Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4/* ethtool support for e1000 */
5
6#include <linux/netdevice.h>
7#include <linux/interrupt.h>
8#include <linux/ethtool.h>
9#include <linux/pci.h>
10#include <linux/slab.h>
11#include <linux/delay.h>
12#include <linux/vmalloc.h>
13#include <linux/pm_runtime.h>
14
15#include "e1000.h"
16
17enum { NETDEV_STATS, E1000_STATS };
18
19struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24};
25
26static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27#define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29};
30
31#define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33#define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38#define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98};
99
100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106};
107
108#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
110static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112{
113 u32 speed, supported, advertising, lp_advertising, lpa_t;
114 struct e1000_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Asym_Pause |
124 SUPPORTED_Autoneg |
125 SUPPORTED_Pause |
126 SUPPORTED_TP);
127 if (hw->phy.type == e1000_phy_ife)
128 supported &= ~SUPPORTED_1000baseT_Full;
129 advertising = ADVERTISED_TP;
130
131 if (hw->mac.autoneg == 1) {
132 advertising |= ADVERTISED_Autoneg;
133 /* the e1000 autoneg seems to match ethtool nicely */
134 advertising |= hw->phy.autoneg_advertised;
135 }
136
137 cmd->base.port = PORT_TP;
138 cmd->base.phy_address = hw->phy.addr;
139 } else {
140 supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 advertising = (ADVERTISED_1000baseT_Full |
145 ADVERTISED_FIBRE |
146 ADVERTISED_Autoneg);
147
148 cmd->base.port = PORT_FIBRE;
149 }
150
151 speed = SPEED_UNKNOWN;
152 cmd->base.duplex = DUPLEX_UNKNOWN;
153
154 if (netif_running(netdev)) {
155 if (netif_carrier_ok(netdev)) {
156 speed = adapter->link_speed;
157 cmd->base.duplex = adapter->link_duplex - 1;
158 }
159 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
160 u32 status = er32(STATUS);
161
162 if (status & E1000_STATUS_LU) {
163 if (status & E1000_STATUS_SPEED_1000)
164 speed = SPEED_1000;
165 else if (status & E1000_STATUS_SPEED_100)
166 speed = SPEED_100;
167 else
168 speed = SPEED_10;
169
170 if (status & E1000_STATUS_FD)
171 cmd->base.duplex = DUPLEX_FULL;
172 else
173 cmd->base.duplex = DUPLEX_HALF;
174 }
175 }
176
177 cmd->base.speed = speed;
178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180
181 /* MDI-X => 2; MDI =>1; Invalid =>0 */
182 if ((hw->phy.media_type == e1000_media_type_copper) &&
183 netif_carrier_ok(netdev))
184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 ETH_TP_MDI_X : ETH_TP_MDI;
186 else
187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188
189 if (hw->phy.mdix == AUTO_ALL_MODES)
190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 else
192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193
194 if (hw->phy.media_type != e1000_media_type_copper)
195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196
197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 lp_advertising = lpa_t |
199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200
201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 supported);
203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 advertising);
205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 lp_advertising);
207
208 return 0;
209}
210
211static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212{
213 struct e1000_mac_info *mac = &adapter->hw.mac;
214
215 mac->autoneg = 0;
216
217 /* Make sure dplx is at most 1 bit and lsb of speed is not set
218 * for the switch() below to work
219 */
220 if ((spd & 1) || (dplx & ~1))
221 goto err_inval;
222
223 /* Fiber NICs only allow 1000 gbps Full duplex */
224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 goto err_inval;
227 }
228
229 switch (spd + dplx) {
230 case SPEED_10 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 break;
233 case SPEED_10 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 break;
236 case SPEED_100 + DUPLEX_HALF:
237 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 break;
239 case SPEED_100 + DUPLEX_FULL:
240 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_FULL:
243 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 mac->autoneg = 1;
245 adapter->hw.phy.autoneg_advertised =
246 ADVERTISE_1000_FULL;
247 } else {
248 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 }
250 break;
251 case SPEED_1000 + DUPLEX_HALF: /* not supported */
252 default:
253 goto err_inval;
254 }
255
256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 adapter->hw.phy.mdix = AUTO_ALL_MODES;
258
259 return 0;
260
261err_inval:
262 e_err("Unsupported Speed/Duplex configuration\n");
263 return -EINVAL;
264}
265
266static int e1000_set_link_ksettings(struct net_device *netdev,
267 const struct ethtool_link_ksettings *cmd)
268{
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int ret_val = 0;
272 u32 advertising;
273
274 ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 cmd->link_modes.advertising);
276
277 pm_runtime_get_sync(netdev->dev.parent);
278
279 /* When SoL/IDER sessions are active, autoneg/speed/duplex
280 * cannot be changed
281 */
282 if (hw->phy.ops.check_reset_block &&
283 hw->phy.ops.check_reset_block(hw)) {
284 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
285 ret_val = -EINVAL;
286 goto out;
287 }
288
289 /* MDI setting is only allowed when autoneg enabled because
290 * some hardware doesn't allow MDI setting when speed or
291 * duplex is forced.
292 */
293 if (cmd->base.eth_tp_mdix_ctrl) {
294 if (hw->phy.media_type != e1000_media_type_copper) {
295 ret_val = -EOPNOTSUPP;
296 goto out;
297 }
298
299 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
300 (cmd->base.autoneg != AUTONEG_ENABLE)) {
301 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
302 ret_val = -EINVAL;
303 goto out;
304 }
305 }
306
307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308 usleep_range(1000, 2000);
309
310 if (cmd->base.autoneg == AUTONEG_ENABLE) {
311 hw->mac.autoneg = 1;
312 if (hw->phy.media_type == e1000_media_type_fiber)
313 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
314 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
315 else
316 hw->phy.autoneg_advertised = advertising |
317 ADVERTISED_TP | ADVERTISED_Autoneg;
318 advertising = hw->phy.autoneg_advertised;
319 if (adapter->fc_autoneg)
320 hw->fc.requested_mode = e1000_fc_default;
321 } else {
322 u32 speed = cmd->base.speed;
323 /* calling this overrides forced MDI setting */
324 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
325 ret_val = -EINVAL;
326 goto out;
327 }
328 }
329
330 /* MDI-X => 2; MDI => 1; Auto => 3 */
331 if (cmd->base.eth_tp_mdix_ctrl) {
332 /* fix up the value for auto (3 => 0) as zero is mapped
333 * internally to auto
334 */
335 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336 hw->phy.mdix = AUTO_ALL_MODES;
337 else
338 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
339 }
340
341 /* reset the link */
342 if (netif_running(adapter->netdev)) {
343 e1000e_down(adapter, true);
344 e1000e_up(adapter);
345 } else {
346 e1000e_reset(adapter);
347 }
348
349out:
350 pm_runtime_put_sync(netdev->dev.parent);
351 clear_bit(__E1000_RESETTING, &adapter->state);
352 return ret_val;
353}
354
355static void e1000_get_pauseparam(struct net_device *netdev,
356 struct ethtool_pauseparam *pause)
357{
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 struct e1000_hw *hw = &adapter->hw;
360
361 pause->autoneg =
362 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
363
364 if (hw->fc.current_mode == e1000_fc_rx_pause) {
365 pause->rx_pause = 1;
366 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
367 pause->tx_pause = 1;
368 } else if (hw->fc.current_mode == e1000_fc_full) {
369 pause->rx_pause = 1;
370 pause->tx_pause = 1;
371 }
372}
373
374static int e1000_set_pauseparam(struct net_device *netdev,
375 struct ethtool_pauseparam *pause)
376{
377 struct e1000_adapter *adapter = netdev_priv(netdev);
378 struct e1000_hw *hw = &adapter->hw;
379 int retval = 0;
380
381 adapter->fc_autoneg = pause->autoneg;
382
383 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
384 usleep_range(1000, 2000);
385
386 pm_runtime_get_sync(netdev->dev.parent);
387
388 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
389 hw->fc.requested_mode = e1000_fc_default;
390 if (netif_running(adapter->netdev)) {
391 e1000e_down(adapter, true);
392 e1000e_up(adapter);
393 } else {
394 e1000e_reset(adapter);
395 }
396 } else {
397 if (pause->rx_pause && pause->tx_pause)
398 hw->fc.requested_mode = e1000_fc_full;
399 else if (pause->rx_pause && !pause->tx_pause)
400 hw->fc.requested_mode = e1000_fc_rx_pause;
401 else if (!pause->rx_pause && pause->tx_pause)
402 hw->fc.requested_mode = e1000_fc_tx_pause;
403 else if (!pause->rx_pause && !pause->tx_pause)
404 hw->fc.requested_mode = e1000_fc_none;
405
406 hw->fc.current_mode = hw->fc.requested_mode;
407
408 if (hw->phy.media_type == e1000_media_type_fiber) {
409 retval = hw->mac.ops.setup_link(hw);
410 /* implicit goto out */
411 } else {
412 retval = e1000e_force_mac_fc(hw);
413 if (retval)
414 goto out;
415 e1000e_set_fc_watermarks(hw);
416 }
417 }
418
419out:
420 pm_runtime_put_sync(netdev->dev.parent);
421 clear_bit(__E1000_RESETTING, &adapter->state);
422 return retval;
423}
424
425static u32 e1000_get_msglevel(struct net_device *netdev)
426{
427 struct e1000_adapter *adapter = netdev_priv(netdev);
428 return adapter->msg_enable;
429}
430
431static void e1000_set_msglevel(struct net_device *netdev, u32 data)
432{
433 struct e1000_adapter *adapter = netdev_priv(netdev);
434 adapter->msg_enable = data;
435}
436
437static int e1000_get_regs_len(struct net_device __always_unused *netdev)
438{
439#define E1000_REGS_LEN 32 /* overestimate */
440 return E1000_REGS_LEN * sizeof(u32);
441}
442
443static void e1000_get_regs(struct net_device *netdev,
444 struct ethtool_regs *regs, void *p)
445{
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 struct e1000_hw *hw = &adapter->hw;
448 u32 *regs_buff = p;
449 u16 phy_data;
450
451 pm_runtime_get_sync(netdev->dev.parent);
452
453 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
454
455 regs->version = (1u << 24) |
456 (adapter->pdev->revision << 16) |
457 adapter->pdev->device;
458
459 regs_buff[0] = er32(CTRL);
460 regs_buff[1] = er32(STATUS);
461
462 regs_buff[2] = er32(RCTL);
463 regs_buff[3] = er32(RDLEN(0));
464 regs_buff[4] = er32(RDH(0));
465 regs_buff[5] = er32(RDT(0));
466 regs_buff[6] = er32(RDTR);
467
468 regs_buff[7] = er32(TCTL);
469 regs_buff[8] = er32(TDLEN(0));
470 regs_buff[9] = er32(TDH(0));
471 regs_buff[10] = er32(TDT(0));
472 regs_buff[11] = er32(TIDV);
473
474 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
475
476 /* ethtool doesn't use anything past this point, so all this
477 * code is likely legacy junk for apps that may or may not exist
478 */
479 if (hw->phy.type == e1000_phy_m88) {
480 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
481 regs_buff[13] = (u32)phy_data; /* cable length */
482 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
483 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
485 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
486 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
487 regs_buff[18] = regs_buff[13]; /* cable polarity */
488 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
489 regs_buff[20] = regs_buff[17]; /* polarity correction */
490 /* phy receive errors */
491 regs_buff[22] = adapter->phy_stats.receive_errors;
492 regs_buff[23] = regs_buff[13]; /* mdix mode */
493 }
494 regs_buff[21] = 0; /* was idle_errors */
495 e1e_rphy(hw, MII_STAT1000, &phy_data);
496 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
497 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
498
499 pm_runtime_put_sync(netdev->dev.parent);
500}
501
502static int e1000_get_eeprom_len(struct net_device *netdev)
503{
504 struct e1000_adapter *adapter = netdev_priv(netdev);
505 return adapter->hw.nvm.word_size * 2;
506}
507
508static int e1000_get_eeprom(struct net_device *netdev,
509 struct ethtool_eeprom *eeprom, u8 *bytes)
510{
511 struct e1000_adapter *adapter = netdev_priv(netdev);
512 struct e1000_hw *hw = &adapter->hw;
513 u16 *eeprom_buff;
514 int first_word;
515 int last_word;
516 int ret_val = 0;
517 u16 i;
518
519 if (eeprom->len == 0)
520 return -EINVAL;
521
522 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
523
524 first_word = eeprom->offset >> 1;
525 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
526
527 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
528 GFP_KERNEL);
529 if (!eeprom_buff)
530 return -ENOMEM;
531
532 pm_runtime_get_sync(netdev->dev.parent);
533
534 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
535 ret_val = e1000_read_nvm(hw, first_word,
536 last_word - first_word + 1,
537 eeprom_buff);
538 } else {
539 for (i = 0; i < last_word - first_word + 1; i++) {
540 ret_val = e1000_read_nvm(hw, first_word + i, 1,
541 &eeprom_buff[i]);
542 if (ret_val)
543 break;
544 }
545 }
546
547 pm_runtime_put_sync(netdev->dev.parent);
548
549 if (ret_val) {
550 /* a read error occurred, throw away the result */
551 memset(eeprom_buff, 0xff, sizeof(u16) *
552 (last_word - first_word + 1));
553 } else {
554 /* Device's eeprom is always little-endian, word addressable */
555 for (i = 0; i < last_word - first_word + 1; i++)
556 le16_to_cpus(&eeprom_buff[i]);
557 }
558
559 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
560 kfree(eeprom_buff);
561
562 return ret_val;
563}
564
565static int e1000_set_eeprom(struct net_device *netdev,
566 struct ethtool_eeprom *eeprom, u8 *bytes)
567{
568 struct e1000_adapter *adapter = netdev_priv(netdev);
569 struct e1000_hw *hw = &adapter->hw;
570 u16 *eeprom_buff;
571 void *ptr;
572 int max_len;
573 int first_word;
574 int last_word;
575 int ret_val = 0;
576 u16 i;
577
578 if (eeprom->len == 0)
579 return -EOPNOTSUPP;
580
581 if (eeprom->magic !=
582 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
583 return -EFAULT;
584
585 if (adapter->flags & FLAG_READ_ONLY_NVM)
586 return -EINVAL;
587
588 max_len = hw->nvm.word_size * 2;
589
590 first_word = eeprom->offset >> 1;
591 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
592 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
593 if (!eeprom_buff)
594 return -ENOMEM;
595
596 ptr = (void *)eeprom_buff;
597
598 pm_runtime_get_sync(netdev->dev.parent);
599
600 if (eeprom->offset & 1) {
601 /* need read/modify/write of first changed EEPROM word */
602 /* only the second byte of the word is being modified */
603 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
604 ptr++;
605 }
606 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
607 /* need read/modify/write of last changed EEPROM word */
608 /* only the first byte of the word is being modified */
609 ret_val = e1000_read_nvm(hw, last_word, 1,
610 &eeprom_buff[last_word - first_word]);
611
612 if (ret_val)
613 goto out;
614
615 /* Device's eeprom is always little-endian, word addressable */
616 for (i = 0; i < last_word - first_word + 1; i++)
617 le16_to_cpus(&eeprom_buff[i]);
618
619 memcpy(ptr, bytes, eeprom->len);
620
621 for (i = 0; i < last_word - first_word + 1; i++)
622 cpu_to_le16s(&eeprom_buff[i]);
623
624 ret_val = e1000_write_nvm(hw, first_word,
625 last_word - first_word + 1, eeprom_buff);
626
627 if (ret_val)
628 goto out;
629
630 /* Update the checksum over the first part of the EEPROM if needed
631 * and flush shadow RAM for applicable controllers
632 */
633 if ((first_word <= NVM_CHECKSUM_REG) ||
634 (hw->mac.type == e1000_82583) ||
635 (hw->mac.type == e1000_82574) ||
636 (hw->mac.type == e1000_82573))
637 ret_val = e1000e_update_nvm_checksum(hw);
638
639out:
640 pm_runtime_put_sync(netdev->dev.parent);
641 kfree(eeprom_buff);
642 return ret_val;
643}
644
645static void e1000_get_drvinfo(struct net_device *netdev,
646 struct ethtool_drvinfo *drvinfo)
647{
648 struct e1000_adapter *adapter = netdev_priv(netdev);
649
650 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
651
652 /* EEPROM image version # is reported as firmware version # for
653 * PCI-E controllers
654 */
655 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
656 "%d.%d-%d",
657 FIELD_GET(0xF000, adapter->eeprom_vers),
658 FIELD_GET(0x0FF0, adapter->eeprom_vers),
659 (adapter->eeprom_vers & 0x000F));
660
661 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
662 sizeof(drvinfo->bus_info));
663}
664
665static void e1000_get_ringparam(struct net_device *netdev,
666 struct ethtool_ringparam *ring,
667 struct kernel_ethtool_ringparam *kernel_ring,
668 struct netlink_ext_ack *extack)
669{
670 struct e1000_adapter *adapter = netdev_priv(netdev);
671
672 ring->rx_max_pending = E1000_MAX_RXD;
673 ring->tx_max_pending = E1000_MAX_TXD;
674 ring->rx_pending = adapter->rx_ring_count;
675 ring->tx_pending = adapter->tx_ring_count;
676}
677
678static int e1000_set_ringparam(struct net_device *netdev,
679 struct ethtool_ringparam *ring,
680 struct kernel_ethtool_ringparam *kernel_ring,
681 struct netlink_ext_ack *extack)
682{
683 struct e1000_adapter *adapter = netdev_priv(netdev);
684 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
685 int err = 0, size = sizeof(struct e1000_ring);
686 bool set_tx = false, set_rx = false;
687 u16 new_rx_count, new_tx_count;
688
689 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
690 return -EINVAL;
691
692 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
693 E1000_MAX_RXD);
694 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
695
696 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
697 E1000_MAX_TXD);
698 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
699
700 if ((new_tx_count == adapter->tx_ring_count) &&
701 (new_rx_count == adapter->rx_ring_count))
702 /* nothing to do */
703 return 0;
704
705 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
706 usleep_range(1000, 2000);
707
708 if (!netif_running(adapter->netdev)) {
709 /* Set counts now and allocate resources during open() */
710 adapter->tx_ring->count = new_tx_count;
711 adapter->rx_ring->count = new_rx_count;
712 adapter->tx_ring_count = new_tx_count;
713 adapter->rx_ring_count = new_rx_count;
714 goto clear_reset;
715 }
716
717 set_tx = (new_tx_count != adapter->tx_ring_count);
718 set_rx = (new_rx_count != adapter->rx_ring_count);
719
720 /* Allocate temporary storage for ring updates */
721 if (set_tx) {
722 temp_tx = vmalloc(size);
723 if (!temp_tx) {
724 err = -ENOMEM;
725 goto free_temp;
726 }
727 }
728 if (set_rx) {
729 temp_rx = vmalloc(size);
730 if (!temp_rx) {
731 err = -ENOMEM;
732 goto free_temp;
733 }
734 }
735
736 pm_runtime_get_sync(netdev->dev.parent);
737
738 e1000e_down(adapter, true);
739
740 /* We can't just free everything and then setup again, because the
741 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
742 * structs. First, attempt to allocate new resources...
