Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/**************************************************************************
3 *
4 * Copyright 2009-2023 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include <drm/ttm/ttm_placement.h>
29
30#include "vmwgfx_binding.h"
31#include "vmwgfx_bo.h"
32#include "vmwgfx_drv.h"
33#include "vmwgfx_resource_priv.h"
34
35#define VMW_RES_EVICT_ERR_COUNT 10
36
37/**
38 * vmw_resource_mob_attach - Mark a resource as attached to its backing mob
39 * @res: The resource
40 */
41void vmw_resource_mob_attach(struct vmw_resource *res)
42{
43 struct vmw_bo *gbo = res->guest_memory_bo;
44 struct rb_node **new = &gbo->res_tree.rb_node, *parent = NULL;
45
46 dma_resv_assert_held(gbo->tbo.base.resv);
47 res->used_prio = (res->res_dirty) ? res->func->dirty_prio :
48 res->func->prio;
49
50 while (*new) {
51 struct vmw_resource *this =
52 container_of(*new, struct vmw_resource, mob_node);
53
54 parent = *new;
55 new = (res->guest_memory_offset < this->guest_memory_offset) ?
56 &((*new)->rb_left) : &((*new)->rb_right);
57 }
58
59 rb_link_node(&res->mob_node, parent, new);
60 rb_insert_color(&res->mob_node, &gbo->res_tree);
61
62 vmw_bo_prio_add(gbo, res->used_prio);
63}
64
65/**
66 * vmw_resource_mob_detach - Mark a resource as detached from its backing mob
67 * @res: The resource
68 */
69void vmw_resource_mob_detach(struct vmw_resource *res)
70{
71 struct vmw_bo *gbo = res->guest_memory_bo;
72
73 dma_resv_assert_held(gbo->tbo.base.resv);
74 if (vmw_resource_mob_attached(res)) {
75 rb_erase(&res->mob_node, &gbo->res_tree);
76 RB_CLEAR_NODE(&res->mob_node);
77 vmw_bo_prio_del(gbo, res->used_prio);
78 }
79}
80
81struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
82{
83 kref_get(&res->kref);
84 return res;
85}
86
87struct vmw_resource *
88vmw_resource_reference_unless_doomed(struct vmw_resource *res)
89{
90 return kref_get_unless_zero(&res->kref) ? res : NULL;
91}
92
93/**
94 * vmw_resource_release_id - release a resource id to the id manager.
95 *
96 * @res: Pointer to the resource.
97 *
98 * Release the resource id to the resource id manager and set it to -1
99 */
100void vmw_resource_release_id(struct vmw_resource *res)
101{
102 struct vmw_private *dev_priv = res->dev_priv;
103 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
104
105 spin_lock(&dev_priv->resource_lock);
106 if (res->id != -1)
107 idr_remove(idr, res->id);
108 res->id = -1;
109 spin_unlock(&dev_priv->resource_lock);
110}
111
112static void vmw_resource_release(struct kref *kref)
113{
114 struct vmw_resource *res =
115 container_of(kref, struct vmw_resource, kref);
116 struct vmw_private *dev_priv = res->dev_priv;
117 int id;
118 int ret;
119 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
120
121 spin_lock(&dev_priv->resource_lock);
122 list_del_init(&res->lru_head);
123 spin_unlock(&dev_priv->resource_lock);
124 if (res->guest_memory_bo) {
125 struct ttm_buffer_object *bo = &res->guest_memory_bo->tbo;
126
127 ret = ttm_bo_reserve(bo, false, false, NULL);
128 BUG_ON(ret);
129 if (vmw_resource_mob_attached(res) &&
130 res->func->unbind != NULL) {
131 struct ttm_validate_buffer val_buf;
132
133 val_buf.bo = bo;
134 val_buf.num_shared = 0;
135 res->func->unbind(res, false, &val_buf);
136 }
137 res->guest_memory_size = false;
138 vmw_resource_mob_detach(res);
139 if (res->dirty)
140 res->func->dirty_free(res);
141 if (res->coherent)
142 vmw_bo_dirty_release(res->guest_memory_bo);
143 ttm_bo_unreserve(bo);
144 vmw_user_bo_unref(&res->guest_memory_bo);
145 }
146
147 if (likely(res->hw_destroy != NULL)) {
148 mutex_lock(&dev_priv->binding_mutex);
149 vmw_binding_res_list_kill(&res->binding_head);
150 mutex_unlock(&dev_priv->binding_mutex);
151 res->hw_destroy(res);
152 }
153
154 id = res->id;
155 if (res->res_free != NULL)
156 res->res_free(res);
157 else
158 kfree(res);
159
160 spin_lock(&dev_priv->resource_lock);
161 if (id != -1)
162 idr_remove(idr, id);
163 spin_unlock(&dev_priv->resource_lock);
164}
165
166void vmw_resource_unreference(struct vmw_resource **p_res)
167{
168 struct vmw_resource *res = *p_res;
169
170 *p_res = NULL;
171 kref_put(&res->kref, vmw_resource_release);
172}
173
174
175/**
176 * vmw_resource_alloc_id - release a resource id to the id manager.
177 *
178 * @res: Pointer to the resource.
179 *
180 * Allocate the lowest free resource from the resource manager, and set
181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
182 */
183int vmw_resource_alloc_id(struct vmw_resource *res)
184{
185 struct vmw_private *dev_priv = res->dev_priv;
186 int ret;
187 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
188
189 BUG_ON(res->id != -1);
190
191 idr_preload(GFP_KERNEL);
192 spin_lock(&dev_priv->resource_lock);
193
194 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
195 if (ret >= 0)
196 res->id = ret;
197
198 spin_unlock(&dev_priv->resource_lock);
199 idr_preload_end();
200 return ret < 0 ? ret : 0;
201}
202
203/**
204 * vmw_resource_init - initialize a struct vmw_resource
205 *
206 * @dev_priv: Pointer to a device private struct.
207 * @res: The struct vmw_resource to initialize.
208 * @delay_id: Boolean whether to defer device id allocation until
209 * the first validation.
210 * @res_free: Resource destructor.
211 * @func: Resource function table.
