR(ENOENT);
244 TRANSLATE_ERROR(EINTR);
245 TRANSLATE_ERROR(EAGAIN);
246 TRANSLATE_ERROR(EACCES);
247 TRANSLATE_ERROR(EBUSY);
248 TRANSLATE_ERROR(EINVAL);
249 TRANSLATE_ERROR(EDEADLK);
250 TRANSLATE_ERROR(ENOSYS);
251 TRANSLATE_ERROR(ETIME);
252 TRANSLATE_ERROR(EALREADY);
253 TRANSLATE_ERROR(ENOSPC);
254#undef TRANSLATE_ERROR
255 case MC_CMD_ERR_ENOTSUP:
256 return -EOPNOTSUPP;
257 case MC_CMD_ERR_ALLOC_FAIL:
258 return -ENOBUFS;
259 case MC_CMD_ERR_MAC_EXIST:
260 return -EADDRINUSE;
261 default:
262 return -EPROTO;
263 }
264}
265
266static void efx_mcdi_read_response_header(struct efx_nic *efx)
267{
268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 unsigned int respseq, respcmd, error;
270#ifdef CONFIG_SFC_MCDI_LOGGING
271 char *buf = mcdi->logging_buffer; /* page-sized */
272#endif
273 efx_dword_t hdr;
274
275 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279
280 if (respcmd != MC_CMD_V2_EXTN) {
281 mcdi->resp_hdr_len = 4;
282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 } else {
284 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 mcdi->resp_hdr_len = 8;
286 mcdi->resp_data_len =
287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288 }
289
290#ifdef CONFIG_SFC_MCDI_LOGGING
291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 size_t hdr_len, data_len;
293 int bytes = 0;
294 int i;
295
296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 hdr_len = mcdi->resp_hdr_len / 4;
298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 * to dword size, and the MCDI buffer is always dword size
300 */
301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302
303 /* We own the logging buffer, as only one MCDI can be in
304 * progress on a NIC at any one time. So no need for locking.
305 */
306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
309 " %08x", le32_to_cpu(hdr.u32[0]));
310 }
311
312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 efx->type->mcdi_read_response(efx, &hdr,
314 mcdi->resp_hdr_len + (i * 4), 4);
315 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
316 " %08x", le32_to_cpu(hdr.u32[0]));
317 }
318
319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 }
321#endif
322
323 mcdi->resprc_raw = 0;
324 if (error && mcdi->resp_data_len == 0) {
325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 mcdi->resprc = -EIO;
327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 netif_err(efx, hw, efx->net_dev,
329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 respseq, mcdi->seqno);
331 mcdi->resprc = -EIO;
332 } else if (error) {
333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 } else {
337 mcdi->resprc = 0;
338 }
339}
340
341static bool efx_mcdi_poll_once(struct efx_nic *efx)
342{
343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344
345 rmb();
346 if (!efx->type->mcdi_poll_response(efx))
347 return false;
348
349 spin_lock_bh(&mcdi->iface_lock);
350 efx_mcdi_read_response_header(efx);
351 spin_unlock_bh(&mcdi->iface_lock);
352
353 return true;
354}
355
356static int efx_mcdi_poll(struct efx_nic *efx)
357{
358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 unsigned long time, finish;
360 unsigned int spins;
361 int rc;
362
363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 rc = efx_mcdi_poll_reboot(efx);
365 if (rc) {
366 spin_lock_bh(&mcdi->iface_lock);
367 mcdi->resprc = rc;
368 mcdi->resp_hdr_len = 0;
369 mcdi->resp_data_len = 0;
370 spin_unlock_bh(&mcdi->iface_lock);
371 return 0;
372 }
373
374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 * because generally mcdi responses are fast. After that, back off
376 * and poll once a jiffy (approximately)
377 */
378 spins = USER_TICK_USEC;
379 finish = jiffies + MCDI_RPC_TIMEOUT;
380
381 while (1) {
382 if (spins != 0) {
383 --spins;
384 udelay(1);
385 } else {
386 schedule_timeout_uninterruptible(1);
387 }
388
389 time = jiffies;
390
391 if (efx_mcdi_poll_once(efx))
392 break;
393
394 if (time_after(time, finish))
395 return -ETIMEDOUT;
396 }
397
398 /* Return rc=0 like wait_event_timeout() */
399 return 0;
400}
401
402/* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
404 */
405int efx_mcdi_poll_reboot(struct efx_nic *efx)
406{
407 if (!efx->mcdi)
408 return 0;
409
410 return efx->type->mcdi_poll_reboot(efx);
411}
412
413static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414{
415 return cmpxchg(&mcdi->state,
416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 MCDI_STATE_QUIESCENT;
418}
419
420static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421{
422 /* Wait until the interface becomes QUIESCENT and we win the race
423 * to mark it RUNNING_SYNC.
424 */
425 wait_event(mcdi->wq,
426 cmpxchg(&mcdi->state,
427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 MCDI_STATE_QUIESCENT);
429}
430
431static int efx_mcdi_await_completion(struct efx_nic *efx)
432{
433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434
435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 MCDI_RPC_TIMEOUT) == 0)
437 return -ETIMEDOUT;
438
439 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 * completed the request first, then we'll just end up completing the
442 * request again, which is safe.
443 *
444 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
445 * wait_event_timeout() implicitly provides.
446 */
447 if (mcdi->mode == MCDI_MODE_POLL)
448 return efx_mcdi_poll(efx);
449
450 return 0;
451}
452
453/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester. Return whether this was done. Does not take any locks.
455 */
456static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457{
458 if (cmpxchg(&mcdi->state,
459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 MCDI_STATE_RUNNING_SYNC) {
461 wake_up(&mcdi->wq);
462 return true;
463 }
464
465 return false;
466}
467
468static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469{
470 if (mcdi->mode == MCDI_MODE_EVENTS) {
471 struct efx_mcdi_async_param *async;
472 struct efx_nic *efx = mcdi->efx;
473
474 /* Process the asynchronous request queue */
475 spin_lock_bh(&mcdi->async_lock);
476 async = list_first_entry_or_null(
477 &mcdi->async_list, struct efx_mcdi_async_param, list);
478 if (async) {
479 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 efx_mcdi_send_request(efx, async->cmd,
481 (const efx_dword_t *)(async + 1),
482 async->inlen);
483 mod_timer(&mcdi->async_timer,
484 jiffies + MCDI_RPC_TIMEOUT);
485 }
486 spin_unlock_bh(&mcdi->async_lock);
487
488 if (async)
489 return;
490 }
491
492 mcdi->state = MCDI_STATE_QUIESCENT;
493 wake_up(&mcdi->wq);
494}
495
496/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done. Must be called in bh-disabled
499 * context. Will take iface_lock and async_lock.