743 */
744 if (set_tx) {
745 memcpy(temp_tx, adapter->tx_ring, size);
746 temp_tx->count = new_tx_count;
747 err = e1000e_setup_tx_resources(temp_tx);
748 if (err)
749 goto err_setup;
750 }
751 if (set_rx) {
752 memcpy(temp_rx, adapter->rx_ring, size);
753 temp_rx->count = new_rx_count;
754 err = e1000e_setup_rx_resources(temp_rx);
755 if (err)
756 goto err_setup_rx;
757 }
758
759 /* ...then free the old resources and copy back any new ring data */
760 if (set_tx) {
761 e1000e_free_tx_resources(adapter->tx_ring);
762 memcpy(adapter->tx_ring, temp_tx, size);
763 adapter->tx_ring_count = new_tx_count;
764 }
765 if (set_rx) {
766 e1000e_free_rx_resources(adapter->rx_ring);
767 memcpy(adapter->rx_ring, temp_rx, size);
768 adapter->rx_ring_count = new_rx_count;
769 }
770
771err_setup_rx:
772 if (err && set_tx)
773 e1000e_free_tx_resources(temp_tx);
774err_setup:
775 e1000e_up(adapter);
776 pm_runtime_put_sync(netdev->dev.parent);
777free_temp:
778 vfree(temp_tx);
779 vfree(temp_rx);
780clear_reset:
781 clear_bit(__E1000_RESETTING, &adapter->state);
782 return err;
783}
784
785static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
786 int reg, int offset, u32 mask, u32 write)
787{
788 u32 pat, val;
789 static const u32 test[] = {
790 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
791 };
792 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
793 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
794 (test[pat] & write));
795 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
796 if (val != (test[pat] & write & mask)) {
797 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
798 reg + (offset << 2), val,
799 (test[pat] & write & mask));
800 *data = reg;
801 return true;
802 }
803 }
804 return false;
805}
806
807static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
808 int reg, u32 mask, u32 write)
809{
810 u32 val;
811
812 __ew32(&adapter->hw, reg, write & mask);
813 val = __er32(&adapter->hw, reg);
814 if ((write & mask) != (val & mask)) {
815 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
816 reg, (val & mask), (write & mask));
817 *data = reg;
818 return true;
819 }
820 return false;
821}
822
823#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
824 do { \
825 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
826 return 1; \
827 } while (0)
828#define REG_PATTERN_TEST(reg, mask, write) \
829 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
830
831#define REG_SET_AND_CHECK(reg, mask, write) \
832 do { \
833 if (reg_set_and_check(adapter, data, reg, mask, write)) \
834 return 1; \
835 } while (0)
836
837static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
838{
839 struct e1000_hw *hw = &adapter->hw;
840 struct e1000_mac_info *mac = &adapter->hw.mac;
841 u32 value;
842 u32 before;
843 u32 after;
844 u32 i;
845 u32 toggle;
846 u32 mask;
847 u32 wlock_mac = 0;
848
849 /* The status register is Read Only, so a write should fail.
850 * Some bits that get toggled are ignored. There are several bits
851 * on newer hardware that are r/w.
852 */
853 switch (mac->type) {
854 case e1000_82571:
855 case e1000_82572:
856 case e1000_80003es2lan:
857 toggle = 0x7FFFF3FF;
858 break;
859 default:
860 toggle = 0x7FFFF033;
861 break;
862 }
863
864 before = er32(STATUS);
865 value = (er32(STATUS) & toggle);
866 ew32(STATUS, toggle);
867 after = er32(STATUS) & toggle;
868 if (value != after) {
869 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
870 after, value);
871 *data = 1;
872 return 1;
873 }
874 /* restore previous status */
875 ew32(STATUS, before);
876
877 if (!(adapter->flags & FLAG_IS_ICH)) {
878 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
880 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
882 }
883
884 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
887 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
888 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
889 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
890 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
892 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
893 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
894
895 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
896
897 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
898 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
899 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
900
901 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
902 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
903 if (!(adapter->flags & FLAG_IS_ICH))
904 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
905 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
906 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
907 mask = 0x8003FFFF;
908 switch (mac->type) {
909 case e1000_ich10lan:
910 case e1000_pchlan:
911 case e1000_pch2lan:
912 case e1000_pch_lpt:
913 case e1000_pch_spt:
914 case e1000_pch_cnp:
915 case e1000_pch_tgp:
916 case e1000_pch_adp:
917 case e1000_pch_mtp:
918 case e1000_pch_lnp:
919 case e1000_pch_ptp:
920 case e1000_pch_nvp:
921 mask |= BIT(18);
922 break;
923 default:
924 break;
925 }
926
927 if (mac->type >= e1000_pch_lpt)
928 wlock_mac = FIELD_GET(E1000_FWSM_WLOCK_MAC_MASK, er32(FWSM));
929
930 for (i = 0; i < mac->rar_entry_count; i++) {
931 if (mac->type >= e1000_pch_lpt) {
932 /* Cannot test write-protected SHRAL[n] registers */
933 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
934 continue;
935
936 /* SHRAH[9] different than the others */
937 if (i == 10)
938 mask |= BIT(30);
939 else
940 mask &= ~BIT(30);
941 }
942 if (mac->type == e1000_pch2lan) {
943 /* SHRAH[0,1,2] different than previous */
944 if (i == 1)
945 mask &= 0xFFF4FFFF;
946 /* SHRAH[3] different than SHRAH[0,1,2] */
947 if (i == 4)
948 mask |= BIT(30);
949 /* RAR[1-6] owned by management engine - skipping */
950 if (i > 0)
951 i += 6;
952 }
953
954 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
955 0xFFFFFFFF);
956 /* reset index to actual value */
957 if ((mac->type == e1000_pch2lan) && (i > 6))
958 i -= 6;
959 }
960
961 for (i = 0; i < mac->mta_reg_count; i++)
962 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
963
964 *data = 0;
965
966 return 0;
967}
968
969static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
970{
971 u16 temp;
972 u16 checksum = 0;
973 u16 i;
974
975 *data = 0;
976 /* Read and add up the contents of the EEPROM */
977 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
978 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
979 *data = 1;
980 return *data;
981 }
982 checksum += temp;
983 }
984
985 /* If Checksum is not Correct return error else test passed */
986 if ((checksum != (u16)NVM_SUM) && !(*data))
987 *data = 2;
988
989 return *data;
990}
991
992static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
993{
994 struct net_device *netdev = (struct net_device *)data;
995 struct e1000_adapter *adapter = netdev_priv(netdev);
996 struct e1000_hw *hw = &adapter->hw;
997
998 adapter->test_icr |= er32(ICR);
999
1000 return IRQ_HANDLED;
1001}
1002
1003static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1004{
1005 struct net_device *netdev = adapter->netdev;
1006 struct e1000_hw *hw = &adapter->hw;
1007 u32 mask;
1008 u32 shared_int = 1;
1009 u32 irq = adapter->pdev->irq;
1010 int i;
1011 int ret_val = 0;
1012 int int_mode = E1000E_INT_MODE_LEGACY;
1013
1014 *data = 0;
1015
1016 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1017 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1018 int_mode = adapter->int_mode;
1019 e1000e_reset_interrupt_capability(adapter);
1020 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1021 e1000e_set_interrupt_capability(adapter);
1022 }
1023 /* Hook up test interrupt handler just for this test */
1024 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1025 netdev)) {
1026 shared_int = 0;
1027 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1028 netdev)) {
1029 *data = 1;
1030 ret_val = -1;
1031 goto out;
1032 }
1033 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1034
1035 /* Disable all the interrupts */
1036 ew32(IMC, 0xFFFFFFFF);
1037 e1e_flush();
1038 usleep_range(10000, 11000);
1039
1040 /* Test each interrupt */
1041 for (i = 0; i < 10; i++) {
1042 /* Interrupt to test */
1043 mask = BIT(i);
1044
1045 if (adapter->flags & FLAG_IS_ICH) {
1046 switch (mask) {
1047 case E1000_ICR_RXSEQ:
1048 continue;
1049 case 0x00000100:
1050 if (adapter->hw.mac.type == e1000_ich8lan ||
1051 adapter->hw.mac.type == e1000_ich9lan)
1052 continue;
1053 break;
1054 default:
1055 break;
1056 }
1057 }
1058
1059 if (!shared_int) {
1060 /* Disable the interrupt to be reported in
1061 * the cause register and then force the same
1062 * interrupt and see if one gets posted. If
1063 * an interrupt was posted to the bus, the
1064 * test failed.
1065 */
1066 adapter->test_icr = 0;
1067 ew32(IMC, mask);
1068 ew32(ICS, mask);
1069 e1e_flush();
1070 usleep_range(10000, 11000);
1071
1072 if (adapter->test_icr & mask) {
1073 *data = 3;
1074 break;
1075 }
1076 }
1077
1078 /* Enable the interrupt to be reported in
1079 * the cause register and then force the same
1080 * interrupt and see if one gets posted. If
1081 * an interrupt was not posted to the bus, the
1082 * test failed.
1083 */
1084 adapter->test_icr = 0;
1085 ew32(IMS, mask);
1086 ew32(ICS, mask);
1087 e1e_flush();
1088 usleep_range(10000, 11000);
1089
1090 if (!(adapter->test_icr & mask)) {
1091 *data = 4;
1092 break;
1093 }
1094
1095 if (!shared_int) {
1096 /* Disable the other interrupts to be reported in
1097 * the cause register and then force the other
1098 * interrupts and see if any get posted. If
1099 * an interrupt was posted to the bus, the
1100 * test failed.
1101 */
1102 adapter->test_icr = 0;
1103 ew32(IMC, ~mask & 0x00007FFF);
1104 ew32(ICS, ~mask & 0x00007FFF);
1105 e1e_flush();
1106 usleep_range(10000, 11000);
1107
1108 if (adapter->test_icr) {
1109 *data = 5;
1110 break;
1111 }
1112 }
1113 }
1114
1115 /* Disable all the interrupts */
1116 ew32(IMC, 0xFFFFFFFF);
1117 e1e_flush();
1118 usleep_range(10000, 11000);
1119
1120 /* Unhook test interrupt handler */
1121 free_irq(irq, netdev);
1122
1123out:
1124 if (int_mode == E1000E_INT_MODE_MSIX) {
1125 e1000e_reset_interrupt_capability(adapter);
1126 adapter->int_mode = int_mode;
1127 e1000e_set_interrupt_capability(adapter);
1128 }
1129
1130 return ret_val;
1131}
1132
1133static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1134{
1135 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1136 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1137 struct pci_dev *pdev = adapter->pdev;
1138 struct e1000_buffer *buffer_info;
1139 int i;
1140
1141 if (tx_ring->desc && tx_ring->buffer_info) {
1142 for (i = 0; i < tx_ring->count; i++) {
1143 buffer_info = &tx_ring->buffer_info[i];
1144
1145 if (buffer_info->dma)
1146 dma_unmap_single(&pdev->dev,
1147 buffer_info->dma,
1148 buffer_info->length,
1149 DMA_TO_DEVICE);
1150 dev_kfree_skb(buffer_info->skb);
1151 }
1152 }
1153
1154 if (rx_ring->desc && rx_ring->buffer_info) {
1155 for (i = 0; i < rx_ring->count; i++) {
1156 buffer_info = &rx_ring->buffer_info[i];
1157
1158 if (buffer_info->dma)
1159 dma_unmap_single(&pdev->dev,
1160 buffer_info->dma,
1161 2048, DMA_FROM_DEVICE);
1162 dev_kfree_skb(buffer_info->skb);
1163 }
1164 }
1165
1166 if (tx_ring->desc) {
1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 tx_ring->dma);
1169 tx_ring->desc = NULL;
1170 }
1171 if (rx_ring->desc) {
1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 rx_ring->dma);
1174 rx_ring->desc = NULL;
1175 }
1176
1177 kfree(tx_ring->buffer_info);
1178 tx_ring->buffer_info = NULL;
1179 kfree(rx_ring->buffer_info);
1180 rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 struct pci_dev *pdev = adapter->pdev;
1188 struct e1000_hw *hw = &adapter->hw;
1189 u32 rctl;
1190 int i;
1191 int ret_val;
1192
1193 /* Setup Tx descriptor ring and Tx buffers */
1194
1195 if (!tx_ring->count)
1196 tx_ring->count = E1000_DEFAULT_TXD;
1197
1198 tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 sizeof(struct e1000_buffer), GFP_KERNEL);
1200 if (!tx_ring->buffer_info) {
1201 ret_val = 1;
1202 goto err_nomem;
1203 }
1204
1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 &tx_ring->dma, GFP_KERNEL);
1209 if (!tx_ring->desc) {
1210 ret_val = 2;
1211 goto err_nomem;
1212 }
1213 tx_ring->next_to_use = 0;
1214 tx_ring->next_to_clean = 0;
1215
1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 ew32(TDH(0), 0);
1220 ew32(TDT(0), 0);
1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225 for (i = 0; i < tx_ring->count; i++) {
1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 struct sk_buff *skb;
1228 unsigned int skb_size = 1024;
1229
1230 skb = alloc_skb(skb_size, GFP_KERNEL);
1231 if (!skb) {
1232 ret_val = 3;
1233 goto err_nomem;
1234 }
1235 skb_put(skb, skb_size);
1236 tx_ring->buffer_info[i].skb = skb;
1237 tx_ring->buffer_info[i].length = skb->len;
1238 tx_ring->buffer_info[i].dma =
1239 dma_map_single(&pdev->dev, skb->data, skb->len,
1240 DMA_TO_DEVICE);
1241 if (dma_mapping_error(&pdev->dev,
1242 tx_ring->buffer_info[i].dma)) {
1243 ret_val = 4;
1244 goto err_nomem;
1245 }
1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 tx_desc->lower.data = cpu_to_le32(skb->len);
1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 E1000_TXD_CMD_IFCS |
1250 E1000_TXD_CMD_RS);
1251 tx_desc->upper.data = 0;
1252 }
1253
1254 /* Setup Rx descriptor ring and Rx buffers */
1255
1256 if (!rx_ring->count)
1257 rx_ring->count = E1000_DEFAULT_RXD;
1258
1259 rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 sizeof(struct e1000_buffer), GFP_KERNEL);
1261 if (!rx_ring->buffer_info) {
1262 ret_val = 5;
1263 goto err_nomem;
1264 }
1265
1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 &rx_ring->dma, GFP_KERNEL);
1269 if (!rx_ring->desc) {
1270 ret_val = 6;
1271 goto err_nomem;
1272 }
1273 rx_ring->next_to_use = 0;
1274 rx_ring->next_to_clean = 0;
1275
1276 rctl = er32(RCTL);
1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 ew32(RDLEN(0), rx_ring->size);
1282 ew32(RDH(0), 0);
1283 ew32(RDT(0), 0);
1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 ew32(RCTL, rctl);
1290
1291 for (i = 0; i < rx_ring->count; i++) {
1292 union e1000_rx_desc_extended *rx_desc;
1293 struct sk_buff *skb;
1294
1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 if (!skb) {
1297 ret_val = 7;
1298 goto err_nomem;
1299 }
1300 skb_reserve(skb, NET_IP_ALIGN);
1301 rx_ring->buffer_info[i].skb = skb;
1302 rx_ring->buffer_info[i].dma =
1303 dma_map_single(&pdev->dev, skb->data, 2048,
1304 DMA_FROM_DEVICE);
1305 if (dma_mapping_error(&pdev->dev,
1306 rx_ring->buffer_info[i].dma)) {
1307 ret_val = 8;
1308 goto err_nomem;
1309 }
1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 rx_desc->read.buffer_addr =
1312 cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 memset(skb->data, 0x00, skb->len);
1314 }
1315
1316 return 0;
1317
1318err_nomem:
1319 e1000_free_desc_rings(adapter);
1320 return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 e1e_wphy(&adapter->hw, 29, 0x001F);
1327 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 e1e_wphy(&adapter->hw, 29, 0x001A);
1329 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334 struct e1000_hw *hw = &adapter->hw;
1335 u32 ctrl_reg = 0;
1336 u16 phy_reg = 0;
1337 s32 ret_val = 0;
1338
1339 hw->mac.autoneg = 0;
1340
1341 if (hw->phy.type == e1000_phy_ife) {
1342 /* force 100, set loopback */
1343 e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346 ctrl_reg = er32(CTRL);
1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 E1000_CTRL_FD); /* Force Duplex to FULL */
1352
1353 ew32(CTRL, ctrl_reg);
1354 e1e_flush();
1355 usleep_range(500, 1000);
1356
1357 return 0;
1358 }
1359
1360 /* Specific PHY configuration for loopback */
1361 switch (hw->phy.type) {
1362 case e1000_phy_m88:
1363 /* Auto-MDI/MDIX Off */
1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 /* reset to update Auto-MDI/MDIX */
1366 e1e_wphy(hw, MII_BMCR, 0x9140);
1367 /* autoneg off */
1368 e1e_wphy(hw, MII_BMCR, 0x8140);
1369 break;
1370 case e1000_phy_gg82563:
1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 break;
1373 case e1000_phy_bm:
1374 /* Set Default MAC Interface speed to 1GB */
1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 phy_reg &= ~0x0007;
1377 phy_reg |= 0x006;
1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 /* Assert SW reset for above settings to take effect */
1380 hw->phy.ops.commit(hw);
1381 usleep_range(1000, 2000);
1382 /* Force Full Duplex */
1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 /* Set Link Up (in force link) */
1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 /* Force Link */
1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 /* Set Early Link Enable */
1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 break;
1395 case e1000_phy_82577:
1396 case e1000_phy_82578:
1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 ret_val = hw->phy.ops.acquire(hw);
1399 if (ret_val) {
1400 e_err("Cannot setup 1Gbps loopback.\n");
1401 return ret_val;
1402 }
1403 e1000_configure_k1_ich8lan(hw, false);
1404 hw->phy.ops.release(hw);
1405 break;
1406 case e1000_phy_82579:
1407 /* Disable PHY energy detect power down */
1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 /* Disable full chip energy detect */
1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 /* Enable loopback on the PHY */
1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 break;
1416 default:
1417 break;
1418 }
1419
1420 /* force 1000, set loopback */
1421 e1e_wphy(hw, MII_BMCR, 0x4140);
1422 msleep(250);
1423
1424 /* Now set up the MAC to the same speed/duplex as the PHY. */
1425 ctrl_reg = er32(CTRL);
1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 E1000_CTRL_FD); /* Force Duplex to FULL */
1431
1432 if (adapter->flags & FLAG_IS_ICH)
1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1434
1435 if (hw->phy.media_type == e1000_media_type_copper &&
1436 hw->phy.type == e1000_phy_m88) {
1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1438 } else {
1439 /* Set the ILOS bit on the fiber Nic if half duplex link is
1440 * detected.
