Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Faraday FTGMAC100 Gigabit Ethernet
4 *
5 * (C) Copyright 2009-2011 Faraday Technology
6 * Po-Yu Chuang <ratbert@faraday-tech.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/clk.h>
12#include <linux/dma-mapping.h>
13#include <linux/etherdevice.h>
14#include <linux/ethtool.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/module.h>
18#include <linux/netdevice.h>
19#include <linux/of.h>
20#include <linux/of_mdio.h>
21#include <linux/phy.h>
22#include <linux/platform_device.h>
23#include <linux/property.h>
24#include <linux/crc32.h>
25#include <linux/if_vlan.h>
26#include <linux/of_net.h>
27#include <net/ip.h>
28#include <net/ncsi.h>
29
30#include "ftgmac100.h"
31
32#define DRV_NAME "ftgmac100"
33
34/* Arbitrary values, I am not sure the HW has limits */
35#define MAX_RX_QUEUE_ENTRIES 1024
36#define MAX_TX_QUEUE_ENTRIES 1024
37#define MIN_RX_QUEUE_ENTRIES 32
38#define MIN_TX_QUEUE_ENTRIES 32
39
40/* Defaults */
41#define DEF_RX_QUEUE_ENTRIES 128
42#define DEF_TX_QUEUE_ENTRIES 128
43
44#define MAX_PKT_SIZE 1536
45#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
46
47/* Min number of tx ring entries before stopping queue */
48#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
49
50#define FTGMAC_100MHZ 100000000
51#define FTGMAC_25MHZ 25000000
52
53struct ftgmac100 {
54 /* Registers */
55 struct resource *res;
56 void __iomem *base;
57
58 /* Rx ring */
59 unsigned int rx_q_entries;
60 struct ftgmac100_rxdes *rxdes;
61 dma_addr_t rxdes_dma;
62 struct sk_buff **rx_skbs;
63 unsigned int rx_pointer;
64 u32 rxdes0_edorr_mask;
65
66 /* Tx ring */
67 unsigned int tx_q_entries;
68 struct ftgmac100_txdes *txdes;
69 dma_addr_t txdes_dma;
70 struct sk_buff **tx_skbs;
71 unsigned int tx_clean_pointer;
72 unsigned int tx_pointer;
73 u32 txdes0_edotr_mask;
74
75 /* Used to signal the reset task of ring change request */
76 unsigned int new_rx_q_entries;
77 unsigned int new_tx_q_entries;
78
79 /* Scratch page to use when rx skb alloc fails */
80 void *rx_scratch;
81 dma_addr_t rx_scratch_dma;
82
83 /* Component structures */
84 struct net_device *netdev;
85 struct device *dev;
86 struct ncsi_dev *ndev;
87 struct napi_struct napi;
88 struct work_struct reset_task;
89 struct mii_bus *mii_bus;
90 struct clk *clk;
91
92 /* AST2500/AST2600 RMII ref clock gate */
93 struct clk *rclk;
94
95 /* Link management */
96 int cur_speed;
97 int cur_duplex;
98 bool use_ncsi;
99
100 /* Multicast filter settings */
101 u32 maht0;
102 u32 maht1;
103
104 /* Flow control settings */
105 bool tx_pause;
106 bool rx_pause;
107 bool aneg_pause;
108
109 /* Misc */
110 bool need_mac_restart;
111 bool is_aspeed;
112};
113
114static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
115{
116 struct net_device *netdev = priv->netdev;
117 int i;
118
119 /* NOTE: reset clears all registers */
120 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
121 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
122 priv->base + FTGMAC100_OFFSET_MACCR);
123 for (i = 0; i < 200; i++) {
124 unsigned int maccr;
125
126 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
127 if (!(maccr & FTGMAC100_MACCR_SW_RST))
128 return 0;
129
130 udelay(1);
131 }
132
133 netdev_err(netdev, "Hardware reset failed\n");
134 return -EIO;
135}
136
137static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
138{
139 u32 maccr = 0;
140
141 switch (priv->cur_speed) {
142 case SPEED_10:
143 case 0: /* no link */
144 break;
145
146 case SPEED_100:
147 maccr |= FTGMAC100_MACCR_FAST_MODE;
148 break;
149
150 case SPEED_1000:
151 maccr |= FTGMAC100_MACCR_GIGA_MODE;
152 break;
153 default:
154 netdev_err(priv->netdev, "Unknown speed %d !\n",
155 priv->cur_speed);
156 break;
157 }
158
159 /* (Re)initialize the queue pointers */
160 priv->rx_pointer = 0;
161 priv->tx_clean_pointer = 0;
162 priv->tx_pointer = 0;
163
164 /* The doc says reset twice with 10us interval */
165 if (ftgmac100_reset_mac(priv, maccr))
166 return -EIO;
167 usleep_range(10, 1000);
168 return ftgmac100_reset_mac(priv, maccr);
169}
170
171static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
172{
173 unsigned int maddr = mac[0] << 8 | mac[1];
174 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
175
176 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
177 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
178}
179
180static int ftgmac100_initial_mac(struct ftgmac100 *priv)
181{
182 u8 mac[ETH_ALEN];
183 unsigned int m;
184 unsigned int l;
185 int err;
186
187 err = of_get_ethdev_address(priv->dev->of_node, priv->netdev);
188 if (err == -EPROBE_DEFER)
189 return err;
190 if (!err) {
191 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
192 priv->netdev->dev_addr);
193 return 0;
194 }
195
196 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
197 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
198
199 mac[0] = (m >> 8) & 0xff;
200 mac[1] = m & 0xff;
201 mac[2] = (l >> 24) & 0xff;
202 mac[3] = (l >> 16) & 0xff;
203 mac[4] = (l >> 8) & 0xff;
204 mac[5] = l & 0xff;
205
206 if (is_valid_ether_addr(mac)) {
207 eth_hw_addr_set(priv->netdev, mac);
208 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
209 } else {
210 eth_hw_addr_random(priv->netdev);
211 dev_info(priv->dev, "Generated random MAC address %pM\n",
212 priv->netdev->dev_addr);
213 }
214
215 return 0;
216}
217
218static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
219{
220 int ret;
221
222 ret = eth_prepare_mac_addr_change(dev, p);
223 if (ret < 0)
224 return ret;
225
226 eth_commit_mac_addr_change(dev, p);
227 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
228
229 return 0;
230}
231
232static void ftgmac100_config_pause(struct ftgmac100 *priv)
233{
234 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
235
236 /* Throttle tx queue when receiving pause frames */
237 if (priv->rx_pause)
238 fcr |= FTGMAC100_FCR_FC_EN;
239
240 /* Enables sending pause frames when the RX queue is past a
241 * certain threshold.
242 */
243 if (priv->tx_pause)
244 fcr |= FTGMAC100_FCR_FCTHR_EN;
245
246 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
247}
248
249static void ftgmac100_init_hw(struct ftgmac100 *priv)
250{
251 u32 reg, rfifo_sz, tfifo_sz;
252
253 /* Clear stale interrupts */
254 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
255 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
256
257 /* Setup RX ring buffer base */
258 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
259
260 /* Setup TX ring buffer base */
261 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
262
263 /* Configure RX buffer size */
264 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
265 priv->base + FTGMAC100_OFFSET_RBSR);
266
267 /* Set RX descriptor autopoll */
268 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
269 priv->base + FTGMAC100_OFFSET_APTC);
270
271 /* Write MAC address */
272 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
273
274 /* Write multicast filter */
275 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
276 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
277
278 /* Configure descriptor sizes and increase burst sizes according
279 * to values in Aspeed SDK. The FIFO arbitration is enabled and
280 * the thresholds set based on the recommended values in the
281 * AST2400 specification.
282 */
283 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
284 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
285 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
286 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
287 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
288 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
289 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
290 priv->base + FTGMAC100_OFFSET_DBLAC);
291
292 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
293 * mitigation doesn't seem to provide any benefit with NAPI so leave
294 * it at that.
295 */
296 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
297 FTGMAC100_ITC_TXINT_THR(1),
298 priv->base + FTGMAC100_OFFSET_ITC);
299
300 /* Configure FIFO sizes in the TPAFCR register */
301 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
302 rfifo_sz = reg & 0x00000007;
303 tfifo_sz = (reg >> 3) & 0x00000007;
304 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
305 reg &= ~0x3f000000;
306 reg |= (tfifo_sz << 27);
307 reg |= (rfifo_sz << 24);
308 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
309}
310
311static void ftgmac100_start_hw(struct ftgmac100 *priv)
312{
313 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
314
315 /* Keep the original GMAC and FAST bits */
316 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
317
318 /* Add all the main enable bits */
319 maccr |= FTGMAC100_MACCR_TXDMA_EN |
320 FTGMAC100_MACCR_RXDMA_EN |
321 FTGMAC100_MACCR_TXMAC_EN |
322 FTGMAC100_MACCR_RXMAC_EN |
323 FTGMAC100_MACCR_CRC_APD |
324 FTGMAC100_MACCR_PHY_LINK_LEVEL |
325 FTGMAC100_MACCR_RX_RUNT |
326 FTGMAC100_MACCR_RX_BROADPKT;
327
328 /* Add other bits as needed */
329 if (priv->cur_duplex == DUPLEX_FULL)
330 maccr |= FTGMAC100_MACCR_FULLDUP;
331 if (priv->netdev->flags & IFF_PROMISC)
332 maccr |= FTGMAC100_MACCR_RX_ALL;
333 if (priv->netdev->flags & IFF_ALLMULTI)
334 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
335 else if (netdev_mc_count(priv->netdev))
336 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
337
338 /* Vlan filtering enabled */
339 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
340 maccr |= FTGMAC100_MACCR_RM_VLAN;
341
342 /* Hit the HW */
343 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
344}
345
346static void ftgmac100_stop_hw(struct ftgmac100 *priv)
347{
348 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
349}
350
351static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
352{
353 struct netdev_hw_addr *ha;
354
355 priv->maht1 = 0;
356 priv->maht0 = 0;
357 netdev_for_each_mc_addr(ha, priv->netdev) {
358 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
359
360 crc_val = (~(crc_val >> 2)) & 0x3f;
361 if (crc_val >= 32)
362 priv->maht1 |= 1ul << (crc_val - 32);
363 else
364 priv->maht0 |= 1ul << (crc_val);
365 }
366}
367
368static void ftgmac100_set_rx_mode(struct net_device *netdev)
369{
370 struct ftgmac100 *priv = netdev_priv(netdev);
371
372 /* Setup the hash filter */
373 ftgmac100_calc_mc_hash(priv);
374
375 /* Interface down ? that's all there is to do */
376 if (!netif_running(netdev))
377 return;
378
379 /* Update the HW */
380 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
381 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
382
383 /* Reconfigure MACCR */
384 ftgmac100_start_hw(priv);
385}
386
387static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
388 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
389{
390 struct net_device *netdev = priv->netdev;
391 struct sk_buff *skb;
392 dma_addr_t map;
393 int err = 0;
394
395 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
396 if (unlikely(!skb)) {
397 if (net_ratelimit())
398 netdev_warn(netdev, "failed to allocate rx skb\n");
399 err = -ENOMEM;
400 map = priv->rx_scratch_dma;
401 } else {
402 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
403 DMA_FROM_DEVICE);
404 if (unlikely(dma_mapping_error(priv->dev, map))) {
405 if (net_ratelimit())
406 netdev_err(netdev, "failed to map rx page\n");
407 dev_kfree_skb_any(skb);
408 map = priv->rx_scratch_dma;
409 skb = NULL;
410 err = -ENOMEM;
411 }
412 }
413
414 /* Store skb */
415 priv->rx_skbs[entry] = skb;
416
417 /* Store DMA address into RX desc */
418 rxdes->rxdes3 = cpu_to_le32(map);
419
420 /* Ensure the above is ordered vs clearing the OWN bit */
421 dma_wmb();
422
423 /* Clean status (which resets own bit) */
424 if (entry == (priv->rx_q_entries - 1))
425 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
426 else
427 rxdes->rxdes0 = 0;
428
429 return err;
430}
431
432static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
433 unsigned int pointer)
434{
435 return (pointer + 1) & (priv->rx_q_entries - 1);
436}
437
438static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
439{
440 struct net_device *netdev = priv->netdev;
441
442 if (status & FTGMAC100_RXDES0_RX_ERR)
443 netdev->stats.rx_errors++;
444
445 if (status & FTGMAC100_RXDES0_CRC_ERR)
446 netdev->stats.rx_crc_errors++;
447
448 if (status & (FTGMAC100_RXDES0_FTL |
449 FTGMAC100_RXDES0_RUNT |
450 FTGMAC100_RXDES0_RX_ODD_NB))
451 netdev->stats.rx_length_errors++;
452}
453
454static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
455{
456 struct net_device *netdev = priv->netdev;
457 struct ftgmac100_rxdes *rxdes;
458 struct sk_buff *skb;
459 unsigned int pointer, size;
460 u32 status, csum_vlan;
461 dma_addr_t map;
462
463 /* Grab next RX descriptor */
464 pointer = priv->rx_pointer;
465 rxdes = &priv->rxdes[pointer];
466
467 /* Grab descriptor status */
468 status = le32_to_cpu(rxdes->rxdes0);
469
470 /* Do we have a packet ? */
471 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
472 return false;
473
474 /* Order subsequent reads with the test for the ready bit */
475 dma_rmb();
476
477 /* We don't cope with fragmented RX packets */
478 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
479 !(status & FTGMAC100_RXDES0_LRS)))
480 goto drop;
481
482 /* Grab received size and csum vlan field in the descriptor */
483 size = status & FTGMAC100_RXDES0_VDBC;
484 csum_vlan = le32_to_cpu(rxdes->rxdes1);
485
486 /* Any error (other than csum offload) flagged ? */
487 if (unlikely(status & RXDES0_ANY_ERROR)) {
488 /* Correct for incorrect flagging of runt packets
489 * with vlan tags... Just accept a runt packet that
490 * has been flagged as vlan and whose size is at
491 * least 60 bytes.
492 */
493 if ((status & FTGMAC100_RXDES0_RUNT) &&
494 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
495 (size >= 60))
496 status &= ~FTGMAC100_RXDES0_RUNT;
497
498 /* Any error still in there ? */
499 if (status & RXDES0_ANY_ERROR) {
500 ftgmac100_rx_packet_error(priv, status);
501 goto drop;
502 }
503 }
504
505 /* If the packet had no skb (failed to allocate earlier)
506 * then try to allocate one and skip
507 */
508 skb = priv->rx_skbs[pointer];
509 if (!unlikely(skb)) {
510 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
511 goto drop;
512 }
513
514 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
515 netdev->stats.multicast++;
516
517 /* If the HW found checksum errors, bounce it to software.
518 *
519 * If we didn't, we need to see if the packet was recognized
520 * by HW as one of the supported checksummed protocols before
521 * we accept the HW test results.
522 */
523 if (netdev->features & NETIF_F_RXCSUM) {
524 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
525 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
526 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
527 if ((csum_vlan & err_bits) ||
528 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
529 skb->ip_summed = CHECKSUM_NONE;
530 else
531 skb->ip_summed = CHECKSUM_UNNECESSARY;
532 }
533
534 /* Transfer received size to skb */
535 skb_put(skb, size);
536
537 /* Extract vlan tag */
538 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
539 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
540 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
541 csum_vlan & 0xffff);
542
543 /* Tear down DMA mapping, do necessary cache management */
544 map = le32_to_cpu(rxdes->rxdes3);
545
546#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
547 /* When we don't have an iommu, we can save cycles by not
548 * invalidating the cache for the part of the packet that
549 * wasn't received.
