Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
   3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
   4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the version 2 of the GNU General Public License
   8 * as published by the Free Software Foundation
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include <linux/module.h>
  20#include <linux/kernel.h>
  21#include <linux/slab.h>
  22#include <linux/netdevice.h>
  23#include <linux/if_arp.h>
  24#include <linux/workqueue.h>
  25#include <linux/can.h>
  26#include <linux/can/dev.h>
  27#include <linux/can/skb.h>
  28#include <linux/can/netlink.h>
  29#include <linux/can/led.h>
  30#include <linux/of.h>
  31#include <net/rtnetlink.h>
  32
  33#define MOD_DESC "CAN device driver interface"
  34
  35MODULE_DESCRIPTION(MOD_DESC);
  36MODULE_LICENSE("GPL v2");
  37MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  38
  39/* CAN DLC to real data length conversion helpers */
  40
  41static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
  42			     8, 12, 16, 20, 24, 32, 48, 64};
  43
  44/* get data length from can_dlc with sanitized can_dlc */
  45u8 can_dlc2len(u8 can_dlc)
  46{
  47	return dlc2len[can_dlc & 0x0F];
  48}
  49EXPORT_SYMBOL_GPL(can_dlc2len);
  50
  51static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
  52			     9, 9, 9, 9,			/* 9 - 12 */
  53			     10, 10, 10, 10,			/* 13 - 16 */
  54			     11, 11, 11, 11,			/* 17 - 20 */
  55			     12, 12, 12, 12,			/* 21 - 24 */
  56			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
  57			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
  58			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
  59			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
  60			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
  61
  62/* map the sanitized data length to an appropriate data length code */
  63u8 can_len2dlc(u8 len)
  64{
  65	if (unlikely(len > 64))
  66		return 0xF;
  67
  68	return len2dlc[len];
  69}
  70EXPORT_SYMBOL_GPL(can_len2dlc);
  71
  72#ifdef CONFIG_CAN_CALC_BITTIMING
  73#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  74#define CAN_CALC_SYNC_SEG 1
  75
  76/*
  77 * Bit-timing calculation derived from:
  78 *
  79 * Code based on LinCAN sources and H8S2638 project
  80 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  81 * Copyright 2005      Stanislav Marek
  82 * email: pisa@cmp.felk.cvut.cz
  83 *
  84 * Calculates proper bit-timing parameters for a specified bit-rate
  85 * and sample-point, which can then be used to set the bit-timing
  86 * registers of the CAN controller. You can find more information
  87 * in the header file linux/can/netlink.h.
  88 */
  89static int can_update_sample_point(const struct can_bittiming_const *btc,
  90			  unsigned int sample_point_nominal, unsigned int tseg,
  91			  unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
  92			  unsigned int *sample_point_error_ptr)
  93{
  94	unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
  95	unsigned int sample_point, best_sample_point = 0;
  96	unsigned int tseg1, tseg2;
  97	int i;
  98
  99	for (i = 0; i <= 1; i++) {
 100		tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
 101		tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
 102		tseg1 = tseg - tseg2;
 103		if (tseg1 > btc->tseg1_max) {
 104			tseg1 = btc->tseg1_max;
 105			tseg2 = tseg - tseg1;
 106		}
 107
 108		sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
 109		sample_point_error = abs(sample_point_nominal - sample_point);
 110
 111		if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
 112			best_sample_point = sample_point;
 113			best_sample_point_error = sample_point_error;
 114			*tseg1_ptr = tseg1;
 115			*tseg2_ptr = tseg2;
 116		}
 117	}
 118
 119	if (sample_point_error_ptr)
 120		*sample_point_error_ptr = best_sample_point_error;
 121
 122	return best_sample_point;
 123}
 124
 125static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 126			      const struct can_bittiming_const *btc)
 127{
 128	struct can_priv *priv = netdev_priv(dev);
 129	unsigned int bitrate;			/* current bitrate */
 130	unsigned int bitrate_error;		/* difference between current and nominal value */
 131	unsigned int best_bitrate_error = UINT_MAX;
 132	unsigned int sample_point_error;	/* difference between current and nominal value */
 133	unsigned int best_sample_point_error = UINT_MAX;
 134	unsigned int sample_point_nominal;	/* nominal sample point */
 135	unsigned int best_tseg = 0;		/* current best value for tseg */
 136	unsigned int best_brp = 0;		/* current best value for brp */
 137	unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
 138	u64 v64;
 139
 140	/* Use CiA recommended sample points */
 141	if (bt->sample_point) {
 142		sample_point_nominal = bt->sample_point;
 143	} else {
 144		if (bt->bitrate > 800000)
 145			sample_point_nominal = 750;
 146		else if (bt->bitrate > 500000)
 147			sample_point_nominal = 800;
 148		else
 149			sample_point_nominal = 875;
 150	}
 151
 152	/* tseg even = round down, odd = round up */
 153	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