212 */
213int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
214 bool delay_id,
215 void (*res_free) (struct vmw_resource *res),
216 const struct vmw_res_func *func)
217{
218 kref_init(&res->kref);
219 res->hw_destroy = NULL;
220 res->res_free = res_free;
221 res->dev_priv = dev_priv;
222 res->func = func;
223 RB_CLEAR_NODE(&res->mob_node);
224 INIT_LIST_HEAD(&res->lru_head);
225 INIT_LIST_HEAD(&res->binding_head);
226 res->id = -1;
227 res->guest_memory_bo = NULL;
228 res->guest_memory_offset = 0;
229 res->guest_memory_dirty = false;
230 res->res_dirty = false;
231 res->coherent = false;
232 res->used_prio = 3;
233 res->dirty = NULL;
234 if (delay_id)
235 return 0;
236 else
237 return vmw_resource_alloc_id(res);
238}
239
240
241/**
242 * vmw_user_resource_lookup_handle - lookup a struct resource from a
243 * TTM user-space handle and perform basic type checks
244 *
245 * @dev_priv: Pointer to a device private struct
246 * @tfile: Pointer to a struct ttm_object_file identifying the caller
247 * @handle: The TTM user-space handle
248 * @converter: Pointer to an object describing the resource type
249 * @p_res: On successful return the location pointed to will contain
250 * a pointer to a refcounted struct vmw_resource.
251 *
252 * If the handle can't be found or is associated with an incorrect resource
253 * type, -EINVAL will be returned.
254 */
255int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
256 struct ttm_object_file *tfile,
257 uint32_t handle,
258 const struct vmw_user_resource_conv
259 *converter,
260 struct vmw_resource **p_res)
261{
262 struct ttm_base_object *base;
263 struct vmw_resource *res;
264 int ret = -EINVAL;
265
266 base = ttm_base_object_lookup(tfile, handle);
267 if (unlikely(!base))
268 return -EINVAL;
269
270 if (unlikely(ttm_base_object_type(base) != converter->object_type))
271 goto out_bad_resource;
272
273 res = converter->base_obj_to_res(base);
274 kref_get(&res->kref);
275
276 *p_res = res;
277 ret = 0;
278
279out_bad_resource:
280 ttm_base_object_unref(&base);
281
282 return ret;
283}
284
285/*
286 * Helper function that looks either a surface or bo.
287 *
288 * The pointer this pointed at by out_surf and out_buf needs to be null.
289 */
290int vmw_user_lookup_handle(struct vmw_private *dev_priv,
291 struct drm_file *filp,
292 uint32_t handle,
293 struct vmw_surface **out_surf,
294 struct vmw_bo **out_buf)
295{
296 struct ttm_object_file *tfile = vmw_fpriv(filp)->tfile;
297 struct vmw_resource *res;
298 int ret;
299
300 BUG_ON(*out_surf || *out_buf);
301
302 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
303 user_surface_converter,
304 &res);
305 if (!ret) {
306 *out_surf = vmw_res_to_srf(res);
307 return 0;
308 }
309
310 *out_surf = NULL;
311 ret = vmw_user_bo_lookup(filp, handle, out_buf);
312 return ret;
313}
314
315/**
316 * vmw_resource_buf_alloc - Allocate a guest memory buffer for a resource.
317 *
318 * @res: The resource for which to allocate a gbo buffer.
319 * @interruptible: Whether any sleeps during allocation should be
320 * performed while interruptible.
321 */
322static int vmw_resource_buf_alloc(struct vmw_resource *res,
323 bool interruptible)
324{
325 unsigned long size = PFN_ALIGN(res->guest_memory_size);
326 struct vmw_bo *gbo;
327 struct vmw_bo_params bo_params = {
328 .domain = res->func->domain,
329 .busy_domain = res->func->busy_domain,
330 .bo_type = ttm_bo_type_device,
331 .size = res->guest_memory_size,
332 .pin = false
333 };
334 int ret;
335
336 if (likely(res->guest_memory_bo)) {
337 BUG_ON(res->guest_memory_bo->tbo.base.size < size);
338 return 0;
339 }
340
341 ret = vmw_gem_object_create(res->dev_priv, &bo_params, &gbo);
342 if (unlikely(ret != 0))
343 goto out_no_bo;
344
345 res->guest_memory_bo = gbo;
346
347out_no_bo:
348 return ret;
349}
350
351/**
352 * vmw_resource_do_validate - Make a resource up-to-date and visible
353 * to the device.
354 *
355 * @res: The resource to make visible to the device.
356 * @val_buf: Information about a buffer possibly
357 * containing backup data if a bind operation is needed.
358 * @dirtying: Transfer dirty regions.
359 *
360 * On hardware resource shortage, this function returns -EBUSY and
361 * should be retried once resources have been freed up.
362 */
363static int vmw_resource_do_validate(struct vmw_resource *res,
364 struct ttm_validate_buffer *val_buf,
365 bool dirtying)
366{
367 int ret = 0;
368 const struct vmw_res_func *func = res->func;
369
370 if (unlikely(res->id == -1)) {
371 ret = func->create(res);
372 if (unlikely(ret != 0))
373 return ret;
374 }
375
376 if (func->bind &&
377 ((func->needs_guest_memory && !vmw_resource_mob_attached(res) &&
378 val_buf->bo) ||
379 (!func->needs_guest_memory && val_buf->bo))) {
380 ret = func->bind(res, val_buf);
381 if (unlikely(ret != 0))
382 goto out_bind_failed;
383 if (func->needs_guest_memory)
384 vmw_resource_mob_attach(res);
385 }
386
387 /*
388 * Handle the case where the backup mob is marked coherent but
389 * the resource isn't.
390 */
391 if (func->dirty_alloc && vmw_resource_mob_attached(res) &&
392 !res->coherent) {
393 if (res->guest_memory_bo->dirty && !res->dirty) {
394 ret = func->dirty_alloc(res);
395 if (ret)
396 return ret;
397 } else if (!res->guest_memory_bo->dirty && res->dirty) {
398 func->dirty_free(res);
399 }
400 }
401
402 /*
403 * Transfer the dirty regions to the resource and update
404 * the resource.