1441 */
1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 }
1445
1446 ew32(CTRL, ctrl_reg);
1447
1448 /* Disable the receiver on the PHY so when a cable is plugged in, the
1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 */
1451 if (hw->phy.type == e1000_phy_m88)
1452 e1000_phy_disable_receiver(adapter);
1453
1454 usleep_range(500, 1000);
1455
1456 return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl = er32(CTRL);
1463 int link;
1464
1465 /* special requirements for 82571/82572 fiber adapters */
1466
1467 /* jump through hoops to make sure link is up because serdes
1468 * link is hardwired up
1469 */
1470 ctrl |= E1000_CTRL_SLU;
1471 ew32(CTRL, ctrl);
1472
1473 /* disable autoneg */
1474 ctrl = er32(TXCW);
1475 ctrl &= ~BIT(31);
1476 ew32(TXCW, ctrl);
1477
1478 link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480 if (!link) {
1481 /* set invert loss of signal */
1482 ctrl = er32(CTRL);
1483 ctrl |= E1000_CTRL_ILOS;
1484 ew32(CTRL, ctrl);
1485 }
1486
1487 /* special write to serdes control register to enable SerDes analog
1488 * loopback
1489 */
1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 e1e_flush();
1492 usleep_range(10000, 11000);
1493
1494 return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500 struct e1000_hw *hw = &adapter->hw;
1501 u32 ctrlext = er32(CTRL_EXT);
1502 u32 ctrl = er32(CTRL);
1503
1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 * on mac_type 80003es2lan)
1506 */
1507 adapter->tx_fifo_head = ctrlext;
1508
1509 /* clear the serdes mode bits, putting the device into mac loopback */
1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 ew32(CTRL_EXT, ctrlext);
1512
1513 /* force speed to 1000/FD, link up */
1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 ew32(CTRL, ctrl);
1518
1519 /* set mac loopback */
1520 ctrl = er32(RCTL);
1521 ctrl |= E1000_RCTL_LBM_MAC;
1522 ew32(RCTL, ctrl);
1523
1524 /* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 ew32(KMRNCTRLSTA,
1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530 return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 rctl, fext_nvm11, tarc0;
1537
1538 if (hw->mac.type >= e1000_pch_spt) {
1539 fext_nvm11 = er32(FEXTNVM11);
1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 ew32(FEXTNVM11, fext_nvm11);
1542 tarc0 = er32(TARC(0));
1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 tarc0 &= 0xcfffffff;
1545 /* set bit 29 (value of MULR requests is now 2) */
1546 tarc0 |= 0x20000000;
1547 ew32(TARC(0), tarc0);
1548 }
1549 if (hw->phy.media_type == e1000_media_type_fiber ||
1550 hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 switch (hw->mac.type) {
1552 case e1000_80003es2lan:
1553 return e1000_set_es2lan_mac_loopback(adapter);
1554 case e1000_82571:
1555 case e1000_82572:
1556 return e1000_set_82571_fiber_loopback(adapter);
1557 default:
1558 rctl = er32(RCTL);
1559 rctl |= E1000_RCTL_LBM_TCVR;
1560 ew32(RCTL, rctl);
1561 return 0;
1562 }
1563 } else if (hw->phy.media_type == e1000_media_type_copper) {
1564 return e1000_integrated_phy_loopback(adapter);
1565 }
1566
1567 return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 rctl, fext_nvm11, tarc0;
1574 u16 phy_reg;
1575
1576 rctl = er32(RCTL);
1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 ew32(RCTL, rctl);
1579
1580 switch (hw->mac.type) {
1581 case e1000_pch_spt:
1582 case e1000_pch_cnp:
1583 case e1000_pch_tgp:
1584 case e1000_pch_adp:
1585 case e1000_pch_mtp:
1586 case e1000_pch_lnp:
1587 case e1000_pch_ptp:
1588 case e1000_pch_nvp:
1589 fext_nvm11 = er32(FEXTNVM11);
1590 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1591 ew32(FEXTNVM11, fext_nvm11);
1592 tarc0 = er32(TARC(0));
1593 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1594 /* set bit 29 (value of MULR requests is now 0) */
1595 tarc0 &= 0xcfffffff;
1596 ew32(TARC(0), tarc0);
1597 fallthrough;
1598 case e1000_80003es2lan:
1599 if (hw->phy.media_type == e1000_media_type_fiber ||
1600 hw->phy.media_type == e1000_media_type_internal_serdes) {
1601 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1602 ew32(CTRL_EXT, adapter->tx_fifo_head);
1603 adapter->tx_fifo_head = 0;
1604 }
1605 fallthrough;
1606 case e1000_82571:
1607 case e1000_82572:
1608 if (hw->phy.media_type == e1000_media_type_fiber ||
1609 hw->phy.media_type == e1000_media_type_internal_serdes) {
1610 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1611 e1e_flush();
1612 usleep_range(10000, 11000);
1613 break;
1614 }
1615 fallthrough;
1616 default:
1617 hw->mac.autoneg = 1;
1618 if (hw->phy.type == e1000_phy_gg82563)
1619 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1620 e1e_rphy(hw, MII_BMCR, &phy_reg);
1621 if (phy_reg & BMCR_LOOPBACK) {
1622 phy_reg &= ~BMCR_LOOPBACK;
1623 e1e_wphy(hw, MII_BMCR, phy_reg);
1624 if (hw->phy.ops.commit)
1625 hw->phy.ops.commit(hw);
1626 }
1627 break;
1628 }
1629}
1630
1631static void e1000_create_lbtest_frame(struct sk_buff *skb,
1632 unsigned int frame_size)
1633{
1634 memset(skb->data, 0xFF, frame_size);
1635 frame_size &= ~1;
1636 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1637 skb->data[frame_size / 2 + 10] = 0xBE;
1638 skb->data[frame_size / 2 + 12] = 0xAF;
1639}
1640
1641static int e1000_check_lbtest_frame(struct sk_buff *skb,
1642 unsigned int frame_size)
1643{
1644 frame_size &= ~1;
1645 if (*(skb->data + 3) == 0xFF)
1646 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1647 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1648 return 0;
1649 return 13;
1650}
1651
1652static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1653{
1654 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1655 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1656 struct pci_dev *pdev = adapter->pdev;
1657 struct e1000_hw *hw = &adapter->hw;
1658 struct e1000_buffer *buffer_info;
1659 int i, j, k, l;
1660 int lc;
1661 int good_cnt;
1662 int ret_val = 0;
1663 unsigned long time;
1664
1665 ew32(RDT(0), rx_ring->count - 1);
1666
1667 /* Calculate the loop count based on the largest descriptor ring
1668 * The idea is to wrap the largest ring a number of times using 64
1669 * send/receive pairs during each loop
1670 */
1671
1672 if (rx_ring->count <= tx_ring->count)
1673 lc = ((tx_ring->count / 64) * 2) + 1;
1674 else
1675 lc = ((rx_ring->count / 64) * 2) + 1;
1676
1677 k = 0;
1678 l = 0;
1679 /* loop count loop */
1680 for (j = 0; j <= lc; j++) {
1681 /* send the packets */
1682 for (i = 0; i < 64; i++) {
1683 buffer_info = &tx_ring->buffer_info[k];
1684
1685 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1686 dma_sync_single_for_device(&pdev->dev,
1687 buffer_info->dma,
1688 buffer_info->length,
1689 DMA_TO_DEVICE);
1690 k++;
1691 if (k == tx_ring->count)
1692 k = 0;
1693 }
1694 ew32(TDT(0), k);
1695 e1e_flush();
1696 msleep(200);
1697 time = jiffies; /* set the start time for the receive */
1698 good_cnt = 0;
1699 /* receive the sent packets */
1700 do {
1701 buffer_info = &rx_ring->buffer_info[l];
1702
1703 dma_sync_single_for_cpu(&pdev->dev,
1704 buffer_info->dma, 2048,
1705 DMA_FROM_DEVICE);
1706
1707 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1708 1024);
1709 if (!ret_val)
1710 good_cnt++;
1711 l++;
1712 if (l == rx_ring->count)
1713 l = 0;
1714 /* time + 20 msecs (200 msecs on 2.4) is more than
1715 * enough time to complete the receives, if it's
1716 * exceeded, break and error off
1717 */
1718 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1719 if (good_cnt != 64) {
1720 ret_val = 13; /* ret_val is the same as mis-compare */
1721 break;
1722 }
1723 if (time_after(jiffies, time + 20)) {
1724 ret_val = 14; /* error code for time out error */
1725 break;
1726 }
1727 }
1728 return ret_val;
1729}
1730
1731static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1732{
1733 struct e1000_hw *hw = &adapter->hw;
1734
1735 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1736 if (hw->phy.ops.check_reset_block &&
1737 hw->phy.ops.check_reset_block(hw)) {
1738 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1739 *data = 0;
1740 goto out;
1741 }
1742
1743 *data = e1000_setup_desc_rings(adapter);
1744 if (*data)
1745 goto out;
1746
1747 *data = e1000_setup_loopback_test(adapter);
1748 if (*data)
1749 goto err_loopback;
1750
1751 *data = e1000_run_loopback_test(adapter);
1752 e1000_loopback_cleanup(adapter);
1753
1754err_loopback:
1755 e1000_free_desc_rings(adapter);
1756out:
1757 return *data;
1758}
1759
1760static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1761{
1762 struct e1000_hw *hw = &adapter->hw;
1763
1764 *data = 0;
1765 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1766 int i = 0;
1767
1768 hw->mac.serdes_has_link = false;
1769
1770 /* On some blade server designs, link establishment
1771 * could take as long as 2-3 minutes
1772 */
1773 do {
1774 hw->mac.ops.check_for_link(hw);
1775 if (hw->mac.serdes_has_link)
1776 return *data;
1777 msleep(20);
1778 } while (i++ < 3750);
1779
1780 *data = 1;
1781 } else {
1782 hw->mac.ops.check_for_link(hw);
1783 if (hw->mac.autoneg)
1784 /* On some Phy/switch combinations, link establishment
1785 * can take a few seconds more than expected.
