Loading...
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 https://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26
27/* The user-configurable values.
28 These may be modified when a driver module is loaded.*/
29static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
30/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
31 Typical is a 64 element hash table based on the Ethernet CRC. */
32static const int multicast_filter_limit = 32;
33
34/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
35 Setting to > 1518 effectively disables this feature.
36 This chip can receive into offset buffers, so the Alpha does not
37 need a copy-align. */
38static int rx_copybreak;
39static int flowctrl=1;
40
41/* media[] specifies the media type the NIC operates at.
42 autosense Autosensing active media.
43 10mbps_hd 10Mbps half duplex.
44 10mbps_fd 10Mbps full duplex.
45 100mbps_hd 100Mbps half duplex.
46 100mbps_fd 100Mbps full duplex.
47 0 Autosensing active media.
48 1 10Mbps half duplex.
49 2 10Mbps full duplex.
50 3 100Mbps half duplex.
51 4 100Mbps full duplex.
52*/
53#define MAX_UNITS 8
54static char *media[MAX_UNITS];
55
56
57/* Operational parameters that are set at compile time. */
58
59/* Keep the ring sizes a power of two for compile efficiency.
60 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
61 Making the Tx ring too large decreases the effectiveness of channel
62 bonding and packet priority, and more than 128 requires modifying the
63 Tx error recovery.
64 Large receive rings merely waste memory. */
65#define TX_RING_SIZE 32
66#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
67#define RX_RING_SIZE 64
68#define RX_BUDGET 32
69#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
70#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
71
72/* Operational parameters that usually are not changed. */
73/* Time in jiffies before concluding the transmitter is hung. */
74#define TX_TIMEOUT (4*HZ)
75#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
76
77/* Include files, designed to support most kernel versions 2.0.0 and later. */
78#include <linux/module.h>
79#include <linux/kernel.h>
80#include <linux/string.h>
81#include <linux/timer.h>
82#include <linux/errno.h>
83#include <linux/ioport.h>
84#include <linux/interrupt.h>
85#include <linux/pci.h>
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89#include <linux/init.h>
90#include <linux/bitops.h>
91#include <linux/uaccess.h>
92#include <asm/processor.h> /* Processor type for cache alignment. */
93#include <asm/io.h>
94#include <linux/delay.h>
95#include <linux/spinlock.h>
96#include <linux/dma-mapping.h>
97#include <linux/crc32.h>
98#include <linux/ethtool.h>
99#include <linux/mii.h>
100
101MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
102MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
103MODULE_LICENSE("GPL");
104
105module_param(debug, int, 0);
106module_param(rx_copybreak, int, 0);
107module_param_array(media, charp, NULL, 0);
108module_param(flowctrl, int, 0);
109MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
110MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
111MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
112
113/*
114 Theory of Operation
115
116I. Board Compatibility
117
118This driver is designed for the Sundance Technologies "Alta" ST201 chip.
119
120II. Board-specific settings
121
122III. Driver operation
123
124IIIa. Ring buffers
125
126This driver uses two statically allocated fixed-size descriptor lists
127formed into rings by a branch from the final descriptor to the beginning of
128the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
129Some chips explicitly use only 2^N sized rings, while others use a
130'next descriptor' pointer that the driver forms into rings.
131
132IIIb/c. Transmit/Receive Structure
133
134This driver uses a zero-copy receive and transmit scheme.
135The driver allocates full frame size skbuffs for the Rx ring buffers at
136open() time and passes the skb->data field to the chip as receive data
137buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
138a fresh skbuff is allocated and the frame is copied to the new skbuff.
139When the incoming frame is larger, the skbuff is passed directly up the
140protocol stack. Buffers consumed this way are replaced by newly allocated
141skbuffs in a later phase of receives.
142
143The RX_COPYBREAK value is chosen to trade-off the memory wasted by
144using a full-sized skbuff for small frames vs. the copying costs of larger
145frames. New boards are typically used in generously configured machines
146and the underfilled buffers have negligible impact compared to the benefit of
147a single allocation size, so the default value of zero results in never
148copying packets. When copying is done, the cost is usually mitigated by using
149a combined copy/checksum routine. Copying also preloads the cache, which is
150most useful with small frames.
151
152A subtle aspect of the operation is that the IP header at offset 14 in an
153ethernet frame isn't longword aligned for further processing.
154Unaligned buffers are permitted by the Sundance hardware, so
155frames are received into the skbuff at an offset of "+2", 16-byte aligning
156the IP header.
157
158IIId. Synchronization
159
160The driver runs as two independent, single-threaded flows of control. One
161is the send-packet routine, which enforces single-threaded use by the
162dev->tbusy flag. The other thread is the interrupt handler, which is single
163threaded by the hardware and interrupt handling software.
164
165The send packet thread has partial control over the Tx ring and 'dev->tbusy'
166flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
167queue slot is empty, it clears the tbusy flag when finished otherwise it sets
168the 'lp->tx_full' flag.
169
170The interrupt handler has exclusive control over the Rx ring and records stats
171from the Tx ring. After reaping the stats, it marks the Tx queue entry as
172empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
173clears both the tx_full and tbusy flags.
174
175IV. Notes
176
177IVb. References
178
179The Sundance ST201 datasheet, preliminary version.
180The Kendin KS8723 datasheet, preliminary version.
181The ICplus IP100 datasheet, preliminary version.
182http://www.scyld.com/expert/100mbps.html
183http://www.scyld.com/expert/NWay.html
184
185IVc. Errata
186
187*/
188
189/* Work-around for Kendin chip bugs. */
190#ifndef CONFIG_SUNDANCE_MMIO
191#define USE_IO_OPS 1
192#endif
193
194static const struct pci_device_id sundance_pci_tbl[] = {
195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
202 { }
203};
204MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
205
206enum {
207 netdev_io_size = 128
208};
209
210struct pci_id_info {
211 const char *name;
212};
213static const struct pci_id_info pci_id_tbl[] = {
214 {"D-Link DFE-550TX FAST Ethernet Adapter"},
215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
216 {"D-Link DFE-580TX 4 port Server Adapter"},
217 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
218 {"D-Link DL10050-based FAST Ethernet Adapter"},
219 {"Sundance Technology Alta"},
220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
221 { } /* terminate list. */
222};
223
224/* This driver was written to use PCI memory space, however x86-oriented
225 hardware often uses I/O space accesses. */
226
227/* Offsets to the device registers.
228 Unlike software-only systems, device drivers interact with complex hardware.
229 It's not useful to define symbolic names for every register bit in the
230 device. The name can only partially document the semantics and make
231 the driver longer and more difficult to read.
232 In general, only the important configuration values or bits changed
233 multiple times should be defined symbolically.
234*/
235enum alta_offsets {
236 DMACtrl = 0x00,
237 TxListPtr = 0x04,
238 TxDMABurstThresh = 0x08,
239 TxDMAUrgentThresh = 0x09,
240 TxDMAPollPeriod = 0x0a,
241 RxDMAStatus = 0x0c,
242 RxListPtr = 0x10,
243 DebugCtrl0 = 0x1a,
244 DebugCtrl1 = 0x1c,
245 RxDMABurstThresh = 0x14,
246 RxDMAUrgentThresh = 0x15,
247 RxDMAPollPeriod = 0x16,
248 LEDCtrl = 0x1a,
249 ASICCtrl = 0x30,
250 EEData = 0x34,
251 EECtrl = 0x36,
252 FlashAddr = 0x40,
253 FlashData = 0x44,
254 WakeEvent = 0x45,
255 TxStatus = 0x46,
256 TxFrameId = 0x47,
257 DownCounter = 0x18,
258 IntrClear = 0x4a,
259 IntrEnable = 0x4c,
260 IntrStatus = 0x4e,
261 MACCtrl0 = 0x50,
262 MACCtrl1 = 0x52,
263 StationAddr = 0x54,
264 MaxFrameSize = 0x5A,
265 RxMode = 0x5c,
266 MIICtrl = 0x5e,
267 MulticastFilter0 = 0x60,
268 MulticastFilter1 = 0x64,
269 RxOctetsLow = 0x68,
270 RxOctetsHigh = 0x6a,
271 TxOctetsLow = 0x6c,
272 TxOctetsHigh = 0x6e,
273 TxFramesOK = 0x70,
274 RxFramesOK = 0x72,
275 StatsCarrierError = 0x74,
276 StatsLateColl = 0x75,
277 StatsMultiColl = 0x76,
278 StatsOneColl = 0x77,
279 StatsTxDefer = 0x78,
280 RxMissed = 0x79,
281 StatsTxXSDefer = 0x7a,
282 StatsTxAbort = 0x7b,
283 StatsBcastTx = 0x7c,
284 StatsBcastRx = 0x7d,
285 StatsMcastTx = 0x7e,
286 StatsMcastRx = 0x7f,
287 /* Aliased and bogus values! */
288 RxStatus = 0x0c,
289};
290
291#define ASIC_HI_WORD(x) ((x) + 2)
292
293enum ASICCtrl_HiWord_bit {
294 GlobalReset = 0x0001,
295 RxReset = 0x0002,
296 TxReset = 0x0004,
297 DMAReset = 0x0008,
298 FIFOReset = 0x0010,
299 NetworkReset = 0x0020,
300 HostReset = 0x0040,
301 ResetBusy = 0x0400,
302};
303
304/* Bits in the interrupt status/mask registers. */
305enum intr_status_bits {
306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
308 IntrDrvRqst=0x0040,
309 StatsMax=0x0080, LinkChange=0x0100,
310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
311};
312
313/* Bits in the RxMode register. */
314enum rx_mode_bits {
315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
317};
318/* Bits in MACCtrl. */
319enum mac_ctrl0_bits {
320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
322};
323enum mac_ctrl1_bits {
324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
327};
328
329/* Bits in WakeEvent register. */
330enum wake_event_bits {
331 WakePktEnable = 0x01,
332 MagicPktEnable = 0x02,
333 LinkEventEnable = 0x04,
334 WolEnable = 0x80,
335};
336
337/* The Rx and Tx buffer descriptors. */
338/* Note that using only 32 bit fields simplifies conversion to big-endian
339 architectures. */
340struct netdev_desc {
341 __le32 next_desc;
342 __le32 status;
343 struct desc_frag { __le32 addr, length; } frag;
344};
345
346/* Bits in netdev_desc.status */
347enum desc_status_bits {
348 DescOwn=0x8000,
349 DescEndPacket=0x4000,
350 DescEndRing=0x2000,
351 LastFrag=0x80000000,
352 DescIntrOnTx=0x8000,
353 DescIntrOnDMADone=0x80000000,
354 DisableAlign = 0x00000001,
355};
356
357#define PRIV_ALIGN 15 /* Required alignment mask */
358/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
359 within the structure. */
360#define MII_CNT 4
361struct netdev_private {
362 /* Descriptor rings first for alignment. */
363 struct netdev_desc *rx_ring;
364 struct netdev_desc *tx_ring;
365 struct sk_buff* rx_skbuff[RX_RING_SIZE];
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 dma_addr_t tx_ring_dma;
368 dma_addr_t rx_ring_dma;
369 struct timer_list timer; /* Media monitoring timer. */
370 struct net_device *ndev; /* backpointer */
371 /* ethtool extra stats */
372 struct {
373 u64 tx_multiple_collisions;
374 u64 tx_single_collisions;
375 u64 tx_late_collisions;
376 u64 tx_deferred;
377 u64 tx_deferred_excessive;
378 u64 tx_aborted;
379 u64 tx_bcasts;
380 u64 rx_bcasts;
381 u64 tx_mcasts;
382 u64 rx_mcasts;
383 } xstats;
384 /* Frequently used values: keep some adjacent for cache effect. */
385 spinlock_t lock;
386 int msg_enable;
387 int chip_id;
388 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
389 unsigned int rx_buf_sz; /* Based on MTU+slack. */
390 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
391 unsigned int cur_tx, dirty_tx;
392 /* These values are keep track of the transceiver/media in use. */
393 unsigned int flowctrl:1;
394 unsigned int default_port:4; /* Last dev->if_port value. */
395 unsigned int an_enable:1;
396 unsigned int speed;
397 unsigned int wol_enabled:1; /* Wake on LAN enabled */
398 struct tasklet_struct rx_tasklet;
399 struct tasklet_struct tx_tasklet;
400 int budget;
401 int cur_task;
402 /* Multicast and receive mode. */
403 spinlock_t mcastlock; /* SMP lock multicast updates. */
404 u16 mcast_filter[4];
405 /* MII transceiver section. */
406 struct mii_if_info mii_if;
407 int mii_preamble_required;
408 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
409 struct pci_dev *pci_dev;
410 void __iomem *base;
411 spinlock_t statlock;
412};
413
414/* The station address location in the EEPROM. */
415#define EEPROM_SA_OFFSET 0x10
416#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
417 IntrDrvRqst | IntrTxDone | StatsMax | \
418 LinkChange)
419
420static int change_mtu(struct net_device *dev, int new_mtu);
421static int eeprom_read(void __iomem *ioaddr, int location);
422static int mdio_read(struct net_device *dev, int phy_id, int location);
423static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
424static int mdio_wait_link(struct net_device *dev, int wait);
425static int netdev_open(struct net_device *dev);
426static void check_duplex(struct net_device *dev);
427static void netdev_timer(struct timer_list *t);
428static void tx_timeout(struct net_device *dev, unsigned int txqueue);
429static void init_ring(struct net_device *dev);
430static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
431static int reset_tx (struct net_device *dev);
432static irqreturn_t intr_handler(int irq, void *dev_instance);
433static void rx_poll(struct tasklet_struct *t);
434static void tx_poll(struct tasklet_struct *t);
435static void refill_rx (struct net_device *dev);
436static void netdev_error(struct net_device *dev, int intr_status);
437static void netdev_error(struct net_device *dev, int intr_status);
438static void set_rx_mode(struct net_device *dev);
439static int __set_mac_addr(struct net_device *dev);
440static int sundance_set_mac_addr(struct net_device *dev, void *data);
441static struct net_device_stats *get_stats(struct net_device *dev);
442static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
443static int netdev_close(struct net_device *dev);
444static const struct ethtool_ops ethtool_ops;
445
446static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
447{
448 struct netdev_private *np = netdev_priv(dev);
449 void __iomem *ioaddr = np->base + ASICCtrl;
450 int countdown;
451
452 /* ST201 documentation states ASICCtrl is a 32bit register */
453 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
454 /* ST201 documentation states reset can take up to 1 ms */
455 countdown = 10 + 1;
456 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
457 if (--countdown == 0) {
458 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
459 break;
460 }
461 udelay(100);
462 }
463}
464
465#ifdef CONFIG_NET_POLL_CONTROLLER
466static void sundance_poll_controller(struct net_device *dev)
467{
468 struct netdev_private *np = netdev_priv(dev);
469
470 disable_irq(np->pci_dev->irq);
471 intr_handler(np->pci_dev->irq, dev);
472 enable_irq(np->pci_dev->irq);
473}
474#endif
475
476static const struct net_device_ops netdev_ops = {
477 .ndo_open = netdev_open,
478 .ndo_stop = netdev_close,
479 .ndo_start_xmit = start_tx,