405 */
406 if (res->dirty) {
407 if (dirtying && !res->res_dirty) {
408 pgoff_t start = res->guest_memory_offset >> PAGE_SHIFT;
409 pgoff_t end = __KERNEL_DIV_ROUND_UP
410 (res->guest_memory_offset + res->guest_memory_size,
411 PAGE_SIZE);
412
413 vmw_bo_dirty_unmap(res->guest_memory_bo, start, end);
414 }
415
416 vmw_bo_dirty_transfer_to_res(res);
417 return func->dirty_sync(res);
418 }
419
420 return 0;
421
422out_bind_failed:
423 func->destroy(res);
424
425 return ret;
426}
427
428/**
429 * vmw_resource_unreserve - Unreserve a resource previously reserved for
430 * command submission.
431 *
432 * @res: Pointer to the struct vmw_resource to unreserve.
433 * @dirty_set: Change dirty status of the resource.
434 * @dirty: When changing dirty status indicates the new status.
435 * @switch_guest_memory: Guest memory buffer has been switched.
436 * @new_guest_memory_bo: Pointer to new guest memory buffer if command submission
437 * switched. May be NULL.
438 * @new_guest_memory_offset: New gbo offset if @switch_guest_memory is true.
439 *
440 * Currently unreserving a resource means putting it back on the device's
441 * resource lru list, so that it can be evicted if necessary.
442 */
443void vmw_resource_unreserve(struct vmw_resource *res,
444 bool dirty_set,
445 bool dirty,
446 bool switch_guest_memory,
447 struct vmw_bo *new_guest_memory_bo,
448 unsigned long new_guest_memory_offset)
449{
450 struct vmw_private *dev_priv = res->dev_priv;
451
452 if (!list_empty(&res->lru_head))
453 return;
454
455 if (switch_guest_memory && new_guest_memory_bo != res->guest_memory_bo) {
456 if (res->guest_memory_bo) {
457 vmw_resource_mob_detach(res);
458 if (res->coherent)
459 vmw_bo_dirty_release(res->guest_memory_bo);
460 vmw_user_bo_unref(&res->guest_memory_bo);
461 }
462
463 if (new_guest_memory_bo) {
464 res->guest_memory_bo = vmw_user_bo_ref(new_guest_memory_bo);
465
466 /*
467 * The validation code should already have added a
468 * dirty tracker here.
469 */
470 WARN_ON(res->coherent && !new_guest_memory_bo->dirty);
471
472 vmw_resource_mob_attach(res);
473 } else {
474 res->guest_memory_bo = NULL;
475 }
476 } else if (switch_guest_memory && res->coherent) {
477 vmw_bo_dirty_release(res->guest_memory_bo);
478 }
479
480 if (switch_guest_memory)
481 res->guest_memory_offset = new_guest_memory_offset;
482
483 if (dirty_set)
484 res->res_dirty = dirty;
485
486 if (!res->func->may_evict || res->id == -1 || res->pin_count)
487 return;
488
489 spin_lock(&dev_priv->resource_lock);
490 list_add_tail(&res->lru_head,
491 &res->dev_priv->res_lru[res->func->res_type]);
492 spin_unlock(&dev_priv->resource_lock);
493}
494
495/**
496 * vmw_resource_check_buffer - Check whether a backup buffer is needed
497 * for a resource and in that case, allocate
498 * one, reserve and validate it.
499 *
500 * @ticket: The ww acquire context to use, or NULL if trylocking.
501 * @res: The resource for which to allocate a backup buffer.
502 * @interruptible: Whether any sleeps during allocation should be
503 * performed while interruptible.
504 * @val_buf: On successful return contains data about the
505 * reserved and validated backup buffer.
506 */
507static int
508vmw_resource_check_buffer(struct ww_acquire_ctx *ticket,
509 struct vmw_resource *res,
510 bool interruptible,
511 struct ttm_validate_buffer *val_buf)
512{
513 struct ttm_operation_ctx ctx = { true, false };
514 struct list_head val_list;
515 bool guest_memory_dirty = false;
516 int ret;
517
518 if (unlikely(!res->guest_memory_bo)) {
519 ret = vmw_resource_buf_alloc(res, interruptible);
520 if (unlikely(ret != 0))
521 return ret;
522 }
523
524 INIT_LIST_HEAD(&val_list);
525 ttm_bo_get(&res->guest_memory_bo->tbo);
526 val_buf->bo = &res->guest_memory_bo->tbo;
527 val_buf->num_shared = 0;
528 list_add_tail(&val_buf->head, &val_list);
529 ret = ttm_eu_reserve_buffers(ticket, &val_list, interruptible, NULL);
530 if (unlikely(ret != 0))
531 goto out_no_reserve;
532
533 if (res->func->needs_guest_memory && !vmw_resource_mob_attached(res))
534 return 0;
535
536 guest_memory_dirty = res->guest_memory_dirty;
537 vmw_bo_placement_set(res->guest_memory_bo, res->func->domain,
538 res->func->busy_domain);
539 ret = ttm_bo_validate(&res->guest_memory_bo->tbo,
540 &res->guest_memory_bo->placement,
541 &ctx);
542
543 if (unlikely(ret != 0))
544 goto out_no_validate;
545
546 return 0;
547
548out_no_validate:
549 ttm_eu_backoff_reservation(ticket, &val_list);
550out_no_reserve:
551 ttm_bo_put(val_buf->bo);
552 val_buf->bo = NULL;
553 if (guest_memory_dirty)
554 vmw_user_bo_unref(&res->guest_memory_bo);
555
556 return ret;
557}
558
559/*
560 * vmw_resource_reserve - Reserve a resource for command submission
561 *
562 * @res: The resource to reserve.
563 *
564 * This function takes the resource off the LRU list and make sure
565 * a guest memory buffer is present for guest-backed resources.
566 * However, the buffer may not be bound to the resource at this
567 * point.