500 */
501static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502{
503 struct efx_nic *efx = mcdi->efx;
504 struct efx_mcdi_async_param *async;
505 size_t hdr_len, data_len, err_len;
506 efx_dword_t *outbuf;
507 MCDI_DECLARE_BUF_ERR(errbuf);
508 int rc;
509
510 if (cmpxchg(&mcdi->state,
511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 MCDI_STATE_RUNNING_ASYNC)
513 return false;
514
515 spin_lock(&mcdi->iface_lock);
516 if (timeout) {
517 /* Ensure that if the completion event arrives later,
518 * the seqno check in efx_mcdi_ev_cpl() will fail
519 */
520 ++mcdi->seqno;
521 ++mcdi->credits;
522 rc = -ETIMEDOUT;
523 hdr_len = 0;
524 data_len = 0;
525 } else {
526 rc = mcdi->resprc;
527 hdr_len = mcdi->resp_hdr_len;
528 data_len = mcdi->resp_data_len;
529 }
530 spin_unlock(&mcdi->iface_lock);
531
532 /* Stop the timer. In case the timer function is running, we
533 * must wait for it to return so that there is no possibility
534 * of it aborting the next request.
535 */
536 if (!timeout)
537 del_timer_sync(&mcdi->async_timer);
538
539 spin_lock(&mcdi->async_lock);
540 async = list_first_entry(&mcdi->async_list,
541 struct efx_mcdi_async_param, list);
542 list_del(&async->list);
543 spin_unlock(&mcdi->async_lock);
544
545 outbuf = (efx_dword_t *)(async + 1);
546 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 min(async->outlen, data_len));
548 if (!timeout && rc && !async->quiet) {
549 err_len = min(sizeof(errbuf), data_len);
550 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 sizeof(errbuf));
552 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
553 err_len, rc);
554 }
555
556 if (async->complete)
557 async->complete(efx, async->cookie, rc, outbuf,
558 min(async->outlen, data_len));
559 kfree(async);
560
561 efx_mcdi_release(mcdi);
562
563 return true;
564}
565
566static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 unsigned int datalen, unsigned int mcdi_err)
568{
569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 bool wake = false;
571
572 spin_lock(&mcdi->iface_lock);
573
574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 if (mcdi->credits)
576 /* The request has been cancelled */
577 --mcdi->credits;
578 else
579 netif_err(efx, hw, efx->net_dev,
580 "MC response mismatch tx seq 0x%x rx "
581 "seq 0x%x\n", seqno, mcdi->seqno);
582 } else {
583 if (efx->type->mcdi_max_ver >= 2) {
584 /* MCDI v2 responses don't fit in an event */
585 efx_mcdi_read_response_header(efx);
586 } else {
587 mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 mcdi->resp_hdr_len = 4;
589 mcdi->resp_data_len = datalen;
590 }
591
592 wake = true;
593 }
594
595 spin_unlock(&mcdi->iface_lock);
596
597 if (wake) {
598 if (!efx_mcdi_complete_async(mcdi, false))
599 (void) efx_mcdi_complete_sync(mcdi);
600
601 /* If the interface isn't RUNNING_ASYNC or
602 * RUNNING_SYNC then we've received a duplicate
603 * completion after we've already transitioned back to
604 * QUIESCENT. [A subsequent invocation would increment
605 * seqno, so would have failed the seqno check].
606 */
607 }
608}
609
610static void efx_mcdi_timeout_async(struct timer_list *t)
611{
612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613
614 efx_mcdi_complete_async(mcdi, true);
615}
616
617static int
618efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619{
620 if (efx->type->mcdi_max_ver < 0 ||
621 (efx->type->mcdi_max_ver < 2 &&
622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 return -EINVAL;
624
625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 (efx->type->mcdi_max_ver < 2 &&
627 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 return -EMSGSIZE;
629
630 return 0;
631}
632
633static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 size_t hdr_len, size_t data_len,
635 u32 *proxy_handle)
636{
637 MCDI_DECLARE_BUF_ERR(testbuf);
638 const size_t buflen = sizeof(testbuf);
639
640 if (!proxy_handle || data_len < buflen)
641 return false;
642
643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 return true;
647 }
648
649 return false;
650}
651
652static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 size_t inlen,
654 efx_dword_t *outbuf, size_t outlen,
655 size_t *outlen_actual, bool quiet,
656 u32 *proxy_handle, int *raw_rc)
657{
658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 MCDI_DECLARE_BUF_ERR(errbuf);
660 int rc;
661
662 if (mcdi->mode == MCDI_MODE_POLL)
663 rc = efx_mcdi_poll(efx);
664 else
665 rc = efx_mcdi_await_completion(efx);
666
667 if (rc != 0) {
668 netif_err(efx, hw, efx->net_dev,
669 "MC command 0x%x inlen %d mode %d timed out\n",
670 cmd, (int)inlen, mcdi->mode);
671
672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 netif_err(efx, hw, efx->net_dev,
674 "MCDI request was completed without an event\n");
675 rc = 0;
676 }
677
678 efx_mcdi_abandon(efx);
679
680 /* Close the race with efx_mcdi_ev_cpl() executing just too late
681 * and completing a request we've just cancelled, by ensuring
682 * that the seqno check therein fails.