550 */
551 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
552#else
553 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
554#endif
555
556
557 /* Resplenish rx ring */
558 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
559 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
560
561 skb->protocol = eth_type_trans(skb, netdev);
562
563 netdev->stats.rx_packets++;
564 netdev->stats.rx_bytes += size;
565
566 /* push packet to protocol stack */
567 if (skb->ip_summed == CHECKSUM_NONE)
568 netif_receive_skb(skb);
569 else
570 napi_gro_receive(&priv->napi, skb);
571
572 (*processed)++;
573 return true;
574
575 drop:
576 /* Clean rxdes0 (which resets own bit) */
577 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
578 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
579 netdev->stats.rx_dropped++;
580 return true;
581}
582
583static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
584 unsigned int index)
585{
586 if (index == (priv->tx_q_entries - 1))
587 return priv->txdes0_edotr_mask;
588 else
589 return 0;
590}
591
592static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
593 unsigned int pointer)
594{
595 return (pointer + 1) & (priv->tx_q_entries - 1);
596}
597
598static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
599{
600 /* Returns the number of available slots in the TX queue
601 *
602 * This always leaves one free slot so we don't have to
603 * worry about empty vs. full, and this simplifies the
604 * test for ftgmac100_tx_buf_cleanable() below
605 */
606 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
607 (priv->tx_q_entries - 1);
608}
609
610static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
611{
612 return priv->tx_pointer != priv->tx_clean_pointer;
613}
614
615static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
616 unsigned int pointer,
617 struct sk_buff *skb,
618 struct ftgmac100_txdes *txdes,
619 u32 ctl_stat)
620{
621 dma_addr_t map = le32_to_cpu(txdes->txdes3);
622 size_t len;
623
624 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
625 len = skb_headlen(skb);
626 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
627 } else {
628 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
629 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
630 }
631
632 /* Free SKB on last segment */
633 if (ctl_stat & FTGMAC100_TXDES0_LTS)
634 dev_kfree_skb(skb);
635 priv->tx_skbs[pointer] = NULL;
636}
637
638static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
639{
640 struct net_device *netdev = priv->netdev;
641 struct ftgmac100_txdes *txdes;
642 struct sk_buff *skb;
643 unsigned int pointer;
644 u32 ctl_stat;
645
646 pointer = priv->tx_clean_pointer;
647 txdes = &priv->txdes[pointer];
648
649 ctl_stat = le32_to_cpu(txdes->txdes0);
650 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
651 return false;
652
653 skb = priv->tx_skbs[pointer];
654 netdev->stats.tx_packets++;
655 netdev->stats.tx_bytes += skb->len;
656 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
657 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
658
659 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
660
661 return true;
662}
663
664static void ftgmac100_tx_complete(struct ftgmac100 *priv)
665{
666 struct net_device *netdev = priv->netdev;
667
668 /* Process all completed packets */
669 while (ftgmac100_tx_buf_cleanable(priv) &&
670 ftgmac100_tx_complete_packet(priv))
671 ;
672
673 /* Restart queue if needed */
674 smp_mb();
675 if (unlikely(netif_queue_stopped(netdev) &&
676 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
677 struct netdev_queue *txq;
678
679 txq = netdev_get_tx_queue(netdev, 0);
680 __netif_tx_lock(txq, smp_processor_id());
681 if (netif_queue_stopped(netdev) &&
682 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
683 netif_wake_queue(netdev);
684 __netif_tx_unlock(txq);
685 }
686}
687
688static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
689{
690 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
691 u8 ip_proto = ip_hdr(skb)->protocol;
692
693 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
694 switch(ip_proto) {
695 case IPPROTO_TCP:
696 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
697 return true;
698 case IPPROTO_UDP:
699 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
700 return true;
701 case IPPROTO_IP:
702 return true;
703 }
704 }
705 return skb_checksum_help(skb) == 0;
706}
707
708static netdev_tx_t ftgmac100_hard_start_xmit(struct sk_buff *skb,
709 struct net_device *netdev)
710{
711 struct ftgmac100 *priv = netdev_priv(netdev);
712 struct ftgmac100_txdes *txdes, *first;
713 unsigned int pointer, nfrags, len, i, j;
714 u32 f_ctl_stat, ctl_stat, csum_vlan;
715 dma_addr_t map;
716
717 /* The HW doesn't pad small frames */
718 if (eth_skb_pad(skb)) {
719 netdev->stats.tx_dropped++;
720 return NETDEV_TX_OK;
721 }
722
723 /* Reject oversize packets */
724 if (unlikely(skb->len > MAX_PKT_SIZE)) {
725 if (net_ratelimit())
726 netdev_dbg(netdev, "tx packet too big\n");
727 goto drop;
728 }
729
730 /* Do we have a limit on #fragments ? I yet have to get a reply
731 * from Aspeed. If there's one I haven't hit it.
732 */
733 nfrags = skb_shinfo(skb)->nr_frags;
734
735 /* Setup HW checksumming */
736 csum_vlan = 0;
737 if (skb->ip_summed == CHECKSUM_PARTIAL &&
738 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
739 goto drop;
740
741 /* Add VLAN tag */
742 if (skb_vlan_tag_present(skb)) {
743 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
744 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
745 }
746
747 /* Get header len */
748 len = skb_headlen(skb);
749
750 /* Map the packet head */
751 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
752 if (dma_mapping_error(priv->dev, map)) {
753 if (net_ratelimit())
754 netdev_err(netdev, "map tx packet head failed\n");
755 goto drop;
756 }
757
758 /* Grab the next free tx descriptor */
759 pointer = priv->tx_pointer;
760 txdes = first = &priv->txdes[pointer];
761
762 /* Setup it up with the packet head. Don't write the head to the
763 * ring just yet
764 */
765 priv->tx_skbs[pointer] = skb;
766 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
767 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
768 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
769 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
770 if (nfrags == 0)
771 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
772 txdes->txdes3 = cpu_to_le32(map);
773 txdes->txdes1 = cpu_to_le32(csum_vlan);
774
775 /* Next descriptor */
776 pointer = ftgmac100_next_tx_pointer(priv, pointer);
777
778 /* Add the fragments */
779 for (i = 0; i < nfrags; i++) {
780 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
781
782 len = skb_frag_size(frag);
783
784 /* Map it */
785 map = skb_frag_dma_map(priv->dev, frag, 0, len,
786 DMA_TO_DEVICE);
787 if (dma_mapping_error(priv->dev, map))
788 goto dma_err;
789
790 /* Setup descriptor */
791 priv->tx_skbs[pointer] = skb;
792 txdes = &priv->txdes[pointer];
793 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
794 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
795 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
796 if (i == (nfrags - 1))
797 ctl_stat |= FTGMAC100_TXDES0_LTS;
798 txdes->txdes0 = cpu_to_le32(ctl_stat);
799 txdes->txdes1 = 0;
800 txdes->txdes3 = cpu_to_le32(map);
801
802 /* Next one */
803 pointer = ftgmac100_next_tx_pointer(priv, pointer);
804 }
805
806 /* Order the previous packet and descriptor udpates
807 * before setting the OWN bit on the first descriptor.
808 */
809 dma_wmb();
810 first->txdes0 = cpu_to_le32(f_ctl_stat);
811
812 /* Update next TX pointer */
813 priv->tx_pointer = pointer;
814
815 /* If there isn't enough room for all the fragments of a new packet
816 * in the TX ring, stop the queue. The sequence below is race free
817 * vs. a concurrent restart in ftgmac100_poll()
818 */
819 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
820 netif_stop_queue(netdev);
821 /* Order the queue stop with the test below */
822 smp_mb();
823 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
824 netif_wake_queue(netdev);
825 }
826
827 /* Poke transmitter to read the updated TX descriptors */
828 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
829
830 return NETDEV_TX_OK;
831
832 dma_err:
833 if (net_ratelimit())
834 netdev_err(netdev, "map tx fragment failed\n");
835
836 /* Free head */
837 pointer = priv->tx_pointer;
838 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
839 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
840
841 /* Then all fragments */
842 for (j = 0; j < i; j++) {
843 pointer = ftgmac100_next_tx_pointer(priv, pointer);
844 txdes = &priv->txdes[pointer];
845 ctl_stat = le32_to_cpu(txdes->txdes0);
846 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
847 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
848 }
849
850 /* This cannot be reached if we successfully mapped the
851 * last fragment, so we know ftgmac100_free_tx_packet()
852 * hasn't freed the skb yet.
853 */
854 drop:
855 /* Drop the packet */
856 dev_kfree_skb_any(skb);
857 netdev->stats.tx_dropped++;
858
859 return NETDEV_TX_OK;
860}
861
862static void ftgmac100_free_buffers(struct ftgmac100 *priv)
863{
864 int i;
865
866 /* Free all RX buffers */
867 for (i = 0; i < priv->rx_q_entries; i++) {
868 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
869 struct sk_buff *skb = priv->rx_skbs[i];
870 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
871
872 if (!skb)
873 continue;
874
875 priv->rx_skbs[i] = NULL;
876 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
877 dev_kfree_skb_any(skb);
878 }
879
880 /* Free all TX buffers */
881 for (i = 0; i < priv->tx_q_entries; i++) {
882 struct ftgmac100_txdes *txdes = &priv->txdes[i];
883 struct sk_buff *skb = priv->tx_skbs[i];
884
885 if (!skb)
886 continue;
887 ftgmac100_free_tx_packet(priv, i, skb, txdes,
888 le32_to_cpu(txdes->txdes0));
889 }
890}
891
892static void ftgmac100_free_rings(struct ftgmac100 *priv)
893{
894 /* Free skb arrays */
895 kfree(priv->rx_skbs);
896 kfree(priv->tx_skbs);
897
898 /* Free descriptors */
899 if (priv->rxdes)
900 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
901 sizeof(struct ftgmac100_rxdes),
902 priv->rxdes, priv->rxdes_dma);
903 priv->rxdes = NULL;
904
905 if (priv->txdes)
906 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
907 sizeof(struct ftgmac100_txdes),
908 priv->txdes, priv->txdes_dma);
909 priv->txdes = NULL;
910
911 /* Free scratch packet buffer */
912 if (priv->rx_scratch)
913 dma_free_coherent(priv->dev, RX_BUF_SIZE,
914 priv->rx_scratch, priv->rx_scratch_dma);
915}
916
917static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
918{
919 /* Allocate skb arrays */
920 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
921 GFP_KERNEL);
922 if (!priv->rx_skbs)
923 return -ENOMEM;
924 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
925 GFP_KERNEL);
926 if (!priv->tx_skbs)
927 return -ENOMEM;
928
929 /* Allocate descriptors */
930 priv->rxdes = dma_alloc_coherent(priv->dev,
931 MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes),
932 &priv->rxdes_dma, GFP_KERNEL);
933 if (!priv->rxdes)
934 return -ENOMEM;
935 priv->txdes = dma_alloc_coherent(priv->dev,
936 MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes),
937 &priv->txdes_dma, GFP_KERNEL);
938 if (!priv->txdes)
939 return -ENOMEM;
940
941 /* Allocate scratch packet buffer */
942 priv->rx_scratch = dma_alloc_coherent(priv->dev,
943 RX_BUF_SIZE,
944 &priv->rx_scratch_dma,
945 GFP_KERNEL);
946 if (!priv->rx_scratch)
947 return -ENOMEM;
948
949 return 0;
950}
951
952static void ftgmac100_init_rings(struct ftgmac100 *priv)
953{
954 struct ftgmac100_rxdes *rxdes = NULL;
955 struct ftgmac100_txdes *txdes = NULL;
956 int i;
957
958 /* Update entries counts */
959 priv->rx_q_entries = priv->new_rx_q_entries;
960 priv->tx_q_entries = priv->new_tx_q_entries;
961
962 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
963 return;
964
965 /* Initialize RX ring */
966 for (i = 0; i < priv->rx_q_entries; i++) {
967 rxdes = &priv->rxdes[i];
968 rxdes->rxdes0 = 0;
969 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
970 }
971 /* Mark the end of the ring */
972 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
973
974 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
975 return;
976
977 /* Initialize TX ring */
978 for (i = 0; i < priv->tx_q_entries; i++) {
979 txdes = &priv->txdes[i];
980 txdes->txdes0 = 0;
981 }
982 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
983}
984
985static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
986{
987 int i;
988
989 for (i = 0; i < priv->rx_q_entries; i++) {
990 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
991
992 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
993 return -ENOMEM;
994 }
995 return 0;
996}
997
998static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
999{
1000 struct net_device *netdev = bus->priv;
1001 struct ftgmac100 *priv = netdev_priv(netdev);
1002 unsigned int phycr;
1003 int i;
1004
1005 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1006
1007 /* preserve MDC cycle threshold */
1008 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1009
1010 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1011 FTGMAC100_PHYCR_REGAD(regnum) |
1012 FTGMAC100_PHYCR_MIIRD;
1013
1014 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1015
1016 for (i = 0; i < 10; i++) {
1017 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1018
1019 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1020 int data;
1021
1022 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1023 return FTGMAC100_PHYDATA_MIIRDATA(data);
1024 }
1025
1026 udelay(100);
1027 }
1028
1029 netdev_err(netdev, "mdio read timed out\n");
1030 return -EIO;
1031}
1032
1033static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1034 int regnum, u16 value)
1035{
1036 struct net_device *netdev = bus->priv;
1037 struct ftgmac100 *priv = netdev_priv(netdev);
1038 unsigned int phycr;
1039 int data;
1040 int i;
1041
1042 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1043
1044 /* preserve MDC cycle threshold */
1045 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1046
1047 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1048 FTGMAC100_PHYCR_REGAD(regnum) |
1049 FTGMAC100_PHYCR_MIIWR;
1050
1051 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1052
1053 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1054 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1055
1056 for (i = 0; i < 10; i++) {
1057 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1058
1059 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1060 return 0;
1061
1062 udelay(100);
1063 }
1064
1065 netdev_err(netdev, "mdio write timed out\n");
1066 return -EIO;
1067}
1068
1069static void ftgmac100_get_drvinfo(struct net_device *netdev,
