Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * CAN bus driver for Bosch C_CAN controller
   3 *
   4 * Copyright (C) 2010 ST Microelectronics
   5 * Bhupesh Sharma <bhupesh.sharma@st.com>
   6 *
   7 * Borrowed heavily from the C_CAN driver originally written by:
   8 * Copyright (C) 2007
   9 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
  10 * - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
  11 *
  12 * TX and RX NAPI implementation has been borrowed from at91 CAN driver
  13 * written by:
  14 * Copyright
  15 * (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
  16 * (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
  17 *
  18 * Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
  19 * Bosch C_CAN user manual can be obtained from:
  20 * http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
  21 * users_manual_c_can.pdf
  22 *
  23 * This file is licensed under the terms of the GNU General Public
  24 * License version 2. This program is licensed "as is" without any
  25 * warranty of any kind, whether express or implied.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/netdevice.h>
  33#include <linux/if_arp.h>
  34#include <linux/if_ether.h>
  35#include <linux/list.h>
  36#include <linux/io.h>
  37#include <linux/pm_runtime.h>
  38#include <linux/pinctrl/consumer.h>
  39
  40#include <linux/can.h>
  41#include <linux/can/dev.h>
  42#include <linux/can/error.h>
  43#include <linux/can/led.h>
  44
  45#include "c_can.h"
  46
  47/* Number of interface registers */
  48#define IF_ENUM_REG_LEN		11
  49#define C_CAN_IFACE(reg, iface)	(C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
  50
  51/* control extension register D_CAN specific */
  52#define CONTROL_EX_PDR		BIT(8)
  53
  54/* control register */
  55#define CONTROL_TEST		BIT(7)
  56#define CONTROL_CCE		BIT(6)
  57#define CONTROL_DISABLE_AR	BIT(5)
  58#define CONTROL_ENABLE_AR	(0 << 5)
  59#define CONTROL_EIE		BIT(3)
  60#define CONTROL_SIE		BIT(2)
  61#define CONTROL_IE		BIT(1)
  62#define CONTROL_INIT		BIT(0)
  63
  64#define CONTROL_IRQMSK		(CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
  65
  66/* test register */
  67#define TEST_RX			BIT(7)
  68#define TEST_TX1		BIT(6)
  69#define TEST_TX2		BIT(5)
  70#define TEST_LBACK		BIT(4)
  71#define TEST_SILENT		BIT(3)
  72#define TEST_BASIC		BIT(2)
  73
  74/* status register */
  75#define STATUS_PDA		BIT(10)
  76#define STATUS_BOFF		BIT(7)
  77#define STATUS_EWARN		BIT(6)
  78#define STATUS_EPASS		BIT(5)
  79#define STATUS_RXOK		BIT(4)
  80#define STATUS_TXOK		BIT(3)
  81
  82/* error counter register */
  83#define ERR_CNT_TEC_MASK	0xff
  84#define ERR_CNT_TEC_SHIFT	0
  85#define ERR_CNT_REC_SHIFT	8
  86#define ERR_CNT_REC_MASK	(0x7f << ERR_CNT_REC_SHIFT)
  87#define ERR_CNT_RP_SHIFT	15
  88#define ERR_CNT_RP_MASK		(0x1 << ERR_CNT_RP_SHIFT)
  89
  90/* bit-timing register */
  91#define BTR_BRP_MASK		0x3f
  92#define BTR_BRP_SHIFT		0
  93#define BTR_SJW_SHIFT		6
  94#define BTR_SJW_MASK		(0x3 << BTR_SJW_SHIFT)
  95#define BTR_TSEG1_SHIFT		8
  96#define BTR_TSEG1_MASK		(0xf << BTR_TSEG1_SHIFT)
  97#define BTR_TSEG2_SHIFT		12
  98#define BTR_TSEG2_MASK		(0x7 << BTR_TSEG2_SHIFT)
  99
 100/* brp extension register */
 101#define BRP_EXT_BRPE_MASK	0x0f
 102#define BRP_EXT_BRPE_SHIFT	0
 103
 104/* IFx command request */
 105#define IF_COMR_BUSY		BIT(15)
 106
 107/* IFx command mask */
 108#define IF_COMM_WR		BIT(7)
 109#define IF_COMM_MASK		BIT(6)
 110#define IF_COMM_ARB		BIT(5)
 111#define IF_COMM_CONTROL		BIT(4)
 112#define IF_COMM_CLR_INT_PND	BIT(3)
 113#define IF_COMM_TXRQST		BIT(2)
 114#define IF_COMM_CLR_NEWDAT	IF_COMM_TXRQST
 115#define IF_COMM_DATAA		BIT(1)
 116#define IF_COMM_DATAB		BIT(0)
 117
 118/* TX buffer setup */
 119#define IF_COMM_TX		(IF_COMM_ARB | IF_COMM_CONTROL | \
 120				 IF_COMM_TXRQST |		 \
 121				 IF_COMM_DATAA | IF_COMM_DATAB)
 122
 123/* For the low buffers we clear the interrupt bit, but keep newdat */
 124#define IF_COMM_RCV_LOW		(IF_COMM_MASK | IF_COMM_ARB | \
 125				 IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
 126				 IF_COMM_DATAA | IF_COMM_DATAB)
 127
 128/* For the high buffers we clear the interrupt bit and newdat */
 129#define IF_COMM_RCV_HIGH	(IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