1786 */
1787 msleep_interruptible(5000);
1788
1789 if (!(er32(STATUS) & E1000_STATUS_LU))
1790 *data = 1;
1791 }
1792 return *data;
1793}
1794
1795static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1796 int sset)
1797{
1798 switch (sset) {
1799 case ETH_SS_TEST:
1800 return E1000_TEST_LEN;
1801 case ETH_SS_STATS:
1802 return E1000_STATS_LEN;
1803 case ETH_SS_PRIV_FLAGS:
1804 return E1000E_PRIV_FLAGS_STR_LEN;
1805 default:
1806 return -EOPNOTSUPP;
1807 }
1808}
1809
1810static void e1000_diag_test(struct net_device *netdev,
1811 struct ethtool_test *eth_test, u64 *data)
1812{
1813 struct e1000_adapter *adapter = netdev_priv(netdev);
1814 u16 autoneg_advertised;
1815 u8 forced_speed_duplex;
1816 u8 autoneg;
1817 bool if_running = netif_running(netdev);
1818
1819 pm_runtime_get_sync(netdev->dev.parent);
1820
1821 set_bit(__E1000_TESTING, &adapter->state);
1822
1823 if (!if_running) {
1824 /* Get control of and reset hardware */
1825 if (adapter->flags & FLAG_HAS_AMT)
1826 e1000e_get_hw_control(adapter);
1827
1828 e1000e_power_up_phy(adapter);
1829
1830 adapter->hw.phy.autoneg_wait_to_complete = 1;
1831 e1000e_reset(adapter);
1832 adapter->hw.phy.autoneg_wait_to_complete = 0;
1833 }
1834
1835 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1836 /* Offline tests */
1837
1838 /* save speed, duplex, autoneg settings */
1839 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1840 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1841 autoneg = adapter->hw.mac.autoneg;
1842
1843 e_info("offline testing starting\n");
1844
1845 if (if_running)
1846 /* indicate we're in test mode */
1847 e1000e_close(netdev);
1848
1849 if (e1000_reg_test(adapter, &data[0]))
1850 eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852 e1000e_reset(adapter);
1853 if (e1000_eeprom_test(adapter, &data[1]))
1854 eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856 e1000e_reset(adapter);
1857 if (e1000_intr_test(adapter, &data[2]))
1858 eth_test->flags |= ETH_TEST_FL_FAILED;
1859
1860 e1000e_reset(adapter);
1861 if (e1000_loopback_test(adapter, &data[3]))
1862 eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864 /* force this routine to wait until autoneg complete/timeout */
1865 adapter->hw.phy.autoneg_wait_to_complete = 1;
1866 e1000e_reset(adapter);
1867 adapter->hw.phy.autoneg_wait_to_complete = 0;
1868
1869 if (e1000_link_test(adapter, &data[4]))
1870 eth_test->flags |= ETH_TEST_FL_FAILED;
1871
1872 /* restore speed, duplex, autoneg settings */
1873 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1874 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1875 adapter->hw.mac.autoneg = autoneg;
1876 e1000e_reset(adapter);
1877
1878 clear_bit(__E1000_TESTING, &adapter->state);
1879 if (if_running)
1880 e1000e_open(netdev);
1881 } else {
1882 /* Online tests */
1883
1884 e_info("online testing starting\n");
1885
1886 /* register, eeprom, intr and loopback tests not run online */
1887 data[0] = 0;
1888 data[1] = 0;
1889 data[2] = 0;
1890 data[3] = 0;
1891
1892 if (e1000_link_test(adapter, &data[4]))
1893 eth_test->flags |= ETH_TEST_FL_FAILED;
1894
1895 clear_bit(__E1000_TESTING, &adapter->state);
1896 }
1897
1898 if (!if_running) {
1899 e1000e_reset(adapter);
1900
1901 if (adapter->flags & FLAG_HAS_AMT)
1902 e1000e_release_hw_control(adapter);
1903 }
1904
1905 msleep_interruptible(4 * 1000);
1906
1907 pm_runtime_put_sync(netdev->dev.parent);
1908}
1909
1910static void e1000_get_wol(struct net_device *netdev,
1911 struct ethtool_wolinfo *wol)
1912{
1913 struct e1000_adapter *adapter = netdev_priv(netdev);
1914
1915 wol->supported = 0;
1916 wol->wolopts = 0;
1917
1918 if (!(adapter->flags & FLAG_HAS_WOL) ||
1919 !device_can_wakeup(&adapter->pdev->dev))
1920 return;
1921
1922 wol->supported = WAKE_UCAST | WAKE_MCAST |
1923 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1924
1925 /* apply any specific unsupported masks here */
1926 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1927 wol->supported &= ~WAKE_UCAST;
1928
1929 if (adapter->wol & E1000_WUFC_EX)
1930 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1931 }
1932
1933 if (adapter->wol & E1000_WUFC_EX)
1934 wol->wolopts |= WAKE_UCAST;
1935 if (adapter->wol & E1000_WUFC_MC)
1936 wol->wolopts |= WAKE_MCAST;
1937 if (adapter->wol & E1000_WUFC_BC)
1938 wol->wolopts |= WAKE_BCAST;
1939 if (adapter->wol & E1000_WUFC_MAG)
1940 wol->wolopts |= WAKE_MAGIC;
1941 if (adapter->wol & E1000_WUFC_LNKC)
1942 wol->wolopts |= WAKE_PHY;
1943}
1944
1945static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1946{
1947 struct e1000_adapter *adapter = netdev_priv(netdev);
1948
1949 if (!(adapter->flags & FLAG_HAS_WOL) ||
1950 !device_can_wakeup(&adapter->pdev->dev) ||
1951 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1952 WAKE_MAGIC | WAKE_PHY)))
1953 return -EOPNOTSUPP;
1954
1955 /* these settings will always override what we currently have */
1956 adapter->wol = 0;
1957
1958 if (wol->wolopts & WAKE_UCAST)
1959 adapter->wol |= E1000_WUFC_EX;
1960 if (wol->wolopts & WAKE_MCAST)
1961 adapter->wol |= E1000_WUFC_MC;
1962 if (wol->wolopts & WAKE_BCAST)
1963 adapter->wol |= E1000_WUFC_BC;
1964 if (wol->wolopts & WAKE_MAGIC)
1965 adapter->wol |= E1000_WUFC_MAG;
1966 if (wol->wolopts & WAKE_PHY)
1967 adapter->wol |= E1000_WUFC_LNKC;
1968
1969 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1970
1971 return 0;
1972}
1973
1974static int e1000_set_phys_id(struct net_device *netdev,
1975 enum ethtool_phys_id_state state)
1976{
1977 struct e1000_adapter *adapter = netdev_priv(netdev);
1978 struct e1000_hw *hw = &adapter->hw;
1979
1980 switch (state) {
1981 case ETHTOOL_ID_ACTIVE:
1982 pm_runtime_get_sync(netdev->dev.parent);
1983
1984 if (!hw->mac.ops.blink_led)
1985 return 2; /* cycle on/off twice per second */
1986
1987 hw->mac.ops.blink_led(hw);
1988 break;
1989
1990 case ETHTOOL_ID_INACTIVE:
1991 if (hw->phy.type == e1000_phy_ife)
1992 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1993 hw->mac.ops.led_off(hw);
1994 hw->mac.ops.cleanup_led(hw);
1995 pm_runtime_put_sync(netdev->dev.parent);
1996 break;
1997
1998 case ETHTOOL_ID_ON:
1999 hw->mac.ops.led_on(hw);
2000 break;
2001
2002 case ETHTOOL_ID_OFF:
2003 hw->mac.ops.led_off(hw);
2004 break;
2005 }
2006
2007 return 0;
2008}
2009
2010static int e1000_get_coalesce(struct net_device *netdev,
2011 struct ethtool_coalesce *ec,
2012 struct kernel_ethtool_coalesce *kernel_coal,
2013 struct netlink_ext_ack *extack)
2014{
2015 struct e1000_adapter *adapter = netdev_priv(netdev);
2016
2017 if (adapter->itr_setting <= 4)
2018 ec->rx_coalesce_usecs = adapter->itr_setting;
2019 else
2020 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2021
2022 return 0;
2023}
2024
2025static int e1000_set_coalesce(struct net_device *netdev,
2026 struct ethtool_coalesce *ec,
2027 struct kernel_ethtool_coalesce *kernel_coal,
2028 struct netlink_ext_ack *extack)
2029{
2030 struct e1000_adapter *adapter = netdev_priv(netdev);
2031
2032 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2033 ((ec->rx_coalesce_usecs > 4) &&
2034 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2035 (ec->rx_coalesce_usecs == 2))
2036 return -EINVAL;
2037
2038 if (ec->rx_coalesce_usecs == 4) {
2039 adapter->itr_setting = 4;
2040 adapter->itr = adapter->itr_setting;
2041 } else if (ec->rx_coalesce_usecs <= 3) {
2042 adapter->itr = 20000;
2043 adapter->itr_setting = ec->rx_coalesce_usecs;
2044 } else {
2045 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2046 adapter->itr_setting = adapter->itr & ~3;
2047 }
2048
2049 pm_runtime_get_sync(netdev->dev.parent);
2050
2051 if (adapter->itr_setting != 0)
2052 e1000e_write_itr(adapter, adapter->itr);
2053 else
2054 e1000e_write_itr(adapter, 0);
2055
2056 pm_runtime_put_sync(netdev->dev.parent);
2057
2058 return 0;
2059}
2060
2061static int e1000_nway_reset(struct net_device *netdev)
2062{
2063 struct e1000_adapter *adapter = netdev_priv(netdev);
2064
2065 if (!netif_running(netdev))
2066 return -EAGAIN;
2067
2068 if (!adapter->hw.mac.autoneg)
2069 return -EINVAL;
2070
2071 pm_runtime_get_sync(netdev->dev.parent);
2072 e1000e_reinit_locked(adapter);
2073 pm_runtime_put_sync(netdev->dev.parent);
2074
2075 return 0;
2076}
2077
2078static void e1000_get_ethtool_stats(struct net_device *netdev,
2079 struct ethtool_stats __always_unused *stats,
2080 u64 *data)
2081{
2082 struct e1000_adapter *adapter = netdev_priv(netdev);
2083 struct rtnl_link_stats64 net_stats;
2084 int i;
2085 char *p = NULL;
2086
2087 pm_runtime_get_sync(netdev->dev.parent);
2088
2089 dev_get_stats(netdev, &net_stats);
2090
2091 pm_runtime_put_sync(netdev->dev.parent);
2092
2093 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2094 switch (e1000_gstrings_stats[i].type) {
2095 case NETDEV_STATS:
2096 p = (char *)&net_stats +
2097 e1000_gstrings_stats[i].stat_offset;
2098 break;
2099 case E1000_STATS:
2100 p = (char *)adapter +
2101 e1000_gstrings_stats[i].stat_offset;
2102 break;
2103 default:
2104 data[i] = 0;
2105 continue;
2106 }
2107
2108 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2109 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2110 }
2111}
2112
2113static void e1000_get_strings(struct net_device __always_unused *netdev,
2114 u32 stringset, u8 *data)
2115{
2116 u8 *p = data;
2117 int i;
2118
2119 switch (stringset) {
2120 case ETH_SS_TEST:
2121 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2122 break;
2123 case ETH_SS_STATS:
2124 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2125 memcpy(p, e1000_gstrings_stats[i].stat_string,
2126 ETH_GSTRING_LEN);
2127 p += ETH_GSTRING_LEN;
2128 }
2129 break;
2130 case ETH_SS_PRIV_FLAGS:
2131 memcpy(data, e1000e_priv_flags_strings,
2132 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2133 break;
2134 }
2135}
2136
2137static int e1000_get_rxnfc(struct net_device *netdev,
2138 struct ethtool_rxnfc *info,
2139 u32 __always_unused *rule_locs)
2140{
2141 info->data = 0;
2142
2143 switch (info->cmd) {
2144 case ETHTOOL_GRXFH: {
2145 struct e1000_adapter *adapter = netdev_priv(netdev);
2146 struct e1000_hw *hw = &adapter->hw;
2147 u32 mrqc;
2148
2149 pm_runtime_get_sync(netdev->dev.parent);
2150 mrqc = er32(MRQC);
2151 pm_runtime_put_sync(netdev->dev.parent);
2152
2153 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2154 return 0;
2155
2156 switch (info->flow_type) {
2157 case TCP_V4_FLOW:
2158 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2159 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2160 fallthrough;
2161 case UDP_V4_FLOW:
2162 case SCTP_V4_FLOW:
2163 case AH_ESP_V4_FLOW:
2164 case IPV4_FLOW:
2165 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2166 info->data |= RXH_IP_SRC | RXH_IP_DST;
2167 break;
2168 case TCP_V6_FLOW:
2169 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2170 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2171 fallthrough;
2172 case UDP_V6_FLOW:
2173 case SCTP_V6_FLOW:
2174 case AH_ESP_V6_FLOW:
2175 case IPV6_FLOW:
2176 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2177 info->data |= RXH_IP_SRC | RXH_IP_DST;
2178 break;
2179 default:
2180 break;
2181 }
2182 return 0;
2183 }
2184 default:
2185 return -EOPNOTSUPP;
2186 }
2187}
2188
2189static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2190{
2191 struct e1000_adapter *adapter = netdev_priv(netdev);
2192 struct e1000_hw *hw = &adapter->hw;
2193 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2194 u32 ret_val;
2195
2196 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2197 return -EOPNOTSUPP;
2198
2199 switch (hw->phy.type) {
2200 case e1000_phy_82579:
2201 cap_addr = I82579_EEE_CAPABILITY;
2202 lpa_addr = I82579_EEE_LP_ABILITY;
2203 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2204 break;
2205 case e1000_phy_i217:
2206 cap_addr = I217_EEE_CAPABILITY;
2207 lpa_addr = I217_EEE_LP_ABILITY;
2208 pcs_stat_addr = I217_EEE_PCS_STATUS;
2209 break;
2210 default:
2211 return -EOPNOTSUPP;
2212 }
2213
2214 pm_runtime_get_sync(netdev->dev.parent);
2215
2216 ret_val = hw->phy.ops.acquire(hw);
2217 if (ret_val) {
2218 pm_runtime_put_sync(netdev->dev.parent);
2219 return -EBUSY;
2220 }
2221
2222 /* EEE Capability */
2223 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2224 if (ret_val)
2225 goto release;
2226 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2227
2228 /* EEE Advertised */
2229 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2230
2231 /* EEE Link Partner Advertised */
2232 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2233 if (ret_val)
2234 goto release;
2235 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2236
2237 /* EEE PCS Status */
2238 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2239 if (ret_val)
2240 goto release;
2241 if (hw->phy.type == e1000_phy_82579)
2242 phy_data <<= 8;
2243
2244 /* Result of the EEE auto negotiation - there is no register that
2245 * has the status of the EEE negotiation so do a best-guess based
2246 * on whether Tx or Rx LPI indications have been received.
2247 */
2248 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2249 edata->eee_active = true;
2250
2251 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2252 edata->tx_lpi_enabled = true;
2253 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2254
2255release:
2256 hw->phy.ops.release(hw);
2257 if (ret_val)
2258 ret_val = -ENODATA;
2259
2260 pm_runtime_put_sync(netdev->dev.parent);
2261
2262 return ret_val;
2263}
2264
2265static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2266{
2267 struct e1000_adapter *adapter = netdev_priv(netdev);
2268 struct e1000_hw *hw = &adapter->hw;
2269 struct ethtool_eee eee_curr;
2270 s32 ret_val;
2271
2272 ret_val = e1000e_get_eee(netdev, &eee_curr);
2273 if (ret_val)
2274 return ret_val;
2275
2276 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2277 e_err("Setting EEE tx-lpi is not supported\n");
2278 return -EINVAL;
2279 }
2280
2281 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2282 e_err("Setting EEE Tx LPI timer is not supported\n");
2283 return -EINVAL;
2284 }
2285
2286 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2287 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2288 return -EINVAL;
2289 }
2290
2291 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2292
2293 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2294
2295 pm_runtime_get_sync(netdev->dev.parent);
2296
2297 /* reset the link */
2298 if (netif_running(netdev))
2299 e1000e_reinit_locked(adapter);
2300 else
2301 e1000e_reset(adapter);
2302
2303 pm_runtime_put_sync(netdev->dev.parent);
2304
2305 return 0;
2306}
2307
2308static int e1000e_get_ts_info(struct net_device *netdev,
2309 struct ethtool_ts_info *info)
2310{
2311 struct e1000_adapter *adapter = netdev_priv(netdev);
2312
2313 ethtool_op_get_ts_info(netdev, info);
2314
2315 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2316 return 0;
2317
2318 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2319 SOF_TIMESTAMPING_RX_HARDWARE |
2320 SOF_TIMESTAMPING_RAW_HARDWARE);
2321
2322 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2323
2324 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2325 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2326 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2327 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2328 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2329 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2330 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2331 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2332 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2333 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2334 BIT(HWTSTAMP_FILTER_ALL));
2335
2336 if (adapter->ptp_clock)
2337 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2338
2339 return 0;
2340}
2341
2342static u32 e1000e_get_priv_flags(struct net_device *netdev)
2343{
2344 struct e1000_adapter *adapter = netdev_priv(netdev);
2345 u32 priv_flags = 0;
2346
2347 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2348 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2349
2350 return priv_flags;
2351}
2352
2353static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2354{
2355 struct e1000_adapter *adapter = netdev_priv(netdev);
2356 unsigned int flags2 = adapter->flags2;
2357
2358 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2359 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2360 struct e1000_hw *hw = &adapter->hw;
2361
2362 if (hw->mac.type < e1000_pch_cnp)
2363 return -EINVAL;
2364 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2365 }
2366
2367 if (flags2 != adapter->flags2)
2368 adapter->flags2 = flags2;
2369
2370 return 0;
2371}
2372
2373static const struct ethtool_ops e1000_ethtool_ops = {
2374 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2375 .get_drvinfo = e1000_get_drvinfo,
2376 .get_regs_len = e1000_get_regs_len,
2377 .get_regs = e1000_get_regs,
2378 .get_wol = e1000_get_wol,
2379 .set_wol = e1000_set_wol,
2380 .get_msglevel = e1000_get_msglevel,
2381 .set_msglevel = e1000_set_msglevel,
2382 .nway_reset = e1000_nway_reset,
2383 .get_link = ethtool_op_get_link,
2384 .get_eeprom_len = e1000_get_eeprom_len,
2385 .get_eeprom = e1000_get_eeprom,
2386 .set_eeprom = e1000_set_eeprom,
2387 .get_ringparam = e1000_get_ringparam,
2388 .set_ringparam = e1000_set_ringparam,
2389 .get_pauseparam = e1000_get_pauseparam,
2390 .set_pauseparam = e1000_set_pauseparam,
2391 .self_test = e1000_diag_test,
2392 .get_strings = e1000_get_strings,
2393 .set_phys_id = e1000_set_phys_id,
2394 .get_ethtool_stats = e1000_get_ethtool_stats,
2395 .get_sset_count = e1000e_get_sset_count,
2396 .get_coalesce = e1000_get_coalesce,
2397 .set_coalesce = e1000_set_coalesce,
2398 .get_rxnfc = e1000_get_rxnfc,
2399 .get_ts_info = e1000e_get_ts_info,
2400 .get_eee = e1000e_get_eee,
2401 .set_eee = e1000e_set_eee,
2402 .get_link_ksettings = e1000_get_link_ksettings,
2403 .set_link_ksettings = e1000_set_link_ksettings,
2404 .get_priv_flags = e1000e_get_priv_flags,
2405 .set_priv_flags = e1000e_set_priv_flags,
2406};
2407
2408void e1000e_set_ethtool_ops(struct net_device *netdev)
2409{
2410 netdev->ethtool_ops = &e1000_ethtool_ops;
2411}
1// SPDX-License-Identifier: GPL-2.0
2/* Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2015 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 */
22
23/* ethtool support for e1000 */
24
25#include <linux/netdevice.h>
26#include <linux/interrupt.h>
27#include <linux/ethtool.h>
28#include <linux/pci.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/vmalloc.h>
32#include <linux/pm_runtime.h>
33
34#include "e1000.h"
35
36enum { NETDEV_STATS, E1000_STATS };
37
38struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int type;
41 int sizeof_stat;
42 int stat_offset;
43};
44
45#define E1000_STAT(str, m) { \
46 .stat_string = str, \
47 .type = E1000_STATS, \
48 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
49 .stat_offset = offsetof(struct e1000_adapter, m) }
50#define E1000_NETDEV_STAT(str, m) { \
51 .stat_string = str, \
52 .type = NETDEV_STATS, \
53 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
54 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
55
56static const struct e1000_stats e1000_gstrings_stats[] = {
57 E1000_STAT("rx_packets", stats.gprc),
58 E1000_STAT("tx_packets", stats.gptc),
59 E1000_STAT("rx_bytes", stats.gorc),
60 E1000_STAT("tx_bytes", stats.gotc),
61 E1000_STAT("rx_broadcast", stats.bprc),
62 E1000_STAT("tx_broadcast", stats.bptc),
63 E1000_STAT("rx_multicast", stats.mprc),
64 E1000_STAT("tx_multicast", stats.mptc),
65 E1000_NETDEV_STAT("rx_errors", rx_errors),
66 E1000_NETDEV_STAT("tx_errors", tx_errors),
67 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
68 E1000_STAT("multicast", stats.mprc),
69 E1000_STAT("collisions", stats.colc),
70 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
71 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
72 E1000_STAT("rx_crc_errors", stats.crcerrs),
73 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
74 E1000_STAT("rx_no_buffer_count", stats.rnbc),
75 E1000_STAT("rx_missed_errors", stats.mpc),
76 E1000_STAT("tx_aborted_errors", stats.ecol),