1070 struct ethtool_drvinfo *info)
1071{
1072 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1073 strscpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1074}
1075
1076static void
1077ftgmac100_get_ringparam(struct net_device *netdev,
1078 struct ethtool_ringparam *ering,
1079 struct kernel_ethtool_ringparam *kernel_ering,
1080 struct netlink_ext_ack *extack)
1081{
1082 struct ftgmac100 *priv = netdev_priv(netdev);
1083
1084 memset(ering, 0, sizeof(*ering));
1085 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1086 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1087 ering->rx_pending = priv->rx_q_entries;
1088 ering->tx_pending = priv->tx_q_entries;
1089}
1090
1091static int
1092ftgmac100_set_ringparam(struct net_device *netdev,
1093 struct ethtool_ringparam *ering,
1094 struct kernel_ethtool_ringparam *kernel_ering,
1095 struct netlink_ext_ack *extack)
1096{
1097 struct ftgmac100 *priv = netdev_priv(netdev);
1098
1099 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1100 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1101 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1102 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1103 !is_power_of_2(ering->rx_pending) ||
1104 !is_power_of_2(ering->tx_pending))
1105 return -EINVAL;
1106
1107 priv->new_rx_q_entries = ering->rx_pending;
1108 priv->new_tx_q_entries = ering->tx_pending;
1109 if (netif_running(netdev))
1110 schedule_work(&priv->reset_task);
1111
1112 return 0;
1113}
1114
1115static void ftgmac100_get_pauseparam(struct net_device *netdev,
1116 struct ethtool_pauseparam *pause)
1117{
1118 struct ftgmac100 *priv = netdev_priv(netdev);
1119
1120 pause->autoneg = priv->aneg_pause;
1121 pause->tx_pause = priv->tx_pause;
1122 pause->rx_pause = priv->rx_pause;
1123}
1124
1125static int ftgmac100_set_pauseparam(struct net_device *netdev,
1126 struct ethtool_pauseparam *pause)
1127{
1128 struct ftgmac100 *priv = netdev_priv(netdev);
1129 struct phy_device *phydev = netdev->phydev;
1130
1131 priv->aneg_pause = pause->autoneg;
1132 priv->tx_pause = pause->tx_pause;
1133 priv->rx_pause = pause->rx_pause;
1134
1135 if (phydev)
1136 phy_set_asym_pause(phydev, pause->rx_pause, pause->tx_pause);
1137
1138 if (netif_running(netdev)) {
1139 if (!(phydev && priv->aneg_pause))
1140 ftgmac100_config_pause(priv);
1141 }
1142
1143 return 0;
1144}
1145
1146static const struct ethtool_ops ftgmac100_ethtool_ops = {
1147 .get_drvinfo = ftgmac100_get_drvinfo,
1148 .get_link = ethtool_op_get_link,
1149 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1150 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1151 .nway_reset = phy_ethtool_nway_reset,
1152 .get_ringparam = ftgmac100_get_ringparam,
1153 .set_ringparam = ftgmac100_set_ringparam,
1154 .get_pauseparam = ftgmac100_get_pauseparam,
1155 .set_pauseparam = ftgmac100_set_pauseparam,
1156};
1157
1158static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1159{
1160 struct net_device *netdev = dev_id;
1161 struct ftgmac100 *priv = netdev_priv(netdev);
1162 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1163
1164 /* Fetch and clear interrupt bits, process abnormal ones */
1165 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1166 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1167 if (unlikely(status & FTGMAC100_INT_BAD)) {
1168
1169 /* RX buffer unavailable */
1170 if (status & FTGMAC100_INT_NO_RXBUF)
1171 netdev->stats.rx_over_errors++;
1172
1173 /* received packet lost due to RX FIFO full */
1174 if (status & FTGMAC100_INT_RPKT_LOST)
1175 netdev->stats.rx_fifo_errors++;
1176
1177 /* sent packet lost due to excessive TX collision */
1178 if (status & FTGMAC100_INT_XPKT_LOST)
1179 netdev->stats.tx_fifo_errors++;
1180
1181 /* AHB error -> Reset the chip */
1182 if (status & FTGMAC100_INT_AHB_ERR) {
1183 if (net_ratelimit())
1184 netdev_warn(netdev,
1185 "AHB bus error ! Resetting chip.\n");
1186 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1187 schedule_work(&priv->reset_task);
1188 return IRQ_HANDLED;
1189 }
1190
1191 /* We may need to restart the MAC after such errors, delay
1192 * this until after we have freed some Rx buffers though
1193 */
1194 priv->need_mac_restart = true;
1195
1196 /* Disable those errors until we restart */
1197 new_mask &= ~status;
1198 }
1199
1200 /* Only enable "bad" interrupts while NAPI is on */
1201 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1202
1203 /* Schedule NAPI bh */
1204 napi_schedule_irqoff(&priv->napi);
1205
1206 return IRQ_HANDLED;
1207}
1208
1209static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1210{
1211 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1212
1213 /* Do we have a packet ? */
1214 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1215}
1216
1217static int ftgmac100_poll(struct napi_struct *napi, int budget)
1218{
1219 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1220 int work_done = 0;
1221 bool more;
1222
1223 /* Handle TX completions */
1224 if (ftgmac100_tx_buf_cleanable(priv))
1225 ftgmac100_tx_complete(priv);
1226
1227 /* Handle RX packets */
1228 do {
1229 more = ftgmac100_rx_packet(priv, &work_done);
1230 } while (more && work_done < budget);
1231
1232
1233 /* The interrupt is telling us to kick the MAC back to life
1234 * after an RX overflow
1235 */
1236 if (unlikely(priv->need_mac_restart)) {
1237 ftgmac100_start_hw(priv);
1238 priv->need_mac_restart = false;
1239
1240 /* Re-enable "bad" interrupts */
1241 iowrite32(FTGMAC100_INT_BAD,
1242 priv->base + FTGMAC100_OFFSET_IER);
1243 }
1244
1245 /* As long as we are waiting for transmit packets to be
1246 * completed we keep NAPI going
1247 */
1248 if (ftgmac100_tx_buf_cleanable(priv))
1249 work_done = budget;
1250
1251 if (work_done < budget) {
1252 /* We are about to re-enable all interrupts. However
1253 * the HW has been latching RX/TX packet interrupts while
1254 * they were masked. So we clear them first, then we need
1255 * to re-check if there's something to process
1256 */
1257 iowrite32(FTGMAC100_INT_RXTX,
1258 priv->base + FTGMAC100_OFFSET_ISR);
1259
1260 /* Push the above (and provides a barrier vs. subsequent
1261 * reads of the descriptor).
1262 */
1263 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1264
1265 /* Check RX and TX descriptors for more work to do */
1266 if (ftgmac100_check_rx(priv) ||
1267 ftgmac100_tx_buf_cleanable(priv))
1268 return budget;
1269
1270 /* deschedule NAPI */
1271 napi_complete(napi);
1272
1273 /* enable all interrupts */
1274 iowrite32(FTGMAC100_INT_ALL,
1275 priv->base + FTGMAC100_OFFSET_IER);
1276 }
1277
1278 return work_done;
1279}
1280
1281static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1282{
1283 int err = 0;
1284
1285 /* Re-init descriptors (adjust queue sizes) */
1286 ftgmac100_init_rings(priv);
1287
1288 /* Realloc rx descriptors */
1289 err = ftgmac100_alloc_rx_buffers(priv);
1290 if (err && !ignore_alloc_err)
1291 return err;
1292
1293 /* Reinit and restart HW */
1294 ftgmac100_init_hw(priv);
1295 ftgmac100_config_pause(priv);
1296 ftgmac100_start_hw(priv);
1297
1298 /* Re-enable the device */
1299 napi_enable(&priv->napi);
1300 netif_start_queue(priv->netdev);
1301
1302 /* Enable all interrupts */
1303 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1304
1305 return err;
1306}
1307
1308static void ftgmac100_reset(struct ftgmac100 *priv)
1309{
1310 struct net_device *netdev = priv->netdev;
1311 int err;
1312
1313 netdev_dbg(netdev, "Resetting NIC...\n");
1314
1315 /* Lock the world */
1316 rtnl_lock();
1317 if (netdev->phydev)
1318 mutex_lock(&netdev->phydev->lock);
1319 if (priv->mii_bus)
1320 mutex_lock(&priv->mii_bus->mdio_lock);
1321
1322
1323 /* Check if the interface is still up */
1324 if (!netif_running(netdev))
1325 goto bail;
1326
1327 /* Stop the network stack */
1328 netif_trans_update(netdev);
1329 napi_disable(&priv->napi);
1330 netif_tx_disable(netdev);
1331
1332 /* Stop and reset the MAC */
1333 ftgmac100_stop_hw(priv);
1334 err = ftgmac100_reset_and_config_mac(priv);
1335 if (err) {
1336 /* Not much we can do ... it might come back... */
1337 netdev_err(netdev, "attempting to continue...\n");
1338 }
1339
1340 /* Free all rx and tx buffers */
1341 ftgmac100_free_buffers(priv);
1342
1343 /* Setup everything again and restart chip */
1344 ftgmac100_init_all(priv, true);
1345
1346 netdev_dbg(netdev, "Reset done !\n");
1347 bail:
1348 if (priv->mii_bus)
1349 mutex_unlock(&priv->mii_bus->mdio_lock);
1350 if (netdev->phydev)
1351 mutex_unlock(&netdev->phydev->lock);
1352 rtnl_unlock();
1353}
1354
1355static void ftgmac100_reset_task(struct work_struct *work)
1356{
1357 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1358 reset_task);
1359
1360 ftgmac100_reset(priv);
1361}
1362
1363static void ftgmac100_adjust_link(struct net_device *netdev)
1364{
1365 struct ftgmac100 *priv = netdev_priv(netdev);
1366 struct phy_device *phydev = netdev->phydev;
1367 bool tx_pause, rx_pause;
1368 int new_speed;
1369
1370 /* We store "no link" as speed 0 */
1371 if (!phydev->link)
1372 new_speed = 0;
1373 else
1374 new_speed = phydev->speed;
1375
1376 /* Grab pause settings from PHY if configured to do so */
1377 if (priv->aneg_pause) {
1378 rx_pause = tx_pause = phydev->pause;
1379 if (phydev->asym_pause)
1380 tx_pause = !rx_pause;
1381 } else {
1382 rx_pause = priv->rx_pause;
1383 tx_pause = priv->tx_pause;
1384 }
1385
1386 /* Link hasn't changed, do nothing */
1387 if (phydev->speed == priv->cur_speed &&
1388 phydev->duplex == priv->cur_duplex &&
1389 rx_pause == priv->rx_pause &&
1390 tx_pause == priv->tx_pause)
1391 return;
1392
1393 /* Print status if we have a link or we had one and just lost it,
1394 * don't print otherwise.
1395 */
1396 if (new_speed || priv->cur_speed)
1397 phy_print_status(phydev);
1398
1399 priv->cur_speed = new_speed;
1400 priv->cur_duplex = phydev->duplex;
1401 priv->rx_pause = rx_pause;
1402 priv->tx_pause = tx_pause;
1403
1404 /* Link is down, do nothing else */
1405 if (!new_speed)
1406 return;
1407
1408 /* Disable all interrupts */
1409 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1410
1411 /* Release phy lock to allow ftgmac100_reset to aquire it, keeping lock
1412 * order consistent to prevent dead lock.
1413 */
1414 if (netdev->phydev)
1415 mutex_unlock(&netdev->phydev->lock);
1416
1417 ftgmac100_reset(priv);
1418
1419 if (netdev->phydev)
1420 mutex_lock(&netdev->phydev->lock);
1421
1422}
1423
1424static int ftgmac100_mii_probe(struct net_device *netdev)
1425{
1426 struct ftgmac100 *priv = netdev_priv(netdev);
1427 struct platform_device *pdev = to_platform_device(priv->dev);
1428 struct device_node *np = pdev->dev.of_node;
1429 struct phy_device *phydev;
1430 phy_interface_t phy_intf;
1431 int err;
1432
1433 /* Default to RGMII. It's a gigabit part after all */
1434 err = of_get_phy_mode(np, &phy_intf);
1435 if (err)
1436 phy_intf = PHY_INTERFACE_MODE_RGMII;
1437
1438 /* Aspeed only supports these. I don't know about other IP
1439 * block vendors so I'm going to just let them through for
1440 * now. Note that this is only a warning if for some obscure
1441 * reason the DT really means to lie about it or it's a newer
1442 * part we don't know about.
1443 *
1444 * On the Aspeed SoC there are additionally straps and SCU
1445 * control bits that could tell us what the interface is
1446 * (or allow us to configure it while the IP block is held
1447 * in reset). For now I chose to keep this driver away from
1448 * those SoC specific bits and assume the device-tree is
1449 * right and the SCU has been configured properly by pinmux
1450 * or the firmware.
1451 */
1452 if (priv->is_aspeed && !(phy_interface_mode_is_rgmii(phy_intf))) {
1453 netdev_warn(netdev,
1454 "Unsupported PHY mode %s !\n",
1455 phy_modes(phy_intf));
1456 }
1457
1458 phydev = phy_find_first(priv->mii_bus);
1459 if (!phydev) {
1460 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1461 return -ENODEV;
1462 }
1463
1464 phydev = phy_connect(netdev, phydev_name(phydev),
1465 &ftgmac100_adjust_link, phy_intf);
1466
1467 if (IS_ERR(phydev)) {
1468 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1469 return PTR_ERR(phydev);
1470 }
1471
1472 /* Indicate that we support PAUSE frames (see comment in
1473 * Documentation/networking/phy.rst)
1474 */
1475 phy_support_asym_pause(phydev);
1476
1477 /* Display what we found */
1478 phy_attached_info(phydev);
1479
1480 return 0;
1481}
1482
1483static int ftgmac100_open(struct net_device *netdev)
1484{
1485 struct ftgmac100 *priv = netdev_priv(netdev);
1486 int err;
1487
1488 /* Allocate ring buffers */
1489 err = ftgmac100_alloc_rings(priv);
1490 if (err) {
1491 netdev_err(netdev, "Failed to allocate descriptors\n");
1492 return err;
1493 }
1494
1495 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1496 *
1497 * Otherwise we leave it set to 0 (no link), the link
1498 * message from the PHY layer will handle setting it up to
1499 * something else if needed.
1500 */
1501 if (priv->use_ncsi) {
1502 priv->cur_duplex = DUPLEX_FULL;
1503 priv->cur_speed = SPEED_100;
1504 } else {
1505 priv->cur_duplex = 0;
1506 priv->cur_speed = 0;
1507 }
1508
1509 /* Reset the hardware */
1510 err = ftgmac100_reset_and_config_mac(priv);
1511 if (err)
1512 goto err_hw;
1513
1514 /* Initialize NAPI */
1515 netif_napi_add(netdev, &priv->napi, ftgmac100_poll);
1516
1517 /* Grab our interrupt */
1518 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1519 if (err) {
1520 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1521 goto err_irq;
1522 }
1523
1524 /* Start things up */
1525 err = ftgmac100_init_all(priv, false);
1526 if (err) {
1527 netdev_err(netdev, "Failed to allocate packet buffers\n");
1528 goto err_alloc;
1529 }
1530
1531 if (netdev->phydev) {
1532 /* If we have a PHY, start polling */
1533 phy_start(netdev->phydev);
1534 } else if (priv->use_ncsi) {
1535 /* If using NC-SI, set our carrier on and start the stack */
1536 netif_carrier_on(netdev);
1537
1538 /* Start the NCSI device */
1539 err = ncsi_start_dev(priv->ndev);
1540 if (err)
1541 goto err_ncsi;
1542 }
1543
1544 return 0;
1545
1546 err_ncsi:
1547 napi_disable(&priv->napi);
1548 netif_stop_queue(netdev);
1549 err_alloc:
1550 ftgmac100_free_buffers(priv);
1551 free_irq(netdev->irq, netdev);
1552 err_irq:
1553 netif_napi_del(&priv->napi);
1554 err_hw:
1555 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1556 ftgmac100_free_rings(priv);
1557 return err;
1558}
1559
1560static int ftgmac100_stop(struct net_device *netdev)
1561{
1562 struct ftgmac100 *priv = netdev_priv(netdev);
1563
1564 /* Note about the reset task: We are called with the rtnl lock
1565 * held, so we are synchronized against the core of the reset
1566 * task. We must not try to synchronously cancel it otherwise
1567 * we can deadlock. But since it will test for netif_running()
1568 * which has already been cleared by the net core, we don't
1569 * anything special to do.