 130
 131
 132/* Receive setup of message objects */
 133#define IF_COMM_RCV_SETUP	(IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
 134
 135/* Invalidation of message objects */
 136#define IF_COMM_INVAL		(IF_COMM_ARB | IF_COMM_CONTROL)
 137
 138/* IFx arbitration */
 139#define IF_ARB_MSGVAL		BIT(31)
 140#define IF_ARB_MSGXTD		BIT(30)
 141#define IF_ARB_TRANSMIT		BIT(29)
 142
 143/* IFx message control */
 144#define IF_MCONT_NEWDAT		BIT(15)
 145#define IF_MCONT_MSGLST		BIT(14)
 146#define IF_MCONT_INTPND		BIT(13)
 147#define IF_MCONT_UMASK		BIT(12)
 148#define IF_MCONT_TXIE		BIT(11)
 149#define IF_MCONT_RXIE		BIT(10)
 150#define IF_MCONT_RMTEN		BIT(9)
 151#define IF_MCONT_TXRQST		BIT(8)
 152#define IF_MCONT_EOB		BIT(7)
 153#define IF_MCONT_DLC_MASK	0xf
 154
 155#define IF_MCONT_RCV		(IF_MCONT_RXIE | IF_MCONT_UMASK)
 156#define IF_MCONT_RCV_EOB	(IF_MCONT_RCV | IF_MCONT_EOB)
 157
 158#define IF_MCONT_TX		(IF_MCONT_TXIE | IF_MCONT_EOB)
 159
 160/*
 161 * Use IF1 for RX and IF2 for TX
 162 */
 163#define IF_RX			0
 164#define IF_TX			1
 165
 166/* minimum timeout for checking BUSY status */
 167#define MIN_TIMEOUT_VALUE	6
 168
 169/* Wait for ~1 sec for INIT bit */
 170#define INIT_WAIT_MS		1000
 171
 172/* napi related */
 173#define C_CAN_NAPI_WEIGHT	C_CAN_MSG_OBJ_RX_NUM
 174
 175/* c_can lec values */
 176enum c_can_lec_type {
 177	LEC_NO_ERROR = 0,
 178	LEC_STUFF_ERROR,
 179	LEC_FORM_ERROR,
 180	LEC_ACK_ERROR,
 181	LEC_BIT1_ERROR,
 182	LEC_BIT0_ERROR,
 183	LEC_CRC_ERROR,
 184	LEC_UNUSED,
 185	LEC_MASK = LEC_UNUSED,
 186};
 187
 188/*
 189 * c_can error types:
 190 * Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
 191 */
 192enum c_can_bus_error_types {
 193	C_CAN_NO_ERROR = 0,
 194	C_CAN_BUS_OFF,
 195	C_CAN_ERROR_WARNING,
 196	C_CAN_ERROR_PASSIVE,
 197};
 198
 199static const struct can_bittiming_const c_can_bittiming_const = {
 200	.name = KBUILD_MODNAME,
 201	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 202	.tseg1_max = 16,
 203	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 204	.tseg2_max = 8,
 205	.sjw_max = 4,
 206	.brp_min = 1,
 207	.brp_max = 1024,	/* 6-bit BRP field + 4-bit BRPE field*/
 208	.brp_inc = 1,
 209};
 210
 211static inline void c_can_pm_runtime_enable(const struct c_can_priv *priv)
 212{
 213	if (priv->device)
 214		pm_runtime_enable(priv->device);
 215}
 216
 217static inline void c_can_pm_runtime_disable(const struct c_can_priv *priv)
 218{
 219	if (priv->device)
 220		pm_runtime_disable(priv->device);
 221}
 222
 223static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
 224{
 225	if (priv->device)
 226		pm_runtime_get_sync(priv->device);
 227}
 228
 229static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
 230{
 231	if (priv->device)
 232		pm_runtime_put_sync(priv->device);
 233}
 234
 235static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
 236{
 237	if (priv->raminit)
 238		priv->raminit(priv, enable);
 239}
 240
 241static void c_can_irq_control(struct c_can_priv *priv, bool enable)
 242{
 243	u32 ctrl = priv->read_reg(priv,	C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
 244
 245	if (enable)
 246		ctrl |= CONTROL_IRQMSK;
 247
 248	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
 249}
 250
 251static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
 252{
 253	struct c_can_priv *priv = netdev_priv(dev);
 254	int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
 255
 256	priv->write_reg32(priv, reg, (cmd << 16) | obj);
 257
 258	for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
 259		if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
 260			return;
 261		udelay(1);
 262	}
 263	netdev_err(dev, "Updating object timed out\n");
 264
 265}
 266
 267static inline void c_can_object_get(struct net_device *dev, int iface,
 268				    u32 obj, u32 cmd)
 269{
 270	c_can_obj_update(dev, iface, cmd, obj);
 271}
 272
 273static inline void c_can_object_put(struct net_device *dev, int iface,
 274				    u32 obj, u32 cmd)
 275{
 276	c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
 277}
 278
 279/*
 280 * Note: According to documentation clearing TXIE while MSGVAL is set
 281 * is not allowed, but works nicely on C/DCAN. And that lowers the I/O
 282 * load significantly.