683 */
684 spin_lock_bh(&mcdi->iface_lock);
685 ++mcdi->seqno;
686 ++mcdi->credits;
687 spin_unlock_bh(&mcdi->iface_lock);
688 }
689
690 if (proxy_handle)
691 *proxy_handle = 0;
692
693 if (rc != 0) {
694 if (outlen_actual)
695 *outlen_actual = 0;
696 } else {
697 size_t hdr_len, data_len, err_len;
698
699 /* At the very least we need a memory barrier here to ensure
700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 * acquiring the iface_lock. */
703 spin_lock_bh(&mcdi->iface_lock);
704 rc = mcdi->resprc;
705 if (raw_rc)
706 *raw_rc = mcdi->resprc_raw;
707 hdr_len = mcdi->resp_hdr_len;
708 data_len = mcdi->resp_data_len;
709 err_len = min(sizeof(errbuf), data_len);
710 spin_unlock_bh(&mcdi->iface_lock);
711
712 BUG_ON(rc > 0);
713
714 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 min(outlen, data_len));
716 if (outlen_actual)
717 *outlen_actual = data_len;
718
719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720
721 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 /* Don't reset if MC_CMD_REBOOT returns EIO */
723 } else if (rc == -EIO || rc == -EINTR) {
724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 cmd, -rc);
727 if (efx->type->mcdi_reboot_detected)
728 efx->type->mcdi_reboot_detected(efx);
729 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 } else if (proxy_handle && (rc == -EPROTO) &&
731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 proxy_handle)) {
733 mcdi->proxy_rx_status = 0;
734 mcdi->proxy_rx_handle = 0;
735 mcdi->state = MCDI_STATE_PROXY_WAIT;
736 } else if (rc && !quiet) {
737 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
738 rc);
739 }
740
741 if (rc == -EIO || rc == -EINTR) {
742 msleep(MCDI_STATUS_SLEEP_MS);
743 efx_mcdi_poll_reboot(efx);
744 mcdi->new_epoch = true;
745 }
746 }
747
748 if (!proxy_handle || !*proxy_handle)
749 efx_mcdi_release(mcdi);
750 return rc;
751}
752
753static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754{
755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 /* Interrupt the proxy wait. */
757 mcdi->proxy_rx_status = -EINTR;
758 wake_up(&mcdi->proxy_rx_wq);
759 }
760}
761
762static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 u32 handle, int status)
764{
765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766
767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768
769 mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 /* Ensure the status is written before we update the handle, since the
771 * latter is used to check if we've finished.
772 */
773 wmb();
774 mcdi->proxy_rx_handle = handle;
775 wake_up(&mcdi->proxy_rx_wq);
776}
777
778static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779{
780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 int rc;
782
783 /* Wait for a proxy event, or timeout. */
784 rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 mcdi->proxy_rx_handle != 0 ||
786 mcdi->proxy_rx_status == -EINTR,
787 MCDI_RPC_TIMEOUT);
788
789 if (rc <= 0) {
790 netif_dbg(efx, hw, efx->net_dev,
791 "MCDI proxy timeout %d\n", handle);
792 return -ETIMEDOUT;
793 } else if (mcdi->proxy_rx_handle != handle) {
794 netif_warn(efx, hw, efx->net_dev,
795 "MCDI proxy unexpected handle %d (expected %d)\n",
796 mcdi->proxy_rx_handle, handle);
797 return -EINVAL;
798 }
799
800 return mcdi->proxy_rx_status;
801}
802
803static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 const efx_dword_t *inbuf, size_t inlen,
805 efx_dword_t *outbuf, size_t outlen,
806 size_t *outlen_actual, bool quiet, int *raw_rc)
807{
808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 int rc;
810
811 if (inbuf && inlen && (inbuf == outbuf)) {
812 /* The input buffer can't be aliased with the output. */
813 WARN_ON(1);
814 return -EINVAL;
815 }
816
817 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 if (rc)
819 return rc;
820
821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 outlen_actual, quiet, &proxy_handle, raw_rc);
823
824 if (proxy_handle) {
825 /* Handle proxy authorisation. This allows approval of MCDI
826 * operations to be delegated to the admin function, allowing
827 * fine control over (eg) multicast subscriptions.
828 */
829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830
831 netif_dbg(efx, hw, efx->net_dev,
832 "MCDI waiting for proxy auth %d\n",
833 proxy_handle);
834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835
836 if (rc == 0) {
837 netif_dbg(efx, hw, efx->net_dev,
838 "MCDI proxy retry %d\n", proxy_handle);
839
840 /* We now retry the original request. */
841 mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843
844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 outbuf, outlen, outlen_actual,
846 quiet, NULL, raw_rc);
847 } else {
848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 "MC command 0x%x failed after proxy auth rc=%d\n",
850 cmd, rc);
851
852 if (rc == -EINTR || rc == -EIO)
853 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 efx_mcdi_release(mcdi);
855 }
856 }
857
858 return rc;
859}
860
861static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 const efx_dword_t *inbuf, size_t inlen,
863 efx_dword_t *outbuf, size_t outlen,
864 size_t *outlen_actual, bool quiet)
865{
866 int raw_rc = 0;
867 int rc;
868
869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 outbuf, outlen, outlen_actual, true, &raw_rc);
871
872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 efx->type->is_vf) {
874 /* If the EVB port isn't available within a VF this may
875 * mean the PF is still bringing the switch up. We should
876 * retry our request shortly.
877 */
878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 unsigned int delay_us = 10000;
880
881 netif_dbg(efx, hw, efx->net_dev,
882 "%s: NO_EVB_PORT; will retry request\n",
883 __func__);
884
885 do {
886 usleep_range(delay_us, delay_us + 10000);
887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 outbuf, outlen, outlen_actual,
889 true, &raw_rc);
890 if (delay_us < 100000)
891 delay_us <<= 1;
892 } while ((rc == -EPROTO) &&
893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 time_before(jiffies, abort_time));
895 }
896
897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 efx_mcdi_display_error(efx, cmd, inlen,
899 outbuf, outlen, rc);
900
901 return rc;
902}
903
904/**
905 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes. Must be a multiple
910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes. If the actual
913 * response is longer than @outlen & ~3, it will be truncated
914 * to that length.
915 * @outlen_actual: Pointer through which to return the actual response
916 * length. May be %NULL if this is not needed.
917 *
918 * This function may sleep and therefore must be called in an appropriate
919 * context.
920 *
921 * Return: A negative error code, or zero if successful. The error
922 * code may come from the MCDI response or may indicate a failure
923 * to communicate with the MC. In the former case, the response
924 * will still be copied to @outbuf and *@outlen_actual will be
925 * set accordingly. In the latter case, *@outlen_actual will be
926 * set to zero.