1570 */
1571
1572 /* disable all interrupts */
1573 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1574
1575 netif_stop_queue(netdev);
1576 napi_disable(&priv->napi);
1577 netif_napi_del(&priv->napi);
1578 if (netdev->phydev)
1579 phy_stop(netdev->phydev);
1580 else if (priv->use_ncsi)
1581 ncsi_stop_dev(priv->ndev);
1582
1583 ftgmac100_stop_hw(priv);
1584 free_irq(netdev->irq, netdev);
1585 ftgmac100_free_buffers(priv);
1586 ftgmac100_free_rings(priv);
1587
1588 return 0;
1589}
1590
1591static void ftgmac100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1592{
1593 struct ftgmac100 *priv = netdev_priv(netdev);
1594
1595 /* Disable all interrupts */
1596 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1597
1598 /* Do the reset outside of interrupt context */
1599 schedule_work(&priv->reset_task);
1600}
1601
1602static int ftgmac100_set_features(struct net_device *netdev,
1603 netdev_features_t features)
1604{
1605 struct ftgmac100 *priv = netdev_priv(netdev);
1606 netdev_features_t changed = netdev->features ^ features;
1607
1608 if (!netif_running(netdev))
1609 return 0;
1610
1611 /* Update the vlan filtering bit */
1612 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1613 u32 maccr;
1614
1615 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1616 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1617 maccr |= FTGMAC100_MACCR_RM_VLAN;
1618 else
1619 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1620 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1621 }
1622
1623 return 0;
1624}
1625
1626#ifdef CONFIG_NET_POLL_CONTROLLER
1627static void ftgmac100_poll_controller(struct net_device *netdev)
1628{
1629 unsigned long flags;
1630
1631 local_irq_save(flags);
1632 ftgmac100_interrupt(netdev->irq, netdev);
1633 local_irq_restore(flags);
1634}
1635#endif
1636
1637static const struct net_device_ops ftgmac100_netdev_ops = {
1638 .ndo_open = ftgmac100_open,
1639 .ndo_stop = ftgmac100_stop,
1640 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1641 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1642 .ndo_validate_addr = eth_validate_addr,
1643 .ndo_eth_ioctl = phy_do_ioctl,
1644 .ndo_tx_timeout = ftgmac100_tx_timeout,
1645 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1646 .ndo_set_features = ftgmac100_set_features,
1647#ifdef CONFIG_NET_POLL_CONTROLLER
1648 .ndo_poll_controller = ftgmac100_poll_controller,
1649#endif
1650 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1651 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1652};
1653
1654static int ftgmac100_setup_mdio(struct net_device *netdev)
1655{
1656 struct ftgmac100 *priv = netdev_priv(netdev);
1657 struct platform_device *pdev = to_platform_device(priv->dev);
1658 struct device_node *np = pdev->dev.of_node;
1659 struct device_node *mdio_np;
1660 int i, err = 0;
1661 u32 reg;
1662
1663 /* initialize mdio bus */
1664 priv->mii_bus = mdiobus_alloc();
1665 if (!priv->mii_bus)
1666 return -EIO;
1667
1668 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1669 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1670 /* The AST2600 has a separate MDIO controller */
1671
1672 /* For the AST2400 and AST2500 this driver only supports the
1673 * old MDIO interface
1674 */
1675 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1676 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1677 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1678 }
1679
1680 priv->mii_bus->name = "ftgmac100_mdio";
1681 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1682 pdev->name, pdev->id);
1683 priv->mii_bus->parent = priv->dev;
1684 priv->mii_bus->priv = priv->netdev;
1685 priv->mii_bus->read = ftgmac100_mdiobus_read;
1686 priv->mii_bus->write = ftgmac100_mdiobus_write;
1687
1688 for (i = 0; i < PHY_MAX_ADDR; i++)
1689 priv->mii_bus->irq[i] = PHY_POLL;
1690
1691 mdio_np = of_get_child_by_name(np, "mdio");
1692
1693 err = of_mdiobus_register(priv->mii_bus, mdio_np);
1694 if (err) {
1695 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1696 goto err_register_mdiobus;
1697 }
1698
1699 of_node_put(mdio_np);
1700
1701 return 0;
1702
1703err_register_mdiobus:
1704 mdiobus_free(priv->mii_bus);
1705 return err;
1706}
1707
1708static void ftgmac100_phy_disconnect(struct net_device *netdev)
1709{
1710 struct ftgmac100 *priv = netdev_priv(netdev);
1711
1712 if (!netdev->phydev)
1713 return;
1714
1715 phy_disconnect(netdev->phydev);
1716 if (of_phy_is_fixed_link(priv->dev->of_node))
1717 of_phy_deregister_fixed_link(priv->dev->of_node);
1718}
1719
1720static void ftgmac100_destroy_mdio(struct net_device *netdev)
1721{
1722 struct ftgmac100 *priv = netdev_priv(netdev);
1723
1724 if (!priv->mii_bus)
1725 return;
1726
1727 mdiobus_unregister(priv->mii_bus);
1728 mdiobus_free(priv->mii_bus);
1729}
1730
1731static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1732{
1733 if (unlikely(nd->state != ncsi_dev_state_functional))
1734 return;
1735
1736 netdev_dbg(nd->dev, "NCSI interface %s\n",
1737 nd->link_up ? "up" : "down");
1738}
1739
1740static int ftgmac100_setup_clk(struct ftgmac100 *priv)
1741{
1742 struct clk *clk;
1743 int rc;
1744
1745 clk = devm_clk_get(priv->dev, NULL /* MACCLK */);
1746 if (IS_ERR(clk))
1747 return PTR_ERR(clk);
1748 priv->clk = clk;
1749 rc = clk_prepare_enable(priv->clk);
1750 if (rc)
1751 return rc;
1752
1753 /* Aspeed specifies a 100MHz clock is required for up to
1754 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1755 * is sufficient
1756 */
1757 rc = clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1758 FTGMAC_100MHZ);
1759 if (rc)
1760 goto cleanup_clk;
1761
1762 /* RCLK is for RMII, typically used for NCSI. Optional because it's not
1763 * necessary if it's the AST2400 MAC, or the MAC is configured for
1764 * RGMII, or the controller is not an ASPEED-based controller.
1765 */
1766 priv->rclk = devm_clk_get_optional(priv->dev, "RCLK");
1767 rc = clk_prepare_enable(priv->rclk);
1768 if (!rc)
1769 return 0;
1770
1771cleanup_clk:
1772 clk_disable_unprepare(priv->clk);
1773
1774 return rc;
1775}
1776
1777static bool ftgmac100_has_child_node(struct device_node *np, const char *name)
1778{
1779 struct device_node *child_np = of_get_child_by_name(np, name);
1780 bool ret = false;
1781
1782 if (child_np) {
1783 ret = true;
1784 of_node_put(child_np);
1785 }
1786
1787 return ret;
1788}
1789
1790static int ftgmac100_probe(struct platform_device *pdev)
1791{
1792 struct resource *res;
1793 int irq;
1794 struct net_device *netdev;
1795 struct ftgmac100 *priv;
1796 struct device_node *np;
1797 int err = 0;
1798
1799 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1800 if (!res)
1801 return -ENXIO;
1802
1803 irq = platform_get_irq(pdev, 0);
1804 if (irq < 0)
1805 return irq;
1806
1807 /* setup net_device */
1808 netdev = alloc_etherdev(sizeof(*priv));
1809 if (!netdev) {
1810 err = -ENOMEM;
1811 goto err_alloc_etherdev;
1812 }
1813
1814 SET_NETDEV_DEV(netdev, &pdev->dev);
1815
1816 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1817 netdev->netdev_ops = &ftgmac100_netdev_ops;
1818 netdev->watchdog_timeo = 5 * HZ;
1819
1820 platform_set_drvdata(pdev, netdev);
1821
1822 /* setup private data */
1823 priv = netdev_priv(netdev);
1824 priv->netdev = netdev;
1825 priv->dev = &pdev->dev;
1826 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1827
1828 /* map io memory */
1829 priv->res = request_mem_region(res->start, resource_size(res),
1830 dev_name(&pdev->dev));
1831 if (!priv->res) {
1832 dev_err(&pdev->dev, "Could not reserve memory region\n");
1833 err = -ENOMEM;
1834 goto err_req_mem;
1835 }
1836
1837 priv->base = ioremap(res->start, resource_size(res));
1838 if (!priv->base) {
1839 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1840 err = -EIO;
1841 goto err_ioremap;
1842 }
1843
1844 netdev->irq = irq;
1845
1846 /* Enable pause */
1847 priv->tx_pause = true;
1848 priv->rx_pause = true;
1849 priv->aneg_pause = true;
1850
1851 /* MAC address from chip or random one */
1852 err = ftgmac100_initial_mac(priv);
1853 if (err)
1854 goto err_phy_connect;
1855
1856 np = pdev->dev.of_node;
1857 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1858 of_device_is_compatible(np, "aspeed,ast2500-mac") ||
1859 of_device_is_compatible(np, "aspeed,ast2600-mac"))) {
1860 priv->rxdes0_edorr_mask = BIT(30);
1861 priv->txdes0_edotr_mask = BIT(30);
1862 priv->is_aspeed = true;
1863 } else {
1864 priv->rxdes0_edorr_mask = BIT(15);
1865 priv->txdes0_edotr_mask = BIT(15);
1866 }
1867
1868 if (np && of_get_property(np, "use-ncsi", NULL)) {
1869 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1870 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1871 err = -EINVAL;
1872 goto err_phy_connect;
1873 }
1874
1875 dev_info(&pdev->dev, "Using NCSI interface\n");
1876 priv->use_ncsi = true;
1877 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1878 if (!priv->ndev) {
1879 err = -EINVAL;
1880 goto err_phy_connect;
1881 }
1882 } else if (np && of_phy_is_fixed_link(np)) {
1883 struct phy_device *phy;
1884
1885 err = of_phy_register_fixed_link(np);
1886 if (err) {
1887 dev_err(&pdev->dev, "Failed to register fixed PHY\n");
1888 goto err_phy_connect;
1889 }
1890
1891 phy = of_phy_get_and_connect(priv->netdev, np,
1892 &ftgmac100_adjust_link);
1893 if (!phy) {
1894 dev_err(&pdev->dev, "Failed to connect to fixed PHY\n");
1895 of_phy_deregister_fixed_link(np);
1896 err = -EINVAL;
1897 goto err_phy_connect;
1898 }
1899
1900 /* Display what we found */
1901 phy_attached_info(phy);
1902 } else if (np && of_get_property(np, "phy-handle", NULL)) {
1903 struct phy_device *phy;
1904
1905 /* Support "mdio"/"phy" child nodes for ast2400/2500 with
1906 * an embedded MDIO controller. Automatically scan the DTS for
1907 * available PHYs and register them.
1908 */
1909 if (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1910 of_device_is_compatible(np, "aspeed,ast2500-mac")) {
1911 err = ftgmac100_setup_mdio(netdev);
1912 if (err)
1913 goto err_setup_mdio;
1914 }
1915
1916 phy = of_phy_get_and_connect(priv->netdev, np,
1917 &ftgmac100_adjust_link);
1918 if (!phy) {
1919 dev_err(&pdev->dev, "Failed to connect to phy\n");
1920 err = -EINVAL;
1921 goto err_phy_connect;
1922 }
1923
1924 /* Indicate that we support PAUSE frames (see comment in
1925 * Documentation/networking/phy.rst)
1926 */
1927 phy_support_asym_pause(phy);
1928
1929 /* Display what we found */
1930 phy_attached_info(phy);
1931 } else if (np && !ftgmac100_has_child_node(np, "mdio")) {
1932 /* Support legacy ASPEED devicetree descriptions that decribe a
1933 * MAC with an embedded MDIO controller but have no "mdio"
1934 * child node. Automatically scan the MDIO bus for available
1935 * PHYs.
1936 */
1937 priv->use_ncsi = false;
1938 err = ftgmac100_setup_mdio(netdev);
1939 if (err)
1940 goto err_setup_mdio;
1941
1942 err = ftgmac100_mii_probe(netdev);
1943 if (err) {
1944 dev_err(priv->dev, "MII probe failed!\n");
1945 goto err_ncsi_dev;
1946 }
1947
1948 }
1949
1950 if (priv->is_aspeed) {
1951 err = ftgmac100_setup_clk(priv);
1952 if (err)
1953 goto err_phy_connect;
1954
1955 /* Disable ast2600 problematic HW arbitration */
1956 if (of_device_is_compatible(np, "aspeed,ast2600-mac"))
1957 iowrite32(FTGMAC100_TM_DEFAULT,
1958 priv->base + FTGMAC100_OFFSET_TM);
1959 }
1960
1961 /* Default ring sizes */
1962 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1963 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1964
1965 /* Base feature set */
1966 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1967 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1968 NETIF_F_HW_VLAN_CTAG_TX;
1969
1970 if (priv->use_ncsi)
1971 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1972
1973 /* AST2400 doesn't have working HW checksum generation */
1974 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1975 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1976
1977 /* AST2600 tx checksum with NCSI is broken */
1978 if (priv->use_ncsi && of_device_is_compatible(np, "aspeed,ast2600-mac"))
1979 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1980
1981 if (np && of_get_property(np, "no-hw-checksum", NULL))
1982 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1983 netdev->features |= netdev->hw_features;
1984
1985 /* register network device */
1986 err = register_netdev(netdev);
1987 if (err) {
1988 dev_err(&pdev->dev, "Failed to register netdev\n");
1989 goto err_register_netdev;
1990 }
1991
1992 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1993
1994 return 0;
1995
1996err_register_netdev:
1997 clk_disable_unprepare(priv->rclk);
1998 clk_disable_unprepare(priv->clk);
1999err_phy_connect:
2000 ftgmac100_phy_disconnect(netdev);
2001err_ncsi_dev:
2002 if (priv->ndev)
2003 ncsi_unregister_dev(priv->ndev);
2004 ftgmac100_destroy_mdio(netdev);
2005err_setup_mdio:
2006 iounmap(priv->base);
2007err_ioremap:
2008 release_resource(priv->res);
2009err_req_mem:
2010 free_netdev(netdev);
2011err_alloc_etherdev:
2012 return err;
2013}
2014
2015static void ftgmac100_remove(struct platform_device *pdev)
2016{
2017 struct net_device *netdev;
2018 struct ftgmac100 *priv;
2019
2020 netdev = platform_get_drvdata(pdev);
2021 priv = netdev_priv(netdev);
2022
2023 if (priv->ndev)
2024 ncsi_unregister_dev(priv->ndev);
2025 unregister_netdev(netdev);
2026
2027 clk_disable_unprepare(priv->rclk);
2028 clk_disable_unprepare(priv->clk);
2029
2030 /* There's a small chance the reset task will have been re-queued,
2031 * during stop, make sure it's gone before we free the structure.