480 .ndo_get_stats = get_stats,
481 .ndo_set_rx_mode = set_rx_mode,
482 .ndo_eth_ioctl = netdev_ioctl,
483 .ndo_tx_timeout = tx_timeout,
484 .ndo_change_mtu = change_mtu,
485 .ndo_set_mac_address = sundance_set_mac_addr,
486 .ndo_validate_addr = eth_validate_addr,
487#ifdef CONFIG_NET_POLL_CONTROLLER
488 .ndo_poll_controller = sundance_poll_controller,
489#endif
490};
491
492static int sundance_probe1(struct pci_dev *pdev,
493 const struct pci_device_id *ent)
494{
495 struct net_device *dev;
496 struct netdev_private *np;
497 static int card_idx;
498 int chip_idx = ent->driver_data;
499 int irq;
500 int i;
501 void __iomem *ioaddr;
502 u16 mii_ctl;
503 void *ring_space;
504 dma_addr_t ring_dma;
505#ifdef USE_IO_OPS
506 int bar = 0;
507#else
508 int bar = 1;
509#endif
510 int phy, phy_end, phy_idx = 0;
511 __le16 addr[ETH_ALEN / 2];
512
513 if (pci_enable_device(pdev))
514 return -EIO;
515 pci_set_master(pdev);
516
517 irq = pdev->irq;
518
519 dev = alloc_etherdev(sizeof(*np));
520 if (!dev)
521 return -ENOMEM;
522 SET_NETDEV_DEV(dev, &pdev->dev);
523
524 if (pci_request_regions(pdev, DRV_NAME))
525 goto err_out_netdev;
526
527 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
528 if (!ioaddr)
529 goto err_out_res;
530
531 for (i = 0; i < 3; i++)
532 addr[i] =
533 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
534 eth_hw_addr_set(dev, (u8 *)addr);
535
536 np = netdev_priv(dev);
537 np->ndev = dev;
538 np->base = ioaddr;
539 np->pci_dev = pdev;
540 np->chip_id = chip_idx;
541 np->msg_enable = (1 << debug) - 1;
542 spin_lock_init(&np->lock);
543 spin_lock_init(&np->statlock);
544 tasklet_setup(&np->rx_tasklet, rx_poll);
545 tasklet_setup(&np->tx_tasklet, tx_poll);
546
547 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
548 &ring_dma, GFP_KERNEL);
549 if (!ring_space)
550 goto err_out_cleardev;
551 np->tx_ring = (struct netdev_desc *)ring_space;
552 np->tx_ring_dma = ring_dma;
553
554 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
555 &ring_dma, GFP_KERNEL);
556 if (!ring_space)
557 goto err_out_unmap_tx;
558 np->rx_ring = (struct netdev_desc *)ring_space;
559 np->rx_ring_dma = ring_dma;
560
561 np->mii_if.dev = dev;
562 np->mii_if.mdio_read = mdio_read;
563 np->mii_if.mdio_write = mdio_write;
564 np->mii_if.phy_id_mask = 0x1f;
565 np->mii_if.reg_num_mask = 0x1f;
566
567 /* The chip-specific entries in the device structure. */
568 dev->netdev_ops = &netdev_ops;
569 dev->ethtool_ops = ðtool_ops;
570 dev->watchdog_timeo = TX_TIMEOUT;
571
572 /* MTU range: 68 - 8191 */
573 dev->min_mtu = ETH_MIN_MTU;
574 dev->max_mtu = 8191;
575
576 pci_set_drvdata(pdev, dev);
577
578 i = register_netdev(dev);
579 if (i)
580 goto err_out_unmap_rx;
581
582 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
583 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
584 dev->dev_addr, irq);
585
586 np->phys[0] = 1; /* Default setting */
587 np->mii_preamble_required++;
588
589 /*
590 * It seems some phys doesn't deal well with address 0 being accessed
591 * first
592 */
593 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
594 phy = 0;
595 phy_end = 31;
596 } else {
597 phy = 1;
598 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
599 }
600 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
601 int phyx = phy & 0x1f;
602 int mii_status = mdio_read(dev, phyx, MII_BMSR);
603 if (mii_status != 0xffff && mii_status != 0x0000) {
604 np->phys[phy_idx++] = phyx;
605 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
606 if ((mii_status & 0x0040) == 0)
607 np->mii_preamble_required++;
608 printk(KERN_INFO "%s: MII PHY found at address %d, status "
609 "0x%4.4x advertising %4.4x.\n",
610 dev->name, phyx, mii_status, np->mii_if.advertising);
611 }
612 }
613 np->mii_preamble_required--;
614
615 if (phy_idx == 0) {
616 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
617 dev->name, ioread32(ioaddr + ASICCtrl));
618 goto err_out_unregister;
619 }
620
621 np->mii_if.phy_id = np->phys[0];
622
623 /* Parse override configuration */
624 np->an_enable = 1;
625 if (card_idx < MAX_UNITS) {
626 if (media[card_idx] != NULL) {
627 np->an_enable = 0;
628 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
629 strcmp (media[card_idx], "4") == 0) {
630 np->speed = 100;
631 np->mii_if.full_duplex = 1;
632 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
633 strcmp (media[card_idx], "3") == 0) {
634 np->speed = 100;
635 np->mii_if.full_duplex = 0;
636 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
637 strcmp (media[card_idx], "2") == 0) {
638 np->speed = 10;
639 np->mii_if.full_duplex = 1;
640 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
641 strcmp (media[card_idx], "1") == 0) {
642 np->speed = 10;
643 np->mii_if.full_duplex = 0;
644 } else {
645 np->an_enable = 1;
646 }
647 }
648 if (flowctrl == 1)
649 np->flowctrl = 1;
650 }
651
652 /* Fibre PHY? */
653 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
654 /* Default 100Mbps Full */
655 if (np->an_enable) {
656 np->speed = 100;
657 np->mii_if.full_duplex = 1;
658 np->an_enable = 0;
659 }
660 }
661 /* Reset PHY */
662 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
663 mdelay (300);
664 /* If flow control enabled, we need to advertise it.*/
665 if (np->flowctrl)
666 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
667 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
668 /* Force media type */
669 if (!np->an_enable) {
670 mii_ctl = 0;
671 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
672 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
673 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
674 printk (KERN_INFO "Override speed=%d, %s duplex\n",
675 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
676
677 }
678
679 /* Perhaps move the reset here? */
680 /* Reset the chip to erase previous misconfiguration. */
681 if (netif_msg_hw(np))
682 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
683 sundance_reset(dev, 0x00ff << 16);
684 if (netif_msg_hw(np))
685 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
686
687 card_idx++;
688 return 0;
689
690err_out_unregister:
691 unregister_netdev(dev);
692err_out_unmap_rx:
693 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
694 np->rx_ring, np->rx_ring_dma);
695err_out_unmap_tx:
696 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
697 np->tx_ring, np->tx_ring_dma);
698err_out_cleardev:
699 pci_iounmap(pdev, ioaddr);
700err_out_res:
701 pci_release_regions(pdev);
702err_out_netdev:
703 free_netdev (dev);
704 return -ENODEV;
705}
706
707static int change_mtu(struct net_device *dev, int new_mtu)
708{
709 if (netif_running(dev))
710 return -EBUSY;
711 dev->mtu = new_mtu;
712 return 0;
713}
714
715#define eeprom_delay(ee_addr) ioread32(ee_addr)
716/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
717static int eeprom_read(void __iomem *ioaddr, int location)
718{
719 int boguscnt = 10000; /* Typical 1900 ticks. */
720 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
721 do {
722 eeprom_delay(ioaddr + EECtrl);
723 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
724 return ioread16(ioaddr + EEData);
725 }
726 } while (--boguscnt > 0);
727 return 0;
728}
729
730/* MII transceiver control section.
731 Read and write the MII registers using software-generated serial
732 MDIO protocol. See the MII specifications or DP83840A data sheet
733 for details.
734
735 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
736 met by back-to-back 33Mhz PCI cycles. */
737#define mdio_delay() ioread8(mdio_addr)
738
739enum mii_reg_bits {
740 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
741};
742#define MDIO_EnbIn (0)
743#define MDIO_WRITE0 (MDIO_EnbOutput)
744#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
745
746/* Generate the preamble required for initial synchronization and
747 a few older transceivers. */
748static void mdio_sync(void __iomem *mdio_addr)
749{
750 int bits = 32;
751
752 /* Establish sync by sending at least 32 logic ones. */
753 while (--bits >= 0) {
754 iowrite8(MDIO_WRITE1, mdio_addr);
755 mdio_delay();
756 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
757 mdio_delay();
758 }
759}
760
761static int mdio_read(struct net_device *dev, int phy_id, int location)
762{
763 struct netdev_private *np = netdev_priv(dev);
764 void __iomem *mdio_addr = np->base + MIICtrl;
765 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
766 int i, retval = 0;
767
768 if (np->mii_preamble_required)
769 mdio_sync(mdio_addr);
770
771 /* Shift the read command bits out. */
772 for (i = 15; i >= 0; i--) {
773 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
774
775 iowrite8(dataval, mdio_addr);
776 mdio_delay();
777 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
778 mdio_delay();
779 }
780 /* Read the two transition, 16 data, and wire-idle bits. */
781 for (i = 19; i > 0; i--) {
782 iowrite8(MDIO_EnbIn, mdio_addr);
783 mdio_delay();
784 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
785 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
786 mdio_delay();
787 }
788 return (retval>>1) & 0xffff;
789}
790
791static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
792{
793 struct netdev_private *np = netdev_priv(dev);
794 void __iomem *mdio_addr = np->base + MIICtrl;
795 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
796 int i;
797
798 if (np->mii_preamble_required)
799 mdio_sync(mdio_addr);
800
801 /* Shift the command bits out. */
802 for (i = 31; i >= 0; i--) {
803 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
804
805 iowrite8(dataval, mdio_addr);
806 mdio_delay();
807 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
808 mdio_delay();
809 }
810 /* Clear out extra bits. */
811 for (i = 2; i > 0; i--) {
812 iowrite8(MDIO_EnbIn, mdio_addr);
813 mdio_delay();
814 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
815 mdio_delay();
816 }
817}
818
819static int mdio_wait_link(struct net_device *dev, int wait)
820{
821 int bmsr;
822 int phy_id;
823 struct netdev_private *np;
824
825 np = netdev_priv(dev);
826 phy_id = np->phys[0];
827
828 do {
829 bmsr = mdio_read(dev, phy_id, MII_BMSR);
830 if (bmsr & 0x0004)
831 return 0;
832 mdelay(1);
833 } while (--wait > 0);
834 return -1;
835}
836
837static int netdev_open(struct net_device *dev)
838{
839 struct netdev_private *np = netdev_priv(dev);
840 void __iomem *ioaddr = np->base;
841 const int irq = np->pci_dev->irq;
842 unsigned long flags;
843 int i;
844
845 sundance_reset(dev, 0x00ff << 16);
846
847 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
848 if (i)
849 return i;
850
851 if (netif_msg_ifup(np))
852 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
853
854 init_ring(dev);
855
856 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
857 /* The Tx list pointer is written as packets are queued. */
858
859 /* Initialize other registers. */
860 __set_mac_addr(dev);
861#if IS_ENABLED(CONFIG_VLAN_8021Q)
862 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
863#else
864 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
865#endif
866 if (dev->mtu > 2047)
867 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
868
869 /* Configure the PCI bus bursts and FIFO thresholds. */
870
871 if (dev->if_port == 0)
872 dev->if_port = np->default_port;
873
874 spin_lock_init(&np->mcastlock);
875
876 set_rx_mode(dev);
877 iowrite16(0, ioaddr + IntrEnable);
878 iowrite16(0, ioaddr + DownCounter);
879 /* Set the chip to poll every N*320nsec. */
880 iowrite8(100, ioaddr + RxDMAPollPeriod);
881 iowrite8(127, ioaddr + TxDMAPollPeriod);
882 /* Fix DFE-580TX packet drop issue */
883 if (np->pci_dev->revision >= 0x14)
884 iowrite8(0x01, ioaddr + DebugCtrl1);
885 netif_start_queue(dev);
886
887 spin_lock_irqsave(&np->lock, flags);
888 reset_tx(dev);
889 spin_unlock_irqrestore(&np->lock, flags);
890
891 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
892
893 /* Disable Wol */
894 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
895 np->wol_enabled = 0;
896
897 if (netif_msg_ifup(np))
898 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
899 "MAC Control %x, %4.4x %4.4x.\n",
900 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
901 ioread32(ioaddr + MACCtrl0),
902 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
903
904 /* Set the timer to check for link beat. */
905 timer_setup(&np->timer, netdev_timer, 0);
906 np->timer.expires = jiffies + 3*HZ;
907 add_timer(&np->timer);
908
909 /* Enable interrupts by setting the interrupt mask. */
910 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
911
912 return 0;
913}
914
915static void check_duplex(struct net_device *dev)
916{
917 struct netdev_private *np = netdev_priv(dev);
918 void __iomem *ioaddr = np->base;
919 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
920 int negotiated = mii_lpa & np->mii_if.advertising;
921 int duplex;
922
923 /* Force media */
924 if (!np->an_enable || mii_lpa == 0xffff) {
925 if (np->mii_if.full_duplex)
926 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
927 ioaddr + MACCtrl0);
928 return;
929 }
930
931 /* Autonegotiation */
932 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
933 if (np->mii_if.full_duplex != duplex) {
934 np->mii_if.full_duplex = duplex;
935 if (netif_msg_link(np))
936 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
937 "negotiated capability %4.4x.\n", dev->name,
938 duplex ? "full" : "half", np->phys[0], negotiated);
939 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
940 }
941}
942
943static void netdev_timer(struct timer_list *t)
944{
945 struct netdev_private *np = from_timer(np, t, timer);
946 struct net_device *dev = np->mii_if.dev;
947 void __iomem *ioaddr = np->base;
948 int next_tick = 10*HZ;
949
950 if (netif_msg_timer(np)) {
951 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
952 "Tx %x Rx %x.\n",
953 dev->name, ioread16(ioaddr + IntrEnable),
954 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
955 }
956 check_duplex(dev);
957 np->timer.expires = jiffies + next_tick;
958 add_timer(&np->timer);
959}
960
961static void tx_timeout(struct net_device *dev, unsigned int txqueue)
962{
963 struct netdev_private *np = netdev_priv(dev);
964 void __iomem *ioaddr = np->base;
965 unsigned long flag;
966
967 netif_stop_queue(dev);
968 tasklet_disable_in_atomic(&np->tx_tasklet);
969 iowrite16(0, ioaddr + IntrEnable);
970 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
971 "TxFrameId %2.2x,"
972 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
973 ioread8(ioaddr + TxFrameId));
974
975 {
976 int i;
977 for (i=0; i<TX_RING_SIZE; i++) {
978 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
979 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
980 le32_to_cpu(np->tx_ring[i].next_desc),
981 le32_to_cpu(np->tx_ring[i].status),
982 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
983 le32_to_cpu(np->tx_ring[i].frag.addr),
984 le32_to_cpu(np->tx_ring[i].frag.length));
985 }
986 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
987 ioread32(np->base + TxListPtr),
988 netif_queue_stopped(dev));
989 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
990 np->cur_tx, np->cur_tx % TX_RING_SIZE,
991 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
992 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
993 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
994 }
995 spin_lock_irqsave(&np->lock, flag);
996
997 /* Stop and restart the chip's Tx processes . */
998 reset_tx(dev);