 154	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
 155		tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
 156
 157		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
 158		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
 159
 160		/* choose brp step which is possible in system */
 161		brp = (brp / btc->brp_inc) * btc->brp_inc;
 162		if ((brp < btc->brp_min) || (brp > btc->brp_max))
 163			continue;
 164
 165		bitrate = priv->clock.freq / (brp * tsegall);
 166		bitrate_error = abs(bt->bitrate - bitrate);
 167
 168		/* tseg brp biterror */
 169		if (bitrate_error > best_bitrate_error)
 170			continue;
 171
 172		/* reset sample point error if we have a better bitrate */
 173		if (bitrate_error < best_bitrate_error)
 174			best_sample_point_error = UINT_MAX;
 175
 176		can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
 177		if (sample_point_error > best_sample_point_error)
 178			continue;
 179
 180		best_sample_point_error = sample_point_error;
 181		best_bitrate_error = bitrate_error;
 182		best_tseg = tseg / 2;
 183		best_brp = brp;
 184
 185		if (bitrate_error == 0 && sample_point_error == 0)
 186			break;
 187	}
 188
 189	if (best_bitrate_error) {
 190		/* Error in one-tenth of a percent */
 191		v64 = (u64)best_bitrate_error * 1000;
 192		do_div(v64, bt->bitrate);
 193		bitrate_error = (u32)v64;
 194		if (bitrate_error > CAN_CALC_MAX_ERROR) {
 195			netdev_err(dev,
 196				   "bitrate error %d.%d%% too high\n",
 197				   bitrate_error / 10, bitrate_error % 10);
 198			return -EDOM;
 199		}
 200		netdev_warn(dev, "bitrate error %d.%d%%\n",
 201			    bitrate_error / 10, bitrate_error % 10);
 202	}
 203
 204	/* real sample point */
 205	bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
 206					  &tseg1, &tseg2, NULL);
 207
 208	v64 = (u64)best_brp * 1000 * 1000 * 1000;
 209	do_div(v64, priv->clock.freq);
 210	bt->tq = (u32)v64;
 211	bt->prop_seg = tseg1 / 2;
 212	bt->phase_seg1 = tseg1 - bt->prop_seg;
 213	bt->phase_seg2 = tseg2;
 214
 215	/* check for sjw user settings */
 216	if (!bt->sjw || !btc->sjw_max) {
 217		bt->sjw = 1;
 218	} else {
 219		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
 220		if (bt->sjw > btc->sjw_max)
 221			bt->sjw = btc->sjw_max;
 222		/* bt->sjw must not be higher than tseg2 */
 223		if (tseg2 < bt->sjw)
 224			bt->sjw = tseg2;
 225	}
 226
 227	bt->brp = best_brp;
 228
 229	/* real bitrate */
 230	bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
 231
 232	return 0;
 233}
 234#else /* !CONFIG_CAN_CALC_BITTIMING */
 235static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
 236			      const struct can_bittiming_const *btc)
 237{
 238	netdev_err(dev, "bit-timing calculation not available\n");
 239	return -EINVAL;
 240}
 241#endif /* CONFIG_CAN_CALC_BITTIMING */
 242
 243/*
 244 * Checks the validity of the specified bit-timing parameters prop_seg,
 245 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
 246 * prescaler value brp. You can find more information in the header
 247 * file linux/can/netlink.h.
 248 */
 249static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
 250			       const struct can_bittiming_const *btc)
 251{
 252	struct can_priv *priv = netdev_priv(dev);
 253	int tseg1, alltseg;
 254	u64 brp64;
 255
 256	tseg1 = bt->prop_seg + bt->phase_seg1;
 257	if (!bt->sjw)
 258		bt->sjw = 1;
 259	if (bt->sjw > btc->sjw_max ||
 260	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
 261	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
 262		return -ERANGE;
 263
 264	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
 265	if (btc->brp_inc > 1)
 266		do_div(brp64, btc->brp_inc);
 267	brp64 += 500000000UL - 1;
 268	do_div(brp64, 1000000000UL); /* the practicable BRP */
 269	if (btc->brp_inc > 1)
 270		brp64 *= btc->brp_inc;
 271	bt->brp = (u32)brp64;
 272
 273	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
 274		return -EINVAL;
 275
 276	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
 277	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
 278	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
 279
 280	return 0;
 281}
 282
 283/* Checks the validity of predefined bitrate settings */
 284static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
 285				const u32 *bitrate_const,
 286				const unsigned int bitrate_const_cnt)
 287{
 288	struct can_priv *priv = netdev_priv(dev);
 289	unsigned int i;
 290
 291	for (i = 0; i < bitrate_const_cnt; i++) {
 292		if (bt->bitrate == bitrate_const[i])
 293			break;
 294	}
 295
 296	if (i >= priv->bitrate_const_cnt)
 297		return -EINVAL;
 298
 299	return 0;
 300}
 301
 302static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
 303			     const struct can_bittiming_const *btc,
 304			     const u32 *bitrate_const,
 305			     const unsigned int bitrate_const_cnt)
 306{
 307	int err;
 308
 309	/*
 310	 * Depending on the given can_bittiming parameter structure the CAN
 311	 * timing parameters are calculated based on the provided bitrate OR
 312	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
 313	 * provided directly which are then checked and fixed up.