2032 */
2033 cancel_work_sync(&priv->reset_task);
2034
2035 ftgmac100_phy_disconnect(netdev);
2036 ftgmac100_destroy_mdio(netdev);
2037
2038 iounmap(priv->base);
2039 release_resource(priv->res);
2040
2041 netif_napi_del(&priv->napi);
2042 free_netdev(netdev);
2043}
2044
2045static const struct of_device_id ftgmac100_of_match[] = {
2046 { .compatible = "faraday,ftgmac100" },
2047 { }
2048};
2049MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
2050
2051static struct platform_driver ftgmac100_driver = {
2052 .probe = ftgmac100_probe,
2053 .remove_new = ftgmac100_remove,
2054 .driver = {
2055 .name = DRV_NAME,
2056 .of_match_table = ftgmac100_of_match,
2057 },
2058};
2059module_platform_driver(ftgmac100_driver);
2060
2061MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
2062MODULE_DESCRIPTION("FTGMAC100 driver");
2063MODULE_LICENSE("GPL");
1/*
2 * Faraday FTGMAC100 Gigabit Ethernet
3 *
4 * (C) Copyright 2009-2011 Faraday Technology
5 * Po-Yu Chuang <ratbert@faraday-tech.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24#include <linux/clk.h>
25#include <linux/dma-mapping.h>
26#include <linux/etherdevice.h>
27#include <linux/ethtool.h>
28#include <linux/interrupt.h>
29#include <linux/io.h>
30#include <linux/module.h>
31#include <linux/netdevice.h>
32#include <linux/of.h>
33#include <linux/phy.h>
34#include <linux/platform_device.h>
35#include <linux/property.h>
36#include <linux/crc32.h>
37#include <linux/if_vlan.h>
38#include <linux/of_net.h>
39#include <net/ip.h>
40#include <net/ncsi.h>
41
42#include "ftgmac100.h"
43
44#define DRV_NAME "ftgmac100"
45#define DRV_VERSION "0.7"
46
47/* Arbitrary values, I am not sure the HW has limits */
48#define MAX_RX_QUEUE_ENTRIES 1024
49#define MAX_TX_QUEUE_ENTRIES 1024
50#define MIN_RX_QUEUE_ENTRIES 32
51#define MIN_TX_QUEUE_ENTRIES 32
52
53/* Defaults */
54#define DEF_RX_QUEUE_ENTRIES 128
55#define DEF_TX_QUEUE_ENTRIES 128
56
57#define MAX_PKT_SIZE 1536
58#define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */
59
60/* Min number of tx ring entries before stopping queue */
61#define TX_THRESHOLD (MAX_SKB_FRAGS + 1)
62
63#define FTGMAC_100MHZ 100000000
64#define FTGMAC_25MHZ 25000000
65
66struct ftgmac100 {
67 /* Registers */
68 struct resource *res;
69 void __iomem *base;
70
71 /* Rx ring */
72 unsigned int rx_q_entries;
73 struct ftgmac100_rxdes *rxdes;
74 dma_addr_t rxdes_dma;
75 struct sk_buff **rx_skbs;
76 unsigned int rx_pointer;
77 u32 rxdes0_edorr_mask;
78
79 /* Tx ring */
80 unsigned int tx_q_entries;
81 struct ftgmac100_txdes *txdes;
82 dma_addr_t txdes_dma;
83 struct sk_buff **tx_skbs;
84 unsigned int tx_clean_pointer;
85 unsigned int tx_pointer;
86 u32 txdes0_edotr_mask;
87
88 /* Used to signal the reset task of ring change request */
89 unsigned int new_rx_q_entries;
90 unsigned int new_tx_q_entries;
91
92 /* Scratch page to use when rx skb alloc fails */
93 void *rx_scratch;
94 dma_addr_t rx_scratch_dma;
95
96 /* Component structures */
97 struct net_device *netdev;
98 struct device *dev;
99 struct ncsi_dev *ndev;
100 struct napi_struct napi;
101 struct work_struct reset_task;
102 struct mii_bus *mii_bus;
103 struct clk *clk;
104
105 /* Link management */
106 int cur_speed;
107 int cur_duplex;
108 bool use_ncsi;
109
110 /* Multicast filter settings */
111 u32 maht0;
112 u32 maht1;
113
114 /* Flow control settings */
115 bool tx_pause;
116 bool rx_pause;
117 bool aneg_pause;
118
119 /* Misc */
120 bool need_mac_restart;
121 bool is_aspeed;
122};
123
124static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr)
125{
126 struct net_device *netdev = priv->netdev;
127 int i;
128
129 /* NOTE: reset clears all registers */
130 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
131 iowrite32(maccr | FTGMAC100_MACCR_SW_RST,
132 priv->base + FTGMAC100_OFFSET_MACCR);
133 for (i = 0; i < 200; i++) {
134 unsigned int maccr;
135
136 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
137 if (!(maccr & FTGMAC100_MACCR_SW_RST))
138 return 0;
139
140 udelay(1);
141 }
142
143 netdev_err(netdev, "Hardware reset failed\n");
144 return -EIO;
145}
146
147static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv)
148{
149 u32 maccr = 0;
150
151 switch (priv->cur_speed) {
152 case SPEED_10:
153 case 0: /* no link */
154 break;
155
156 case SPEED_100:
157 maccr |= FTGMAC100_MACCR_FAST_MODE;
158 break;
159
160 case SPEED_1000:
161 maccr |= FTGMAC100_MACCR_GIGA_MODE;
162 break;
163 default:
164 netdev_err(priv->netdev, "Unknown speed %d !\n",
165 priv->cur_speed);
166 break;
167 }
168
169 /* (Re)initialize the queue pointers */
170 priv->rx_pointer = 0;
171 priv->tx_clean_pointer = 0;
172 priv->tx_pointer = 0;
173
174 /* The doc says reset twice with 10us interval */
175 if (ftgmac100_reset_mac(priv, maccr))
176 return -EIO;
177 usleep_range(10, 1000);
178 return ftgmac100_reset_mac(priv, maccr);
179}
180
181static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac)
182{
183 unsigned int maddr = mac[0] << 8 | mac[1];
184 unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
185
186 iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR);
187 iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR);
188}
189
190static void ftgmac100_initial_mac(struct ftgmac100 *priv)
191{
192 u8 mac[ETH_ALEN];
193 unsigned int m;
194 unsigned int l;
195 void *addr;
196
197 addr = device_get_mac_address(priv->dev, mac, ETH_ALEN);
198 if (addr) {
199 ether_addr_copy(priv->netdev->dev_addr, mac);
200 dev_info(priv->dev, "Read MAC address %pM from device tree\n",
201 mac);
202 return;
203 }
204
205 m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR);
206 l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR);
207
208 mac[0] = (m >> 8) & 0xff;
209 mac[1] = m & 0xff;
210 mac[2] = (l >> 24) & 0xff;
211 mac[3] = (l >> 16) & 0xff;
212 mac[4] = (l >> 8) & 0xff;
213 mac[5] = l & 0xff;
214
215 if (is_valid_ether_addr(mac)) {
216 ether_addr_copy(priv->netdev->dev_addr, mac);
217 dev_info(priv->dev, "Read MAC address %pM from chip\n", mac);
218 } else {
219 eth_hw_addr_random(priv->netdev);
220 dev_info(priv->dev, "Generated random MAC address %pM\n",
221 priv->netdev->dev_addr);
222 }
223}
224
225static int ftgmac100_set_mac_addr(struct net_device *dev, void *p)
226{
227 int ret;
228
229 ret = eth_prepare_mac_addr_change(dev, p);
230 if (ret < 0)
231 return ret;
232
233 eth_commit_mac_addr_change(dev, p);
234 ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr);
235
236 return 0;
237}
238
239static void ftgmac100_config_pause(struct ftgmac100 *priv)
240{
241 u32 fcr = FTGMAC100_FCR_PAUSE_TIME(16);
242
243 /* Throttle tx queue when receiving pause frames */
244 if (priv->rx_pause)
245 fcr |= FTGMAC100_FCR_FC_EN;
246
247 /* Enables sending pause frames when the RX queue is past a
248 * certain threshold.
249 */
250 if (priv->tx_pause)
251 fcr |= FTGMAC100_FCR_FCTHR_EN;
252
253 iowrite32(fcr, priv->base + FTGMAC100_OFFSET_FCR);
254}
255
256static void ftgmac100_init_hw(struct ftgmac100 *priv)
257{
258 u32 reg, rfifo_sz, tfifo_sz;
259
260 /* Clear stale interrupts */
261 reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
262 iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR);
263
264 /* Setup RX ring buffer base */
265 iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR);
266
267 /* Setup TX ring buffer base */
268 iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR);
269
270 /* Configure RX buffer size */
271 iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE),
272 priv->base + FTGMAC100_OFFSET_RBSR);
273
274 /* Set RX descriptor autopoll */
275 iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1),
276 priv->base + FTGMAC100_OFFSET_APTC);
277
278 /* Write MAC address */
279 ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr);
280
281 /* Write multicast filter */
282 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
283 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
284
285 /* Configure descriptor sizes and increase burst sizes according
286 * to values in Aspeed SDK. The FIFO arbitration is enabled and
287 * the thresholds set based on the recommended values in the
288 * AST2400 specification.
289 */
290 iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */
291 FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */
292 FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */
293 FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */
294 FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */
295 FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */
296 FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */
297 priv->base + FTGMAC100_OFFSET_DBLAC);
298
299 /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt
300 * mitigation doesn't seem to provide any benefit with NAPI so leave
301 * it at that.
302 */
303 iowrite32(FTGMAC100_ITC_RXINT_THR(1) |
304 FTGMAC100_ITC_TXINT_THR(1),
305 priv->base + FTGMAC100_OFFSET_ITC);
306
307 /* Configure FIFO sizes in the TPAFCR register */
308 reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR);
309 rfifo_sz = reg & 0x00000007;
310 tfifo_sz = (reg >> 3) & 0x00000007;
311 reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR);
312 reg &= ~0x3f000000;
313 reg |= (tfifo_sz << 27);
314 reg |= (rfifo_sz << 24);
315 iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR);
316}
317
318static void ftgmac100_start_hw(struct ftgmac100 *priv)
319{
320 u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
321
322 /* Keep the original GMAC and FAST bits */
323 maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE);
324
325 /* Add all the main enable bits */
326 maccr |= FTGMAC100_MACCR_TXDMA_EN |
327 FTGMAC100_MACCR_RXDMA_EN |
328 FTGMAC100_MACCR_TXMAC_EN |
329 FTGMAC100_MACCR_RXMAC_EN |
330 FTGMAC100_MACCR_CRC_APD |
331 FTGMAC100_MACCR_PHY_LINK_LEVEL |
332 FTGMAC100_MACCR_RX_RUNT |
333 FTGMAC100_MACCR_RX_BROADPKT;
334
335 /* Add other bits as needed */
336 if (priv->cur_duplex == DUPLEX_FULL)
337 maccr |= FTGMAC100_MACCR_FULLDUP;
338 if (priv->netdev->flags & IFF_PROMISC)
339 maccr |= FTGMAC100_MACCR_RX_ALL;
340 if (priv->netdev->flags & IFF_ALLMULTI)
341 maccr |= FTGMAC100_MACCR_RX_MULTIPKT;
342 else if (netdev_mc_count(priv->netdev))
343 maccr |= FTGMAC100_MACCR_HT_MULTI_EN;
344
345 /* Vlan filtering enabled */
346 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
347 maccr |= FTGMAC100_MACCR_RM_VLAN;
348
349 /* Hit the HW */
350 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
351}
352
353static void ftgmac100_stop_hw(struct ftgmac100 *priv)
354{
355 iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR);
356}
357
358static void ftgmac100_calc_mc_hash(struct ftgmac100 *priv)
359{
360 struct netdev_hw_addr *ha;
361
362 priv->maht1 = 0;
363 priv->maht0 = 0;
364 netdev_for_each_mc_addr(ha, priv->netdev) {
365 u32 crc_val = ether_crc_le(ETH_ALEN, ha->addr);
366
367 crc_val = (~(crc_val >> 2)) & 0x3f;
368 if (crc_val >= 32)
369 priv->maht1 |= 1ul << (crc_val - 32);
370 else
371 priv->maht0 |= 1ul << (crc_val);
372 }
373}
374
375static void ftgmac100_set_rx_mode(struct net_device *netdev)
376{
377 struct ftgmac100 *priv = netdev_priv(netdev);
378
379 /* Setup the hash filter */
380 ftgmac100_calc_mc_hash(priv);
381
382 /* Interface down ? that's all there is to do */
383 if (!netif_running(netdev))
384 return;
385
386 /* Update the HW */
387 iowrite32(priv->maht0, priv->base + FTGMAC100_OFFSET_MAHT0);
388 iowrite32(priv->maht1, priv->base + FTGMAC100_OFFSET_MAHT1);
389
390 /* Reconfigure MACCR */
391 ftgmac100_start_hw(priv);
392}
393
394static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry,
395 struct ftgmac100_rxdes *rxdes, gfp_t gfp)
396{
397 struct net_device *netdev = priv->netdev;
398 struct sk_buff *skb;
399 dma_addr_t map;
400 int err = 0;
401
402 skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE);
403 if (unlikely(!skb)) {
404 if (net_ratelimit())
405 netdev_warn(netdev, "failed to allocate rx skb\n");
406 err = -ENOMEM;
407 map = priv->rx_scratch_dma;
408 } else {
409 map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE,
410 DMA_FROM_DEVICE);
411 if (unlikely(dma_mapping_error(priv->dev, map))) {
412 if (net_ratelimit())
413 netdev_err(netdev, "failed to map rx page\n");
414 dev_kfree_skb_any(skb);
415 map = priv->rx_scratch_dma;
416 skb = NULL;
417 err = -ENOMEM;
418 }
419 }
420
421 /* Store skb */
422 priv->rx_skbs[entry] = skb;
423
424 /* Store DMA address into RX desc */
425 rxdes->rxdes3 = cpu_to_le32(map);
426
427 /* Ensure the above is ordered vs clearing the OWN bit */
428 dma_wmb();
429
430 /* Clean status (which resets own bit) */
431 if (entry == (priv->rx_q_entries - 1))
432 rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask);
433 else
434 rxdes->rxdes0 = 0;
435
436 return err;
437}
438
439static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv,
440 unsigned int pointer)
441{
442 return (pointer + 1) & (priv->rx_q_entries - 1);
443}
444
445static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status)
446{
447 struct net_device *netdev = priv->netdev;
448
449 if (status & FTGMAC100_RXDES0_RX_ERR)
450 netdev->stats.rx_errors++;
451
452 if (status & FTGMAC100_RXDES0_CRC_ERR)
453 netdev->stats.rx_crc_errors++;
454
455 if (status & (FTGMAC100_RXDES0_FTL |
456 FTGMAC100_RXDES0_RUNT |
457 FTGMAC100_RXDES0_RX_ODD_NB))
458 netdev->stats.rx_length_errors++;
459}
460
461static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed)
462{
463 struct net_device *netdev = priv->netdev;
464 struct ftgmac100_rxdes *rxdes;
465 struct sk_buff *skb;
466 unsigned int pointer, size;
467 u32 status, csum_vlan;
468 dma_addr_t map;
469
470 /* Grab next RX descriptor */
471 pointer = priv->rx_pointer;
472 rxdes = &priv->rxdes[pointer];
473
474 /* Grab descriptor status */
475 status = le32_to_cpu(rxdes->rxdes0);
476
477 /* Do we have a packet ? */
478 if (!(status & FTGMAC100_RXDES0_RXPKT_RDY))
479 return false;
480
481 /* Order subsequent reads with the test for the ready bit */
482 dma_rmb();
483
484 /* We don't cope with fragmented RX packets */
485 if (unlikely(!(status & FTGMAC100_RXDES0_FRS) ||
486 !(status & FTGMAC100_RXDES0_LRS)))
487 goto drop;
488
489 /* Grab received size and csum vlan field in the descriptor */
490 size = status & FTGMAC100_RXDES0_VDBC;
491 csum_vlan = le32_to_cpu(rxdes->rxdes1);
492
493 /* Any error (other than csum offload) flagged ? */
494 if (unlikely(status & RXDES0_ANY_ERROR)) {
495 /* Correct for incorrect flagging of runt packets
496 * with vlan tags... Just accept a runt packet that
497 * has been flagged as vlan and whose size is at
498 * least 60 bytes.
499 */
500 if ((status & FTGMAC100_RXDES0_RUNT) &&
501 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) &&
502 (size >= 60))
503 status &= ~FTGMAC100_RXDES0_RUNT;
504
505 /* Any error still in there ? */
506 if (status & RXDES0_ANY_ERROR) {
507 ftgmac100_rx_packet_error(priv, status);
508 goto drop;
509 }
510 }
511
512 /* If the packet had no skb (failed to allocate earlier)
513 * then try to allocate one and skip
514 */
515 skb = priv->rx_skbs[pointer];
516 if (!unlikely(skb)) {
517 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
518 goto drop;
519 }
520
521 if (unlikely(status & FTGMAC100_RXDES0_MULTICAST))
522 netdev->stats.multicast++;
523
524 /* If the HW found checksum errors, bounce it to software.