568 *
569 */
570int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
571 bool no_guest_memory)
572{
573 struct vmw_private *dev_priv = res->dev_priv;
574 int ret;
575
576 spin_lock(&dev_priv->resource_lock);
577 list_del_init(&res->lru_head);
578 spin_unlock(&dev_priv->resource_lock);
579
580 if (res->func->needs_guest_memory && !res->guest_memory_bo &&
581 !no_guest_memory) {
582 ret = vmw_resource_buf_alloc(res, interruptible);
583 if (unlikely(ret != 0)) {
584 DRM_ERROR("Failed to allocate a guest memory buffer "
585 "of size %lu. bytes\n",
586 (unsigned long) res->guest_memory_size);
587 return ret;
588 }
589 }
590
591 return 0;
592}
593
594/**
595 * vmw_resource_backoff_reservation - Unreserve and unreference a
596 * guest memory buffer
597 *.
598 * @ticket: The ww acquire ctx used for reservation.
599 * @val_buf: Guest memory buffer information.
600 */
601static void
602vmw_resource_backoff_reservation(struct ww_acquire_ctx *ticket,
603 struct ttm_validate_buffer *val_buf)
604{
605 struct list_head val_list;
606
607 if (likely(val_buf->bo == NULL))
608 return;
609
610 INIT_LIST_HEAD(&val_list);
611 list_add_tail(&val_buf->head, &val_list);
612 ttm_eu_backoff_reservation(ticket, &val_list);
613 ttm_bo_put(val_buf->bo);
614 val_buf->bo = NULL;
615}
616
617/**
618 * vmw_resource_do_evict - Evict a resource, and transfer its data
619 * to a backup buffer.
620 *
621 * @ticket: The ww acquire ticket to use, or NULL if trylocking.
622 * @res: The resource to evict.
623 * @interruptible: Whether to wait interruptible.
624 */
625static int vmw_resource_do_evict(struct ww_acquire_ctx *ticket,
626 struct vmw_resource *res, bool interruptible)
627{
628 struct ttm_validate_buffer val_buf;
629 const struct vmw_res_func *func = res->func;
630 int ret;
631
632 BUG_ON(!func->may_evict);
633
634 val_buf.bo = NULL;
635 val_buf.num_shared = 0;
636 ret = vmw_resource_check_buffer(ticket, res, interruptible, &val_buf);
637 if (unlikely(ret != 0))
638 return ret;
639
640 if (unlikely(func->unbind != NULL &&
641 (!func->needs_guest_memory || vmw_resource_mob_attached(res)))) {
642 ret = func->unbind(res, res->res_dirty, &val_buf);
643 if (unlikely(ret != 0))
644 goto out_no_unbind;
645 vmw_resource_mob_detach(res);
646 }
647 ret = func->destroy(res);
648 res->guest_memory_dirty = true;
649 res->res_dirty = false;
650out_no_unbind:
651 vmw_resource_backoff_reservation(ticket, &val_buf);
652
653 return ret;
654}
655
656
657/**
658 * vmw_resource_validate - Make a resource up-to-date and visible
659 * to the device.
660 * @res: The resource to make visible to the device.
661 * @intr: Perform waits interruptible if possible.
662 * @dirtying: Pending GPU operation will dirty the resource
663 *
664 * On successful return, any backup DMA buffer pointed to by @res->backup will
665 * be reserved and validated.
666 * On hardware resource shortage, this function will repeatedly evict
667 * resources of the same type until the validation succeeds.
668 *
669 * Return: Zero on success, -ERESTARTSYS if interrupted, negative error code
670 * on failure.
671 */
672int vmw_resource_validate(struct vmw_resource *res, bool intr,
673 bool dirtying)
674{
675 int ret;
676 struct vmw_resource *evict_res;
677 struct vmw_private *dev_priv = res->dev_priv;
678 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
679 struct ttm_validate_buffer val_buf;
680 unsigned err_count = 0;
681
682 if (!res->func->create)
683 return 0;
684
685 val_buf.bo = NULL;
686 val_buf.num_shared = 0;
687 if (res->guest_memory_bo)
688 val_buf.bo = &res->guest_memory_bo->tbo;
689 do {
690 ret = vmw_resource_do_validate(res, &val_buf, dirtying);
691 if (likely(ret != -EBUSY))
692 break;
693
694 spin_lock(&dev_priv->resource_lock);
695 if (list_empty(lru_list) || !res->func->may_evict) {
696 DRM_ERROR("Out of device device resources "
697 "for %s.\n", res->func->type_name);
698 ret = -EBUSY;
699 spin_unlock(&dev_priv->resource_lock);
700 break;
701 }
702
703 evict_res = vmw_resource_reference
704 (list_first_entry(lru_list, struct vmw_resource,
705 lru_head));
706 list_del_init(&evict_res->lru_head);
707
708 spin_unlock(&dev_priv->resource_lock);
709
710 /* Trylock backup buffers with a NULL ticket. */
711 ret = vmw_resource_do_evict(NULL, evict_res, intr);
712 if (unlikely(ret != 0)) {
713 spin_lock(&dev_priv->resource_lock);
714 list_add_tail(&evict_res->lru_head, lru_list);
715 spin_unlock(&dev_priv->resource_lock);
716 if (ret == -ERESTARTSYS ||
717 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
718 vmw_resource_unreference(&evict_res);
719 goto out_no_validate;
720 }
721 }
722
723 vmw_resource_unreference(&evict_res);
724 } while (1);
725
726 if (unlikely(ret != 0))
727 goto out_no_validate;
728 else if (!res->func->needs_guest_memory && res->guest_memory_bo) {
729 WARN_ON_ONCE(vmw_resource_mob_attached(res));
730 vmw_user_bo_unref(&res->guest_memory_bo);
731 }
732
733 return 0;
734
735out_no_validate:
736 return ret;
737}
738
739
740/**
741 * vmw_resource_unbind_list
742 *
743 * @vbo: Pointer to the current backing MOB.
744 *
745 * Evicts the Guest Backed hardware resource if the backup
746 * buffer is being moved out of MOB memory.
747 * Note that this function will not race with the resource
748 * validation code, since resource validation and eviction
749 * both require the backup buffer to be reserved.