 314	 */
 315	if (!bt->tq && bt->bitrate && btc)
 316		err = can_calc_bittiming(dev, bt, btc);
 317	else if (bt->tq && !bt->bitrate && btc)
 318		err = can_fixup_bittiming(dev, bt, btc);
 319	else if (!bt->tq && bt->bitrate && bitrate_const)
 320		err = can_validate_bitrate(dev, bt, bitrate_const,
 321					   bitrate_const_cnt);
 322	else
 323		err = -EINVAL;
 324
 325	return err;
 326}
 327
 328static void can_update_state_error_stats(struct net_device *dev,
 329					 enum can_state new_state)
 330{
 331	struct can_priv *priv = netdev_priv(dev);
 332
 333	if (new_state <= priv->state)
 334		return;
 335
 336	switch (new_state) {
 337	case CAN_STATE_ERROR_WARNING:
 338		priv->can_stats.error_warning++;
 339		break;
 340	case CAN_STATE_ERROR_PASSIVE:
 341		priv->can_stats.error_passive++;
 342		break;
 343	case CAN_STATE_BUS_OFF:
 344		priv->can_stats.bus_off++;
 345		break;
 346	default:
 347		break;
 348	}
 349}
 350
 351static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
 352{
 353	switch (state) {
 354	case CAN_STATE_ERROR_ACTIVE:
 355		return CAN_ERR_CRTL_ACTIVE;
 356	case CAN_STATE_ERROR_WARNING:
 357		return CAN_ERR_CRTL_TX_WARNING;
 358	case CAN_STATE_ERROR_PASSIVE:
 359		return CAN_ERR_CRTL_TX_PASSIVE;
 360	default:
 361		return 0;
 362	}
 363}
 364
 365static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
 366{
 367	switch (state) {
 368	case CAN_STATE_ERROR_ACTIVE:
 369		return CAN_ERR_CRTL_ACTIVE;
 370	case CAN_STATE_ERROR_WARNING:
 371		return CAN_ERR_CRTL_RX_WARNING;
 372	case CAN_STATE_ERROR_PASSIVE:
 373		return CAN_ERR_CRTL_RX_PASSIVE;
 374	default:
 375		return 0;
 376	}
 377}
 378
 379void can_change_state(struct net_device *dev, struct can_frame *cf,
 380		      enum can_state tx_state, enum can_state rx_state)
 381{
 382	struct can_priv *priv = netdev_priv(dev);
 383	enum can_state new_state = max(tx_state, rx_state);
 384
 385	if (unlikely(new_state == priv->state)) {
 386		netdev_warn(dev, "%s: oops, state did not change", __func__);
 387		return;
 388	}
 389
 390	netdev_dbg(dev, "New error state: %d\n", new_state);
 391
 392	can_update_state_error_stats(dev, new_state);
 393	priv->state = new_state;
 394
 395	if (!cf)
 396		return;
 397
 398	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
 399		cf->can_id |= CAN_ERR_BUSOFF;
 400		return;
 401	}
 402
 403	cf->can_id |= CAN_ERR_CRTL;
 404	cf->data[1] |= tx_state >= rx_state ?
 405		       can_tx_state_to_frame(dev, tx_state) : 0;
 406	cf->data[1] |= tx_state <= rx_state ?
 407		       can_rx_state_to_frame(dev, rx_state) : 0;
 408}
 409EXPORT_SYMBOL_GPL(can_change_state);
 410
 411/*
 412 * Local echo of CAN messages
 413 *
 414 * CAN network devices *should* support a local echo functionality
 415 * (see Documentation/networking/can.rst). To test the handling of CAN
 416 * interfaces that do not support the local echo both driver types are
 417 * implemented. In the case that the driver does not support the echo
 418 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
 419 * to perform the echo as a fallback solution.
 420 */
 421static void can_flush_echo_skb(struct net_device *dev)
 422{
 423	struct can_priv *priv = netdev_priv(dev);
 424	struct net_device_stats *stats = &dev->stats;
 425	int i;
 426
 427	for (i = 0; i < priv->echo_skb_max; i++) {
 428		if (priv->echo_skb[i]) {
 429			kfree_skb(priv->echo_skb[i]);
 430			priv->echo_skb[i] = NULL;
 431			stats->tx_dropped++;
 432			stats->tx_aborted_errors++;
 433		}
 434	}
 435}
 436
 437/*
 438 * Put the skb on the stack to be looped backed locally lateron
 439 *
 440 * The function is typically called in the start_xmit function
 441 * of the device driver. The driver must protect access to
 442 * priv->echo_skb, if necessary.
 443 */
 444void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
 445		      unsigned int idx)
 446{
 447	struct can_priv *priv = netdev_priv(dev);
 448
 449	BUG_ON(idx >= priv->echo_skb_max);
 450
 451	/* check flag whether this packet has to be looped back */
 452	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
 453	    (skb->protocol != htons(ETH_P_CAN) &&
 454	     skb->protocol != htons(ETH_P_CANFD))) {
 455		kfree_skb(skb);
 456		return;
 457	}
 458
 459	if (!priv->echo_skb[idx]) {
 460
 461		skb = can_create_echo_skb(skb);
 462		if (!skb)
 463			return;
 464
 465		/* make settings for echo to reduce code in irq context */
 466		skb->pkt_type = PACKET_BROADCAST;
 467		skb->ip_summed = CHECKSUM_UNNECESSARY;
 468		skb->dev = dev;
 469
 470		/* save this skb for tx interrupt echo handling */
 471		priv->echo_skb[idx] = skb;
 472	} else {
 473		/* locking problem with netif_stop_queue() ?? */
 474		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
 475		kfree_skb(skb);
 476	}
 477}
 478EXPORT_SYMBOL_GPL(can_put_echo_skb);
 479
 480/*
 481 * Get the skb from the stack and loop it back locally
 482 *
 483 * The function is typically called when the TX done interrupt
 484 * is handled in the device driver. The driver must protect
 485 * access to priv->echo_skb, if necessary.