927 */
928int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
929 const efx_dword_t *inbuf, size_t inlen,
930 efx_dword_t *outbuf, size_t outlen,
931 size_t *outlen_actual)
932{
933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 outlen_actual, false);
935}
936
937/* Normally, on receiving an error code in the MCDI response,
938 * efx_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_mcdi_display_error
943 * as needed.
944 */
945int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
946 const efx_dword_t *inbuf, size_t inlen,
947 efx_dword_t *outbuf, size_t outlen,
948 size_t *outlen_actual)
949{
950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 outlen_actual, true);
952}
953
954int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
955 const efx_dword_t *inbuf, size_t inlen)
956{
957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 int rc;
959
960 rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 if (rc)
962 return rc;
963
964 if (efx->mc_bist_for_other_fn)
965 return -ENETDOWN;
966
967 if (mcdi->mode == MCDI_MODE_FAIL)
968 return -ENETDOWN;
969
970 efx_mcdi_acquire_sync(mcdi);
971 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 return 0;
973}
974
975static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 const efx_dword_t *inbuf, size_t inlen,
977 size_t outlen,
978 efx_mcdi_async_completer *complete,
979 unsigned long cookie, bool quiet)
980{
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 struct efx_mcdi_async_param *async;
983 int rc;
984
985 rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 if (rc)
987 return rc;
988
989 if (efx->mc_bist_for_other_fn)
990 return -ENETDOWN;
991
992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 GFP_ATOMIC);
994 if (!async)
995 return -ENOMEM;
996
997 async->cmd = cmd;
998 async->inlen = inlen;
999 async->outlen = outlen;
1000 async->quiet = quiet;
1001 async->complete = complete;
1002 async->cookie = cookie;
1003 memcpy(async + 1, inbuf, inlen);
1004
1005 spin_lock_bh(&mcdi->async_lock);
1006
1007 if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 list_add_tail(&async->list, &mcdi->async_list);
1009
1010 /* If this is at the front of the queue, try to start it
1011 * immediately
1012 */
1013 if (mcdi->async_list.next == &async->list &&
1014 efx_mcdi_acquire_async(mcdi)) {
1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 mod_timer(&mcdi->async_timer,
1017 jiffies + MCDI_RPC_TIMEOUT);
1018 }
1019 } else {
1020 kfree(async);
1021 rc = -ENETDOWN;
1022 }
1023
1024 spin_unlock_bh(&mcdi->async_lock);
1025
1026 return rc;
1027}
1028
1029/**
1030 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1038 *
1039 * This function does not sleep and therefore may be called in atomic
1040 * context. It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1042 *
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1048 */
1049int
1050efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 efx_mcdi_async_completer *complete, unsigned long cookie)
1053{
1054 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1055 cookie, false);
1056}
1057
1058int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1059 const efx_dword_t *inbuf, size_t inlen,
1060 size_t outlen, efx_mcdi_async_completer *complete,
1061 unsigned long cookie)
1062{
1063 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1064 cookie, true);
1065}
1066
1067int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 efx_dword_t *outbuf, size_t outlen,
1069 size_t *outlen_actual)
1070{
1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 outlen_actual, false, NULL, NULL);
1073}
1074
1075int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1076 efx_dword_t *outbuf, size_t outlen,
1077 size_t *outlen_actual)
1078{
1079 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1080 outlen_actual, true, NULL, NULL);
1081}
1082
1083void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1084 size_t inlen, efx_dword_t *outbuf,
1085 size_t outlen, int rc)
1086{
1087 int code = 0, err_arg = 0;
1088
1089 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1090 code = MCDI_DWORD(outbuf, ERR_CODE);
1091 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1092 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1093 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1094 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1095 cmd, inlen, rc, code, err_arg);
1096}
1097
1098/* Switch to polled MCDI completions. This can be called in various
1099 * error conditions with various locks held, so it must be lockless.
1100 * Caller is responsible for flushing asynchronous requests later.
1101 */
1102void efx_mcdi_mode_poll(struct efx_nic *efx)
1103{
1104 struct efx_mcdi_iface *mcdi;
1105
1106 if (!efx->mcdi)
1107 return;
1108
1109 mcdi = efx_mcdi(efx);
1110 /* If already in polling mode, nothing to do.
1111 * If in fail-fast state, don't switch to polled completion.
1112 * FLR recovery will do that later.
1113 */
1114 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1115 return;
1116
1117 /* We can switch from event completion to polled completion, because
1118 * mcdi requests are always completed in shared memory. We do this by
1119 * switching the mode to POLL'd then completing the request.
1120 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1121 *
1122 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1123 * which efx_mcdi_complete_sync() provides for us.
1124 */
1125 mcdi->mode = MCDI_MODE_POLL;
1126
1127 efx_mcdi_complete_sync(mcdi);
1128}
1129
1130/* Flush any running or queued asynchronous requests, after event processing
1131 * is stopped
1132 */
1133void efx_mcdi_flush_async(struct efx_nic *efx)
1134{
1135 struct efx_mcdi_async_param *async, *next;
1136 struct efx_mcdi_iface *mcdi;
1137
1138 if (!efx->mcdi)
1139 return;
1140
1141 mcdi = efx_mcdi(efx);
1142
1143 /* We must be in poll or fail mode so no more requests can be queued */
1144 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1145
1146 del_timer_sync(&mcdi->async_timer);
1147
1148 /* If a request is still running, make sure we give the MC
1149 * time to complete it so that the response won't overwrite our
1150 * next request.
1151 */
1152 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1153 efx_mcdi_poll(efx);
1154 mcdi->state = MCDI_STATE_QUIESCENT;
1155 }
1156
1157 /* Nothing else will access the async list now, so it is safe
1158 * to walk it without holding async_lock. If we hold it while
1159 * calling a completer then lockdep may warn that we have
1160 * acquired locks in the wrong order.
1161 */
1162 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1163 if (async->complete)
1164 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1165 list_del(&async->list);
1166 kfree(async);
1167 }
1168}
1169
1170void efx_mcdi_mode_event(struct efx_nic *efx)
1171{
1172 struct efx_mcdi_iface *mcdi;
1173
1174 if (!efx->mcdi)
1175 return;
1176
1177 mcdi = efx_mcdi(efx);
1178 /* If already in event completion mode, nothing to do.
1179 * If in fail-fast state, don't switch to event completion. FLR
1180 * recovery will do that later.
