Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
   4 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
   5 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
   6 *
   7 * Derived from Intel e1000 driver
   8 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Contact Information:
  11 * Xiong Huang <xiong.huang@atheros.com>
  12 * Jie Yang <jie.yang@atheros.com>
  13 * Chris Snook <csnook@redhat.com>
  14 * Jay Cliburn <jcliburn@gmail.com>
  15 *
  16 * This version is adapted from the Attansic reference driver.
  17 *
  18 * TODO:
  19 * Add more ethtool functions.
  20 * Fix abstruse irq enable/disable condition described here:
  21 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  22 *
  23 * NEEDS TESTING:
  24 * VLAN
  25 * multicast
  26 * promiscuous mode
  27 * interrupt coalescing
  28 * SMP torture testing
  29 */
  30
  31#include <linux/atomic.h>
  32#include <asm/byteorder.h>
  33
  34#include <linux/compiler.h>
  35#include <linux/crc32.h>
  36#include <linux/delay.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/etherdevice.h>
  39#include <linux/hardirq.h>
  40#include <linux/if_ether.h>
  41#include <linux/if_vlan.h>
  42#include <linux/in.h>
  43#include <linux/interrupt.h>
  44#include <linux/ip.h>
  45#include <linux/irqflags.h>
  46#include <linux/irqreturn.h>
  47#include <linux/jiffies.h>
  48#include <linux/mii.h>
  49#include <linux/module.h>
 
  50#include <linux/net.h>
  51#include <linux/netdevice.h>
  52#include <linux/pci.h>
  53#include <linux/pci_ids.h>
  54#include <linux/pm.h>
  55#include <linux/skbuff.h>
  56#include <linux/slab.h>
  57#include <linux/spinlock.h>
  58#include <linux/string.h>
  59#include <linux/tcp.h>
  60#include <linux/timer.h>
  61#include <linux/types.h>
  62#include <linux/workqueue.h>
  63
  64#include <net/checksum.h>
  65
  66#include "atl1.h"
  67
 
  68MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  69	      "Chris Snook <csnook@redhat.com>, "
  70	      "Jay Cliburn <jcliburn@gmail.com>");
  71MODULE_LICENSE("GPL");
 
  72
  73/* Temporary hack for merging atl1 and atl2 */
  74#include "atlx.c"
  75
  76static const struct ethtool_ops atl1_ethtool_ops;
  77
  78/*
  79 * This is the only thing that needs to be changed to adjust the
  80 * maximum number of ports that the driver can manage.
  81 */
  82#define ATL1_MAX_NIC 4
  83
  84#define OPTION_UNSET    -1
  85#define OPTION_DISABLED 0
  86#define OPTION_ENABLED  1
  87
  88#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  89
  90/*
  91 * Interrupt Moderate Timer in units of 2 us
  92 *
  93 * Valid Range: 10-65535
  94 *
  95 * Default Value: 100 (200us)
  96 */
  97static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  98static unsigned int num_int_mod_timer;
  99module_param_array_named(int_mod_timer, int_mod_timer, int,
 100	&num_int_mod_timer, 0);
 101MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
 102
 103#define DEFAULT_INT_MOD_CNT	100	/* 200us */
 104#define MAX_INT_MOD_CNT		65000
 105#define MIN_INT_MOD_CNT		50
 106
 107struct atl1_option {
 108	enum { enable_option, range_option, list_option } type;
 109	char *name;
 110	char *err;
 111	int def;
 112	union {
 113		struct {	/* range_option info */
 114			int min;
 115			int max;
 116		} r;
 117		struct {	/* list_option info */
 118			int nr;
 119			struct atl1_opt_list {
 120				int i;
 121				char *str;
 122			} *p;
 123		} l;
 124	} arg;
 125};
 126
 127static int atl1_validate_option(int *value, struct atl1_option *opt,
 128				struct pci_dev *pdev)
 129{
 130	if (*value == OPTION_UNSET) {
 131		*value = opt->def;
 132		return 0;
 133	}
 134
 135	switch (opt->type) {
 136	case enable_option:
 137		switch (*value) {
 138		case OPTION_ENABLED:
 139			dev_info(&pdev->dev, "%s enabled\n", opt->name);
 140			return 0;
 141		case OPTION_DISABLED:
 142			dev_info(&pdev->dev, "%s disabled\n", opt->name);
 143			return 0;
 144		}
 145		break;
 146	case range_option:
 147		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
 148			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
 149				*value);
 150			return 0;
 151		}
 152		break;
 153	case list_option:{
 154			int i;
 155			struct atl1_opt_list *ent;
 156
 157			for (i = 0; i < opt->arg.l.nr; i++) {
 158				ent = &opt->arg.l.p[i];
 159				if (*value == ent->i) {
 160					if (ent->str[0] != '\0')
 161						dev_info(&pdev->dev, "%s\n",
 162							ent->str);
 163					return 0;
 164				}
 165			}
 166		}
 167		break;
 168
 169	default:
 170		break;
 171	}
 172
 173	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
 174		opt->name, *value, opt->err);
 175	*value = opt->def;
 176	return -1;
 177}
 178
 179/**
 180 * atl1_check_options - Range Checking for Command Line Parameters
 181 * @adapter: board private structure
 182 *
 183 * This routine checks all command line parameters for valid user
 184 * input.  If an invalid value is given, or if no user specified
 185 * value exists, a default value is used.  The final value is stored
 186 * in a variable in the adapter structure.
 187 */
 188static void atl1_check_options(struct atl1_adapter *adapter)
 189{
 190	struct pci_dev *pdev = adapter->pdev;
 191	int bd = adapter->bd_number;
 192	if (bd >= ATL1_MAX_NIC) {
 193		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
 194		dev_notice(&pdev->dev, "using defaults for all values\n");
 195	}
 196	{			/* Interrupt Moderate Timer */
 197		struct atl1_option opt = {
 198			.type = range_option,
 199			.name = "Interrupt Moderator Timer",
 200			.err = "using default of "
 201				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
 202			.def = DEFAULT_INT_MOD_CNT,
 203			.arg = {.r = {.min = MIN_INT_MOD_CNT,
 204					.max = MAX_INT_MOD_CNT} }
 205		};
 206		int val;
 207		if (num_int_mod_timer > bd) {
 208			val = int_mod_timer[bd];
 209			atl1_validate_option(&val, &opt, pdev);
 210			adapter->imt = (u16) val;
 211		} else
 212			adapter->imt = (u16) (opt.def);
 213	}
 214}
 215
 216/*
 217 * atl1_pci_tbl - PCI Device ID Table
 218 */
 219static const struct pci_device_id atl1_pci_tbl[] = {
 220	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
 221	/* required last entry */
 222	{0,}
 223};
 224MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
 225
 226static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
 227	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
 228
 229static int debug = -1;
 230module_param(debug, int, 0);
 231MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
 232
 233/*
 234 * Reset the transmit and receive units; mask and clear all interrupts.
 235 * hw - Struct containing variables accessed by shared code
 236 * return : 0  or  idle status (if error)
 237 */
 238static s32 atl1_reset_hw(struct atl1_hw *hw)
 239{
 240	struct pci_dev *pdev = hw->back->pdev;
 241	struct atl1_adapter *adapter = hw->back;
 242	u32 icr;
 243	int i;
 244
 245	/*
 246	 * Clear Interrupt mask to stop board from generating
 247	 * interrupts & Clear any pending interrupt events
 248	 */
 249	/*
 250	 * atlx_irq_disable(adapter);
 251	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
 252	 */
 253
 254	/*
 255	 * Issue Soft Reset to the MAC.  This will reset the chip's
 256	 * transmit, receive, DMA.  It will not effect
 257	 * the current PCI configuration.  The global reset bit is self-
 258	 * clearing, and should clear within a microsecond.
 259	 */
 260	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
 261	ioread32(hw->hw_addr + REG_MASTER_CTRL);
 262
 263	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
 264	ioread16(hw->hw_addr + REG_PHY_ENABLE);
 265
 266	/* delay about 1ms */
 267	msleep(1);
 268
 269	/* Wait at least 10ms for All module to be Idle */
 270	for (i = 0; i < 10; i++) {
 271		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
 272		if (!icr)
 273			break;
 274		/* delay 1 ms */
 275		msleep(1);
 276		/* FIXME: still the right way to do this? */
 277		cpu_relax();
 278	}
 279
 280	if (icr) {
 281		if (netif_msg_hw(adapter))
 282			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
 283		return icr;
 284	}
 285
 286	return 0;
 287}
 288
 289/* function about EEPROM
 290 *
 291 * check_eeprom_exist
 292 * return 0 if eeprom exist
 293 */
 294static int atl1_check_eeprom_exist(struct atl1_hw *hw)
 295{
 296	u32 value;
 297	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 298	if (value & SPI_FLASH_CTRL_EN_VPD) {
 299		value &= ~SPI_FLASH_CTRL_EN_VPD;
 300		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 301	}
 302
 303	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
 304	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
 305}
 306
 307static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
 308{
 309	int i;
 310	u32 control;
 311
 312	if (offset & 3)
 313		/* address do not align */
 314		return false;
 315
 316	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
 317	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
 318	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
 319	ioread32(hw->hw_addr + REG_VPD_CAP);
 320
 321	for (i = 0; i < 10; i++) {
 322		msleep(2);
 323		control = ioread32(hw->hw_addr + REG_VPD_CAP);
 324		if (control & VPD_CAP_VPD_FLAG)
 325			break;
 326	}
 327	if (control & VPD_CAP_VPD_FLAG) {
 328		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
 329		return true;
 330	}
 331	/* timeout */
 332	return false;
 333}
 334
 335/*
 336 * Reads the value from a PHY register
 337 * hw - Struct containing variables accessed by shared code
 338 * reg_addr - address of the PHY register to read
 339 */
 340static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
 341{
 342	u32 val;
 343	int i;
 344
 345	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 346		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
 347		MDIO_CLK_SEL_SHIFT;
 348	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 349	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 350
 351	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 352		udelay(2);
 353		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 354		if (!(val & (MDIO_START | MDIO_BUSY)))
 355			break;
 356	}
 357	if (!(val & (MDIO_START | MDIO_BUSY))) {
 358		*phy_data = (u16) val;
 359		return 0;
 360	}
 361	return ATLX_ERR_PHY;
 362}
 363
 364#define CUSTOM_SPI_CS_SETUP	2
 365#define CUSTOM_SPI_CLK_HI	2
 366#define CUSTOM_SPI_CLK_LO	2
 367#define CUSTOM_SPI_CS_HOLD	2
 368#define CUSTOM_SPI_CS_HI	3
 369
 370static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
 371{
 372	int i;
 373	u32 value;
 374
 375	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
 376	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
 377
 378	value = SPI_FLASH_CTRL_WAIT_READY |
 379	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
 380	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
 381					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
 382	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
 383					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
 384	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
 385					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
 386	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
 387					    SPI_FLASH_CTRL_CS_HI_MASK) <<
 388	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
 389	    SPI_FLASH_CTRL_INS_SHIFT;
 390
 391	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 392
 393	value |= SPI_FLASH_CTRL_START;
 394	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 395	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 396
 397	for (i = 0; i < 10; i++) {
 398		msleep(1);
 399		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 400		if (!(value & SPI_FLASH_CTRL_START))
 401			break;
 402	}
 403
 404	if (value & SPI_FLASH_CTRL_START)
 405		return false;
 406
 407	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
 408
 409	return true;
 410}
 411
 412/*
 413 * get_permanent_address
 414 * return 0 if get valid mac address,
 415 */
 416static int atl1_get_permanent_address(struct atl1_hw *hw)
 417{
 418	u32 addr[2];
 419	u32 i, control;
 420	u16 reg;
 421	u8 eth_addr[ETH_ALEN];
 422	bool key_valid;
 423
 424	if (is_valid_ether_addr(hw->perm_mac_addr))
 425		return 0;
 426
 427	/* init */
 428	addr[0] = addr[1] = 0;
 429
 430	if (!atl1_check_eeprom_exist(hw)) {
 431		reg = 0;
 432		key_valid = false;
 433		/* Read out all EEPROM content */
 434		i = 0;
 435		while (1) {
 436			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
 437				if (key_valid) {
 438					if (reg == REG_MAC_STA_ADDR)
 439						addr[0] = control;
 440					else if (reg == (REG_MAC_STA_ADDR + 4))
 441						addr[1] = control;
 442					key_valid = false;
 443				} else if ((control & 0xff) == 0x5A) {
 444					key_valid = true;
 445					reg = (u16) (control >> 16);
 446				} else
 447					break;
 448			} else
 449				/* read error */
 450				break;
 451			i += 4;
 452		}
 453
 454		*(u32 *) &eth_addr[2] = swab32(addr[0]);
 455		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 456		if (is_valid_ether_addr(eth_addr)) {
 457			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 458			return 0;
 459		}
 460	}
 461
 462	/* see if SPI FLAGS exist ? */
 463	addr[0] = addr[1] = 0;
 464	reg = 0;
 465	key_valid = false;
 466	i = 0;
 467	while (1) {
 468		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
 469			if (key_valid) {
 470				if (reg == REG_MAC_STA_ADDR)
 471					addr[0] = control;
 472				else if (reg == (REG_MAC_STA_ADDR + 4))
 473					addr[1] = control;
 474				key_valid = false;
 475			} else if ((control & 0xff) == 0x5A) {
 476				key_valid = true;
 477				reg = (u16) (control >> 16);
 478			} else
 479				/* data end */
 480				break;
 481		} else
 482			/* read error */
 483			break;
 484		i += 4;
 485	}
 486
 487	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 488	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 489	if (is_valid_ether_addr(eth_addr)) {
 490		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 491		return 0;
 492	}
 493
 494	/*
 495	 * On some motherboards, the MAC address is written by the
 496	 * BIOS directly to the MAC register during POST, and is
 497	 * not stored in eeprom.  If all else thus far has failed
 498	 * to fetch the permanent MAC address, try reading it directly.
 499	 */
 500	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
 501	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
 502	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 503	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 504	if (is_valid_ether_addr(eth_addr)) {
 505		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 506		return 0;
 507	}
 508
 509	return 1;
 510}
 511
 512/*
 513 * Reads the adapter's MAC address from the EEPROM
 514 * hw - Struct containing variables accessed by shared code
 515 */
 516static s32 atl1_read_mac_addr(struct atl1_hw *hw)
 517{
 518	s32 ret = 0;
 519	u16 i;
 520
 521	if (atl1_get_permanent_address(hw)) {
 522		eth_random_addr(hw->perm_mac_addr);
 523		ret = 1;
 524	}
 525
 526	for (i = 0; i < ETH_ALEN; i++)
 527		hw->mac_addr[i] = hw->perm_mac_addr[i];
 528	return ret;
 529}
 530
 531/*
 532 * Hashes an address to determine its location in the multicast table
 533 * hw - Struct containing variables accessed by shared code
 534 * mc_addr - the multicast address to hash
 535 *
 536 * atl1_hash_mc_addr
 537 *  purpose
 538 *      set hash value for a multicast address
 539 *      hash calcu processing :
 540 *          1. calcu 32bit CRC for multicast address
 541 *          2. reverse crc with MSB to LSB
 542 */
 543static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
 544{
 545	u32 crc32, value = 0;
 546	int i;
 547
 548	crc32 = ether_crc_le(6, mc_addr);
 549	for (i = 0; i < 32; i++)
 550		value |= (((crc32 >> i) & 1) << (31 - i));
 551
 552	return value;
 553}
 554
 555/*
 556 * Sets the bit in the multicast table corresponding to the hash value.
 557 * hw - Struct containing variables accessed by shared code
 558 * hash_value - Multicast address hash value
 559 */
 560static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
 561{
 562	u32 hash_bit, hash_reg;
 563	u32 mta;
 564
 565	/*
 566	 * The HASH Table  is a register array of 2 32-bit registers.
 567	 * It is treated like an array of 64 bits.  We want to set
 568	 * bit BitArray[hash_value]. So we figure out what register
 569	 * the bit is in, read it, OR in the new bit, then write
 570	 * back the new value.  The register is determined by the
 571	 * upper 7 bits of the hash value and the bit within that
 572	 * register are determined by the lower 5 bits of the value.
 573	 */
 574	hash_reg = (hash_value >> 31) & 0x1;
 575	hash_bit = (hash_value >> 26) & 0x1F;
 576	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 577	mta |= (1 << hash_bit);
 578	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 579}
 580
 581/*
 582 * Writes a value to a PHY register
 583 * hw - Struct containing variables accessed by shared code
 584 * reg_addr - address of the PHY register to write
 585 * data - data to write to the PHY
 586 */
 587static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
 588{
 589	int i;
 590	u32 val;
 591
 592	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
 593	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 594	    MDIO_SUP_PREAMBLE |
 595	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 596	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 597	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 598
 599	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 600		udelay(2);
 601		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 602		if (!(val & (MDIO_START | MDIO_BUSY)))
 603			break;
 604	}
 605
 606	if (!(val & (MDIO_START | MDIO_BUSY)))
 607		return 0;
 608
 609	return ATLX_ERR_PHY;
 610}
 611
 612/*
 613 * Make L001's PHY out of Power Saving State (bug)
 614 * hw - Struct containing variables accessed by shared code
 615 * when power on, L001's PHY always on Power saving State
 616 * (Gigabit Link forbidden)
 617 */
 618static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
 619{
 620	s32 ret;
 621	ret = atl1_write_phy_reg(hw, 29, 0x0029);
 622	if (ret)
 623		return ret;
 624	return atl1_write_phy_reg(hw, 30, 0);
 625}
 626
 627/*
 628 * Resets the PHY and make all config validate
 629 * hw - Struct containing variables accessed by shared code
 630 *
 631 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
 632 */
 633static s32 atl1_phy_reset(struct atl1_hw *hw)
 634{
 635	struct pci_dev *pdev = hw->back->pdev;
 636	struct atl1_adapter *adapter = hw->back;
 637	s32 ret_val;
 638	u16 phy_data;
 639
 640	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
 641	    hw->media_type == MEDIA_TYPE_1000M_FULL)
 642		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
 643	else {
 644		switch (hw->media_type) {
 645		case MEDIA_TYPE_100M_FULL:
 646			phy_data =
 647			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
 648			    MII_CR_RESET;
 649			break;
 650		case MEDIA_TYPE_100M_HALF:
 651			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
 652			break;
 653		case MEDIA_TYPE_10M_FULL:
 654			phy_data =
 655			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
 656			break;
 657		default:
 658			/* MEDIA_TYPE_10M_HALF: */
 659			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
 660			break;
 661		}
 662	}
 663
 664	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
 665	if (ret_val) {
 666		u32 val;
 667		int i;
 668		/* pcie serdes link may be down! */
 669		if (netif_msg_hw(adapter))
 670			dev_dbg(&pdev->dev, "pcie phy link down\n");
 671
 672		for (i = 0; i < 25; i++) {
 673			msleep(1);
 674			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 675			if (!(val & (MDIO_START | MDIO_BUSY)))
 676				break;
 677		}
 678
 679		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
 680			if (netif_msg_hw(adapter))
 681				dev_warn(&pdev->dev,
 682					"pcie link down at least 25ms\n");
 683			return ret_val;
 684		}
 685	}
 686	return 0;
 687}
 688
 689/*
 690 * Configures PHY autoneg and flow control advertisement settings
 691 * hw - Struct containing variables accessed by shared code
 692 */
 693static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
 694{
 695	s32 ret_val;
 696	s16 mii_autoneg_adv_reg;
 697	s16 mii_1000t_ctrl_reg;
 698
 699	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 700	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
 701
 702	/* Read the MII 1000Base-T Control Register (Address 9). */
 703	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
 704
 705	/*
 706	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 707	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 708	 * the  1000Base-T Control Register (Address 9).
 709	 */
 710	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
 711	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
 712
 713	/*
 714	 * Need to parse media_type  and set up
 715	 * the appropriate PHY registers.
 716	 */
 717	switch (hw->media_type) {
 718	case MEDIA_TYPE_AUTO_SENSOR:
 719		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
 720					MII_AR_10T_FD_CAPS |
 721					MII_AR_100TX_HD_CAPS |
 722					MII_AR_100TX_FD_CAPS);
 723		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 724		break;
 725
 726	case MEDIA_TYPE_1000M_FULL:
 727		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 728		break;
 729
 730	case MEDIA_TYPE_100M_FULL:
 731		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
 732		break;
 733
 734	case MEDIA_TYPE_100M_HALF:
 735		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
 736		break;
 737
 738	case MEDIA_TYPE_10M_FULL:
 739		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
 740		break;
 741
 742	default:
 743		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
 744		break;
 745	}
 746
 747	/* flow control fixed to enable all */
 748	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
 749
 750	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
 751	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
 752
 753	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
 754	if (ret_val)
 755		return ret_val;
 756
 757	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
 758	if (ret_val)
 759		return ret_val;
 760
 761	return 0;
 762}
 763
 764/*
 765 * Configures link settings.
 766 * hw - Struct containing variables accessed by shared code
 767 * Assumes the hardware has previously been reset and the
 768 * transmitter and receiver are not enabled.
 769 */
 770static s32 atl1_setup_link(struct atl1_hw *hw)
 771{
 772	struct pci_dev *pdev = hw->back->pdev;
 773	struct atl1_adapter *adapter = hw->back;
 774	s32 ret_val;
 775
 776	/*
 777	 * Options:
 778	 *  PHY will advertise value(s) parsed from
 779	 *  autoneg_advertised and fc
 780	 *  no matter what autoneg is , We will not wait link result.
 781	 */
 782	ret_val = atl1_phy_setup_autoneg_adv(hw);
 783	if (ret_val) {
 784		if (netif_msg_link(adapter))
 785			dev_dbg(&pdev->dev,
 786				"error setting up autonegotiation\n");
 787		return ret_val;
 788	}
 789	/* SW.Reset , En-Auto-Neg if needed */
 790	ret_val = atl1_phy_reset(hw);
 791	if (ret_val) {
 792		if (netif_msg_link(adapter))
 793			dev_dbg(&pdev->dev, "error resetting phy\n");
 794		return ret_val;
 795	}
 796	hw->phy_configured = true;
 797	return ret_val;
 798}
 799
 800static void atl1_init_flash_opcode(struct atl1_hw *hw)
 801{
 802	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
 803		/* Atmel */
 804		hw->flash_vendor = 0;
 805
 806	/* Init OP table */
 807	iowrite8(flash_table[hw->flash_vendor].cmd_program,
 808		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
 809	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
 810		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
 811	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
 812		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
 813	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
 814		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
 815	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
 816		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
 817	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
 818		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
 819	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
 820		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
 821	iowrite8(flash_table[hw->flash_vendor].cmd_read,
 822		hw->hw_addr + REG_SPI_FLASH_OP_READ);
 823}
 824
 825/*
 826 * Performs basic configuration of the adapter.
 827 * hw - Struct containing variables accessed by shared code
 828 * Assumes that the controller has previously been reset and is in a
 829 * post-reset uninitialized state. Initializes multicast table,
 830 * and  Calls routines to setup link
 831 * Leaves the transmit and receive units disabled and uninitialized.
 832 */
 833static s32 atl1_init_hw(struct atl1_hw *hw)
 834{
 835	u32 ret_val = 0;
 836
 837	/* Zero out the Multicast HASH table */
 838	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
 839	/* clear the old settings from the multicast hash table */
 840	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
 841
 842	atl1_init_flash_opcode(hw);
 843
 844	if (!hw->phy_configured) {
 845		/* enable GPHY LinkChange Interrupt */
 846		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
 847		if (ret_val)
 848			return ret_val;
 849		/* make PHY out of power-saving state */
 850		ret_val = atl1_phy_leave_power_saving(hw);
 851		if (ret_val)
 852			return ret_val;
 853		/* Call a subroutine to configure the link */
 854		ret_val = atl1_setup_link(hw);
 855	}
 856	return ret_val;
 857}
 858
 859/*
 860 * Detects the current speed and duplex settings of the hardware.
 861 * hw - Struct containing variables accessed by shared code
 862 * speed - Speed of the connection
 863 * duplex - Duplex setting of the connection
 864 */
 865static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
 866{
 867	struct pci_dev *pdev = hw->back->pdev;
 868	struct atl1_adapter *adapter = hw->back;
 869	s32 ret_val;
 870	u16 phy_data;
 871
 872	/* ; --- Read   PHY Specific Status Register (17) */
 873	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
 874	if (ret_val)
 875		return ret_val;
 876
 877	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
 878		return ATLX_ERR_PHY_RES;
 879
 880	switch (phy_data & MII_ATLX_PSSR_SPEED) {
 881	case MII_ATLX_PSSR_1000MBS:
 882		*speed = SPEED_1000;
 883		break;
 884	case MII_ATLX_PSSR_100MBS:
 885		*speed = SPEED_100;
 886		break;
 887	case MII_ATLX_PSSR_10MBS:
 888		*speed = SPEED_10;
 889		break;
 890	default:
 891		if (netif_msg_hw(adapter))
 892			dev_dbg(&pdev->dev, "error getting speed\n");
 893		return ATLX_ERR_PHY_SPEED;
 894	}
 895	if (phy_data & MII_ATLX_PSSR_DPLX)
 896		*duplex = FULL_DUPLEX;
 897	else
 898		*duplex = HALF_DUPLEX;
 899
 900	return 0;
 901}
 902
 903static void atl1_set_mac_addr(struct atl1_hw *hw)
 904{
 905	u32 value;
 906	/*
 907	 * 00-0B-6A-F6-00-DC
 908	 * 0:  6AF600DC   1: 000B
 909	 * low dword
 910	 */
 911	value = (((u32) hw->mac_addr[2]) << 24) |
 912	    (((u32) hw->mac_addr[3]) << 16) |
 913	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
 914	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
 915	/* high dword */
 916	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
 917	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
 918}
 919
 920/**
 921 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
 922 * @adapter: board private structure to initialize
 923 *
 924 * atl1_sw_init initializes the Adapter private data structure.
 925 * Fields are initialized based on PCI device information and
 926 * OS network device settings (MTU size).
 927 */
 928static int atl1_sw_init(struct atl1_adapter *adapter)
 929{
 930	struct atl1_hw *hw = &adapter->hw;
 931	struct net_device *netdev = adapter->netdev;
 932
 933	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 934	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 935
 936	adapter->wol = 0;
 937	device_set_wakeup_enable(&adapter->pdev->dev, false);
 938	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
 939	adapter->ict = 50000;		/* 100ms */
 940	adapter->link_speed = SPEED_0;	/* hardware init */
 941	adapter->link_duplex = FULL_DUPLEX;
 942
 943	hw->phy_configured = false;
 944	hw->preamble_len = 7;
 945	hw->ipgt = 0x60;
 946	hw->min_ifg = 0x50;
 947	hw->ipgr1 = 0x40;
 948	hw->ipgr2 = 0x60;
 949	hw->max_retry = 0xf;
 950	hw->lcol = 0x37;
 951	hw->jam_ipg = 7;
 952	hw->rfd_burst = 8;
 953	hw->rrd_burst = 8;
 954	hw->rfd_fetch_gap = 1;
 955	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
 956	hw->rx_jumbo_lkah = 1;
 957	hw->rrd_ret_timer = 16;
 958	hw->tpd_burst = 4;
 959	hw->tpd_fetch_th = 16;
 960	hw->txf_burst = 0x100;
 961	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
 962	hw->tpd_fetch_gap = 1;
 963	hw->rcb_value = atl1_rcb_64;
 964	hw->dma_ord = atl1_dma_ord_enh;
 965	hw->dmar_block = atl1_dma_req_256;
 966	hw->dmaw_block = atl1_dma_req_256;
 967	hw->cmb_rrd = 4;
 968	hw->cmb_tpd = 4;
 969	hw->cmb_rx_timer = 1;	/* about 2us */
 970	hw->cmb_tx_timer = 1;	/* about 2us */
 971	hw->smb_timer = 100000;	/* about 200ms */
 972
 973	spin_lock_init(&adapter->lock);
 974	spin_lock_init(&adapter->mb_lock);
 975
 976	return 0;
 977}
 978
 979static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
 980{
 981	struct atl1_adapter *adapter = netdev_priv(netdev);
 982	u16 result;
 983
 984	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
 985
 986	return result;
 987}
 988
 989static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
 990	int val)
 991{
 992	struct atl1_adapter *adapter = netdev_priv(netdev);
 993
 994	atl1_write_phy_reg(&adapter->hw, reg_num, val);
 995}
 996
 997static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 998{
 999	struct atl1_adapter *adapter = netdev_priv(netdev);
1000	unsigned long flags;
1001	int retval;
1002
1003	if (!netif_running(netdev))
1004		return -EINVAL;
1005
1006	spin_lock_irqsave(&adapter->lock, flags);
1007	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1008	spin_unlock_irqrestore(&adapter->lock, flags);
1009
1010	return retval;
1011}
1012
1013/**
1014 * atl1_setup_ring_resources - allocate Tx / RX descriptor resources
1015 * @adapter: board private structure
1016 *
1017 * Return 0 on success, negative on failure
1018 */
1019static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1020{
1021	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1022	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1023	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1024	struct atl1_ring_header *ring_header = &adapter->ring_header;
1025	struct pci_dev *pdev = adapter->pdev;
1026	int size;
1027	u8 offset = 0;
1028
1029	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1030	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1031	if (unlikely(!tpd_ring->buffer_info)) {
1032		if (netif_msg_drv(adapter))
1033			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1034				size);
1035		goto err_nomem;
1036	}
1037	rfd_ring->buffer_info =
1038		(tpd_ring->buffer_info + tpd_ring->count);
1039
1040	/*
1041	 * real ring DMA buffer
1042	 * each ring/block may need up to 8 bytes for alignment, hence the
1043	 * additional 40 bytes tacked onto the end.
1044	 */
1045	ring_header->size =
1046		sizeof(struct tx_packet_desc) * tpd_ring->count
1047		+ sizeof(struct rx_free_desc) * rfd_ring->count
1048		+ sizeof(struct rx_return_desc) * rrd_ring->count
1049		+ sizeof(struct coals_msg_block)
1050		+ sizeof(struct stats_msg_block)
1051		+ 40;
1052
1053	ring_header->desc = dma_alloc_coherent(&pdev->dev, ring_header->size,
1054					       &ring_header->dma, GFP_KERNEL);
1055	if (unlikely(!ring_header->desc)) {
1056		if (netif_msg_drv(adapter))
1057			dev_err(&pdev->dev, "dma_alloc_coherent failed\n");
1058		goto err_nomem;
1059	}
1060
 