 486 */
 487unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
 488{
 489	struct can_priv *priv = netdev_priv(dev);
 490
 491	BUG_ON(idx >= priv->echo_skb_max);
 492
 493	if (priv->echo_skb[idx]) {
 494		struct sk_buff *skb = priv->echo_skb[idx];
 495		struct can_frame *cf = (struct can_frame *)skb->data;
 496		u8 dlc = cf->can_dlc;
 497
 498		netif_rx(priv->echo_skb[idx]);
 499		priv->echo_skb[idx] = NULL;
 500
 501		return dlc;
 502	}
 503
 504	return 0;
 505}
 506EXPORT_SYMBOL_GPL(can_get_echo_skb);
 507
 508/*
 509  * Remove the skb from the stack and free it.
 510  *
 511  * The function is typically called when TX failed.
 512  */
 513void can_free_echo_skb(struct net_device *dev, unsigned int idx)
 514{
 515	struct can_priv *priv = netdev_priv(dev);
 516
 517	BUG_ON(idx >= priv->echo_skb_max);
 518
 519	if (priv->echo_skb[idx]) {
 520		dev_kfree_skb_any(priv->echo_skb[idx]);
 521		priv->echo_skb[idx] = NULL;
 522	}
 523}
 524EXPORT_SYMBOL_GPL(can_free_echo_skb);
 525
 526/*
 527 * CAN device restart for bus-off recovery
 528 */
 529static void can_restart(struct net_device *dev)
 530{
 531	struct can_priv *priv = netdev_priv(dev);
 532	struct net_device_stats *stats = &dev->stats;
 533	struct sk_buff *skb;
 534	struct can_frame *cf;
 535	int err;
 536
 537	BUG_ON(netif_carrier_ok(dev));
 538
 539	/*
 540	 * No synchronization needed because the device is bus-off and
 541	 * no messages can come in or go out.
 542	 */
 543	can_flush_echo_skb(dev);
 544
 545	/* send restart message upstream */
 546	skb = alloc_can_err_skb(dev, &cf);
 547	if (skb == NULL) {
 548		err = -ENOMEM;
 549		goto restart;
 550	}
 551	cf->can_id |= CAN_ERR_RESTARTED;
 552
 553	netif_rx(skb);
 554
 555	stats->rx_packets++;
 556	stats->rx_bytes += cf->can_dlc;
 557
 558restart:
 559	netdev_dbg(dev, "restarted\n");
 560	priv->can_stats.restarts++;
 561
 562	/* Now restart the device */
 563	err = priv->do_set_mode(dev, CAN_MODE_START);
 564
 565	netif_carrier_on(dev);
 566	if (err)
 567		netdev_err(dev, "Error %d during restart", err);
 568}
 569
 570static void can_restart_work(struct work_struct *work)
 571{
 572	struct delayed_work *dwork = to_delayed_work(work);
 573	struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
 574
 575	can_restart(priv->dev);
 576}
 577
 578int can_restart_now(struct net_device *dev)
 579{
 580	struct can_priv *priv = netdev_priv(dev);
 581
 582	/*
 583	 * A manual restart is only permitted if automatic restart is
 584	 * disabled and the device is in the bus-off state
 585	 */
 586	if (priv->restart_ms)
 587		return -EINVAL;
 588	if (priv->state != CAN_STATE_BUS_OFF)
 589		return -EBUSY;
 590
 591	cancel_delayed_work_sync(&priv->restart_work);
 592	can_restart(dev);
 593
 594	return 0;
 595}
 596
 597/*
 598 * CAN bus-off
 599 *
 600 * This functions should be called when the device goes bus-off to
 601 * tell the netif layer that no more packets can be sent or received.
 602 * If enabled, a timer is started to trigger bus-off recovery.