999 spin_unlock_irqrestore(&np->lock, flag);
1000
1001 dev->if_port = 0;
1002
1003 netif_trans_update(dev); /* prevent tx timeout */
1004 dev->stats.tx_errors++;
1005 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1006 netif_wake_queue(dev);
1007 }
1008 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1009 tasklet_enable(&np->tx_tasklet);
1010}
1011
1012
1013/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1014static void init_ring(struct net_device *dev)
1015{
1016 struct netdev_private *np = netdev_priv(dev);
1017 int i;
1018
1019 np->cur_rx = np->cur_tx = 0;
1020 np->dirty_rx = np->dirty_tx = 0;
1021 np->cur_task = 0;
1022
1023 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1024
1025 /* Initialize all Rx descriptors. */
1026 for (i = 0; i < RX_RING_SIZE; i++) {
1027 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1028 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1029 np->rx_ring[i].status = 0;
1030 np->rx_ring[i].frag.length = 0;
1031 np->rx_skbuff[i] = NULL;
1032 }
1033
1034 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1035 for (i = 0; i < RX_RING_SIZE; i++) {
1036 struct sk_buff *skb =
1037 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1038 np->rx_skbuff[i] = skb;
1039 if (skb == NULL)
1040 break;
1041 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1042 np->rx_ring[i].frag.addr = cpu_to_le32(
1043 dma_map_single(&np->pci_dev->dev, skb->data,
1044 np->rx_buf_sz, DMA_FROM_DEVICE));
1045 if (dma_mapping_error(&np->pci_dev->dev,
1046 np->rx_ring[i].frag.addr)) {
1047 dev_kfree_skb(skb);
1048 np->rx_skbuff[i] = NULL;
1049 break;
1050 }
1051 np->rx_ring[i].frag.length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1052 }
1053 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1054
1055 for (i = 0; i < TX_RING_SIZE; i++) {
1056 np->tx_skbuff[i] = NULL;
1057 np->tx_ring[i].status = 0;
1058 }
1059}
1060
1061static void tx_poll(struct tasklet_struct *t)
1062{
1063 struct netdev_private *np = from_tasklet(np, t, tx_tasklet);
1064 unsigned head = np->cur_task % TX_RING_SIZE;
1065 struct netdev_desc *txdesc =
1066 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1067
1068 /* Chain the next pointer */
1069 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1070 int entry = np->cur_task % TX_RING_SIZE;
1071 txdesc = &np->tx_ring[entry];
1072 if (np->last_tx) {
1073 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1074 entry*sizeof(struct netdev_desc));
1075 }
1076 np->last_tx = txdesc;
1077 }
1078 /* Indicate the latest descriptor of tx ring */
1079 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1080
1081 if (ioread32 (np->base + TxListPtr) == 0)
1082 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1083 np->base + TxListPtr);
1084}
1085
1086static netdev_tx_t
1087start_tx (struct sk_buff *skb, struct net_device *dev)
1088{
1089 struct netdev_private *np = netdev_priv(dev);
1090 struct netdev_desc *txdesc;
1091 unsigned entry;
1092
1093 /* Calculate the next Tx descriptor entry. */
1094 entry = np->cur_tx % TX_RING_SIZE;
1095 np->tx_skbuff[entry] = skb;
1096 txdesc = &np->tx_ring[entry];
1097
1098 txdesc->next_desc = 0;
1099 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1100 txdesc->frag.addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1101 skb->data, skb->len, DMA_TO_DEVICE));
1102 if (dma_mapping_error(&np->pci_dev->dev,
1103 txdesc->frag.addr))
1104 goto drop_frame;
1105 txdesc->frag.length = cpu_to_le32 (skb->len | LastFrag);
1106
1107 /* Increment cur_tx before tasklet_schedule() */
1108 np->cur_tx++;
1109 mb();
1110 /* Schedule a tx_poll() task */
1111 tasklet_schedule(&np->tx_tasklet);
1112
1113 /* On some architectures: explicitly flush cache lines here. */
1114 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1115 !netif_queue_stopped(dev)) {
1116 /* do nothing */
1117 } else {
1118 netif_stop_queue (dev);
1119 }
1120 if (netif_msg_tx_queued(np)) {
1121 printk (KERN_DEBUG
1122 "%s: Transmit frame #%d queued in slot %d.\n",
1123 dev->name, np->cur_tx, entry);
1124 }
1125 return NETDEV_TX_OK;
1126
1127drop_frame:
1128 dev_kfree_skb_any(skb);
1129 np->tx_skbuff[entry] = NULL;
1130 dev->stats.tx_dropped++;
1131 return NETDEV_TX_OK;
1132}
1133
1134/* Reset hardware tx and free all of tx buffers */
1135static int
1136reset_tx (struct net_device *dev)
1137{
1138 struct netdev_private *np = netdev_priv(dev);
1139 void __iomem *ioaddr = np->base;
1140 struct sk_buff *skb;
1141 int i;
1142
1143 /* Reset tx logic, TxListPtr will be cleaned */
1144 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1145 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1146
1147 /* free all tx skbuff */
1148 for (i = 0; i < TX_RING_SIZE; i++) {
1149 np->tx_ring[i].next_desc = 0;
1150
1151 skb = np->tx_skbuff[i];
1152 if (skb) {
1153 dma_unmap_single(&np->pci_dev->dev,
1154 le32_to_cpu(np->tx_ring[i].frag.addr),
1155 skb->len, DMA_TO_DEVICE);
1156 dev_kfree_skb_any(skb);
1157 np->tx_skbuff[i] = NULL;
1158 dev->stats.tx_dropped++;
1159 }
1160 }
1161 np->cur_tx = np->dirty_tx = 0;
1162 np->cur_task = 0;
1163
1164 np->last_tx = NULL;
1165 iowrite8(127, ioaddr + TxDMAPollPeriod);
1166
1167 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1168 return 0;
1169}
1170
1171/* The interrupt handler cleans up after the Tx thread,
1172 and schedule a Rx thread work */
1173static irqreturn_t intr_handler(int irq, void *dev_instance)
1174{
1175 struct net_device *dev = (struct net_device *)dev_instance;
1176 struct netdev_private *np = netdev_priv(dev);
1177 void __iomem *ioaddr = np->base;
1178 int hw_frame_id;
1179 int tx_cnt;
1180 int tx_status;
1181 int handled = 0;
1182 int i;
1183
1184 do {
1185 int intr_status = ioread16(ioaddr + IntrStatus);
1186 iowrite16(intr_status, ioaddr + IntrStatus);
1187
1188 if (netif_msg_intr(np))
1189 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1190 dev->name, intr_status);
1191
1192 if (!(intr_status & DEFAULT_INTR))
1193 break;
1194
1195 handled = 1;
1196
1197 if (intr_status & (IntrRxDMADone)) {
1198 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1199 ioaddr + IntrEnable);
1200 if (np->budget < 0)
1201 np->budget = RX_BUDGET;
1202 tasklet_schedule(&np->rx_tasklet);
1203 }
1204 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1205 tx_status = ioread16 (ioaddr + TxStatus);
1206 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1207 if (netif_msg_tx_done(np))
1208 printk
1209 ("%s: Transmit status is %2.2x.\n",
1210 dev->name, tx_status);
1211 if (tx_status & 0x1e) {
1212 if (netif_msg_tx_err(np))
1213 printk("%s: Transmit error status %4.4x.\n",
1214 dev->name, tx_status);
1215 dev->stats.tx_errors++;
1216 if (tx_status & 0x10)
1217 dev->stats.tx_fifo_errors++;
1218 if (tx_status & 0x08)
1219 dev->stats.collisions++;
1220 if (tx_status & 0x04)
1221 dev->stats.tx_fifo_errors++;
1222 if (tx_status & 0x02)
1223 dev->stats.tx_window_errors++;
1224
1225 /*
1226 ** This reset has been verified on
1227 ** DFE-580TX boards ! phdm@macqel.be.
1228 */
1229 if (tx_status & 0x10) { /* TxUnderrun */
1230 /* Restart Tx FIFO and transmitter */
1231 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1232 /* No need to reset the Tx pointer here */
1233 }
1234 /* Restart the Tx. Need to make sure tx enabled */
1235 i = 10;
1236 do {
1237 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1238 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1239 break;
1240 mdelay(1);
1241 } while (--i);
1242 }
1243 /* Yup, this is a documentation bug. It cost me *hours*. */
1244 iowrite16 (0, ioaddr + TxStatus);
1245 if (tx_cnt < 0) {
1246 iowrite32(5000, ioaddr + DownCounter);
1247 break;
1248 }
1249 tx_status = ioread16 (ioaddr + TxStatus);
1250 }
1251 hw_frame_id = (tx_status >> 8) & 0xff;
1252 } else {
1253 hw_frame_id = ioread8(ioaddr + TxFrameId);
1254 }
1255
1256 if (np->pci_dev->revision >= 0x14) {
1257 spin_lock(&np->lock);
1258 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1259 int entry = np->dirty_tx % TX_RING_SIZE;
1260 struct sk_buff *skb;
1261 int sw_frame_id;
1262 sw_frame_id = (le32_to_cpu(
1263 np->tx_ring[entry].status) >> 2) & 0xff;
1264 if (sw_frame_id == hw_frame_id &&
1265 !(le32_to_cpu(np->tx_ring[entry].status)
1266 & 0x00010000))
1267 break;
1268 if (sw_frame_id == (hw_frame_id + 1) %
1269 TX_RING_SIZE)
1270 break;
1271 skb = np->tx_skbuff[entry];
1272 /* Free the original skb. */
1273 dma_unmap_single(&np->pci_dev->dev,
1274 le32_to_cpu(np->tx_ring[entry].frag.addr),
1275 skb->len, DMA_TO_DEVICE);
1276 dev_consume_skb_irq(np->tx_skbuff[entry]);
1277 np->tx_skbuff[entry] = NULL;
1278 np->tx_ring[entry].frag.addr = 0;
1279 np->tx_ring[entry].frag.length = 0;
1280 }
1281 spin_unlock(&np->lock);
1282 } else {
1283 spin_lock(&np->lock);
1284 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1285 int entry = np->dirty_tx % TX_RING_SIZE;
1286 struct sk_buff *skb;
1287 if (!(le32_to_cpu(np->tx_ring[entry].status)
1288 & 0x00010000))
1289 break;
1290 skb = np->tx_skbuff[entry];
1291 /* Free the original skb. */
1292 dma_unmap_single(&np->pci_dev->dev,
1293 le32_to_cpu(np->tx_ring[entry].frag.addr),
1294 skb->len, DMA_TO_DEVICE);
1295 dev_consume_skb_irq(np->tx_skbuff[entry]);
1296 np->tx_skbuff[entry] = NULL;
1297 np->tx_ring[entry].frag.addr = 0;
1298 np->tx_ring[entry].frag.length = 0;
1299 }
1300 spin_unlock(&np->lock);
1301 }
1302
1303 if (netif_queue_stopped(dev) &&
1304 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1305 /* The ring is no longer full, clear busy flag. */
1306 netif_wake_queue (dev);
1307 }
1308 /* Abnormal error summary/uncommon events handlers. */
1309 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1310 netdev_error(dev, intr_status);
1311 } while (0);
1312 if (netif_msg_intr(np))
1313 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1314 dev->name, ioread16(ioaddr + IntrStatus));
1315 return IRQ_RETVAL(handled);
1316}
1317
1318static void rx_poll(struct tasklet_struct *t)
1319{
1320 struct netdev_private *np = from_tasklet(np, t, rx_tasklet);
1321 struct net_device *dev = np->ndev;
1322 int entry = np->cur_rx % RX_RING_SIZE;
1323 int boguscnt = np->budget;
1324 void __iomem *ioaddr = np->base;
1325 int received = 0;
1326
1327 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1328 while (1) {
1329 struct netdev_desc *desc = &(np->rx_ring[entry]);
1330 u32 frame_status = le32_to_cpu(desc->status);
1331 int pkt_len;
1332
1333 if (--boguscnt < 0) {
1334 goto not_done;
1335 }
1336 if (!(frame_status & DescOwn))
1337 break;
1338 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1339 if (netif_msg_rx_status(np))
1340 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1341 frame_status);
1342 if (frame_status & 0x001f4000) {
1343 /* There was a error. */
1344 if (netif_msg_rx_err(np))
1345 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1346 frame_status);
1347 dev->stats.rx_errors++;
1348 if (frame_status & 0x00100000)
1349 dev->stats.rx_length_errors++;
1350 if (frame_status & 0x00010000)
1351 dev->stats.rx_fifo_errors++;
1352 if (frame_status & 0x00060000)
1353 dev->stats.rx_frame_errors++;
1354 if (frame_status & 0x00080000)
1355 dev->stats.rx_crc_errors++;
1356 if (frame_status & 0x00100000) {
1357 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1358 " status %8.8x.\n",
1359 dev->name, frame_status);
1360 }
1361 } else {
1362 struct sk_buff *skb;
1363#ifndef final_version
1364 if (netif_msg_rx_status(np))
1365 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1366 ", bogus_cnt %d.\n",
1367 pkt_len, boguscnt);
1368#endif
1369 /* Check if the packet is long enough to accept without copying
1370 to a minimally-sized skbuff. */
1371 if (pkt_len < rx_copybreak &&
1372 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1373 skb_reserve(skb, 2); /* 16 byte align the IP header */
1374 dma_sync_single_for_cpu(&np->pci_dev->dev,
1375 le32_to_cpu(desc->frag.addr),
1376 np->rx_buf_sz, DMA_FROM_DEVICE);
1377 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1378 dma_sync_single_for_device(&np->pci_dev->dev,
1379 le32_to_cpu(desc->frag.addr),
1380 np->rx_buf_sz, DMA_FROM_DEVICE);
1381 skb_put(skb, pkt_len);
1382 } else {
1383 dma_unmap_single(&np->pci_dev->dev,
1384 le32_to_cpu(desc->frag.addr),
1385 np->rx_buf_sz, DMA_FROM_DEVICE);
1386 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1387 np->rx_skbuff[entry] = NULL;
1388 }
1389 skb->protocol = eth_type_trans(skb, dev);
1390 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1391 netif_rx(skb);
1392 }
1393 entry = (entry + 1) % RX_RING_SIZE;
1394 received++;
1395 }
1396 np->cur_rx = entry;
1397 refill_rx (dev);
1398 np->budget -= received;
1399 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1400 return;
1401
1402not_done:
1403 np->cur_rx = entry;
1404 refill_rx (dev);
1405 if (!received)
1406 received = 1;
1407 np->budget -= received;
1408 if (np->budget <= 0)
1409 np->budget = RX_BUDGET;
1410 tasklet_schedule(&np->rx_tasklet);
1411}
1412
1413static void refill_rx (struct net_device *dev)
1414{
1415 struct netdev_private *np = netdev_priv(dev);
1416 int entry;
1417
1418 /* Refill the Rx ring buffers. */
1419 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1420 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1421 struct sk_buff *skb;
1422 entry = np->dirty_rx % RX_RING_SIZE;
1423 if (np->rx_skbuff[entry] == NULL) {
1424 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1425 np->rx_skbuff[entry] = skb;
1426 if (skb == NULL)
1427 break; /* Better luck next round. */
1428 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1429 np->rx_ring[entry].frag.addr = cpu_to_le32(
1430 dma_map_single(&np->pci_dev->dev, skb->data,
1431 np->rx_buf_sz, DMA_FROM_DEVICE));
1432 if (dma_mapping_error(&np->pci_dev->dev,
1433 np->rx_ring[entry].frag.addr)) {
1434 dev_kfree_skb_irq(skb);
1435 np->rx_skbuff[entry] = NULL;
1436 break;
1437 }
1438 }
1439 /* Perhaps we need not reset this field. */
1440 np->rx_ring[entry].frag.length =
1441 cpu_to_le32(np->rx_buf_sz | LastFrag);
1442 np->rx_ring[entry].status = 0;
1443 }
1444}
1445static void netdev_error(struct net_device *dev, int intr_status)
1446{
1447 struct netdev_private *np = netdev_priv(dev);
1448 void __iomem *ioaddr = np->base;
1449 u16 mii_ctl, mii_advertise, mii_lpa;
1450 int speed;
1451
1452 if (intr_status & LinkChange) {
1453 if (mdio_wait_link(dev, 10) == 0) {
1454 printk(KERN_INFO "%s: Link up\n", dev->name);
1455 if (np->an_enable) {
1456 mii_advertise = mdio_read(dev, np->phys[0],
1457 MII_ADVERTISE);
1458 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1459 mii_advertise &= mii_lpa;
1460 printk(KERN_INFO "%s: Link changed: ",
1461 dev->name);
1462 if (mii_advertise & ADVERTISE_100FULL) {
1463 np->speed = 100;
1464 printk("100Mbps, full duplex\n");
1465 } else if (mii_advertise & ADVERTISE_100HALF) {
1466 np->speed = 100;
1467 printk("100Mbps, half duplex\n");
1468 } else if (mii_advertise & ADVERTISE_10FULL) {
1469 np->speed = 10;
1470 printk("10Mbps, full duplex\n");
1471 } else if (mii_advertise & ADVERTISE_10HALF) {
1472 np->speed = 10;
1473 printk("10Mbps, half duplex\n");
1474 } else
1475 printk("\n");
1476
1477 } else {
1478 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1479 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1480 np->speed = speed;
1481 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1482 dev->name, speed);
1483 printk("%s duplex.\n",
1484 (mii_ctl & BMCR_FULLDPLX) ?