750 */
751void vmw_resource_unbind_list(struct vmw_bo *vbo)
752{
753 struct ttm_validate_buffer val_buf = {
754 .bo = &vbo->tbo,
755 .num_shared = 0
756 };
757
758 dma_resv_assert_held(vbo->tbo.base.resv);
759 while (!RB_EMPTY_ROOT(&vbo->res_tree)) {
760 struct rb_node *node = vbo->res_tree.rb_node;
761 struct vmw_resource *res =
762 container_of(node, struct vmw_resource, mob_node);
763
764 if (!WARN_ON_ONCE(!res->func->unbind))
765 (void) res->func->unbind(res, res->res_dirty, &val_buf);
766
767 res->guest_memory_size = true;
768 res->res_dirty = false;
769 vmw_resource_mob_detach(res);
770 }
771
772 (void) ttm_bo_wait(&vbo->tbo, false, false);
773}
774
775
776/**
777 * vmw_query_readback_all - Read back cached query states
778 *
779 * @dx_query_mob: Buffer containing the DX query MOB
780 *
781 * Read back cached states from the device if they exist. This function
782 * assumes binding_mutex is held.
783 */
784int vmw_query_readback_all(struct vmw_bo *dx_query_mob)
785{
786 struct vmw_resource *dx_query_ctx;
787 struct vmw_private *dev_priv;
788 struct {
789 SVGA3dCmdHeader header;
790 SVGA3dCmdDXReadbackAllQuery body;
791 } *cmd;
792
793
794 /* No query bound, so do nothing */
795 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
796 return 0;
797
798 dx_query_ctx = dx_query_mob->dx_query_ctx;
799 dev_priv = dx_query_ctx->dev_priv;
800
801 cmd = VMW_CMD_CTX_RESERVE(dev_priv, sizeof(*cmd), dx_query_ctx->id);
802 if (unlikely(cmd == NULL))
803 return -ENOMEM;
804
805 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
806 cmd->header.size = sizeof(cmd->body);
807 cmd->body.cid = dx_query_ctx->id;
808
809 vmw_cmd_commit(dev_priv, sizeof(*cmd));
810
811 /* Triggers a rebind the next time affected context is bound */
812 dx_query_mob->dx_query_ctx = NULL;
813
814 return 0;
815}
816
817
818
819/**
820 * vmw_query_move_notify - Read back cached query states
821 *
822 * @bo: The TTM buffer object about to move.
823 * @old_mem: The memory region @bo is moving from.
824 * @new_mem: The memory region @bo is moving to.
825 *
826 * Called before the query MOB is swapped out to read back cached query
827 * states from the device.
828 */
829void vmw_query_move_notify(struct ttm_buffer_object *bo,
830 struct ttm_resource *old_mem,
831 struct ttm_resource *new_mem)
832{
833 struct vmw_bo *dx_query_mob;
834 struct ttm_device *bdev = bo->bdev;
835 struct vmw_private *dev_priv = vmw_priv_from_ttm(bdev);
836
837 mutex_lock(&dev_priv->binding_mutex);
838
839 /* If BO is being moved from MOB to system memory */
840 if (old_mem &&
841 new_mem->mem_type == TTM_PL_SYSTEM &&
842 old_mem->mem_type == VMW_PL_MOB) {
843 struct vmw_fence_obj *fence;
844
845 dx_query_mob = to_vmw_bo(&bo->base);
846 if (!dx_query_mob || !dx_query_mob->dx_query_ctx) {
847 mutex_unlock(&dev_priv->binding_mutex);
848 return;
849 }
850
851 (void) vmw_query_readback_all(dx_query_mob);
852 mutex_unlock(&dev_priv->binding_mutex);
853
854 /* Create a fence and attach the BO to it */
855 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
856 vmw_bo_fence_single(bo, fence);
857
858 if (fence != NULL)
859 vmw_fence_obj_unreference(&fence);
860
861 (void) ttm_bo_wait(bo, false, false);
862 } else
863 mutex_unlock(&dev_priv->binding_mutex);
864}
865
866/**
867 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
868 *
869 * @res: The resource being queried.
870 */
871bool vmw_resource_needs_backup(const struct vmw_resource *res)
872{
873 return res->func->needs_guest_memory;
874}
875
876/**
877 * vmw_resource_evict_type - Evict all resources of a specific type
878 *
879 * @dev_priv: Pointer to a device private struct
880 * @type: The resource type to evict
881 *
882 * To avoid thrashing starvation or as part of the hibernation sequence,
883 * try to evict all evictable resources of a specific type.
884 */
885static void vmw_resource_evict_type(struct vmw_private *dev_priv,
886 enum vmw_res_type type)
887{
888 struct list_head *lru_list = &dev_priv->res_lru[type];
889 struct vmw_resource *evict_res;
890 unsigned err_count = 0;
891 int ret;
892 struct ww_acquire_ctx ticket;
893
894 do {
895 spin_lock(&dev_priv->resource_lock);
896
897 if (list_empty(lru_list))
898 goto out_unlock;
899
900 evict_res = vmw_resource_reference(
901 list_first_entry(lru_list, struct vmw_resource,
902 lru_head));
903 list_del_init(&evict_res->lru_head);
904 spin_unlock(&dev_priv->resource_lock);
905
906 /* Wait lock backup buffers with a ticket. */
907 ret = vmw_resource_do_evict(&ticket, evict_res, false);
908 if (unlikely(ret != 0)) {
909 spin_lock(&dev_priv->resource_lock);
910 list_add_tail(&evict_res->lru_head, lru_list);
911 spin_unlock(&dev_priv->resource_lock);
912 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
913 vmw_resource_unreference(&evict_res);
914 return;
915 }
916 }
917
918 vmw_resource_unreference(&evict_res);
919 } while (1);
920
921out_unlock:
922 spin_unlock(&dev_priv->resource_lock);
923}
924
925/**
926 * vmw_resource_evict_all - Evict all evictable resources
927 *
928 * @dev_priv: Pointer to a device private struct
929 *
930 * To avoid thrashing starvation or as part of the hibernation sequence,
931 * evict all evictable resources. In particular this means that all
932 * guest-backed resources that are registered with the device are
933 * evicted and the OTable becomes clean.