 
1061	/* init TPD ring */
1062	tpd_ring->dma = ring_header->dma;
1063	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1064	tpd_ring->dma += offset;
1065	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1066	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1067
1068	/* init RFD ring */
1069	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1070	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1071	rfd_ring->dma += offset;
1072	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1073	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1074
1075
1076	/* init RRD ring */
1077	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1078	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1079	rrd_ring->dma += offset;
1080	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1081	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1082
1083
1084	/* init CMB */
1085	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1086	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1087	adapter->cmb.dma += offset;
1088	adapter->cmb.cmb = (struct coals_msg_block *)
1089		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1090
1091	/* init SMB */
1092	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1093	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1094	adapter->smb.dma += offset;
1095	adapter->smb.smb = (struct stats_msg_block *)
1096		((u8 *) adapter->cmb.cmb +
1097		(sizeof(struct coals_msg_block) + offset));
1098
1099	return 0;
1100
1101err_nomem:
1102	kfree(tpd_ring->buffer_info);
1103	return -ENOMEM;
1104}
1105
1106static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1107{
1108	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1109	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1110	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1111
1112	atomic_set(&tpd_ring->next_to_use, 0);
1113	atomic_set(&tpd_ring->next_to_clean, 0);
1114
1115	rfd_ring->next_to_clean = 0;
1116	atomic_set(&rfd_ring->next_to_use, 0);
1117
1118	rrd_ring->next_to_use = 0;
1119	atomic_set(&rrd_ring->next_to_clean, 0);
1120}
1121
1122/**
1123 * atl1_clean_rx_ring - Free RFD Buffers
1124 * @adapter: board private structure
1125 */
1126static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1127{
1128	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1129	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1130	struct atl1_buffer *buffer_info;
1131	struct pci_dev *pdev = adapter->pdev;
1132	unsigned long size;
1133	unsigned int i;
1134
1135	/* Free all the Rx ring sk_buffs */
1136	for (i = 0; i < rfd_ring->count; i++) {
1137		buffer_info = &rfd_ring->buffer_info[i];
1138		if (buffer_info->dma) {
1139			dma_unmap_page(&pdev->dev, buffer_info->dma,
1140				       buffer_info->length, DMA_FROM_DEVICE);
1141			buffer_info->dma = 0;
1142		}
1143		if (buffer_info->skb) {
1144			dev_kfree_skb(buffer_info->skb);
1145			buffer_info->skb = NULL;
1146		}
1147	}
1148
1149	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1150	memset(rfd_ring->buffer_info, 0, size);
1151
1152	/* Zero out the descriptor ring */
1153	memset(rfd_ring->desc, 0, rfd_ring->size);
1154
1155	rfd_ring->next_to_clean = 0;
1156	atomic_set(&rfd_ring->next_to_use, 0);
1157
1158	rrd_ring->next_to_use = 0;
1159	atomic_set(&rrd_ring->next_to_clean, 0);
1160}
1161
1162/**
1163 * atl1_clean_tx_ring - Free Tx Buffers
1164 * @adapter: board private structure
1165 */
1166static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1167{
1168	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1169	struct atl1_buffer *buffer_info;
1170	struct pci_dev *pdev = adapter->pdev;
1171	unsigned long size;
1172	unsigned int i;
1173
1174	/* Free all the Tx ring sk_buffs */
1175	for (i = 0; i < tpd_ring->count; i++) {
1176		buffer_info = &tpd_ring->buffer_info[i];
1177		if (buffer_info->dma) {
1178			dma_unmap_page(&pdev->dev, buffer_info->dma,
1179				       buffer_info->length, DMA_TO_DEVICE);
1180			buffer_info->dma = 0;
1181		}
1182	}
1183
1184	for (i = 0; i < tpd_ring->count; i++) {
1185		buffer_info = &tpd_ring->buffer_info[i];
1186		if (buffer_info->skb) {
1187			dev_kfree_skb_any(buffer_info->skb);
1188			buffer_info->skb = NULL;
1189		}
1190	}
1191
1192	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1193	memset(tpd_ring->buffer_info, 0, size);
1194
1195	/* Zero out the descriptor ring */
1196	memset(tpd_ring->desc, 0, tpd_ring->size);
1197
1198	atomic_set(&tpd_ring->next_to_use, 0);
1199	atomic_set(&tpd_ring->next_to_clean, 0);
1200}
1201
1202/**
1203 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1204 * @adapter: board private structure
1205 *
1206 * Free all transmit software resources
1207 */
1208static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1209{
1210	struct pci_dev *pdev = adapter->pdev;
1211	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1212	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1213	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1214	struct atl1_ring_header *ring_header = &adapter->ring_header;
1215
1216	atl1_clean_tx_ring(adapter);
1217	atl1_clean_rx_ring(adapter);
1218
1219	kfree(tpd_ring->buffer_info);
1220	dma_free_coherent(&pdev->dev, ring_header->size, ring_header->desc,
1221			  ring_header->dma);
1222
1223	tpd_ring->buffer_info = NULL;
1224	tpd_ring->desc = NULL;
1225	tpd_ring->dma = 0;
1226
1227	rfd_ring->buffer_info = NULL;
1228	rfd_ring->desc = NULL;
1229	rfd_ring->dma = 0;
1230
1231	rrd_ring->desc = NULL;
1232	rrd_ring->dma = 0;
1233
1234	adapter->cmb.dma = 0;
1235	adapter->cmb.cmb = NULL;
1236
1237	adapter->smb.dma = 0;
1238	adapter->smb.smb = NULL;
1239}
1240
1241static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1242{
1243	u32 value;
1244	struct atl1_hw *hw = &adapter->hw;
1245	struct net_device *netdev = adapter->netdev;
1246	/* Config MAC CTRL Register */
1247	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1248	/* duplex */
1249	if (FULL_DUPLEX == adapter->link_duplex)
1250		value |= MAC_CTRL_DUPLX;
1251	/* speed */
1252	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1253			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1254		  MAC_CTRL_SPEED_SHIFT);
1255	/* flow control */
1256	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1257	/* PAD & CRC */
1258	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1259	/* preamble length */
1260	value |= (((u32) adapter->hw.preamble_len
1261		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1262	/* vlan */
1263	__atlx_vlan_mode(netdev->features, &value);
1264	/* rx checksum
1265	   if (adapter->rx_csum)
1266	   value |= MAC_CTRL_RX_CHKSUM_EN;
1267	 */
1268	/* filter mode */
1269	value |= MAC_CTRL_BC_EN;
1270	if (netdev->flags & IFF_PROMISC)
1271		value |= MAC_CTRL_PROMIS_EN;
1272	else if (netdev->flags & IFF_ALLMULTI)
1273		value |= MAC_CTRL_MC_ALL_EN;
1274	/* value |= MAC_CTRL_LOOPBACK; */
1275	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1276}
1277
1278static u32 atl1_check_link(struct atl1_adapter *adapter)
1279{
1280	struct atl1_hw *hw = &adapter->hw;
1281	struct net_device *netdev = adapter->netdev;
1282	u32 ret_val;
1283	u16 speed, duplex, phy_data;
1284	int reconfig = 0;
1285
1286	/* MII_BMSR must read twice */
1287	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1288	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1289	if (!(phy_data & BMSR_LSTATUS)) {
1290		/* link down */
1291		if (netif_carrier_ok(netdev)) {
1292			/* old link state: Up */
1293			if (netif_msg_link(adapter))
1294				dev_info(&adapter->pdev->dev, "link is down\n");
1295			adapter->link_speed = SPEED_0;
1296			netif_carrier_off(netdev);
1297		}
1298		return 0;
1299	}
1300
1301	/* Link Up */
1302	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1303	if (ret_val)
1304		return ret_val;
1305
1306	switch (hw->media_type) {
1307	case MEDIA_TYPE_1000M_FULL:
1308		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1309			reconfig = 1;
1310		break;
1311	case MEDIA_TYPE_100M_FULL:
1312		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1313			reconfig = 1;
1314		break;
1315	case MEDIA_TYPE_100M_HALF:
1316		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1317			reconfig = 1;
1318		break;
1319	case MEDIA_TYPE_10M_FULL:
1320		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1321			reconfig = 1;
1322		break;
1323	case MEDIA_TYPE_10M_HALF:
1324		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1325			reconfig = 1;
1326		break;
1327	}
1328
1329	/* link result is our setting */
1330	if (!reconfig) {
1331		if (adapter->link_speed != speed ||
1332		    adapter->link_duplex != duplex) {
1333			adapter->link_speed = speed;
1334			adapter->link_duplex = duplex;
1335			atl1_setup_mac_ctrl(adapter);
1336			if (netif_msg_link(adapter))
1337				dev_info(&adapter->pdev->dev,
1338					"%s link is up %d Mbps %s\n",
1339					netdev->name, adapter->link_speed,
1340					adapter->link_duplex == FULL_DUPLEX ?
1341					"full duplex" : "half duplex");
1342		}
1343		if (!netif_carrier_ok(netdev)) {
1344			/* Link down -> Up */
1345			netif_carrier_on(netdev);
1346		}
1347		return 0;
1348	}
1349
1350	/* change original link status */
1351	if (netif_carrier_ok(netdev)) {
1352		adapter->link_speed = SPEED_0;
1353		netif_carrier_off(netdev);
1354		netif_stop_queue(netdev);
1355	}
1356
1357	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1358	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1359		switch (hw->media_type) {
1360		case MEDIA_TYPE_100M_FULL:
1361			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1362			           MII_CR_RESET;
1363			break;
1364		case MEDIA_TYPE_100M_HALF:
1365			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1366			break;
1367		case MEDIA_TYPE_10M_FULL:
1368			phy_data =
1369			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1370			break;
1371		default:
1372			/* MEDIA_TYPE_10M_HALF: */
1373			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1374			break;
1375		}
1376		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1377		return 0;
1378	}
1379
1380	/* auto-neg, insert timer to re-config phy */
1381	if (!adapter->phy_timer_pending) {
1382		adapter->phy_timer_pending = true;
1383		mod_timer(&adapter->phy_config_timer,
1384			  round_jiffies(jiffies + 3 * HZ));
1385	}
1386
1387	return 0;
1388}
1389
1390static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1391{
1392	u32 hi, lo, value;
1393
1394	/* RFD Flow Control */
1395	value = adapter->rfd_ring.count;
1396	hi = value / 16;
1397	if (hi < 2)
1398		hi = 2;
1399	lo = value * 7 / 8;
1400
1401	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1402		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1403	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1404
1405	/* RRD Flow Control */
1406	value = adapter->rrd_ring.count;
1407	lo = value / 16;
1408	hi = value * 7 / 8;
1409	if (lo < 2)
1410		lo = 2;
1411	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1412		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1413	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1414}
1415
1416static void set_flow_ctrl_new(struct atl1_hw *hw)
1417{
1418	u32 hi, lo, value;
1419
1420	/* RXF Flow Control */
1421	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1422	lo = value / 16;
1423	if (lo < 192)
1424		lo = 192;
1425	hi = value * 7 / 8;
1426	if (hi < lo)
1427		hi = lo + 16;
1428	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1429		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1430	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1431
1432	/* RRD Flow Control */
1433	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1434	lo = value / 8;
1435	hi = value * 7 / 8;
1436	if (lo < 2)
1437		lo = 2;
1438	if (hi < lo)
1439		hi = lo + 3;
1440	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1441		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1442	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1443}
1444
1445/**
1446 * atl1_configure - Configure Transmit&Receive Unit after Reset
1447 * @adapter: board private structure
1448 *
1449 * Configure the Tx /Rx unit of the MAC after a reset.
1450 */
1451static u32 atl1_configure(struct atl1_adapter *adapter)
1452{
1453	struct atl1_hw *hw = &adapter->hw;
1454	u32 value;
1455
1456	/* clear interrupt status */
1457	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1458
1459	/* set MAC Address */
1460	value = (((u32) hw->mac_addr[2]) << 24) |
1461		(((u32) hw->mac_addr[3]) << 16) |
1462		(((u32) hw->mac_addr[4]) << 8) |
1463		(((u32) hw->mac_addr[5]));
1464	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1465	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1466	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1467
1468	/* tx / rx ring */
1469
1470	/* HI base address */
1471	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1472		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1473	/* LO base address */
1474	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1475		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1476	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1477		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1478	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1479		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1480	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1481		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1482	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1483		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1484
1485	/* element count */
1486	value = adapter->rrd_ring.count;
1487	value <<= 16;
1488	value += adapter->rfd_ring.count;
1489	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1490	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1491		REG_DESC_TPD_RING_SIZE);
1492
1493	/* Load Ptr */
1494	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1495
1496	/* config Mailbox */
1497	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1498		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1499		((atomic_read(&adapter->rrd_ring.next_to_clean)
1500		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1501		((atomic_read(&adapter->rfd_ring.next_to_use)
1502		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1503	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1504
1505	/* config IPG/IFG */
1506	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1507		 << MAC_IPG_IFG_IPGT_SHIFT) |
1508		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1509		<< MAC_IPG_IFG_MIFG_SHIFT) |
1510		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1511		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1512		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1513		<< MAC_IPG_IFG_IPGR2_SHIFT);
1514	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1515
1516	/* config  Half-Duplex Control */
1517	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1518		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1519		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1520		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1521		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1522		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1523		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1524	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1525
1526	/* set Interrupt Moderator Timer */
1527	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1528	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1529
1530	/* set Interrupt Clear Timer */
1531	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1532
1533	/* set max frame size hw will accept */
1534	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1535
1536	/* jumbo size & rrd retirement timer */
1537	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1538		 << RXQ_JMBOSZ_TH_SHIFT) |
1539		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1540		<< RXQ_JMBO_LKAH_SHIFT) |
1541		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1542		<< RXQ_RRD_TIMER_SHIFT);
1543	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1544
1545	/* Flow Control */
1546	switch (hw->dev_rev) {
1547	case 0x8001:
1548	case 0x9001:
1549	case 0x9002:
1550	case 0x9003:
1551		set_flow_ctrl_old(adapter);
1552		break;
1553	default:
1554		set_flow_ctrl_new(hw);
1555		break;
1556	}
1557
1558	/* config TXQ */
1559	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1560		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1561		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1562		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1563		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1564		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1565		TXQ_CTRL_EN;
1566	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1567
1568	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1569	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1570		<< TX_JUMBO_TASK_TH_SHIFT) |
1571		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1572		<< TX_TPD_MIN_IPG_SHIFT);
1573	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1574
1575	/* config RXQ */
1576	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1577		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1578		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1579		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1580		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1581		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1582		RXQ_CTRL_EN;
1583	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1584
1585	/* config DMA Engine */
1586	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1587		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1588		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1589		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1590		DMA_CTRL_DMAW_EN;
1591	value |= (u32) hw->dma_ord;
1592	if (atl1_rcb_128 == hw->rcb_value)
1593		value |= DMA_CTRL_RCB_VALUE;
1594	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1595
1596	/* config CMB / SMB */
1597	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1598		hw->cmb_tpd : adapter->tpd_ring.count;
1599	value <<= 16;
1600	value |= hw->cmb_rrd;
1601	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1602	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1603	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1604	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1605
1606	/* --- enable CMB / SMB */
1607	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1608	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1609
1610	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1611	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1612		value = 1;	/* config failed */
1613	else
1614		value = 0;
1615
1616	/* clear all interrupt status */
1617	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1618	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1619	return value;
1620}
1621
1622/*
1623 * atl1_pcie_patch - Patch for PCIE module
1624 */
1625static void atl1_pcie_patch(struct atl1_adapter *adapter)
1626{
1627	u32 value;
1628
1629	/* much vendor magic here */
1630	value = 0x6500;
1631	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1632	/* pcie flow control mode change */
1633	value = ioread32(adapter->hw.hw_addr + 0x1008);
1634	value |= 0x8000;
1635	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1636}
1637
1638/*
1639 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1640 * on PCI Command register is disable.
1641 * The function enable this bit.
1642 * Brackett, 2006/03/15
1643 */
1644static void atl1_via_workaround(struct atl1_adapter *adapter)
1645{
1646	unsigned long value;
1647
1648	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1649	if (value & PCI_COMMAND_INTX_DISABLE)
1650		value &= ~PCI_COMMAND_INTX_DISABLE;
1651	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1652}
1653
1654static void atl1_inc_smb(struct atl1_adapter *adapter)
1655{
1656	struct net_device *netdev = adapter->netdev;
1657	struct stats_msg_block *smb = adapter->smb.smb;
1658
1659	u64 new_rx_errors = smb->rx_frag +
1660			    smb->rx_fcs_err +
1661			    smb->rx_len_err +
1662			    smb->rx_sz_ov +
1663			    smb->rx_rxf_ov +
1664			    smb->rx_rrd_ov +
1665			    smb->rx_align_err;
1666	u64 new_tx_errors = smb->tx_late_col +
1667			    smb->tx_abort_col +
1668			    smb->tx_underrun +
1669			    smb->tx_trunc;
1670
1671	/* Fill out the OS statistics structure */
1672	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1673	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1674	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1675	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1676	adapter->soft_stats.multicast += smb->rx_mcast;
1677	adapter->soft_stats.collisions += smb->tx_1_col +
1678					  smb->tx_2_col +
1679					  smb->tx_late_col +
1680					  smb->tx_abort_col;
1681
1682	/* Rx Errors */
1683	adapter->soft_stats.rx_errors += new_rx_errors;
1684	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1685	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1686	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1687	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1688
1689	adapter->soft_stats.rx_pause += smb->rx_pause;
1690	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1691	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1692
1693	/* Tx Errors */
1694	adapter->soft_stats.tx_errors += new_tx_errors;
1695	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1696	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1697	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1698
1699	adapter->soft_stats.excecol += smb->tx_abort_col;
1700	adapter->soft_stats.deffer += smb->tx_defer;
1701	adapter->soft_stats.scc += smb->tx_1_col;
1702	adapter->soft_stats.mcc += smb->tx_2_col;
1703	adapter->soft_stats.latecol += smb->tx_late_col;
1704	adapter->soft_stats.tx_underrun += smb->tx_underrun;
1705	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1706	adapter->soft_stats.tx_pause += smb->tx_pause;
1707
1708	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1709	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1710	netdev->stats.multicast = adapter->soft_stats.multicast;
1711	netdev->stats.collisions = adapter->soft_stats.collisions;
1712	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1713	netdev->stats.rx_length_errors =
1714		adapter->soft_stats.rx_length_errors;
1715	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1716	netdev->stats.rx_frame_errors =
1717		adapter->soft_stats.rx_frame_errors;
1718	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1719	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1720	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1721	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1722	netdev->stats.tx_aborted_errors =
1723		adapter->soft_stats.tx_aborted_errors;
1724	netdev->stats.tx_window_errors =
1725		adapter->soft_stats.tx_window_errors;
1726	netdev->stats.tx_carrier_errors =
1727		adapter->soft_stats.tx_carrier_errors;
1728
1729	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1730	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1731}
1732
1733static void atl1_update_mailbox(struct atl1_adapter *adapter)
1734{
1735	unsigned long flags;
1736	u32 tpd_next_to_use;
1737	u32 rfd_next_to_use;
1738	u32 rrd_next_to_clean;
1739	u32 value;
1740
1741	spin_lock_irqsave(&adapter->mb_lock, flags);
1742
1743	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1744	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1745	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1746
1747	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1748		MB_RFD_PROD_INDX_SHIFT) |
1749		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1750		MB_RRD_CONS_INDX_SHIFT) |
1751		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1752		MB_TPD_PROD_INDX_SHIFT);
1753	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1754
1755	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1756}
1757
1758static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1759	struct rx_return_desc *rrd, u16 offset)
1760{
1761	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1762
1763	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1764		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1765		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1766			rfd_ring->next_to_clean = 0;
1767		}
1768	}
1769}
1770
1771static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1772	struct rx_return_desc *rrd)
1773{
1774	u16 num_buf;
1775
1776	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1777		adapter->rx_buffer_len;
1778	if (rrd->num_buf == num_buf)
1779		/* clean alloc flag for bad rrd */
1780		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1781}
1782
1783static void atl1_rx_checksum(struct atl1_adapter *adapter,
1784	struct rx_return_desc *rrd, struct sk_buff *skb)
1785{
1786	struct pci_dev *pdev = adapter->pdev;
1787
1788	/*
1789	 * The L1 hardware contains a bug that erroneously sets the
1790	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1791	 * fragmented IP packet is received, even though the packet
1792	 * is perfectly valid and its checksum is correct. There's
1793	 * no way to distinguish between one of these good packets
1794	 * and a packet that actually contains a TCP/UDP checksum
1795	 * error, so all we can do is allow it to be handed up to
1796	 * the higher layers and let it be sorted out there.
1797	 */
1798
1799	skb_checksum_none_assert(skb);
1800
1801	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1802		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1803					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1804			adapter->hw_csum_err++;
1805			if (netif_msg_rx_err(adapter))
1806				dev_printk(KERN_DEBUG, &pdev->dev,
1807					"rx checksum error\n");
1808			return;
1809		}
1810	}
1811
1812	/* not IPv4 */
1813	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1814		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1815		return;
1816
1817	/* IPv4 packet */
1818	if (likely(!(rrd->err_flg &
1819		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1820		skb->ip_summed = CHECKSUM_UNNECESSARY;
1821		adapter->hw_csum_good++;
1822		return;
1823	}
1824}
1825
1826/**
1827 * atl1_alloc_rx_buffers - Replace used receive buffers
1828 * @adapter: address of board private structure
1829 */
1830static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1831{
1832	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1833	struct pci_dev *pdev = adapter->pdev;
1834	struct page *page;
1835	unsigned long offset;
1836	struct atl1_buffer *buffer_info, *next_info;
1837	struct sk_buff *skb;
1838	u16 num_alloc = 0;
1839	u16 rfd_next_to_use, next_next;
1840	struct rx_free_desc *rfd_desc;
1841
1842	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1843	if (++next_next == rfd_ring->count)
1844		next_next = 0;
1845	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1846	next_info = &rfd_ring->buffer_info[next_next];
1847
1848	while (!buffer_info->alloced && !next_info->alloced) {
1849		if (buffer_info->skb) {
1850			buffer_info->alloced = 1;
1851			goto next;
1852		}
1853
1854		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1855
1856		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1857						adapter->rx_buffer_len);
1858		if (unlikely(!skb)) {
1859			/* Better luck next round */
1860			adapter->soft_stats.rx_dropped++;
1861			break;
1862		}
1863
1864		buffer_info->alloced = 1;
1865		buffer_info->skb = skb;
1866		buffer_info->length = (u16) adapter->rx_buffer_len;
1867		page = virt_to_page(skb->data);
1868		offset = offset_in_page(skb->data);
1869		buffer_info->dma = dma_map_page(&pdev->dev, page, offset,
1870						adapter->rx_buffer_len,
1871						DMA_FROM_DEVICE);
1872		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1873		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1874		rfd_desc->coalese = 0;
1875
1876next:
1877		rfd_next_to_use = next_next;
1878		if (unlikely(++next_next == rfd_ring->count))
1879			next_next = 0;
1880
1881		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1882		next_info = &rfd_ring->buffer_info[next_next];
1883		num_alloc++;
1884	}
1885
1886	if (num_alloc) {
1887		/*
1888		 * Force memory writes to complete before letting h/w
1889		 * know there are new descriptors to fetch.  (Only
1890		 * applicable for weak-ordered memory model archs,
1891		 * such as IA-64).
1892		 */
1893		wmb();
1894		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1895	}
1896	return num_alloc;
1897}
1898
1899static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1900{
1901	int i, count;
1902	u16 length;
1903	u16 rrd_next_to_clean;
1904	u32 value;
1905	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1906	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1907	struct atl1_buffer *buffer_info;
1908	struct rx_return_desc *rrd;
1909	struct sk_buff *skb;
1910
1911	count = 0;
1912
1913	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1914
1915	while (count < budget) {
1916		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1917		i = 1;
1918		if (likely(rrd->xsz.valid)) {	/* packet valid */
1919chk_rrd:
1920			/* check rrd status */
1921			if (likely(rrd->num_buf == 1))
1922				goto rrd_ok;
1923			else if (netif_msg_rx_err(adapter)) {
1924				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1925					"unexpected RRD buffer count\n");
1926				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1927					"rx_buf_len = %d\n",
1928					adapter->rx_buffer_len);
1929				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1930					"RRD num_buf = %d\n",
1931					rrd->num_buf);
1932				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1933					"RRD pkt_len = %d\n",
1934					rrd->xsz.xsum_sz.pkt_size);
1935				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1936					"RRD pkt_flg = 0x%08X\n",
1937					rrd->pkt_flg);
1938				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1939					"RRD err_flg = 0x%08X\n",
1940					rrd->err_flg);
1941				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1942					"RRD vlan_tag = 0x%08X\n",
1943					rrd->vlan_tag);
1944			}
1945
1946			/* rrd seems to be bad */
1947			if (unlikely(i-- > 0)) {
1948				/* rrd may not be DMAed completely */
1949				udelay(1);
1950				goto chk_rrd;
1951			}
1952			/* bad rrd */
1953			if (netif_msg_rx_err(adapter))
1954				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1955					"bad RRD\n");
1956			/* see if update RFD index */
1957			if (rrd->num_buf > 1)
1958				atl1_update_rfd_index(adapter, rrd);
1959
1960			/* update rrd */
1961			rrd->xsz.valid = 0;
1962			if (++rrd_next_to_clean == rrd_ring->count)
1963				rrd_next_to_clean = 0;
1964			count++;
1965			continue;
1966		} else {	/* current rrd still not be updated */
1967
1968			break;
1969		}
1970rrd_ok:
1971		/* clean alloc flag for bad rrd */
1972		atl1_clean_alloc_flag(adapter, rrd, 0);
1973
1974		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1975		if (++rfd_ring->next_to_clean == rfd_ring->count)
1976			rfd_ring->next_to_clean = 0;
1977
1978		/* update rrd next to clean */
1979		if (++rrd_next_to_clean == rrd_ring->count)
1980			rrd_next_to_clean = 0;
1981		count++;
1982
1983		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1984			if (!(rrd->err_flg &
1985				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
1986				| ERR_FLAG_LEN))) {
1987				/* packet error, don't need upstream */
1988				buffer_info->alloced = 0;
1989				rrd->xsz.valid = 0;
1990				continue;
1991			}
1992		}
1993
1994		/* Good Receive */
1995		dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1996			       buffer_info->length, DMA_FROM_DEVICE);
1997		buffer_info->dma = 0;
1998		skb = buffer_info->skb;
1999		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2000
2001		skb_put(skb, length - ETH_FCS_LEN);
2002
2003		/* Receive Checksum Offload */
2004		atl1_rx_checksum(adapter, rrd, skb);
2005		skb->protocol = eth_type_trans(skb, adapter->netdev);
2006
2007		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2008			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2009					((rrd->vlan_tag & 7) << 13) |
2010					((rrd->vlan_tag & 8) << 9);
2011
2012			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2013		}
2014		netif_receive_skb(skb);
2015
2016		/* let protocol layer free skb */
2017		buffer_info->skb = NULL;
2018		buffer_info->alloced = 0;
2019		rrd->xsz.valid = 0;
2020	}
2021
2022	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2023
2024	atl1_alloc_rx_buffers(adapter);
2025
2026	/* update mailbox ? */
2027	if (count) {
2028		u32 tpd_next_to_use;
2029		u32 rfd_next_to_use;
2030
2031		spin_lock(&adapter->mb_lock);
2032
2033		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2034		rfd_next_to_use =
2035		    atomic_read(&adapter->rfd_ring.next_to_use);
2036		rrd_next_to_clean =
2037		    atomic_read(&adapter->rrd_ring.next_to_clean);
2038		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2039			MB_RFD_PROD_INDX_SHIFT) |
2040                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2041			MB_RRD_CONS_INDX_SHIFT) |
2042                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2043			MB_TPD_PROD_INDX_SHIFT);
2044		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2045		spin_unlock(&adapter->mb_lock);
2046	}
2047
2048	return count;
2049}
2050
2051static int atl1_intr_tx(struct atl1_adapter *adapter)
2052{
2053	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2054	struct atl1_buffer *buffer_info;
2055	u16 sw_tpd_next_to_clean;
2056	u16 cmb_tpd_next_to_clean;
2057	int count = 0;
2058
2059	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2060	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2061
2062	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2063		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2064		if (buffer_info->dma) {
2065			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
2066				       buffer_info->length, DMA_TO_DEVICE);
2067			buffer_info->dma = 0;
2068		}
2069
2070		if (buffer_info->skb) {
2071			dev_consume_skb_irq(buffer_info->skb);
2072			buffer_info->skb = NULL;
2073		}
2074
2075		if (++sw_tpd_next_to_clean == tpd_ring->count)
2076			sw_tpd_next_to_clean = 0;
2077
2078		count++;
2079	}
2080	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2081
2082	if (netif_queue_stopped(adapter->netdev) &&
2083	    netif_carrier_ok(adapter->netdev))
2084		netif_wake_queue(adapter->netdev);
2085
2086	return count;
2087}
2088
2089static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2090{
2091	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2092	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2093	return (next_to_clean > next_to_use) ?
2094		next_to_clean - next_to_use - 1 :
2095		tpd_ring->count + next_to_clean - next_to_use - 1;
2096}
2097
2098static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2099		    struct tx_packet_desc *ptpd)
2100{
2101	u8 hdr_len, ip_off;
2102	u32 real_len;
2103
2104	if (skb_shinfo(skb)->gso_size) {
2105		int err;
2106
2107		err = skb_cow_head(skb, 0);
2108		if (err < 0)
2109			return err;
2110
2111		if (skb->protocol == htons(ETH_P_IP)) {
2112			struct iphdr *iph = ip_hdr(skb);
2113
2114			real_len = (((unsigned char *)iph - skb->data) +
2115				ntohs(iph->tot_len));
2116			if (real_len < skb->len) {
2117				err = pskb_trim(skb, real_len);
2118				if (err)
2119					return err;
2120			}
2121			hdr_len = skb_tcp_all_headers(skb);
2122			if (skb->len == hdr_len) {
2123				iph->check = 0;
2124				tcp_hdr(skb)->check =
2125					~csum_tcpudp_magic(iph->saddr,
2126					iph->daddr, tcp_hdrlen(skb),
2127					IPPROTO_TCP, 0);
2128				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2129					TPD_IPHL_SHIFT;
2130				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2131					TPD_TCPHDRLEN_MASK) <<
2132					TPD_TCPHDRLEN_SHIFT;
2133				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2134				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2135				return 1;
2136			}
2137
2138			iph->check = 0;
2139			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2140					iph->daddr, 0, IPPROTO_TCP, 0);
2141			ip_off = (unsigned char *)iph -
2142				(unsigned char *) skb_network_header(skb);
2143			if (ip_off == 8) /* 802.3-SNAP frame */
2144				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2145			else if (ip_off != 0)
2146				return -2;
2147
2148			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2149				TPD_IPHL_SHIFT;
2150			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2151				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2152			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2153				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2154			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2155			return 3;
2156		}
2157	}
2158	return 0;
2159}
2160
2161static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2162	struct tx_packet_desc *ptpd)
2163{
2164	u8 css, cso;
2165
2166	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2167		css = skb_checksum_start_offset(skb);
2168		cso = css + (u8) skb->csum_offset;
2169		if (unlikely(css & 0x1)) {
2170			/* L1 hardware requires an even number here */
2171			if (netif_msg_tx_err(adapter))
2172				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2173					"payload offset not an even number\n");
2174			return -1;
2175		}
2176		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2177			TPD_PLOADOFFSET_SHIFT;
2178		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2179			TPD_CCSUMOFFSET_SHIFT;
2180		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2181		return true;
2182	}
2183	return 0;
2184}
2185
2186static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2187	struct tx_packet_desc *ptpd)
2188{
2189	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2190	struct atl1_buffer *buffer_info;
2191	u16 buf_len = skb->len;
2192	struct page *page;
2193	unsigned long offset;
2194	unsigned int nr_frags;
2195	unsigned int f;
2196	int retval;
2197	u16 next_to_use;
2198	u16 data_len;
2199	u8 hdr_len;
2200
2201	buf_len -= skb->data_len;
2202	nr_frags = skb_shinfo(skb)->nr_frags;
2203	next_to_use = atomic_read(&tpd_ring->next_to_use);
2204	buffer_info = &tpd_ring->buffer_info[next_to_use];
2205	BUG_ON(buffer_info->skb);
2206	/* put skb in last TPD */
2207	buffer_info->skb = NULL;
2208
2209	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2210	if (retval) {
2211		/* TSO */
2212		hdr_len = skb_tcp_all_headers(skb);
2213		buffer_info->length = hdr_len;
2214		page = virt_to_page(skb->data);
2215		offset = offset_in_page(skb->data);
2216		buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2217						offset, hdr_len,
2218						DMA_TO_DEVICE);
2219
2220		if (++next_to_use == tpd_ring->count)
2221			next_to_use = 0;
2222
2223		if (buf_len > hdr_len) {
2224			int i, nseg;
2225
2226			data_len = buf_len - hdr_len;
2227			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2228				ATL1_MAX_TX_BUF_LEN;
2229			for (i = 0; i < nseg; i++) {
2230				buffer_info =
2231				    &tpd_ring->buffer_info[next_to_use];
2232				buffer_info->skb = NULL;
2233				buffer_info->length =
2234				    (ATL1_MAX_TX_BUF_LEN >=
2235				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2236				data_len -= buffer_info->length;
2237				page = virt_to_page(skb->data +
2238					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2239				offset = offset_in_page(skb->data +
2240					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2241				buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2242								page, offset,
2243								buffer_info->length,
2244								DMA_TO_DEVICE);
2245				if (++next_to_use == tpd_ring->count)
2246					next_to_use = 0;
2247			}
2248		}
2249	} else {
2250		/* not TSO */
2251		buffer_info->length = buf_len;
2252		page = virt_to_page(skb->data);
2253		offset = offset_in_page(skb->data);
2254		buffer_info->dma = dma_map_page(&adapter->pdev->dev, page,
2255						offset, buf_len,
2256						DMA_TO_DEVICE);
2257		if (++next_to_use == tpd_ring->count)
2258			next_to_use = 0;
2259	}
2260
2261	for (f = 0; f < nr_frags; f++) {
2262		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2263		u16 i, nseg;
2264
 