77 E1000_STAT("tx_carrier_errors", stats.tncrs),
78 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
79 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
80 E1000_STAT("tx_window_errors", stats.latecol),
81 E1000_STAT("tx_abort_late_coll", stats.latecol),
82 E1000_STAT("tx_deferred_ok", stats.dc),
83 E1000_STAT("tx_single_coll_ok", stats.scc),
84 E1000_STAT("tx_multi_coll_ok", stats.mcc),
85 E1000_STAT("tx_timeout_count", tx_timeout_count),
86 E1000_STAT("tx_restart_queue", restart_queue),
87 E1000_STAT("rx_long_length_errors", stats.roc),
88 E1000_STAT("rx_short_length_errors", stats.ruc),
89 E1000_STAT("rx_align_errors", stats.algnerrc),
90 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
91 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
92 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
93 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
94 E1000_STAT("tx_flow_control_xon", stats.xontxc),
95 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
96 E1000_STAT("rx_csum_offload_good", hw_csum_good),
97 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
98 E1000_STAT("rx_header_split", rx_hdr_split),
99 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
100 E1000_STAT("tx_smbus", stats.mgptc),
101 E1000_STAT("rx_smbus", stats.mgprc),
102 E1000_STAT("dropped_smbus", stats.mgpdc),
103 E1000_STAT("rx_dma_failed", rx_dma_failed),
104 E1000_STAT("tx_dma_failed", tx_dma_failed),
105 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
106 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
107 E1000_STAT("corr_ecc_errors", corr_errors),
108 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
109 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
110};
111
112#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
113#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
114static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
115 "Register test (offline)", "Eeprom test (offline)",
116 "Interrupt test (offline)", "Loopback test (offline)",
117 "Link test (on/offline)"
118};
119
120#define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122static int e1000_get_link_ksettings(struct net_device *netdev,
123 struct ethtool_link_ksettings *cmd)
124{
125 struct e1000_adapter *adapter = netdev_priv(netdev);
126 struct e1000_hw *hw = &adapter->hw;
127 u32 speed, supported, advertising;
128
129 if (hw->phy.media_type == e1000_media_type_copper) {
130 supported = (SUPPORTED_10baseT_Half |
131 SUPPORTED_10baseT_Full |
132 SUPPORTED_100baseT_Half |
133 SUPPORTED_100baseT_Full |
134 SUPPORTED_1000baseT_Full |
135 SUPPORTED_Autoneg |
136 SUPPORTED_TP);
137 if (hw->phy.type == e1000_phy_ife)
138 supported &= ~SUPPORTED_1000baseT_Full;
139 advertising = ADVERTISED_TP;
140
141 if (hw->mac.autoneg == 1) {
142 advertising |= ADVERTISED_Autoneg;
143 /* the e1000 autoneg seems to match ethtool nicely */
144 advertising |= hw->phy.autoneg_advertised;
145 }
146
147 cmd->base.port = PORT_TP;
148 cmd->base.phy_address = hw->phy.addr;
149 } else {
150 supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 cmd->base.port = PORT_FIBRE;
159 }
160
161 speed = SPEED_UNKNOWN;
162 cmd->base.duplex = DUPLEX_UNKNOWN;
163
164 if (netif_running(netdev)) {
165 if (netif_carrier_ok(netdev)) {
166 speed = adapter->link_speed;
167 cmd->base.duplex = adapter->link_duplex - 1;
168 }
169 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
170 u32 status = er32(STATUS);
171
172 if (status & E1000_STATUS_LU) {
173 if (status & E1000_STATUS_SPEED_1000)
174 speed = SPEED_1000;
175 else if (status & E1000_STATUS_SPEED_100)
176 speed = SPEED_100;
177 else
178 speed = SPEED_10;
179
180 if (status & E1000_STATUS_FD)
181 cmd->base.duplex = DUPLEX_FULL;
182 else
183 cmd->base.duplex = DUPLEX_HALF;
184 }
185 }
186
187 cmd->base.speed = speed;
188 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
189 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
190
191 /* MDI-X => 2; MDI =>1; Invalid =>0 */
192 if ((hw->phy.media_type == e1000_media_type_copper) &&
193 netif_carrier_ok(netdev))
194 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
195 ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 if (hw->phy.media_type != e1000_media_type_copper)
205 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
206
207 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
208 supported);
209 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
210 advertising);
211
212 return 0;
213}
214
215static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
216{
217 struct e1000_mac_info *mac = &adapter->hw.mac;
218
219 mac->autoneg = 0;
220
221 /* Make sure dplx is at most 1 bit and lsb of speed is not set
222 * for the switch() below to work
223 */
224 if ((spd & 1) || (dplx & ~1))
225 goto err_inval;
226
227 /* Fiber NICs only allow 1000 gbps Full duplex */
228 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
229 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
230 goto err_inval;
231 }
232
233 switch (spd + dplx) {
234 case SPEED_10 + DUPLEX_HALF:
235 mac->forced_speed_duplex = ADVERTISE_10_HALF;
236 break;
237 case SPEED_10 + DUPLEX_FULL:
238 mac->forced_speed_duplex = ADVERTISE_10_FULL;
239 break;
240 case SPEED_100 + DUPLEX_HALF:
241 mac->forced_speed_duplex = ADVERTISE_100_HALF;
242 break;
243 case SPEED_100 + DUPLEX_FULL:
244 mac->forced_speed_duplex = ADVERTISE_100_FULL;
245 break;
246 case SPEED_1000 + DUPLEX_FULL:
247 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
248 mac->autoneg = 1;
249 adapter->hw.phy.autoneg_advertised =
250 ADVERTISE_1000_FULL;
251 } else {
252 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
253 }
254 break;
255 case SPEED_1000 + DUPLEX_HALF: /* not supported */
256 default:
257 goto err_inval;
258 }
259
260 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
261 adapter->hw.phy.mdix = AUTO_ALL_MODES;
262
263 return 0;
264
265err_inval:
266 e_err("Unsupported Speed/Duplex configuration\n");
267 return -EINVAL;
268}
269
270static int e1000_set_link_ksettings(struct net_device *netdev,
271 const struct ethtool_link_ksettings *cmd)
272{
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 struct e1000_hw *hw = &adapter->hw;
275 int ret_val = 0;
276 u32 advertising;
277
278 ethtool_convert_link_mode_to_legacy_u32(&advertising,
279 cmd->link_modes.advertising);
280
281 pm_runtime_get_sync(netdev->dev.parent);
282
283 /* When SoL/IDER sessions are active, autoneg/speed/duplex
284 * cannot be changed
285 */
286 if (hw->phy.ops.check_reset_block &&
287 hw->phy.ops.check_reset_block(hw)) {
288 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
289 ret_val = -EINVAL;
290 goto out;
291 }
292
293 /* MDI setting is only allowed when autoneg enabled because
294 * some hardware doesn't allow MDI setting when speed or
295 * duplex is forced.
296 */
297 if (cmd->base.eth_tp_mdix_ctrl) {
298 if (hw->phy.media_type != e1000_media_type_copper) {
299 ret_val = -EOPNOTSUPP;
300 goto out;
301 }
302
303 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
304 (cmd->base.autoneg != AUTONEG_ENABLE)) {
305 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
306 ret_val = -EINVAL;
307 goto out;
308 }
309 }
310
311 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
312 usleep_range(1000, 2000);
313
314 if (cmd->base.autoneg == AUTONEG_ENABLE) {
315 hw->mac.autoneg = 1;
316 if (hw->phy.media_type == e1000_media_type_fiber)
317 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
318 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
319 else
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP | ADVERTISED_Autoneg;
322 advertising = hw->phy.autoneg_advertised;
323 if (adapter->fc_autoneg)
324 hw->fc.requested_mode = e1000_fc_default;
325 } else {
326 u32 speed = cmd->base.speed;
327 /* calling this overrides forced MDI setting */
328 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
329 ret_val = -EINVAL;
330 goto out;
331 }
332 }
333
334 /* MDI-X => 2; MDI => 1; Auto => 3 */
335 if (cmd->base.eth_tp_mdix_ctrl) {
336 /* fix up the value for auto (3 => 0) as zero is mapped
337 * internally to auto
338 */
339 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
340 hw->phy.mdix = AUTO_ALL_MODES;
341 else
342 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
343 }
344
345 /* reset the link */
346 if (netif_running(adapter->netdev)) {
347 e1000e_down(adapter, true);
348 e1000e_up(adapter);
349 } else {
350 e1000e_reset(adapter);
351 }
352
353out:
354 pm_runtime_put_sync(netdev->dev.parent);
355 clear_bit(__E1000_RESETTING, &adapter->state);
356 return ret_val;
357}
358
359static void e1000_get_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361{
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364
365 pause->autoneg =
366 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
367
368 if (hw->fc.current_mode == e1000_fc_rx_pause) {
369 pause->rx_pause = 1;
370 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
371 pause->tx_pause = 1;
372 } else if (hw->fc.current_mode == e1000_fc_full) {
373 pause->rx_pause = 1;
374 pause->tx_pause = 1;
375 }
376}
377
378static int e1000_set_pauseparam(struct net_device *netdev,
379 struct ethtool_pauseparam *pause)
380{
381 struct e1000_adapter *adapter = netdev_priv(netdev);
382 struct e1000_hw *hw = &adapter->hw;
383 int retval = 0;
384
385 adapter->fc_autoneg = pause->autoneg;
386
387 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
388 usleep_range(1000, 2000);
389
390 pm_runtime_get_sync(netdev->dev.parent);
391
392 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
393 hw->fc.requested_mode = e1000_fc_default;
394 if (netif_running(adapter->netdev)) {
395 e1000e_down(adapter, true);
396 e1000e_up(adapter);
397 } else {
398 e1000e_reset(adapter);
399 }
400 } else {
401 if (pause->rx_pause && pause->tx_pause)
402 hw->fc.requested_mode = e1000_fc_full;
403 else if (pause->rx_pause && !pause->tx_pause)
404 hw->fc.requested_mode = e1000_fc_rx_pause;
405 else if (!pause->rx_pause && pause->tx_pause)
406 hw->fc.requested_mode = e1000_fc_tx_pause;
407 else if (!pause->rx_pause && !pause->tx_pause)
408 hw->fc.requested_mode = e1000_fc_none;
409
410 hw->fc.current_mode = hw->fc.requested_mode;
411
412 if (hw->phy.media_type == e1000_media_type_fiber) {
413 retval = hw->mac.ops.setup_link(hw);
414 /* implicit goto out */
415 } else {
416 retval = e1000e_force_mac_fc(hw);
417 if (retval)
418 goto out;
419 e1000e_set_fc_watermarks(hw);
420 }
421 }
422
423out:
424 pm_runtime_put_sync(netdev->dev.parent);
425 clear_bit(__E1000_RESETTING, &adapter->state);
426 return retval;
427}
428
429static u32 e1000_get_msglevel(struct net_device *netdev)
430{
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 return adapter->msg_enable;
433}
434
435static void e1000_set_msglevel(struct net_device *netdev, u32 data)
436{
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 adapter->msg_enable = data;
439}
440
441static int e1000_get_regs_len(struct net_device __always_unused *netdev)
442{
443#define E1000_REGS_LEN 32 /* overestimate */
444 return E1000_REGS_LEN * sizeof(u32);
445}
446
447static void e1000_get_regs(struct net_device *netdev,
448 struct ethtool_regs *regs, void *p)
449{
450 struct e1000_adapter *adapter = netdev_priv(netdev);
451 struct e1000_hw *hw = &adapter->hw;
452 u32 *regs_buff = p;
453 u16 phy_data;
454
455 pm_runtime_get_sync(netdev->dev.parent);
456
457 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
458
459 regs->version = (1u << 24) |
460 (adapter->pdev->revision << 16) |
461 adapter->pdev->device;
462
463 regs_buff[0] = er32(CTRL);
464 regs_buff[1] = er32(STATUS);
465
466 regs_buff[2] = er32(RCTL);
467 regs_buff[3] = er32(RDLEN(0));
468 regs_buff[4] = er32(RDH(0));
469 regs_buff[5] = er32(RDT(0));
470 regs_buff[6] = er32(RDTR);
471
472 regs_buff[7] = er32(TCTL);
473 regs_buff[8] = er32(TDLEN(0));
474 regs_buff[9] = er32(TDH(0));
475 regs_buff[10] = er32(TDT(0));
476 regs_buff[11] = er32(TIDV);
477
478 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
479
480 /* ethtool doesn't use anything past this point, so all this
481 * code is likely legacy junk for apps that may or may not exist
482 */
483 if (hw->phy.type == e1000_phy_m88) {
484 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
485 regs_buff[13] = (u32)phy_data; /* cable length */
486 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
487 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
488 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
489 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
490 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
491 regs_buff[18] = regs_buff[13]; /* cable polarity */
492 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
493 regs_buff[20] = regs_buff[17]; /* polarity correction */
494 /* phy receive errors */
495 regs_buff[22] = adapter->phy_stats.receive_errors;
496 regs_buff[23] = regs_buff[13]; /* mdix mode */
497 }
498 regs_buff[21] = 0; /* was idle_errors */
499 e1e_rphy(hw, MII_STAT1000, &phy_data);
500 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
501 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
502
503 pm_runtime_put_sync(netdev->dev.parent);
504}
505
506static int e1000_get_eeprom_len(struct net_device *netdev)
507{
508 struct e1000_adapter *adapter = netdev_priv(netdev);
509 return adapter->hw.nvm.word_size * 2;
510}
511
512static int e1000_get_eeprom(struct net_device *netdev,
513 struct ethtool_eeprom *eeprom, u8 *bytes)
514{
515 struct e1000_adapter *adapter = netdev_priv(netdev);
516 struct e1000_hw *hw = &adapter->hw;
517 u16 *eeprom_buff;
518 int first_word;
519 int last_word;
520 int ret_val = 0;
521 u16 i;
522
523 if (eeprom->len == 0)
524 return -EINVAL;
525
526 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
527
528 first_word = eeprom->offset >> 1;
529 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
530
531 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
532 GFP_KERNEL);
533 if (!eeprom_buff)
534 return -ENOMEM;
535
536 pm_runtime_get_sync(netdev->dev.parent);
537
538 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
539 ret_val = e1000_read_nvm(hw, first_word,
540 last_word - first_word + 1,
541 eeprom_buff);
542 } else {
543 for (i = 0; i < last_word - first_word + 1; i++) {
544 ret_val = e1000_read_nvm(hw, first_word + i, 1,
545 &eeprom_buff[i]);
546 if (ret_val)
547 break;
548 }
549 }
550
551 pm_runtime_put_sync(netdev->dev.parent);
552
553 if (ret_val) {
554 /* a read error occurred, throw away the result */
555 memset(eeprom_buff, 0xff, sizeof(u16) *
556 (last_word - first_word + 1));
557 } else {
558 /* Device's eeprom is always little-endian, word addressable */
559 for (i = 0; i < last_word - first_word + 1; i++)
560 le16_to_cpus(&eeprom_buff[i]);
561 }
562
563 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
564 kfree(eeprom_buff);
565
566 return ret_val;
567}
568
569static int e1000_set_eeprom(struct net_device *netdev,
570 struct ethtool_eeprom *eeprom, u8 *bytes)
571{
572 struct e1000_adapter *adapter = netdev_priv(netdev);
573 struct e1000_hw *hw = &adapter->hw;
574 u16 *eeprom_buff;
575 void *ptr;
576 int max_len;
577 int first_word;
578 int last_word;
579 int ret_val = 0;
580 u16 i;
581
582 if (eeprom->len == 0)
583 return -EOPNOTSUPP;
584
585 if (eeprom->magic !=
586 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
587 return -EFAULT;
588
589 if (adapter->flags & FLAG_READ_ONLY_NVM)
590 return -EINVAL;
591
592 max_len = hw->nvm.word_size * 2;
593
594 first_word = eeprom->offset >> 1;
595 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
596 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
597 if (!eeprom_buff)
598 return -ENOMEM;
599
600 ptr = (void *)eeprom_buff;
601
602 pm_runtime_get_sync(netdev->dev.parent);
603
604 if (eeprom->offset & 1) {
605 /* need read/modify/write of first changed EEPROM word */
606 /* only the second byte of the word is being modified */
607 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
608 ptr++;
609 }
610 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
611 /* need read/modify/write of last changed EEPROM word */
612 /* only the first byte of the word is being modified */
613 ret_val = e1000_read_nvm(hw, last_word, 1,
614 &eeprom_buff[last_word - first_word]);
615
616 if (ret_val)
617 goto out;
618
619 /* Device's eeprom is always little-endian, word addressable */
620 for (i = 0; i < last_word - first_word + 1; i++)
621 le16_to_cpus(&eeprom_buff[i]);
622
623 memcpy(ptr, bytes, eeprom->len);
624
625 for (i = 0; i < last_word - first_word + 1; i++)
626 cpu_to_le16s(&eeprom_buff[i]);
627
628 ret_val = e1000_write_nvm(hw, first_word,
629 last_word - first_word + 1, eeprom_buff);
630
631 if (ret_val)
632 goto out;
633
634 /* Update the checksum over the first part of the EEPROM if needed
635 * and flush shadow RAM for applicable controllers
636 */
637 if ((first_word <= NVM_CHECKSUM_REG) ||
638 (hw->mac.type == e1000_82583) ||
639 (hw->mac.type == e1000_82574) ||
640 (hw->mac.type == e1000_82573))
641 ret_val = e1000e_update_nvm_checksum(hw);
642
643out:
644 pm_runtime_put_sync(netdev->dev.parent);
645 kfree(eeprom_buff);
646 return ret_val;
647}
648
649static void e1000_get_drvinfo(struct net_device *netdev,
650 struct ethtool_drvinfo *drvinfo)
651{
652 struct e1000_adapter *adapter = netdev_priv(netdev);
653
654 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
655 strlcpy(drvinfo->version, e1000e_driver_version,
656 sizeof(drvinfo->version));
657
658 /* EEPROM image version # is reported as firmware version # for
659 * PCI-E controllers
660 */
661 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
662 "%d.%d-%d",
663 (adapter->eeprom_vers & 0xF000) >> 12,
664 (adapter->eeprom_vers & 0x0FF0) >> 4,
665 (adapter->eeprom_vers & 0x000F));
666
667 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
668 sizeof(drvinfo->bus_info));
669}
670
671static void e1000_get_ringparam(struct net_device *netdev,
672 struct ethtool_ringparam *ring)
673{
674 struct e1000_adapter *adapter = netdev_priv(netdev);
675
676 ring->rx_max_pending = E1000_MAX_RXD;
677 ring->tx_max_pending = E1000_MAX_TXD;
678 ring->rx_pending = adapter->rx_ring_count;
679 ring->tx_pending = adapter->tx_ring_count;
680}
681
682static int e1000_set_ringparam(struct net_device *netdev,
683 struct ethtool_ringparam *ring)
684{
685 struct e1000_adapter *adapter = netdev_priv(netdev);
686 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
687 int err = 0, size = sizeof(struct e1000_ring);
688 bool set_tx = false, set_rx = false;
689 u16 new_rx_count, new_tx_count;
690
691 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
692 return -EINVAL;
693
694 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
695 E1000_MAX_RXD);
696 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
697
698 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
699 E1000_MAX_TXD);
700 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
701
702 if ((new_tx_count == adapter->tx_ring_count) &&
703 (new_rx_count == adapter->rx_ring_count))
704 /* nothing to do */
705 return 0;
706
707 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
708 usleep_range(1000, 2000);
709
710 if (!netif_running(adapter->netdev)) {
711 /* Set counts now and allocate resources during open() */
712 adapter->tx_ring->count = new_tx_count;
713 adapter->rx_ring->count = new_rx_count;
714 adapter->tx_ring_count = new_tx_count;
715 adapter->rx_ring_count = new_rx_count;
716 goto clear_reset;
717 }
718
719 set_tx = (new_tx_count != adapter->tx_ring_count);
720 set_rx = (new_rx_count != adapter->rx_ring_count);
721
722 /* Allocate temporary storage for ring updates */
723 if (set_tx) {
724 temp_tx = vmalloc(size);
725 if (!temp_tx) {
726 err = -ENOMEM;
727 goto free_temp;
728 }
729 }
730 if (set_rx) {
731 temp_rx = vmalloc(size);
732 if (!temp_rx) {
733 err = -ENOMEM;
734 goto free_temp;
735 }
736 }
737
738 pm_runtime_get_sync(netdev->dev.parent);
739
740 e1000e_down(adapter, true);
741
742 /* We can't just free everything and then setup again, because the
743 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
744 * structs. First, attempt to allocate new resources...