1181 */
1182 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1183 return;
1184
1185 /* We can't switch from polled to event completion in the middle of a
1186 * request, because the completion method is specified in the request.
1187 * So acquire the interface to serialise the requestors. We don't need
1188 * to acquire the iface_lock to change the mode here, but we do need a
1189 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1190 * efx_mcdi_acquire() provides.
1191 */
1192 efx_mcdi_acquire_sync(mcdi);
1193 mcdi->mode = MCDI_MODE_EVENTS;
1194 efx_mcdi_release(mcdi);
1195}
1196
1197static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1198{
1199 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1200
1201 /* If there is an outstanding MCDI request, it has been terminated
1202 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1203 * in polled mode, then do nothing because the MC reboot handler will
1204 * set the header correctly. However, if the mcdi interface is waiting
1205 * for a CMDDONE event it won't receive it [and since all MCDI events
1206 * are sent to the same queue, we can't be racing with
1207 * efx_mcdi_ev_cpl()]
1208 *
1209 * If there is an outstanding asynchronous request, we can't
1210 * complete it now (efx_mcdi_complete() would deadlock). The
1211 * reset process will take care of this.
1212 *
1213 * There's a race here with efx_mcdi_send_request(), because
1214 * we might receive a REBOOT event *before* the request has
1215 * been copied out. In polled mode (during startup) this is
1216 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1217 * event mode, this condition is just an edge-case of
1218 * receiving a REBOOT event after posting the MCDI
1219 * request. Did the mc reboot before or after the copyout? The
1220 * best we can do always is just return failure.
1221 *
1222 * If there is an outstanding proxy response expected it is not going
1223 * to arrive. We should thus abort it.
1224 */
1225 spin_lock(&mcdi->iface_lock);
1226 efx_mcdi_proxy_abort(mcdi);
1227
1228 if (efx_mcdi_complete_sync(mcdi)) {
1229 if (mcdi->mode == MCDI_MODE_EVENTS) {
1230 mcdi->resprc = rc;
1231 mcdi->resp_hdr_len = 0;
1232 mcdi->resp_data_len = 0;
1233 ++mcdi->credits;
1234 }
1235 } else {
1236 int count;
1237
1238 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1239 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1240 rc = efx_mcdi_poll_reboot(efx);
1241 if (rc)
1242 break;
1243 udelay(MCDI_STATUS_DELAY_US);
1244 }
1245
1246 /* On EF10, a CODE_MC_REBOOT event can be received without the
1247 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1248 * If zero was returned from the final call to
1249 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1250 * MC has definitely rebooted so prepare for the reset.
1251 */
1252 if (!rc && efx->type->mcdi_reboot_detected)
1253 efx->type->mcdi_reboot_detected(efx);
1254
1255 mcdi->new_epoch = true;
1256
1257 /* Nobody was waiting for an MCDI request, so trigger a reset */
1258 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1259 }
1260
1261 spin_unlock(&mcdi->iface_lock);
1262}
1263
1264/* The MC is going down in to BIST mode. set the BIST flag to block
1265 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1266 * (which doesn't actually execute a reset, it waits for the controlling
1267 * function to reset it).
1268 */
1269static void efx_mcdi_ev_bist(struct efx_nic *efx)
1270{
1271 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1272
1273 spin_lock(&mcdi->iface_lock);
1274 efx->mc_bist_for_other_fn = true;
1275 efx_mcdi_proxy_abort(mcdi);
1276
1277 if (efx_mcdi_complete_sync(mcdi)) {
1278 if (mcdi->mode == MCDI_MODE_EVENTS) {
1279 mcdi->resprc = -EIO;
1280 mcdi->resp_hdr_len = 0;
1281 mcdi->resp_data_len = 0;
1282 ++mcdi->credits;
1283 }
1284 }
1285 mcdi->new_epoch = true;
1286 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1287 spin_unlock(&mcdi->iface_lock);
1288}
1289
1290/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1291 * to recover.
1292 */
1293static void efx_mcdi_abandon(struct efx_nic *efx)
1294{
1295 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1296
1297 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1298 return; /* it had already been done */
1299 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1300 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1301}
1302
1303/* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1304void efx_mcdi_process_event(struct efx_channel *channel,
1305 efx_qword_t *event)
1306{
1307 struct efx_nic *efx = channel->efx;
1308 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1309 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1310
1311 switch (code) {
1312 case MCDI_EVENT_CODE_BADSSERT:
1313 netif_err(efx, hw, efx->net_dev,
1314 "MC watchdog or assertion failure at 0x%x\n", data);
1315 efx_mcdi_ev_death(efx, -EINTR);
1316 break;
1317
1318 case MCDI_EVENT_CODE_PMNOTICE:
1319 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1320 break;
1321
1322 case MCDI_EVENT_CODE_CMDDONE:
1323 efx_mcdi_ev_cpl(efx,
1324 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1325 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1326 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1327 break;
1328
1329 case MCDI_EVENT_CODE_LINKCHANGE:
1330 efx_mcdi_process_link_change(efx, event);
1331 break;
1332 case MCDI_EVENT_CODE_SENSOREVT:
1333 efx_mcdi_sensor_event(efx, event);
1334 break;
1335 case MCDI_EVENT_CODE_SCHEDERR:
1336 netif_dbg(efx, hw, efx->net_dev,
1337 "MC Scheduler alert (0x%x)\n", data);
1338 break;
1339 case MCDI_EVENT_CODE_REBOOT:
1340 case MCDI_EVENT_CODE_MC_REBOOT:
1341 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1342 efx_mcdi_ev_death(efx, -EIO);
1343 break;
1344 case MCDI_EVENT_CODE_MC_BIST:
1345 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1346 efx_mcdi_ev_bist(efx);
1347 break;
1348 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1349 /* MAC stats are gather lazily. We can ignore this. */
1350 break;
1351 case MCDI_EVENT_CODE_FLR:
1352 if (efx->type->sriov_flr)
1353 efx->type->sriov_flr(efx,
1354 MCDI_EVENT_FIELD(*event, FLR_VF));
1355 break;
1356 case MCDI_EVENT_CODE_PTP_RX:
1357 case MCDI_EVENT_CODE_PTP_FAULT:
1358 case MCDI_EVENT_CODE_PTP_PPS:
1359 efx_ptp_event(efx, event);
1360 break;
1361 case MCDI_EVENT_CODE_PTP_TIME:
1362 efx_time_sync_event(channel, event);
1363 break;
1364 case MCDI_EVENT_CODE_TX_FLUSH:
1365 case MCDI_EVENT_CODE_RX_FLUSH:
1366 /* Two flush events will be sent: one to the same event
1367 * queue as completions, and one to event queue 0.