1485 "full" : "half");
1486 }
1487 check_duplex(dev);
1488 if (np->flowctrl && np->mii_if.full_duplex) {
1489 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1490 ioaddr + MulticastFilter1+2);
1491 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1492 ioaddr + MACCtrl0);
1493 }
1494 netif_carrier_on(dev);
1495 } else {
1496 printk(KERN_INFO "%s: Link down\n", dev->name);
1497 netif_carrier_off(dev);
1498 }
1499 }
1500 if (intr_status & StatsMax) {
1501 get_stats(dev);
1502 }
1503 if (intr_status & IntrPCIErr) {
1504 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1505 dev->name, intr_status);
1506 /* We must do a global reset of DMA to continue. */
1507 }
1508}
1509
1510static struct net_device_stats *get_stats(struct net_device *dev)
1511{
1512 struct netdev_private *np = netdev_priv(dev);
1513 void __iomem *ioaddr = np->base;
1514 unsigned long flags;
1515 u8 late_coll, single_coll, mult_coll;
1516
1517 spin_lock_irqsave(&np->statlock, flags);
1518 /* The chip only need report frame silently dropped. */
1519 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1520 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1521 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1522 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1523
1524 mult_coll = ioread8(ioaddr + StatsMultiColl);
1525 np->xstats.tx_multiple_collisions += mult_coll;
1526 single_coll = ioread8(ioaddr + StatsOneColl);
1527 np->xstats.tx_single_collisions += single_coll;
1528 late_coll = ioread8(ioaddr + StatsLateColl);
1529 np->xstats.tx_late_collisions += late_coll;
1530 dev->stats.collisions += mult_coll
1531 + single_coll
1532 + late_coll;
1533
1534 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1535 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1536 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1537 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1538 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1539 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1540 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1541
1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1543 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1545 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1546
1547 spin_unlock_irqrestore(&np->statlock, flags);
1548
1549 return &dev->stats;
1550}
1551
1552static void set_rx_mode(struct net_device *dev)
1553{
1554 struct netdev_private *np = netdev_priv(dev);
1555 void __iomem *ioaddr = np->base;
1556 u16 mc_filter[4]; /* Multicast hash filter */
1557 u32 rx_mode;
1558 int i;
1559
1560 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1561 memset(mc_filter, 0xff, sizeof(mc_filter));
1562 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1563 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1564 (dev->flags & IFF_ALLMULTI)) {
1565 /* Too many to match, or accept all multicasts. */
1566 memset(mc_filter, 0xff, sizeof(mc_filter));
1567 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1568 } else if (!netdev_mc_empty(dev)) {
1569 struct netdev_hw_addr *ha;
1570 int bit;
1571 int index;
1572 int crc;
1573 memset (mc_filter, 0, sizeof (mc_filter));
1574 netdev_for_each_mc_addr(ha, dev) {
1575 crc = ether_crc_le(ETH_ALEN, ha->addr);
1576 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1577 if (crc & 0x80000000) index |= 1 << bit;
1578 mc_filter[index/16] |= (1 << (index % 16));
1579 }
1580 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1581 } else {
1582 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1583 return;
1584 }
1585 if (np->mii_if.full_duplex && np->flowctrl)
1586 mc_filter[3] |= 0x0200;
1587
1588 for (i = 0; i < 4; i++)
1589 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1590 iowrite8(rx_mode, ioaddr + RxMode);
1591}
1592
1593static int __set_mac_addr(struct net_device *dev)
1594{
1595 struct netdev_private *np = netdev_priv(dev);
1596 u16 addr16;
1597
1598 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1599 iowrite16(addr16, np->base + StationAddr);
1600 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1601 iowrite16(addr16, np->base + StationAddr+2);
1602 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1603 iowrite16(addr16, np->base + StationAddr+4);
1604 return 0;
1605}
1606
1607/* Invoked with rtnl_lock held */
1608static int sundance_set_mac_addr(struct net_device *dev, void *data)
1609{
1610 const struct sockaddr *addr = data;
1611
1612 if (!is_valid_ether_addr(addr->sa_data))
1613 return -EADDRNOTAVAIL;
1614 eth_hw_addr_set(dev, addr->sa_data);
1615 __set_mac_addr(dev);
1616
1617 return 0;
1618}
1619
1620static const struct {
1621 const char name[ETH_GSTRING_LEN];
1622} sundance_stats[] = {
1623 { "tx_multiple_collisions" },
1624 { "tx_single_collisions" },
1625 { "tx_late_collisions" },
1626 { "tx_deferred" },
1627 { "tx_deferred_excessive" },
1628 { "tx_aborted" },
1629 { "tx_bcasts" },
1630 { "rx_bcasts" },
1631 { "tx_mcasts" },
1632 { "rx_mcasts" },
1633};
1634
1635static int check_if_running(struct net_device *dev)
1636{
1637 if (!netif_running(dev))
1638 return -EINVAL;
1639 return 0;
1640}
1641
1642static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1643{
1644 struct netdev_private *np = netdev_priv(dev);
1645 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1646 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1647}
1648
1649static int get_link_ksettings(struct net_device *dev,
1650 struct ethtool_link_ksettings *cmd)
1651{
1652 struct netdev_private *np = netdev_priv(dev);
1653 spin_lock_irq(&np->lock);
1654 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1655 spin_unlock_irq(&np->lock);
1656 return 0;
1657}
1658
1659static int set_link_ksettings(struct net_device *dev,
1660 const struct ethtool_link_ksettings *cmd)
1661{
1662 struct netdev_private *np = netdev_priv(dev);
1663 int res;
1664 spin_lock_irq(&np->lock);
1665 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1666 spin_unlock_irq(&np->lock);
1667 return res;
1668}
1669
1670static int nway_reset(struct net_device *dev)
1671{
1672 struct netdev_private *np = netdev_priv(dev);
1673 return mii_nway_restart(&np->mii_if);
1674}
1675
1676static u32 get_link(struct net_device *dev)
1677{
1678 struct netdev_private *np = netdev_priv(dev);
1679 return mii_link_ok(&np->mii_if);
1680}
1681
1682static u32 get_msglevel(struct net_device *dev)
1683{
1684 struct netdev_private *np = netdev_priv(dev);
1685 return np->msg_enable;
1686}
1687
1688static void set_msglevel(struct net_device *dev, u32 val)
1689{
1690 struct netdev_private *np = netdev_priv(dev);
1691 np->msg_enable = val;
1692}
1693
1694static void get_strings(struct net_device *dev, u32 stringset,
1695 u8 *data)
1696{
1697 if (stringset == ETH_SS_STATS)
1698 memcpy(data, sundance_stats, sizeof(sundance_stats));
1699}
1700
1701static int get_sset_count(struct net_device *dev, int sset)
1702{
1703 switch (sset) {
1704 case ETH_SS_STATS:
1705 return ARRAY_SIZE(sundance_stats);
1706 default:
1707 return -EOPNOTSUPP;
1708 }
1709}
1710
1711static void get_ethtool_stats(struct net_device *dev,
1712 struct ethtool_stats *stats, u64 *data)
1713{
1714 struct netdev_private *np = netdev_priv(dev);
1715 int i = 0;
1716
1717 get_stats(dev);
1718 data[i++] = np->xstats.tx_multiple_collisions;
1719 data[i++] = np->xstats.tx_single_collisions;
1720 data[i++] = np->xstats.tx_late_collisions;
1721 data[i++] = np->xstats.tx_deferred;
1722 data[i++] = np->xstats.tx_deferred_excessive;
1723 data[i++] = np->xstats.tx_aborted;
1724 data[i++] = np->xstats.tx_bcasts;
1725 data[i++] = np->xstats.rx_bcasts;
1726 data[i++] = np->xstats.tx_mcasts;
1727 data[i++] = np->xstats.rx_mcasts;
1728}
1729
1730#ifdef CONFIG_PM
1731
1732static void sundance_get_wol(struct net_device *dev,
1733 struct ethtool_wolinfo *wol)
1734{
1735 struct netdev_private *np = netdev_priv(dev);
1736 void __iomem *ioaddr = np->base;
1737 u8 wol_bits;
1738
1739 wol->wolopts = 0;
1740
1741 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1742 if (!np->wol_enabled)
1743 return;
1744
1745 wol_bits = ioread8(ioaddr + WakeEvent);
1746 if (wol_bits & MagicPktEnable)
1747 wol->wolopts |= WAKE_MAGIC;
1748 if (wol_bits & LinkEventEnable)
1749 wol->wolopts |= WAKE_PHY;
1750}
1751
1752static int sundance_set_wol(struct net_device *dev,
1753 struct ethtool_wolinfo *wol)
1754{
1755 struct netdev_private *np = netdev_priv(dev);
1756 void __iomem *ioaddr = np->base;
1757 u8 wol_bits;
1758
1759 if (!device_can_wakeup(&np->pci_dev->dev))
1760 return -EOPNOTSUPP;
1761
1762 np->wol_enabled = !!(wol->wolopts);
1763 wol_bits = ioread8(ioaddr + WakeEvent);
1764 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1765 LinkEventEnable | WolEnable);
1766
1767 if (np->wol_enabled) {
1768 if (wol->wolopts & WAKE_MAGIC)
1769 wol_bits |= (MagicPktEnable | WolEnable);
1770 if (wol->wolopts & WAKE_PHY)
1771 wol_bits |= (LinkEventEnable | WolEnable);
1772 }
1773 iowrite8(wol_bits, ioaddr + WakeEvent);
1774
1775 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1776
1777 return 0;
1778}
1779#else
1780#define sundance_get_wol NULL
1781#define sundance_set_wol NULL
1782#endif /* CONFIG_PM */
1783
1784static const struct ethtool_ops ethtool_ops = {
1785 .begin = check_if_running,
1786 .get_drvinfo = get_drvinfo,
1787 .nway_reset = nway_reset,
1788 .get_link = get_link,
1789 .get_wol = sundance_get_wol,
1790 .set_wol = sundance_set_wol,
1791 .get_msglevel = get_msglevel,
1792 .set_msglevel = set_msglevel,
1793 .get_strings = get_strings,
1794 .get_sset_count = get_sset_count,
1795 .get_ethtool_stats = get_ethtool_stats,
1796 .get_link_ksettings = get_link_ksettings,
1797 .set_link_ksettings = set_link_ksettings,
1798};
1799
1800static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1801{
1802 struct netdev_private *np = netdev_priv(dev);
1803 int rc;
1804
1805 if (!netif_running(dev))
1806 return -EINVAL;
1807
1808 spin_lock_irq(&np->lock);
1809 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1810 spin_unlock_irq(&np->lock);
1811
1812 return rc;
1813}
1814
1815static int netdev_close(struct net_device *dev)
1816{
1817 struct netdev_private *np = netdev_priv(dev);
1818 void __iomem *ioaddr = np->base;
1819 struct sk_buff *skb;
1820 int i;
1821
1822 /* Wait and kill tasklet */
1823 tasklet_kill(&np->rx_tasklet);
1824 tasklet_kill(&np->tx_tasklet);
1825 np->cur_tx = 0;
1826 np->dirty_tx = 0;
1827 np->cur_task = 0;
1828 np->last_tx = NULL;
1829
1830 netif_stop_queue(dev);
1831
1832 if (netif_msg_ifdown(np)) {
1833 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1834 "Rx %4.4x Int %2.2x.\n",
1835 dev->name, ioread8(ioaddr + TxStatus),
1836 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1837 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1838 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1839 }
1840
1841 /* Disable interrupts by clearing the interrupt mask. */
1842 iowrite16(0x0000, ioaddr + IntrEnable);
1843
1844 /* Disable Rx and Tx DMA for safely release resource */
1845 iowrite32(0x500, ioaddr + DMACtrl);
1846
1847 /* Stop the chip's Tx and Rx processes. */
1848 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1849
1850 for (i = 2000; i > 0; i--) {
1851 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1852 break;
1853 mdelay(1);
1854 }
1855
1856 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1857 ioaddr + ASIC_HI_WORD(ASICCtrl));
1858
1859 for (i = 2000; i > 0; i--) {
1860 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1861 break;
1862 mdelay(1);
1863 }
1864
1865#ifdef __i386__
1866 if (netif_msg_hw(np)) {
1867 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1868 (int)(np->tx_ring_dma));
1869 for (i = 0; i < TX_RING_SIZE; i++)
1870 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1871 i, np->tx_ring[i].status, np->tx_ring[i].frag.addr,
1872 np->tx_ring[i].frag.length);
1873 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1874 (int)(np->rx_ring_dma));
1875 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1876 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1877 i, np->rx_ring[i].status, np->rx_ring[i].frag.addr,
1878 np->rx_ring[i].frag.length);
1879 }
1880 }
1881#endif /* __i386__ debugging only */
1882
1883 free_irq(np->pci_dev->irq, dev);
1884
1885 del_timer_sync(&np->timer);
1886
1887 /* Free all the skbuffs in the Rx queue. */
1888 for (i = 0; i < RX_RING_SIZE; i++) {
1889 np->rx_ring[i].status = 0;
1890 skb = np->rx_skbuff[i];
1891 if (skb) {
1892 dma_unmap_single(&np->pci_dev->dev,
1893 le32_to_cpu(np->rx_ring[i].frag.addr),
1894 np->rx_buf_sz, DMA_FROM_DEVICE);
1895 dev_kfree_skb(skb);
1896 np->rx_skbuff[i] = NULL;
1897 }
1898 np->rx_ring[i].frag.addr = cpu_to_le32(0xBADF00D0); /* poison */
1899 }
1900 for (i = 0; i < TX_RING_SIZE; i++) {
1901 np->tx_ring[i].next_desc = 0;
1902 skb = np->tx_skbuff[i];
1903 if (skb) {
1904 dma_unmap_single(&np->pci_dev->dev,
1905 le32_to_cpu(np->tx_ring[i].frag.addr),
1906 skb->len, DMA_TO_DEVICE);
1907 dev_kfree_skb(skb);
1908 np->tx_skbuff[i] = NULL;
1909 }
1910 }
1911
1912 return 0;
1913}
1914
1915static void sundance_remove1(struct pci_dev *pdev)
1916{
1917 struct net_device *dev = pci_get_drvdata(pdev);
1918
1919 if (dev) {
1920 struct netdev_private *np = netdev_priv(dev);
1921 unregister_netdev(dev);
1922 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1923 np->rx_ring, np->rx_ring_dma);
1924 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1925 np->tx_ring, np->tx_ring_dma);
1926 pci_iounmap(pdev, np->base);
1927 pci_release_regions(pdev);
1928 free_netdev(dev);
1929 }
1930}
1931
1932static int __maybe_unused sundance_suspend(struct device *dev_d)
1933{
1934 struct net_device *dev = dev_get_drvdata(dev_d);
1935 struct netdev_private *np = netdev_priv(dev);
1936 void __iomem *ioaddr = np->base;
1937
1938 if (!netif_running(dev))
1939 return 0;
1940
1941 netdev_close(dev);
1942 netif_device_detach(dev);
1943
1944 if (np->wol_enabled) {
1945 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1946 iowrite16(RxEnable, ioaddr + MACCtrl1);
1947 }
1948
1949 device_set_wakeup_enable(dev_d, np->wol_enabled);
1950
1951 return 0;
1952}
1953
1954static int __maybe_unused sundance_resume(struct device *dev_d)
1955{
1956 struct net_device *dev = dev_get_drvdata(dev_d);
1957 int err = 0;
1958
1959 if (!netif_running(dev))
1960 return 0;
1961
1962 err = netdev_open(dev);
1963 if (err) {
1964 printk(KERN_ERR "%s: Can't resume interface!\n",
1965 dev->name);
1966 goto out;
1967 }
1968
1969 netif_device_attach(dev);
1970
1971out:
1972 return err;
1973}
1974
1975static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume);
1976
1977static struct pci_driver sundance_driver = {
1978 .name = DRV_NAME,
1979 .id_table = sundance_pci_tbl,
1980 .probe = sundance_probe1,
1981 .remove = sundance_remove1,
1982 .driver.pm = &sundance_pm_ops,
1983};
1984
1985module_pci_driver(sundance_driver);
1/* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
2/*
3 Written 1999-2000 by Donald Becker.
4
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
11
12 The author may be reached as becker@scyld.com, or C/O
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
15 Annapolis MD 21403
16
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 http://www.beowulf.org/pipermail/netdrivers/
22
23*/
24
25#define DRV_NAME "sundance"
26#define DRV_VERSION "1.2"
27#define DRV_RELDATE "11-Sep-2006"
28
29
30/* The user-configurable values.