934 */
935void vmw_resource_evict_all(struct vmw_private *dev_priv)
936{
937 enum vmw_res_type type;
938
939 mutex_lock(&dev_priv->cmdbuf_mutex);
940
941 for (type = 0; type < vmw_res_max; ++type)
942 vmw_resource_evict_type(dev_priv, type);
943
944 mutex_unlock(&dev_priv->cmdbuf_mutex);
945}
946
947/*
948 * vmw_resource_pin - Add a pin reference on a resource
949 *
950 * @res: The resource to add a pin reference on
951 *
952 * This function adds a pin reference, and if needed validates the resource.
953 * Having a pin reference means that the resource can never be evicted, and
954 * its id will never change as long as there is a pin reference.
955 * This function returns 0 on success and a negative error code on failure.
956 */
957int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
958{
959 struct ttm_operation_ctx ctx = { interruptible, false };
960 struct vmw_private *dev_priv = res->dev_priv;
961 int ret;
962
963 mutex_lock(&dev_priv->cmdbuf_mutex);
964 ret = vmw_resource_reserve(res, interruptible, false);
965 if (ret)
966 goto out_no_reserve;
967
968 if (res->pin_count == 0) {
969 struct vmw_bo *vbo = NULL;
970
971 if (res->guest_memory_bo) {
972 vbo = res->guest_memory_bo;
973
974 ret = ttm_bo_reserve(&vbo->tbo, interruptible, false, NULL);
975 if (ret)
976 goto out_no_validate;
977 if (!vbo->tbo.pin_count) {
978 vmw_bo_placement_set(vbo,
979 res->func->domain,
980 res->func->busy_domain);
981 ret = ttm_bo_validate
982 (&vbo->tbo,
983 &vbo->placement,
984 &ctx);
985 if (ret) {
986 ttm_bo_unreserve(&vbo->tbo);
987 goto out_no_validate;
988 }
989 }
990
991 /* Do we really need to pin the MOB as well? */
992 vmw_bo_pin_reserved(vbo, true);
993 }
994 ret = vmw_resource_validate(res, interruptible, true);
995 if (vbo)
996 ttm_bo_unreserve(&vbo->tbo);
997 if (ret)
998 goto out_no_validate;
999 }
1000 res->pin_count++;
1001
1002out_no_validate:
1003 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
1004out_no_reserve:
1005 mutex_unlock(&dev_priv->cmdbuf_mutex);
1006
1007 return ret;
1008}
1009
1010/**
1011 * vmw_resource_unpin - Remove a pin reference from a resource
1012 *
1013 * @res: The resource to remove a pin reference from
1014 *
1015 * Having a pin reference means that the resource can never be evicted, and
1016 * its id will never change as long as there is a pin reference.
1017 */
1018void vmw_resource_unpin(struct vmw_resource *res)
1019{
1020 struct vmw_private *dev_priv = res->dev_priv;
1021 int ret;
1022
1023 mutex_lock(&dev_priv->cmdbuf_mutex);
1024
1025 ret = vmw_resource_reserve(res, false, true);
1026 WARN_ON(ret);
1027
1028 WARN_ON(res->pin_count == 0);
1029 if (--res->pin_count == 0 && res->guest_memory_bo) {
1030 struct vmw_bo *vbo = res->guest_memory_bo;
1031
1032 (void) ttm_bo_reserve(&vbo->tbo, false, false, NULL);
1033 vmw_bo_pin_reserved(vbo, false);
1034 ttm_bo_unreserve(&vbo->tbo);
1035 }
1036
1037 vmw_resource_unreserve(res, false, false, false, NULL, 0UL);
1038
1039 mutex_unlock(&dev_priv->cmdbuf_mutex);
1040}
1041
1042/**
1043 * vmw_res_type - Return the resource type
1044 *
1045 * @res: Pointer to the resource
1046 */
1047enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1048{
1049 return res->func->res_type;
1050}
1051
1052/**
1053 * vmw_resource_dirty_update - Update a resource's dirty tracker with a
1054 * sequential range of touched backing store memory.
1055 * @res: The resource.
1056 * @start: The first page touched.
1057 * @end: The last page touched + 1.
1058 */
1059void vmw_resource_dirty_update(struct vmw_resource *res, pgoff_t start,
1060 pgoff_t end)
1061{
1062 if (res->dirty)
1063 res->func->dirty_range_add(res, start << PAGE_SHIFT,
1064 end << PAGE_SHIFT);
1065}
1066
1067/**
1068 * vmw_resources_clean - Clean resources intersecting a mob range
1069 * @vbo: The mob buffer object
1070 * @start: The mob page offset starting the range
1071 * @end: The mob page offset ending the range
1072 * @num_prefault: Returns how many pages including the first have been
1073 * cleaned and are ok to prefault
1074 */
1075int vmw_resources_clean(struct vmw_bo *vbo, pgoff_t start,
1076 pgoff_t end, pgoff_t *num_prefault)
1077{
1078 struct rb_node *cur = vbo->res_tree.rb_node;
1079 struct vmw_resource *found = NULL;
1080 unsigned long res_start = start << PAGE_SHIFT;
1081 unsigned long res_end = end << PAGE_SHIFT;
1082 unsigned long last_cleaned = 0;
1083
1084 /*
1085 * Find the resource with lowest backup_offset that intersects the
1086 * range.
1087 */
1088 while (cur) {
1089 struct vmw_resource *cur_res =
1090 container_of(cur, struct vmw_resource, mob_node);
1091
1092 if (cur_res->guest_memory_offset >= res_end) {
1093 cur = cur->rb_left;
1094 } else if (cur_res->guest_memory_offset + cur_res->guest_memory_size <=
1095 res_start) {
1096 cur = cur->rb_right;
1097 } else {
1098 found = cur_res;
1099 cur = cur->rb_left;
1100 /* Continue to look for resources with lower offsets */
1101 }
1102 }
1103
1104 /*
1105 * In order of increasing guest_memory_offset, clean dirty resources
1106 * intersecting the range.