 603 */
 604void can_bus_off(struct net_device *dev)
 605{
 606	struct can_priv *priv = netdev_priv(dev);
 607
 608	netdev_info(dev, "bus-off\n");
 609
 610	netif_carrier_off(dev);
 611
 612	if (priv->restart_ms)
 613		schedule_delayed_work(&priv->restart_work,
 614				      msecs_to_jiffies(priv->restart_ms));
 615}
 616EXPORT_SYMBOL_GPL(can_bus_off);
 617
 618static void can_setup(struct net_device *dev)
 619{
 620	dev->type = ARPHRD_CAN;
 621	dev->mtu = CAN_MTU;
 622	dev->hard_header_len = 0;
 623	dev->addr_len = 0;
 624	dev->tx_queue_len = 10;
 625
 626	/* New-style flags. */
 627	dev->flags = IFF_NOARP;
 628	dev->features = NETIF_F_HW_CSUM;
 629}
 630
 631struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
 632{
 633	struct sk_buff *skb;
 634
 635	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 636			       sizeof(struct can_frame));
 637	if (unlikely(!skb))
 638		return NULL;
 639
 640	skb->protocol = htons(ETH_P_CAN);
 641	skb->pkt_type = PACKET_BROADCAST;
 642	skb->ip_summed = CHECKSUM_UNNECESSARY;
 643
 644	skb_reset_mac_header(skb);
 645	skb_reset_network_header(skb);
 646	skb_reset_transport_header(skb);
 647
 648	can_skb_reserve(skb);
 649	can_skb_prv(skb)->ifindex = dev->ifindex;
 650	can_skb_prv(skb)->skbcnt = 0;
 651
 652	*cf = skb_put(skb, sizeof(struct can_frame));
 653	memset(*cf, 0, sizeof(struct can_frame));
 654
 655	return skb;
 656}
 657EXPORT_SYMBOL_GPL(alloc_can_skb);
 658
 659struct sk_buff *alloc_canfd_skb(struct net_device *dev,
 660				struct canfd_frame **cfd)
 661{
 662	struct sk_buff *skb;
 663
 664	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
 665			       sizeof(struct canfd_frame));
 666	if (unlikely(!skb))
 667		return NULL;
 668
 669	skb->protocol = htons(ETH_P_CANFD);
 670	skb->pkt_type = PACKET_BROADCAST;
 671	skb->ip_summed = CHECKSUM_UNNECESSARY;
 672
 673	skb_reset_mac_header(skb);
 674	skb_reset_network_header(skb);
 675	skb_reset_transport_header(skb);
 676
 677	can_skb_reserve(skb);
 678	can_skb_prv(skb)->ifindex = dev->ifindex;
 679	can_skb_prv(skb)->skbcnt = 0;
 680
 681	*cfd = skb_put(skb, sizeof(struct canfd_frame));
 682	memset(*cfd, 0, sizeof(struct canfd_frame));
 683
 684	return skb;
 685}
 686EXPORT_SYMBOL_GPL(alloc_canfd_skb);
 687
 688struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
 689{
 690	struct sk_buff *skb;
 691
 692	skb = alloc_can_skb(dev, cf);
 693	if (unlikely(!skb))
 694		return NULL;
 695
 696	(*cf)->can_id = CAN_ERR_FLAG;
 697	(*cf)->can_dlc = CAN_ERR_DLC;
 698
 699	return skb;
 700}
 701EXPORT_SYMBOL_GPL(alloc_can_err_skb);
 702
 703/*
 704 * Allocate and setup space for the CAN network device
 705 */
 706struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
 707{
 708	struct net_device *dev;
 709	struct can_priv *priv;
 710	int size;
 711
 712	if (echo_skb_max)
 713		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
 714			echo_skb_max * sizeof(struct sk_buff *);
 715	else
 716		size = sizeof_priv;
 717
 718	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
 719	if (!dev)
 720		return NULL;
 721
 722	priv = netdev_priv(dev);
 723	priv->dev = dev;
 724
 725	if (echo_skb_max) {
 726		priv->echo_skb_max = echo_skb_max;
 727		priv->echo_skb = (void *)priv +
 728			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
 729	}
 730
 731	priv->state = CAN_STATE_STOPPED;
 732
 733	INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
 734
 735	return dev;
 736}
 737EXPORT_SYMBOL_GPL(alloc_candev);
 738
 739/*
 740 * Free space of the CAN network device
 741 */
 742void free_candev(struct net_device *dev)
 743{
 744	free_netdev(dev);
 745}
 746EXPORT_SYMBOL_GPL(free_candev);
 747
 748/*
 749 * changing MTU and control mode for CAN/CANFD devices
 750 */
 751int can_change_mtu(struct net_device *dev, int new_mtu)
 752{
 753	struct can_priv *priv = netdev_priv(dev);
 754
 755	/* Do not allow changing the MTU while running */
 756	if (dev->flags & IFF_UP)
 757		return -EBUSY;
 758
 759	/* allow change of MTU according to the CANFD ability of the device */
 760	switch (new_mtu) {
 761	case CAN_MTU:
 762		/* 'CANFD-only' controllers can not switch to CAN_MTU */
 763		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
 764			return -EINVAL;
 765
 766		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
 767		break;
 768
 769	case CANFD_MTU:
 770		/* check for potential CANFD ability */
 771		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
 772		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
 773			return -EINVAL;
 774
 775		priv->ctrlmode |= CAN_CTRLMODE_FD;
 776		break;
 777
 778	default:
 779		return -EINVAL;
 780	}
 781
 782	dev->mtu = new_mtu;
 783	return 0;
 784}
 785EXPORT_SYMBOL_GPL(can_change_mtu);
 786
 787/*
 788 * Common open function when the device gets opened.
 789 *
 790 * This function should be called in the open function of the device
 791 * driver.