31 These may be modified when a driver module is loaded.*/
32static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
33/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
34 Typical is a 64 element hash table based on the Ethernet CRC. */
35static const int multicast_filter_limit = 32;
36
37/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
38 Setting to > 1518 effectively disables this feature.
39 This chip can receive into offset buffers, so the Alpha does not
40 need a copy-align. */
41static int rx_copybreak;
42static int flowctrl=1;
43
44/* media[] specifies the media type the NIC operates at.
45 autosense Autosensing active media.
46 10mbps_hd 10Mbps half duplex.
47 10mbps_fd 10Mbps full duplex.
48 100mbps_hd 100Mbps half duplex.
49 100mbps_fd 100Mbps full duplex.
50 0 Autosensing active media.
51 1 10Mbps half duplex.
52 2 10Mbps full duplex.
53 3 100Mbps half duplex.
54 4 100Mbps full duplex.
55*/
56#define MAX_UNITS 8
57static char *media[MAX_UNITS];
58
59
60/* Operational parameters that are set at compile time. */
61
62/* Keep the ring sizes a power of two for compile efficiency.
63 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
64 Making the Tx ring too large decreases the effectiveness of channel
65 bonding and packet priority, and more than 128 requires modifying the
66 Tx error recovery.
67 Large receive rings merely waste memory. */
68#define TX_RING_SIZE 32
69#define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
70#define RX_RING_SIZE 64
71#define RX_BUDGET 32
72#define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
73#define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
74
75/* Operational parameters that usually are not changed. */
76/* Time in jiffies before concluding the transmitter is hung. */
77#define TX_TIMEOUT (4*HZ)
78#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
79
80/* Include files, designed to support most kernel versions 2.0.0 and later. */
81#include <linux/module.h>
82#include <linux/kernel.h>
83#include <linux/string.h>
84#include <linux/timer.h>
85#include <linux/errno.h>
86#include <linux/ioport.h>
87#include <linux/interrupt.h>
88#include <linux/pci.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/skbuff.h>
92#include <linux/init.h>
93#include <linux/bitops.h>
94#include <linux/uaccess.h>
95#include <asm/processor.h> /* Processor type for cache alignment. */
96#include <asm/io.h>
97#include <linux/delay.h>
98#include <linux/spinlock.h>
99#include <linux/dma-mapping.h>
100#include <linux/crc32.h>
101#include <linux/ethtool.h>
102#include <linux/mii.h>
103
104/* These identify the driver base version and may not be removed. */
105static const char version[] =
106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE
107 " Written by Donald Becker\n";
108
109MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
110MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
111MODULE_LICENSE("GPL");
112
113module_param(debug, int, 0);
114module_param(rx_copybreak, int, 0);
115module_param_array(media, charp, NULL, 0);
116module_param(flowctrl, int, 0);
117MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
118MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
119MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
120
121/*
122 Theory of Operation
123
124I. Board Compatibility
125
126This driver is designed for the Sundance Technologies "Alta" ST201 chip.
127
128II. Board-specific settings
129
130III. Driver operation
131
132IIIa. Ring buffers
133
134This driver uses two statically allocated fixed-size descriptor lists
135formed into rings by a branch from the final descriptor to the beginning of
136the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
137Some chips explicitly use only 2^N sized rings, while others use a
138'next descriptor' pointer that the driver forms into rings.
139
140IIIb/c. Transmit/Receive Structure
141
142This driver uses a zero-copy receive and transmit scheme.
143The driver allocates full frame size skbuffs for the Rx ring buffers at
144open() time and passes the skb->data field to the chip as receive data
145buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
146a fresh skbuff is allocated and the frame is copied to the new skbuff.
147When the incoming frame is larger, the skbuff is passed directly up the
148protocol stack. Buffers consumed this way are replaced by newly allocated
149skbuffs in a later phase of receives.
150
151The RX_COPYBREAK value is chosen to trade-off the memory wasted by
152using a full-sized skbuff for small frames vs. the copying costs of larger
153frames. New boards are typically used in generously configured machines
154and the underfilled buffers have negligible impact compared to the benefit of
155a single allocation size, so the default value of zero results in never
156copying packets. When copying is done, the cost is usually mitigated by using
157a combined copy/checksum routine. Copying also preloads the cache, which is
158most useful with small frames.
159
160A subtle aspect of the operation is that the IP header at offset 14 in an
161ethernet frame isn't longword aligned for further processing.
162Unaligned buffers are permitted by the Sundance hardware, so
163frames are received into the skbuff at an offset of "+2", 16-byte aligning
164the IP header.
165
166IIId. Synchronization
167
168The driver runs as two independent, single-threaded flows of control. One
169is the send-packet routine, which enforces single-threaded use by the
170dev->tbusy flag. The other thread is the interrupt handler, which is single
171threaded by the hardware and interrupt handling software.
172
173The send packet thread has partial control over the Tx ring and 'dev->tbusy'
174flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
175queue slot is empty, it clears the tbusy flag when finished otherwise it sets
176the 'lp->tx_full' flag.
177
178The interrupt handler has exclusive control over the Rx ring and records stats
179from the Tx ring. After reaping the stats, it marks the Tx queue entry as
180empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
181clears both the tx_full and tbusy flags.
182
183IV. Notes
184
185IVb. References
186
187The Sundance ST201 datasheet, preliminary version.
188The Kendin KS8723 datasheet, preliminary version.
189The ICplus IP100 datasheet, preliminary version.
190http://www.scyld.com/expert/100mbps.html
191http://www.scyld.com/expert/NWay.html
192
193IVc. Errata
194
195*/
196
197/* Work-around for Kendin chip bugs. */
198#ifndef CONFIG_SUNDANCE_MMIO
199#define USE_IO_OPS 1
200#endif
201
202static const struct pci_device_id sundance_pci_tbl[] = {
203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
210 { }
211};
212MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213
214enum {
215 netdev_io_size = 128
216};
217
218struct pci_id_info {
219 const char *name;
220};
221static const struct pci_id_info pci_id_tbl[] = {
222 {"D-Link DFE-550TX FAST Ethernet Adapter"},
223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
224 {"D-Link DFE-580TX 4 port Server Adapter"},
225 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
226 {"D-Link DL10050-based FAST Ethernet Adapter"},
227 {"Sundance Technology Alta"},
228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
229 { } /* terminate list. */
230};
231
232/* This driver was written to use PCI memory space, however x86-oriented
233 hardware often uses I/O space accesses. */
234
235/* Offsets to the device registers.
236 Unlike software-only systems, device drivers interact with complex hardware.
237 It's not useful to define symbolic names for every register bit in the
238 device. The name can only partially document the semantics and make
239 the driver longer and more difficult to read.
240 In general, only the important configuration values or bits changed
241 multiple times should be defined symbolically.
242*/
243enum alta_offsets {
244 DMACtrl = 0x00,
245 TxListPtr = 0x04,
246 TxDMABurstThresh = 0x08,
247 TxDMAUrgentThresh = 0x09,
248 TxDMAPollPeriod = 0x0a,
249 RxDMAStatus = 0x0c,
250 RxListPtr = 0x10,
251 DebugCtrl0 = 0x1a,
252 DebugCtrl1 = 0x1c,
253 RxDMABurstThresh = 0x14,
254 RxDMAUrgentThresh = 0x15,
255 RxDMAPollPeriod = 0x16,
256 LEDCtrl = 0x1a,
257 ASICCtrl = 0x30,
258 EEData = 0x34,
259 EECtrl = 0x36,
260 FlashAddr = 0x40,
261 FlashData = 0x44,
262 WakeEvent = 0x45,
263 TxStatus = 0x46,
264 TxFrameId = 0x47,
265 DownCounter = 0x18,
266 IntrClear = 0x4a,
267 IntrEnable = 0x4c,
268 IntrStatus = 0x4e,
269 MACCtrl0 = 0x50,
270 MACCtrl1 = 0x52,
271 StationAddr = 0x54,
272 MaxFrameSize = 0x5A,
273 RxMode = 0x5c,
274 MIICtrl = 0x5e,
275 MulticastFilter0 = 0x60,
276 MulticastFilter1 = 0x64,
277 RxOctetsLow = 0x68,
278 RxOctetsHigh = 0x6a,
279 TxOctetsLow = 0x6c,
280 TxOctetsHigh = 0x6e,
281 TxFramesOK = 0x70,
282 RxFramesOK = 0x72,
283 StatsCarrierError = 0x74,
284 StatsLateColl = 0x75,
285 StatsMultiColl = 0x76,
286 StatsOneColl = 0x77,
287 StatsTxDefer = 0x78,
288 RxMissed = 0x79,
289 StatsTxXSDefer = 0x7a,
290 StatsTxAbort = 0x7b,
291 StatsBcastTx = 0x7c,
292 StatsBcastRx = 0x7d,
293 StatsMcastTx = 0x7e,
294 StatsMcastRx = 0x7f,
295 /* Aliased and bogus values! */
296 RxStatus = 0x0c,
297};
298
299#define ASIC_HI_WORD(x) ((x) + 2)
300
301enum ASICCtrl_HiWord_bit {
302 GlobalReset = 0x0001,
303 RxReset = 0x0002,
304 TxReset = 0x0004,
305 DMAReset = 0x0008,
306 FIFOReset = 0x0010,
307 NetworkReset = 0x0020,
308 HostReset = 0x0040,
309 ResetBusy = 0x0400,
310};
311
312/* Bits in the interrupt status/mask registers. */
313enum intr_status_bits {
314 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
315 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
316 IntrDrvRqst=0x0040,
317 StatsMax=0x0080, LinkChange=0x0100,
318 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
319};
320
321/* Bits in the RxMode register. */
322enum rx_mode_bits {
323 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
324 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
325};
326/* Bits in MACCtrl. */
327enum mac_ctrl0_bits {
328 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
329 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
330};
331enum mac_ctrl1_bits {
332 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
333 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
334 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
335};
336
337/* Bits in WakeEvent register. */
338enum wake_event_bits {
339 WakePktEnable = 0x01,
340 MagicPktEnable = 0x02,
341 LinkEventEnable = 0x04,
342 WolEnable = 0x80,
343};
344
345/* The Rx and Tx buffer descriptors. */
346/* Note that using only 32 bit fields simplifies conversion to big-endian
347 architectures. */
348struct netdev_desc {
349 __le32 next_desc;
350 __le32 status;
351 struct desc_frag { __le32 addr, length; } frag[1];
352};
353
354/* Bits in netdev_desc.status */
355enum desc_status_bits {
356 DescOwn=0x8000,
357 DescEndPacket=0x4000,
358 DescEndRing=0x2000,
359 LastFrag=0x80000000,
360 DescIntrOnTx=0x8000,
361 DescIntrOnDMADone=0x80000000,
362 DisableAlign = 0x00000001,
363};
364
365#define PRIV_ALIGN 15 /* Required alignment mask */
366/* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
367 within the structure. */
368#define MII_CNT 4
369struct netdev_private {
370 /* Descriptor rings first for alignment. */
371 struct netdev_desc *rx_ring;
372 struct netdev_desc *tx_ring;
373 struct sk_buff* rx_skbuff[RX_RING_SIZE];
374 struct sk_buff* tx_skbuff[TX_RING_SIZE];
375 dma_addr_t tx_ring_dma;
376 dma_addr_t rx_ring_dma;
377 struct timer_list timer; /* Media monitoring timer. */
378 /* ethtool extra stats */
379 struct {
380 u64 tx_multiple_collisions;
381 u64 tx_single_collisions;
382 u64 tx_late_collisions;
383 u64 tx_deferred;
384 u64 tx_deferred_excessive;
385 u64 tx_aborted;
386 u64 tx_bcasts;
387 u64 rx_bcasts;
388 u64 tx_mcasts;
389 u64 rx_mcasts;
390 } xstats;
391 /* Frequently used values: keep some adjacent for cache effect. */
392 spinlock_t lock;
393 int msg_enable;
394 int chip_id;
395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
396 unsigned int rx_buf_sz; /* Based on MTU+slack. */
397 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
398 unsigned int cur_tx, dirty_tx;
399 /* These values are keep track of the transceiver/media in use. */
400 unsigned int flowctrl:1;
401 unsigned int default_port:4; /* Last dev->if_port value. */
402 unsigned int an_enable:1;
403 unsigned int speed;
404 unsigned int wol_enabled:1; /* Wake on LAN enabled */
405 struct tasklet_struct rx_tasklet;
406 struct tasklet_struct tx_tasklet;
407 int budget;
408 int cur_task;
409 /* Multicast and receive mode. */
410 spinlock_t mcastlock; /* SMP lock multicast updates. */
411 u16 mcast_filter[4];
412 /* MII transceiver section. */
413 struct mii_if_info mii_if;
414 int mii_preamble_required;
415 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
416 struct pci_dev *pci_dev;
417 void __iomem *base;
418 spinlock_t statlock;
419};
420
421/* The station address location in the EEPROM. */
422#define EEPROM_SA_OFFSET 0x10
423#define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
424 IntrDrvRqst | IntrTxDone | StatsMax | \
425 LinkChange)
426
427static int change_mtu(struct net_device *dev, int new_mtu);
428static int eeprom_read(void __iomem *ioaddr, int location);
429static int mdio_read(struct net_device *dev, int phy_id, int location);
430static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
431static int mdio_wait_link(struct net_device *dev, int wait);
432static int netdev_open(struct net_device *dev);
433static void check_duplex(struct net_device *dev);
434static void netdev_timer(struct timer_list *t);
435static void tx_timeout(struct net_device *dev);
436static void init_ring(struct net_device *dev);
437static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
438static int reset_tx (struct net_device *dev);
439static irqreturn_t intr_handler(int irq, void *dev_instance);
440static void rx_poll(unsigned long data);
441static void tx_poll(unsigned long data);
442static void refill_rx (struct net_device *dev);
443static void netdev_error(struct net_device *dev, int intr_status);
444static void netdev_error(struct net_device *dev, int intr_status);
445static void set_rx_mode(struct net_device *dev);
446static int __set_mac_addr(struct net_device *dev);
447static int sundance_set_mac_addr(struct net_device *dev, void *data);
448static struct net_device_stats *get_stats(struct net_device *dev);
449static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
450static int netdev_close(struct net_device *dev);
451static const struct ethtool_ops ethtool_ops;
452
453static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
454{
455 struct netdev_private *np = netdev_priv(dev);
456 void __iomem *ioaddr = np->base + ASICCtrl;
457 int countdown;
458
459 /* ST201 documentation states ASICCtrl is a 32bit register */
460 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
461 /* ST201 documentation states reset can take up to 1 ms */
462 countdown = 10 + 1;
463 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
464 if (--countdown == 0) {
465 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
466 break;
467 }
468 udelay(100);
469 }
470}
471
472#ifdef CONFIG_NET_POLL_CONTROLLER
473static void sundance_poll_controller(struct net_device *dev)
474{
475 struct netdev_private *np = netdev_priv(dev);
476
477 disable_irq(np->pci_dev->irq);
478 intr_handler(np->pci_dev->irq, dev);
479 enable_irq(np->pci_dev->irq);
480}
481#endif
482
483static const struct net_device_ops netdev_ops = {