1368 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1369 * flag will be set, and we should ignore the event
1370 * because we want to wait for all completions.
1371 */
1372 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1373 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1374 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1375 efx_ef10_handle_drain_event(efx);
1376 break;
1377 case MCDI_EVENT_CODE_TX_ERR:
1378 case MCDI_EVENT_CODE_RX_ERR:
1379 netif_err(efx, hw, efx->net_dev,
1380 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1381 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1382 EFX_QWORD_VAL(*event));
1383 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1384 break;
1385 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1386 efx_mcdi_ev_proxy_response(efx,
1387 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1389 break;
1390 default:
1391 netif_err(efx, hw, efx->net_dev,
1392 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1393 EFX_QWORD_VAL(*event));
1394 }
1395}
1396
1397/**************************************************************************
1398 *
1399 * Specific request functions
1400 *
1401 **************************************************************************
1402 */
1403
1404void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1405{
1406 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1407 size_t outlength;
1408 const __le16 *ver_words;
1409 size_t offset;
1410 int rc;
1411
1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1413 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1414 outbuf, sizeof(outbuf), &outlength);
1415 if (rc)
1416 goto fail;
1417 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1418 rc = -EIO;
1419 goto fail;
1420 }
1421
1422 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1423 offset = snprintf(buf, len, "%u.%u.%u.%u",
1424 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1425 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1426
1427 /* EF10 may have multiple datapath firmware variants within a
1428 * single version. Report which variants are running.
1429 */
1430 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1431 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1432
1433 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1434 nic_data->rx_dpcpu_fw_id,
1435 nic_data->tx_dpcpu_fw_id);
1436
1437 /* It's theoretically possible for the string to exceed 31
1438 * characters, though in practice the first three version
1439 * components are short enough that this doesn't happen.
1440 */
1441 if (WARN_ON(offset >= len))
1442 buf[0] = 0;
1443 }
1444
1445 return;
1446
1447fail:
1448 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1449 buf[0] = 0;
1450}
1451
1452static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1453 bool *was_attached)
1454{
1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1457 size_t outlen;
1458 int rc;
1459
1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 driver_operating ? 1 : 0);
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1464
1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 outbuf, sizeof(outbuf), &outlen);
1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 * specified will fail with EPERM, and we have to tell the MC we don't
1469 * care what firmware we get.
1470 */
1471 if (rc == -EPERM) {
1472 netif_dbg(efx, probe, efx->net_dev,
1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1475 MC_CMD_FW_DONT_CARE);
1476 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1477 sizeof(inbuf), outbuf, sizeof(outbuf),
1478 &outlen);
1479 }
1480 if (rc) {
1481 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1482 outbuf, outlen, rc);
1483 goto fail;
1484 }
1485 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1486 rc = -EIO;
1487 goto fail;
1488 }
1489
1490 if (driver_operating) {
1491 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1492 efx->mcdi->fn_flags =
1493 MCDI_DWORD(outbuf,
1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1495 } else {
1496 /* Synthesise flags for Siena */
1497 efx->mcdi->fn_flags =
1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1500 (efx_port_num(efx) == 0) <<
1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 }
1503 }
1504
1505 /* We currently assume we have control of the external link
1506 * and are completely trusted by firmware. Abort probing
1507 * if that's not true for this function.
1508 */
1509
1510 if (was_attached != NULL)
1511 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1512 return 0;
1513
1514fail:
1515 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1516 return rc;
1517}
1518
1519int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1520 u16 *fw_subtype_list, u32 *capabilities)
1521{
1522 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1523 size_t outlen, i;
1524 int port_num = efx_port_num(efx);
1525 int rc;
1526
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1528 /* we need __aligned(2) for ether_addr_copy */
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1531
1532 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1533 outbuf, sizeof(outbuf), &outlen);
1534 if (rc)
1535 goto fail;
1536
1537 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1538 rc = -EIO;
1539 goto fail;
1540 }
1541
1542 if (mac_address)
1543 ether_addr_copy(mac_address,
1544 port_num ?
1545 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1547 if (fw_subtype_list) {
1548 for (i = 0;
1549 i < MCDI_VAR_ARRAY_LEN(outlen,
1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1551 i++)
1552 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1553 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1554 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1555 fw_subtype_list[i] = 0;
1556 }
1557 if (capabilities) {
1558 if (port_num)
1559 *capabilities = MCDI_DWORD(outbuf,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1561 else
1562 *capabilities = MCDI_DWORD(outbuf,
1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1564 }
1565
1566 return 0;
1567
1568fail:
1569 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1570 __func__, rc, (int)outlen);
1571
1572 return rc;
1573}
1574
1575int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1576{
1577 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1578 u32 dest = 0;
1579 int rc;
1580
1581 if (uart)
1582 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1583 if (evq)
1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1585
1586 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1588
1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1590
1591 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1592 NULL, 0, NULL);
1593 return rc;
1594}
1595
1596int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1597{
1598 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1599 size_t outlen;
1600 int rc;
1601
1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1603
1604 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1605 outbuf, sizeof(outbuf), &outlen);
1606 if (rc)
1607 goto fail;
1608 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1609 rc = -EIO;
1610 goto fail;
1611 }
1612
1613 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1614 return 0;
1615
1616fail:
1617 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1618 __func__, rc);
1619 return rc;
1620}
1621
1622int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1623 size_t *size_out, size_t *erase_size_out,
1624 bool *protected_out)
1625{
1626 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1627 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1628 size_t outlen;
1629 int rc;
1630
1631 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1632
1633 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1634 outbuf, sizeof(outbuf), &outlen);
1635 if (rc)
1636 goto fail;
1637 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1638 rc = -EIO;
1639 goto fail;
1640 }
1641
1642 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1643 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1644 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1646 return 0;
1647
1648fail:
1649 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1650 return rc;
1651}
1652
1653static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1654{
1655 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1657 int rc;
1658
1659 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1660
1661 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1662 outbuf, sizeof(outbuf), NULL);
1663 if (rc)
1664 return rc;
1665
1666 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1667 case MC_CMD_NVRAM_TEST_PASS:
1668 case MC_CMD_NVRAM_TEST_NOTSUPP:
1669 return 0;
1670 default:
1671 return -EIO;
1672 }
1673}
1674
1675int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1676{
1677 u32 nvram_types;
1678 unsigned int type;
1679 int rc;
1680
1681 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1682 if (rc)
1683 goto fail1;
1684
1685 type = 0;
1686 while (nvram_types != 0) {
1687 if (nvram_types & 1) {
1688 rc = efx_mcdi_nvram_test(efx, type);
1689 if (rc)
1690 goto fail2;
1691 }
1692 type++;
1693 nvram_types >>= 1;
1694 }
1695
1696 return 0;
1697
1698fail2:
1699 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1700 __func__, type);
1701fail1:
1702 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1703 return rc;
1704}
1705
1706/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707 * negative on error.