 792 */
 793int open_candev(struct net_device *dev)
 794{
 795	struct can_priv *priv = netdev_priv(dev);
 796
 797	if (!priv->bittiming.bitrate) {
 798		netdev_err(dev, "bit-timing not yet defined\n");
 799		return -EINVAL;
 800	}
 801
 802	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
 803	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
 804	    (!priv->data_bittiming.bitrate ||
 805	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
 806		netdev_err(dev, "incorrect/missing data bit-timing\n");
 807		return -EINVAL;
 808	}
 809
 810	/* Switch carrier on if device was stopped while in bus-off state */
 811	if (!netif_carrier_ok(dev))
 812		netif_carrier_on(dev);
 813
 814	return 0;
 815}
 816EXPORT_SYMBOL_GPL(open_candev);
 817
 818#ifdef CONFIG_OF
 819/* Common function that can be used to understand the limitation of
 820 * a transceiver when it provides no means to determine these limitations
 821 * at runtime.
 822 */
 823void of_can_transceiver(struct net_device *dev)
 824{
 825	struct device_node *dn;
 826	struct can_priv *priv = netdev_priv(dev);
 827	struct device_node *np = dev->dev.parent->of_node;
 828	int ret;
 829
 830	dn = of_get_child_by_name(np, "can-transceiver");
 831	if (!dn)
 832		return;
 833
 834	ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
 835	if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
 836		netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
 837}
 838EXPORT_SYMBOL_GPL(of_can_transceiver);
 839#endif
 840
 841/*
 842 * Common close function for cleanup before the device gets closed.
 843 *
 844 * This function should be called in the close function of the device
 845 * driver.
 846 */
 847void close_candev(struct net_device *dev)
 848{
 849	struct can_priv *priv = netdev_priv(dev);
 850
 851	cancel_delayed_work_sync(&priv->restart_work);
 852	can_flush_echo_skb(dev);
 853}
 854EXPORT_SYMBOL_GPL(close_candev);
 855
 856/*
 857 * CAN netlink interface
 858 */
 859static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
 860	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
 861	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
 862	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
 863	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
 864	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
 865	[IFLA_CAN_BITTIMING_CONST]
 866				= { .len = sizeof(struct can_bittiming_const) },
 867	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
 868	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
 869	[IFLA_CAN_DATA_BITTIMING]
 870				= { .len = sizeof(struct can_bittiming) },
 871	[IFLA_CAN_DATA_BITTIMING_CONST]
 872				= { .len = sizeof(struct can_bittiming_const) },
 873};
 874
 875static int can_validate(struct nlattr *tb[], struct nlattr *data[],
 876			struct netlink_ext_ack *extack)
 877{
 878	bool is_can_fd = false;
 879
 880	/* Make sure that valid CAN FD configurations always consist of
 881	 * - nominal/arbitration bittiming
 882	 * - data bittiming
 883	 * - control mode with CAN_CTRLMODE_FD set
 884	 */
 885
 886	if (!data)
 887		return 0;
 888
 889	if (data[IFLA_CAN_CTRLMODE]) {
 890		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 891
 892		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
 893	}
 894
 895	if (is_can_fd) {
 896		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
 897			return -EOPNOTSUPP;
 898	}
 899
 900	if (data[IFLA_CAN_DATA_BITTIMING]) {
 901		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
 902			return -EOPNOTSUPP;
 903	}
 904
 905	return 0;
 906}
 907
 908static int can_changelink(struct net_device *dev, struct nlattr *tb[],
 909			  struct nlattr *data[],
 910			  struct netlink_ext_ack *extack)
 911{
 912	struct can_priv *priv = netdev_priv(dev);
 913	int err;
 914
 915	/* We need synchronization with dev->stop() */
 916	ASSERT_RTNL();
 917
 918	if (data[IFLA_CAN_BITTIMING]) {
 919		struct can_bittiming bt;
 920
 921		/* Do not allow changing bittiming while running */
 922		if (dev->flags & IFF_UP)
 923			return -EBUSY;
 924
 925		/* Calculate bittiming parameters based on
 926		 * bittiming_const if set, otherwise pass bitrate
 927		 * directly via do_set_bitrate(). Bail out if neither
 928		 * is given.