1107 */
1108 while (found) {
1109 if (found->res_dirty) {
1110 int ret;
1111
1112 if (!found->func->clean)
1113 return -EINVAL;
1114
1115 ret = found->func->clean(found);
1116 if (ret)
1117 return ret;
1118
1119 found->res_dirty = false;
1120 }
1121 last_cleaned = found->guest_memory_offset + found->guest_memory_size;
1122 cur = rb_next(&found->mob_node);
1123 if (!cur)
1124 break;
1125
1126 found = container_of(cur, struct vmw_resource, mob_node);
1127 if (found->guest_memory_offset >= res_end)
1128 break;
1129 }
1130
1131 /*
1132 * Set number of pages allowed prefaulting and fence the buffer object
1133 */
1134 *num_prefault = 1;
1135 if (last_cleaned > res_start) {
1136 struct ttm_buffer_object *bo = &vbo->tbo;
1137
1138 *num_prefault = __KERNEL_DIV_ROUND_UP(last_cleaned - res_start,
1139 PAGE_SIZE);
1140 vmw_bo_fence_single(bo, NULL);
1141 }
1142
1143 return 0;
1144}
1/**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include <drm/vmwgfx_drm.h>
30#include <drm/ttm/ttm_object.h>
31#include <drm/ttm/ttm_placement.h>
32#include <drm/drmP.h>
33#include "vmwgfx_resource_priv.h"
34#include "vmwgfx_binding.h"
35
36#define VMW_RES_EVICT_ERR_COUNT 10
37
38struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
41};
42
43struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
46};
47
48static inline struct vmw_dma_buffer *
49vmw_dma_buffer(struct ttm_buffer_object *bo)
50{
51 return container_of(bo, struct vmw_dma_buffer, base);
52}
53
54static inline struct vmw_user_dma_buffer *
55vmw_user_dma_buffer(struct ttm_buffer_object *bo)
56{
57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
59}
60
61struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
62{
63 kref_get(&res->kref);
64 return res;
65}
66
67struct vmw_resource *
68vmw_resource_reference_unless_doomed(struct vmw_resource *res)
69{
70 return kref_get_unless_zero(&res->kref) ? res : NULL;
71}
72
73/**
74 * vmw_resource_release_id - release a resource id to the id manager.
75 *
76 * @res: Pointer to the resource.
77 *
78 * Release the resource id to the resource id manager and set it to -1
79 */
80void vmw_resource_release_id(struct vmw_resource *res)
81{
82 struct vmw_private *dev_priv = res->dev_priv;
83 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
84
85 write_lock(&dev_priv->resource_lock);
86 if (res->id != -1)
87 idr_remove(idr, res->id);
88 res->id = -1;
89 write_unlock(&dev_priv->resource_lock);
90}
91
92static void vmw_resource_release(struct kref *kref)
93{
94 struct vmw_resource *res =
95 container_of(kref, struct vmw_resource, kref);
96 struct vmw_private *dev_priv = res->dev_priv;
97 int id;
98 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
99
100 write_lock(&dev_priv->resource_lock);
101 res->avail = false;
102 list_del_init(&res->lru_head);
103 write_unlock(&dev_priv->resource_lock);
104 if (res->backup) {
105 struct ttm_buffer_object *bo = &res->backup->base;
106
107 ttm_bo_reserve(bo, false, false, NULL);
108 if (!list_empty(&res->mob_head) &&
109 res->func->unbind != NULL) {
110 struct ttm_validate_buffer val_buf;
111
112 val_buf.bo = bo;
113 val_buf.shared = false;
114 res->func->unbind(res, false, &val_buf);
115 }
116 res->backup_dirty = false;
117 list_del_init(&res->mob_head);
118 ttm_bo_unreserve(bo);
119 vmw_dmabuf_unreference(&res->backup);
120 }
121
122 if (likely(res->hw_destroy != NULL)) {
123 mutex_lock(&dev_priv->binding_mutex);
124 vmw_binding_res_list_kill(&res->binding_head);
125 mutex_unlock(&dev_priv->binding_mutex);
126 res->hw_destroy(res);
127 }
128
129 id = res->id;
130 if (res->res_free != NULL)
131 res->res_free(res);
132 else
133 kfree(res);
134
135 write_lock(&dev_priv->resource_lock);
136 if (id != -1)
137 idr_remove(idr, id);
138 write_unlock(&dev_priv->resource_lock);
139}
140
141void vmw_resource_unreference(struct vmw_resource **p_res)
142{
143 struct vmw_resource *res = *p_res;
144
145 *p_res = NULL;
146 kref_put(&res->kref, vmw_resource_release);
147}
148
149
150/**
151 * vmw_resource_alloc_id - release a resource id to the id manager.
152 *
153 * @res: Pointer to the resource.
154 *
155 * Allocate the lowest free resource from the resource manager, and set
156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
157 */
158int vmw_resource_alloc_id(struct vmw_resource *res)
159{
160 struct vmw_private *dev_priv = res->dev_priv;
161 int ret;
162 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
163
164 BUG_ON(res->id != -1);
165
166 idr_preload(GFP_KERNEL);
167 write_lock(&dev_priv->resource_lock);
168
169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 if (ret >= 0)
171 res->id = ret;
172
173 write_unlock(&dev_priv->resource_lock);
174 idr_preload_end();
175 return ret < 0 ? ret : 0;
176}
177
178/**
179 * vmw_resource_init - initialize a struct vmw_resource
180 *
181 * @dev_priv: Pointer to a device private struct.
182 * @res: The struct vmw_resource to initialize.
183 * @obj_type: Resource object type.
184 * @delay_id: Boolean whether to defer device id allocation until
185 * the first validation.
186 * @res_free: Resource destructor.
187 * @func: Resource function table.
188 */
189int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 bool delay_id,
191 void (*res_free) (struct vmw_resource *res),
192 const struct vmw_res_func *func)
193{
194 kref_init(&res->kref);
195 res->hw_destroy = NULL;
196 res->res_free = res_free;
197 res->avail = false;
198 res->dev_priv = dev_priv;
199 res->func = func;
200 INIT_LIST_HEAD(&res->lru_head);
201 INIT_LIST_HEAD(&res->mob_head);
202 INIT_LIST_HEAD(&res->binding_head);
203 res->id = -1;
204 res->backup = NULL;
205 res->backup_offset = 0;
206 res->backup_dirty = false;
207 res->res_dirty = false;
208 if (delay_id)
209 return 0;
210 else
211 return vmw_resource_alloc_id(res);
212}
213
214/**
215 * vmw_resource_activate
216 *
217 * @res: Pointer to the newly created resource
218 * @hw_destroy: Destroy function. NULL if none.