1708 */
1709static int efx_mcdi_read_assertion(struct efx_nic *efx)
1710{
1711 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1712 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1713 unsigned int flags, index;
1714 const char *reason;
1715 size_t outlen;
1716 int retry;
1717 int rc;
1718
1719 /* Attempt to read any stored assertion state before we reboot
1720 * the mcfw out of the assertion handler. Retry twice, once
1721 * because a boot-time assertion might cause this command to fail
1722 * with EINTR. And once again because GET_ASSERTS can race with
1723 * MC_CMD_REBOOT running on the other port. */
1724 retry = 2;
1725 do {
1726 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1727 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1728 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1729 outbuf, sizeof(outbuf), &outlen);
1730 if (rc == -EPERM)
1731 return 0;
1732 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1733
1734 if (rc) {
1735 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1736 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1737 outlen, rc);
1738 return rc;
1739 }
1740 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1741 return -EIO;
1742
1743 /* Print out any recorded assertion state */
1744 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1745 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1746 return 0;
1747
1748 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1749 ? "system-level assertion"
1750 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1751 ? "thread-level assertion"
1752 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1753 ? "watchdog reset"
1754 : "unknown assertion";
1755 netif_err(efx, hw, efx->net_dev,
1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1757 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1759
1760 /* Print out the registers */
1761 for (index = 0;
1762 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1763 index++)
1764 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1765 1 + index,
1766 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1767 index));
1768
1769 return 1;
1770}
1771
1772static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1773{
1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1775 int rc;
1776
1777 /* If the MC is running debug firmware, it might now be
1778 * waiting for a debugger to attach, but we just want it to
1779 * reboot. We set a flag that makes the command a no-op if it
1780 * has already done so.
1781 * The MCDI will thus return either 0 or -EIO.
1782 */
1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1784 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1786 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1787 NULL, 0, NULL);
1788 if (rc == -EIO)
1789 rc = 0;
1790 if (rc)
1791 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1792 NULL, 0, rc);
1793 return rc;
1794}
1795
1796int efx_mcdi_handle_assertion(struct efx_nic *efx)
1797{
1798 int rc;
1799
1800 rc = efx_mcdi_read_assertion(efx);
1801 if (rc <= 0)
1802 return rc;
1803
1804 return efx_mcdi_exit_assertion(efx);
1805}
1806
1807void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1808{
1809 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1810 int rc;
1811
1812 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1813 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1814 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1815
1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1817
1818 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1819
1820 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1821 NULL, 0, NULL);
1822}
1823
1824static int efx_mcdi_reset_func(struct efx_nic *efx)
1825{
1826 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1827 int rc;
1828
1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1830 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1832 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1833 NULL, 0, NULL);
1834 return rc;
1835}
1836
1837static int efx_mcdi_reset_mc(struct efx_nic *efx)
1838{
1839 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 int rc;
1841
1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1843 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1844 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1845 NULL, 0, NULL);
1846 /* White is black, and up is down */
1847 if (rc == -EIO)
1848 return 0;
1849 if (rc == 0)
1850 rc = -EIO;
1851 return rc;
1852}
1853
1854enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1855{
1856 return RESET_TYPE_RECOVER_OR_ALL;
1857}
1858
1859int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1860{
1861 int rc;
1862
1863 /* If MCDI is down, we can't handle_assertion */
1864 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1865 rc = pci_reset_function(efx->pci_dev);
1866 if (rc)
1867 return rc;
1868 /* Re-enable polled MCDI completion */
1869 if (efx->mcdi) {
1870 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1871 mcdi->mode = MCDI_MODE_POLL;
1872 }
1873 return 0;
1874 }
1875
1876 /* Recover from a failed assertion pre-reset */
1877 rc = efx_mcdi_handle_assertion(efx);
1878 if (rc)
1879 return rc;
1880
1881 if (method == RESET_TYPE_DATAPATH)
1882 return 0;
1883 else if (method == RESET_TYPE_WORLD)
1884 return efx_mcdi_reset_mc(efx);
1885 else
1886 return efx_mcdi_reset_func(efx);
1887}
1888
1889static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1890 const u8 *mac, int *id_out)
1891{
1892 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1893 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1894 size_t outlen;
1895 int rc;
1896
1897 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1899 MC_CMD_FILTER_MODE_SIMPLE);
1900 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1901
1902 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1903 outbuf, sizeof(outbuf), &outlen);
1904 if (rc)
1905 goto fail;
1906
1907 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1908 rc = -EIO;
1909 goto fail;
1910 }
1911
1912 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1913
1914 return 0;
1915
1916fail:
1917 *id_out = -1;
1918 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1919 return rc;
1920
1921}
1922
1923
1924int
1925efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1926{
1927 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928}
1929
1930
1931int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1932{
1933 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1934 size_t outlen;
1935 int rc;
1936
1937 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1938 outbuf, sizeof(outbuf), &outlen);
1939 if (rc)
1940 goto fail;
1941
1942 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1943 rc = -EIO;
1944 goto fail;
1945 }
1946
1947 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1948
1949 return 0;
1950
1951fail:
1952 *id_out = -1;
1953 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1954 return rc;
1955}
1956
1957
1958int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1959{
1960 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1961 int rc;
1962
1963 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1964
1965 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1966 NULL, 0, NULL);
1967 return rc;
1968}
1969
1970int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1971{
1972 struct efx_channel *channel;
1973 struct efx_rx_queue *rx_queue;
1974 MCDI_DECLARE_BUF(inbuf,
1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1976 int rc, count;
1977
1978 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1980
1981 count = 0;
1982 efx_for_each_channel(channel, efx) {
1983 efx_for_each_channel_rx_queue(rx_queue, channel) {
1984 if (rx_queue->flush_pending) {