2265		buf_len = skb_frag_size(frag);
2266
2267		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2268			ATL1_MAX_TX_BUF_LEN;
2269		for (i = 0; i < nseg; i++) {
2270			buffer_info = &tpd_ring->buffer_info[next_to_use];
2271			BUG_ON(buffer_info->skb);
2272
2273			buffer_info->skb = NULL;
2274			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2275				ATL1_MAX_TX_BUF_LEN : buf_len;
2276			buf_len -= buffer_info->length;
2277			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2278				frag, i * ATL1_MAX_TX_BUF_LEN,
2279				buffer_info->length, DMA_TO_DEVICE);
2280
2281			if (++next_to_use == tpd_ring->count)
2282				next_to_use = 0;
2283		}
2284	}
2285
2286	/* last tpd's buffer-info */
2287	buffer_info->skb = skb;
2288}
2289
2290static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2291       struct tx_packet_desc *ptpd)
2292{
2293	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2294	struct atl1_buffer *buffer_info;
2295	struct tx_packet_desc *tpd;
2296	u16 j;
2297	u32 val;
2298	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2299
2300	for (j = 0; j < count; j++) {
2301		buffer_info = &tpd_ring->buffer_info[next_to_use];
2302		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2303		if (tpd != ptpd)
2304			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2305		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2306		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2307		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2308			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2309
2310		/*
2311		 * if this is the first packet in a TSO chain, set
2312		 * TPD_HDRFLAG, otherwise, clear it.
2313		 */
2314		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2315			TPD_SEGMENT_EN_MASK;
2316		if (val) {
2317			if (!j)
2318				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2319			else
2320				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2321		}
2322
2323		if (j == (count - 1))
2324			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2325
2326		if (++next_to_use == tpd_ring->count)
2327			next_to_use = 0;
2328	}
2329	/*
2330	 * Force memory writes to complete before letting h/w
2331	 * know there are new descriptors to fetch.  (Only
2332	 * applicable for weak-ordered memory model archs,
2333	 * such as IA-64).
2334	 */
2335	wmb();
2336
2337	atomic_set(&tpd_ring->next_to_use, next_to_use);
2338}
2339
2340static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2341					 struct net_device *netdev)
2342{
2343	struct atl1_adapter *adapter = netdev_priv(netdev);
2344	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2345	int len;
2346	int tso;
2347	int count = 1;
2348	int ret_val;
2349	struct tx_packet_desc *ptpd;
2350	u16 vlan_tag;
2351	unsigned int nr_frags = 0;
2352	unsigned int mss = 0;
2353	unsigned int f;
2354	unsigned int proto_hdr_len;
2355
2356	len = skb_headlen(skb);
2357
2358	if (unlikely(skb->len <= 0)) {
2359		dev_kfree_skb_any(skb);
2360		return NETDEV_TX_OK;
2361	}
2362
2363	nr_frags = skb_shinfo(skb)->nr_frags;
2364	for (f = 0; f < nr_frags; f++) {
2365		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2366		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2367			 ATL1_MAX_TX_BUF_LEN;
2368	}
2369
2370	mss = skb_shinfo(skb)->gso_size;
2371	if (mss) {
2372		if (skb->protocol == htons(ETH_P_IP)) {
2373			proto_hdr_len = skb_tcp_all_headers(skb);
 
2374			if (unlikely(proto_hdr_len > len)) {
2375				dev_kfree_skb_any(skb);
2376				return NETDEV_TX_OK;
2377			}
2378			/* need additional TPD ? */
2379			if (proto_hdr_len != len)
2380				count += (len - proto_hdr_len +
2381					ATL1_MAX_TX_BUF_LEN - 1) /
2382					ATL1_MAX_TX_BUF_LEN;
2383		}
2384	}
2385
2386	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2387		/* not enough descriptors */
2388		netif_stop_queue(netdev);
2389		if (netif_msg_tx_queued(adapter))
2390			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2391				"tx busy\n");
2392		return NETDEV_TX_BUSY;
2393	}
2394
2395	ptpd = ATL1_TPD_DESC(tpd_ring,
2396		(u16) atomic_read(&tpd_ring->next_to_use));
2397	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2398
2399	if (skb_vlan_tag_present(skb)) {
2400		vlan_tag = skb_vlan_tag_get(skb);
2401		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2402			((vlan_tag >> 9) & 0x8);
2403		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2404		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2405			TPD_VLANTAG_SHIFT;
2406	}
2407
2408	tso = atl1_tso(adapter, skb, ptpd);
2409	if (tso < 0) {
2410		dev_kfree_skb_any(skb);
2411		return NETDEV_TX_OK;
2412	}
2413
2414	if (!tso) {
2415		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2416		if (ret_val < 0) {
2417			dev_kfree_skb_any(skb);
2418			return NETDEV_TX_OK;
2419		}
2420	}
2421
2422	atl1_tx_map(adapter, skb, ptpd);
2423	atl1_tx_queue(adapter, count, ptpd);
2424	atl1_update_mailbox(adapter);
 
2425	return NETDEV_TX_OK;
2426}
2427
2428static int atl1_rings_clean(struct napi_struct *napi, int budget)
2429{
2430	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2431	int work_done = atl1_intr_rx(adapter, budget);
2432
2433	if (atl1_intr_tx(adapter))
2434		work_done = budget;
2435
2436	/* Let's come again to process some more packets */
2437	if (work_done >= budget)
2438		return work_done;
2439
2440	napi_complete_done(napi, work_done);
2441	/* re-enable Interrupt */
2442	if (likely(adapter->int_enabled))
2443		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2444	return work_done;
2445}
2446
2447static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2448{
2449	if (!napi_schedule(&adapter->napi))
2450		/* It is possible in case even the RX/TX ints are disabled via IMR
2451		 * register the ISR bits are set anyway (but do not produce IRQ).
2452		 * To handle such situation the napi functions used to check is
2453		 * something scheduled or not.
2454		 */
2455		return 0;
2456
 
 
2457	/*
2458	 * Disable RX/TX ints via IMR register if it is
2459	 * allowed. NAPI handler must reenable them in same
2460	 * way.
2461	 */
2462	if (!adapter->int_enabled)
2463		return 1;
2464
2465	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2466	return 1;
2467}
2468
2469/**
2470 * atl1_intr - Interrupt Handler
2471 * @irq: interrupt number
2472 * @data: pointer to a network interface device structure
2473 */
2474static irqreturn_t atl1_intr(int irq, void *data)
2475{
2476	struct atl1_adapter *adapter = netdev_priv(data);
2477	u32 status;
2478
2479	status = adapter->cmb.cmb->int_stats;
2480	if (!status)
2481		return IRQ_NONE;
2482
2483	/* clear CMB interrupt status at once,
2484	 * but leave rx/tx interrupt status in case it should be dropped
2485	 * only if rx/tx processing queued. In other case interrupt
2486	 * can be lost.
2487	 */
2488	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2489
2490	if (status & ISR_GPHY)	/* clear phy status */
2491		atlx_clear_phy_int(adapter);
2492
2493	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2494	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2495
2496	/* check if SMB intr */
2497	if (status & ISR_SMB)
2498		atl1_inc_smb(adapter);
2499
2500	/* check if PCIE PHY Link down */
2501	if (status & ISR_PHY_LINKDOWN) {
2502		if (netif_msg_intr(adapter))
2503			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2504				"pcie phy link down %x\n", status);
2505		if (netif_running(adapter->netdev)) {	/* reset MAC */
2506			atlx_irq_disable(adapter);
2507			schedule_work(&adapter->reset_dev_task);
2508			return IRQ_HANDLED;
2509		}
2510	}
2511
2512	/* check if DMA read/write error ? */
2513	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2514		if (netif_msg_intr(adapter))
2515			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2516				"pcie DMA r/w error (status = 0x%x)\n",
2517				status);
2518		atlx_irq_disable(adapter);
2519		schedule_work(&adapter->reset_dev_task);
2520		return IRQ_HANDLED;
2521	}
2522
2523	/* link event */
2524	if (status & ISR_GPHY) {
2525		adapter->soft_stats.tx_carrier_errors++;
2526		atl1_check_for_link(adapter);
2527	}
2528
2529	/* transmit or receive event */
2530	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2531	    atl1_sched_rings_clean(adapter))
2532		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2533					      ~(ISR_CMB_TX | ISR_CMB_RX);
2534
2535	/* rx exception */
2536	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2537		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2538		ISR_HOST_RRD_OV))) {
2539		if (netif_msg_intr(adapter))
2540			dev_printk(KERN_DEBUG,
2541				&adapter->pdev->dev,
2542				"rx exception, ISR = 0x%x\n",
2543				status);
2544		atl1_sched_rings_clean(adapter);
2545	}
2546
2547	/* re-enable Interrupt */
2548	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2549	return IRQ_HANDLED;
2550}
2551
2552
2553/**
2554 * atl1_phy_config - Timer Call-back
2555 * @t: timer_list containing pointer to netdev cast into an unsigned long
2556 */
2557static void atl1_phy_config(struct timer_list *t)
2558{
2559	struct atl1_adapter *adapter = from_timer(adapter, t,
2560						  phy_config_timer);
2561	struct atl1_hw *hw = &adapter->hw;
2562	unsigned long flags;
2563
2564	spin_lock_irqsave(&adapter->lock, flags);
2565	adapter->phy_timer_pending = false;
2566	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2567	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2568	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2569	spin_unlock_irqrestore(&adapter->lock, flags);
2570}
2571
2572/*
2573 * Orphaned vendor comment left intact here:
2574 * <vendor comment>
2575 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2576 * will assert. We do soft reset <0x1400=1> according
2577 * with the SPEC. BUT, it seemes that PCIE or DMA
2578 * state-machine will not be reset. DMAR_TO_INT will
2579 * assert again and again.
2580 * </vendor comment>
2581 */
2582
2583static int atl1_reset(struct atl1_adapter *adapter)
2584{
2585	int ret;
2586	ret = atl1_reset_hw(&adapter->hw);
2587	if (ret)
2588		return ret;
2589	return atl1_init_hw(&adapter->hw);
2590}
2591
2592static s32 atl1_up(struct atl1_adapter *adapter)
2593{
2594	struct net_device *netdev = adapter->netdev;
2595	int err;
2596	int irq_flags = 0;
2597
2598	/* hardware has been reset, we need to reload some things */
2599	atlx_set_multi(netdev);
2600	atl1_init_ring_ptrs(adapter);
2601	atlx_restore_vlan(adapter);
2602	err = atl1_alloc_rx_buffers(adapter);
2603	if (unlikely(!err))
2604		/* no RX BUFFER allocated */
2605		return -ENOMEM;
2606
2607	if (unlikely(atl1_configure(adapter))) {
2608		err = -EIO;
2609		goto err_up;
2610	}
2611
2612	err = pci_enable_msi(adapter->pdev);
2613	if (err) {
2614		if (netif_msg_ifup(adapter))
2615			dev_info(&adapter->pdev->dev,
2616				"Unable to enable MSI: %d\n", err);
2617		irq_flags |= IRQF_SHARED;
2618	}
2619
2620	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2621			netdev->name, netdev);
2622	if (unlikely(err))
2623		goto err_up;
2624
2625	napi_enable(&adapter->napi);
2626	atlx_irq_enable(adapter);
2627	atl1_check_link(adapter);
2628	netif_start_queue(netdev);
2629	return 0;
2630
2631err_up:
2632	pci_disable_msi(adapter->pdev);
2633	/* free rx_buffers */
2634	atl1_clean_rx_ring(adapter);
2635	return err;
2636}
2637
2638static void atl1_down(struct atl1_adapter *adapter)
2639{
2640	struct net_device *netdev = adapter->netdev;
2641
2642	napi_disable(&adapter->napi);
2643	netif_stop_queue(netdev);
2644	del_timer_sync(&adapter->phy_config_timer);
2645	adapter->phy_timer_pending = false;
2646
2647	atlx_irq_disable(adapter);
2648	free_irq(adapter->pdev->irq, netdev);
2649	pci_disable_msi(adapter->pdev);
2650	atl1_reset_hw(&adapter->hw);
2651	adapter->cmb.cmb->int_stats = 0;
2652
2653	adapter->link_speed = SPEED_0;
2654	adapter->link_duplex = -1;
2655	netif_carrier_off(netdev);
2656
2657	atl1_clean_tx_ring(adapter);
2658	atl1_clean_rx_ring(adapter);
2659}
2660
2661static void atl1_reset_dev_task(struct work_struct *work)
2662{
2663	struct atl1_adapter *adapter =
2664		container_of(work, struct atl1_adapter, reset_dev_task);
2665	struct net_device *netdev = adapter->netdev;
2666
2667	netif_device_detach(netdev);
2668	atl1_down(adapter);
2669	atl1_up(adapter);
2670	netif_device_attach(netdev);
2671}
2672
2673/**
2674 * atl1_change_mtu - Change the Maximum Transfer Unit
2675 * @netdev: network interface device structure
2676 * @new_mtu: new value for maximum frame size
2677 *
2678 * Returns 0 on success, negative on failure
2679 */
2680static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2681{
2682	struct atl1_adapter *adapter = netdev_priv(netdev);
2683	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2684
2685	adapter->hw.max_frame_size = max_frame;
2686	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2687	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2688	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2689
2690	netdev->mtu = new_mtu;
2691	if (netif_running(netdev)) {
2692		atl1_down(adapter);
2693		atl1_up(adapter);
2694	}
2695
2696	return 0;
2697}
2698
2699/**
2700 * atl1_open - Called when a network interface is made active
2701 * @netdev: network interface device structure
2702 *
2703 * Returns 0 on success, negative value on failure
2704 *
2705 * The open entry point is called when a network interface is made
2706 * active by the system (IFF_UP).  At this point all resources needed
2707 * for transmit and receive operations are allocated, the interrupt
2708 * handler is registered with the OS, the watchdog timer is started,
2709 * and the stack is notified that the interface is ready.
2710 */
2711static int atl1_open(struct net_device *netdev)
2712{
2713	struct atl1_adapter *adapter = netdev_priv(netdev);
2714	int err;
2715
2716	netif_carrier_off(netdev);
2717
2718	/* allocate transmit descriptors */
2719	err = atl1_setup_ring_resources(adapter);
2720	if (err)
2721		return err;
2722
2723	err = atl1_up(adapter);
2724	if (err)
2725		goto err_up;
2726
2727	return 0;
2728
2729err_up:
2730	atl1_reset(adapter);
2731	return err;
2732}
2733
2734/**
2735 * atl1_close - Disables a network interface
2736 * @netdev: network interface device structure
2737 *
2738 * Returns 0, this is not allowed to fail
2739 *
2740 * The close entry point is called when an interface is de-activated
2741 * by the OS.  The hardware is still under the drivers control, but
2742 * needs to be disabled.  A global MAC reset is issued to stop the
2743 * hardware, and all transmit and receive resources are freed.
2744 */
2745static int atl1_close(struct net_device *netdev)
2746{
2747	struct atl1_adapter *adapter = netdev_priv(netdev);
2748	atl1_down(adapter);
2749	atl1_free_ring_resources(adapter);
2750	return 0;
2751}
2752
2753#ifdef CONFIG_PM_SLEEP
2754static int atl1_suspend(struct device *dev)
2755{
2756	struct net_device *netdev = dev_get_drvdata(dev);
 