525 *
526 * If we didn't, we need to see if the packet was recognized
527 * by HW as one of the supported checksummed protocols before
528 * we accept the HW test results.
529 */
530 if (netdev->features & NETIF_F_RXCSUM) {
531 u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR |
532 FTGMAC100_RXDES1_UDP_CHKSUM_ERR |
533 FTGMAC100_RXDES1_IP_CHKSUM_ERR;
534 if ((csum_vlan & err_bits) ||
535 !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK))
536 skb->ip_summed = CHECKSUM_NONE;
537 else
538 skb->ip_summed = CHECKSUM_UNNECESSARY;
539 }
540
541 /* Transfer received size to skb */
542 skb_put(skb, size);
543
544 /* Extract vlan tag */
545 if ((netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
546 (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL))
547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
548 csum_vlan & 0xffff);
549
550 /* Tear down DMA mapping, do necessary cache management */
551 map = le32_to_cpu(rxdes->rxdes3);
552
553#if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU)
554 /* When we don't have an iommu, we can save cycles by not
555 * invalidating the cache for the part of the packet that
556 * wasn't received.
557 */
558 dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE);
559#else
560 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
561#endif
562
563
564 /* Resplenish rx ring */
565 ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC);
566 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
567
568 skb->protocol = eth_type_trans(skb, netdev);
569
570 netdev->stats.rx_packets++;
571 netdev->stats.rx_bytes += size;
572
573 /* push packet to protocol stack */
574 if (skb->ip_summed == CHECKSUM_NONE)
575 netif_receive_skb(skb);
576 else
577 napi_gro_receive(&priv->napi, skb);
578
579 (*processed)++;
580 return true;
581
582 drop:
583 /* Clean rxdes0 (which resets own bit) */
584 rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask);
585 priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer);
586 netdev->stats.rx_dropped++;
587 return true;
588}
589
590static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv,
591 unsigned int index)
592{
593 if (index == (priv->tx_q_entries - 1))
594 return priv->txdes0_edotr_mask;
595 else
596 return 0;
597}
598
599static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv,
600 unsigned int pointer)
601{
602 return (pointer + 1) & (priv->tx_q_entries - 1);
603}
604
605static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv)
606{
607 /* Returns the number of available slots in the TX queue
608 *
609 * This always leaves one free slot so we don't have to
610 * worry about empty vs. full, and this simplifies the
611 * test for ftgmac100_tx_buf_cleanable() below
612 */
613 return (priv->tx_clean_pointer - priv->tx_pointer - 1) &
614 (priv->tx_q_entries - 1);
615}
616
617static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv)
618{
619 return priv->tx_pointer != priv->tx_clean_pointer;
620}
621
622static void ftgmac100_free_tx_packet(struct ftgmac100 *priv,
623 unsigned int pointer,
624 struct sk_buff *skb,
625 struct ftgmac100_txdes *txdes,
626 u32 ctl_stat)
627{
628 dma_addr_t map = le32_to_cpu(txdes->txdes3);
629 size_t len;
630
631 if (ctl_stat & FTGMAC100_TXDES0_FTS) {
632 len = skb_headlen(skb);
633 dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE);
634 } else {
635 len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat);
636 dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE);
637 }
638
639 /* Free SKB on last segment */
640 if (ctl_stat & FTGMAC100_TXDES0_LTS)
641 dev_kfree_skb(skb);
642 priv->tx_skbs[pointer] = NULL;
643}
644
645static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv)
646{
647 struct net_device *netdev = priv->netdev;
648 struct ftgmac100_txdes *txdes;
649 struct sk_buff *skb;
650 unsigned int pointer;
651 u32 ctl_stat;
652
653 pointer = priv->tx_clean_pointer;
654 txdes = &priv->txdes[pointer];
655
656 ctl_stat = le32_to_cpu(txdes->txdes0);
657 if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN)
658 return false;
659
660 skb = priv->tx_skbs[pointer];
661 netdev->stats.tx_packets++;
662 netdev->stats.tx_bytes += skb->len;
663 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
664 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
665
666 priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer);
667
668 return true;
669}
670
671static void ftgmac100_tx_complete(struct ftgmac100 *priv)
672{
673 struct net_device *netdev = priv->netdev;
674
675 /* Process all completed packets */
676 while (ftgmac100_tx_buf_cleanable(priv) &&
677 ftgmac100_tx_complete_packet(priv))
678 ;
679
680 /* Restart queue if needed */
681 smp_mb();
682 if (unlikely(netif_queue_stopped(netdev) &&
683 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) {
684 struct netdev_queue *txq;
685
686 txq = netdev_get_tx_queue(netdev, 0);
687 __netif_tx_lock(txq, smp_processor_id());
688 if (netif_queue_stopped(netdev) &&
689 ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
690 netif_wake_queue(netdev);
691 __netif_tx_unlock(txq);
692 }
693}
694
695static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan)
696{
697 if (skb->protocol == cpu_to_be16(ETH_P_IP)) {
698 u8 ip_proto = ip_hdr(skb)->protocol;
699
700 *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM;
701 switch(ip_proto) {
702 case IPPROTO_TCP:
703 *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM;
704 return true;
705 case IPPROTO_UDP:
706 *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM;
707 return true;
708 case IPPROTO_IP:
709 return true;
710 }
711 }
712 return skb_checksum_help(skb) == 0;
713}
714
715static int ftgmac100_hard_start_xmit(struct sk_buff *skb,
716 struct net_device *netdev)
717{
718 struct ftgmac100 *priv = netdev_priv(netdev);
719 struct ftgmac100_txdes *txdes, *first;
720 unsigned int pointer, nfrags, len, i, j;
721 u32 f_ctl_stat, ctl_stat, csum_vlan;
722 dma_addr_t map;
723
724 /* The HW doesn't pad small frames */
725 if (eth_skb_pad(skb)) {
726 netdev->stats.tx_dropped++;
727 return NETDEV_TX_OK;
728 }
729
730 /* Reject oversize packets */
731 if (unlikely(skb->len > MAX_PKT_SIZE)) {
732 if (net_ratelimit())
733 netdev_dbg(netdev, "tx packet too big\n");
734 goto drop;
735 }
736
737 /* Do we have a limit on #fragments ? I yet have to get a reply
738 * from Aspeed. If there's one I haven't hit it.
739 */
740 nfrags = skb_shinfo(skb)->nr_frags;
741
742 /* Get header len */
743 len = skb_headlen(skb);
744
745 /* Map the packet head */
746 map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE);
747 if (dma_mapping_error(priv->dev, map)) {
748 if (net_ratelimit())
749 netdev_err(netdev, "map tx packet head failed\n");
750 goto drop;
751 }
752
753 /* Grab the next free tx descriptor */
754 pointer = priv->tx_pointer;
755 txdes = first = &priv->txdes[pointer];
756
757 /* Setup it up with the packet head. Don't write the head to the
758 * ring just yet
759 */
760 priv->tx_skbs[pointer] = skb;
761 f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
762 f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
763 f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
764 f_ctl_stat |= FTGMAC100_TXDES0_FTS;
765 if (nfrags == 0)
766 f_ctl_stat |= FTGMAC100_TXDES0_LTS;
767 txdes->txdes3 = cpu_to_le32(map);
768
769 /* Setup HW checksumming */
770 csum_vlan = 0;
771 if (skb->ip_summed == CHECKSUM_PARTIAL &&
772 !ftgmac100_prep_tx_csum(skb, &csum_vlan))
773 goto drop;
774
775 /* Add VLAN tag */
776 if (skb_vlan_tag_present(skb)) {
777 csum_vlan |= FTGMAC100_TXDES1_INS_VLANTAG;
778 csum_vlan |= skb_vlan_tag_get(skb) & 0xffff;
779 }
780
781 txdes->txdes1 = cpu_to_le32(csum_vlan);
782
783 /* Next descriptor */
784 pointer = ftgmac100_next_tx_pointer(priv, pointer);
785
786 /* Add the fragments */
787 for (i = 0; i < nfrags; i++) {
788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
789
790 len = frag->size;
791
792 /* Map it */
793 map = skb_frag_dma_map(priv->dev, frag, 0, len,
794 DMA_TO_DEVICE);
795 if (dma_mapping_error(priv->dev, map))
796 goto dma_err;
797
798 /* Setup descriptor */
799 priv->tx_skbs[pointer] = skb;
800 txdes = &priv->txdes[pointer];
801 ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer);
802 ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN;
803 ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len);
804 if (i == (nfrags - 1))
805 ctl_stat |= FTGMAC100_TXDES0_LTS;
806 txdes->txdes0 = cpu_to_le32(ctl_stat);
807 txdes->txdes1 = 0;
808 txdes->txdes3 = cpu_to_le32(map);
809
810 /* Next one */
811 pointer = ftgmac100_next_tx_pointer(priv, pointer);
812 }
813
814 /* Order the previous packet and descriptor udpates
815 * before setting the OWN bit on the first descriptor.
816 */
817 dma_wmb();
818 first->txdes0 = cpu_to_le32(f_ctl_stat);
819
820 /* Update next TX pointer */
821 priv->tx_pointer = pointer;
822
823 /* If there isn't enough room for all the fragments of a new packet
824 * in the TX ring, stop the queue. The sequence below is race free
825 * vs. a concurrent restart in ftgmac100_poll()
826 */
827 if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) {
828 netif_stop_queue(netdev);
829 /* Order the queue stop with the test below */
830 smp_mb();
831 if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)
832 netif_wake_queue(netdev);
833 }
834
835 /* Poke transmitter to read the updated TX descriptors */
836 iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD);
837
838 return NETDEV_TX_OK;
839
840 dma_err:
841 if (net_ratelimit())
842 netdev_err(netdev, "map tx fragment failed\n");
843
844 /* Free head */
845 pointer = priv->tx_pointer;
846 ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat);
847 first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask);
848
849 /* Then all fragments */
850 for (j = 0; j < i; j++) {
851 pointer = ftgmac100_next_tx_pointer(priv, pointer);
852 txdes = &priv->txdes[pointer];
853 ctl_stat = le32_to_cpu(txdes->txdes0);
854 ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat);
855 txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask);
856 }
857
858 /* This cannot be reached if we successfully mapped the
859 * last fragment, so we know ftgmac100_free_tx_packet()
860 * hasn't freed the skb yet.
861 */
862 drop:
863 /* Drop the packet */
864 dev_kfree_skb_any(skb);
865 netdev->stats.tx_dropped++;
866
867 return NETDEV_TX_OK;
868}
869
870static void ftgmac100_free_buffers(struct ftgmac100 *priv)
871{
872 int i;
873
874 /* Free all RX buffers */
875 for (i = 0; i < priv->rx_q_entries; i++) {
876 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
877 struct sk_buff *skb = priv->rx_skbs[i];
878 dma_addr_t map = le32_to_cpu(rxdes->rxdes3);
879
880 if (!skb)
881 continue;
882
883 priv->rx_skbs[i] = NULL;
884 dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE);
885 dev_kfree_skb_any(skb);
886 }
887
888 /* Free all TX buffers */
889 for (i = 0; i < priv->tx_q_entries; i++) {
890 struct ftgmac100_txdes *txdes = &priv->txdes[i];
891 struct sk_buff *skb = priv->tx_skbs[i];
892
893 if (!skb)
894 continue;
895 ftgmac100_free_tx_packet(priv, i, skb, txdes,
896 le32_to_cpu(txdes->txdes0));
897 }
898}
899
900static void ftgmac100_free_rings(struct ftgmac100 *priv)
901{
902 /* Free skb arrays */
903 kfree(priv->rx_skbs);
904 kfree(priv->tx_skbs);
905
906 /* Free descriptors */
907 if (priv->rxdes)
908 dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES *
909 sizeof(struct ftgmac100_rxdes),
910 priv->rxdes, priv->rxdes_dma);
911 priv->rxdes = NULL;
912
913 if (priv->txdes)
914 dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES *
915 sizeof(struct ftgmac100_txdes),
916 priv->txdes, priv->txdes_dma);
917 priv->txdes = NULL;
918
919 /* Free scratch packet buffer */
920 if (priv->rx_scratch)
921 dma_free_coherent(priv->dev, RX_BUF_SIZE,
922 priv->rx_scratch, priv->rx_scratch_dma);
923}
924
925static int ftgmac100_alloc_rings(struct ftgmac100 *priv)
926{
927 /* Allocate skb arrays */
928 priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *),
929 GFP_KERNEL);
930 if (!priv->rx_skbs)
931 return -ENOMEM;
932 priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *),
933 GFP_KERNEL);
934 if (!priv->tx_skbs)
935 return -ENOMEM;
936
937 /* Allocate descriptors */
938 priv->rxdes = dma_zalloc_coherent(priv->dev,
939 MAX_RX_QUEUE_ENTRIES *
940 sizeof(struct ftgmac100_rxdes),
941 &priv->rxdes_dma, GFP_KERNEL);
942 if (!priv->rxdes)
943 return -ENOMEM;
944 priv->txdes = dma_zalloc_coherent(priv->dev,
945 MAX_TX_QUEUE_ENTRIES *
946 sizeof(struct ftgmac100_txdes),
947 &priv->txdes_dma, GFP_KERNEL);
948 if (!priv->txdes)
949 return -ENOMEM;
950
951 /* Allocate scratch packet buffer */
952 priv->rx_scratch = dma_alloc_coherent(priv->dev,
953 RX_BUF_SIZE,
954 &priv->rx_scratch_dma,
955 GFP_KERNEL);
956 if (!priv->rx_scratch)
957 return -ENOMEM;
958
959 return 0;
960}
961
962static void ftgmac100_init_rings(struct ftgmac100 *priv)
963{
964 struct ftgmac100_rxdes *rxdes = NULL;
965 struct ftgmac100_txdes *txdes = NULL;
966 int i;
967
968 /* Update entries counts */
969 priv->rx_q_entries = priv->new_rx_q_entries;
970 priv->tx_q_entries = priv->new_tx_q_entries;
971
972 if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES))
973 return;
974
975 /* Initialize RX ring */
976 for (i = 0; i < priv->rx_q_entries; i++) {
977 rxdes = &priv->rxdes[i];
978 rxdes->rxdes0 = 0;
979 rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma);
980 }
981 /* Mark the end of the ring */
982 rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask);
983
984 if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES))
985 return;
986
987 /* Initialize TX ring */
988 for (i = 0; i < priv->tx_q_entries; i++) {
989 txdes = &priv->txdes[i];
990 txdes->txdes0 = 0;
991 }
992 txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask);
993}
994
995static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv)
996{
997 int i;
998
999 for (i = 0; i < priv->rx_q_entries; i++) {
1000 struct ftgmac100_rxdes *rxdes = &priv->rxdes[i];
1001
1002 if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL))
1003 return -ENOMEM;
1004 }
1005 return 0;
1006}
1007
1008static void ftgmac100_adjust_link(struct net_device *netdev)
1009{
1010 struct ftgmac100 *priv = netdev_priv(netdev);
1011 struct phy_device *phydev = netdev->phydev;
1012 bool tx_pause, rx_pause;
1013 int new_speed;
1014
1015 /* We store "no link" as speed 0 */
1016 if (!phydev->link)
1017 new_speed = 0;
1018 else
1019 new_speed = phydev->speed;
1020
1021 /* Grab pause settings from PHY if configured to do so */
1022 if (priv->aneg_pause) {
1023 rx_pause = tx_pause = phydev->pause;
1024 if (phydev->asym_pause)
1025 tx_pause = !rx_pause;
1026 } else {
1027 rx_pause = priv->rx_pause;
1028 tx_pause = priv->tx_pause;
1029 }
1030
1031 /* Link hasn't changed, do nothing */
1032 if (phydev->speed == priv->cur_speed &&
1033 phydev->duplex == priv->cur_duplex &&
1034 rx_pause == priv->rx_pause &&
1035 tx_pause == priv->tx_pause)
1036 return;
1037
1038 /* Print status if we have a link or we had one and just lost it,
1039 * don't print otherwise.