 283 */
 284static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
 285{
 286	struct c_can_priv *priv = netdev_priv(dev);
 287
 288	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
 289	c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
 290}
 291
 292static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
 293{
 294	struct c_can_priv *priv = netdev_priv(dev);
 295
 296	priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
 297	priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
 298	c_can_inval_tx_object(dev, iface, obj);
 299}
 300
 301static void c_can_setup_tx_object(struct net_device *dev, int iface,
 302				  struct can_frame *frame, int idx)
 303{
 304	struct c_can_priv *priv = netdev_priv(dev);
 305	u16 ctrl = IF_MCONT_TX | frame->can_dlc;
 306	bool rtr = frame->can_id & CAN_RTR_FLAG;
 307	u32 arb = IF_ARB_MSGVAL;
 308	int i;
 309
 310	if (frame->can_id & CAN_EFF_FLAG) {
 311		arb |= frame->can_id & CAN_EFF_MASK;
 312		arb |= IF_ARB_MSGXTD;
 313	} else {
 314		arb |= (frame->can_id & CAN_SFF_MASK) << 18;
 315	}
 316
 317	if (!rtr)
 318		arb |= IF_ARB_TRANSMIT;
 319
 320	/*
 321	 * If we change the DIR bit, we need to invalidate the buffer
 322	 * first, i.e. clear the MSGVAL flag in the arbiter.
 323	 */
 324	if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
 325		u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 326
 327		c_can_inval_msg_object(dev, iface, obj);
 328		change_bit(idx, &priv->tx_dir);
 329	}
 330
 331	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
 332
 333	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 334
 335	if (priv->type == BOSCH_D_CAN) {
 336		u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
 337
 338		for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
 339			data = (u32)frame->data[i];
 340			data |= (u32)frame->data[i + 1] << 8;
 341			data |= (u32)frame->data[i + 2] << 16;
 342			data |= (u32)frame->data[i + 3] << 24;
 343			priv->write_reg32(priv, dreg, data);
 344		}
 345	} else {
 346		for (i = 0; i < frame->can_dlc; i += 2) {
 347			priv->write_reg(priv,
 348					C_CAN_IFACE(DATA1_REG, iface) + i / 2,
 349					frame->data[i] |
 350					(frame->data[i + 1] << 8));
 351		}
 352	}
 353}
 354
 355static inline void c_can_activate_all_lower_rx_msg_obj(struct net_device *dev,
 356						       int iface)
 357{
 358	int i;
 359
 360	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_MSG_RX_LOW_LAST; i++)
 361		c_can_object_get(dev, iface, i, IF_COMM_CLR_NEWDAT);
 362}
 363
 364static int c_can_handle_lost_msg_obj(struct net_device *dev,
 365				     int iface, int objno, u32 ctrl)
 366{
 367	struct net_device_stats *stats = &dev->stats;
 368	struct c_can_priv *priv = netdev_priv(dev);
 369	struct can_frame *frame;
 370	struct sk_buff *skb;
 371
 372	ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
 373	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
 374	c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
 375
 376	stats->rx_errors++;
 377	stats->rx_over_errors++;
 378
 379	/* create an error msg */
 380	skb = alloc_can_err_skb(dev, &frame);
 381	if (unlikely(!skb))
 382		return 0;
 383
 384	frame->can_id |= CAN_ERR_CRTL;
 385	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 386
 387	netif_receive_skb(skb);
 388	return 1;
 389}
 390
 391static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
 392{
 393	struct net_device_stats *stats = &dev->stats;
 394	struct c_can_priv *priv = netdev_priv(dev);
 395	struct can_frame *frame;
 396	struct sk_buff *skb;
 397	u32 arb, data;
 398
 399	skb = alloc_can_skb(dev, &frame);
 400	if (!skb) {
 401		stats->rx_dropped++;
 402		return -ENOMEM;
 403	}
 404
 405	frame->can_dlc = get_can_dlc(ctrl & 0x0F);
 406
 407	arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
 408
 409	if (arb & IF_ARB_MSGXTD)
 410		frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
 411	else
 412		frame->can_id = (arb >> 18) & CAN_SFF_MASK;
 413
 414	if (arb & IF_ARB_TRANSMIT) {
 415		frame->can_id |= CAN_RTR_FLAG;
 416	} else {
 417		int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
 418
 419		if (priv->type == BOSCH_D_CAN) {
 420			for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
 421				data = priv->read_reg32(priv, dreg);
 422				frame->data[i] = data;
 423				frame->data[i + 1] = data >> 8;
 424				frame->data[i + 2] = data >> 16;
 425				frame->data[i + 3] = data >> 24;
 426			}
 427		} else {
 428			for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
 429				data = priv->read_reg(priv, dreg);
 430				frame->data[i] = data;
 431				frame->data[i + 1] = data >> 8;
 432			}
 433		}
 434	}
 435
 436	stats->rx_packets++;
 437	stats->rx_bytes += frame->can_dlc;
 438
 439	netif_receive_skb(skb);
 440	return 0;
 441}
 442
 443static void c_can_setup_receive_object(struct net_device *dev, int iface,
 444				       u32 obj, u32 mask, u32 id, u32 mcont)
 445{
 446	struct c_can_priv *priv = netdev_priv(dev);
 447
 448	mask |= BIT(29);
 449	priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
 450
 451	id |= IF_ARB_MSGVAL;
 452	priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
 453
 454	priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
 455	c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
 456}
 457
 458static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
 459				    struct net_device *dev)
 460{
 461	struct can_frame *frame = (struct can_frame *)skb->data;
 462	struct c_can_priv *priv = netdev_priv(dev);
 463	u32 idx, obj;
 464
 465	if (can_dropped_invalid_skb(dev, skb))
 466		return NETDEV_TX_OK;
 467	/*
 468	 * This is not a FIFO. C/D_CAN sends out the buffers
 469	 * prioritized. The lowest buffer number wins.