2757	struct atl1_adapter *adapter = netdev_priv(netdev);
2758	struct atl1_hw *hw = &adapter->hw;
2759	u32 ctrl = 0;
2760	u32 wufc = adapter->wol;
2761	u32 val;
2762	u16 speed;
2763	u16 duplex;
2764
2765	netif_device_detach(netdev);
2766	if (netif_running(netdev))
2767		atl1_down(adapter);
2768
2769	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2770	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2771	val = ctrl & BMSR_LSTATUS;
2772	if (val)
2773		wufc &= ~ATLX_WUFC_LNKC;
2774	if (!wufc)
2775		goto disable_wol;
2776
2777	if (val) {
2778		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2779		if (val) {
2780			if (netif_msg_ifdown(adapter))
2781				dev_printk(KERN_DEBUG, dev,
2782					"error getting speed/duplex\n");
2783			goto disable_wol;
2784		}
2785
2786		ctrl = 0;
2787
2788		/* enable magic packet WOL */
2789		if (wufc & ATLX_WUFC_MAG)
2790			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2791		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2792		ioread32(hw->hw_addr + REG_WOL_CTRL);
2793
2794		/* configure the mac */
2795		ctrl = MAC_CTRL_RX_EN;
2796		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2797			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2798		if (duplex == FULL_DUPLEX)
2799			ctrl |= MAC_CTRL_DUPLX;
2800		ctrl |= (((u32)adapter->hw.preamble_len &
2801			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2802		__atlx_vlan_mode(netdev->features, &ctrl);
2803		if (wufc & ATLX_WUFC_MAG)
2804			ctrl |= MAC_CTRL_BC_EN;
2805		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2806		ioread32(hw->hw_addr + REG_MAC_CTRL);
2807
2808		/* poke the PHY */
2809		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2810		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2811		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2812		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2813	} else {
2814		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2815		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2816		ioread32(hw->hw_addr + REG_WOL_CTRL);
2817		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2818		ioread32(hw->hw_addr + REG_MAC_CTRL);
2819		hw->phy_configured = false;
2820	}
2821
2822	return 0;
2823
2824 disable_wol:
2825	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2826	ioread32(hw->hw_addr + REG_WOL_CTRL);
2827	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2828	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2829	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2830	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2831	hw->phy_configured = false;
2832
2833	return 0;
2834}
2835
2836static int atl1_resume(struct device *dev)
2837{
2838	struct net_device *netdev = dev_get_drvdata(dev);
 
2839	struct atl1_adapter *adapter = netdev_priv(netdev);
2840
2841	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2842
2843	atl1_reset_hw(&adapter->hw);
2844
2845	if (netif_running(netdev)) {
2846		adapter->cmb.cmb->int_stats = 0;
2847		atl1_up(adapter);
2848	}
2849	netif_device_attach(netdev);
2850
2851	return 0;
2852}
2853#endif
2854
2855static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2856
2857static void atl1_shutdown(struct pci_dev *pdev)
2858{
2859	struct net_device *netdev = pci_get_drvdata(pdev);
2860	struct atl1_adapter *adapter = netdev_priv(netdev);
2861
2862#ifdef CONFIG_PM_SLEEP
2863	atl1_suspend(&pdev->dev);
2864#endif
2865	pci_wake_from_d3(pdev, adapter->wol);
2866	pci_set_power_state(pdev, PCI_D3hot);
2867}
2868
2869#ifdef CONFIG_NET_POLL_CONTROLLER
2870static void atl1_poll_controller(struct net_device *netdev)
2871{
2872	disable_irq(netdev->irq);
2873	atl1_intr(netdev->irq, netdev);
2874	enable_irq(netdev->irq);
2875}
2876#endif
2877
2878static const struct net_device_ops atl1_netdev_ops = {
2879	.ndo_open		= atl1_open,
2880	.ndo_stop		= atl1_close,
2881	.ndo_start_xmit		= atl1_xmit_frame,
2882	.ndo_set_rx_mode	= atlx_set_multi,
2883	.ndo_validate_addr	= eth_validate_addr,
2884	.ndo_set_mac_address	= atl1_set_mac,
2885	.ndo_change_mtu		= atl1_change_mtu,
2886	.ndo_fix_features	= atlx_fix_features,
2887	.ndo_set_features	= atlx_set_features,
2888	.ndo_eth_ioctl		= atlx_ioctl,
2889	.ndo_tx_timeout		= atlx_tx_timeout,
2890#ifdef CONFIG_NET_POLL_CONTROLLER
2891	.ndo_poll_controller	= atl1_poll_controller,
2892#endif
2893};
2894
2895/**
2896 * atl1_probe - Device Initialization Routine
2897 * @pdev: PCI device information struct
2898 * @ent: entry in atl1_pci_tbl
2899 *
2900 * Returns 0 on success, negative on failure
2901 *
2902 * atl1_probe initializes an adapter identified by a pci_dev structure.
2903 * The OS initialization, configuring of the adapter private structure,
2904 * and a hardware reset occur.
2905 */
2906static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2907{
2908	struct net_device *netdev;
2909	struct atl1_adapter *adapter;
2910	static int cards_found = 0;
2911	int err;
2912
2913	err = pci_enable_device(pdev);
2914	if (err)
2915		return err;
2916
2917	/*
2918	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2919	 * shared register for the high 32 bits, so only a single, aligned,
2920	 * 4 GB physical address range can be used at a time.
2921	 *
2922	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2923	 * worth.  It is far easier to limit to 32-bit DMA than update
2924	 * various kernel subsystems to support the mechanics required by a
2925	 * fixed-high-32-bit system.
2926	 */
2927	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2928	if (err) {
2929		dev_err(&pdev->dev, "no usable DMA configuration\n");
2930		goto err_dma;
2931	}
2932	/*
2933	 * Mark all PCI regions associated with PCI device
2934	 * pdev as being reserved by owner atl1_driver_name
2935	 */
2936	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2937	if (err)
2938		goto err_request_regions;
2939
2940	/*
2941	 * Enables bus-mastering on the device and calls
2942	 * pcibios_set_master to do the needed arch specific settings
2943	 */
2944	pci_set_master(pdev);
2945
2946	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2947	if (!netdev) {
2948		err = -ENOMEM;
2949		goto err_alloc_etherdev;
2950	}
2951	SET_NETDEV_DEV(netdev, &pdev->dev);
2952
2953	pci_set_drvdata(pdev, netdev);
2954	adapter = netdev_priv(netdev);
2955	adapter->netdev = netdev;
2956	adapter->pdev = pdev;
2957	adapter->hw.back = adapter;
2958	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2959
2960	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2961	if (!adapter->hw.hw_addr) {
2962		err = -EIO;
2963		goto err_pci_iomap;
2964	}
2965	/* get device revision number */
2966	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2967		(REG_MASTER_CTRL + 2));
 
 
2968
2969	/* set default ring resource counts */
2970	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2971	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2972
2973	adapter->mii.dev = netdev;
2974	adapter->mii.mdio_read = mdio_read;
2975	adapter->mii.mdio_write = mdio_write;
2976	adapter->mii.phy_id_mask = 0x1f;
2977	adapter->mii.reg_num_mask = 0x1f;
2978
2979	netdev->netdev_ops = &atl1_netdev_ops;
2980	netdev->watchdog_timeo = 5 * HZ;
2981	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean);
2982
2983	netdev->ethtool_ops = &atl1_ethtool_ops;
2984	adapter->bd_number = cards_found;
2985
2986	/* setup the private structure */
2987	err = atl1_sw_init(adapter);
2988	if (err)
2989		goto err_common;
2990
2991	netdev->features = NETIF_F_HW_CSUM;
2992	netdev->features |= NETIF_F_SG;
2993	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
2994
2995	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2996			      NETIF_F_HW_VLAN_CTAG_RX;
2997
2998	/* is this valid? see atl1_setup_mac_ctrl() */
2999	netdev->features |= NETIF_F_RXCSUM;
3000
3001	/* MTU range: 42 - 10218 */
3002	netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3003	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3004			  (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3005
3006	/*
3007	 * patch for some L1 of old version,
3008	 * the final version of L1 may not need these
3009	 * patches
3010	 */
3011	/* atl1_pcie_patch(adapter); */
3012
3013	/* really reset GPHY core */
3014	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3015
3016	/*
3017	 * reset the controller to
3018	 * put the device in a known good starting state
3019	 */
3020	if (atl1_reset_hw(&adapter->hw)) {
3021		err = -EIO;
3022		goto err_common;
3023	}
3024
3025	/* copy the MAC address out of the EEPROM */
3026	if (atl1_read_mac_addr(&adapter->hw)) {
3027		/* mark random mac */
3028		netdev->addr_assign_type = NET_ADDR_RANDOM;
3029	}
3030	eth_hw_addr_set(netdev, adapter->hw.mac_addr);
3031
3032	if (!is_valid_ether_addr(netdev->dev_addr)) {
3033		err = -EIO;
3034		goto err_common;
3035	}
3036
3037	atl1_check_options(adapter);
3038
3039	/* pre-init the MAC, and setup link */
3040	err = atl1_init_hw(&adapter->hw);
3041	if (err) {
3042		err = -EIO;
3043		goto err_common;
3044	}
3045
3046	atl1_pcie_patch(adapter);
3047	/* assume we have no link for now */
3048	netif_carrier_off(netdev);
3049
3050	timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3051	adapter->phy_timer_pending = false;
3052
3053	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3054
3055	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3056
3057	err = register_netdev(netdev);
3058	if (err)
3059		goto err_common;
3060
3061	cards_found++;
3062	atl1_via_workaround(adapter);
3063	return 0;
3064
3065err_common:
3066	pci_iounmap(pdev, adapter->hw.hw_addr);
3067err_pci_iomap:
3068	free_netdev(netdev);
3069err_alloc_etherdev:
3070	pci_release_regions(pdev);
3071err_dma:
3072err_request_regions:
3073	pci_disable_device(pdev);
3074	return err;
3075}
3076
3077/**
3078 * atl1_remove - Device Removal Routine
3079 * @pdev: PCI device information struct
3080 *
3081 * atl1_remove is called by the PCI subsystem to alert the driver
3082 * that it should release a PCI device.  The could be caused by a
3083 * Hot-Plug event, or because the driver is going to be removed from
3084 * memory.
3085 */
3086static void atl1_remove(struct pci_dev *pdev)
3087{
3088	struct net_device *netdev = pci_get_drvdata(pdev);
3089	struct atl1_adapter *adapter;
3090	/* Device not available. Return. */
3091	if (!netdev)
3092		return;
3093
3094	adapter = netdev_priv(netdev);
3095
3096	/*
3097	 * Some atl1 boards lack persistent storage for their MAC, and get it
3098	 * from the BIOS during POST.  If we've been messing with the MAC
3099	 * address, we need to save the permanent one.
3100	 */
3101	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3102					adapter->hw.perm_mac_addr)) {
3103		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3104			ETH_ALEN);
3105		atl1_set_mac_addr(&adapter->hw);
3106	}
3107
3108	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3109	unregister_netdev(netdev);
3110	pci_iounmap(pdev, adapter->hw.hw_addr);
3111	pci_release_regions(pdev);
3112	free_netdev(netdev);
3113	pci_disable_device(pdev);
3114}
3115
3116static struct pci_driver atl1_driver = {
3117	.name = ATLX_DRIVER_NAME,
3118	.id_table = atl1_pci_tbl,
3119	.probe = atl1_probe,
3120	.remove = atl1_remove,
3121	.shutdown = atl1_shutdown,
3122	.driver.pm = &atl1_pm_ops,
3123};
3124
3125struct atl1_stats {
3126	char stat_string[ETH_GSTRING_LEN];
3127	int sizeof_stat;
3128	int stat_offset;
3129};
3130
3131#define ATL1_STAT(m) \
3132	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3133
3134static struct atl1_stats atl1_gstrings_stats[] = {
3135	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3136	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3137	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3138	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3139	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3140	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3141	{"multicast", ATL1_STAT(soft_stats.multicast)},
3142	{"collisions", ATL1_STAT(soft_stats.collisions)},
3143	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3144	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3145	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3146	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3147	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3148	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3149	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3150	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3151	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3152	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3153	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3154	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3155	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3156	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3157	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3158	{"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)},
3159	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3160	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3161	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3162	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3163	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3164};
3165
3166static void atl1_get_ethtool_stats(struct net_device *netdev,
3167	struct ethtool_stats *stats, u64 *data)
3168{
3169	struct atl1_adapter *adapter = netdev_priv(netdev);
3170	int i;
3171	char *p;
3172
3173	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3174		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3175		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3176			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3177	}
3178
3179}
3180
3181static int atl1_get_sset_count(struct net_device *netdev, int sset)
3182{
3183	switch (sset) {
3184	case ETH_SS_STATS:
3185		return ARRAY_SIZE(atl1_gstrings_stats);
3186	default:
3187		return -EOPNOTSUPP;
3188	}
3189}
3190
3191static int atl1_get_link_ksettings(struct net_device *netdev,
3192				   struct ethtool_link_ksettings *cmd)
3193{
3194	struct atl1_adapter *adapter = netdev_priv(netdev);
3195	struct atl1_hw *hw = &adapter->hw;
3196	u32 supported, advertising;
3197
3198	supported = (SUPPORTED_10baseT_Half |
3199			   SUPPORTED_10baseT_Full |
3200			   SUPPORTED_100baseT_Half |
3201			   SUPPORTED_100baseT_Full |
3202			   SUPPORTED_1000baseT_Full |
3203			   SUPPORTED_Autoneg | SUPPORTED_TP);
3204	advertising = ADVERTISED_TP;
3205	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3206	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3207		advertising |= ADVERTISED_Autoneg;
3208		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3209			advertising |= ADVERTISED_Autoneg;
3210			advertising |=
3211			    (ADVERTISED_10baseT_Half |
3212			     ADVERTISED_10baseT_Full |
3213			     ADVERTISED_100baseT_Half |
3214			     ADVERTISED_100baseT_Full |
3215			     ADVERTISED_1000baseT_Full);
3216		} else
3217			advertising |= (ADVERTISED_1000baseT_Full);
3218	}
3219	cmd->base.port = PORT_TP;
3220	cmd->base.phy_address = 0;
3221
3222	if (netif_carrier_ok(adapter->netdev)) {
3223		u16 link_speed, link_duplex;
3224		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3225		cmd->base.speed = link_speed;
3226		if (link_duplex == FULL_DUPLEX)
3227			cmd->base.duplex = DUPLEX_FULL;
3228		else
3229			cmd->base.duplex = DUPLEX_HALF;
3230	} else {
3231		cmd->base.speed = SPEED_UNKNOWN;
3232		cmd->base.duplex = DUPLEX_UNKNOWN;
3233	}
3234	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3235	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3236		cmd->base.autoneg = AUTONEG_ENABLE;
3237	else
3238		cmd->base.autoneg = AUTONEG_DISABLE;
3239
3240	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3241						supported);
3242	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3243						advertising);
3244
3245	return 0;
3246}
3247
3248static int atl1_set_link_ksettings(struct net_device *netdev,
3249				   const struct ethtool_link_ksettings *cmd)
3250{
3251	struct atl1_adapter *adapter = netdev_priv(netdev);
3252	struct atl1_hw *hw = &adapter->hw;
3253	u16 phy_data;
3254	int ret_val = 0;
3255	u16 old_media_type = hw->media_type;
 
3256
3257	if (netif_running(adapter->netdev)) {
3258		if (netif_msg_link(adapter))
3259			dev_dbg(&adapter->pdev->dev,
3260				"ethtool shutting down adapter\n");
3261		atl1_down(adapter);
3262	}
3263
3264	if (cmd->base.autoneg == AUTONEG_ENABLE)
3265		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3266	else {
3267		u32 speed = cmd->base.speed;
3268		if (speed == SPEED_1000) {
3269			if (cmd->base.duplex != DUPLEX_FULL) {
3270				if (netif_msg_link(adapter))
3271					dev_warn(&adapter->pdev->dev,
3272						"1000M half is invalid\n");
3273				ret_val = -EINVAL;
3274				goto exit_sset;
3275			}
3276			hw->media_type = MEDIA_TYPE_1000M_FULL;
3277		} else if (speed == SPEED_100) {
3278			if (cmd->base.duplex == DUPLEX_FULL)
3279				hw->media_type = MEDIA_TYPE_100M_FULL;
3280			else
3281				hw->media_type = MEDIA_TYPE_100M_HALF;
3282		} else {
3283			if (cmd->base.duplex == DUPLEX_FULL)
3284				hw->media_type = MEDIA_TYPE_10M_FULL;
3285			else
3286				hw->media_type = MEDIA_TYPE_10M_HALF;
3287		}
3288	}
3289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3290	if (atl1_phy_setup_autoneg_adv(hw)) {
3291		ret_val = -EINVAL;
3292		if (netif_msg_link(adapter))
3293			dev_warn(&adapter->pdev->dev,
3294				"invalid ethtool speed/duplex setting\n");
3295		goto exit_sset;
3296	}
3297	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3298	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3299		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3300	else {
3301		switch (hw->media_type) {
3302		case MEDIA_TYPE_100M_FULL:
3303			phy_data =
3304			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3305			    MII_CR_RESET;
3306			break;
3307		case MEDIA_TYPE_100M_HALF:
3308			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3309			break;
3310		case MEDIA_TYPE_10M_FULL:
3311			phy_data =
3312			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3313			break;
3314		default:
3315			/* MEDIA_TYPE_10M_HALF: */
3316			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3317			break;
3318		}
3319	}
3320	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3321exit_sset:
3322	if (ret_val)
3323		hw->media_type = old_media_type;
3324
3325	if (netif_running(adapter->netdev)) {
3326		if (netif_msg_link(adapter))
3327			dev_dbg(&adapter->pdev->dev,
3328				"ethtool starting adapter\n");
3329		atl1_up(adapter);
3330	} else if (!ret_val) {
3331		if (netif_msg_link(adapter))
3332			dev_dbg(&adapter->pdev->dev,
3333				"ethtool resetting adapter\n");
3334		atl1_reset(adapter);
3335	}
3336	return ret_val;
3337}
3338
3339static void atl1_get_drvinfo(struct net_device *netdev,
3340	struct ethtool_drvinfo *drvinfo)
3341{
3342	struct atl1_adapter *adapter = netdev_priv(netdev);
3343
3344	strscpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3345	strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
 
 
3346		sizeof(drvinfo->bus_info));
3347}
3348
3349static void atl1_get_wol(struct net_device *netdev,
3350	struct ethtool_wolinfo *wol)
3351{
3352	struct atl1_adapter *adapter = netdev_priv(netdev);
3353
3354	wol->supported = WAKE_MAGIC;
3355	wol->wolopts = 0;
3356	if (adapter->wol & ATLX_WUFC_MAG)
3357		wol->wolopts |= WAKE_MAGIC;
3358}
3359
3360static int atl1_set_wol(struct net_device *netdev,
3361	struct ethtool_wolinfo *wol)
3362{
3363	struct atl1_adapter *adapter = netdev_priv(netdev);
3364
3365	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3366		WAKE_ARP | WAKE_MAGICSECURE))
3367		return -EOPNOTSUPP;
3368	adapter->wol = 0;
3369	if (wol->wolopts & WAKE_MAGIC)
3370		adapter->wol |= ATLX_WUFC_MAG;
3371
3372	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3373
3374	return 0;
3375}
3376
3377static u32 atl1_get_msglevel(struct net_device *netdev)
3378{
3379	struct atl1_adapter *adapter = netdev_priv(netdev);
3380	return adapter->msg_enable;
3381}
3382
3383static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3384{
3385	struct atl1_adapter *adapter = netdev_priv(netdev);
3386	adapter->msg_enable = value;
3387}
3388
3389static int atl1_get_regs_len(struct net_device *netdev)
3390{
3391	return ATL1_REG_COUNT * sizeof(u32);
3392}
3393
3394static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3395	void *p)
3396{
3397	struct atl1_adapter *adapter = netdev_priv(netdev);
3398	struct atl1_hw *hw = &adapter->hw;
3399	unsigned int i;
3400	u32 *regbuf = p;
3401
3402	for (i = 0; i < ATL1_REG_COUNT; i++) {
3403		/*
3404		 * This switch statement avoids reserved regions
3405		 * of register space.
3406		 */
3407		switch (i) {
3408		case 6 ... 9:
3409		case 14:
3410		case 29 ... 31:
3411		case 34 ... 63:
3412		case 75 ... 127:
3413		case 136 ... 1023:
3414		case 1027 ... 1087:
3415		case 1091 ... 1151:
3416		case 1194 ... 1195:
3417		case 1200 ... 1201:
3418		case 1206 ... 1213:
3419		case 1216 ... 1279:
3420		case 1290 ... 1311:
3421		case 1323 ... 1343:
3422		case 1358 ... 1359:
3423		case 1368 ... 1375:
3424		case 1378 ... 1383:
3425		case 1388 ... 1391:
3426		case 1393 ... 1395:
3427		case 1402 ... 1403:
3428		case 1410 ... 1471:
3429		case 1522 ... 1535:
3430			/* reserved region; don't read it */
3431			regbuf[i] = 0;
3432			break;
3433		default:
3434			/* unreserved region */
3435			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3436		}
3437	}
3438}
3439
3440static void atl1_get_ringparam(struct net_device *netdev,
3441			       struct ethtool_ringparam *ring,
3442			       struct kernel_ethtool_ringparam *kernel_ring,
3443			       struct netlink_ext_ack *extack)
3444{
3445	struct atl1_adapter *adapter = netdev_priv(netdev);
3446	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3447	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3448
3449	ring->rx_max_pending = ATL1_MAX_RFD;
3450	ring->tx_max_pending = ATL1_MAX_TPD;
3451	ring->rx_pending = rxdr->count;
3452	ring->tx_pending = txdr->count;
3453}
3454
3455static int atl1_set_ringparam(struct net_device *netdev,
3456			      struct ethtool_ringparam *ring,
3457			      struct kernel_ethtool_ringparam *kernel_ring,
3458			      struct netlink_ext_ack *extack)
3459{
3460	struct atl1_adapter *adapter = netdev_priv(netdev);
3461	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3462	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3463	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3464
3465	struct atl1_tpd_ring tpd_old, tpd_new;
3466	struct atl1_rfd_ring rfd_old, rfd_new;
3467	struct atl1_rrd_ring rrd_old, rrd_new;
3468	struct atl1_ring_header rhdr_old, rhdr_new;
3469	struct atl1_smb smb;
3470	struct atl1_cmb cmb;
3471	int err;
3472
3473	tpd_old = adapter->tpd_ring;
3474	rfd_old = adapter->rfd_ring;
3475	rrd_old = adapter->rrd_ring;
3476	rhdr_old = adapter->ring_header;
3477
3478	if (netif_running(adapter->netdev))
3479		atl1_down(adapter);
3480
3481	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3482	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3483			rfdr->count;
3484	rfdr->count = (rfdr->count + 3) & ~3;
3485	rrdr->count = rfdr->count;
3486
3487	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3488	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3489			tpdr->count;
3490	tpdr->count = (tpdr->count + 3) & ~3;
3491
3492	if (netif_running(adapter->netdev)) {
3493		/* try to get new resources before deleting old */
3494		err = atl1_setup_ring_resources(adapter);
3495		if (err)
3496			goto err_setup_ring;
3497
3498		/*
3499		 * save the new, restore the old in order to free it,
3500		 * then restore the new back again
3501		 */
3502
3503		rfd_new = adapter->rfd_ring;
3504		rrd_new = adapter->rrd_ring;
3505		tpd_new = adapter->tpd_ring;
3506		rhdr_new = adapter->ring_header;
3507		adapter->rfd_ring = rfd_old;
3508		adapter->rrd_ring = rrd_old;
3509		adapter->tpd_ring = tpd_old;
3510		adapter->ring_header = rhdr_old;
3511		/*
3512		 * Save SMB and CMB, since atl1_free_ring_resources
3513		 * will clear them.
3514		 */
3515		smb = adapter->smb;
3516		cmb = adapter->cmb;
3517		atl1_free_ring_resources(adapter);
3518		adapter->rfd_ring = rfd_new;
3519		adapter->rrd_ring = rrd_new;
3520		adapter->tpd_ring = tpd_new;
3521		adapter->ring_header = rhdr_new;
3522		adapter->smb = smb;
3523		adapter->cmb = cmb;
3524
3525		err = atl1_up(adapter);
3526		if (err)
3527			return err;
3528	}
3529	return 0;
3530
3531err_setup_ring:
3532	adapter->rfd_ring = rfd_old;
3533	adapter->rrd_ring = rrd_old;
3534	adapter->tpd_ring = tpd_old;
3535	adapter->ring_header = rhdr_old;
3536	atl1_up(adapter);
3537	return err;
3538}
3539
3540static void atl1_get_pauseparam(struct net_device *netdev,
3541	struct ethtool_pauseparam *epause)
3542{
3543	struct atl1_adapter *adapter = netdev_priv(netdev);
3544	struct atl1_hw *hw = &adapter->hw;
3545
3546	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3547	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3548		epause->autoneg = AUTONEG_ENABLE;
3549	} else {
3550		epause->autoneg = AUTONEG_DISABLE;
3551	}
3552	epause->rx_pause = 1;
3553	epause->tx_pause = 1;
3554}
3555
3556static int atl1_set_pauseparam(struct net_device *netdev,
3557	struct ethtool_pauseparam *epause)
3558{
3559	struct atl1_adapter *adapter = netdev_priv(netdev);
3560	struct atl1_hw *hw = &adapter->hw;
3561
3562	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3563	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3564		epause->autoneg = AUTONEG_ENABLE;
3565	} else {
3566		epause->autoneg = AUTONEG_DISABLE;
3567	}
3568
3569	epause->rx_pause = 1;
3570	epause->tx_pause = 1;
3571
3572	return 0;
3573}
3574
3575static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3576	u8 *data)
3577{
3578	u8 *p = data;
3579	int i;
3580
3581	switch (stringset) {
3582	case ETH_SS_STATS:
3583		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3584			memcpy(p, atl1_gstrings_stats[i].stat_string,
3585				ETH_GSTRING_LEN);
3586			p += ETH_GSTRING_LEN;
3587		}
3588		break;
3589	}
3590}
3591
3592static int atl1_nway_reset(struct net_device *netdev)
3593{
3594	struct atl1_adapter *adapter = netdev_priv(netdev);
3595	struct atl1_hw *hw = &adapter->hw;
3596
3597	if (netif_running(netdev)) {
3598		u16 phy_data;
3599		atl1_down(adapter);
3600
3601		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3602			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3603			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3604		} else {
3605			switch (hw->media_type) {
3606			case MEDIA_TYPE_100M_FULL:
3607				phy_data = MII_CR_FULL_DUPLEX |
3608					MII_CR_SPEED_100 | MII_CR_RESET;
3609				break;
3610			case MEDIA_TYPE_100M_HALF:
3611				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3612				break;
3613			case MEDIA_TYPE_10M_FULL:
3614				phy_data = MII_CR_FULL_DUPLEX |
3615					MII_CR_SPEED_10 | MII_CR_RESET;
3616				break;
3617			default:
3618				/* MEDIA_TYPE_10M_HALF */
3619				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3620			}
3621		}
3622		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3623		atl1_up(adapter);
3624	}
3625	return 0;
3626}
3627
3628static const struct ethtool_ops atl1_ethtool_ops = {
3629	.get_drvinfo		= atl1_get_drvinfo,
3630	.get_wol		= atl1_get_wol,
3631	.set_wol		= atl1_set_wol,
3632	.get_msglevel		= atl1_get_msglevel,
3633	.set_msglevel		= atl1_set_msglevel,
3634	.get_regs_len		= atl1_get_regs_len,
3635	.get_regs		= atl1_get_regs,
3636	.get_ringparam		= atl1_get_ringparam,
3637	.set_ringparam		= atl1_set_ringparam,
3638	.get_pauseparam		= atl1_get_pauseparam,
3639	.set_pauseparam		= atl1_set_pauseparam,
3640	.get_link		= ethtool_op_get_link,
3641	.get_strings		= atl1_get_strings,
3642	.nway_reset		= atl1_nway_reset,
3643	.get_ethtool_stats	= atl1_get_ethtool_stats,
3644	.get_sset_count		= atl1_get_sset_count,
3645	.get_link_ksettings	= atl1_get_link_ksettings,
3646	.set_link_ksettings	= atl1_set_link_ksettings,
3647};
3648
3649module_pci_driver(atl1_driver);
v4.17
 