745 */
746 if (set_tx) {
747 memcpy(temp_tx, adapter->tx_ring, size);
748 temp_tx->count = new_tx_count;
749 err = e1000e_setup_tx_resources(temp_tx);
750 if (err)
751 goto err_setup;
752 }
753 if (set_rx) {
754 memcpy(temp_rx, adapter->rx_ring, size);
755 temp_rx->count = new_rx_count;
756 err = e1000e_setup_rx_resources(temp_rx);
757 if (err)
758 goto err_setup_rx;
759 }
760
761 /* ...then free the old resources and copy back any new ring data */
762 if (set_tx) {
763 e1000e_free_tx_resources(adapter->tx_ring);
764 memcpy(adapter->tx_ring, temp_tx, size);
765 adapter->tx_ring_count = new_tx_count;
766 }
767 if (set_rx) {
768 e1000e_free_rx_resources(adapter->rx_ring);
769 memcpy(adapter->rx_ring, temp_rx, size);
770 adapter->rx_ring_count = new_rx_count;
771 }
772
773err_setup_rx:
774 if (err && set_tx)
775 e1000e_free_tx_resources(temp_tx);
776err_setup:
777 e1000e_up(adapter);
778 pm_runtime_put_sync(netdev->dev.parent);
779free_temp:
780 vfree(temp_tx);
781 vfree(temp_rx);
782clear_reset:
783 clear_bit(__E1000_RESETTING, &adapter->state);
784 return err;
785}
786
787static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
788 int reg, int offset, u32 mask, u32 write)
789{
790 u32 pat, val;
791 static const u32 test[] = {
792 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
793 };
794 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
795 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
796 (test[pat] & write));
797 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
798 if (val != (test[pat] & write & mask)) {
799 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
800 reg + (offset << 2), val,
801 (test[pat] & write & mask));
802 *data = reg;
803 return true;
804 }
805 }
806 return false;
807}
808
809static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
810 int reg, u32 mask, u32 write)
811{
812 u32 val;
813
814 __ew32(&adapter->hw, reg, write & mask);
815 val = __er32(&adapter->hw, reg);
816 if ((write & mask) != (val & mask)) {
817 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
818 reg, (val & mask), (write & mask));
819 *data = reg;
820 return true;
821 }
822 return false;
823}
824
825#define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
826 do { \
827 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
828 return 1; \
829 } while (0)
830#define REG_PATTERN_TEST(reg, mask, write) \
831 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
832
833#define REG_SET_AND_CHECK(reg, mask, write) \
834 do { \
835 if (reg_set_and_check(adapter, data, reg, mask, write)) \
836 return 1; \
837 } while (0)
838
839static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
840{
841 struct e1000_hw *hw = &adapter->hw;
842 struct e1000_mac_info *mac = &adapter->hw.mac;
843 u32 value;
844 u32 before;
845 u32 after;
846 u32 i;
847 u32 toggle;
848 u32 mask;
849 u32 wlock_mac = 0;
850
851 /* The status register is Read Only, so a write should fail.
852 * Some bits that get toggled are ignored. There are several bits
853 * on newer hardware that are r/w.
854 */
855 switch (mac->type) {
856 case e1000_82571:
857 case e1000_82572:
858 case e1000_80003es2lan:
859 toggle = 0x7FFFF3FF;
860 break;
861 default:
862 toggle = 0x7FFFF033;
863 break;
864 }
865
866 before = er32(STATUS);
867 value = (er32(STATUS) & toggle);
868 ew32(STATUS, toggle);
869 after = er32(STATUS) & toggle;
870 if (value != after) {
871 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
872 after, value);
873 *data = 1;
874 return 1;
875 }
876 /* restore previous status */
877 ew32(STATUS, before);
878
879 if (!(adapter->flags & FLAG_IS_ICH)) {
880 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
882 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
883 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
884 }
885
886 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
887 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
888 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
889 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
890 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
892 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
893 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
894 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
895 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
896
897 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
898
899 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
900 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
901 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
902
903 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
904 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
905 if (!(adapter->flags & FLAG_IS_ICH))
906 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
907 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
908 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
909 mask = 0x8003FFFF;
910 switch (mac->type) {
911 case e1000_ich10lan:
912 case e1000_pchlan:
913 case e1000_pch2lan:
914 case e1000_pch_lpt:
915 case e1000_pch_spt:
916 /* fall through */
917 case e1000_pch_cnp:
918 mask |= BIT(18);
919 break;
920 default:
921 break;
922 }
923
924 if (mac->type >= e1000_pch_lpt)
925 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
926 E1000_FWSM_WLOCK_MAC_SHIFT;
927
928 for (i = 0; i < mac->rar_entry_count; i++) {
929 if (mac->type >= e1000_pch_lpt) {
930 /* Cannot test write-protected SHRAL[n] registers */
931 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
932 continue;
933
934 /* SHRAH[9] different than the others */
935 if (i == 10)
936 mask |= BIT(30);
937 else
938 mask &= ~BIT(30);
939 }
940 if (mac->type == e1000_pch2lan) {
941 /* SHRAH[0,1,2] different than previous */
942 if (i == 1)
943 mask &= 0xFFF4FFFF;
944 /* SHRAH[3] different than SHRAH[0,1,2] */
945 if (i == 4)
946 mask |= BIT(30);
947 /* RAR[1-6] owned by management engine - skipping */
948 if (i > 0)
949 i += 6;
950 }
951
952 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
953 0xFFFFFFFF);
954 /* reset index to actual value */
955 if ((mac->type == e1000_pch2lan) && (i > 6))
956 i -= 6;
957 }
958
959 for (i = 0; i < mac->mta_reg_count; i++)
960 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
961
962 *data = 0;
963
964 return 0;
965}
966
967static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
968{
969 u16 temp;
970 u16 checksum = 0;
971 u16 i;
972
973 *data = 0;
974 /* Read and add up the contents of the EEPROM */
975 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
976 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
977 *data = 1;
978 return *data;
979 }
980 checksum += temp;
981 }
982
983 /* If Checksum is not Correct return error else test passed */
984 if ((checksum != (u16)NVM_SUM) && !(*data))
985 *data = 2;
986
987 return *data;
988}
989
990static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
991{
992 struct net_device *netdev = (struct net_device *)data;
993 struct e1000_adapter *adapter = netdev_priv(netdev);
994 struct e1000_hw *hw = &adapter->hw;
995
996 adapter->test_icr |= er32(ICR);
997
998 return IRQ_HANDLED;
999}
1000
1001static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1002{
1003 struct net_device *netdev = adapter->netdev;
1004 struct e1000_hw *hw = &adapter->hw;
1005 u32 mask;
1006 u32 shared_int = 1;
1007 u32 irq = adapter->pdev->irq;
1008 int i;
1009 int ret_val = 0;
1010 int int_mode = E1000E_INT_MODE_LEGACY;
1011
1012 *data = 0;
1013
1014 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1015 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1016 int_mode = adapter->int_mode;
1017 e1000e_reset_interrupt_capability(adapter);
1018 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1019 e1000e_set_interrupt_capability(adapter);
1020 }
1021 /* Hook up test interrupt handler just for this test */
1022 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1023 netdev)) {
1024 shared_int = 0;
1025 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1026 netdev)) {
1027 *data = 1;
1028 ret_val = -1;
1029 goto out;
1030 }
1031 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1032
1033 /* Disable all the interrupts */
1034 ew32(IMC, 0xFFFFFFFF);
1035 e1e_flush();
1036 usleep_range(10000, 20000);
1037
1038 /* Test each interrupt */
1039 for (i = 0; i < 10; i++) {
1040 /* Interrupt to test */
1041 mask = BIT(i);
1042
1043 if (adapter->flags & FLAG_IS_ICH) {
1044 switch (mask) {
1045 case E1000_ICR_RXSEQ:
1046 continue;
1047 case 0x00000100:
1048 if (adapter->hw.mac.type == e1000_ich8lan ||
1049 adapter->hw.mac.type == e1000_ich9lan)
1050 continue;
1051 break;
1052 default:
1053 break;
1054 }
1055 }
1056
1057 if (!shared_int) {
1058 /* Disable the interrupt to be reported in
1059 * the cause register and then force the same
1060 * interrupt and see if one gets posted. If
1061 * an interrupt was posted to the bus, the
1062 * test failed.
1063 */
1064 adapter->test_icr = 0;
1065 ew32(IMC, mask);
1066 ew32(ICS, mask);
1067 e1e_flush();
1068 usleep_range(10000, 20000);
1069
1070 if (adapter->test_icr & mask) {
1071 *data = 3;
1072 break;
1073 }
1074 }
1075
1076 /* Enable the interrupt to be reported in
1077 * the cause register and then force the same
1078 * interrupt and see if one gets posted. If
1079 * an interrupt was not posted to the bus, the
1080 * test failed.
1081 */
1082 adapter->test_icr = 0;
1083 ew32(IMS, mask);
1084 ew32(ICS, mask);
1085 e1e_flush();
1086 usleep_range(10000, 20000);
1087
1088 if (!(adapter->test_icr & mask)) {
1089 *data = 4;
1090 break;
1091 }
1092
1093 if (!shared_int) {
1094 /* Disable the other interrupts to be reported in
1095 * the cause register and then force the other
1096 * interrupts and see if any get posted. If
1097 * an interrupt was posted to the bus, the
1098 * test failed.