 470	 */
 471	idx = fls(atomic_read(&priv->tx_active));
 472	obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 473
 474	/* If this is the last buffer, stop the xmit queue */
 475	if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
 476		netif_stop_queue(dev);
 477	/*
 478	 * Store the message in the interface so we can call
 479	 * can_put_echo_skb(). We must do this before we enable
 480	 * transmit as we might race against do_tx().
 481	 */
 482	c_can_setup_tx_object(dev, IF_TX, frame, idx);
 483	priv->dlc[idx] = frame->can_dlc;
 484	can_put_echo_skb(skb, dev, idx);
 485
 486	/* Update the active bits */
 487	atomic_add((1 << idx), &priv->tx_active);
 488	/* Start transmission */
 489	c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
 490
 491	return NETDEV_TX_OK;
 492}
 493
 494static int c_can_wait_for_ctrl_init(struct net_device *dev,
 495				    struct c_can_priv *priv, u32 init)
 496{
 497	int retry = 0;
 498
 499	while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
 500		udelay(10);
 501		if (retry++ > 1000) {
 502			netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
 503			return -EIO;
 504		}
 505	}
 506	return 0;
 507}
 508
 509static int c_can_set_bittiming(struct net_device *dev)
 510{
 511	unsigned int reg_btr, reg_brpe, ctrl_save;
 512	u8 brp, brpe, sjw, tseg1, tseg2;
 513	u32 ten_bit_brp;
 514	struct c_can_priv *priv = netdev_priv(dev);
 515	const struct can_bittiming *bt = &priv->can.bittiming;
 516	int res;
 517
 518	/* c_can provides a 6-bit brp and 4-bit brpe fields */
 519	ten_bit_brp = bt->brp - 1;
 520	brp = ten_bit_brp & BTR_BRP_MASK;
 521	brpe = ten_bit_brp >> 6;
 522
 523	sjw = bt->sjw - 1;
 524	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
 525	tseg2 = bt->phase_seg2 - 1;
 526	reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
 527			(tseg2 << BTR_TSEG2_SHIFT);
 528	reg_brpe = brpe & BRP_EXT_BRPE_MASK;
 529
 530	netdev_info(dev,
 531		"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
 532
 533	ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
 534	ctrl_save &= ~CONTROL_INIT;
 535	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
 536	res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
 537	if (res)
 538		return res;
 539
 540	priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
 541	priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
 542	priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
 543
 544	return c_can_wait_for_ctrl_init(dev, priv, 0);
 545}
 546
 547/*
 548 * Configure C_CAN message objects for Tx and Rx purposes:
 549 * C_CAN provides a total of 32 message objects that can be configured
 550 * either for Tx or Rx purposes. Here the first 16 message objects are used as
 551 * a reception FIFO. The end of reception FIFO is signified by the EoB bit
 552 * being SET. The remaining 16 message objects are kept aside for Tx purposes.
 553 * See user guide document for further details on configuring message
 554 * objects.
 555 */
 556static void c_can_configure_msg_objects(struct net_device *dev)
 557{
 558	int i;
 559
 560	/* first invalidate all message objects */
 561	for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
 562		c_can_inval_msg_object(dev, IF_RX, i);
 563
 564	/* setup receive message objects */
 565	for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
 566		c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
 567
 568	c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
 569				   IF_MCONT_RCV_EOB);
 570}
 571
 572/*
 573 * Configure C_CAN chip:
 574 * - enable/disable auto-retransmission
 575 * - set operating mode
 576 * - configure message objects
 577 */
 578static int c_can_chip_config(struct net_device *dev)
 579{
 580	struct c_can_priv *priv = netdev_priv(dev);
 581
 582	/* enable automatic retransmission */
 583	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
 584
 585	if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
 586	    (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
 587		/* loopback + silent mode : useful for hot self-test */
 588		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 589		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
 590	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 591		/* loopback mode : useful for self-test function */
 592		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 593		priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
 594	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 595		/* silent mode : bus-monitoring mode */
 596		priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
 597		priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
 598	}
 599
 600	/* configure message objects */
 601	c_can_configure_msg_objects(dev);
 602
 603	/* set a `lec` value so that we can check for updates later */
 604	priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
 605
 606	/* Clear all internal status */
 607	atomic_set(&priv->tx_active, 0);
 608	priv->rxmasked = 0;
 609	priv->tx_dir = 0;
 610
 611	/* set bittiming params */
 612	return c_can_set_bittiming(dev);
 613}
 614
 615static int c_can_start(struct net_device *dev)
 616{
 617	struct c_can_priv *priv = netdev_priv(dev);
 618	int err;
 619	struct pinctrl *p;
 620
 621	/* basic c_can configuration */
 622	err = c_can_chip_config(dev);
 623	if (err)
 624		return err;
 625
 626	/* Setup the command for new messages */
 627	priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
 628		IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
 629
 630	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 631