   1/*
   2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
   3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
   4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
   5 *
   6 * Derived from Intel e1000 driver
   7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along with
  20 * this program; if not, write to the Free Software Foundation, Inc., 59
  21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  22 *
  23 * The full GNU General Public License is included in this distribution in the
  24 * file called COPYING.
  25 *
  26 * Contact Information:
  27 * Xiong Huang <xiong.huang@atheros.com>
  28 * Jie Yang <jie.yang@atheros.com>
  29 * Chris Snook <csnook@redhat.com>
  30 * Jay Cliburn <jcliburn@gmail.com>
  31 *
  32 * This version is adapted from the Attansic reference driver.
  33 *
  34 * TODO:
  35 * Add more ethtool functions.
  36 * Fix abstruse irq enable/disable condition described here:
  37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  38 *
  39 * NEEDS TESTING:
  40 * VLAN
  41 * multicast
  42 * promiscuous mode
  43 * interrupt coalescing
  44 * SMP torture testing
  45 */
  46
  47#include <linux/atomic.h>
  48#include <asm/byteorder.h>
  49
  50#include <linux/compiler.h>
  51#include <linux/crc32.h>
  52#include <linux/delay.h>
  53#include <linux/dma-mapping.h>
  54#include <linux/etherdevice.h>
  55#include <linux/hardirq.h>
  56#include <linux/if_ether.h>
  57#include <linux/if_vlan.h>
  58#include <linux/in.h>
  59#include <linux/interrupt.h>
  60#include <linux/ip.h>
  61#include <linux/irqflags.h>
  62#include <linux/irqreturn.h>
  63#include <linux/jiffies.h>
  64#include <linux/mii.h>
  65#include <linux/module.h>
  66#include <linux/moduleparam.h>
  67#include <linux/net.h>
  68#include <linux/netdevice.h>
  69#include <linux/pci.h>
  70#include <linux/pci_ids.h>
  71#include <linux/pm.h>
  72#include <linux/skbuff.h>
  73#include <linux/slab.h>
  74#include <linux/spinlock.h>
  75#include <linux/string.h>
  76#include <linux/tcp.h>
  77#include <linux/timer.h>
  78#include <linux/types.h>
  79#include <linux/workqueue.h>
  80
  81#include <net/checksum.h>
  82
  83#include "atl1.h"
  84
  85#define ATLX_DRIVER_VERSION "2.1.3"
  86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  87	      "Chris Snook <csnook@redhat.com>, "
  88	      "Jay Cliburn <jcliburn@gmail.com>");
  89MODULE_LICENSE("GPL");
  90MODULE_VERSION(ATLX_DRIVER_VERSION);
  91
  92/* Temporary hack for merging atl1 and atl2 */
  93#include "atlx.c"
  94
  95static const struct ethtool_ops atl1_ethtool_ops;
  96
  97/*
  98 * This is the only thing that needs to be changed to adjust the
  99 * maximum number of ports that the driver can manage.
 100 */
 101#define ATL1_MAX_NIC 4
 102
 103#define OPTION_UNSET    -1
 104#define OPTION_DISABLED 0
 105#define OPTION_ENABLED  1
 106
 107#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
 108
 109/*
 110 * Interrupt Moderate Timer in units of 2 us
 111 *
 112 * Valid Range: 10-65535
 113 *
 114 * Default Value: 100 (200us)
 115 */
 116static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
 117static unsigned int num_int_mod_timer;
 118module_param_array_named(int_mod_timer, int_mod_timer, int,
 119	&num_int_mod_timer, 0);
 120MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
 121
 122#define DEFAULT_INT_MOD_CNT	100	/* 200us */
 123#define MAX_INT_MOD_CNT		65000
 124#define MIN_INT_MOD_CNT		50
 125
 126struct atl1_option {
 127	enum { enable_option, range_option, list_option } type;
 128	char *name;
 129	char *err;
 130	int def;
 131	union {
 132		struct {	/* range_option info */
 133			int min;
 134			int max;
 135		} r;
 136		struct {	/* list_option info */
 137			int nr;
 138			struct atl1_opt_list {
 139				int i;
 140				char *str;
 141			} *p;
 142		} l;
 143	} arg;
 144};
 145
 146static int atl1_validate_option(int *value, struct atl1_option *opt,
 147				struct pci_dev *pdev)
 148{
 149	if (*value == OPTION_UNSET) {
 150		*value = opt->def;
 151		return 0;
 152	}
 153
 154	switch (opt->type) {
 155	case enable_option:
 156		switch (*value) {
 157		case OPTION_ENABLED:
 158			dev_info(&pdev->dev, "%s enabled\n", opt->name);
 159			return 0;
 160		case OPTION_DISABLED:
 161			dev_info(&pdev->dev, "%s disabled\n", opt->name);
 162			return 0;
 163		}
 164		break;
 165	case range_option:
 166		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
 167			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
 168				*value);
 169			return 0;
 170		}
 171		break;
 172	case list_option:{
 173			int i;
 174			struct atl1_opt_list *ent;
 175
 176			for (i = 0; i < opt->arg.l.nr; i++) {
 177				ent = &opt->arg.l.p[i];
 178				if (*value == ent->i) {
 179					if (ent->str[0] != '\0')
 180						dev_info(&pdev->dev, "%s\n",
 181							ent->str);
 182					return 0;
 183				}
 184			}
 185		}
 186		break;
 187
 188	default:
 189		break;
 190	}
 191
 192	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
 193		opt->name, *value, opt->err);
 194	*value = opt->def;
 195	return -1;
 196}
 197
 198/**
 199 * atl1_check_options - Range Checking for Command Line Parameters
 200 * @adapter: board private structure
 201 *
 202 * This routine checks all command line parameters for valid user
 203 * input.  If an invalid value is given, or if no user specified
 204 * value exists, a default value is used.  The final value is stored
 205 * in a variable in the adapter structure.
 206 */
 207static void atl1_check_options(struct atl1_adapter *adapter)
 208{
 209	struct pci_dev *pdev = adapter->pdev;
 210	int bd = adapter->bd_number;
 211	if (bd >= ATL1_MAX_NIC) {
 212		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
 213		dev_notice(&pdev->dev, "using defaults for all values\n");
 214	}
 215	{			/* Interrupt Moderate Timer */
 216		struct atl1_option opt = {
 217			.type = range_option,
 218			.name = "Interrupt Moderator Timer",
 219			.err = "using default of "
 220				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
 221			.def = DEFAULT_INT_MOD_CNT,
 222			.arg = {.r = {.min = MIN_INT_MOD_CNT,
 223					.max = MAX_INT_MOD_CNT} }
 224		};
 225		int val;
 226		if (num_int_mod_timer > bd) {
 227			val = int_mod_timer[bd];
 228			atl1_validate_option(&val, &opt, pdev);
 229			adapter->imt = (u16) val;
 230		} else
 231			adapter->imt = (u16) (opt.def);
 232	}
 233}
 234
 235/*
 236 * atl1_pci_tbl - PCI Device ID Table
 237 */
 238static const struct pci_device_id atl1_pci_tbl[] = {
 239	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
 240	/* required last entry */
 241	{0,}
 242};
 243MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
 244
 245static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
 246	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
 247
 248static int debug = -1;
 249module_param(debug, int, 0);
 250MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
 251
 252/*
 253 * Reset the transmit and receive units; mask and clear all interrupts.
 254 * hw - Struct containing variables accessed by shared code
 255 * return : 0  or  idle status (if error)
 256 */
 257static s32 atl1_reset_hw(struct atl1_hw *hw)
 258{
 259	struct pci_dev *pdev = hw->back->pdev;
 260	struct atl1_adapter *adapter = hw->back;
 261	u32 icr;
 262	int i;
 263
 264	/*
 265	 * Clear Interrupt mask to stop board from generating
 266	 * interrupts & Clear any pending interrupt events
 267	 */
 268	/*
 269	 * atlx_irq_disable(adapter);
 270	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
 271	 */
 272
 273	/*
 274	 * Issue Soft Reset to the MAC.  This will reset the chip's
 275	 * transmit, receive, DMA.  It will not effect
 276	 * the current PCI configuration.  The global reset bit is self-
 277	 * clearing, and should clear within a microsecond.
 278	 */
 279	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
 280	ioread32(hw->hw_addr + REG_MASTER_CTRL);
 281
 282	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
 283	ioread16(hw->hw_addr + REG_PHY_ENABLE);
 284
 285	/* delay about 1ms */
 286	msleep(1);
 287
 288	/* Wait at least 10ms for All module to be Idle */
 289	for (i = 0; i < 10; i++) {
 290		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
 291		if (!icr)
 292			break;
 293		/* delay 1 ms */
 294		msleep(1);
 295		/* FIXME: still the right way to do this? */
 296		cpu_relax();
 297	}
 298
 299	if (icr) {
 300		if (netif_msg_hw(adapter))
 301			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
 302		return icr;
 303	}
 304
 305	return 0;
 306}
 307
 308/* function about EEPROM
 309 *
 310 * check_eeprom_exist
 311 * return 0 if eeprom exist
 312 */
 313static int atl1_check_eeprom_exist(struct atl1_hw *hw)
 314{
 315	u32 value;
 316	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 317	if (value & SPI_FLASH_CTRL_EN_VPD) {
 318		value &= ~SPI_FLASH_CTRL_EN_VPD;
 319		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 320	}
 321
 322	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
 323	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
 324}
 325
 326static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
 327{
 328	int i;
 329	u32 control;
 330
 331	if (offset & 3)
 332		/* address do not align */
 333		return false;
 334
 335	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
 336	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
 337	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
 338	ioread32(hw->hw_addr + REG_VPD_CAP);
 339
 340	for (i = 0; i < 10; i++) {
 341		msleep(2);
 342		control = ioread32(hw->hw_addr + REG_VPD_CAP);
 343		if (control & VPD_CAP_VPD_FLAG)
 344			break;
 345	}
 346	if (control & VPD_CAP_VPD_FLAG) {
 347		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
 348		return true;
 349	}
 350	/* timeout */
 351	return false;
 352}
 353
 354/*
 355 * Reads the value from a PHY register
 356 * hw - Struct containing variables accessed by shared code
 357 * reg_addr - address of the PHY register to read
 358 */
 359static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
 360{
 361	u32 val;
 362	int i;
 363
 364	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 365		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
 366		MDIO_CLK_SEL_SHIFT;
 367	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 368	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 369
 370	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 371		udelay(2);
 372		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 373		if (!(val & (MDIO_START | MDIO_BUSY)))
 374			break;
 375	}
 376	if (!(val & (MDIO_START | MDIO_BUSY))) {
 377		*phy_data = (u16) val;
 378		return 0;
 379	}
 380	return ATLX_ERR_PHY;
 381}
 382
 383#define CUSTOM_SPI_CS_SETUP	2
 384#define CUSTOM_SPI_CLK_HI	2
 385#define CUSTOM_SPI_CLK_LO	2
 386#define CUSTOM_SPI_CS_HOLD	2
 387#define CUSTOM_SPI_CS_HI	3
 388
 389static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
 390{
 391	int i;
 392	u32 value;
 393
 394	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
 395	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
 396
 397	value = SPI_FLASH_CTRL_WAIT_READY |
 398	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
 399	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
 400					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
 401	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
 402					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
 403	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
 404					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
 405	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
 406					    SPI_FLASH_CTRL_CS_HI_MASK) <<
 407	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
 408	    SPI_FLASH_CTRL_INS_SHIFT;
 409
 410	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 411
 412	value |= SPI_FLASH_CTRL_START;
 413	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 414	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 415
 416	for (i = 0; i < 10; i++) {
 417		msleep(1);
 418		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 419		if (!(value & SPI_FLASH_CTRL_START))
 420			break;
 421	}
 422
 423	if (value & SPI_FLASH_CTRL_START)
 424		return false;
 425
 426	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
 427
 428	return true;
 429}
 430
 431/*
 432 * get_permanent_address
 433 * return 0 if get valid mac address,
 434 */
 435static int atl1_get_permanent_address(struct atl1_hw *hw)
 436{
 437	u32 addr[2];
 438	u32 i, control;
 439	u16 reg;
 440	u8 eth_addr[ETH_ALEN];
 441	bool key_valid;
 442
 443	if (is_valid_ether_addr(hw->perm_mac_addr))
 444		return 0;
 445
 446	/* init */
 447	addr[0] = addr[1] = 0;
 448
 449	if (!atl1_check_eeprom_exist(hw)) {
 450		reg = 0;
 451		key_valid = false;
 452		/* Read out all EEPROM content */
 453		i = 0;
 454		while (1) {
 455			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
 456				if (key_valid) {
 457					if (reg == REG_MAC_STA_ADDR)
 458						addr[0] = control;
 459					else if (reg == (REG_MAC_STA_ADDR + 4))
 460						addr[1] = control;
 461					key_valid = false;
 462				} else if ((control & 0xff) == 0x5A) {
 463					key_valid = true;
 464					reg = (u16) (control >> 16);
 465				} else
 466					break;
 467			} else
 468				/* read error */
 469				break;
 470			i += 4;
 471		}
 472
 473		*(u32 *) &eth_addr[2] = swab32(addr[0]);
 474		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 475		if (is_valid_ether_addr(eth_addr)) {
 476			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 477			return 0;
 478		}
 479	}
 480
 481	/* see if SPI FLAGS exist ? */
 482	addr[0] = addr[1] = 0;
 483	reg = 0;
 484	key_valid = false;
 485	i = 0;
 486	while (1) {
 487		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
 488			if (key_valid) {
 489				if (reg == REG_MAC_STA_ADDR)
 490					addr[0] = control;
 491				else if (reg == (REG_MAC_STA_ADDR + 4))
 492					addr[1] = control;
 493				key_valid = false;
 494			} else if ((control & 0xff) == 0x5A) {
 495				key_valid = true;
 496				reg = (u16) (control >> 16);
 497			} else
 498				/* data end */
 499				break;
 500		} else
 501			/* read error */
 502			break;
 503		i += 4;
 504	}
 505
 506	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 507	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 508	if (is_valid_ether_addr(eth_addr)) {
 509		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 510		return 0;
 511	}
 512
 513	/*
 514	 * On some motherboards, the MAC address is written by the
 515	 * BIOS directly to the MAC register during POST, and is
 516	 * not stored in eeprom.  If all else thus far has failed
 517	 * to fetch the permanent MAC address, try reading it directly.
 518	 */
 519	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
 520	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
 521	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 522	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 523	if (is_valid_ether_addr(eth_addr)) {
 524		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 525		return 0;
 526	}
 527
 528	return 1;
 529}
 530
 531/*
 532 * Reads the adapter's MAC address from the EEPROM
 533 * hw - Struct containing variables accessed by shared code
 534 */
 535static s32 atl1_read_mac_addr(struct atl1_hw *hw)
 536{
 537	s32 ret = 0;
 538	u16 i;
 539
 540	if (atl1_get_permanent_address(hw)) {
 541		eth_random_addr(hw->perm_mac_addr);
 542		ret = 1;
 543	}
 544
 545	for (i = 0; i < ETH_ALEN; i++)
 546		hw->mac_addr[i] = hw->perm_mac_addr[i];
 547	return ret;
 548}
 549
 550/*
 551 * Hashes an address to determine its location in the multicast table
 552 * hw - Struct containing variables accessed by shared code
 553 * mc_addr - the multicast address to hash
 554 *
 555 * atl1_hash_mc_addr
 556 *  purpose
 557 *      set hash value for a multicast address
 558 *      hash calcu processing :
 559 *          1. calcu 32bit CRC for multicast address
 560 *          2. reverse crc with MSB to LSB
 561 */
 562static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
 563{
 564	u32 crc32, value = 0;
 565	int i;
 566
 567	crc32 = ether_crc_le(6, mc_addr);
 568	for (i = 0; i < 32; i++)
 569		value |= (((crc32 >> i) & 1) << (31 - i));
 570
 571	return value;
 572}
 573
 574/*
 575 * Sets the bit in the multicast table corresponding to the hash value.
 576 * hw - Struct containing variables accessed by shared code
 577 * hash_value - Multicast address hash value
 578 */
 579static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
 580{
 581	u32 hash_bit, hash_reg;
 582	u32 mta;
 583
 584	/*
 585	 * The HASH Table  is a register array of 2 32-bit registers.
 586	 * It is treated like an array of 64 bits.  We want to set
 587	 * bit BitArray[hash_value]. So we figure out what register
 588	 * the bit is in, read it, OR in the new bit, then write
 589	 * back the new value.  The register is determined by the
 590	 * upper 7 bits of the hash value and the bit within that
 591	 * register are determined by the lower 5 bits of the value.
 592	 */
 593	hash_reg = (hash_value >> 31) & 0x1;
 594	hash_bit = (hash_value >> 26) & 0x1F;
 595	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 596	mta |= (1 << hash_bit);
 597	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 598}
 599
 600/*
 601 * Writes a value to a PHY register
 602 * hw - Struct containing variables accessed by shared code
 603 * reg_addr - address of the PHY register to write
 604 * data - data to write to the PHY
 605 */
 606static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
 607{
 608	int i;
 609	u32 val;
 610
 611	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
 612	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 613	    MDIO_SUP_PREAMBLE |
 614	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 615	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 616	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 617
 618	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 619		udelay(2);
 620		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 621		if (!(val & (MDIO_START | MDIO_BUSY)))
 622			break;
 623	}
 624
 625	if (!(val & (MDIO_START | MDIO_BUSY)))
 626		return 0;
 627
 628	return ATLX_ERR_PHY;
 629}
 630
 631/*
 632 * Make L001's PHY out of Power Saving State (bug)
 633 * hw - Struct containing variables accessed by shared code
 634 * when power on, L001's PHY always on Power saving State
 635 * (Gigabit Link forbidden)
 636 */
 637static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
 638{
 639	s32 ret;
 640	ret = atl1_write_phy_reg(hw, 29, 0x0029);
 641	if (ret)
 642		return ret;
 643	return atl1_write_phy_reg(hw, 30, 0);
 644}
 645
 646/*
 647 * Resets the PHY and make all config validate
 648 * hw - Struct containing variables accessed by shared code
 649 *
 650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
 651 */
 652static s32 atl1_phy_reset(struct atl1_hw *hw)
 653{
 654	struct pci_dev *pdev = hw->back->pdev;
 655	struct atl1_adapter *adapter = hw->back;
 656	s32 ret_val;
 657	u16 phy_data;
 658
 659	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
 660	    hw->media_type == MEDIA_TYPE_1000M_FULL)
 661		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
 662	else {
 663		switch (hw->media_type) {
 664		case MEDIA_TYPE_100M_FULL:
 665			phy_data =
 666			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
 667			    MII_CR_RESET;
 668			break;
 669		case MEDIA_TYPE_100M_HALF:
 670			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
 671			break;
 672		case MEDIA_TYPE_10M_FULL:
 673			phy_data =
 674			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
 675			break;
 676		default:
 677			/* MEDIA_TYPE_10M_HALF: */
 678			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
 679			break;
 680		}
 681	}
 682
 683	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
 684	if (ret_val) {
 685		u32 val;
 686		int i;
 687		/* pcie serdes link may be down! */
 688		if (netif_msg_hw(adapter))
 689			dev_dbg(&pdev->dev, "pcie phy link down\n");
 690
 691		for (i = 0; i < 25; i++) {
 692			msleep(1);
 693			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 694			if (!(val & (MDIO_START | MDIO_BUSY)))
 695				break;
 696		}
 697
 698		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
 699			if (netif_msg_hw(adapter))
 700				dev_warn(&pdev->dev,
 701					"pcie link down at least 25ms\n");
 702			return ret_val;
 703		}
 704	}
 705	return 0;
 706}
 707
 708/*
 709 * Configures PHY autoneg and flow control advertisement settings
 710 * hw - Struct containing variables accessed by shared code
 711 */
 712static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
 713{
 714	s32 ret_val;
 715	s16 mii_autoneg_adv_reg;
 716	s16 mii_1000t_ctrl_reg;
 717
 718	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 719	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
 720
 721	/* Read the MII 1000Base-T Control Register (Address 9). */
 722	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
 723
 724	/*
 725	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 726	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 727	 * the  1000Base-T Control Register (Address 9).
 728	 */
 729	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
 730	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
 731
 732	/*
 733	 * Need to parse media_type  and set up
 734	 * the appropriate PHY registers.
 735	 */
 736	switch (hw->media_type) {
 737	case MEDIA_TYPE_AUTO_SENSOR:
 738		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
 739					MII_AR_10T_FD_CAPS |
 740					MII_AR_100TX_HD_CAPS |
 741					MII_AR_100TX_FD_CAPS);
 742		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 743		break;
 744
 745	case MEDIA_TYPE_1000M_FULL:
 746		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 747		break;
 748
 749	case MEDIA_TYPE_100M_FULL:
 750		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
 751		break;
 752
 753	case MEDIA_TYPE_100M_HALF:
 754		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
 755		break;
 756
 757	case MEDIA_TYPE_10M_FULL:
 758		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
 759		break;
 760
 761	default:
 762		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
 763		break;
 764	}
 765
 766	/* flow control fixed to enable all */
 767	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
 768
 769	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
 770	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
 771
 772	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
 773	if (ret_val)
 774		return ret_val;
 775
 776	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
 777	if (ret_val)
 778		return ret_val;
 779
 780	return 0;
 781}
 782
 783/*
 784 * Configures link settings.
 785 * hw - Struct containing variables accessed by shared code
 786 * Assumes the hardware has previously been reset and the
 787 * transmitter and receiver are not enabled.
 788 */
 789static s32 atl1_setup_link(struct atl1_hw *hw)
 790{
 791	struct pci_dev *pdev = hw->back->pdev;
 792	struct atl1_adapter *adapter = hw->back;
 793	s32 ret_val;
 794
 795	/*
 796	 * Options:
 797	 *  PHY will advertise value(s) parsed from
 798	 *  autoneg_advertised and fc
 799	 *  no matter what autoneg is , We will not wait link result.
 800	 */
 801	ret_val = atl1_phy_setup_autoneg_adv(hw);
 802	if (ret_val) {
 803		if (netif_msg_link(adapter))
 804			dev_dbg(&pdev->dev,
 805				"error setting up autonegotiation\n");
 806		return ret_val;
 807	}
 808	/* SW.Reset , En-Auto-Neg if needed */
 809	ret_val = atl1_phy_reset(hw);
 810	if (ret_val) {
 811		if (netif_msg_link(adapter))
 812			dev_dbg(&pdev->dev, "error resetting phy\n");
 813		return ret_val;
 814	}
 815	hw->phy_configured = true;
 816	return ret_val;
 817}
 818
 819static void atl1_init_flash_opcode(struct atl1_hw *hw)
 820{
 821	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
 822		/* Atmel */
 823		hw->flash_vendor = 0;
 824
 825	/* Init OP table */
 826	iowrite8(flash_table[hw->flash_vendor].cmd_program,
 827		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
 828	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
 829		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
 830	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
 831		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
 832	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
 833		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
 834	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
 835		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
 836	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
 837		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
 838	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
 839		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
 840	iowrite8(flash_table[hw->flash_vendor].cmd_read,
 841		hw->hw_addr + REG_SPI_FLASH_OP_READ);
 842}
 843
 844/*
 845 * Performs basic configuration of the adapter.
 846 * hw - Struct containing variables accessed by shared code
 847 * Assumes that the controller has previously been reset and is in a
 848 * post-reset uninitialized state. Initializes multicast table,
 849 * and  Calls routines to setup link
 850 * Leaves the transmit and receive units disabled and uninitialized.
 851 */
 852static s32 atl1_init_hw(struct atl1_hw *hw)
 853{
 854	u32 ret_val = 0;
 855
 856	/* Zero out the Multicast HASH table */
 857	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
 858	/* clear the old settings from the multicast hash table */
 859	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
 860
 861	atl1_init_flash_opcode(hw);
 862
 863	if (!hw->phy_configured) {
 864		/* enable GPHY LinkChange Interrupt */
 865		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
 866		if (ret_val)
 867			return ret_val;
 868		/* make PHY out of power-saving state */
 869		ret_val = atl1_phy_leave_power_saving(hw);
 870		if (ret_val)
 871			return ret_val;
 872		/* Call a subroutine to configure the link */
 873		ret_val = atl1_setup_link(hw);
 874	}
 875	return ret_val;
 876}
 877
 878/*
 879 * Detects the current speed and duplex settings of the hardware.
 880 * hw - Struct containing variables accessed by shared code
 881 * speed - Speed of the connection
 882 * duplex - Duplex setting of the connection
 883 */
 884static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
 885{
 886	struct pci_dev *pdev = hw->back->pdev;
 887	struct atl1_adapter *adapter = hw->back;
 888	s32 ret_val;
 889	u16 phy_data;
 890
 891	/* ; --- Read   PHY Specific Status Register (17) */
 892	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
 893	if (ret_val)
 894		return ret_val;
 895
 896	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
 897		return ATLX_ERR_PHY_RES;
 898
 899	switch (phy_data & MII_ATLX_PSSR_SPEED) {
 900	case MII_ATLX_PSSR_1000MBS:
 901		*speed = SPEED_1000;
 902		break;
 903	case MII_ATLX_PSSR_100MBS:
 904		*speed = SPEED_100;
 905		break;
 906	case MII_ATLX_PSSR_10MBS:
 907		*speed = SPEED_10;
 908		break;
 909	default:
 910		if (netif_msg_hw(adapter))
 911			dev_dbg(&pdev->dev, "error getting speed\n");
 912		return ATLX_ERR_PHY_SPEED;
 913	}
 914	if (phy_data & MII_ATLX_PSSR_DPLX)
 915		*duplex = FULL_DUPLEX;
 916	else
 917		*duplex = HALF_DUPLEX;
 918
 919	return 0;
 920}
 921
 922static void atl1_set_mac_addr(struct atl1_hw *hw)
 923{
 924	u32 value;
 925	/*
 926	 * 00-0B-6A-F6-00-DC
 927	 * 0:  6AF600DC   1: 000B
 928	 * low dword
 929	 */
 930	value = (((u32) hw->mac_addr[2]) << 24) |
 931	    (((u32) hw->mac_addr[3]) << 16) |
 932	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
 933	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
 934	/* high dword */
 935	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
 936	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
 937}
 938
 939/**
 940 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
 941 * @adapter: board private structure to initialize
 942 *
 943 * atl1_sw_init initializes the Adapter private data structure.
 944 * Fields are initialized based on PCI device information and
 945 * OS network device settings (MTU size).
 946 */
 947static int atl1_sw_init(struct atl1_adapter *adapter)
 948{
 949	struct atl1_hw *hw = &adapter->hw;
 950	struct net_device *netdev = adapter->netdev;
 951
 952	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 953	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 954
 955	adapter->wol = 0;
 956	device_set_wakeup_enable(&adapter->pdev->dev, false);
 957	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
 958	adapter->ict = 50000;		/* 100ms */
 959	adapter->link_speed = SPEED_0;	/* hardware init */
 960	adapter->link_duplex = FULL_DUPLEX;
 961
 962	hw->phy_configured = false;
 963	hw->preamble_len = 7;
 964	hw->ipgt = 0x60;
 965	hw->min_ifg = 0x50;
 966	hw->ipgr1 = 0x40;
 967	hw->ipgr2 = 0x60;
 968	hw->max_retry = 0xf;
 969	hw->lcol = 0x37;
 970	hw->jam_ipg = 7;
 971	hw->rfd_burst = 8;
 972	hw->rrd_burst = 8;
 973	hw->rfd_fetch_gap = 1;
 974	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
 975	hw->rx_jumbo_lkah = 1;
 976	hw->rrd_ret_timer = 16;
 977	hw->tpd_burst = 4;
 978	hw->tpd_fetch_th = 16;
 979	hw->txf_burst = 0x100;
 980	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
 981	hw->tpd_fetch_gap = 1;
 982	hw->rcb_value = atl1_rcb_64;
 983	hw->dma_ord = atl1_dma_ord_enh;
 984	hw->dmar_block = atl1_dma_req_256;
 985	hw->dmaw_block = atl1_dma_req_256;
 986	hw->cmb_rrd = 4;
 987	hw->cmb_tpd = 4;
 988	hw->cmb_rx_timer = 1;	/* about 2us */
 989	hw->cmb_tx_timer = 1;	/* about 2us */
 990	hw->smb_timer = 100000;	/* about 200ms */
 991
 992	spin_lock_init(&adapter->lock);
 993	spin_lock_init(&adapter->mb_lock);
 994
 995	return 0;
 996}
 997
 998static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
 999{
1000	struct atl1_adapter *adapter = netdev_priv(netdev);
1001	u16 result;
1002
1003	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004
1005	return result;
1006}
1007
1008static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009	int val)
1010{
1011	struct atl1_adapter *adapter = netdev_priv(netdev);
1012
1013	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014}
1015
1016static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017{
1018	struct atl1_adapter *adapter = netdev_priv(netdev);
1019	unsigned long flags;
1020	int retval;
1021
1022	if (!netif_running(netdev))
1023		return -EINVAL;
1024
1025	spin_lock_irqsave(&adapter->lock, flags);