 929		 */
 930		if (!priv->bittiming_const && !priv->do_set_bittiming)
 931			return -EOPNOTSUPP;
 932
 933		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
 934		err = can_get_bittiming(dev, &bt,
 935					priv->bittiming_const,
 936					priv->bitrate_const,
 937					priv->bitrate_const_cnt);
 938		if (err)
 939			return err;
 940
 941		if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
 942			netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
 943				   priv->bitrate_max);
 944			return -EINVAL;
 945		}
 946
 947		memcpy(&priv->bittiming, &bt, sizeof(bt));
 948
 949		if (priv->do_set_bittiming) {
 950			/* Finally, set the bit-timing registers */
 951			err = priv->do_set_bittiming(dev);
 952			if (err)
 953				return err;
 954		}
 955	}
 956
 957	if (data[IFLA_CAN_CTRLMODE]) {
 958		struct can_ctrlmode *cm;
 959		u32 ctrlstatic;
 960		u32 maskedflags;
 961
 962		/* Do not allow changing controller mode while running */
 963		if (dev->flags & IFF_UP)
 964			return -EBUSY;
 965		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
 966		ctrlstatic = priv->ctrlmode_static;
 967		maskedflags = cm->flags & cm->mask;
 968
 969		/* check whether provided bits are allowed to be passed */
 970		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
 971			return -EOPNOTSUPP;
 972
 973		/* do not check for static fd-non-iso if 'fd' is disabled */
 974		if (!(maskedflags & CAN_CTRLMODE_FD))
 975			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
 976
 977		/* make sure static options are provided by configuration */
 978		if ((maskedflags & ctrlstatic) != ctrlstatic)
 979			return -EOPNOTSUPP;
 980
 981		/* clear bits to be modified and copy the flag values */
 982		priv->ctrlmode &= ~cm->mask;
 983		priv->ctrlmode |= maskedflags;
 984
 985		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
 986		if (priv->ctrlmode & CAN_CTRLMODE_FD)
 987			dev->mtu = CANFD_MTU;
 988		else
 989			dev->mtu = CAN_MTU;
 990	}
 991
 992	if (data[IFLA_CAN_RESTART_MS]) {
 993		/* Do not allow changing restart delay while running */
 994		if (dev->flags & IFF_UP)
 995			return -EBUSY;
 996		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
 997	}
 998
 999	if (data[IFLA_CAN_RESTART]) {
1000		/* Do not allow a restart while not running */
1001		if (!(dev->flags & IFF_UP))
1002			return -EINVAL;
1003		err = can_restart_now(dev);
1004		if (err)
1005			return err;
1006	}
1007
1008	if (data[IFLA_CAN_DATA_BITTIMING]) {
1009		struct can_bittiming dbt;
1010
1011		/* Do not allow changing bittiming while running */
1012		if (dev->flags & IFF_UP)
1013			return -EBUSY;
1014
1015		/* Calculate bittiming parameters based on
1016		 * data_bittiming_const if set, otherwise pass bitrate
1017		 * directly via do_set_bitrate(). Bail out if neither
1018		 * is given.
1019		 */
1020		if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1021			return -EOPNOTSUPP;
1022
1023		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1024		       sizeof(dbt));
1025		err = can_get_bittiming(dev, &dbt,
1026					priv->data_bittiming_const,
1027					priv->data_bitrate_const,
1028					priv->data_bitrate_const_cnt);
1029		if (err)
1030			return err;
1031
1032		if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1033			netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1034				   priv->bitrate_max);
1035			return -EINVAL;
1036		}
1037
1038		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1039
1040		if (priv->do_set_data_bittiming) {
1041			/* Finally, set the bit-timing registers */
1042			err = priv->do_set_data_bittiming(dev);
1043			if (err)
1044				return err;
1045		}
1046	}
1047
1048	if (data[IFLA_CAN_TERMINATION]) {
1049		const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1050		const unsigned int num_term = priv->termination_const_cnt;
1051		unsigned int i;
1052
1053		if (!priv->do_set_termination)
1054			return -EOPNOTSUPP;
1055
1056		/* check whether given value is supported by the interface */
1057		for (i = 0; i < num_term; i++) {
1058			if (termval == priv->termination_const[i])
1059				break;
1060		}
1061		if (i >= num_term)
1062			return -EINVAL;
1063
1064		/* Finally, set the termination value */
1065		err = priv->do_set_termination(dev, termval);
1066		if (err)
1067			return err;
1068
1069		priv->termination = termval;
1070	}
1071
1072	return 0;
1073}
1074
1075static size_t can_get_size(const struct net_device *dev)
1076{
1077	struct can_priv *priv = netdev_priv(dev);
1078	size_t size = 0;
1079
1080	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
1081		size += nla_total_size(sizeof(struct can_bittiming));
1082	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
1083		size += nla_total_size(sizeof(struct can_bittiming_const));
1084	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
1085	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
1086	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
1087	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
1088	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
1089		size += nla_total_size(sizeof(struct can_berr_counter));
1090	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
1091		size += nla_total_size(sizeof(struct can_bittiming));
1092	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
1093		size += nla_total_size(sizeof(struct can_bittiming_const));
1094	if (priv->termination_const) {
1095		size += nla_total_size(sizeof(priv->termination));		/* IFLA_CAN_TERMINATION */
1096		size += nla_total_size(sizeof(*priv->termination_const) *	/* IFLA_CAN_TERMINATION_CONST */
1097				       priv->termination_const_cnt);
1098	}
1099	if (priv->bitrate_const)				/* IFLA_CAN_BITRATE_CONST */