 632	/* Attempt to use "active" if available else use "default" */
 633	p = pinctrl_get_select(priv->device, "active");
 634	if (!IS_ERR(p))
 635		pinctrl_put(p);
 636	else
 637		pinctrl_pm_select_default_state(priv->device);
 638
 639	return 0;
 640}
 641
 642static void c_can_stop(struct net_device *dev)
 643{
 644	struct c_can_priv *priv = netdev_priv(dev);
 645
 646	c_can_irq_control(priv, false);
 647
 648	/* put ctrl to init on stop to end ongoing transmission */
 649	priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
 650
 651	/* deactivate pins */
 652	pinctrl_pm_select_sleep_state(dev->dev.parent);
 653	priv->can.state = CAN_STATE_STOPPED;
 654}
 655
 656static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
 657{
 658	struct c_can_priv *priv = netdev_priv(dev);
 659	int err;
 660
 661	switch (mode) {
 662	case CAN_MODE_START:
 663		err = c_can_start(dev);
 664		if (err)
 665			return err;
 666		netif_wake_queue(dev);
 667		c_can_irq_control(priv, true);
 668		break;
 669	default:
 670		return -EOPNOTSUPP;
 671	}
 672
 673	return 0;
 674}
 675
 676static int __c_can_get_berr_counter(const struct net_device *dev,
 677				    struct can_berr_counter *bec)
 678{
 679	unsigned int reg_err_counter;
 680	struct c_can_priv *priv = netdev_priv(dev);
 681
 682	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 683	bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
 684				ERR_CNT_REC_SHIFT;
 685	bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
 686
 687	return 0;
 688}
 689
 690static int c_can_get_berr_counter(const struct net_device *dev,
 691				  struct can_berr_counter *bec)
 692{
 693	struct c_can_priv *priv = netdev_priv(dev);
 694	int err;
 695
 696	c_can_pm_runtime_get_sync(priv);
 697	err = __c_can_get_berr_counter(dev, bec);
 698	c_can_pm_runtime_put_sync(priv);
 699
 700	return err;
 701}
 702
 703static void c_can_do_tx(struct net_device *dev)
 704{
 705	struct c_can_priv *priv = netdev_priv(dev);
 706	struct net_device_stats *stats = &dev->stats;
 707	u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
 708
 709	clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
 710
 711	while ((idx = ffs(pend))) {
 712		idx--;
 713		pend &= ~(1 << idx);
 714		obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
 715		c_can_inval_tx_object(dev, IF_RX, obj);
 716		can_get_echo_skb(dev, idx);
 717		bytes += priv->dlc[idx];
 718		pkts++;
 719	}
 720
 721	/* Clear the bits in the tx_active mask */
 722	atomic_sub(clr, &priv->tx_active);
 723
 724	if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
 725		netif_wake_queue(dev);
 726
 727	if (pkts) {
 728		stats->tx_bytes += bytes;
 729		stats->tx_packets += pkts;
 730		can_led_event(dev, CAN_LED_EVENT_TX);
 731	}
 732}
 733
 734/*
 735 * If we have a gap in the pending bits, that means we either
 736 * raced with the hardware or failed to readout all upper
 737 * objects in the last run due to quota limit.
 738 */
 739static u32 c_can_adjust_pending(u32 pend)
 740{
 741	u32 weight, lasts;
 742
 743	if (pend == RECEIVE_OBJECT_BITS)
 744		return pend;
 745
 746	/*
 747	 * If the last set bit is larger than the number of pending
 748	 * bits we have a gap.
 749	 */
 750	weight = hweight32(pend);
 751	lasts = fls(pend);
 752
 753	/* If the bits are linear, nothing to do */
 754	if (lasts == weight)
 755		return pend;
 756
 757	/*
 758	 * Find the first set bit after the gap. We walk backwards
 759	 * from the last set bit.
 760	 */
 761	for (lasts--; pend & (1 << (lasts - 1)); lasts--);
 762
 763	return pend & ~((1 << lasts) - 1);
 764}
 765
 766static inline void c_can_rx_object_get(struct net_device *dev,
 767				       struct c_can_priv *priv, u32 obj)
 768{
 769		c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
 770}
 771
 772static inline void c_can_rx_finalize(struct net_device *dev,
 773				     struct c_can_priv *priv, u32 obj)
 774{
 775	if (priv->type != BOSCH_D_CAN)
 776		c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
 777}
 778
 779static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
 780			      u32 pend, int quota)
 781{
 782	u32 pkts = 0, ctrl, obj;
 783
 784	while ((obj = ffs(pend)) && quota > 0) {
 785		pend &= ~BIT(obj - 1);
 786
 787		c_can_rx_object_get(dev, priv, obj);
 788		ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
 789
 790		if (ctrl & IF_MCONT_MSGLST) {
 791			int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
 792
 793			pkts += n;
 794			quota -= n;
 795			continue;
 796		}
 797
 798		/*
 799		 * This really should not happen, but this covers some
 800		 * odd HW behaviour. Do not remove that unless you
 801		 * want to brick your machine.
 802		 */
 803		if (!(ctrl & IF_MCONT_NEWDAT))
 804			continue;
 805
 806		/* read the data from the message object */
 807		c_can_read_msg_object(dev, IF_RX, ctrl);
 808
 809		c_can_rx_finalize(dev, priv, obj);
 810
 811		pkts++;
 812		quota--;
 813	}
 814
 815	return pkts;
 816}
 817
 818static inline u32 c_can_get_pending(struct c_can_priv *priv)
 819{
 820	u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
 821
 822	return pend;
 823}
 824
 825/*
 826 * theory of operation:
 827 *
 828 * c_can core saves a received CAN message into the first free message
 829 * object it finds free (starting with the lowest). Bits NEWDAT and
 830 * INTPND are set for this message object indicating that a new message
 831 * has arrived. To work-around this issue, we keep two groups of message
 832 * objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
 833 *
 834 * We clear the newdat bit right away.