1040 */
1041 if (new_speed || priv->cur_speed)
1042 phy_print_status(phydev);
1043
1044 priv->cur_speed = new_speed;
1045 priv->cur_duplex = phydev->duplex;
1046 priv->rx_pause = rx_pause;
1047 priv->tx_pause = tx_pause;
1048
1049 /* Link is down, do nothing else */
1050 if (!new_speed)
1051 return;
1052
1053 /* Disable all interrupts */
1054 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1055
1056 /* Reset the adapter asynchronously */
1057 schedule_work(&priv->reset_task);
1058}
1059
1060static int ftgmac100_mii_probe(struct ftgmac100 *priv, phy_interface_t intf)
1061{
1062 struct net_device *netdev = priv->netdev;
1063 struct phy_device *phydev;
1064
1065 phydev = phy_find_first(priv->mii_bus);
1066 if (!phydev) {
1067 netdev_info(netdev, "%s: no PHY found\n", netdev->name);
1068 return -ENODEV;
1069 }
1070
1071 phydev = phy_connect(netdev, phydev_name(phydev),
1072 &ftgmac100_adjust_link, intf);
1073
1074 if (IS_ERR(phydev)) {
1075 netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name);
1076 return PTR_ERR(phydev);
1077 }
1078
1079 /* Indicate that we support PAUSE frames (see comment in
1080 * Documentation/networking/phy.txt)
1081 */
1082 phydev->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause;
1083 phydev->advertising = phydev->supported;
1084
1085 /* Display what we found */
1086 phy_attached_info(phydev);
1087
1088 return 0;
1089}
1090
1091static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
1092{
1093 struct net_device *netdev = bus->priv;
1094 struct ftgmac100 *priv = netdev_priv(netdev);
1095 unsigned int phycr;
1096 int i;
1097
1098 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1099
1100 /* preserve MDC cycle threshold */
1101 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1102
1103 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1104 FTGMAC100_PHYCR_REGAD(regnum) |
1105 FTGMAC100_PHYCR_MIIRD;
1106
1107 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1108
1109 for (i = 0; i < 10; i++) {
1110 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1111
1112 if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) {
1113 int data;
1114
1115 data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA);
1116 return FTGMAC100_PHYDATA_MIIRDATA(data);
1117 }
1118
1119 udelay(100);
1120 }
1121
1122 netdev_err(netdev, "mdio read timed out\n");
1123 return -EIO;
1124}
1125
1126static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr,
1127 int regnum, u16 value)
1128{
1129 struct net_device *netdev = bus->priv;
1130 struct ftgmac100 *priv = netdev_priv(netdev);
1131 unsigned int phycr;
1132 int data;
1133 int i;
1134
1135 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1136
1137 /* preserve MDC cycle threshold */
1138 phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK;
1139
1140 phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) |
1141 FTGMAC100_PHYCR_REGAD(regnum) |
1142 FTGMAC100_PHYCR_MIIWR;
1143
1144 data = FTGMAC100_PHYDATA_MIIWDATA(value);
1145
1146 iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA);
1147 iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR);
1148
1149 for (i = 0; i < 10; i++) {
1150 phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR);
1151
1152 if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0)
1153 return 0;
1154
1155 udelay(100);
1156 }
1157
1158 netdev_err(netdev, "mdio write timed out\n");
1159 return -EIO;
1160}
1161
1162static void ftgmac100_get_drvinfo(struct net_device *netdev,
1163 struct ethtool_drvinfo *info)
1164{
1165 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1166 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1167 strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info));
1168}
1169
1170static void ftgmac100_get_ringparam(struct net_device *netdev,
1171 struct ethtool_ringparam *ering)
1172{
1173 struct ftgmac100 *priv = netdev_priv(netdev);
1174
1175 memset(ering, 0, sizeof(*ering));
1176 ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES;
1177 ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES;
1178 ering->rx_pending = priv->rx_q_entries;
1179 ering->tx_pending = priv->tx_q_entries;
1180}
1181
1182static int ftgmac100_set_ringparam(struct net_device *netdev,
1183 struct ethtool_ringparam *ering)
1184{
1185 struct ftgmac100 *priv = netdev_priv(netdev);
1186
1187 if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES ||
1188 ering->tx_pending > MAX_TX_QUEUE_ENTRIES ||
1189 ering->rx_pending < MIN_RX_QUEUE_ENTRIES ||
1190 ering->tx_pending < MIN_TX_QUEUE_ENTRIES ||
1191 !is_power_of_2(ering->rx_pending) ||
1192 !is_power_of_2(ering->tx_pending))
1193 return -EINVAL;
1194
1195 priv->new_rx_q_entries = ering->rx_pending;
1196 priv->new_tx_q_entries = ering->tx_pending;
1197 if (netif_running(netdev))
1198 schedule_work(&priv->reset_task);
1199
1200 return 0;
1201}
1202
1203static void ftgmac100_get_pauseparam(struct net_device *netdev,
1204 struct ethtool_pauseparam *pause)
1205{
1206 struct ftgmac100 *priv = netdev_priv(netdev);
1207
1208 pause->autoneg = priv->aneg_pause;
1209 pause->tx_pause = priv->tx_pause;
1210 pause->rx_pause = priv->rx_pause;
1211}
1212
1213static int ftgmac100_set_pauseparam(struct net_device *netdev,
1214 struct ethtool_pauseparam *pause)
1215{
1216 struct ftgmac100 *priv = netdev_priv(netdev);
1217 struct phy_device *phydev = netdev->phydev;
1218
1219 priv->aneg_pause = pause->autoneg;
1220 priv->tx_pause = pause->tx_pause;
1221 priv->rx_pause = pause->rx_pause;
1222
1223 if (phydev) {
1224 phydev->advertising &= ~ADVERTISED_Pause;
1225 phydev->advertising &= ~ADVERTISED_Asym_Pause;
1226
1227 if (pause->rx_pause) {
1228 phydev->advertising |= ADVERTISED_Pause;
1229 phydev->advertising |= ADVERTISED_Asym_Pause;
1230 }
1231
1232 if (pause->tx_pause)
1233 phydev->advertising ^= ADVERTISED_Asym_Pause;
1234 }
1235 if (netif_running(netdev)) {
1236 if (phydev && priv->aneg_pause)
1237 phy_start_aneg(phydev);
1238 else
1239 ftgmac100_config_pause(priv);
1240 }
1241
1242 return 0;
1243}
1244
1245static const struct ethtool_ops ftgmac100_ethtool_ops = {
1246 .get_drvinfo = ftgmac100_get_drvinfo,
1247 .get_link = ethtool_op_get_link,
1248 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1249 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1250 .nway_reset = phy_ethtool_nway_reset,
1251 .get_ringparam = ftgmac100_get_ringparam,
1252 .set_ringparam = ftgmac100_set_ringparam,
1253 .get_pauseparam = ftgmac100_get_pauseparam,
1254 .set_pauseparam = ftgmac100_set_pauseparam,
1255};
1256
1257static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id)
1258{
1259 struct net_device *netdev = dev_id;
1260 struct ftgmac100 *priv = netdev_priv(netdev);
1261 unsigned int status, new_mask = FTGMAC100_INT_BAD;
1262
1263 /* Fetch and clear interrupt bits, process abnormal ones */
1264 status = ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1265 iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR);
1266 if (unlikely(status & FTGMAC100_INT_BAD)) {
1267
1268 /* RX buffer unavailable */
1269 if (status & FTGMAC100_INT_NO_RXBUF)
1270 netdev->stats.rx_over_errors++;
1271
1272 /* received packet lost due to RX FIFO full */
1273 if (status & FTGMAC100_INT_RPKT_LOST)
1274 netdev->stats.rx_fifo_errors++;
1275
1276 /* sent packet lost due to excessive TX collision */
1277 if (status & FTGMAC100_INT_XPKT_LOST)
1278 netdev->stats.tx_fifo_errors++;
1279
1280 /* AHB error -> Reset the chip */
1281 if (status & FTGMAC100_INT_AHB_ERR) {
1282 if (net_ratelimit())
1283 netdev_warn(netdev,
1284 "AHB bus error ! Resetting chip.\n");
1285 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1286 schedule_work(&priv->reset_task);
1287 return IRQ_HANDLED;
1288 }
1289
1290 /* We may need to restart the MAC after such errors, delay
1291 * this until after we have freed some Rx buffers though
1292 */
1293 priv->need_mac_restart = true;
1294
1295 /* Disable those errors until we restart */
1296 new_mask &= ~status;
1297 }
1298
1299 /* Only enable "bad" interrupts while NAPI is on */
1300 iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER);
1301
1302 /* Schedule NAPI bh */
1303 napi_schedule_irqoff(&priv->napi);
1304
1305 return IRQ_HANDLED;
1306}
1307
1308static bool ftgmac100_check_rx(struct ftgmac100 *priv)
1309{
1310 struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer];
1311
1312 /* Do we have a packet ? */
1313 return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY));
1314}
1315
1316static int ftgmac100_poll(struct napi_struct *napi, int budget)
1317{
1318 struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi);
1319 int work_done = 0;
1320 bool more;
1321
1322 /* Handle TX completions */
1323 if (ftgmac100_tx_buf_cleanable(priv))
1324 ftgmac100_tx_complete(priv);
1325
1326 /* Handle RX packets */
1327 do {
1328 more = ftgmac100_rx_packet(priv, &work_done);
1329 } while (more && work_done < budget);
1330
1331
1332 /* The interrupt is telling us to kick the MAC back to life
1333 * after an RX overflow
1334 */
1335 if (unlikely(priv->need_mac_restart)) {
1336 ftgmac100_start_hw(priv);
1337
1338 /* Re-enable "bad" interrupts */
1339 iowrite32(FTGMAC100_INT_BAD,
1340 priv->base + FTGMAC100_OFFSET_IER);
1341 }
1342
1343 /* As long as we are waiting for transmit packets to be
1344 * completed we keep NAPI going
1345 */
1346 if (ftgmac100_tx_buf_cleanable(priv))
1347 work_done = budget;
1348
1349 if (work_done < budget) {
1350 /* We are about to re-enable all interrupts. However
1351 * the HW has been latching RX/TX packet interrupts while
1352 * they were masked. So we clear them first, then we need
1353 * to re-check if there's something to process
1354 */
1355 iowrite32(FTGMAC100_INT_RXTX,
1356 priv->base + FTGMAC100_OFFSET_ISR);
1357
1358 /* Push the above (and provides a barrier vs. subsequent
1359 * reads of the descriptor).
1360 */
1361 ioread32(priv->base + FTGMAC100_OFFSET_ISR);
1362
1363 /* Check RX and TX descriptors for more work to do */
1364 if (ftgmac100_check_rx(priv) ||
1365 ftgmac100_tx_buf_cleanable(priv))
1366 return budget;
1367
1368 /* deschedule NAPI */
1369 napi_complete(napi);
1370
1371 /* enable all interrupts */
1372 iowrite32(FTGMAC100_INT_ALL,
1373 priv->base + FTGMAC100_OFFSET_IER);
1374 }
1375
1376 return work_done;
1377}
1378
1379static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err)
1380{
1381 int err = 0;
1382
1383 /* Re-init descriptors (adjust queue sizes) */
1384 ftgmac100_init_rings(priv);
1385
1386 /* Realloc rx descriptors */
1387 err = ftgmac100_alloc_rx_buffers(priv);
1388 if (err && !ignore_alloc_err)
1389 return err;
1390
1391 /* Reinit and restart HW */
1392 ftgmac100_init_hw(priv);
1393 ftgmac100_config_pause(priv);
1394 ftgmac100_start_hw(priv);
1395
1396 /* Re-enable the device */
1397 napi_enable(&priv->napi);
1398 netif_start_queue(priv->netdev);
1399
1400 /* Enable all interrupts */
1401 iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER);
1402
1403 return err;
1404}
1405
1406static void ftgmac100_reset_task(struct work_struct *work)
1407{
1408 struct ftgmac100 *priv = container_of(work, struct ftgmac100,
1409 reset_task);
1410 struct net_device *netdev = priv->netdev;
1411 int err;
1412
1413 netdev_dbg(netdev, "Resetting NIC...\n");
1414
1415 /* Lock the world */
1416 rtnl_lock();
1417 if (netdev->phydev)
1418 mutex_lock(&netdev->phydev->lock);
1419 if (priv->mii_bus)
1420 mutex_lock(&priv->mii_bus->mdio_lock);
1421
1422
1423 /* Check if the interface is still up */
1424 if (!netif_running(netdev))
1425 goto bail;
1426
1427 /* Stop the network stack */
1428 netif_trans_update(netdev);
1429 napi_disable(&priv->napi);
1430 netif_tx_disable(netdev);
1431
1432 /* Stop and reset the MAC */
1433 ftgmac100_stop_hw(priv);
1434 err = ftgmac100_reset_and_config_mac(priv);
1435 if (err) {
1436 /* Not much we can do ... it might come back... */
1437 netdev_err(netdev, "attempting to continue...\n");
1438 }
1439
1440 /* Free all rx and tx buffers */
1441 ftgmac100_free_buffers(priv);
1442
1443 /* Setup everything again and restart chip */
1444 ftgmac100_init_all(priv, true);
1445
1446 netdev_dbg(netdev, "Reset done !\n");
1447 bail:
1448 if (priv->mii_bus)
1449 mutex_unlock(&priv->mii_bus->mdio_lock);
1450 if (netdev->phydev)
1451 mutex_unlock(&netdev->phydev->lock);
1452 rtnl_unlock();
1453}
1454
1455static int ftgmac100_open(struct net_device *netdev)
1456{
1457 struct ftgmac100 *priv = netdev_priv(netdev);
1458 int err;
1459
1460 /* Allocate ring buffers */
1461 err = ftgmac100_alloc_rings(priv);
1462 if (err) {
1463 netdev_err(netdev, "Failed to allocate descriptors\n");
1464 return err;
1465 }
1466
1467 /* When using NC-SI we force the speed to 100Mbit/s full duplex,
1468 *
1469 * Otherwise we leave it set to 0 (no link), the link
1470 * message from the PHY layer will handle setting it up to
1471 * something else if needed.