1026	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027	spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029	return retval;
1030}
1031
1032/**
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1035 *
1036 * Return 0 on success, negative on failure
1037 */
1038static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039{
1040	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043	struct atl1_ring_header *ring_header = &adapter->ring_header;
1044	struct pci_dev *pdev = adapter->pdev;
1045	int size;
1046	u8 offset = 0;
1047
1048	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050	if (unlikely(!tpd_ring->buffer_info)) {
1051		if (netif_msg_drv(adapter))
1052			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053				size);
1054		goto err_nomem;
1055	}
1056	rfd_ring->buffer_info =
1057		(tpd_ring->buffer_info + tpd_ring->count);
1058
1059	/*
1060	 * real ring DMA buffer
1061	 * each ring/block may need up to 8 bytes for alignment, hence the
1062	 * additional 40 bytes tacked onto the end.
1063	 */
1064	ring_header->size = size =
1065		sizeof(struct tx_packet_desc) * tpd_ring->count
1066		+ sizeof(struct rx_free_desc) * rfd_ring->count
1067		+ sizeof(struct rx_return_desc) * rrd_ring->count
1068		+ sizeof(struct coals_msg_block)
1069		+ sizeof(struct stats_msg_block)
1070		+ 40;
1071
1072	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073		&ring_header->dma);
1074	if (unlikely(!ring_header->desc)) {
1075		if (netif_msg_drv(adapter))
1076			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077		goto err_nomem;
1078	}
1079
1080	memset(ring_header->desc, 0, ring_header->size);
1081
1082	/* init TPD ring */
1083	tpd_ring->dma = ring_header->dma;
1084	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085	tpd_ring->dma += offset;
1086	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089	/* init RFD ring */
1090	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092	rfd_ring->dma += offset;
1093	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097	/* init RRD ring */
1098	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100	rrd_ring->dma += offset;
1101	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105	/* init CMB */
1106	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108	adapter->cmb.dma += offset;
1109	adapter->cmb.cmb = (struct coals_msg_block *)
1110		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112	/* init SMB */
1113	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115	adapter->smb.dma += offset;
1116	adapter->smb.smb = (struct stats_msg_block *)
1117		((u8 *) adapter->cmb.cmb +
1118		(sizeof(struct coals_msg_block) + offset));
1119
1120	return 0;
1121
1122err_nomem:
1123	kfree(tpd_ring->buffer_info);
1124	return -ENOMEM;
1125}
1126
1127static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128{
1129	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133	atomic_set(&tpd_ring->next_to_use, 0);
1134	atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136	rfd_ring->next_to_clean = 0;
1137	atomic_set(&rfd_ring->next_to_use, 0);
1138
1139	rrd_ring->next_to_use = 0;
1140	atomic_set(&rrd_ring->next_to_clean, 0);
1141}
1142
1143/**
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1146 */
1147static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148{
1149	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151	struct atl1_buffer *buffer_info;
1152	struct pci_dev *pdev = adapter->pdev;
1153	unsigned long size;
1154	unsigned int i;
1155
1156	/* Free all the Rx ring sk_buffs */
1157	for (i = 0; i < rfd_ring->count; i++) {
1158		buffer_info = &rfd_ring->buffer_info[i];
1159		if (buffer_info->dma) {
1160			pci_unmap_page(pdev, buffer_info->dma,
1161				buffer_info->length, PCI_DMA_FROMDEVICE);
1162			buffer_info->dma = 0;
1163		}
1164		if (buffer_info->skb) {
1165			dev_kfree_skb(buffer_info->skb);
1166			buffer_info->skb = NULL;
1167		}
1168	}
1169
1170	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171	memset(rfd_ring->buffer_info, 0, size);
1172
1173	/* Zero out the descriptor ring */
1174	memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176	rfd_ring->next_to_clean = 0;
1177	atomic_set(&rfd_ring->next_to_use, 0);
1178
1179	rrd_ring->next_to_use = 0;
1180	atomic_set(&rrd_ring->next_to_clean, 0);
1181}
1182
1183/**
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1186 */
1187static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188{
1189	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190	struct atl1_buffer *buffer_info;
1191	struct pci_dev *pdev = adapter->pdev;
1192	unsigned long size;
1193	unsigned int i;
1194
1195	/* Free all the Tx ring sk_buffs */
1196	for (i = 0; i < tpd_ring->count; i++) {
1197		buffer_info = &tpd_ring->buffer_info[i];
1198		if (buffer_info->dma) {
1199			pci_unmap_page(pdev, buffer_info->dma,
1200				buffer_info->length, PCI_DMA_TODEVICE);
1201			buffer_info->dma = 0;
1202		}
1203	}
1204
1205	for (i = 0; i < tpd_ring->count; i++) {
1206		buffer_info = &tpd_ring->buffer_info[i];
1207		if (buffer_info->skb) {
1208			dev_kfree_skb_any(buffer_info->skb);
1209			buffer_info->skb = NULL;
1210		}
1211	}
1212
1213	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214	memset(tpd_ring->buffer_info, 0, size);
1215
1216	/* Zero out the descriptor ring */
1217	memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219	atomic_set(&tpd_ring->next_to_use, 0);
1220	atomic_set(&tpd_ring->next_to_clean, 0);
1221}
1222
1223/**
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1226 *
1227 * Free all transmit software resources
1228 */
1229static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230{
1231	struct pci_dev *pdev = adapter->pdev;
1232	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235	struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237	atl1_clean_tx_ring(adapter);
1238	atl1_clean_rx_ring(adapter);
1239
1240	kfree(tpd_ring->buffer_info);
1241	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242		ring_header->dma);
1243
1244	tpd_ring->buffer_info = NULL;
1245	tpd_ring->desc = NULL;
1246	tpd_ring->dma = 0;
1247
1248	rfd_ring->buffer_info = NULL;
1249	rfd_ring->desc = NULL;
1250	rfd_ring->dma = 0;
1251
1252	rrd_ring->desc = NULL;
1253	rrd_ring->dma = 0;
1254
1255	adapter->cmb.dma = 0;
1256	adapter->cmb.cmb = NULL;
1257
1258	adapter->smb.dma = 0;
1259	adapter->smb.smb = NULL;
1260}
1261
1262static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263{
1264	u32 value;
1265	struct atl1_hw *hw = &adapter->hw;
1266	struct net_device *netdev = adapter->netdev;
1267	/* Config MAC CTRL Register */
1268	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269	/* duplex */
1270	if (FULL_DUPLEX == adapter->link_duplex)
1271		value |= MAC_CTRL_DUPLX;
1272	/* speed */
1273	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275		  MAC_CTRL_SPEED_SHIFT);
1276	/* flow control */
1277	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278	/* PAD & CRC */
1279	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280	/* preamble length */
1281	value |= (((u32) adapter->hw.preamble_len
1282		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283	/* vlan */
1284	__atlx_vlan_mode(netdev->features, &value);
1285	/* rx checksum
1286	   if (adapter->rx_csum)
1287	   value |= MAC_CTRL_RX_CHKSUM_EN;
1288	 */
1289	/* filter mode */
1290	value |= MAC_CTRL_BC_EN;
1291	if (netdev->flags & IFF_PROMISC)
1292		value |= MAC_CTRL_PROMIS_EN;
1293	else if (netdev->flags & IFF_ALLMULTI)
1294		value |= MAC_CTRL_MC_ALL_EN;
1295	/* value |= MAC_CTRL_LOOPBACK; */
1296	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297}
1298
1299static u32 atl1_check_link(struct atl1_adapter *adapter)
1300{
1301	struct atl1_hw *hw = &adapter->hw;
1302	struct net_device *netdev = adapter->netdev;
1303	u32 ret_val;
1304	u16 speed, duplex, phy_data;
1305	int reconfig = 0;
1306
1307	/* MII_BMSR must read twice */
1308	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310	if (!(phy_data & BMSR_LSTATUS)) {
1311		/* link down */
1312		if (netif_carrier_ok(netdev)) {
1313			/* old link state: Up */
1314			if (netif_msg_link(adapter))
1315				dev_info(&adapter->pdev->dev, "link is down\n");
1316			adapter->link_speed = SPEED_0;
1317			netif_carrier_off(netdev);
1318		}
1319		return 0;
1320	}
1321
1322	/* Link Up */
1323	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324	if (ret_val)
1325		return ret_val;
1326
1327	switch (hw->media_type) {
1328	case MEDIA_TYPE_1000M_FULL:
1329		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330			reconfig = 1;
1331		break;
1332	case MEDIA_TYPE_100M_FULL:
1333		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334			reconfig = 1;
1335		break;
1336	case MEDIA_TYPE_100M_HALF:
1337		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338			reconfig = 1;
1339		break;
1340	case MEDIA_TYPE_10M_FULL:
1341		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342			reconfig = 1;
1343		break;
1344	case MEDIA_TYPE_10M_HALF:
1345		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346			reconfig = 1;
1347		break;
1348	}
1349
1350	/* link result is our setting */
1351	if (!reconfig) {
1352		if (adapter->link_speed != speed ||
1353		    adapter->link_duplex != duplex) {
1354			adapter->link_speed = speed;
1355			adapter->link_duplex = duplex;
1356			atl1_setup_mac_ctrl(adapter);
1357			if (netif_msg_link(adapter))
1358				dev_info(&adapter->pdev->dev,
1359					"%s link is up %d Mbps %s\n",
1360					netdev->name, adapter->link_speed,
1361					adapter->link_duplex == FULL_DUPLEX ?
1362					"full duplex" : "half duplex");
1363		}
1364		if (!netif_carrier_ok(netdev)) {
1365			/* Link down -> Up */
1366			netif_carrier_on(netdev);
1367		}
1368		return 0;
1369	}
1370
1371	/* change original link status */
1372	if (netif_carrier_ok(netdev)) {
1373		adapter->link_speed = SPEED_0;
1374		netif_carrier_off(netdev);
1375		netif_stop_queue(netdev);
1376	}
1377
1378	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380		switch (hw->media_type) {
1381		case MEDIA_TYPE_100M_FULL:
1382			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383			           MII_CR_RESET;
1384			break;
1385		case MEDIA_TYPE_100M_HALF:
1386			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387			break;
1388		case MEDIA_TYPE_10M_FULL:
1389			phy_data =
1390			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391			break;
1392		default:
1393			/* MEDIA_TYPE_10M_HALF: */
1394			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395			break;
1396		}
1397		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398		return 0;
1399	}
1400
1401	/* auto-neg, insert timer to re-config phy */
1402	if (!adapter->phy_timer_pending) {
1403		adapter->phy_timer_pending = true;
1404		mod_timer(&adapter->phy_config_timer,
1405			  round_jiffies(jiffies + 3 * HZ));
1406	}
1407
1408	return 0;
1409}
1410
1411static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412{
1413	u32 hi, lo, value;
1414
1415	/* RFD Flow Control */
1416	value = adapter->rfd_ring.count;
1417	hi = value / 16;
1418	if (hi < 2)
1419		hi = 2;
1420	lo = value * 7 / 8;
1421
1422	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426	/* RRD Flow Control */
1427	value = adapter->rrd_ring.count;
1428	lo = value / 16;
1429	hi = value * 7 / 8;
1430	if (lo < 2)
1431		lo = 2;
1432	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435}
1436
1437static void set_flow_ctrl_new(struct atl1_hw *hw)
1438{
1439	u32 hi, lo, value;
1440
1441	/* RXF Flow Control */
1442	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443	lo = value / 16;
1444	if (lo < 192)
1445		lo = 192;
1446	hi = value * 7 / 8;
1447	if (hi < lo)
1448		hi = lo + 16;
1449	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453	/* RRD Flow Control */
1454	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455	lo = value / 8;
1456	hi = value * 7 / 8;
1457	if (lo < 2)
1458		lo = 2;
1459	if (hi < lo)
1460		hi = lo + 3;
1461	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464}
1465
1466/**
1467 * atl1_configure - Configure Transmit&Receive Unit after Reset
1468 * @adapter: board private structure
1469 *
1470 * Configure the Tx /Rx unit of the MAC after a reset.
1471 */
1472static u32 atl1_configure(struct atl1_adapter *adapter)
1473{
1474	struct atl1_hw *hw = &adapter->hw;
1475	u32 value;
1476
1477	/* clear interrupt status */
1478	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480	/* set MAC Address */
1481	value = (((u32) hw->mac_addr[2]) << 24) |
1482		(((u32) hw->mac_addr[3]) << 16) |
1483		(((u32) hw->mac_addr[4]) << 8) |
1484		(((u32) hw->mac_addr[5]));
1485	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489	/* tx / rx ring */
1490
1491	/* HI base address */
1492	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494	/* LO base address */
1495	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506	/* element count */
1507	value = adapter->rrd_ring.count;
1508	value <<= 16;
1509	value += adapter->rfd_ring.count;
1510	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512		REG_DESC_TPD_RING_SIZE);
1513
1514	/* Load Ptr */
1515	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517	/* config Mailbox */
1518	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520		((atomic_read(&adapter->rrd_ring.next_to_clean)
1521		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522		((atomic_read(&adapter->rfd_ring.next_to_use)
1523		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526	/* config IPG/IFG */
1527	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528		 << MAC_IPG_IFG_IPGT_SHIFT) |
1529		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530		<< MAC_IPG_IFG_MIFG_SHIFT) |
1531		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1533		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534		<< MAC_IPG_IFG_IPGR2_SHIFT);
1535	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537	/* config  Half-Duplex Control */
1538	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547	/* set Interrupt Moderator Timer */
1548	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551	/* set Interrupt Clear Timer */
1552	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554	/* set max frame size hw will accept */
1555	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557	/* jumbo size & rrd retirement timer */
1558	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559		 << RXQ_JMBOSZ_TH_SHIFT) |
1560		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561		<< RXQ_JMBO_LKAH_SHIFT) |
1562		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563		<< RXQ_RRD_TIMER_SHIFT);
1564	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566	/* Flow Control */
1567	switch (hw->dev_rev) {
1568	case 0x8001:
1569	case 0x9001:
1570	case 0x9002:
1571	case 0x9003:
1572		set_flow_ctrl_old(adapter);
1573		break;
1574	default:
1575		set_flow_ctrl_new(hw);
1576		break;
1577	}
1578
1579	/* config TXQ */
1580	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586		TXQ_CTRL_EN;
1587	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591		<< TX_JUMBO_TASK_TH_SHIFT) |
1592		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593		<< TX_TPD_MIN_IPG_SHIFT);
1594	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596	/* config RXQ */
1597	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603		RXQ_CTRL_EN;
1604	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606	/* config DMA Engine */
1607	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611		DMA_CTRL_DMAW_EN;
1612	value |= (u32) hw->dma_ord;
1613	if (atl1_rcb_128 == hw->rcb_value)
1614		value |= DMA_CTRL_RCB_VALUE;
1615	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617	/* config CMB / SMB */
1618	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619		hw->cmb_tpd : adapter->tpd_ring.count;
1620	value <<= 16;
1621	value |= hw->cmb_rrd;
1622	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627	/* --- enable CMB / SMB */
1628	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633		value = 1;	/* config failed */
1634	else
1635		value = 0;
1636
1637	/* clear all interrupt status */
1638	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640	return value;
1641}
1642
1643/*
1644 * atl1_pcie_patch - Patch for PCIE module
1645 */
1646static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647{
1648	u32 value;
1649
1650	/* much vendor magic here */
1651	value = 0x6500;
1652	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653	/* pcie flow control mode change */
1654	value = ioread32(adapter->hw.hw_addr + 0x1008);
1655	value |= 0x8000;
1656	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657}
1658
1659/*
1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661 * on PCI Command register is disable.
1662 * The function enable this bit.
1663 * Brackett, 2006/03/15
1664 */
1665static void atl1_via_workaround(struct atl1_adapter *adapter)
1666{
1667	unsigned long value;
1668
1669	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670	if (value & PCI_COMMAND_INTX_DISABLE)
1671		value &= ~PCI_COMMAND_INTX_DISABLE;
1672	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673}
1674
1675static void atl1_inc_smb(struct atl1_adapter *adapter)
1676{
1677	struct net_device *netdev = adapter->netdev;
1678	struct stats_msg_block *smb = adapter->smb.smb;
1679
1680	u64 new_rx_errors = smb->rx_frag +
1681			    smb->rx_fcs_err +
1682			    smb->rx_len_err +
1683			    smb->rx_sz_ov +
1684			    smb->rx_rxf_ov +
1685			    smb->rx_rrd_ov +
1686			    smb->rx_align_err;
1687	u64 new_tx_errors = smb->tx_late_col +
1688			    smb->tx_abort_col +
1689			    smb->tx_underrun +
1690			    smb->tx_trunc;
1691
1692	/* Fill out the OS statistics structure */
1693	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697	adapter->soft_stats.multicast += smb->rx_mcast;
1698	adapter->soft_stats.collisions += smb->tx_1_col +
1699					  smb->tx_2_col +
1700					  smb->tx_late_col +
1701					  smb->tx_abort_col;
1702
1703	/* Rx Errors */
1704	adapter->soft_stats.rx_errors += new_rx_errors;
1705	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709
1710	adapter->soft_stats.rx_pause += smb->rx_pause;
1711	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714	/* Tx Errors */
1715	adapter->soft_stats.tx_errors += new_tx_errors;
1716	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719
1720	adapter->soft_stats.excecol += smb->tx_abort_col;
1721	adapter->soft_stats.deffer += smb->tx_defer;
1722	adapter->soft_stats.scc += smb->tx_1_col;
1723	adapter->soft_stats.mcc += smb->tx_2_col;
1724	adapter->soft_stats.latecol += smb->tx_late_col;
1725	adapter->soft_stats.tx_underun += smb->tx_underrun;
1726	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727	adapter->soft_stats.tx_pause += smb->tx_pause;
1728
1729	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731	netdev->stats.multicast = adapter->soft_stats.multicast;
1732	netdev->stats.collisions = adapter->soft_stats.collisions;
1733	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734	netdev->stats.rx_length_errors =
1735		adapter->soft_stats.rx_length_errors;
1736	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737	netdev->stats.rx_frame_errors =
1738		adapter->soft_stats.rx_frame_errors;
1739	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743	netdev->stats.tx_aborted_errors =
1744		adapter->soft_stats.tx_aborted_errors;
1745	netdev->stats.tx_window_errors =
1746		adapter->soft_stats.tx_window_errors;
1747	netdev->stats.tx_carrier_errors =
1748		adapter->soft_stats.tx_carrier_errors;
1749
1750	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752}
1753
1754static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755{
1756	unsigned long flags;
1757	u32 tpd_next_to_use;
1758	u32 rfd_next_to_use;
1759	u32 rrd_next_to_clean;
1760	u32 value;
1761
1762	spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769		MB_RFD_PROD_INDX_SHIFT) |
1770		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771		MB_RRD_CONS_INDX_SHIFT) |
1772		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773		MB_TPD_PROD_INDX_SHIFT);
1774	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777}
1778
1779static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780	struct rx_return_desc *rrd, u16 offset)
1781{
1782	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787			rfd_ring->next_to_clean = 0;
1788		}
1789	}
1790}
1791
1792static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793	struct rx_return_desc *rrd)
1794{
1795	u16 num_buf;
1796
1797	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798		adapter->rx_buffer_len;
1799	if (rrd->num_buf == num_buf)
1800		/* clean alloc flag for bad rrd */
1801		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802}
1803
1804static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805	struct rx_return_desc *rrd, struct sk_buff *skb)
1806{
1807	struct pci_dev *pdev = adapter->pdev;
1808
1809	/*
1810	 * The L1 hardware contains a bug that erroneously sets the
1811	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812	 * fragmented IP packet is received, even though the packet
1813	 * is perfectly valid and its checksum is correct. There's
1814	 * no way to distinguish between one of these good packets
1815	 * and a packet that actually contains a TCP/UDP checksum
1816	 * error, so all we can do is allow it to be handed up to
1817	 * the higher layers and let it be sorted out there.
1818	 */
1819
1820	skb_checksum_none_assert(skb);
1821
1822	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825			adapter->hw_csum_err++;
1826			if (netif_msg_rx_err(adapter))
1827				dev_printk(KERN_DEBUG, &pdev->dev,
1828					"rx checksum error\n");
1829			return;
1830		}
1831	}
1832
1833	/* not IPv4 */
1834	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836		return;
1837
1838	/* IPv4 packet */
1839	if (likely(!(rrd->err_flg &
1840		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841		skb->ip_summed = CHECKSUM_UNNECESSARY;
1842		adapter->hw_csum_good++;
1843		return;
1844	}
1845}
1846
1847/**
1848 * atl1_alloc_rx_buffers - Replace used receive buffers
1849 * @adapter: address of board private structure
1850 */
1851static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852{
1853	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854	struct pci_dev *pdev = adapter->pdev;
1855	struct page *page;
1856	unsigned long offset;
1857	struct atl1_buffer *buffer_info, *next_info;
1858	struct sk_buff *skb;
1859	u16 num_alloc = 0;
1860	u16 rfd_next_to_use, next_next;
1861	struct rx_free_desc *rfd_desc;
1862
1863	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864	if (++next_next == rfd_ring->count)
1865		next_next = 0;
1866	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867	next_info = &rfd_ring->buffer_info[next_next];
1868
1869	while (!buffer_info->alloced && !next_info->alloced) {
1870		if (buffer_info->skb) {
1871			buffer_info->alloced = 1;
1872			goto next;
1873		}
1874
1875		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878						adapter->rx_buffer_len);
1879		if (unlikely(!skb)) {
1880			/* Better luck next round */
1881			adapter->soft_stats.rx_dropped++;
1882			break;
1883		}
1884
1885		buffer_info->alloced = 1;
1886		buffer_info->skb = skb;
1887		buffer_info->length = (u16) adapter->rx_buffer_len;
1888		page = virt_to_page(skb->data);
1889		offset = offset_in_page(skb->data);
1890		buffer_info->dma = pci_map_page(pdev, page, offset,
1891						adapter->rx_buffer_len,
1892						PCI_DMA_FROMDEVICE);
1893		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895		rfd_desc->coalese = 0;
1896
1897next:
1898		rfd_next_to_use = next_next;
1899		if (unlikely(++next_next == rfd_ring->count))
1900			next_next = 0;
1901
1902		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903		next_info = &rfd_ring->buffer_info[next_next];
1904		num_alloc++;
1905	}
1906
1907	if (num_alloc) {
1908		/*
1909		 * Force memory writes to complete before letting h/w
1910		 * know there are new descriptors to fetch.  (Only
1911		 * applicable for weak-ordered memory model archs,
1912		 * such as IA-64).
1913		 */
1914		wmb();
1915		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916	}
1917	return num_alloc;
1918}
1919
1920static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921{
1922	int i, count;
1923	u16 length;
1924	u16 rrd_next_to_clean;
1925	u32 value;
1926	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928	struct atl1_buffer *buffer_info;
1929	struct rx_return_desc *rrd;
1930	struct sk_buff *skb;
1931
1932	count = 0;
1933
1934	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936	while (count < budget) {
1937		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938		i = 1;
1939		if (likely(rrd->xsz.valid)) {	/* packet valid */
1940chk_rrd:
1941			/* check rrd status */
1942			if (likely(rrd->num_buf == 1))
1943				goto rrd_ok;
1944			else if (netif_msg_rx_err(adapter)) {
1945				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946					"unexpected RRD buffer count\n");
1947				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948					"rx_buf_len = %d\n",
1949					adapter->rx_buffer_len);
1950				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951					"RRD num_buf = %d\n",
1952					rrd->num_buf);
1953				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954					"RRD pkt_len = %d\n",
1955					rrd->xsz.xsum_sz.pkt_size);
1956				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957					"RRD pkt_flg = 0x%08X\n",
1958					rrd->pkt_flg);
1959				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960					"RRD err_flg = 0x%08X\n",
1961					rrd->err_flg);
1962				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963					"RRD vlan_tag = 0x%08X\n",
1964					rrd->vlan_tag);
1965			}
1966
1967			/* rrd seems to be bad */
1968			if (unlikely(i-- > 0)) {
1969				/* rrd may not be DMAed completely */
1970				udelay(1);
1971				goto chk_rrd;
1972			}
1973			/* bad rrd */
1974			if (netif_msg_rx_err(adapter))
1975				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976					"bad RRD\n");
1977			/* see if update RFD index */
1978			if (rrd->num_buf > 1)
1979				atl1_update_rfd_index(adapter, rrd);
1980
1981			/* update rrd */
1982			rrd->xsz.valid = 0;
1983			if (++rrd_next_to_clean == rrd_ring->count)
1984				rrd_next_to_clean = 0;
1985			count++;
1986			continue;
1987		} else {	/* current rrd still not be updated */
1988
1989			break;
1990		}
1991rrd_ok:
1992		/* clean alloc flag for bad rrd */
1993		atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996		if (++rfd_ring->next_to_clean == rfd_ring->count)
1997			rfd_ring->next_to_clean = 0;
1998
1999		/* update rrd next to clean */
2000		if (++rrd_next_to_clean == rrd_ring->count)
2001			rrd_next_to_clean = 0;
2002		count++;
2003
2004		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005			if (!(rrd->err_flg &
2006				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007				| ERR_FLAG_LEN))) {
2008				/* packet error, don't need upstream */
2009				buffer_info->alloced = 0;
2010				rrd->xsz.valid = 0;
2011				continue;
2012			}
2013		}
2014
2015		/* Good Receive */
2016		pci_unmap_page(adapter->pdev, buffer_info->dma,
2017			       buffer_info->length, PCI_DMA_FROMDEVICE);
2018		buffer_info->dma = 0;
2019		skb = buffer_info->skb;
2020		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022		skb_put(skb, length - ETH_FCS_LEN);
2023
2024		/* Receive Checksum Offload */
2025		atl1_rx_checksum(adapter, rrd, skb);
2026		skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030					((rrd->vlan_tag & 7) << 13) |
2031					((rrd->vlan_tag & 8) << 9);
2032
2033			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034		}
2035		netif_receive_skb(skb);
2036
2037		/* let protocol layer free skb */
2038		buffer_info->skb = NULL;
2039		buffer_info->alloced = 0;
2040		rrd->xsz.valid = 0;
2041	}
2042
2043	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045	atl1_alloc_rx_buffers(adapter);
2046
2047	/* update mailbox ? */
2048	if (count) {
2049		u32 tpd_next_to_use;
2050		u32 rfd_next_to_use;
2051
2052		spin_lock(&adapter->mb_lock);
2053
2054		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055		rfd_next_to_use =
2056		    atomic_read(&adapter->rfd_ring.next_to_use);
2057		rrd_next_to_clean =
2058		    atomic_read(&adapter->rrd_ring.next_to_clean);
2059		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060			MB_RFD_PROD_INDX_SHIFT) |
2061                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062			MB_RRD_CONS_INDX_SHIFT) |
2063                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064			MB_TPD_PROD_INDX_SHIFT);
2065		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066		spin_unlock(&adapter->mb_lock);
2067	}
2068
2069	return count;
2070}
2071
2072static int atl1_intr_tx(struct atl1_adapter *adapter)
2073{
2074	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075	struct atl1_buffer *buffer_info;
2076	u16 sw_tpd_next_to_clean;
2077	u16 cmb_tpd_next_to_clean;
2078	int count = 0;
2079
2080	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082
2083	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085		if (buffer_info->dma) {
2086			pci_unmap_page(adapter->pdev, buffer_info->dma,
2087				       buffer_info->length, PCI_DMA_TODEVICE);
2088			buffer_info->dma = 0;
2089		}
2090
2091		if (buffer_info->skb) {
2092			dev_kfree_skb_irq(buffer_info->skb);
2093			buffer_info->skb = NULL;
2094		}
2095
2096		if (++sw_tpd_next_to_clean == tpd_ring->count)
2097			sw_tpd_next_to_clean = 0;
2098
2099		count++;
2100	}
2101	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102
2103	if (netif_queue_stopped(adapter->netdev) &&
2104	    netif_carrier_ok(adapter->netdev))
2105		netif_wake_queue(adapter->netdev);
2106
2107	return count;
2108}
2109
2110static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111{
2112	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114	return (next_to_clean > next_to_use) ?
2115		next_to_clean - next_to_use - 1 :
2116		tpd_ring->count + next_to_clean - next_to_use - 1;
2117}
2118
2119static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120		    struct tx_packet_desc *ptpd)
2121{
2122	u8 hdr_len, ip_off;
2123	u32 real_len;
2124
2125	if (skb_shinfo(skb)->gso_size) {
2126		int err;
2127
2128		err = skb_cow_head(skb, 0);
2129		if (err < 0)
2130			return err;
2131
2132		if (skb->protocol == htons(ETH_P_IP)) {
2133			struct iphdr *iph = ip_hdr(skb);
2134
2135			real_len = (((unsigned char *)iph - skb->data) +
2136				ntohs(iph->tot_len));
2137			if (real_len < skb->len)
2138				pskb_trim(skb, real_len);
2139			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
 