 835 *
 836 * This can result in packet reordering when the readout is slow.
 837 */
 838static int c_can_do_rx_poll(struct net_device *dev, int quota)
 839{
 840	struct c_can_priv *priv = netdev_priv(dev);
 841	u32 pkts = 0, pend = 0, toread, n;
 842
 843	/*
 844	 * It is faster to read only one 16bit register. This is only possible
 845	 * for a maximum number of 16 objects.
 846	 */
 847	BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
 848			"Implementation does not support more message objects than 16");
 849
 850	while (quota > 0) {
 851		if (!pend) {
 852			pend = c_can_get_pending(priv);
 853			if (!pend)
 854				break;
 855			/*
 856			 * If the pending field has a gap, handle the
 857			 * bits above the gap first.
 858			 */
 859			toread = c_can_adjust_pending(pend);
 860		} else {
 861			toread = pend;
 862		}
 863		/* Remove the bits from pend */
 864		pend &= ~toread;
 865		/* Read the objects */
 866		n = c_can_read_objects(dev, priv, toread, quota);
 867		pkts += n;
 868		quota -= n;
 869	}
 870
 871	if (pkts)
 872		can_led_event(dev, CAN_LED_EVENT_RX);
 873
 874	return pkts;
 875}
 876
 877static int c_can_handle_state_change(struct net_device *dev,
 878				enum c_can_bus_error_types error_type)
 879{
 880	unsigned int reg_err_counter;
 881	unsigned int rx_err_passive;
 882	struct c_can_priv *priv = netdev_priv(dev);
 883	struct net_device_stats *stats = &dev->stats;
 884	struct can_frame *cf;
 885	struct sk_buff *skb;
 886	struct can_berr_counter bec;
 887
 888	switch (error_type) {
 889	case C_CAN_ERROR_WARNING:
 890		/* error warning state */
 891		priv->can.can_stats.error_warning++;
 892		priv->can.state = CAN_STATE_ERROR_WARNING;
 893		break;
 894	case C_CAN_ERROR_PASSIVE:
 895		/* error passive state */
 896		priv->can.can_stats.error_passive++;
 897		priv->can.state = CAN_STATE_ERROR_PASSIVE;
 898		break;
 899	case C_CAN_BUS_OFF:
 900		/* bus-off state */
 901		priv->can.state = CAN_STATE_BUS_OFF;
 902		priv->can.can_stats.bus_off++;
 903		break;
 904	default:
 905		break;
 906	}
 907
 908	/* propagate the error condition to the CAN stack */
 909	skb = alloc_can_err_skb(dev, &cf);
 910	if (unlikely(!skb))
 911		return 0;
 912
 913	__c_can_get_berr_counter(dev, &bec);
 914	reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
 915	rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
 916				ERR_CNT_RP_SHIFT;
 917
 918	switch (error_type) {
 919	case C_CAN_ERROR_WARNING:
 920		/* error warning state */
 921		cf->can_id |= CAN_ERR_CRTL;
 922		cf->data[1] = (bec.txerr > bec.rxerr) ?
 923			CAN_ERR_CRTL_TX_WARNING :
 924			CAN_ERR_CRTL_RX_WARNING;
 925		cf->data[6] = bec.txerr;
 926		cf->data[7] = bec.rxerr;
 927
 928		break;
 929	case C_CAN_ERROR_PASSIVE:
 930		/* error passive state */
 931		cf->can_id |= CAN_ERR_CRTL;
 932		if (rx_err_passive)
 933			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 934		if (bec.txerr > 127)
 935			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 936
 937		cf->data[6] = bec.txerr;
 938		cf->data[7] = bec.rxerr;
 939		break;
 940	case C_CAN_BUS_OFF:
 941		/* bus-off state */
 942		cf->can_id |= CAN_ERR_BUSOFF;
 943		can_bus_off(dev);
 944		break;
 945	default:
 946		break;
 947	}
 948
 949	stats->rx_packets++;
 950	stats->rx_bytes += cf->can_dlc;
 951	netif_receive_skb(skb);
 952
 953	return 1;
 954}
 955
 956static int c_can_handle_bus_err(struct net_device *dev,
 957				enum c_can_lec_type lec_type)
 958{
 959	struct c_can_priv *priv = netdev_priv(dev);
 960	struct net_device_stats *stats = &dev->stats;
 961	struct can_frame *cf;
 962	struct sk_buff *skb;
 963
 964	/*
 965	 * early exit if no lec update or no error.
 966	 * no lec update means that no CAN bus event has been detected
 967	 * since CPU wrote 0x7 value to status reg.