1099 */
1100 adapter->test_icr = 0;
1101 ew32(IMC, ~mask & 0x00007FFF);
1102 ew32(ICS, ~mask & 0x00007FFF);
1103 e1e_flush();
1104 usleep_range(10000, 20000);
1105
1106 if (adapter->test_icr) {
1107 *data = 5;
1108 break;
1109 }
1110 }
1111 }
1112
1113 /* Disable all the interrupts */
1114 ew32(IMC, 0xFFFFFFFF);
1115 e1e_flush();
1116 usleep_range(10000, 20000);
1117
1118 /* Unhook test interrupt handler */
1119 free_irq(irq, netdev);
1120
1121out:
1122 if (int_mode == E1000E_INT_MODE_MSIX) {
1123 e1000e_reset_interrupt_capability(adapter);
1124 adapter->int_mode = int_mode;
1125 e1000e_set_interrupt_capability(adapter);
1126 }
1127
1128 return ret_val;
1129}
1130
1131static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1132{
1133 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1134 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1135 struct pci_dev *pdev = adapter->pdev;
1136 struct e1000_buffer *buffer_info;
1137 int i;
1138
1139 if (tx_ring->desc && tx_ring->buffer_info) {
1140 for (i = 0; i < tx_ring->count; i++) {
1141 buffer_info = &tx_ring->buffer_info[i];
1142
1143 if (buffer_info->dma)
1144 dma_unmap_single(&pdev->dev,
1145 buffer_info->dma,
1146 buffer_info->length,
1147 DMA_TO_DEVICE);
1148 if (buffer_info->skb)
1149 dev_kfree_skb(buffer_info->skb);
1150 }
1151 }
1152
1153 if (rx_ring->desc && rx_ring->buffer_info) {
1154 for (i = 0; i < rx_ring->count; i++) {
1155 buffer_info = &rx_ring->buffer_info[i];
1156
1157 if (buffer_info->dma)
1158 dma_unmap_single(&pdev->dev,
1159 buffer_info->dma,
1160 2048, DMA_FROM_DEVICE);
1161 if (buffer_info->skb)
1162 dev_kfree_skb(buffer_info->skb);
1163 }
1164 }
1165
1166 if (tx_ring->desc) {
1167 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1168 tx_ring->dma);
1169 tx_ring->desc = NULL;
1170 }
1171 if (rx_ring->desc) {
1172 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1173 rx_ring->dma);
1174 rx_ring->desc = NULL;
1175 }
1176
1177 kfree(tx_ring->buffer_info);
1178 tx_ring->buffer_info = NULL;
1179 kfree(rx_ring->buffer_info);
1180 rx_ring->buffer_info = NULL;
1181}
1182
1183static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1184{
1185 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1186 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1187 struct pci_dev *pdev = adapter->pdev;
1188 struct e1000_hw *hw = &adapter->hw;
1189 u32 rctl;
1190 int i;
1191 int ret_val;
1192
1193 /* Setup Tx descriptor ring and Tx buffers */
1194
1195 if (!tx_ring->count)
1196 tx_ring->count = E1000_DEFAULT_TXD;
1197
1198 tx_ring->buffer_info = kcalloc(tx_ring->count,
1199 sizeof(struct e1000_buffer), GFP_KERNEL);
1200 if (!tx_ring->buffer_info) {
1201 ret_val = 1;
1202 goto err_nomem;
1203 }
1204
1205 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1206 tx_ring->size = ALIGN(tx_ring->size, 4096);
1207 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1208 &tx_ring->dma, GFP_KERNEL);
1209 if (!tx_ring->desc) {
1210 ret_val = 2;
1211 goto err_nomem;
1212 }
1213 tx_ring->next_to_use = 0;
1214 tx_ring->next_to_clean = 0;
1215
1216 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1217 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1218 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1219 ew32(TDH(0), 0);
1220 ew32(TDT(0), 0);
1221 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1222 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1223 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1224
1225 for (i = 0; i < tx_ring->count; i++) {
1226 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1227 struct sk_buff *skb;
1228 unsigned int skb_size = 1024;
1229
1230 skb = alloc_skb(skb_size, GFP_KERNEL);
1231 if (!skb) {
1232 ret_val = 3;
1233 goto err_nomem;
1234 }
1235 skb_put(skb, skb_size);
1236 tx_ring->buffer_info[i].skb = skb;
1237 tx_ring->buffer_info[i].length = skb->len;
1238 tx_ring->buffer_info[i].dma =
1239 dma_map_single(&pdev->dev, skb->data, skb->len,
1240 DMA_TO_DEVICE);
1241 if (dma_mapping_error(&pdev->dev,
1242 tx_ring->buffer_info[i].dma)) {
1243 ret_val = 4;
1244 goto err_nomem;
1245 }
1246 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1247 tx_desc->lower.data = cpu_to_le32(skb->len);
1248 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1249 E1000_TXD_CMD_IFCS |
1250 E1000_TXD_CMD_RS);
1251 tx_desc->upper.data = 0;
1252 }
1253
1254 /* Setup Rx descriptor ring and Rx buffers */
1255
1256 if (!rx_ring->count)
1257 rx_ring->count = E1000_DEFAULT_RXD;
1258
1259 rx_ring->buffer_info = kcalloc(rx_ring->count,
1260 sizeof(struct e1000_buffer), GFP_KERNEL);
1261 if (!rx_ring->buffer_info) {
1262 ret_val = 5;
1263 goto err_nomem;
1264 }
1265
1266 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1267 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1268 &rx_ring->dma, GFP_KERNEL);
1269 if (!rx_ring->desc) {
1270 ret_val = 6;
1271 goto err_nomem;
1272 }
1273 rx_ring->next_to_use = 0;
1274 rx_ring->next_to_clean = 0;
1275
1276 rctl = er32(RCTL);
1277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1278 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1279 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1280 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1281 ew32(RDLEN(0), rx_ring->size);
1282 ew32(RDH(0), 0);
1283 ew32(RDT(0), 0);
1284 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1285 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1286 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1287 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1288 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1289 ew32(RCTL, rctl);
1290
1291 for (i = 0; i < rx_ring->count; i++) {
1292 union e1000_rx_desc_extended *rx_desc;
1293 struct sk_buff *skb;
1294
1295 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1296 if (!skb) {
1297 ret_val = 7;
1298 goto err_nomem;
1299 }
1300 skb_reserve(skb, NET_IP_ALIGN);
1301 rx_ring->buffer_info[i].skb = skb;
1302 rx_ring->buffer_info[i].dma =
1303 dma_map_single(&pdev->dev, skb->data, 2048,
1304 DMA_FROM_DEVICE);
1305 if (dma_mapping_error(&pdev->dev,
1306 rx_ring->buffer_info[i].dma)) {
1307 ret_val = 8;
1308 goto err_nomem;
1309 }
1310 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1311 rx_desc->read.buffer_addr =
1312 cpu_to_le64(rx_ring->buffer_info[i].dma);
1313 memset(skb->data, 0x00, skb->len);
1314 }
1315
1316 return 0;
1317
1318err_nomem:
1319 e1000_free_desc_rings(adapter);
1320 return ret_val;
1321}
1322
1323static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1324{
1325 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1326 e1e_wphy(&adapter->hw, 29, 0x001F);
1327 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1328 e1e_wphy(&adapter->hw, 29, 0x001A);
1329 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1330}
1331
1332static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1333{
1334 struct e1000_hw *hw = &adapter->hw;
1335 u32 ctrl_reg = 0;
1336 u16 phy_reg = 0;
1337 s32 ret_val = 0;
1338
1339 hw->mac.autoneg = 0;
1340
1341 if (hw->phy.type == e1000_phy_ife) {
1342 /* force 100, set loopback */
1343 e1e_wphy(hw, MII_BMCR, 0x6100);
1344
1345 /* Now set up the MAC to the same speed/duplex as the PHY. */
1346 ctrl_reg = er32(CTRL);
1347 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1348 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1349 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1350 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1351 E1000_CTRL_FD); /* Force Duplex to FULL */
1352
1353 ew32(CTRL, ctrl_reg);
1354 e1e_flush();
1355 usleep_range(500, 1000);
1356
1357 return 0;
1358 }
1359
1360 /* Specific PHY configuration for loopback */
1361 switch (hw->phy.type) {
1362 case e1000_phy_m88:
1363 /* Auto-MDI/MDIX Off */
1364 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1365 /* reset to update Auto-MDI/MDIX */
1366 e1e_wphy(hw, MII_BMCR, 0x9140);
1367 /* autoneg off */
1368 e1e_wphy(hw, MII_BMCR, 0x8140);
1369 break;
1370 case e1000_phy_gg82563:
1371 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1372 break;
1373 case e1000_phy_bm:
1374 /* Set Default MAC Interface speed to 1GB */
1375 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1376 phy_reg &= ~0x0007;
1377 phy_reg |= 0x006;
1378 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1379 /* Assert SW reset for above settings to take effect */
1380 hw->phy.ops.commit(hw);
1381 usleep_range(1000, 2000);
1382 /* Force Full Duplex */
1383 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1384 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1385 /* Set Link Up (in force link) */
1386 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1387 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1388 /* Force Link */
1389 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1391 /* Set Early Link Enable */
1392 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1393 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1394 break;
1395 case e1000_phy_82577:
1396 case e1000_phy_82578:
1397 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1398 ret_val = hw->phy.ops.acquire(hw);
1399 if (ret_val) {
1400 e_err("Cannot setup 1Gbps loopback.\n");
1401 return ret_val;
1402 }
1403 e1000_configure_k1_ich8lan(hw, false);
1404 hw->phy.ops.release(hw);
1405 break;
1406 case e1000_phy_82579:
1407 /* Disable PHY energy detect power down */
1408 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1409 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1410 /* Disable full chip energy detect */
1411 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1412 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1413 /* Enable loopback on the PHY */
1414 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1415 break;
1416 default:
1417 break;
1418 }
1419
1420 /* force 1000, set loopback */
1421 e1e_wphy(hw, MII_BMCR, 0x4140);
1422 msleep(250);
1423
1424 /* Now set up the MAC to the same speed/duplex as the PHY. */
1425 ctrl_reg = er32(CTRL);
1426 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1427 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1428 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1429 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1430 E1000_CTRL_FD); /* Force Duplex to FULL */
1431
1432 if (adapter->flags & FLAG_IS_ICH)
1433 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1434
1435 if (hw->phy.media_type == e1000_media_type_copper &&
1436 hw->phy.type == e1000_phy_m88) {
1437 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1438 } else {
1439 /* Set the ILOS bit on the fiber Nic if half duplex link is
1440 * detected.
1441 */
1442 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1443 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1444 }
1445
1446 ew32(CTRL, ctrl_reg);
1447
1448 /* Disable the receiver on the PHY so when a cable is plugged in, the
1449 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1450 */
1451 if (hw->phy.type == e1000_phy_m88)
1452 e1000_phy_disable_receiver(adapter);
1453
1454 usleep_range(500, 1000);
1455
1456 return 0;
1457}
1458
1459static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462 u32 ctrl = er32(CTRL);
1463 int link;
1464
1465 /* special requirements for 82571/82572 fiber adapters */
1466
1467 /* jump through hoops to make sure link is up because serdes
1468 * link is hardwired up
1469 */
1470 ctrl |= E1000_CTRL_SLU;
1471 ew32(CTRL, ctrl);
1472
1473 /* disable autoneg */
1474 ctrl = er32(TXCW);
1475 ctrl &= ~BIT(31);
1476 ew32(TXCW, ctrl);
1477
1478 link = (er32(STATUS) & E1000_STATUS_LU);
1479
1480 if (!link) {
1481 /* set invert loss of signal */
1482 ctrl = er32(CTRL);
1483 ctrl |= E1000_CTRL_ILOS;
1484 ew32(CTRL, ctrl);
1485 }
1486
1487 /* special write to serdes control register to enable SerDes analog
1488 * loopback
1489 */
1490 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1491 e1e_flush();
1492 usleep_range(10000, 20000);
1493
1494 return 0;
1495}
1496
1497/* only call this for fiber/serdes connections to es2lan */
1498static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1499{
1500 struct e1000_hw *hw = &adapter->hw;
1501 u32 ctrlext = er32(CTRL_EXT);
1502 u32 ctrl = er32(CTRL);
1503
1504 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1505 * on mac_type 80003es2lan)
1506 */
1507 adapter->tx_fifo_head = ctrlext;
1508
1509 /* clear the serdes mode bits, putting the device into mac loopback */
1510 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1511 ew32(CTRL_EXT, ctrlext);
1512
1513 /* force speed to 1000/FD, link up */
1514 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1515 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1516 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1517 ew32(CTRL, ctrl);
1518
1519 /* set mac loopback */
1520 ctrl = er32(RCTL);
1521 ctrl |= E1000_RCTL_LBM_MAC;
1522 ew32(RCTL, ctrl);
1523
1524 /* set testing mode parameters (no need to reset later) */
1525#define KMRNCTRLSTA_OPMODE (0x1F << 16)
1526#define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1527 ew32(KMRNCTRLSTA,
1528 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1529
1530 return 0;
1531}
1532
1533static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1534{
1535 struct e1000_hw *hw = &adapter->hw;
1536 u32 rctl, fext_nvm11, tarc0;
1537
1538 if (hw->mac.type >= e1000_pch_spt) {
1539 fext_nvm11 = er32(FEXTNVM11);
1540 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1541 ew32(FEXTNVM11, fext_nvm11);
1542 tarc0 = er32(TARC(0));
1543 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1544 tarc0 &= 0xcfffffff;
1545 /* set bit 29 (value of MULR requests is now 2) */
1546 tarc0 |= 0x20000000;
1547 ew32(TARC(0), tarc0);
1548 }
1549 if (hw->phy.media_type == e1000_media_type_fiber ||
1550 hw->phy.media_type == e1000_media_type_internal_serdes) {
1551 switch (hw->mac.type) {
1552 case e1000_80003es2lan:
1553 return e1000_set_es2lan_mac_loopback(adapter);
1554 case e1000_82571:
1555 case e1000_82572:
1556 return e1000_set_82571_fiber_loopback(adapter);
1557 default:
1558 rctl = er32(RCTL);
1559 rctl |= E1000_RCTL_LBM_TCVR;
1560 ew32(RCTL, rctl);
1561 return 0;
1562 }
1563 } else if (hw->phy.media_type == e1000_media_type_copper) {
1564 return e1000_integrated_phy_loopback(adapter);
1565 }
1566
1567 return 7;
1568}
1569
1570static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1571{
1572 struct e1000_hw *hw = &adapter->hw;
1573 u32 rctl, fext_nvm11, tarc0;
1574 u16 phy_reg;
1575
1576 rctl = er32(RCTL);
1577 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1578 ew32(RCTL, rctl);
1579
1580 switch (hw->mac.type) {
1581 case e1000_pch_spt:
1582 case e1000_pch_cnp:
1583 fext_nvm11 = er32(FEXTNVM11);
1584 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1585 ew32(FEXTNVM11, fext_nvm11);
1586 tarc0 = er32(TARC(0));
1587 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1588 /* set bit 29 (value of MULR requests is now 0) */
1589 tarc0 &= 0xcfffffff;
1590 ew32(TARC(0), tarc0);
1591 /* fall through */
1592 case e1000_80003es2lan:
1593 if (hw->phy.media_type == e1000_media_type_fiber ||
1594 hw->phy.media_type == e1000_media_type_internal_serdes) {
1595 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1596 ew32(CTRL_EXT, adapter->tx_fifo_head);
1597 adapter->tx_fifo_head = 0;
1598 }
1599 /* fall through */
1600 case e1000_82571:
1601 case e1000_82572:
1602 if (hw->phy.media_type == e1000_media_type_fiber ||
1603 hw->phy.media_type == e1000_media_type_internal_serdes) {
1604 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1605 e1e_flush();
1606 usleep_range(10000, 20000);
1607 break;
1608 }
1609 /* Fall Through */
1610 default:
1611 hw->mac.autoneg = 1;
1612 if (hw->phy.type == e1000_phy_gg82563)
1613 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1614 e1e_rphy(hw, MII_BMCR, &phy_reg);
1615 if (phy_reg & BMCR_LOOPBACK) {
1616 phy_reg &= ~BMCR_LOOPBACK;
1617 e1e_wphy(hw, MII_BMCR, phy_reg);
1618 if (hw->phy.ops.commit)
1619 hw->phy.ops.commit(hw);
1620 }
1621 break;
1622 }
1623}
1624
1625static void e1000_create_lbtest_frame(struct sk_buff *skb,
1626 unsigned int frame_size)
1627{
1628 memset(skb->data, 0xFF, frame_size);
1629 frame_size &= ~1;
1630 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1631 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1632 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1633}
1634
1635static int e1000_check_lbtest_frame(struct sk_buff *skb,
1636 unsigned int frame_size)
1637{
1638 frame_size &= ~1;
1639 if (*(skb->data + 3) == 0xFF)
1640 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1641 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1642 return 0;
1643 return 13;
1644}
1645
1646static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1647{
1648 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1649 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1650 struct pci_dev *pdev = adapter->pdev;
1651 struct e1000_hw *hw = &adapter->hw;
1652 struct e1000_buffer *buffer_info;
1653 int i, j, k, l;
1654 int lc;
1655 int good_cnt;
1656 int ret_val = 0;
1657 unsigned long time;
1658
1659 ew32(RDT(0), rx_ring->count - 1);
1660
1661 /* Calculate the loop count based on the largest descriptor ring
1662 * The idea is to wrap the largest ring a number of times using 64
1663 * send/receive pairs during each loop
1664 */
1665
1666 if (rx_ring->count <= tx_ring->count)
1667 lc = ((tx_ring->count / 64) * 2) + 1;
1668 else
1669 lc = ((rx_ring->count / 64) * 2) + 1;
1670
1671 k = 0;
1672 l = 0;
1673 /* loop count loop */
1674 for (j = 0; j <= lc; j++) {
1675 /* send the packets */
1676 for (i = 0; i < 64; i++) {
1677 buffer_info = &tx_ring->buffer_info[k];
1678
1679 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1680 dma_sync_single_for_device(&pdev->dev,
1681 buffer_info->dma,
1682 buffer_info->length,
1683 DMA_TO_DEVICE);
1684 k++;
1685 if (k == tx_ring->count)
1686 k = 0;
1687 }
1688 ew32(TDT(0), k);
1689 e1e_flush();
1690 msleep(200);
1691 time = jiffies; /* set the start time for the receive */
1692 good_cnt = 0;
1693 /* receive the sent packets */
1694 do {
1695 buffer_info = &rx_ring->buffer_info[l];
1696
1697 dma_sync_single_for_cpu(&pdev->dev,
1698 buffer_info->dma, 2048,
1699 DMA_FROM_DEVICE);
1700
1701 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1702 1024);
1703 if (!ret_val)
1704 good_cnt++;
1705 l++;
1706 if (l == rx_ring->count)
1707 l = 0;
1708 /* time + 20 msecs (200 msecs on 2.4) is more than
1709 * enough time to complete the receives, if it's
1710 * exceeded, break and error off
1711 */
1712 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1713 if (good_cnt != 64) {
1714 ret_val = 13; /* ret_val is the same as mis-compare */
1715 break;
1716 }
1717 if (time_after(jiffies, time + 20)) {
1718 ret_val = 14; /* error code for time out error */
1719 break;
1720 }
1721 }
1722 return ret_val;
1723}
1724
1725static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1726{
1727 struct e1000_hw *hw = &adapter->hw;
1728
1729 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1730 if (hw->phy.ops.check_reset_block &&
1731 hw->phy.ops.check_reset_block(hw)) {
1732 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1733 *data = 0;
1734 goto out;
1735 }
1736
1737 *data = e1000_setup_desc_rings(adapter);
1738 if (*data)
1739 goto out;
1740
1741 *data = e1000_setup_loopback_test(adapter);
1742 if (*data)
1743 goto err_loopback;
1744
1745 *data = e1000_run_loopback_test(adapter);
1746 e1000_loopback_cleanup(adapter);
1747
1748err_loopback:
1749 e1000_free_desc_rings(adapter);
1750out:
1751 return *data;
1752}
1753
1754static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1755{
1756 struct e1000_hw *hw = &adapter->hw;
1757
1758 *data = 0;
1759 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1760 int i = 0;
1761
1762 hw->mac.serdes_has_link = false;
1763
1764 /* On some blade server designs, link establishment
1765 * could take as long as 2-3 minutes
1766 */
1767 do {
1768 hw->mac.ops.check_for_link(hw);
1769 if (hw->mac.serdes_has_link)
1770 return *data;
1771 msleep(20);
1772 } while (i++ < 3750);
1773
1774 *data = 1;
1775 } else {
1776 hw->mac.ops.check_for_link(hw);
1777 if (hw->mac.autoneg)
1778 /* On some Phy/switch combinations, link establishment
1779 * can take a few seconds more than expected.