 
 
2140			if (skb->len == hdr_len) {
2141				iph->check = 0;
2142				tcp_hdr(skb)->check =
2143					~csum_tcpudp_magic(iph->saddr,
2144					iph->daddr, tcp_hdrlen(skb),
2145					IPPROTO_TCP, 0);
2146				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147					TPD_IPHL_SHIFT;
2148				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149					TPD_TCPHDRLEN_MASK) <<
2150					TPD_TCPHDRLEN_SHIFT;
2151				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153				return 1;
2154			}
2155
2156			iph->check = 0;
2157			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158					iph->daddr, 0, IPPROTO_TCP, 0);
2159			ip_off = (unsigned char *)iph -
2160				(unsigned char *) skb_network_header(skb);
2161			if (ip_off == 8) /* 802.3-SNAP frame */
2162				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163			else if (ip_off != 0)
2164				return -2;
2165
2166			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167				TPD_IPHL_SHIFT;
2168			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173			return 3;
2174		}
2175	}
2176	return 0;
2177}
2178
2179static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180	struct tx_packet_desc *ptpd)
2181{
2182	u8 css, cso;
2183
2184	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185		css = skb_checksum_start_offset(skb);
2186		cso = css + (u8) skb->csum_offset;
2187		if (unlikely(css & 0x1)) {
2188			/* L1 hardware requires an even number here */
2189			if (netif_msg_tx_err(adapter))
2190				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191					"payload offset not an even number\n");
2192			return -1;
2193		}
2194		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195			TPD_PLOADOFFSET_SHIFT;
2196		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197			TPD_CCSUMOFFSET_SHIFT;
2198		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199		return true;
2200	}
2201	return 0;
2202}
2203
2204static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205	struct tx_packet_desc *ptpd)
2206{
2207	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208	struct atl1_buffer *buffer_info;
2209	u16 buf_len = skb->len;
2210	struct page *page;
2211	unsigned long offset;
2212	unsigned int nr_frags;
2213	unsigned int f;
2214	int retval;
2215	u16 next_to_use;
2216	u16 data_len;
2217	u8 hdr_len;
2218
2219	buf_len -= skb->data_len;
2220	nr_frags = skb_shinfo(skb)->nr_frags;
2221	next_to_use = atomic_read(&tpd_ring->next_to_use);
2222	buffer_info = &tpd_ring->buffer_info[next_to_use];
2223	BUG_ON(buffer_info->skb);
2224	/* put skb in last TPD */
2225	buffer_info->skb = NULL;
2226
2227	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228	if (retval) {
2229		/* TSO */
2230		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231		buffer_info->length = hdr_len;
2232		page = virt_to_page(skb->data);
2233		offset = offset_in_page(skb->data);
2234		buffer_info->dma = pci_map_page(adapter->pdev, page,
2235						offset, hdr_len,
2236						PCI_DMA_TODEVICE);
2237
2238		if (++next_to_use == tpd_ring->count)
2239			next_to_use = 0;
2240
2241		if (buf_len > hdr_len) {
2242			int i, nseg;
2243
2244			data_len = buf_len - hdr_len;
2245			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246				ATL1_MAX_TX_BUF_LEN;
2247			for (i = 0; i < nseg; i++) {
2248				buffer_info =
2249				    &tpd_ring->buffer_info[next_to_use];
2250				buffer_info->skb = NULL;
2251				buffer_info->length =
2252				    (ATL1_MAX_TX_BUF_LEN >=
2253				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254				data_len -= buffer_info->length;
2255				page = virt_to_page(skb->data +
2256					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257				offset = offset_in_page(skb->data +
2258					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2259				buffer_info->dma = pci_map_page(adapter->pdev,
2260					page, offset, buffer_info->length,
2261					PCI_DMA_TODEVICE);
 
2262				if (++next_to_use == tpd_ring->count)
2263					next_to_use = 0;
2264			}
2265		}
2266	} else {
2267		/* not TSO */
2268		buffer_info->length = buf_len;
2269		page = virt_to_page(skb->data);
2270		offset = offset_in_page(skb->data);
2271		buffer_info->dma = pci_map_page(adapter->pdev, page,
2272			offset, buf_len, PCI_DMA_TODEVICE);
 