 968	 */
 969	if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
 970		return 0;
 971
 972	if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
 973		return 0;
 974
 975	/* common for all type of bus errors */
 976	priv->can.can_stats.bus_error++;
 977	stats->rx_errors++;
 978
 979	/* propagate the error condition to the CAN stack */
 980	skb = alloc_can_err_skb(dev, &cf);
 981	if (unlikely(!skb))
 982		return 0;
 983
 984	/*
 985	 * check for 'last error code' which tells us the
 986	 * type of the last error to occur on the CAN bus
 987	 */
 988	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 989
 990	switch (lec_type) {
 991	case LEC_STUFF_ERROR:
 992		netdev_dbg(dev, "stuff error\n");
 993		cf->data[2] |= CAN_ERR_PROT_STUFF;
 994		break;
 995	case LEC_FORM_ERROR:
 996		netdev_dbg(dev, "form error\n");
 997		cf->data[2] |= CAN_ERR_PROT_FORM;
 998		break;
 999	case LEC_ACK_ERROR:
1000		netdev_dbg(dev, "ack error\n");
1001		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
1002		break;
1003	case LEC_BIT1_ERROR:
1004		netdev_dbg(dev, "bit1 error\n");
1005		cf->data[2] |= CAN_ERR_PROT_BIT1;
1006		break;
1007	case LEC_BIT0_ERROR:
1008		netdev_dbg(dev, "bit0 error\n");
1009		cf->data[2] |= CAN_ERR_PROT_BIT0;
1010		break;
1011	case LEC_CRC_ERROR:
1012		netdev_dbg(dev, "CRC error\n");
1013		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
1014		break;
1015	default:
1016		break;
1017	}
1018
1019	stats->rx_packets++;
1020	stats->rx_bytes += cf->can_dlc;
1021	netif_receive_skb(skb);
1022	return 1;
1023}
1024
1025static int c_can_poll(struct napi_struct *napi, int quota)
1026{
1027	struct net_device *dev = napi->dev;
1028	struct c_can_priv *priv = netdev_priv(dev);
1029	u16 curr, last = priv->last_status;
1030	int work_done = 0;
1031
1032	priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
1033	/* Ack status on C_CAN. D_CAN is self clearing */
1034	if (priv->type != BOSCH_D_CAN)
1035		priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
1036
1037	/* handle state changes */
1038	if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
1039		netdev_dbg(dev, "entered error warning state\n");
1040		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
1041	}
1042
1043	if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
1044		netdev_dbg(dev, "entered error passive state\n");
1045		work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
1046	}
1047
1048	if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
1049		netdev_dbg(dev, "entered bus off state\n");
1050		work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
1051		goto end;
1052	}
1053
1054	/* handle bus recovery events */
1055	if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
1056		netdev_dbg(dev, "left bus off state\n");
1057		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1058	}
1059	if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
1060		netdev_dbg(dev, "left error passive state\n");
1061		priv->can.state = CAN_STATE_ERROR_ACTIVE;
1062	}
1063
1064	/* handle lec errors on the bus */
1065	work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
1066
1067	/* Handle Tx/Rx events. We do this unconditionally */
1068	work_done += c_can_do_rx_poll(dev, (quota - work_done));
1069	c_can_do_tx(dev);
1070
1071end:
1072	if (work_done < quota) {
1073		napi_complete_done(napi, work_done);
1074		/* enable all IRQs if we are not in bus off state */
1075		if (priv->can.state != CAN_STATE_BUS_OFF)
1076			c_can_irq_control(priv, true);
1077	}
1078
1079	return work_done;
1080}
1081
1082static irqreturn_t c_can_isr(int irq, void *dev_id)
1083{
1084	struct net_device *dev = (struct net_device *)dev_id;
1085	struct c_can_priv *priv = netdev_priv(dev);
1086
1087	if (!priv->read_reg(priv, C_CAN_INT_REG))
1088		return IRQ_NONE;
1089
1090	/* disable all interrupts and schedule the NAPI */
1091	c_can_irq_control(priv, false);
1092	napi_schedule(&priv->napi);
1093
1094	return IRQ_HANDLED;
1095}
1096
1097static int c_can_open(struct net_device *dev)
1098{
1099	int err;
1100	struct c_can_priv *priv = netdev_priv(dev);
1101
1102	c_can_pm_runtime_get_sync(priv);
1103	c_can_reset_ram(priv, true);
1104
1105	/* open the can device */
1106	err = open_candev(dev);
1107	if (err) {
1108		netdev_err(dev, "failed to open can device\n");
1109		goto exit_open_fail;
1110	}
1111
1112	/* register interrupt handler */
1113	err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
1114				dev);
1115	if (err < 0) {
1116		netdev_err(dev, "failed to request interrupt\n");
1117		goto exit_irq_fail;
1118	}
1119
1120	/* start the c_can controller */
1121	err = c_can_start(dev);
1122	if (err)
1123		goto exit_start_fail;
1124
1125	can_led_event(dev, CAN_LED_EVENT_OPEN);
1126
1127	napi_enable(&priv->napi);
1128	/* enable status change, error and module interrupts */
1129	c_can_irq_control(priv, true);
1130	netif_start_queue(dev);
1131
1132	return 0;
1133
1134exit_start_fail:
1135	free_irq(dev->irq, dev);
1136exit_irq_fail:
1137	close_candev(dev);
1138exit_open_fail:
1139	c_can_reset_ram(priv, false);
1140	c_can_pm_runtime_put_sync(priv);
1141	return err;
1142}
1143
1144static int c_can_close(struct net_device *dev)
1145{
1146	struct c_can_priv *priv = netdev_priv(dev);
1147
1148	netif_stop_queue(dev);
1149	napi_disable(&priv->napi);
1150	c_can_stop(dev);
1151	free_irq(dev->irq, dev);
1152	close_candev(dev);
1153
1154	c_can_reset_ram(priv, false);
1155	c_can_pm_runtime_put_sync(priv);
1156
1157	can_led_event(dev, CAN_LED_EVENT_STOP);
1158
1159	return 0;
1160}
1161
1162struct net_device *alloc_c_can_dev(void)
1163{
1164	struct net_device *dev;
1165	struct c_can_priv *priv;
1166
1167	dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
1168	if (!dev)
1169		return NULL;
1170
1171	priv = netdev_priv(dev);
1172	netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
1173
1174	priv->dev = dev;
1175	priv->can.bittiming_const = &c_can_bittiming_const;
1176	priv->can.do_set_mode = c_can_set_mode;
1177	priv->can.do_get_berr_counter = c_can_get_berr_counter;
1178	priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1179					CAN_CTRLMODE_LISTENONLY |
1180					CAN_CTRLMODE_BERR_REPORTING;
1181
1182	return dev;
1183}
1184EXPORT_SYMBOL_GPL(alloc_c_can_dev);
1185
1186#ifdef CONFIG_PM
1187int c_can_power_down(struct net_device *dev)
1188{
1189	u32 val;
1190	unsigned long time_out;
1191	struct c_can_priv *priv = netdev_priv(dev);
1192
1193	if (!(dev->flags & IFF_UP))
1194		return 0;
1195
1196	WARN_ON(priv->type != BOSCH_D_CAN);
1197
1198	/* set PDR value so the device goes to power down mode */
1199	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1200	val |= CONTROL_EX_PDR;
1201	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1202
1203	/* Wait for the PDA bit to get set */
1204	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1205	while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1206				time_after(time_out, jiffies))
1207		cpu_relax();
1208
1209	if (time_after(jiffies, time_out))
1210		return -ETIMEDOUT;
1211
1212	c_can_stop(dev);
1213
1214	c_can_reset_ram(priv, false);
1215	c_can_pm_runtime_put_sync(priv);
1216
1217	return 0;
1218}
1219EXPORT_SYMBOL_GPL(c_can_power_down);
1220
1221int c_can_power_up(struct net_device *dev)
1222{
1223	u32 val;
1224	unsigned long time_out;
1225	struct c_can_priv *priv = netdev_priv(dev);
1226	int ret;
1227
1228	if (!(dev->flags & IFF_UP))
1229		return 0;
1230
1231	WARN_ON(priv->type != BOSCH_D_CAN);
1232
1233	c_can_pm_runtime_get_sync(priv);
1234	c_can_reset_ram(priv, true);
1235
1236	/* Clear PDR and INIT bits */
1237	val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
1238	val &= ~CONTROL_EX_PDR;
1239	priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
1240	val = priv->read_reg(priv, C_CAN_CTRL_REG);
1241	val &= ~CONTROL_INIT;
1242	priv->write_reg(priv, C_CAN_CTRL_REG, val);
1243
1244	/* Wait for the PDA bit to get clear */
1245	time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
1246	while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
1247				time_after(time_out, jiffies))
1248		cpu_relax();
1249
1250	if (time_after(jiffies, time_out))
1251		return -ETIMEDOUT;
1252
1253	ret = c_can_start(dev);
1254	if (!ret)
1255		c_can_irq_control(priv, true);
1256
1257	return ret;
1258}
1259EXPORT_SYMBOL_GPL(c_can_power_up);
1260#endif
1261
1262void free_c_can_dev(struct net_device *dev)
1263{
1264	struct c_can_priv *priv = netdev_priv(dev);
1265
1266	netif_napi_del(&priv->napi);
1267	free_candev(dev);
1268}
1269EXPORT_SYMBOL_GPL(free_c_can_dev);
1270
1271static const struct net_device_ops c_can_netdev_ops = {
1272	.ndo_open = c_can_open,
1273	.ndo_stop = c_can_close,
1274	.ndo_start_xmit = c_can_start_xmit,
1275	.ndo_change_mtu = can_change_mtu,
1276};
1277
1278int register_c_can_dev(struct net_device *dev)
1279{
1280	struct c_can_priv *priv = netdev_priv(dev);
1281	int err;
1282
1283	/* Deactivate pins to prevent DRA7 DCAN IP from being
1284	 * stuck in transition when module is disabled.
1285	 * Pins are activated in c_can_start() and deactivated
1286	 * in c_can_stop()
1287	 */
1288	pinctrl_pm_select_sleep_state(dev->dev.parent);
1289
1290	c_can_pm_runtime_enable(priv);
1291
1292	dev->flags |= IFF_ECHO;	/* we support local echo */
1293	dev->netdev_ops = &c_can_netdev_ops;
1294
1295	err = register_candev(dev);
1296	if (err)
1297		c_can_pm_runtime_disable(priv);
1298	else
1299		devm_can_led_init(dev);
1300
1301	return err;
1302}
1303EXPORT_SYMBOL_GPL(register_c_can_dev);
1304
1305void unregister_c_can_dev(struct net_device *dev)
1306{
1307	struct c_can_priv *priv = netdev_priv(dev);
1308
1309	unregister_candev(dev);
1310
1311	c_can_pm_runtime_disable(priv);
1312}
1313EXPORT_SYMBOL_GPL(unregister_c_can_dev);
1314
1315MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
1316MODULE_LICENSE("GPL v2");
1317MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");