1780 */
1781 msleep_interruptible(5000);
1782
1783 if (!(er32(STATUS) & E1000_STATUS_LU))
1784 *data = 1;
1785 }
1786 return *data;
1787}
1788
1789static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1790 int sset)
1791{
1792 switch (sset) {
1793 case ETH_SS_TEST:
1794 return E1000_TEST_LEN;
1795 case ETH_SS_STATS:
1796 return E1000_STATS_LEN;
1797 default:
1798 return -EOPNOTSUPP;
1799 }
1800}
1801
1802static void e1000_diag_test(struct net_device *netdev,
1803 struct ethtool_test *eth_test, u64 *data)
1804{
1805 struct e1000_adapter *adapter = netdev_priv(netdev);
1806 u16 autoneg_advertised;
1807 u8 forced_speed_duplex;
1808 u8 autoneg;
1809 bool if_running = netif_running(netdev);
1810
1811 pm_runtime_get_sync(netdev->dev.parent);
1812
1813 set_bit(__E1000_TESTING, &adapter->state);
1814
1815 if (!if_running) {
1816 /* Get control of and reset hardware */
1817 if (adapter->flags & FLAG_HAS_AMT)
1818 e1000e_get_hw_control(adapter);
1819
1820 e1000e_power_up_phy(adapter);
1821
1822 adapter->hw.phy.autoneg_wait_to_complete = 1;
1823 e1000e_reset(adapter);
1824 adapter->hw.phy.autoneg_wait_to_complete = 0;
1825 }
1826
1827 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1828 /* Offline tests */
1829
1830 /* save speed, duplex, autoneg settings */
1831 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1832 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1833 autoneg = adapter->hw.mac.autoneg;
1834
1835 e_info("offline testing starting\n");
1836
1837 if (if_running)
1838 /* indicate we're in test mode */
1839 e1000e_close(netdev);
1840
1841 if (e1000_reg_test(adapter, &data[0]))
1842 eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844 e1000e_reset(adapter);
1845 if (e1000_eeprom_test(adapter, &data[1]))
1846 eth_test->flags |= ETH_TEST_FL_FAILED;
1847
1848 e1000e_reset(adapter);
1849 if (e1000_intr_test(adapter, &data[2]))
1850 eth_test->flags |= ETH_TEST_FL_FAILED;
1851
1852 e1000e_reset(adapter);
1853 if (e1000_loopback_test(adapter, &data[3]))
1854 eth_test->flags |= ETH_TEST_FL_FAILED;
1855
1856 /* force this routine to wait until autoneg complete/timeout */
1857 adapter->hw.phy.autoneg_wait_to_complete = 1;
1858 e1000e_reset(adapter);
1859 adapter->hw.phy.autoneg_wait_to_complete = 0;
1860
1861 if (e1000_link_test(adapter, &data[4]))
1862 eth_test->flags |= ETH_TEST_FL_FAILED;
1863
1864 /* restore speed, duplex, autoneg settings */
1865 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1866 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1867 adapter->hw.mac.autoneg = autoneg;
1868 e1000e_reset(adapter);
1869
1870 clear_bit(__E1000_TESTING, &adapter->state);
1871 if (if_running)
1872 e1000e_open(netdev);
1873 } else {
1874 /* Online tests */
1875
1876 e_info("online testing starting\n");
1877
1878 /* register, eeprom, intr and loopback tests not run online */
1879 data[0] = 0;
1880 data[1] = 0;
1881 data[2] = 0;
1882 data[3] = 0;
1883
1884 if (e1000_link_test(adapter, &data[4]))
1885 eth_test->flags |= ETH_TEST_FL_FAILED;
1886
1887 clear_bit(__E1000_TESTING, &adapter->state);
1888 }
1889
1890 if (!if_running) {
1891 e1000e_reset(adapter);
1892
1893 if (adapter->flags & FLAG_HAS_AMT)
1894 e1000e_release_hw_control(adapter);
1895 }
1896
1897 msleep_interruptible(4 * 1000);
1898
1899 pm_runtime_put_sync(netdev->dev.parent);
1900}
1901
1902static void e1000_get_wol(struct net_device *netdev,
1903 struct ethtool_wolinfo *wol)
1904{
1905 struct e1000_adapter *adapter = netdev_priv(netdev);
1906
1907 wol->supported = 0;
1908 wol->wolopts = 0;
1909
1910 if (!(adapter->flags & FLAG_HAS_WOL) ||
1911 !device_can_wakeup(&adapter->pdev->dev))
1912 return;
1913
1914 wol->supported = WAKE_UCAST | WAKE_MCAST |
1915 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1916
1917 /* apply any specific unsupported masks here */
1918 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1919 wol->supported &= ~WAKE_UCAST;
1920
1921 if (adapter->wol & E1000_WUFC_EX)
1922 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1923 }
1924
1925 if (adapter->wol & E1000_WUFC_EX)
1926 wol->wolopts |= WAKE_UCAST;
1927 if (adapter->wol & E1000_WUFC_MC)
1928 wol->wolopts |= WAKE_MCAST;
1929 if (adapter->wol & E1000_WUFC_BC)
1930 wol->wolopts |= WAKE_BCAST;
1931 if (adapter->wol & E1000_WUFC_MAG)
1932 wol->wolopts |= WAKE_MAGIC;
1933 if (adapter->wol & E1000_WUFC_LNKC)
1934 wol->wolopts |= WAKE_PHY;
1935}
1936
1937static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1938{
1939 struct e1000_adapter *adapter = netdev_priv(netdev);
1940
1941 if (!(adapter->flags & FLAG_HAS_WOL) ||
1942 !device_can_wakeup(&adapter->pdev->dev) ||
1943 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1944 WAKE_MAGIC | WAKE_PHY)))
1945 return -EOPNOTSUPP;
1946
1947 /* these settings will always override what we currently have */
1948 adapter->wol = 0;
1949
1950 if (wol->wolopts & WAKE_UCAST)
1951 adapter->wol |= E1000_WUFC_EX;
1952 if (wol->wolopts & WAKE_MCAST)
1953 adapter->wol |= E1000_WUFC_MC;
1954 if (wol->wolopts & WAKE_BCAST)
1955 adapter->wol |= E1000_WUFC_BC;
1956 if (wol->wolopts & WAKE_MAGIC)
1957 adapter->wol |= E1000_WUFC_MAG;
1958 if (wol->wolopts & WAKE_PHY)
1959 adapter->wol |= E1000_WUFC_LNKC;
1960
1961 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1962
1963 return 0;
1964}
1965
1966static int e1000_set_phys_id(struct net_device *netdev,
1967 enum ethtool_phys_id_state state)
1968{
1969 struct e1000_adapter *adapter = netdev_priv(netdev);
1970 struct e1000_hw *hw = &adapter->hw;
1971
1972 switch (state) {
1973 case ETHTOOL_ID_ACTIVE:
1974 pm_runtime_get_sync(netdev->dev.parent);
1975
1976 if (!hw->mac.ops.blink_led)
1977 return 2; /* cycle on/off twice per second */
1978
1979 hw->mac.ops.blink_led(hw);
1980 break;
1981
1982 case ETHTOOL_ID_INACTIVE:
1983 if (hw->phy.type == e1000_phy_ife)
1984 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1985 hw->mac.ops.led_off(hw);
1986 hw->mac.ops.cleanup_led(hw);
1987 pm_runtime_put_sync(netdev->dev.parent);
1988 break;
1989
1990 case ETHTOOL_ID_ON:
1991 hw->mac.ops.led_on(hw);
1992 break;
1993
1994 case ETHTOOL_ID_OFF:
1995 hw->mac.ops.led_off(hw);
1996 break;
1997 }
1998
1999 return 0;
2000}
2001
2002static int e1000_get_coalesce(struct net_device *netdev,
2003 struct ethtool_coalesce *ec)
2004{
2005 struct e1000_adapter *adapter = netdev_priv(netdev);
2006
2007 if (adapter->itr_setting <= 4)
2008 ec->rx_coalesce_usecs = adapter->itr_setting;
2009 else
2010 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2011
2012 return 0;
2013}
2014
2015static int e1000_set_coalesce(struct net_device *netdev,
2016 struct ethtool_coalesce *ec)
2017{
2018 struct e1000_adapter *adapter = netdev_priv(netdev);
2019
2020 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2021 ((ec->rx_coalesce_usecs > 4) &&
2022 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2023 (ec->rx_coalesce_usecs == 2))
2024 return -EINVAL;
2025
2026 if (ec->rx_coalesce_usecs == 4) {
2027 adapter->itr_setting = 4;
2028 adapter->itr = adapter->itr_setting;
2029 } else if (ec->rx_coalesce_usecs <= 3) {
2030 adapter->itr = 20000;
2031 adapter->itr_setting = ec->rx_coalesce_usecs;
2032 } else {
2033 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2034 adapter->itr_setting = adapter->itr & ~3;
2035 }
2036
2037 pm_runtime_get_sync(netdev->dev.parent);
2038
2039 if (adapter->itr_setting != 0)
2040 e1000e_write_itr(adapter, adapter->itr);
2041 else
2042 e1000e_write_itr(adapter, 0);
2043
2044 pm_runtime_put_sync(netdev->dev.parent);
2045
2046 return 0;
2047}
2048
2049static int e1000_nway_reset(struct net_device *netdev)
2050{
2051 struct e1000_adapter *adapter = netdev_priv(netdev);
2052
2053 if (!netif_running(netdev))
2054 return -EAGAIN;
2055
2056 if (!adapter->hw.mac.autoneg)
2057 return -EINVAL;
2058
2059 pm_runtime_get_sync(netdev->dev.parent);
2060 e1000e_reinit_locked(adapter);
2061 pm_runtime_put_sync(netdev->dev.parent);
2062
2063 return 0;
2064}
2065
2066static void e1000_get_ethtool_stats(struct net_device *netdev,
2067 struct ethtool_stats __always_unused *stats,
2068 u64 *data)
2069{
2070 struct e1000_adapter *adapter = netdev_priv(netdev);
2071 struct rtnl_link_stats64 net_stats;
2072 int i;
2073 char *p = NULL;
2074
2075 pm_runtime_get_sync(netdev->dev.parent);
2076
2077 dev_get_stats(netdev, &net_stats);
2078
2079 pm_runtime_put_sync(netdev->dev.parent);
2080
2081 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2082 switch (e1000_gstrings_stats[i].type) {
2083 case NETDEV_STATS:
2084 p = (char *)&net_stats +
2085 e1000_gstrings_stats[i].stat_offset;
2086 break;
2087 case E1000_STATS:
2088 p = (char *)adapter +
2089 e1000_gstrings_stats[i].stat_offset;
2090 break;
2091 default:
2092 data[i] = 0;
2093 continue;
2094 }
2095
2096 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2097 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2098 }
2099}
2100
2101static void e1000_get_strings(struct net_device __always_unused *netdev,
2102 u32 stringset, u8 *data)
2103{
2104 u8 *p = data;
2105 int i;
2106
2107 switch (stringset) {
2108 case ETH_SS_TEST:
2109 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2110 break;
2111 case ETH_SS_STATS:
2112 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2113 memcpy(p, e1000_gstrings_stats[i].stat_string,
2114 ETH_GSTRING_LEN);
2115 p += ETH_GSTRING_LEN;
2116 }
2117 break;
2118 }
2119}
2120
2121static int e1000_get_rxnfc(struct net_device *netdev,
2122 struct ethtool_rxnfc *info,
2123 u32 __always_unused *rule_locs)
2124{
2125 info->data = 0;
2126
2127 switch (info->cmd) {
2128 case ETHTOOL_GRXFH: {
2129 struct e1000_adapter *adapter = netdev_priv(netdev);
2130 struct e1000_hw *hw = &adapter->hw;
2131 u32 mrqc;
2132
2133 pm_runtime_get_sync(netdev->dev.parent);
2134 mrqc = er32(MRQC);
2135 pm_runtime_put_sync(netdev->dev.parent);
2136
2137 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2138 return 0;
2139
2140 switch (info->flow_type) {
2141 case TCP_V4_FLOW:
2142 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2143 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2144 /* fall through */
2145 case UDP_V4_FLOW:
2146 case SCTP_V4_FLOW:
2147 case AH_ESP_V4_FLOW:
2148 case IPV4_FLOW:
2149 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2150 info->data |= RXH_IP_SRC | RXH_IP_DST;
2151 break;
2152 case TCP_V6_FLOW:
2153 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2154 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2155 /* fall through */
2156 case UDP_V6_FLOW:
2157 case SCTP_V6_FLOW:
2158 case AH_ESP_V6_FLOW:
2159 case IPV6_FLOW:
2160 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2161 info->data |= RXH_IP_SRC | RXH_IP_DST;
2162 break;
2163 default:
2164 break;
2165 }
2166 return 0;
2167 }
2168 default:
2169 return -EOPNOTSUPP;
2170 }
2171}
2172
2173static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2174{
2175 struct e1000_adapter *adapter = netdev_priv(netdev);
2176 struct e1000_hw *hw = &adapter->hw;
2177 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2178 u32 ret_val;
2179
2180 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2181 return -EOPNOTSUPP;
2182
2183 switch (hw->phy.type) {
2184 case e1000_phy_82579:
2185 cap_addr = I82579_EEE_CAPABILITY;
2186 lpa_addr = I82579_EEE_LP_ABILITY;
2187 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2188 break;
2189 case e1000_phy_i217:
2190 cap_addr = I217_EEE_CAPABILITY;
2191 lpa_addr = I217_EEE_LP_ABILITY;
2192 pcs_stat_addr = I217_EEE_PCS_STATUS;
2193 break;
2194 default:
2195 return -EOPNOTSUPP;
2196 }
2197
2198 pm_runtime_get_sync(netdev->dev.parent);
2199
2200 ret_val = hw->phy.ops.acquire(hw);
2201 if (ret_val) {
2202 pm_runtime_put_sync(netdev->dev.parent);
2203 return -EBUSY;
2204 }
2205
2206 /* EEE Capability */
2207 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2208 if (ret_val)
2209 goto release;
2210 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2211
2212 /* EEE Advertised */
2213 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2214
2215 /* EEE Link Partner Advertised */
2216 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2217 if (ret_val)
2218 goto release;
2219 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2220
2221 /* EEE PCS Status */
2222 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2223 if (ret_val)
2224 goto release;
2225 if (hw->phy.type == e1000_phy_82579)
2226 phy_data <<= 8;
2227
2228 /* Result of the EEE auto negotiation - there is no register that
2229 * has the status of the EEE negotiation so do a best-guess based
2230 * on whether Tx or Rx LPI indications have been received.
2231 */
2232 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2233 edata->eee_active = true;
2234
2235 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2236 edata->tx_lpi_enabled = true;
2237 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2238
2239release:
2240 hw->phy.ops.release(hw);
2241 if (ret_val)
2242 ret_val = -ENODATA;
2243
2244 pm_runtime_put_sync(netdev->dev.parent);
2245
2246 return ret_val;
2247}
2248
2249static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2250{
2251 struct e1000_adapter *adapter = netdev_priv(netdev);
2252 struct e1000_hw *hw = &adapter->hw;
2253 struct ethtool_eee eee_curr;
2254 s32 ret_val;
2255
2256 ret_val = e1000e_get_eee(netdev, &eee_curr);
2257 if (ret_val)
2258 return ret_val;
2259
2260 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2261 e_err("Setting EEE tx-lpi is not supported\n");
2262 return -EINVAL;
2263 }
2264
2265 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2266 e_err("Setting EEE Tx LPI timer is not supported\n");
2267 return -EINVAL;
2268 }
2269
2270 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2271 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2272 return -EINVAL;
2273 }
2274
2275 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2276
2277 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2278
2279 pm_runtime_get_sync(netdev->dev.parent);
2280
2281 /* reset the link */
2282 if (netif_running(netdev))
2283 e1000e_reinit_locked(adapter);
2284 else
2285 e1000e_reset(adapter);
2286
2287 pm_runtime_put_sync(netdev->dev.parent);
2288
2289 return 0;
2290}
2291
2292static int e1000e_get_ts_info(struct net_device *netdev,
2293 struct ethtool_ts_info *info)
2294{
2295 struct e1000_adapter *adapter = netdev_priv(netdev);
2296
2297 ethtool_op_get_ts_info(netdev, info);
2298
2299 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2300 return 0;
2301
2302 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2303 SOF_TIMESTAMPING_RX_HARDWARE |
2304 SOF_TIMESTAMPING_RAW_HARDWARE);
2305
2306 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2307
2308 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2309 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2310 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2311 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2312 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2313 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2314 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2315 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2316 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2317 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2318 BIT(HWTSTAMP_FILTER_ALL));
2319
2320 if (adapter->ptp_clock)
2321 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2322
2323 return 0;
2324}
2325
2326static const struct ethtool_ops e1000_ethtool_ops = {
2327 .get_drvinfo = e1000_get_drvinfo,
2328 .get_regs_len = e1000_get_regs_len,
2329 .get_regs = e1000_get_regs,
2330 .get_wol = e1000_get_wol,
2331 .set_wol = e1000_set_wol,
2332 .get_msglevel = e1000_get_msglevel,
2333 .set_msglevel = e1000_set_msglevel,
2334 .nway_reset = e1000_nway_reset,
2335 .get_link = ethtool_op_get_link,
2336 .get_eeprom_len = e1000_get_eeprom_len,
2337 .get_eeprom = e1000_get_eeprom,
2338 .set_eeprom = e1000_set_eeprom,
2339 .get_ringparam = e1000_get_ringparam,
2340 .set_ringparam = e1000_set_ringparam,
2341 .get_pauseparam = e1000_get_pauseparam,
2342 .set_pauseparam = e1000_set_pauseparam,
2343 .self_test = e1000_diag_test,
2344 .get_strings = e1000_get_strings,
2345 .set_phys_id = e1000_set_phys_id,
2346 .get_ethtool_stats = e1000_get_ethtool_stats,
2347 .get_sset_count = e1000e_get_sset_count,
2348 .get_coalesce = e1000_get_coalesce,
2349 .set_coalesce = e1000_set_coalesce,
2350 .get_rxnfc = e1000_get_rxnfc,
2351 .get_ts_info = e1000e_get_ts_info,
2352 .get_eee = e1000e_get_eee,
2353 .set_eee = e1000e_set_eee,
2354 .get_link_ksettings = e1000_get_link_ksettings,
2355 .set_link_ksettings = e1000_set_link_ksettings,
2356};
2357
2358void e1000e_set_ethtool_ops(struct net_device *netdev)
2359{
2360 netdev->ethtool_ops = &e1000_ethtool_ops;
2361}