2273		if (++next_to_use == tpd_ring->count)
2274			next_to_use = 0;
2275	}
2276
2277	for (f = 0; f < nr_frags; f++) {
2278		const struct skb_frag_struct *frag;
2279		u16 i, nseg;
2280
2281		frag = &skb_shinfo(skb)->frags[f];
2282		buf_len = skb_frag_size(frag);
2283
2284		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2285			ATL1_MAX_TX_BUF_LEN;
2286		for (i = 0; i < nseg; i++) {
2287			buffer_info = &tpd_ring->buffer_info[next_to_use];
2288			BUG_ON(buffer_info->skb);
2289
2290			buffer_info->skb = NULL;
2291			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2292				ATL1_MAX_TX_BUF_LEN : buf_len;
2293			buf_len -= buffer_info->length;
2294			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2295				frag, i * ATL1_MAX_TX_BUF_LEN,
2296				buffer_info->length, DMA_TO_DEVICE);
2297
2298			if (++next_to_use == tpd_ring->count)
2299				next_to_use = 0;
2300		}
2301	}
2302
2303	/* last tpd's buffer-info */
2304	buffer_info->skb = skb;
2305}
2306
2307static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2308       struct tx_packet_desc *ptpd)
2309{
2310	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2311	struct atl1_buffer *buffer_info;
2312	struct tx_packet_desc *tpd;
2313	u16 j;
2314	u32 val;
2315	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2316
2317	for (j = 0; j < count; j++) {
2318		buffer_info = &tpd_ring->buffer_info[next_to_use];
2319		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2320		if (tpd != ptpd)
2321			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2322		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2323		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2324		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2325			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2326
2327		/*
2328		 * if this is the first packet in a TSO chain, set
2329		 * TPD_HDRFLAG, otherwise, clear it.
2330		 */
2331		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2332			TPD_SEGMENT_EN_MASK;
2333		if (val) {
2334			if (!j)
2335				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2336			else
2337				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2338		}
2339
2340		if (j == (count - 1))
2341			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2342
2343		if (++next_to_use == tpd_ring->count)
2344			next_to_use = 0;
2345	}
2346	/*
2347	 * Force memory writes to complete before letting h/w
2348	 * know there are new descriptors to fetch.  (Only
2349	 * applicable for weak-ordered memory model archs,
2350	 * such as IA-64).
2351	 */
2352	wmb();
2353
2354	atomic_set(&tpd_ring->next_to_use, next_to_use);
2355}
2356
2357static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2358					 struct net_device *netdev)
2359{
2360	struct atl1_adapter *adapter = netdev_priv(netdev);
2361	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2362	int len;
2363	int tso;
2364	int count = 1;
2365	int ret_val;
2366	struct tx_packet_desc *ptpd;
2367	u16 vlan_tag;
2368	unsigned int nr_frags = 0;
2369	unsigned int mss = 0;
2370	unsigned int f;
2371	unsigned int proto_hdr_len;
2372
2373	len = skb_headlen(skb);
2374
2375	if (unlikely(skb->len <= 0)) {
2376		dev_kfree_skb_any(skb);
2377		return NETDEV_TX_OK;
2378	}
2379
2380	nr_frags = skb_shinfo(skb)->nr_frags;
2381	for (f = 0; f < nr_frags; f++) {
2382		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2383		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2384			 ATL1_MAX_TX_BUF_LEN;
2385	}
2386
2387	mss = skb_shinfo(skb)->gso_size;
2388	if (mss) {
2389		if (skb->protocol == htons(ETH_P_IP)) {
2390			proto_hdr_len = (skb_transport_offset(skb) +
2391					 tcp_hdrlen(skb));
2392			if (unlikely(proto_hdr_len > len)) {
2393				dev_kfree_skb_any(skb);
2394				return NETDEV_TX_OK;
2395			}
2396			/* need additional TPD ? */
2397			if (proto_hdr_len != len)
2398				count += (len - proto_hdr_len +
2399					ATL1_MAX_TX_BUF_LEN - 1) /
2400					ATL1_MAX_TX_BUF_LEN;
2401		}
2402	}
2403
2404	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2405		/* not enough descriptors */
2406		netif_stop_queue(netdev);
2407		if (netif_msg_tx_queued(adapter))
2408			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2409				"tx busy\n");
2410		return NETDEV_TX_BUSY;
2411	}
2412
2413	ptpd = ATL1_TPD_DESC(tpd_ring,
2414		(u16) atomic_read(&tpd_ring->next_to_use));
2415	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2416
2417	if (skb_vlan_tag_present(skb)) {
2418		vlan_tag = skb_vlan_tag_get(skb);
2419		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2420			((vlan_tag >> 9) & 0x8);
2421		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2422		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2423			TPD_VLANTAG_SHIFT;
2424	}
2425
2426	tso = atl1_tso(adapter, skb, ptpd);
2427	if (tso < 0) {
2428		dev_kfree_skb_any(skb);
2429		return NETDEV_TX_OK;
2430	}
2431
2432	if (!tso) {
2433		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2434		if (ret_val < 0) {
2435			dev_kfree_skb_any(skb);
2436			return NETDEV_TX_OK;
2437		}
2438	}
2439
2440	atl1_tx_map(adapter, skb, ptpd);
2441	atl1_tx_queue(adapter, count, ptpd);
2442	atl1_update_mailbox(adapter);
2443	mmiowb();
2444	return NETDEV_TX_OK;
2445}
2446
2447static int atl1_rings_clean(struct napi_struct *napi, int budget)
2448{
2449	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2450	int work_done = atl1_intr_rx(adapter, budget);
2451
2452	if (atl1_intr_tx(adapter))
2453		work_done = budget;
2454
2455	/* Let's come again to process some more packets */
2456	if (work_done >= budget)
2457		return work_done;
2458
2459	napi_complete_done(napi, work_done);
2460	/* re-enable Interrupt */
2461	if (likely(adapter->int_enabled))
2462		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2463	return work_done;
2464}
2465
2466static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2467{
2468	if (!napi_schedule_prep(&adapter->napi))
2469		/* It is possible in case even the RX/TX ints are disabled via IMR
2470		 * register the ISR bits are set anyway (but do not produce IRQ).
2471		 * To handle such situation the napi functions used to check is
2472		 * something scheduled or not.
2473		 */
2474		return 0;
2475
2476	__napi_schedule(&adapter->napi);
2477
2478	/*
2479	 * Disable RX/TX ints via IMR register if it is
2480	 * allowed. NAPI handler must reenable them in same
2481	 * way.
2482	 */
2483	if (!adapter->int_enabled)
2484		return 1;
2485
2486	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2487	return 1;
2488}
2489
2490/**
2491 * atl1_intr - Interrupt Handler
2492 * @irq: interrupt number
2493 * @data: pointer to a network interface device structure
2494 */
2495static irqreturn_t atl1_intr(int irq, void *data)
2496{
2497	struct atl1_adapter *adapter = netdev_priv(data);
2498	u32 status;
2499
2500	status = adapter->cmb.cmb->int_stats;
2501	if (!status)
2502		return IRQ_NONE;
2503
2504	/* clear CMB interrupt status at once,
2505	 * but leave rx/tx interrupt status in case it should be dropped
2506	 * only if rx/tx processing queued. In other case interrupt
2507	 * can be lost.
2508	 */
2509	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2510
2511	if (status & ISR_GPHY)	/* clear phy status */
2512		atlx_clear_phy_int(adapter);
2513
2514	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2515	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2516
2517	/* check if SMB intr */
2518	if (status & ISR_SMB)
2519		atl1_inc_smb(adapter);
2520
2521	/* check if PCIE PHY Link down */
2522	if (status & ISR_PHY_LINKDOWN) {
2523		if (netif_msg_intr(adapter))
2524			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2525				"pcie phy link down %x\n", status);
2526		if (netif_running(adapter->netdev)) {	/* reset MAC */
2527			atlx_irq_disable(adapter);
2528			schedule_work(&adapter->reset_dev_task);
2529			return IRQ_HANDLED;
2530		}
2531	}
2532
2533	/* check if DMA read/write error ? */
2534	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2535		if (netif_msg_intr(adapter))
2536			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2537				"pcie DMA r/w error (status = 0x%x)\n",
2538				status);
2539		atlx_irq_disable(adapter);
2540		schedule_work(&adapter->reset_dev_task);
2541		return IRQ_HANDLED;
2542	}
2543
2544	/* link event */
2545	if (status & ISR_GPHY) {
2546		adapter->soft_stats.tx_carrier_errors++;
2547		atl1_check_for_link(adapter);
2548	}
2549
2550	/* transmit or receive event */
2551	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2552	    atl1_sched_rings_clean(adapter))
2553		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2554					      ~(ISR_CMB_TX | ISR_CMB_RX);
2555
2556	/* rx exception */
2557	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2558		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2559		ISR_HOST_RRD_OV))) {
2560		if (netif_msg_intr(adapter))
2561			dev_printk(KERN_DEBUG,
2562				&adapter->pdev->dev,
2563				"rx exception, ISR = 0x%x\n",
2564				status);
2565		atl1_sched_rings_clean(adapter);
2566	}
2567
2568	/* re-enable Interrupt */
2569	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2570	return IRQ_HANDLED;
2571}
2572
2573
2574/**
2575 * atl1_phy_config - Timer Call-back
2576 * @data: pointer to netdev cast into an unsigned long
2577 */
2578static void atl1_phy_config(struct timer_list *t)
2579{
2580	struct atl1_adapter *adapter = from_timer(adapter, t,
2581						  phy_config_timer);
2582	struct atl1_hw *hw = &adapter->hw;
2583	unsigned long flags;
2584
2585	spin_lock_irqsave(&adapter->lock, flags);
2586	adapter->phy_timer_pending = false;
2587	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2588	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2589	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2590	spin_unlock_irqrestore(&adapter->lock, flags);
2591}
2592
2593/*
2594 * Orphaned vendor comment left intact here:
2595 * <vendor comment>
2596 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2597 * will assert. We do soft reset <0x1400=1> according
2598 * with the SPEC. BUT, it seemes that PCIE or DMA
2599 * state-machine will not be reset. DMAR_TO_INT will
2600 * assert again and again.
2601 * </vendor comment>
2602 */
2603
2604static int atl1_reset(struct atl1_adapter *adapter)
2605{
2606	int ret;
2607	ret = atl1_reset_hw(&adapter->hw);
2608	if (ret)
2609		return ret;
2610	return atl1_init_hw(&adapter->hw);
2611}
2612
2613static s32 atl1_up(struct atl1_adapter *adapter)
2614{
2615	struct net_device *netdev = adapter->netdev;
2616	int err;
2617	int irq_flags = 0;
2618
2619	/* hardware has been reset, we need to reload some things */
2620	atlx_set_multi(netdev);
2621	atl1_init_ring_ptrs(adapter);
2622	atlx_restore_vlan(adapter);
2623	err = atl1_alloc_rx_buffers(adapter);
2624	if (unlikely(!err))
2625		/* no RX BUFFER allocated */
2626		return -ENOMEM;
2627
2628	if (unlikely(atl1_configure(adapter))) {
2629		err = -EIO;
2630		goto err_up;
2631	}
2632
2633	err = pci_enable_msi(adapter->pdev);
2634	if (err) {
2635		if (netif_msg_ifup(adapter))
2636			dev_info(&adapter->pdev->dev,
2637				"Unable to enable MSI: %d\n", err);
2638		irq_flags |= IRQF_SHARED;
2639	}
2640
2641	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2642			netdev->name, netdev);
2643	if (unlikely(err))
2644		goto err_up;
2645
2646	napi_enable(&adapter->napi);
2647	atlx_irq_enable(adapter);
2648	atl1_check_link(adapter);
2649	netif_start_queue(netdev);
2650	return 0;
2651
2652err_up:
2653	pci_disable_msi(adapter->pdev);
2654	/* free rx_buffers */
2655	atl1_clean_rx_ring(adapter);
2656	return err;
2657}
2658
2659static void atl1_down(struct atl1_adapter *adapter)
2660{
2661	struct net_device *netdev = adapter->netdev;
2662
2663	napi_disable(&adapter->napi);
2664	netif_stop_queue(netdev);
2665	del_timer_sync(&adapter->phy_config_timer);
2666	adapter->phy_timer_pending = false;
2667
2668	atlx_irq_disable(adapter);
2669	free_irq(adapter->pdev->irq, netdev);
2670	pci_disable_msi(adapter->pdev);
2671	atl1_reset_hw(&adapter->hw);
2672	adapter->cmb.cmb->int_stats = 0;
2673
2674	adapter->link_speed = SPEED_0;
2675	adapter->link_duplex = -1;
2676	netif_carrier_off(netdev);
2677
2678	atl1_clean_tx_ring(adapter);
2679	atl1_clean_rx_ring(adapter);
2680}
2681
2682static void atl1_reset_dev_task(struct work_struct *work)
2683{
2684	struct atl1_adapter *adapter =
2685		container_of(work, struct atl1_adapter, reset_dev_task);
2686	struct net_device *netdev = adapter->netdev;
2687
2688	netif_device_detach(netdev);
2689	atl1_down(adapter);
2690	atl1_up(adapter);
2691	netif_device_attach(netdev);
2692}
2693
2694/**
2695 * atl1_change_mtu - Change the Maximum Transfer Unit
2696 * @netdev: network interface device structure
2697 * @new_mtu: new value for maximum frame size
2698 *
2699 * Returns 0 on success, negative on failure
2700 */
2701static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2702{
2703	struct atl1_adapter *adapter = netdev_priv(netdev);
2704	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2705
2706	adapter->hw.max_frame_size = max_frame;
2707	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2708	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2709	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2710
2711	netdev->mtu = new_mtu;
2712	if (netif_running(netdev)) {
2713		atl1_down(adapter);
2714		atl1_up(adapter);
2715	}
2716
2717	return 0;
2718}
2719
2720/**
2721 * atl1_open - Called when a network interface is made active
2722 * @netdev: network interface device structure
2723 *
2724 * Returns 0 on success, negative value on failure
2725 *
2726 * The open entry point is called when a network interface is made
2727 * active by the system (IFF_UP).  At this point all resources needed
2728 * for transmit and receive operations are allocated, the interrupt
2729 * handler is registered with the OS, the watchdog timer is started,
2730 * and the stack is notified that the interface is ready.
2731 */
2732static int atl1_open(struct net_device *netdev)
2733{
2734	struct atl1_adapter *adapter = netdev_priv(netdev);
2735	int err;
2736
2737	netif_carrier_off(netdev);
2738
2739	/* allocate transmit descriptors */
2740	err = atl1_setup_ring_resources(adapter);
2741	if (err)
2742		return err;
2743
2744	err = atl1_up(adapter);
2745	if (err)
2746		goto err_up;
2747
2748	return 0;
2749
2750err_up:
2751	atl1_reset(adapter);
2752	return err;
2753}
2754
2755/**
2756 * atl1_close - Disables a network interface
2757 * @netdev: network interface device structure
2758 *
2759 * Returns 0, this is not allowed to fail
2760 *
2761 * The close entry point is called when an interface is de-activated
2762 * by the OS.  The hardware is still under the drivers control, but
2763 * needs to be disabled.  A global MAC reset is issued to stop the
2764 * hardware, and all transmit and receive resources are freed.
2765 */
2766static int atl1_close(struct net_device *netdev)
2767{
2768	struct atl1_adapter *adapter = netdev_priv(netdev);
2769	atl1_down(adapter);
2770	atl1_free_ring_resources(adapter);
2771	return 0;
2772}
2773
2774#ifdef CONFIG_PM_SLEEP
2775static int atl1_suspend(struct device *dev)
2776{
2777	struct pci_dev *pdev = to_pci_dev(dev);
2778	struct net_device *netdev = pci_get_drvdata(pdev);
2779	struct atl1_adapter *adapter = netdev_priv(netdev);
2780	struct atl1_hw *hw = &adapter->hw;
2781	u32 ctrl = 0;
2782	u32 wufc = adapter->wol;
2783	u32 val;
2784	u16 speed;
2785	u16 duplex;
2786
2787	netif_device_detach(netdev);
2788	if (netif_running(netdev))
2789		atl1_down(adapter);
2790
2791	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2792	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2793	val = ctrl & BMSR_LSTATUS;
2794	if (val)
2795		wufc &= ~ATLX_WUFC_LNKC;
2796	if (!wufc)
2797		goto disable_wol;
2798
2799	if (val) {
2800		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2801		if (val) {
2802			if (netif_msg_ifdown(adapter))
2803				dev_printk(KERN_DEBUG, &pdev->dev,
2804					"error getting speed/duplex\n");
2805			goto disable_wol;
2806		}
2807
2808		ctrl = 0;
2809
2810		/* enable magic packet WOL */
2811		if (wufc & ATLX_WUFC_MAG)
2812			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2813		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2814		ioread32(hw->hw_addr + REG_WOL_CTRL);
2815
2816		/* configure the mac */
2817		ctrl = MAC_CTRL_RX_EN;
2818		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2819			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2820		if (duplex == FULL_DUPLEX)
2821			ctrl |= MAC_CTRL_DUPLX;
2822		ctrl |= (((u32)adapter->hw.preamble_len &
2823			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2824		__atlx_vlan_mode(netdev->features, &ctrl);
2825		if (wufc & ATLX_WUFC_MAG)
2826			ctrl |= MAC_CTRL_BC_EN;
2827		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2828		ioread32(hw->hw_addr + REG_MAC_CTRL);
2829
2830		/* poke the PHY */
2831		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2832		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2833		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2834		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2835	} else {
2836		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2837		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2838		ioread32(hw->hw_addr + REG_WOL_CTRL);
2839		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2840		ioread32(hw->hw_addr + REG_MAC_CTRL);
2841		hw->phy_configured = false;
2842	}
2843
2844	return 0;
2845
2846 disable_wol:
2847	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2848	ioread32(hw->hw_addr + REG_WOL_CTRL);
2849	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2850	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2851	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2852	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2853	hw->phy_configured = false;
2854
2855	return 0;
2856}
2857
2858static int atl1_resume(struct device *dev)
2859{
2860	struct pci_dev *pdev = to_pci_dev(dev);
2861	struct net_device *netdev = pci_get_drvdata(pdev);
2862	struct atl1_adapter *adapter = netdev_priv(netdev);
2863
2864	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2865
2866	atl1_reset_hw(&adapter->hw);
2867
2868	if (netif_running(netdev)) {
2869		adapter->cmb.cmb->int_stats = 0;
2870		atl1_up(adapter);
2871	}
2872	netif_device_attach(netdev);
2873
2874	return 0;
2875}
2876#endif
2877
2878static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2879
2880static void atl1_shutdown(struct pci_dev *pdev)
2881{
2882	struct net_device *netdev = pci_get_drvdata(pdev);
2883	struct atl1_adapter *adapter = netdev_priv(netdev);
2884
2885#ifdef CONFIG_PM_SLEEP
2886	atl1_suspend(&pdev->dev);
2887#endif
2888	pci_wake_from_d3(pdev, adapter->wol);
2889	pci_set_power_state(pdev, PCI_D3hot);
2890}
2891
2892#ifdef CONFIG_NET_POLL_CONTROLLER
2893static void atl1_poll_controller(struct net_device *netdev)
2894{
2895	disable_irq(netdev->irq);
2896	atl1_intr(netdev->irq, netdev);
2897	enable_irq(netdev->irq);
2898}
2899#endif
2900
2901static const struct net_device_ops atl1_netdev_ops = {
2902	.ndo_open		= atl1_open,
2903	.ndo_stop		= atl1_close,
2904	.ndo_start_xmit		= atl1_xmit_frame,
2905	.ndo_set_rx_mode	= atlx_set_multi,
2906	.ndo_validate_addr	= eth_validate_addr,
2907	.ndo_set_mac_address	= atl1_set_mac,
2908	.ndo_change_mtu		= atl1_change_mtu,
2909	.ndo_fix_features	= atlx_fix_features,
2910	.ndo_set_features	= atlx_set_features,
2911	.ndo_do_ioctl		= atlx_ioctl,
2912	.ndo_tx_timeout		= atlx_tx_timeout,
2913#ifdef CONFIG_NET_POLL_CONTROLLER
2914	.ndo_poll_controller	= atl1_poll_controller,
2915#endif
2916};
2917
2918/**
2919 * atl1_probe - Device Initialization Routine
2920 * @pdev: PCI device information struct
2921 * @ent: entry in atl1_pci_tbl
2922 *
2923 * Returns 0 on success, negative on failure
2924 *
2925 * atl1_probe initializes an adapter identified by a pci_dev structure.
2926 * The OS initialization, configuring of the adapter private structure,
2927 * and a hardware reset occur.
2928 */
2929static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2930{
2931	struct net_device *netdev;
2932	struct atl1_adapter *adapter;
2933	static int cards_found = 0;
2934	int err;
2935
2936	err = pci_enable_device(pdev);
2937	if (err)
2938		return err;
2939
2940	/*
2941	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2942	 * shared register for the high 32 bits, so only a single, aligned,
2943	 * 4 GB physical address range can be used at a time.
2944	 *
2945	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2946	 * worth.  It is far easier to limit to 32-bit DMA than update
2947	 * various kernel subsystems to support the mechanics required by a
2948	 * fixed-high-32-bit system.
2949	 */
2950	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2951	if (err) {
2952		dev_err(&pdev->dev, "no usable DMA configuration\n");
2953		goto err_dma;
2954	}
2955	/*
2956	 * Mark all PCI regions associated with PCI device
2957	 * pdev as being reserved by owner atl1_driver_name
2958	 */
2959	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2960	if (err)
2961		goto err_request_regions;
2962
2963	/*
2964	 * Enables bus-mastering on the device and calls
2965	 * pcibios_set_master to do the needed arch specific settings
2966	 */
2967	pci_set_master(pdev);
2968
2969	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2970	if (!netdev) {
2971		err = -ENOMEM;
2972		goto err_alloc_etherdev;
2973	}
2974	SET_NETDEV_DEV(netdev, &pdev->dev);
2975
2976	pci_set_drvdata(pdev, netdev);
2977	adapter = netdev_priv(netdev);
2978	adapter->netdev = netdev;
2979	adapter->pdev = pdev;
2980	adapter->hw.back = adapter;
2981	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2982
2983	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2984	if (!adapter->hw.hw_addr) {
2985		err = -EIO;
2986		goto err_pci_iomap;
2987	}
2988	/* get device revision number */
2989	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2990		(REG_MASTER_CTRL + 2));
2991	if (netif_msg_probe(adapter))
2992		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2993
2994	/* set default ring resource counts */
2995	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2996	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2997
2998	adapter->mii.dev = netdev;
2999	adapter->mii.mdio_read = mdio_read;
3000	adapter->mii.mdio_write = mdio_write;
3001	adapter->mii.phy_id_mask = 0x1f;
3002	adapter->mii.reg_num_mask = 0x1f;
3003
3004	netdev->netdev_ops = &atl1_netdev_ops;
3005	netdev->watchdog_timeo = 5 * HZ;
3006	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3007
3008	netdev->ethtool_ops = &atl1_ethtool_ops;
3009	adapter->bd_number = cards_found;
3010
3011	/* setup the private structure */
3012	err = atl1_sw_init(adapter);
3013	if (err)
3014		goto err_common;
3015
3016	netdev->features = NETIF_F_HW_CSUM;
3017	netdev->features |= NETIF_F_SG;
3018	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3019
3020	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3021			      NETIF_F_HW_VLAN_CTAG_RX;
3022
3023	/* is this valid? see atl1_setup_mac_ctrl() */
3024	netdev->features |= NETIF_F_RXCSUM;
3025
3026	/* MTU range: 42 - 10218 */
3027	netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN);
3028	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE -
3029			  (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3030
3031	/*
3032	 * patch for some L1 of old version,
3033	 * the final version of L1 may not need these
3034	 * patches
3035	 */
3036	/* atl1_pcie_patch(adapter); */
3037
3038	/* really reset GPHY core */
3039	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3040
3041	/*
3042	 * reset the controller to
3043	 * put the device in a known good starting state
3044	 */
3045	if (atl1_reset_hw(&adapter->hw)) {
3046		err = -EIO;
3047		goto err_common;
3048	}
3049
3050	/* copy the MAC address out of the EEPROM */
3051	if (atl1_read_mac_addr(&adapter->hw)) {
3052		/* mark random mac */
3053		netdev->addr_assign_type = NET_ADDR_RANDOM;
3054	}
3055	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3056
3057	if (!is_valid_ether_addr(netdev->dev_addr)) {
3058		err = -EIO;
3059		goto err_common;
3060	}
3061
3062	atl1_check_options(adapter);
3063
3064	/* pre-init the MAC, and setup link */
3065	err = atl1_init_hw(&adapter->hw);
3066	if (err) {
3067		err = -EIO;
3068		goto err_common;
3069	}
3070
3071	atl1_pcie_patch(adapter);
3072	/* assume we have no link for now */
3073	netif_carrier_off(netdev);
3074
3075	timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0);
3076	adapter->phy_timer_pending = false;
3077
3078	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3079
3080	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3081
3082	err = register_netdev(netdev);
3083	if (err)
3084		goto err_common;
3085
3086	cards_found++;
3087	atl1_via_workaround(adapter);
3088	return 0;
3089
3090err_common:
3091	pci_iounmap(pdev, adapter->hw.hw_addr);
3092err_pci_iomap:
3093	free_netdev(netdev);
3094err_alloc_etherdev:
3095	pci_release_regions(pdev);
3096err_dma:
3097err_request_regions:
3098	pci_disable_device(pdev);
3099	return err;
3100}
3101
3102/**
3103 * atl1_remove - Device Removal Routine
3104 * @pdev: PCI device information struct
3105 *
3106 * atl1_remove is called by the PCI subsystem to alert the driver
3107 * that it should release a PCI device.  The could be caused by a
3108 * Hot-Plug event, or because the driver is going to be removed from
3109 * memory.
3110 */
3111static void atl1_remove(struct pci_dev *pdev)
3112{
3113	struct net_device *netdev = pci_get_drvdata(pdev);
3114	struct atl1_adapter *adapter;
3115	/* Device not available. Return. */
3116	if (!netdev)
3117		return;
3118
3119	adapter = netdev_priv(netdev);
3120
3121	/*
3122	 * Some atl1 boards lack persistent storage for their MAC, and get it
3123	 * from the BIOS during POST.  If we've been messing with the MAC
3124	 * address, we need to save the permanent one.
3125	 */
3126	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3127					adapter->hw.perm_mac_addr)) {
3128		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3129			ETH_ALEN);
3130		atl1_set_mac_addr(&adapter->hw);
3131	}
3132
3133	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3134	unregister_netdev(netdev);
3135	pci_iounmap(pdev, adapter->hw.hw_addr);
3136	pci_release_regions(pdev);
3137	free_netdev(netdev);
3138	pci_disable_device(pdev);
3139}
3140
3141static struct pci_driver atl1_driver = {
3142	.name = ATLX_DRIVER_NAME,
3143	.id_table = atl1_pci_tbl,
3144	.probe = atl1_probe,
3145	.remove = atl1_remove,
3146	.shutdown = atl1_shutdown,
3147	.driver.pm = &atl1_pm_ops,
3148};
3149
3150struct atl1_stats {
3151	char stat_string[ETH_GSTRING_LEN];
3152	int sizeof_stat;
3153	int stat_offset;
3154};
3155
3156#define ATL1_STAT(m) \
3157	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3158
3159static struct atl1_stats atl1_gstrings_stats[] = {
3160	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3161	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3162	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3163	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3164	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3165	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3166	{"multicast", ATL1_STAT(soft_stats.multicast)},
3167	{"collisions", ATL1_STAT(soft_stats.collisions)},
3168	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3169	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3170	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3171	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3172	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3173	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3175	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3176	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3177	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3178	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3179	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3180	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3181	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3182	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3183	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3184	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3185	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3186	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3187	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3188	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3189};
3190
3191static void atl1_get_ethtool_stats(struct net_device *netdev,
3192	struct ethtool_stats *stats, u64 *data)
3193{
3194	struct atl1_adapter *adapter = netdev_priv(netdev);
3195	int i;
3196	char *p;
3197
3198	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3199		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3200		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3201			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3202	}
3203
3204}
3205
3206static int atl1_get_sset_count(struct net_device *netdev, int sset)
3207{
3208	switch (sset) {
3209	case ETH_SS_STATS:
3210		return ARRAY_SIZE(atl1_gstrings_stats);
3211	default:
3212		return -EOPNOTSUPP;
3213	}
3214}
3215
3216static int atl1_get_link_ksettings(struct net_device *netdev,
3217				   struct ethtool_link_ksettings *cmd)
3218{
3219	struct atl1_adapter *adapter = netdev_priv(netdev);
3220	struct atl1_hw *hw = &adapter->hw;
3221	u32 supported, advertising;
3222
3223	supported = (SUPPORTED_10baseT_Half |
3224			   SUPPORTED_10baseT_Full |
3225			   SUPPORTED_100baseT_Half |
3226			   SUPPORTED_100baseT_Full |
3227			   SUPPORTED_1000baseT_Full |
3228			   SUPPORTED_Autoneg | SUPPORTED_TP);
3229	advertising = ADVERTISED_TP;
3230	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3231	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3232		advertising |= ADVERTISED_Autoneg;
3233		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3234			advertising |= ADVERTISED_Autoneg;
3235			advertising |=
3236			    (ADVERTISED_10baseT_Half |
3237			     ADVERTISED_10baseT_Full |
3238			     ADVERTISED_100baseT_Half |
3239			     ADVERTISED_100baseT_Full |
3240			     ADVERTISED_1000baseT_Full);
3241		} else
3242			advertising |= (ADVERTISED_1000baseT_Full);
3243	}
3244	cmd->base.port = PORT_TP;
3245	cmd->base.phy_address = 0;
3246
3247	if (netif_carrier_ok(adapter->netdev)) {
3248		u16 link_speed, link_duplex;
3249		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3250		cmd->base.speed = link_speed;
3251		if (link_duplex == FULL_DUPLEX)
3252			cmd->base.duplex = DUPLEX_FULL;
3253		else
3254			cmd->base.duplex = DUPLEX_HALF;
3255	} else {
3256		cmd->base.speed = SPEED_UNKNOWN;
3257		cmd->base.duplex = DUPLEX_UNKNOWN;
3258	}
3259	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3260	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3261		cmd->base.autoneg = AUTONEG_ENABLE;
3262	else
3263		cmd->base.autoneg = AUTONEG_DISABLE;
3264
3265	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3266						supported);
3267	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3268						advertising);
3269
3270	return 0;
3271}
3272
3273static int atl1_set_link_ksettings(struct net_device *netdev,
3274				   const struct ethtool_link_ksettings *cmd)
3275{
3276	struct atl1_adapter *adapter = netdev_priv(netdev);
3277	struct atl1_hw *hw = &adapter->hw;
3278	u16 phy_data;
3279	int ret_val = 0;
3280	u16 old_media_type = hw->media_type;
3281	u32 advertising;
3282
3283	if (netif_running(adapter->netdev)) {
3284		if (netif_msg_link(adapter))
3285			dev_dbg(&adapter->pdev->dev,
3286				"ethtool shutting down adapter\n");
3287		atl1_down(adapter);
3288	}
3289
3290	if (cmd->base.autoneg == AUTONEG_ENABLE)
3291		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3292	else {
3293		u32 speed = cmd->base.speed;
3294		if (speed == SPEED_1000) {
3295			if (cmd->base.duplex != DUPLEX_FULL) {
3296				if (netif_msg_link(adapter))
3297					dev_warn(&adapter->pdev->dev,
3298						"1000M half is invalid\n");
3299				ret_val = -EINVAL;
3300				goto exit_sset;
3301			}
3302			hw->media_type = MEDIA_TYPE_1000M_FULL;
3303		} else if (speed == SPEED_100) {
3304			if (cmd->base.duplex == DUPLEX_FULL)
3305				hw->media_type = MEDIA_TYPE_100M_FULL;
3306			else
3307				hw->media_type = MEDIA_TYPE_100M_HALF;
3308		} else {
3309			if (cmd->base.duplex == DUPLEX_FULL)
3310				hw->media_type = MEDIA_TYPE_10M_FULL;
3311			else
3312				hw->media_type = MEDIA_TYPE_10M_HALF;
3313		}
3314	}
3315	switch (hw->media_type) {
3316	case MEDIA_TYPE_AUTO_SENSOR:
3317		advertising =
3318		    ADVERTISED_10baseT_Half |
3319		    ADVERTISED_10baseT_Full |
3320		    ADVERTISED_100baseT_Half |
3321		    ADVERTISED_100baseT_Full |
3322		    ADVERTISED_1000baseT_Full |
3323		    ADVERTISED_Autoneg | ADVERTISED_TP;
3324		break;
3325	case MEDIA_TYPE_1000M_FULL:
3326		advertising =
3327		    ADVERTISED_1000baseT_Full |
3328		    ADVERTISED_Autoneg | ADVERTISED_TP;
3329		break;
3330	default:
3331		advertising = 0;
3332		break;
3333	}
3334	if (atl1_phy_setup_autoneg_adv(hw)) {
3335		ret_val = -EINVAL;
3336		if (netif_msg_link(adapter))
3337			dev_warn(&adapter->pdev->dev,
3338				"invalid ethtool speed/duplex setting\n");
3339		goto exit_sset;
3340	}
3341	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3342	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3343		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3344	else {
3345		switch (hw->media_type) {
3346		case MEDIA_TYPE_100M_FULL:
3347			phy_data =
3348			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3349			    MII_CR_RESET;
3350			break;
3351		case MEDIA_TYPE_100M_HALF:
3352			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3353			break;
3354		case MEDIA_TYPE_10M_FULL:
3355			phy_data =
3356			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3357			break;
3358		default:
3359			/* MEDIA_TYPE_10M_HALF: */
3360			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3361			break;
3362		}
3363	}
3364	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3365exit_sset:
3366	if (ret_val)
3367		hw->media_type = old_media_type;
3368
3369	if (netif_running(adapter->netdev)) {
3370		if (netif_msg_link(adapter))
3371			dev_dbg(&adapter->pdev->dev,
3372				"ethtool starting adapter\n");
3373		atl1_up(adapter);
3374	} else if (!ret_val) {
3375		if (netif_msg_link(adapter))
3376			dev_dbg(&adapter->pdev->dev,
3377				"ethtool resetting adapter\n");
3378		atl1_reset(adapter);
3379	}
3380	return ret_val;
3381}
3382
3383static void atl1_get_drvinfo(struct net_device *netdev,
3384	struct ethtool_drvinfo *drvinfo)
3385{
3386	struct atl1_adapter *adapter = netdev_priv(netdev);
3387
3388	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3389	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3390		sizeof(drvinfo->version));
3391	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3392		sizeof(drvinfo->bus_info));
3393}
3394
3395static void atl1_get_wol(struct net_device *netdev,
3396	struct ethtool_wolinfo *wol)
3397{
3398	struct atl1_adapter *adapter = netdev_priv(netdev);
3399
3400	wol->supported = WAKE_MAGIC;
3401	wol->wolopts = 0;
3402	if (adapter->wol & ATLX_WUFC_MAG)
3403		wol->wolopts |= WAKE_MAGIC;
3404}
3405
3406static int atl1_set_wol(struct net_device *netdev,
3407	struct ethtool_wolinfo *wol)
3408{
3409	struct atl1_adapter *adapter = netdev_priv(netdev);
3410
3411	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3412		WAKE_ARP | WAKE_MAGICSECURE))
3413		return -EOPNOTSUPP;
3414	adapter->wol = 0;
3415	if (wol->wolopts & WAKE_MAGIC)
3416		adapter->wol |= ATLX_WUFC_MAG;
3417
3418	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3419
3420	return 0;
3421}
3422
3423static u32 atl1_get_msglevel(struct net_device *netdev)
3424{
3425	struct atl1_adapter *adapter = netdev_priv(netdev);
3426	return adapter->msg_enable;
3427}
3428
3429static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3430{
3431	struct atl1_adapter *adapter = netdev_priv(netdev);
3432	adapter->msg_enable = value;
3433}
3434
3435static int atl1_get_regs_len(struct net_device *netdev)
3436{
3437	return ATL1_REG_COUNT * sizeof(u32);
3438}
3439
3440static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3441	void *p)
3442{
3443	struct atl1_adapter *adapter = netdev_priv(netdev);
3444	struct atl1_hw *hw = &adapter->hw;
3445	unsigned int i;
3446	u32 *regbuf = p;
3447
3448	for (i = 0; i < ATL1_REG_COUNT; i++) {
3449		/*
3450		 * This switch statement avoids reserved regions
3451		 * of register space.
3452		 */
3453		switch (i) {
3454		case 6 ... 9:
3455		case 14:
3456		case 29 ... 31:
3457		case 34 ... 63:
3458		case 75 ... 127:
3459		case 136 ... 1023:
3460		case 1027 ... 1087:
3461		case 1091 ... 1151:
3462		case 1194 ... 1195:
3463		case 1200 ... 1201:
3464		case 1206 ... 1213:
3465		case 1216 ... 1279:
3466		case 1290 ... 1311:
3467		case 1323 ... 1343:
3468		case 1358 ... 1359:
3469		case 1368 ... 1375:
3470		case 1378 ... 1383:
3471		case 1388 ... 1391:
3472		case 1393 ... 1395:
3473		case 1402 ... 1403:
3474		case 1410 ... 1471:
3475		case 1522 ... 1535:
3476			/* reserved region; don't read it */
3477			regbuf[i] = 0;
3478			break;
3479		default:
3480			/* unreserved region */
3481			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3482		}
3483	}
3484}
3485
3486static void atl1_get_ringparam(struct net_device *netdev,
3487	struct ethtool_ringparam *ring)
 
 
3488{
3489	struct atl1_adapter *adapter = netdev_priv(netdev);
3490	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3491	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3492
3493	ring->rx_max_pending = ATL1_MAX_RFD;
3494	ring->tx_max_pending = ATL1_MAX_TPD;
3495	ring->rx_pending = rxdr->count;
3496	ring->tx_pending = txdr->count;
3497}
3498
3499static int atl1_set_ringparam(struct net_device *netdev,
3500	struct ethtool_ringparam *ring)
 
 
3501{
3502	struct atl1_adapter *adapter = netdev_priv(netdev);
3503	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3504	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3505	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3506
3507	struct atl1_tpd_ring tpd_old, tpd_new;
3508	struct atl1_rfd_ring rfd_old, rfd_new;
3509	struct atl1_rrd_ring rrd_old, rrd_new;
3510	struct atl1_ring_header rhdr_old, rhdr_new;
3511	struct atl1_smb smb;
3512	struct atl1_cmb cmb;
3513	int err;
3514
3515	tpd_old = adapter->tpd_ring;
3516	rfd_old = adapter->rfd_ring;
3517	rrd_old = adapter->rrd_ring;
3518	rhdr_old = adapter->ring_header;
3519
3520	if (netif_running(adapter->netdev))
3521		atl1_down(adapter);
3522
3523	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3524	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3525			rfdr->count;
3526	rfdr->count = (rfdr->count + 3) & ~3;
3527	rrdr->count = rfdr->count;
3528
3529	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3530	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3531			tpdr->count;
3532	tpdr->count = (tpdr->count + 3) & ~3;
3533
3534	if (netif_running(adapter->netdev)) {
3535		/* try to get new resources before deleting old */
3536		err = atl1_setup_ring_resources(adapter);
3537		if (err)
3538			goto err_setup_ring;
3539
3540		/*
3541		 * save the new, restore the old in order to free it,
3542		 * then restore the new back again
3543		 */
3544
3545		rfd_new = adapter->rfd_ring;
3546		rrd_new = adapter->rrd_ring;
3547		tpd_new = adapter->tpd_ring;
3548		rhdr_new = adapter->ring_header;
3549		adapter->rfd_ring = rfd_old;
3550		adapter->rrd_ring = rrd_old;
3551		adapter->tpd_ring = tpd_old;
3552		adapter->ring_header = rhdr_old;
3553		/*
3554		 * Save SMB and CMB, since atl1_free_ring_resources
3555		 * will clear them.
3556		 */
3557		smb = adapter->smb;
3558		cmb = adapter->cmb;
3559		atl1_free_ring_resources(adapter);
3560		adapter->rfd_ring = rfd_new;
3561		adapter->rrd_ring = rrd_new;
3562		adapter->tpd_ring = tpd_new;
3563		adapter->ring_header = rhdr_new;
3564		adapter->smb = smb;
3565		adapter->cmb = cmb;
3566
3567		err = atl1_up(adapter);
3568		if (err)
3569			return err;
3570	}
3571	return 0;
3572
3573err_setup_ring:
3574	adapter->rfd_ring = rfd_old;
3575	adapter->rrd_ring = rrd_old;
3576	adapter->tpd_ring = tpd_old;
3577	adapter->ring_header = rhdr_old;
3578	atl1_up(adapter);
3579	return err;
3580}
3581
3582static void atl1_get_pauseparam(struct net_device *netdev,
3583	struct ethtool_pauseparam *epause)
3584{
3585	struct atl1_adapter *adapter = netdev_priv(netdev);
3586	struct atl1_hw *hw = &adapter->hw;
3587
3588	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3589	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3590		epause->autoneg = AUTONEG_ENABLE;
3591	} else {
3592		epause->autoneg = AUTONEG_DISABLE;
3593	}
3594	epause->rx_pause = 1;
3595	epause->tx_pause = 1;
3596}
3597
3598static int atl1_set_pauseparam(struct net_device *netdev,
3599	struct ethtool_pauseparam *epause)
3600{
3601	struct atl1_adapter *adapter = netdev_priv(netdev);
3602	struct atl1_hw *hw = &adapter->hw;
3603
3604	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3605	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3606		epause->autoneg = AUTONEG_ENABLE;
3607	} else {
3608		epause->autoneg = AUTONEG_DISABLE;
3609	}
3610
3611	epause->rx_pause = 1;
3612	epause->tx_pause = 1;
3613
3614	return 0;
3615}
3616
3617static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3618	u8 *data)
3619{
3620	u8 *p = data;
3621	int i;
3622
3623	switch (stringset) {
3624	case ETH_SS_STATS:
3625		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3626			memcpy(p, atl1_gstrings_stats[i].stat_string,
3627				ETH_GSTRING_LEN);
3628			p += ETH_GSTRING_LEN;
3629		}
3630		break;
3631	}
3632}
3633
3634static int atl1_nway_reset(struct net_device *netdev)
3635{
3636	struct atl1_adapter *adapter = netdev_priv(netdev);
3637	struct atl1_hw *hw = &adapter->hw;
3638
3639	if (netif_running(netdev)) {
3640		u16 phy_data;
3641		atl1_down(adapter);
3642
3643		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3644			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3645			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3646		} else {
3647			switch (hw->media_type) {
3648			case MEDIA_TYPE_100M_FULL:
3649				phy_data = MII_CR_FULL_DUPLEX |
3650					MII_CR_SPEED_100 | MII_CR_RESET;
3651				break;
3652			case MEDIA_TYPE_100M_HALF:
3653				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3654				break;
3655			case MEDIA_TYPE_10M_FULL:
3656				phy_data = MII_CR_FULL_DUPLEX |
3657					MII_CR_SPEED_10 | MII_CR_RESET;
3658				break;
3659			default:
3660				/* MEDIA_TYPE_10M_HALF */
3661				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3662			}
3663		}
3664		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3665		atl1_up(adapter);
3666	}
3667	return 0;
3668}
3669
3670static const struct ethtool_ops atl1_ethtool_ops = {
3671	.get_drvinfo		= atl1_get_drvinfo,
3672	.get_wol		= atl1_get_wol,
3673	.set_wol		= atl1_set_wol,
3674	.get_msglevel		= atl1_get_msglevel,
3675	.set_msglevel		= atl1_set_msglevel,
3676	.get_regs_len		= atl1_get_regs_len,
3677	.get_regs		= atl1_get_regs,
3678	.get_ringparam		= atl1_get_ringparam,
3679	.set_ringparam		= atl1_set_ringparam,
3680	.get_pauseparam		= atl1_get_pauseparam,
3681	.set_pauseparam		= atl1_set_pauseparam,
3682	.get_link		= ethtool_op_get_link,
3683	.get_strings		= atl1_get_strings,
3684	.nway_reset		= atl1_nway_reset,
3685	.get_ethtool_stats	= atl1_get_ethtool_stats,
3686	.get_sset_count		= atl1_get_sset_count,
3687	.get_link_ksettings	= atl1_get_link_ksettings,
3688	.set_link_ksettings	= atl1_set_link_ksettings,
3689};
3690
3691module_pci_driver(atl1_driver);