1472 */
1473 if (priv->use_ncsi) {
1474 priv->cur_duplex = DUPLEX_FULL;
1475 priv->cur_speed = SPEED_100;
1476 } else {
1477 priv->cur_duplex = 0;
1478 priv->cur_speed = 0;
1479 }
1480
1481 /* Reset the hardware */
1482 err = ftgmac100_reset_and_config_mac(priv);
1483 if (err)
1484 goto err_hw;
1485
1486 /* Initialize NAPI */
1487 netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64);
1488
1489 /* Grab our interrupt */
1490 err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev);
1491 if (err) {
1492 netdev_err(netdev, "failed to request irq %d\n", netdev->irq);
1493 goto err_irq;
1494 }
1495
1496 /* Start things up */
1497 err = ftgmac100_init_all(priv, false);
1498 if (err) {
1499 netdev_err(netdev, "Failed to allocate packet buffers\n");
1500 goto err_alloc;
1501 }
1502
1503 if (netdev->phydev) {
1504 /* If we have a PHY, start polling */
1505 phy_start(netdev->phydev);
1506 } else if (priv->use_ncsi) {
1507 /* If using NC-SI, set our carrier on and start the stack */
1508 netif_carrier_on(netdev);
1509
1510 /* Start the NCSI device */
1511 err = ncsi_start_dev(priv->ndev);
1512 if (err)
1513 goto err_ncsi;
1514 }
1515
1516 return 0;
1517
1518 err_ncsi:
1519 napi_disable(&priv->napi);
1520 netif_stop_queue(netdev);
1521 err_alloc:
1522 ftgmac100_free_buffers(priv);
1523 free_irq(netdev->irq, netdev);
1524 err_irq:
1525 netif_napi_del(&priv->napi);
1526 err_hw:
1527 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1528 ftgmac100_free_rings(priv);
1529 return err;
1530}
1531
1532static int ftgmac100_stop(struct net_device *netdev)
1533{
1534 struct ftgmac100 *priv = netdev_priv(netdev);
1535
1536 /* Note about the reset task: We are called with the rtnl lock
1537 * held, so we are synchronized against the core of the reset
1538 * task. We must not try to synchronously cancel it otherwise
1539 * we can deadlock. But since it will test for netif_running()
1540 * which has already been cleared by the net core, we don't
1541 * anything special to do.
1542 */
1543
1544 /* disable all interrupts */
1545 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1546
1547 netif_stop_queue(netdev);
1548 napi_disable(&priv->napi);
1549 netif_napi_del(&priv->napi);
1550 if (netdev->phydev)
1551 phy_stop(netdev->phydev);
1552 else if (priv->use_ncsi)
1553 ncsi_stop_dev(priv->ndev);
1554
1555 ftgmac100_stop_hw(priv);
1556 free_irq(netdev->irq, netdev);
1557 ftgmac100_free_buffers(priv);
1558 ftgmac100_free_rings(priv);
1559
1560 return 0;
1561}
1562
1563/* optional */
1564static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1565{
1566 if (!netdev->phydev)
1567 return -ENXIO;
1568
1569 return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1570}
1571
1572static void ftgmac100_tx_timeout(struct net_device *netdev)
1573{
1574 struct ftgmac100 *priv = netdev_priv(netdev);
1575
1576 /* Disable all interrupts */
1577 iowrite32(0, priv->base + FTGMAC100_OFFSET_IER);
1578
1579 /* Do the reset outside of interrupt context */
1580 schedule_work(&priv->reset_task);
1581}
1582
1583static int ftgmac100_set_features(struct net_device *netdev,
1584 netdev_features_t features)
1585{
1586 struct ftgmac100 *priv = netdev_priv(netdev);
1587 netdev_features_t changed = netdev->features ^ features;
1588
1589 if (!netif_running(netdev))
1590 return 0;
1591
1592 /* Update the vlan filtering bit */
1593 if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
1594 u32 maccr;
1595
1596 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR);
1597 if (priv->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
1598 maccr |= FTGMAC100_MACCR_RM_VLAN;
1599 else
1600 maccr &= ~FTGMAC100_MACCR_RM_VLAN;
1601 iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR);
1602 }
1603
1604 return 0;
1605}
1606
1607#ifdef CONFIG_NET_POLL_CONTROLLER
1608static void ftgmac100_poll_controller(struct net_device *netdev)
1609{
1610 unsigned long flags;
1611
1612 local_irq_save(flags);
1613 ftgmac100_interrupt(netdev->irq, netdev);
1614 local_irq_restore(flags);
1615}
1616#endif
1617
1618static const struct net_device_ops ftgmac100_netdev_ops = {
1619 .ndo_open = ftgmac100_open,
1620 .ndo_stop = ftgmac100_stop,
1621 .ndo_start_xmit = ftgmac100_hard_start_xmit,
1622 .ndo_set_mac_address = ftgmac100_set_mac_addr,
1623 .ndo_validate_addr = eth_validate_addr,
1624 .ndo_do_ioctl = ftgmac100_do_ioctl,
1625 .ndo_tx_timeout = ftgmac100_tx_timeout,
1626 .ndo_set_rx_mode = ftgmac100_set_rx_mode,
1627 .ndo_set_features = ftgmac100_set_features,
1628#ifdef CONFIG_NET_POLL_CONTROLLER
1629 .ndo_poll_controller = ftgmac100_poll_controller,
1630#endif
1631 .ndo_vlan_rx_add_vid = ncsi_vlan_rx_add_vid,
1632 .ndo_vlan_rx_kill_vid = ncsi_vlan_rx_kill_vid,
1633};
1634
1635static int ftgmac100_setup_mdio(struct net_device *netdev)
1636{
1637 struct ftgmac100 *priv = netdev_priv(netdev);
1638 struct platform_device *pdev = to_platform_device(priv->dev);
1639 int phy_intf = PHY_INTERFACE_MODE_RGMII;
1640 struct device_node *np = pdev->dev.of_node;
1641 int i, err = 0;
1642 u32 reg;
1643
1644 /* initialize mdio bus */
1645 priv->mii_bus = mdiobus_alloc();
1646 if (!priv->mii_bus)
1647 return -EIO;
1648
1649 if (priv->is_aspeed) {
1650 /* This driver supports the old MDIO interface */
1651 reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR);
1652 reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE;
1653 iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR);
1654 };
1655
1656 /* Get PHY mode from device-tree */
1657 if (np) {
1658 /* Default to RGMII. It's a gigabit part after all */
1659 phy_intf = of_get_phy_mode(np);
1660 if (phy_intf < 0)
1661 phy_intf = PHY_INTERFACE_MODE_RGMII;
1662
1663 /* Aspeed only supports these. I don't know about other IP
1664 * block vendors so I'm going to just let them through for
1665 * now. Note that this is only a warning if for some obscure
1666 * reason the DT really means to lie about it or it's a newer
1667 * part we don't know about.
1668 *
1669 * On the Aspeed SoC there are additionally straps and SCU
1670 * control bits that could tell us what the interface is
1671 * (or allow us to configure it while the IP block is held
1672 * in reset). For now I chose to keep this driver away from
1673 * those SoC specific bits and assume the device-tree is
1674 * right and the SCU has been configured properly by pinmux
1675 * or the firmware.
1676 */
1677 if (priv->is_aspeed &&
1678 phy_intf != PHY_INTERFACE_MODE_RMII &&
1679 phy_intf != PHY_INTERFACE_MODE_RGMII &&
1680 phy_intf != PHY_INTERFACE_MODE_RGMII_ID &&
1681 phy_intf != PHY_INTERFACE_MODE_RGMII_RXID &&
1682 phy_intf != PHY_INTERFACE_MODE_RGMII_TXID) {
1683 netdev_warn(netdev,
1684 "Unsupported PHY mode %s !\n",
1685 phy_modes(phy_intf));
1686 }
1687 }
1688
1689 priv->mii_bus->name = "ftgmac100_mdio";
1690 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1691 pdev->name, pdev->id);
1692 priv->mii_bus->parent = priv->dev;
1693 priv->mii_bus->priv = priv->netdev;
1694 priv->mii_bus->read = ftgmac100_mdiobus_read;
1695 priv->mii_bus->write = ftgmac100_mdiobus_write;
1696
1697 for (i = 0; i < PHY_MAX_ADDR; i++)
1698 priv->mii_bus->irq[i] = PHY_POLL;
1699
1700 err = mdiobus_register(priv->mii_bus);
1701 if (err) {
1702 dev_err(priv->dev, "Cannot register MDIO bus!\n");
1703 goto err_register_mdiobus;
1704 }
1705
1706 err = ftgmac100_mii_probe(priv, phy_intf);
1707 if (err) {
1708 dev_err(priv->dev, "MII Probe failed!\n");
1709 goto err_mii_probe;
1710 }
1711
1712 return 0;
1713
1714err_mii_probe:
1715 mdiobus_unregister(priv->mii_bus);
1716err_register_mdiobus:
1717 mdiobus_free(priv->mii_bus);
1718 return err;
1719}
1720
1721static void ftgmac100_destroy_mdio(struct net_device *netdev)
1722{
1723 struct ftgmac100 *priv = netdev_priv(netdev);
1724
1725 if (!netdev->phydev)
1726 return;
1727
1728 phy_disconnect(netdev->phydev);
1729 mdiobus_unregister(priv->mii_bus);
1730 mdiobus_free(priv->mii_bus);
1731}
1732
1733static void ftgmac100_ncsi_handler(struct ncsi_dev *nd)
1734{
1735 if (unlikely(nd->state != ncsi_dev_state_functional))
1736 return;
1737
1738 netdev_info(nd->dev, "NCSI interface %s\n",
1739 nd->link_up ? "up" : "down");
1740}
1741
1742static void ftgmac100_setup_clk(struct ftgmac100 *priv)
1743{
1744 priv->clk = devm_clk_get(priv->dev, NULL);
1745 if (IS_ERR(priv->clk))
1746 return;
1747
1748 clk_prepare_enable(priv->clk);
1749
1750 /* Aspeed specifies a 100MHz clock is required for up to
1751 * 1000Mbit link speeds. As NCSI is limited to 100Mbit, 25MHz
1752 * is sufficient
1753 */
1754 clk_set_rate(priv->clk, priv->use_ncsi ? FTGMAC_25MHZ :
1755 FTGMAC_100MHZ);
1756}
1757
1758static int ftgmac100_probe(struct platform_device *pdev)
1759{
1760 struct resource *res;
1761 int irq;
1762 struct net_device *netdev;
1763 struct ftgmac100 *priv;
1764 struct device_node *np;
1765 int err = 0;
1766
1767 if (!pdev)
1768 return -ENODEV;
1769
1770 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1771 if (!res)
1772 return -ENXIO;
1773
1774 irq = platform_get_irq(pdev, 0);
1775 if (irq < 0)
1776 return irq;
1777
1778 /* setup net_device */
1779 netdev = alloc_etherdev(sizeof(*priv));
1780 if (!netdev) {
1781 err = -ENOMEM;
1782 goto err_alloc_etherdev;
1783 }
1784
1785 SET_NETDEV_DEV(netdev, &pdev->dev);
1786
1787 netdev->ethtool_ops = &ftgmac100_ethtool_ops;
1788 netdev->netdev_ops = &ftgmac100_netdev_ops;
1789 netdev->watchdog_timeo = 5 * HZ;
1790
1791 platform_set_drvdata(pdev, netdev);
1792
1793 /* setup private data */
1794 priv = netdev_priv(netdev);
1795 priv->netdev = netdev;
1796 priv->dev = &pdev->dev;
1797 INIT_WORK(&priv->reset_task, ftgmac100_reset_task);
1798
1799 /* map io memory */
1800 priv->res = request_mem_region(res->start, resource_size(res),
1801 dev_name(&pdev->dev));
1802 if (!priv->res) {
1803 dev_err(&pdev->dev, "Could not reserve memory region\n");
1804 err = -ENOMEM;
1805 goto err_req_mem;
1806 }
1807
1808 priv->base = ioremap(res->start, resource_size(res));
1809 if (!priv->base) {
1810 dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n");
1811 err = -EIO;
1812 goto err_ioremap;
1813 }
1814
1815 netdev->irq = irq;
1816
1817 /* Enable pause */
1818 priv->tx_pause = true;
1819 priv->rx_pause = true;
1820 priv->aneg_pause = true;
1821
1822 /* MAC address from chip or random one */
1823 ftgmac100_initial_mac(priv);
1824
1825 np = pdev->dev.of_node;
1826 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") ||
1827 of_device_is_compatible(np, "aspeed,ast2500-mac"))) {
1828 priv->rxdes0_edorr_mask = BIT(30);
1829 priv->txdes0_edotr_mask = BIT(30);
1830 priv->is_aspeed = true;
1831 } else {
1832 priv->rxdes0_edorr_mask = BIT(15);
1833 priv->txdes0_edotr_mask = BIT(15);
1834 }
1835
1836 if (np && of_get_property(np, "use-ncsi", NULL)) {
1837 if (!IS_ENABLED(CONFIG_NET_NCSI)) {
1838 dev_err(&pdev->dev, "NCSI stack not enabled\n");
1839 goto err_ncsi_dev;
1840 }
1841
1842 dev_info(&pdev->dev, "Using NCSI interface\n");
1843 priv->use_ncsi = true;
1844 priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler);
1845 if (!priv->ndev)
1846 goto err_ncsi_dev;
1847 } else {
1848 priv->use_ncsi = false;
1849 err = ftgmac100_setup_mdio(netdev);
1850 if (err)
1851 goto err_setup_mdio;
1852 }
1853
1854 if (priv->is_aspeed)
1855 ftgmac100_setup_clk(priv);
1856
1857 /* Default ring sizes */
1858 priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES;
1859 priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES;
1860
1861 /* Base feature set */
1862 netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM |
1863 NETIF_F_GRO | NETIF_F_SG | NETIF_F_HW_VLAN_CTAG_RX |
1864 NETIF_F_HW_VLAN_CTAG_TX;
1865
1866 if (priv->use_ncsi)
1867 netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1868
1869 /* AST2400 doesn't have working HW checksum generation */
1870 if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac")))
1871 netdev->hw_features &= ~NETIF_F_HW_CSUM;
1872 if (np && of_get_property(np, "no-hw-checksum", NULL))
1873 netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM);
1874 netdev->features |= netdev->hw_features;
1875
1876 /* register network device */
1877 err = register_netdev(netdev);
1878 if (err) {
1879 dev_err(&pdev->dev, "Failed to register netdev\n");
1880 goto err_register_netdev;
1881 }
1882
1883 netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base);
1884
1885 return 0;
1886
1887err_ncsi_dev:
1888err_register_netdev:
1889 ftgmac100_destroy_mdio(netdev);
1890err_setup_mdio:
1891 iounmap(priv->base);
1892err_ioremap:
1893 release_resource(priv->res);
1894err_req_mem:
1895 free_netdev(netdev);
1896err_alloc_etherdev:
1897 return err;
1898}
1899
1900static int ftgmac100_remove(struct platform_device *pdev)
1901{
1902 struct net_device *netdev;
1903 struct ftgmac100 *priv;
1904
1905 netdev = platform_get_drvdata(pdev);
1906 priv = netdev_priv(netdev);
1907
1908 unregister_netdev(netdev);
1909
1910 clk_disable_unprepare(priv->clk);
1911
1912 /* There's a small chance the reset task will have been re-queued,
1913 * during stop, make sure it's gone before we free the structure.
1914 */
1915 cancel_work_sync(&priv->reset_task);
1916
1917 ftgmac100_destroy_mdio(netdev);
1918
1919 iounmap(priv->base);
1920 release_resource(priv->res);
1921
1922 netif_napi_del(&priv->napi);
1923 free_netdev(netdev);
1924 return 0;
1925}
1926
1927static const struct of_device_id ftgmac100_of_match[] = {
1928 { .compatible = "faraday,ftgmac100" },
1929 { }
1930};
1931MODULE_DEVICE_TABLE(of, ftgmac100_of_match);
1932
1933static struct platform_driver ftgmac100_driver = {
1934 .probe = ftgmac100_probe,
1935 .remove = ftgmac100_remove,
1936 .driver = {
1937 .name = DRV_NAME,
1938 .of_match_table = ftgmac100_of_match,
1939 },
1940};
1941module_platform_driver(ftgmac100_driver);
1942
1943MODULE_AUTHOR("Po-Yu Chuang <ratbert@faraday-tech.com>");
1944MODULE_DESCRIPTION("FTGMAC100 driver");
1945MODULE_LICENSE("GPL");