484 .ndo_open = netdev_open,
485 .ndo_stop = netdev_close,
486 .ndo_start_xmit = start_tx,
487 .ndo_get_stats = get_stats,
488 .ndo_set_rx_mode = set_rx_mode,
489 .ndo_do_ioctl = netdev_ioctl,
490 .ndo_tx_timeout = tx_timeout,
491 .ndo_change_mtu = change_mtu,
492 .ndo_set_mac_address = sundance_set_mac_addr,
493 .ndo_validate_addr = eth_validate_addr,
494#ifdef CONFIG_NET_POLL_CONTROLLER
495 .ndo_poll_controller = sundance_poll_controller,
496#endif
497};
498
499static int sundance_probe1(struct pci_dev *pdev,
500 const struct pci_device_id *ent)
501{
502 struct net_device *dev;
503 struct netdev_private *np;
504 static int card_idx;
505 int chip_idx = ent->driver_data;
506 int irq;
507 int i;
508 void __iomem *ioaddr;
509 u16 mii_ctl;
510 void *ring_space;
511 dma_addr_t ring_dma;
512#ifdef USE_IO_OPS
513 int bar = 0;
514#else
515 int bar = 1;
516#endif
517 int phy, phy_end, phy_idx = 0;
518
519/* when built into the kernel, we only print version if device is found */
520#ifndef MODULE
521 static int printed_version;
522 if (!printed_version++)
523 printk(version);
524#endif
525
526 if (pci_enable_device(pdev))
527 return -EIO;
528 pci_set_master(pdev);
529
530 irq = pdev->irq;
531
532 dev = alloc_etherdev(sizeof(*np));
533 if (!dev)
534 return -ENOMEM;
535 SET_NETDEV_DEV(dev, &pdev->dev);
536
537 if (pci_request_regions(pdev, DRV_NAME))
538 goto err_out_netdev;
539
540 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
541 if (!ioaddr)
542 goto err_out_res;
543
544 for (i = 0; i < 3; i++)
545 ((__le16 *)dev->dev_addr)[i] =
546 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
547
548 np = netdev_priv(dev);
549 np->base = ioaddr;
550 np->pci_dev = pdev;
551 np->chip_id = chip_idx;
552 np->msg_enable = (1 << debug) - 1;
553 spin_lock_init(&np->lock);
554 spin_lock_init(&np->statlock);
555 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
556 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
557
558 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
559 &ring_dma, GFP_KERNEL);
560 if (!ring_space)
561 goto err_out_cleardev;
562 np->tx_ring = (struct netdev_desc *)ring_space;
563 np->tx_ring_dma = ring_dma;
564
565 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
566 &ring_dma, GFP_KERNEL);
567 if (!ring_space)
568 goto err_out_unmap_tx;
569 np->rx_ring = (struct netdev_desc *)ring_space;
570 np->rx_ring_dma = ring_dma;
571
572 np->mii_if.dev = dev;
573 np->mii_if.mdio_read = mdio_read;
574 np->mii_if.mdio_write = mdio_write;
575 np->mii_if.phy_id_mask = 0x1f;
576 np->mii_if.reg_num_mask = 0x1f;
577
578 /* The chip-specific entries in the device structure. */
579 dev->netdev_ops = &netdev_ops;
580 dev->ethtool_ops = ðtool_ops;
581 dev->watchdog_timeo = TX_TIMEOUT;
582
583 /* MTU range: 68 - 8191 */
584 dev->min_mtu = ETH_MIN_MTU;
585 dev->max_mtu = 8191;
586
587 pci_set_drvdata(pdev, dev);
588
589 i = register_netdev(dev);
590 if (i)
591 goto err_out_unmap_rx;
592
593 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
594 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
595 dev->dev_addr, irq);
596
597 np->phys[0] = 1; /* Default setting */
598 np->mii_preamble_required++;
599
600 /*
601 * It seems some phys doesn't deal well with address 0 being accessed
602 * first
603 */
604 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
605 phy = 0;
606 phy_end = 31;
607 } else {
608 phy = 1;
609 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
610 }
611 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
612 int phyx = phy & 0x1f;
613 int mii_status = mdio_read(dev, phyx, MII_BMSR);
614 if (mii_status != 0xffff && mii_status != 0x0000) {
615 np->phys[phy_idx++] = phyx;
616 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
617 if ((mii_status & 0x0040) == 0)
618 np->mii_preamble_required++;
619 printk(KERN_INFO "%s: MII PHY found at address %d, status "
620 "0x%4.4x advertising %4.4x.\n",
621 dev->name, phyx, mii_status, np->mii_if.advertising);
622 }
623 }
624 np->mii_preamble_required--;
625
626 if (phy_idx == 0) {
627 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
628 dev->name, ioread32(ioaddr + ASICCtrl));
629 goto err_out_unregister;
630 }
631
632 np->mii_if.phy_id = np->phys[0];
633
634 /* Parse override configuration */
635 np->an_enable = 1;
636 if (card_idx < MAX_UNITS) {
637 if (media[card_idx] != NULL) {
638 np->an_enable = 0;
639 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
640 strcmp (media[card_idx], "4") == 0) {
641 np->speed = 100;
642 np->mii_if.full_duplex = 1;
643 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
644 strcmp (media[card_idx], "3") == 0) {
645 np->speed = 100;
646 np->mii_if.full_duplex = 0;
647 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
648 strcmp (media[card_idx], "2") == 0) {
649 np->speed = 10;
650 np->mii_if.full_duplex = 1;
651 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
652 strcmp (media[card_idx], "1") == 0) {
653 np->speed = 10;
654 np->mii_if.full_duplex = 0;
655 } else {
656 np->an_enable = 1;
657 }
658 }
659 if (flowctrl == 1)
660 np->flowctrl = 1;
661 }
662
663 /* Fibre PHY? */
664 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
665 /* Default 100Mbps Full */
666 if (np->an_enable) {
667 np->speed = 100;
668 np->mii_if.full_duplex = 1;
669 np->an_enable = 0;
670 }
671 }
672 /* Reset PHY */
673 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
674 mdelay (300);
675 /* If flow control enabled, we need to advertise it.*/
676 if (np->flowctrl)
677 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
678 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
679 /* Force media type */
680 if (!np->an_enable) {
681 mii_ctl = 0;
682 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
683 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
684 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
685 printk (KERN_INFO "Override speed=%d, %s duplex\n",
686 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
687
688 }
689
690 /* Perhaps move the reset here? */
691 /* Reset the chip to erase previous misconfiguration. */
692 if (netif_msg_hw(np))
693 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
694 sundance_reset(dev, 0x00ff << 16);
695 if (netif_msg_hw(np))
696 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
697
698 card_idx++;
699 return 0;
700
701err_out_unregister:
702 unregister_netdev(dev);
703err_out_unmap_rx:
704 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
705 np->rx_ring, np->rx_ring_dma);
706err_out_unmap_tx:
707 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
708 np->tx_ring, np->tx_ring_dma);
709err_out_cleardev:
710 pci_iounmap(pdev, ioaddr);
711err_out_res:
712 pci_release_regions(pdev);
713err_out_netdev:
714 free_netdev (dev);
715 return -ENODEV;
716}
717
718static int change_mtu(struct net_device *dev, int new_mtu)
719{
720 if (netif_running(dev))
721 return -EBUSY;
722 dev->mtu = new_mtu;
723 return 0;
724}
725
726#define eeprom_delay(ee_addr) ioread32(ee_addr)
727/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
728static int eeprom_read(void __iomem *ioaddr, int location)
729{
730 int boguscnt = 10000; /* Typical 1900 ticks. */
731 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
732 do {
733 eeprom_delay(ioaddr + EECtrl);
734 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
735 return ioread16(ioaddr + EEData);
736 }
737 } while (--boguscnt > 0);
738 return 0;
739}
740
741/* MII transceiver control section.
742 Read and write the MII registers using software-generated serial
743 MDIO protocol. See the MII specifications or DP83840A data sheet
744 for details.
745
746 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
747 met by back-to-back 33Mhz PCI cycles. */
748#define mdio_delay() ioread8(mdio_addr)
749
750enum mii_reg_bits {
751 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
752};
753#define MDIO_EnbIn (0)
754#define MDIO_WRITE0 (MDIO_EnbOutput)
755#define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
756
757/* Generate the preamble required for initial synchronization and
758 a few older transceivers. */
759static void mdio_sync(void __iomem *mdio_addr)
760{
761 int bits = 32;
762
763 /* Establish sync by sending at least 32 logic ones. */
764 while (--bits >= 0) {
765 iowrite8(MDIO_WRITE1, mdio_addr);
766 mdio_delay();
767 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
768 mdio_delay();
769 }
770}
771
772static int mdio_read(struct net_device *dev, int phy_id, int location)
773{
774 struct netdev_private *np = netdev_priv(dev);
775 void __iomem *mdio_addr = np->base + MIICtrl;
776 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
777 int i, retval = 0;
778
779 if (np->mii_preamble_required)
780 mdio_sync(mdio_addr);
781
782 /* Shift the read command bits out. */
783 for (i = 15; i >= 0; i--) {
784 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
785
786 iowrite8(dataval, mdio_addr);
787 mdio_delay();
788 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
789 mdio_delay();
790 }
791 /* Read the two transition, 16 data, and wire-idle bits. */
792 for (i = 19; i > 0; i--) {
793 iowrite8(MDIO_EnbIn, mdio_addr);
794 mdio_delay();
795 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
796 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
797 mdio_delay();
798 }
799 return (retval>>1) & 0xffff;
800}
801
802static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
803{
804 struct netdev_private *np = netdev_priv(dev);
805 void __iomem *mdio_addr = np->base + MIICtrl;
806 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
807 int i;
808
809 if (np->mii_preamble_required)
810 mdio_sync(mdio_addr);
811
812 /* Shift the command bits out. */
813 for (i = 31; i >= 0; i--) {
814 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
815
816 iowrite8(dataval, mdio_addr);
817 mdio_delay();
818 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
819 mdio_delay();
820 }
821 /* Clear out extra bits. */
822 for (i = 2; i > 0; i--) {
823 iowrite8(MDIO_EnbIn, mdio_addr);
824 mdio_delay();
825 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
826 mdio_delay();
827 }
828}
829
830static int mdio_wait_link(struct net_device *dev, int wait)
831{
832 int bmsr;
833 int phy_id;
834 struct netdev_private *np;
835
836 np = netdev_priv(dev);
837 phy_id = np->phys[0];
838
839 do {
840 bmsr = mdio_read(dev, phy_id, MII_BMSR);
841 if (bmsr & 0x0004)
842 return 0;
843 mdelay(1);
844 } while (--wait > 0);
845 return -1;
846}
847
848static int netdev_open(struct net_device *dev)
849{
850 struct netdev_private *np = netdev_priv(dev);
851 void __iomem *ioaddr = np->base;
852 const int irq = np->pci_dev->irq;
853 unsigned long flags;
854 int i;
855
856 sundance_reset(dev, 0x00ff << 16);
857
858 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
859 if (i)
860 return i;
861
862 if (netif_msg_ifup(np))
863 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
864
865 init_ring(dev);
866
867 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
868 /* The Tx list pointer is written as packets are queued. */
869
870 /* Initialize other registers. */
871 __set_mac_addr(dev);
872#if IS_ENABLED(CONFIG_VLAN_8021Q)
873 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
874#else
875 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
876#endif
877 if (dev->mtu > 2047)
878 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
879
880 /* Configure the PCI bus bursts and FIFO thresholds. */
881
882 if (dev->if_port == 0)
883 dev->if_port = np->default_port;
884
885 spin_lock_init(&np->mcastlock);
886
887 set_rx_mode(dev);
888 iowrite16(0, ioaddr + IntrEnable);
889 iowrite16(0, ioaddr + DownCounter);
890 /* Set the chip to poll every N*320nsec. */
891 iowrite8(100, ioaddr + RxDMAPollPeriod);
892 iowrite8(127, ioaddr + TxDMAPollPeriod);
893 /* Fix DFE-580TX packet drop issue */
894 if (np->pci_dev->revision >= 0x14)
895 iowrite8(0x01, ioaddr + DebugCtrl1);
896 netif_start_queue(dev);
897
898 spin_lock_irqsave(&np->lock, flags);
899 reset_tx(dev);
900 spin_unlock_irqrestore(&np->lock, flags);
901
902 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
903
904 /* Disable Wol */
905 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
906 np->wol_enabled = 0;
907
908 if (netif_msg_ifup(np))
909 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
910 "MAC Control %x, %4.4x %4.4x.\n",
911 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
912 ioread32(ioaddr + MACCtrl0),
913 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
914
915 /* Set the timer to check for link beat. */
916 timer_setup(&np->timer, netdev_timer, 0);
917 np->timer.expires = jiffies + 3*HZ;
918 add_timer(&np->timer);
919
920 /* Enable interrupts by setting the interrupt mask. */
921 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
922
923 return 0;
924}
925
926static void check_duplex(struct net_device *dev)
927{
928 struct netdev_private *np = netdev_priv(dev);
929 void __iomem *ioaddr = np->base;
930 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
931 int negotiated = mii_lpa & np->mii_if.advertising;
932 int duplex;
933
934 /* Force media */
935 if (!np->an_enable || mii_lpa == 0xffff) {
936 if (np->mii_if.full_duplex)
937 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
938 ioaddr + MACCtrl0);
939 return;
940 }
941
942 /* Autonegotiation */
943 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
944 if (np->mii_if.full_duplex != duplex) {
945 np->mii_if.full_duplex = duplex;
946 if (netif_msg_link(np))
947 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
948 "negotiated capability %4.4x.\n", dev->name,
949 duplex ? "full" : "half", np->phys[0], negotiated);
950 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
951 }
952}
953
954static void netdev_timer(struct timer_list *t)
955{
956 struct netdev_private *np = from_timer(np, t, timer);
957 struct net_device *dev = np->mii_if.dev;
958 void __iomem *ioaddr = np->base;
959 int next_tick = 10*HZ;
960
961 if (netif_msg_timer(np)) {
962 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
963 "Tx %x Rx %x.\n",
964 dev->name, ioread16(ioaddr + IntrEnable),
965 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
966 }
967 check_duplex(dev);
968 np->timer.expires = jiffies + next_tick;
969 add_timer(&np->timer);
970}
971
972static void tx_timeout(struct net_device *dev)
973{
974 struct netdev_private *np = netdev_priv(dev);
975 void __iomem *ioaddr = np->base;
976 unsigned long flag;
977
978 netif_stop_queue(dev);
979 tasklet_disable(&np->tx_tasklet);
980 iowrite16(0, ioaddr + IntrEnable);
981 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
982 "TxFrameId %2.2x,"
983 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
984 ioread8(ioaddr + TxFrameId));
985
986 {
987 int i;
988 for (i=0; i<TX_RING_SIZE; i++) {
989 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
990 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
991 le32_to_cpu(np->tx_ring[i].next_desc),
992 le32_to_cpu(np->tx_ring[i].status),
993 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
994 le32_to_cpu(np->tx_ring[i].frag[0].addr),
995 le32_to_cpu(np->tx_ring[i].frag[0].length));
996 }
997 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
998 ioread32(np->base + TxListPtr),
999 netif_queue_stopped(dev));
1000 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
1001 np->cur_tx, np->cur_tx % TX_RING_SIZE,
1002 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
1003 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
1004 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
1005 }
1006 spin_lock_irqsave(&np->lock, flag);
1007