1100		size += nla_total_size(sizeof(*priv->bitrate_const) *
1101				       priv->bitrate_const_cnt);
1102	if (priv->data_bitrate_const)				/* IFLA_CAN_DATA_BITRATE_CONST */
1103		size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1104				       priv->data_bitrate_const_cnt);
1105	size += sizeof(priv->bitrate_max);			/* IFLA_CAN_BITRATE_MAX */
1106
1107	return size;
1108}
1109
1110static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1111{
1112	struct can_priv *priv = netdev_priv(dev);
1113	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1114	struct can_berr_counter bec;
1115	enum can_state state = priv->state;
1116
1117	if (priv->do_get_state)
1118		priv->do_get_state(dev, &state);
1119
1120	if ((priv->bittiming.bitrate &&
1121	     nla_put(skb, IFLA_CAN_BITTIMING,
1122		     sizeof(priv->bittiming), &priv->bittiming)) ||
1123
1124	    (priv->bittiming_const &&
1125	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1126		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1127
1128	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1129	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1130	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1131	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1132
1133	    (priv->do_get_berr_counter &&
1134	     !priv->do_get_berr_counter(dev, &bec) &&
1135	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1136
1137	    (priv->data_bittiming.bitrate &&
1138	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1139		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1140
1141	    (priv->data_bittiming_const &&
1142	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1143		     sizeof(*priv->data_bittiming_const),
1144		     priv->data_bittiming_const)) ||
1145
1146	    (priv->termination_const &&
1147	     (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1148	      nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1149		      sizeof(*priv->termination_const) *
1150		      priv->termination_const_cnt,
1151		      priv->termination_const))) ||
1152
1153	    (priv->bitrate_const &&
1154	     nla_put(skb, IFLA_CAN_BITRATE_CONST,
1155		     sizeof(*priv->bitrate_const) *
1156		     priv->bitrate_const_cnt,
1157		     priv->bitrate_const)) ||
1158
1159	    (priv->data_bitrate_const &&
1160	     nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1161		     sizeof(*priv->data_bitrate_const) *
1162		     priv->data_bitrate_const_cnt,
1163		     priv->data_bitrate_const)) ||
1164
1165	    (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1166		     sizeof(priv->bitrate_max),
1167		     &priv->bitrate_max))
1168	    )
1169
1170		return -EMSGSIZE;
1171
1172	return 0;
1173}
1174
1175static size_t can_get_xstats_size(const struct net_device *dev)
1176{
1177	return sizeof(struct can_device_stats);
1178}
1179
1180static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1181{
1182	struct can_priv *priv = netdev_priv(dev);
1183
1184	if (nla_put(skb, IFLA_INFO_XSTATS,
1185		    sizeof(priv->can_stats), &priv->can_stats))
1186		goto nla_put_failure;
1187	return 0;
1188
1189nla_put_failure:
1190	return -EMSGSIZE;
1191}
1192
1193static int can_newlink(struct net *src_net, struct net_device *dev,
1194		       struct nlattr *tb[], struct nlattr *data[],
1195		       struct netlink_ext_ack *extack)
1196{
1197	return -EOPNOTSUPP;
1198}
1199
1200static void can_dellink(struct net_device *dev, struct list_head *head)
1201{
1202	return;
1203}
1204
1205static struct rtnl_link_ops can_link_ops __read_mostly = {
1206	.kind		= "can",
1207	.maxtype	= IFLA_CAN_MAX,
1208	.policy		= can_policy,
1209	.setup		= can_setup,
1210	.validate	= can_validate,
1211	.newlink	= can_newlink,
1212	.changelink	= can_changelink,
1213	.dellink	= can_dellink,
1214	.get_size	= can_get_size,
1215	.fill_info	= can_fill_info,
1216	.get_xstats_size = can_get_xstats_size,
1217	.fill_xstats	= can_fill_xstats,
1218};
1219
1220/*
1221 * Register the CAN network device
1222 */
1223int register_candev(struct net_device *dev)
1224{
1225	struct can_priv *priv = netdev_priv(dev);
1226
1227	/* Ensure termination_const, termination_const_cnt and
1228	 * do_set_termination consistency. All must be either set or
1229	 * unset.
1230	 */
1231	if ((!priv->termination_const != !priv->termination_const_cnt) ||
1232	    (!priv->termination_const != !priv->do_set_termination))
1233		return -EINVAL;
1234
1235	if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1236		return -EINVAL;
1237
1238	if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1239		return -EINVAL;
1240
1241	dev->rtnl_link_ops = &can_link_ops;
1242	return register_netdev(dev);
1243}
1244EXPORT_SYMBOL_GPL(register_candev);
1245
1246/*
1247 * Unregister the CAN network device
1248 */
1249void unregister_candev(struct net_device *dev)
1250{
1251	unregister_netdev(dev);
1252}
1253EXPORT_SYMBOL_GPL(unregister_candev);
1254
1255/*
1256 * Test if a network device is a candev based device
1257 * and return the can_priv* if so.
1258 */
1259struct can_priv *safe_candev_priv(struct net_device *dev)
1260{
1261	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1262		return NULL;
1263
1264	return netdev_priv(dev);
1265}
1266EXPORT_SYMBOL_GPL(safe_candev_priv);
1267
1268static __init int can_dev_init(void)
1269{
1270	int err;
1271
1272	can_led_notifier_init();
1273
1274	err = rtnl_link_register(&can_link_ops);
1275	if (!err)
1276		printk(KERN_INFO MOD_DESC "\n");
1277
1278	return err;
1279}
1280module_init(can_dev_init);
1281
1282static __exit void can_dev_exit(void)
1283{
1284	rtnl_link_unregister(&can_link_ops);
1285
1286	can_led_notifier_exit();
1287}
1288module_exit(can_dev_exit);
1289
1290MODULE_ALIAS_RTNL_LINK("can");