1985 rx_queue->flush_pending = false;
1986 atomic_dec(&efx->rxq_flush_pending);
1987 MCDI_SET_ARRAY_DWORD(
1988 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1989 count, efx_rx_queue_index(rx_queue));
1990 count++;
1991 }
1992 }
1993 }
1994
1995 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1997 WARN_ON(rc < 0);
1998
1999 return rc;
2000}
2001
2002int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2003{
2004 int rc;
2005
2006 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2007 return rc;
2008}
2009
2010int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2011 unsigned int *flags)
2012{
2013 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2014 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2015 size_t outlen;
2016 int rc;
2017
2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2019 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2021 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2022 outbuf, sizeof(outbuf), &outlen);
2023 if (rc)
2024 return rc;
2025
2026 if (!flags)
2027 return 0;
2028
2029 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2030 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2031 else
2032 *flags = 0;
2033
2034 return 0;
2035}
2036
2037int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2038 unsigned int *enabled_out)
2039{
2040 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2041 size_t outlen;
2042 int rc;
2043
2044 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2045 outbuf, sizeof(outbuf), &outlen);
2046 if (rc)
2047 goto fail;
2048
2049 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2050 rc = -EIO;
2051 goto fail;
2052 }
2053
2054 if (impl_out)
2055 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2056
2057 if (enabled_out)
2058 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2059
2060 return 0;
2061
2062fail:
2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 * terrifying. The call site will have to deal with it though.
2065 */
2066 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2067 "%s: failed rc=%d\n", __func__, rc);
2068 return rc;
2069}
2070
2071#ifdef CONFIG_SFC_MTD
2072
2073#define EFX_MCDI_NVRAM_LEN_MAX 128
2074
2075static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2076{
2077 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2078 int rc;
2079
2080 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2081
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2083
2084 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 NULL, 0, NULL);
2086 return rc;
2087}
2088
2089static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2090 loff_t offset, u8 *buffer, size_t length)
2091{
2092 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2093 MCDI_DECLARE_BUF(outbuf,
2094 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2095 size_t outlen;
2096 int rc;
2097
2098 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2101
2102 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2103 outbuf, sizeof(outbuf), &outlen);
2104 if (rc)
2105 return rc;
2106
2107 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2108 return 0;
2109}
2110
2111static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2112 loff_t offset, const u8 *buffer, size_t length)
2113{
2114 MCDI_DECLARE_BUF(inbuf,
2115 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2116 int rc;
2117
2118 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2119 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2120 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2121 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2122
2123 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2124
2125 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2126 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2127 NULL, 0, NULL);
2128 return rc;
2129}
2130
2131static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2132 loff_t offset, size_t length)
2133{
2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2135 int rc;
2136
2137 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2138 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2139 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2140
2141 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2142
2143 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2144 NULL, 0, NULL);
2145 return rc;
2146}
2147
2148static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2149{
2150 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2151 int rc;
2152
2153 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2154
2155 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2156
2157 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2158 NULL, 0, NULL);
2159 return rc;
2160}
2161
2162int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2163 size_t len, size_t *retlen, u8 *buffer)
2164{
2165 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2166 struct efx_nic *efx = mtd->priv;
2167 loff_t offset = start;
2168 loff_t end = min_t(loff_t, start + len, mtd->size);
2169 size_t chunk;
2170 int rc = 0;
2171
2172 while (offset < end) {
2173 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2174 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2175 buffer, chunk);
2176 if (rc)
2177 goto out;
2178 offset += chunk;
2179 buffer += chunk;
2180 }
2181out:
2182 *retlen = offset - start;
2183 return rc;
2184}
2185
2186int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2187{
2188 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2189 struct efx_nic *efx = mtd->priv;
2190 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2191 loff_t end = min_t(loff_t, start + len, mtd->size);
2192 size_t chunk = part->common.mtd.erasesize;
2193 int rc = 0;
2194
2195 if (!part->updating) {
2196 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2197 if (rc)
2198 goto out;
2199 part->updating = true;
2200 }
2201
2202 /* The MCDI interface can in fact do multiple erase blocks at once;
2203 * but erasing may be slow, so we make multiple calls here to avoid
2204 * tripping the MCDI RPC timeout. */
2205 while (offset < end) {
2206 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2207 chunk);
2208 if (rc)
2209 goto out;
2210 offset += chunk;
2211 }
2212out:
2213 return rc;
2214}
2215
2216int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2217 size_t len, size_t *retlen, const u8 *buffer)
2218{
2219 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2220 struct efx_nic *efx = mtd->priv;
2221 loff_t offset = start;
2222 loff_t end = min_t(loff_t, start + len, mtd->size);
2223 size_t chunk;
2224 int rc = 0;
2225
2226 if (!part->updating) {
2227 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2228 if (rc)
2229 goto out;
2230 part->updating = true;
2231 }
2232
2233 while (offset < end) {
2234 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2235 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2236 buffer, chunk);
2237 if (rc)
2238 goto out;
2239 offset += chunk;
2240 buffer += chunk;
2241 }
2242out:
2243 *retlen = offset - start;
2244 return rc;
2245}
2246
2247int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2248{
2249 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2250 struct efx_nic *efx = mtd->priv;
2251 int rc = 0;
2252
2253 if (part->updating) {
2254 part->updating = false;
2255 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2256 }
2257
2258 return rc;
2259}
2260
2261void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2262{
2263 struct efx_mcdi_mtd_partition *mcdi_part =
2264 container_of(part, struct efx_mcdi_mtd_partition, common);
2265 struct efx_nic *efx = part->mtd.priv;
2266
2267 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2268 efx->name, part->type_name, mcdi_part->fw_subtype);
2269}
2270
2271#endif /* CONFIG_SFC_MTD */