1008 /* Stop and restart the chip's Tx processes . */
1009 reset_tx(dev);
1010 spin_unlock_irqrestore(&np->lock, flag);
1011
1012 dev->if_port = 0;
1013
1014 netif_trans_update(dev); /* prevent tx timeout */
1015 dev->stats.tx_errors++;
1016 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1017 netif_wake_queue(dev);
1018 }
1019 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1020 tasklet_enable(&np->tx_tasklet);
1021}
1022
1023
1024/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1025static void init_ring(struct net_device *dev)
1026{
1027 struct netdev_private *np = netdev_priv(dev);
1028 int i;
1029
1030 np->cur_rx = np->cur_tx = 0;
1031 np->dirty_rx = np->dirty_tx = 0;
1032 np->cur_task = 0;
1033
1034 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1035
1036 /* Initialize all Rx descriptors. */
1037 for (i = 0; i < RX_RING_SIZE; i++) {
1038 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1039 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1040 np->rx_ring[i].status = 0;
1041 np->rx_ring[i].frag[0].length = 0;
1042 np->rx_skbuff[i] = NULL;
1043 }
1044
1045 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1046 for (i = 0; i < RX_RING_SIZE; i++) {
1047 struct sk_buff *skb =
1048 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1049 np->rx_skbuff[i] = skb;
1050 if (skb == NULL)
1051 break;
1052 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1053 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1054 dma_map_single(&np->pci_dev->dev, skb->data,
1055 np->rx_buf_sz, DMA_FROM_DEVICE));
1056 if (dma_mapping_error(&np->pci_dev->dev,
1057 np->rx_ring[i].frag[0].addr)) {
1058 dev_kfree_skb(skb);
1059 np->rx_skbuff[i] = NULL;
1060 break;
1061 }
1062 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1063 }
1064 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1065
1066 for (i = 0; i < TX_RING_SIZE; i++) {
1067 np->tx_skbuff[i] = NULL;
1068 np->tx_ring[i].status = 0;
1069 }
1070}
1071
1072static void tx_poll (unsigned long data)
1073{
1074 struct net_device *dev = (struct net_device *)data;
1075 struct netdev_private *np = netdev_priv(dev);
1076 unsigned head = np->cur_task % TX_RING_SIZE;
1077 struct netdev_desc *txdesc =
1078 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1079
1080 /* Chain the next pointer */
1081 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1082 int entry = np->cur_task % TX_RING_SIZE;
1083 txdesc = &np->tx_ring[entry];
1084 if (np->last_tx) {
1085 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1086 entry*sizeof(struct netdev_desc));
1087 }
1088 np->last_tx = txdesc;
1089 }
1090 /* Indicate the latest descriptor of tx ring */
1091 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1092
1093 if (ioread32 (np->base + TxListPtr) == 0)
1094 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1095 np->base + TxListPtr);
1096}
1097
1098static netdev_tx_t
1099start_tx (struct sk_buff *skb, struct net_device *dev)
1100{
1101 struct netdev_private *np = netdev_priv(dev);
1102 struct netdev_desc *txdesc;
1103 unsigned entry;
1104
1105 /* Calculate the next Tx descriptor entry. */
1106 entry = np->cur_tx % TX_RING_SIZE;
1107 np->tx_skbuff[entry] = skb;
1108 txdesc = &np->tx_ring[entry];
1109
1110 txdesc->next_desc = 0;
1111 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1112 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1113 skb->data, skb->len, DMA_TO_DEVICE));
1114 if (dma_mapping_error(&np->pci_dev->dev,
1115 txdesc->frag[0].addr))
1116 goto drop_frame;
1117 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1118
1119 /* Increment cur_tx before tasklet_schedule() */
1120 np->cur_tx++;
1121 mb();
1122 /* Schedule a tx_poll() task */
1123 tasklet_schedule(&np->tx_tasklet);
1124
1125 /* On some architectures: explicitly flush cache lines here. */
1126 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1127 !netif_queue_stopped(dev)) {
1128 /* do nothing */
1129 } else {
1130 netif_stop_queue (dev);
1131 }
1132 if (netif_msg_tx_queued(np)) {
1133 printk (KERN_DEBUG
1134 "%s: Transmit frame #%d queued in slot %d.\n",
1135 dev->name, np->cur_tx, entry);
1136 }
1137 return NETDEV_TX_OK;
1138
1139drop_frame:
1140 dev_kfree_skb_any(skb);
1141 np->tx_skbuff[entry] = NULL;
1142 dev->stats.tx_dropped++;
1143 return NETDEV_TX_OK;
1144}
1145
1146/* Reset hardware tx and free all of tx buffers */
1147static int
1148reset_tx (struct net_device *dev)
1149{
1150 struct netdev_private *np = netdev_priv(dev);
1151 void __iomem *ioaddr = np->base;
1152 struct sk_buff *skb;
1153 int i;
1154
1155 /* Reset tx logic, TxListPtr will be cleaned */
1156 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1157 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1158
1159 /* free all tx skbuff */
1160 for (i = 0; i < TX_RING_SIZE; i++) {
1161 np->tx_ring[i].next_desc = 0;
1162
1163 skb = np->tx_skbuff[i];
1164 if (skb) {
1165 dma_unmap_single(&np->pci_dev->dev,
1166 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1167 skb->len, DMA_TO_DEVICE);
1168 dev_kfree_skb_any(skb);
1169 np->tx_skbuff[i] = NULL;
1170 dev->stats.tx_dropped++;
1171 }
1172 }
1173 np->cur_tx = np->dirty_tx = 0;
1174 np->cur_task = 0;
1175
1176 np->last_tx = NULL;
1177 iowrite8(127, ioaddr + TxDMAPollPeriod);
1178
1179 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1180 return 0;
1181}
1182
1183/* The interrupt handler cleans up after the Tx thread,
1184 and schedule a Rx thread work */
1185static irqreturn_t intr_handler(int irq, void *dev_instance)
1186{
1187 struct net_device *dev = (struct net_device *)dev_instance;
1188 struct netdev_private *np = netdev_priv(dev);
1189 void __iomem *ioaddr = np->base;
1190 int hw_frame_id;
1191 int tx_cnt;
1192 int tx_status;
1193 int handled = 0;
1194 int i;
1195
1196
1197 do {
1198 int intr_status = ioread16(ioaddr + IntrStatus);
1199 iowrite16(intr_status, ioaddr + IntrStatus);
1200
1201 if (netif_msg_intr(np))
1202 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1203 dev->name, intr_status);
1204
1205 if (!(intr_status & DEFAULT_INTR))
1206 break;
1207
1208 handled = 1;
1209
1210 if (intr_status & (IntrRxDMADone)) {
1211 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1212 ioaddr + IntrEnable);
1213 if (np->budget < 0)
1214 np->budget = RX_BUDGET;
1215 tasklet_schedule(&np->rx_tasklet);
1216 }
1217 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1218 tx_status = ioread16 (ioaddr + TxStatus);
1219 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1220 if (netif_msg_tx_done(np))
1221 printk
1222 ("%s: Transmit status is %2.2x.\n",
1223 dev->name, tx_status);
1224 if (tx_status & 0x1e) {
1225 if (netif_msg_tx_err(np))
1226 printk("%s: Transmit error status %4.4x.\n",
1227 dev->name, tx_status);
1228 dev->stats.tx_errors++;
1229 if (tx_status & 0x10)
1230 dev->stats.tx_fifo_errors++;
1231 if (tx_status & 0x08)
1232 dev->stats.collisions++;
1233 if (tx_status & 0x04)
1234 dev->stats.tx_fifo_errors++;
1235 if (tx_status & 0x02)
1236 dev->stats.tx_window_errors++;
1237
1238 /*
1239 ** This reset has been verified on
1240 ** DFE-580TX boards ! phdm@macqel.be.
1241 */
1242 if (tx_status & 0x10) { /* TxUnderrun */
1243 /* Restart Tx FIFO and transmitter */
1244 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1245 /* No need to reset the Tx pointer here */
1246 }
1247 /* Restart the Tx. Need to make sure tx enabled */
1248 i = 10;
1249 do {
1250 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1251 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1252 break;
1253 mdelay(1);
1254 } while (--i);
1255 }
1256 /* Yup, this is a documentation bug. It cost me *hours*. */
1257 iowrite16 (0, ioaddr + TxStatus);
1258 if (tx_cnt < 0) {
1259 iowrite32(5000, ioaddr + DownCounter);
1260 break;
1261 }
1262 tx_status = ioread16 (ioaddr + TxStatus);
1263 }
1264 hw_frame_id = (tx_status >> 8) & 0xff;
1265 } else {
1266 hw_frame_id = ioread8(ioaddr + TxFrameId);
1267 }
1268
1269 if (np->pci_dev->revision >= 0x14) {
1270 spin_lock(&np->lock);
1271 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1272 int entry = np->dirty_tx % TX_RING_SIZE;
1273 struct sk_buff *skb;
1274 int sw_frame_id;
1275 sw_frame_id = (le32_to_cpu(
1276 np->tx_ring[entry].status) >> 2) & 0xff;
1277 if (sw_frame_id == hw_frame_id &&
1278 !(le32_to_cpu(np->tx_ring[entry].status)
1279 & 0x00010000))
1280 break;
1281 if (sw_frame_id == (hw_frame_id + 1) %
1282 TX_RING_SIZE)
1283 break;
1284 skb = np->tx_skbuff[entry];
1285 /* Free the original skb. */
1286 dma_unmap_single(&np->pci_dev->dev,
1287 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1288 skb->len, DMA_TO_DEVICE);
1289 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1290 np->tx_skbuff[entry] = NULL;
1291 np->tx_ring[entry].frag[0].addr = 0;
1292 np->tx_ring[entry].frag[0].length = 0;
1293 }
1294 spin_unlock(&np->lock);
1295 } else {
1296 spin_lock(&np->lock);
1297 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1298 int entry = np->dirty_tx % TX_RING_SIZE;
1299 struct sk_buff *skb;
1300 if (!(le32_to_cpu(np->tx_ring[entry].status)
1301 & 0x00010000))
1302 break;
1303 skb = np->tx_skbuff[entry];
1304 /* Free the original skb. */
1305 dma_unmap_single(&np->pci_dev->dev,
1306 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1307 skb->len, DMA_TO_DEVICE);
1308 dev_kfree_skb_irq (np->tx_skbuff[entry]);
1309 np->tx_skbuff[entry] = NULL;
1310 np->tx_ring[entry].frag[0].addr = 0;
1311 np->tx_ring[entry].frag[0].length = 0;
1312 }
1313 spin_unlock(&np->lock);
1314 }
1315
1316 if (netif_queue_stopped(dev) &&
1317 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1318 /* The ring is no longer full, clear busy flag. */
1319 netif_wake_queue (dev);
1320 }
1321 /* Abnormal error summary/uncommon events handlers. */
1322 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1323 netdev_error(dev, intr_status);
1324 } while (0);
1325 if (netif_msg_intr(np))
1326 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1327 dev->name, ioread16(ioaddr + IntrStatus));
1328 return IRQ_RETVAL(handled);
1329}
1330
1331static void rx_poll(unsigned long data)
1332{
1333 struct net_device *dev = (struct net_device *)data;
1334 struct netdev_private *np = netdev_priv(dev);
1335 int entry = np->cur_rx % RX_RING_SIZE;
1336 int boguscnt = np->budget;
1337 void __iomem *ioaddr = np->base;
1338 int received = 0;
1339
1340 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1341 while (1) {
1342 struct netdev_desc *desc = &(np->rx_ring[entry]);
1343 u32 frame_status = le32_to_cpu(desc->status);
1344 int pkt_len;
1345
1346 if (--boguscnt < 0) {
1347 goto not_done;
1348 }
1349 if (!(frame_status & DescOwn))
1350 break;
1351 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1352 if (netif_msg_rx_status(np))
1353 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1354 frame_status);
1355 if (frame_status & 0x001f4000) {
1356 /* There was a error. */
1357 if (netif_msg_rx_err(np))
1358 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1359 frame_status);
1360 dev->stats.rx_errors++;
1361 if (frame_status & 0x00100000)
1362 dev->stats.rx_length_errors++;
1363 if (frame_status & 0x00010000)
1364 dev->stats.rx_fifo_errors++;
1365 if (frame_status & 0x00060000)
1366 dev->stats.rx_frame_errors++;
1367 if (frame_status & 0x00080000)
1368 dev->stats.rx_crc_errors++;
1369 if (frame_status & 0x00100000) {
1370 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1371 " status %8.8x.\n",
1372 dev->name, frame_status);
1373 }
1374 } else {
1375 struct sk_buff *skb;
1376#ifndef final_version
1377 if (netif_msg_rx_status(np))
1378 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1379 ", bogus_cnt %d.\n",
1380 pkt_len, boguscnt);
1381#endif
1382 /* Check if the packet is long enough to accept without copying
1383 to a minimally-sized skbuff. */
1384 if (pkt_len < rx_copybreak &&
1385 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1386 skb_reserve(skb, 2); /* 16 byte align the IP header */
1387 dma_sync_single_for_cpu(&np->pci_dev->dev,
1388 le32_to_cpu(desc->frag[0].addr),
1389 np->rx_buf_sz, DMA_FROM_DEVICE);
1390 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1391 dma_sync_single_for_device(&np->pci_dev->dev,
1392 le32_to_cpu(desc->frag[0].addr),
1393 np->rx_buf_sz, DMA_FROM_DEVICE);
1394 skb_put(skb, pkt_len);
1395 } else {
1396 dma_unmap_single(&np->pci_dev->dev,
1397 le32_to_cpu(desc->frag[0].addr),
1398 np->rx_buf_sz, DMA_FROM_DEVICE);
1399 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1400 np->rx_skbuff[entry] = NULL;
1401 }
1402 skb->protocol = eth_type_trans(skb, dev);
1403 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1404 netif_rx(skb);
1405 }
1406 entry = (entry + 1) % RX_RING_SIZE;
1407 received++;
1408 }
1409 np->cur_rx = entry;
1410 refill_rx (dev);
1411 np->budget -= received;
1412 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1413 return;
1414
1415not_done:
1416 np->cur_rx = entry;
1417 refill_rx (dev);
1418 if (!received)
1419 received = 1;
1420 np->budget -= received;
1421 if (np->budget <= 0)
1422 np->budget = RX_BUDGET;
1423 tasklet_schedule(&np->rx_tasklet);
1424}
1425
1426static void refill_rx (struct net_device *dev)
1427{
1428 struct netdev_private *np = netdev_priv(dev);
1429 int entry;
1430 int cnt = 0;
1431
1432 /* Refill the Rx ring buffers. */
1433 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1434 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1435 struct sk_buff *skb;
1436 entry = np->dirty_rx % RX_RING_SIZE;
1437 if (np->rx_skbuff[entry] == NULL) {
1438 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1439 np->rx_skbuff[entry] = skb;
1440 if (skb == NULL)
1441 break; /* Better luck next round. */
1442 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1443 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1444 dma_map_single(&np->pci_dev->dev, skb->data,
1445 np->rx_buf_sz, DMA_FROM_DEVICE));
1446 if (dma_mapping_error(&np->pci_dev->dev,
1447 np->rx_ring[entry].frag[0].addr)) {
1448 dev_kfree_skb_irq(skb);
1449 np->rx_skbuff[entry] = NULL;
1450 break;
1451 }
1452 }
1453 /* Perhaps we need not reset this field. */
1454 np->rx_ring[entry].frag[0].length =
1455 cpu_to_le32(np->rx_buf_sz | LastFrag);
1456 np->rx_ring[entry].status = 0;
1457 cnt++;
1458 }
1459}
1460static void netdev_error(struct net_device *dev, int intr_status)
1461{
1462 struct netdev_private *np = netdev_priv(dev);
1463 void __iomem *ioaddr = np->base;
1464 u16 mii_ctl, mii_advertise, mii_lpa;
1465 int speed;
1466
1467 if (intr_status & LinkChange) {
1468 if (mdio_wait_link(dev, 10) == 0) {
1469 printk(KERN_INFO "%s: Link up\n", dev->name);
1470 if (np->an_enable) {
1471 mii_advertise = mdio_read(dev, np->phys[0],
1472 MII_ADVERTISE);
1473 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1474 mii_advertise &= mii_lpa;
1475 printk(KERN_INFO "%s: Link changed: ",
1476 dev->name);
1477 if (mii_advertise & ADVERTISE_100FULL) {
1478 np->speed = 100;
1479 printk("100Mbps, full duplex\n");
1480 } else if (mii_advertise & ADVERTISE_100HALF) {
1481 np->speed = 100;
1482 printk("100Mbps, half duplex\n");
1483 } else if (mii_advertise & ADVERTISE_10FULL) {
1484 np->speed = 10;
1485 printk("10Mbps, full duplex\n");
1486 } else if (mii_advertise & ADVERTISE_10HALF) {
1487 np->speed = 10;
1488 printk("10Mbps, half duplex\n");
1489 } else
1490 printk("\n");
1491
1492 } else {
1493 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1494 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1495 np->speed = speed;
1496 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1497 dev->name, speed);
1498 printk("%s duplex.\n",
1499 (mii_ctl & BMCR_FULLDPLX) ?
1500 "full" : "half");
1501 }
1502 check_duplex(dev);
1503 if (np->flowctrl && np->mii_if.full_duplex) {
1504 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1505 ioaddr + MulticastFilter1+2);
1506 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1507 ioaddr + MACCtrl0);
1508 }
1509 netif_carrier_on(dev);
1510 } else {
1511 printk(KERN_INFO "%s: Link down\n", dev->name);
1512 netif_carrier_off(dev);
1513 }
1514 }
1515 if (intr_status & StatsMax) {
1516 get_stats(dev);
1517 }
1518 if (intr_status & IntrPCIErr) {
1519 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1520 dev->name, intr_status);
1521 /* We must do a global reset of DMA to continue. */
1522 }
1523}
1524
1525static struct net_device_stats *get_stats(struct net_device *dev)
1526{
1527 struct netdev_private *np = netdev_priv(dev);
1528 void __iomem *ioaddr = np->base;
1529 unsigned long flags;
1530 u8 late_coll, single_coll, mult_coll;
1531
1532 spin_lock_irqsave(&np->statlock, flags);
1533 /* The chip only need report frame silently dropped. */
1534 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1535 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1536 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1537 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1538
1539 mult_coll = ioread8(ioaddr + StatsMultiColl);
1540 np->xstats.tx_multiple_collisions += mult_coll;
1541 single_coll = ioread8(ioaddr + StatsOneColl);
1542 np->xstats.tx_single_collisions += single_coll;
1543 late_coll = ioread8(ioaddr + StatsLateColl);
1544 np->xstats.tx_late_collisions += late_coll;
1545 dev->stats.collisions += mult_coll
1546 + single_coll
1547 + late_coll;
1548
1549 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1550 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1551 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1552 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1553 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1554 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1555 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1556
1557 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1558 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1559 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1560 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1561
1562 spin_unlock_irqrestore(&np->statlock, flags);
1563
1564 return &dev->stats;
1565}
1566
1567static void set_rx_mode(struct net_device *dev)
1568{
1569 struct netdev_private *np = netdev_priv(dev);
1570 void __iomem *ioaddr = np->base;
1571 u16 mc_filter[4]; /* Multicast hash filter */
1572 u32 rx_mode;
1573 int i;
1574
1575 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1576 memset(mc_filter, 0xff, sizeof(mc_filter));
1577 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1578 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1579 (dev->flags & IFF_ALLMULTI)) {
1580 /* Too many to match, or accept all multicasts. */
1581 memset(mc_filter, 0xff, sizeof(mc_filter));
1582 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1583 } else if (!netdev_mc_empty(dev)) {
1584 struct netdev_hw_addr *ha;
1585 int bit;
1586 int index;
1587 int crc;
1588 memset (mc_filter, 0, sizeof (mc_filter));
1589 netdev_for_each_mc_addr(ha, dev) {
1590 crc = ether_crc_le(ETH_ALEN, ha->addr);
1591 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1592 if (crc & 0x80000000) index |= 1 << bit;
1593 mc_filter[index/16] |= (1 << (index % 16));
1594 }
1595 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1596 } else {
1597 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1598 return;
1599 }
1600 if (np->mii_if.full_duplex && np->flowctrl)
1601 mc_filter[3] |= 0x0200;
1602
1603 for (i = 0; i < 4; i++)
1604 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1605 iowrite8(rx_mode, ioaddr + RxMode);
1606}
1607
1608static int __set_mac_addr(struct net_device *dev)
1609{
1610 struct netdev_private *np = netdev_priv(dev);
1611 u16 addr16;
1612
1613 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1614 iowrite16(addr16, np->base + StationAddr);
1615 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1616 iowrite16(addr16, np->base + StationAddr+2);
1617 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1618 iowrite16(addr16, np->base + StationAddr+4);
1619 return 0;
1620}
1621
1622/* Invoked with rtnl_lock held */
1623static int sundance_set_mac_addr(struct net_device *dev, void *data)
1624{
1625 const struct sockaddr *addr = data;
1626
1627 if (!is_valid_ether_addr(addr->sa_data))
1628 return -EADDRNOTAVAIL;
1629 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1630 __set_mac_addr(dev);
1631
1632 return 0;
1633}
1634
1635static const struct {
1636 const char name[ETH_GSTRING_LEN];
1637} sundance_stats[] = {
1638 { "tx_multiple_collisions" },
1639 { "tx_single_collisions" },
1640 { "tx_late_collisions" },
1641 { "tx_deferred" },
1642 { "tx_deferred_excessive" },
1643 { "tx_aborted" },
1644 { "tx_bcasts" },
1645 { "rx_bcasts" },
1646 { "tx_mcasts" },
1647 { "rx_mcasts" },
1648};
1649
1650static int check_if_running(struct net_device *dev)
1651{
1652 if (!netif_running(dev))
1653 return -EINVAL;
1654 return 0;
1655}
1656
1657static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1658{
1659 struct netdev_private *np = netdev_priv(dev);
1660 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1661 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1662 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1663}
1664
1665static int get_link_ksettings(struct net_device *dev,
1666 struct ethtool_link_ksettings *cmd)
1667{
1668 struct netdev_private *np = netdev_priv(dev);
1669 spin_lock_irq(&np->lock);
1670 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1671 spin_unlock_irq(&np->lock);
1672 return 0;
1673}
1674
1675static int set_link_ksettings(struct net_device *dev,
1676 const struct ethtool_link_ksettings *cmd)
1677{
1678 struct netdev_private *np = netdev_priv(dev);
1679 int res;
1680 spin_lock_irq(&np->lock);
1681 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1682 spin_unlock_irq(&np->lock);
1683 return res;
1684}
1685
1686static int nway_reset(struct net_device *dev)
1687{
1688 struct netdev_private *np = netdev_priv(dev);
1689 return mii_nway_restart(&np->mii_if);
1690}
1691
1692static u32 get_link(struct net_device *dev)
1693{
1694 struct netdev_private *np = netdev_priv(dev);
1695 return mii_link_ok(&np->mii_if);
1696}
1697
1698static u32 get_msglevel(struct net_device *dev)
1699{
1700 struct netdev_private *np = netdev_priv(dev);
1701 return np->msg_enable;
1702}
1703
1704static void set_msglevel(struct net_device *dev, u32 val)
1705{
1706 struct netdev_private *np = netdev_priv(dev);
1707 np->msg_enable = val;
1708}
1709
1710static void get_strings(struct net_device *dev, u32 stringset,
1711 u8 *data)
1712{
1713 if (stringset == ETH_SS_STATS)
1714 memcpy(data, sundance_stats, sizeof(sundance_stats));
1715}
1716
1717static int get_sset_count(struct net_device *dev, int sset)
1718{
1719 switch (sset) {
1720 case ETH_SS_STATS:
1721 return ARRAY_SIZE(sundance_stats);
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725}
1726
1727static void get_ethtool_stats(struct net_device *dev,
1728 struct ethtool_stats *stats, u64 *data)
1729{
1730 struct netdev_private *np = netdev_priv(dev);
1731 int i = 0;
1732
1733 get_stats(dev);
1734 data[i++] = np->xstats.tx_multiple_collisions;
1735 data[i++] = np->xstats.tx_single_collisions;
1736 data[i++] = np->xstats.tx_late_collisions;
1737 data[i++] = np->xstats.tx_deferred;
1738 data[i++] = np->xstats.tx_deferred_excessive;
1739 data[i++] = np->xstats.tx_aborted;
1740 data[i++] = np->xstats.tx_bcasts;
1741 data[i++] = np->xstats.rx_bcasts;
1742 data[i++] = np->xstats.tx_mcasts;
1743 data[i++] = np->xstats.rx_mcasts;
1744}
1745
1746#ifdef CONFIG_PM
1747
1748static void sundance_get_wol(struct net_device *dev,
1749 struct ethtool_wolinfo *wol)
1750{
1751 struct netdev_private *np = netdev_priv(dev);
1752 void __iomem *ioaddr = np->base;
1753 u8 wol_bits;
1754
1755 wol->wolopts = 0;
1756
1757 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1758 if (!np->wol_enabled)
1759 return;
1760
1761 wol_bits = ioread8(ioaddr + WakeEvent);
1762 if (wol_bits & MagicPktEnable)
1763 wol->wolopts |= WAKE_MAGIC;
1764 if (wol_bits & LinkEventEnable)
1765 wol->wolopts |= WAKE_PHY;
1766}
1767
1768static int sundance_set_wol(struct net_device *dev,
1769 struct ethtool_wolinfo *wol)
1770{
1771 struct netdev_private *np = netdev_priv(dev);
1772 void __iomem *ioaddr = np->base;
1773 u8 wol_bits;
1774
1775 if (!device_can_wakeup(&np->pci_dev->dev))
1776 return -EOPNOTSUPP;
1777
1778 np->wol_enabled = !!(wol->wolopts);
1779 wol_bits = ioread8(ioaddr + WakeEvent);
1780 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1781 LinkEventEnable | WolEnable);
1782
1783 if (np->wol_enabled) {
1784 if (wol->wolopts & WAKE_MAGIC)
1785 wol_bits |= (MagicPktEnable | WolEnable);
1786 if (wol->wolopts & WAKE_PHY)
1787 wol_bits |= (LinkEventEnable | WolEnable);
1788 }
1789 iowrite8(wol_bits, ioaddr + WakeEvent);
1790
1791 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1792
1793 return 0;
1794}
1795#else
1796#define sundance_get_wol NULL
1797#define sundance_set_wol NULL
1798#endif /* CONFIG_PM */
1799
1800static const struct ethtool_ops ethtool_ops = {
1801 .begin = check_if_running,
1802 .get_drvinfo = get_drvinfo,
1803 .nway_reset = nway_reset,
1804 .get_link = get_link,
1805 .get_wol = sundance_get_wol,
1806 .set_wol = sundance_set_wol,
1807 .get_msglevel = get_msglevel,
1808 .set_msglevel = set_msglevel,
1809 .get_strings = get_strings,
1810 .get_sset_count = get_sset_count,
1811 .get_ethtool_stats = get_ethtool_stats,
1812 .get_link_ksettings = get_link_ksettings,
1813 .set_link_ksettings = set_link_ksettings,
1814};
1815
1816static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1817{
1818 struct netdev_private *np = netdev_priv(dev);
1819 int rc;
1820
1821 if (!netif_running(dev))
1822 return -EINVAL;
1823
1824 spin_lock_irq(&np->lock);
1825 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1826 spin_unlock_irq(&np->lock);
1827
1828 return rc;
1829}
1830
1831static int netdev_close(struct net_device *dev)
1832{
1833 struct netdev_private *np = netdev_priv(dev);
1834 void __iomem *ioaddr = np->base;
1835 struct sk_buff *skb;
1836 int i;
1837
1838 /* Wait and kill tasklet */
1839 tasklet_kill(&np->rx_tasklet);
1840 tasklet_kill(&np->tx_tasklet);
1841 np->cur_tx = 0;
1842 np->dirty_tx = 0;
1843 np->cur_task = 0;
1844 np->last_tx = NULL;
1845
1846 netif_stop_queue(dev);
1847
1848 if (netif_msg_ifdown(np)) {
1849 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1850 "Rx %4.4x Int %2.2x.\n",
1851 dev->name, ioread8(ioaddr + TxStatus),
1852 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1853 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1854 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1855 }
1856
1857 /* Disable interrupts by clearing the interrupt mask. */
1858 iowrite16(0x0000, ioaddr + IntrEnable);
1859
1860 /* Disable Rx and Tx DMA for safely release resource */
1861 iowrite32(0x500, ioaddr + DMACtrl);
1862
1863 /* Stop the chip's Tx and Rx processes. */
1864 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1865
1866 for (i = 2000; i > 0; i--) {
1867 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1868 break;
1869 mdelay(1);
1870 }
1871
1872 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1873 ioaddr + ASIC_HI_WORD(ASICCtrl));
1874
1875 for (i = 2000; i > 0; i--) {
1876 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1877 break;
1878 mdelay(1);
1879 }
1880
1881#ifdef __i386__
1882 if (netif_msg_hw(np)) {
1883 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1884 (int)(np->tx_ring_dma));
1885 for (i = 0; i < TX_RING_SIZE; i++)
1886 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1887 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1888 np->tx_ring[i].frag[0].length);
1889 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1890 (int)(np->rx_ring_dma));
1891 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1892 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1893 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1894 np->rx_ring[i].frag[0].length);
1895 }
1896 }
1897#endif /* __i386__ debugging only */
1898
1899 free_irq(np->pci_dev->irq, dev);
1900
1901 del_timer_sync(&np->timer);
1902
1903 /* Free all the skbuffs in the Rx queue. */
1904 for (i = 0; i < RX_RING_SIZE; i++) {
1905 np->rx_ring[i].status = 0;
1906 skb = np->rx_skbuff[i];
1907 if (skb) {
1908 dma_unmap_single(&np->pci_dev->dev,
1909 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1910 np->rx_buf_sz, DMA_FROM_DEVICE);
1911 dev_kfree_skb(skb);
1912 np->rx_skbuff[i] = NULL;
1913 }
1914 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1915 }
1916 for (i = 0; i < TX_RING_SIZE; i++) {
1917 np->tx_ring[i].next_desc = 0;
1918 skb = np->tx_skbuff[i];
1919 if (skb) {
1920 dma_unmap_single(&np->pci_dev->dev,
1921 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1922 skb->len, DMA_TO_DEVICE);
1923 dev_kfree_skb(skb);
1924 np->tx_skbuff[i] = NULL;
1925 }
1926 }
1927
1928 return 0;
1929}
1930
1931static void sundance_remove1(struct pci_dev *pdev)
1932{
1933 struct net_device *dev = pci_get_drvdata(pdev);
1934
1935 if (dev) {
1936 struct netdev_private *np = netdev_priv(dev);
1937 unregister_netdev(dev);
1938 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1939 np->rx_ring, np->rx_ring_dma);
1940 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1941 np->tx_ring, np->tx_ring_dma);
1942 pci_iounmap(pdev, np->base);
1943 pci_release_regions(pdev);
1944 free_netdev(dev);
1945 }
1946}
1947
1948#ifdef CONFIG_PM
1949
1950static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state)
1951{
1952 struct net_device *dev = pci_get_drvdata(pci_dev);
1953 struct netdev_private *np = netdev_priv(dev);
1954 void __iomem *ioaddr = np->base;
1955
1956 if (!netif_running(dev))
1957 return 0;
1958
1959 netdev_close(dev);
1960 netif_device_detach(dev);
1961
1962 pci_save_state(pci_dev);
1963 if (np->wol_enabled) {
1964 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1965 iowrite16(RxEnable, ioaddr + MACCtrl1);
1966 }
1967 pci_enable_wake(pci_dev, pci_choose_state(pci_dev, state),
1968 np->wol_enabled);
1969 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state));
1970
1971 return 0;
1972}
1973
1974static int sundance_resume(struct pci_dev *pci_dev)
1975{
1976 struct net_device *dev = pci_get_drvdata(pci_dev);
1977 int err = 0;
1978
1979 if (!netif_running(dev))
1980 return 0;
1981
1982 pci_set_power_state(pci_dev, PCI_D0);
1983 pci_restore_state(pci_dev);
1984 pci_enable_wake(pci_dev, PCI_D0, 0);
1985
1986 err = netdev_open(dev);
1987 if (err) {
1988 printk(KERN_ERR "%s: Can't resume interface!\n",
1989 dev->name);
1990 goto out;
1991 }
1992
1993 netif_device_attach(dev);
1994
1995out:
1996 return err;
1997}
1998
1999#endif /* CONFIG_PM */
2000
2001static struct pci_driver sundance_driver = {
2002 .name = DRV_NAME,
2003 .id_table = sundance_pci_tbl,
2004 .probe = sundance_probe1,
2005 .remove = sundance_remove1,
2006#ifdef CONFIG_PM
2007 .suspend = sundance_suspend,
2008 .resume = sundance_resume,
2009#endif /* CONFIG_PM */
2010};
2011
2012static int __init sundance_init(void)
2013{
2014/* when a module, this is printed whether or not devices are found in probe */
2015#ifdef MODULE
2016 printk(version);
2017#endif
2018 return pci_register_driver(&sundance_driver);
2019}
2020
2021static void __exit sundance_exit(void)
2022{
2023 pci_unregister_driver(&sundance_driver);
2024}
2025
2026module_init(sundance_init);
2027module_exit(sundance_exit);
2028
2029