219 *
220 * Activate a resource after the hardware has been made aware of it.
221 * Set tye destroy function to @destroy. Typically this frees the
222 * resource and destroys the hardware resources associated with it.
223 * Activate basically means that the function vmw_resource_lookup will
224 * find it.
225 */
226void vmw_resource_activate(struct vmw_resource *res,
227 void (*hw_destroy) (struct vmw_resource *))
228{
229 struct vmw_private *dev_priv = res->dev_priv;
230
231 write_lock(&dev_priv->resource_lock);
232 res->avail = true;
233 res->hw_destroy = hw_destroy;
234 write_unlock(&dev_priv->resource_lock);
235}
236
237/**
238 * vmw_user_resource_lookup_handle - lookup a struct resource from a
239 * TTM user-space handle and perform basic type checks
240 *
241 * @dev_priv: Pointer to a device private struct
242 * @tfile: Pointer to a struct ttm_object_file identifying the caller
243 * @handle: The TTM user-space handle
244 * @converter: Pointer to an object describing the resource type
245 * @p_res: On successful return the location pointed to will contain
246 * a pointer to a refcounted struct vmw_resource.
247 *
248 * If the handle can't be found or is associated with an incorrect resource
249 * type, -EINVAL will be returned.
250 */
251int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 struct ttm_object_file *tfile,
253 uint32_t handle,
254 const struct vmw_user_resource_conv
255 *converter,
256 struct vmw_resource **p_res)
257{
258 struct ttm_base_object *base;
259 struct vmw_resource *res;
260 int ret = -EINVAL;
261
262 base = ttm_base_object_lookup(tfile, handle);
263 if (unlikely(base == NULL))
264 return -EINVAL;
265
266 if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 goto out_bad_resource;
268
269 res = converter->base_obj_to_res(base);
270
271 read_lock(&dev_priv->resource_lock);
272 if (!res->avail || res->res_free != converter->res_free) {
273 read_unlock(&dev_priv->resource_lock);
274 goto out_bad_resource;
275 }
276
277 kref_get(&res->kref);
278 read_unlock(&dev_priv->resource_lock);
279
280 *p_res = res;
281 ret = 0;
282
283out_bad_resource:
284 ttm_base_object_unref(&base);
285
286 return ret;
287}
288
289/**
290 * Helper function that looks either a surface or dmabuf.
291 *
292 * The pointer this pointed at by out_surf and out_buf needs to be null.
293 */
294int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 struct vmw_surface **out_surf,
298 struct vmw_dma_buffer **out_buf)
299{
300 struct vmw_resource *res;
301 int ret;
302
303 BUG_ON(*out_surf || *out_buf);
304
305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 user_surface_converter,
307 &res);
308 if (!ret) {
309 *out_surf = vmw_res_to_srf(res);
310 return 0;
311 }
312
313 *out_surf = NULL;
314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 return ret;
316}
317
318/**
319 * Buffer management.
320 */
321
322/**
323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
324 *
325 * @dev_priv: Pointer to a struct vmw_private identifying the device.
326 * @size: The requested buffer size.
327 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
328 */
329static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 bool user)
331{
332 static size_t struct_size, user_struct_size;
333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
335
336 if (unlikely(struct_size == 0)) {
337 size_t backend_size = ttm_round_pot(vmw_tt_size);
338
339 struct_size = backend_size +
340 ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 user_struct_size = backend_size +
342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
343 }
344
345 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 page_array_size +=
347 ttm_round_pot(num_pages * sizeof(dma_addr_t));
348
349 return ((user) ? user_struct_size : struct_size) +
350 page_array_size;
351}
352
353void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
354{
355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
356
357 vmw_dma_buffer_unmap(vmw_bo);
358 kfree(vmw_bo);
359}
360
361static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
362{
363 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
364
365 vmw_dma_buffer_unmap(&vmw_user_bo->dma);
366 ttm_prime_object_kfree(vmw_user_bo, prime);
367}
368
369int vmw_dmabuf_init(struct vmw_private *dev_priv,
370 struct vmw_dma_buffer *vmw_bo,
371 size_t size, struct ttm_placement *placement,
372 bool interruptible,
373 void (*bo_free) (struct ttm_buffer_object *bo))
374{
375 struct ttm_bo_device *bdev = &dev_priv->bdev;
376 size_t acc_size;
377 int ret;
378 bool user = (bo_free == &vmw_user_dmabuf_destroy);
379
380 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
381
382 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
383 memset(vmw_bo, 0, sizeof(*vmw_bo));
384
385 INIT_LIST_HEAD(&vmw_bo->res_list);
386
387 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
388 ttm_bo_type_device, placement,
389 0, interruptible, acc_size,
390 NULL, NULL, bo_free);
391 return ret;
392}
393
394static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
395{
396 struct vmw_user_dma_buffer *vmw_user_bo;
397 struct ttm_base_object *base = *p_base;
398 struct ttm_buffer_object *bo;
399
400 *p_base = NULL;
401
402 if (unlikely(base == NULL))
403 return;
404
405 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
406 prime.base);
407 bo = &vmw_user_bo->dma.base;
408 ttm_bo_unref(&bo);
409}
410
411static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
412 enum ttm_ref_type ref_type)
413{
414 struct vmw_user_dma_buffer *user_bo;
415 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
416
417 switch (ref_type) {
418 case TTM_REF_SYNCCPU_WRITE:
419 ttm_bo_synccpu_write_release(&user_bo->dma.base);
420 break;
421 default:
422 BUG();
423 }
424}
425
426/**
427 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
428 *
429 * @dev_priv: Pointer to a struct device private.
430 * @tfile: Pointer to a struct ttm_object_file on which to register the user
431 * object.
432 * @size: Size of the dma buffer.
433 * @shareable: Boolean whether the buffer is shareable with other open files.
434 * @handle: Pointer to where the handle value should be assigned.
435 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
436 * should be assigned.
437 */
438int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
439 struct ttm_object_file *tfile,
440 uint32_t size,
441 bool shareable,
442 uint32_t *handle,
443 struct vmw_dma_buffer **p_dma_buf,
444 struct ttm_base_object **p_base)
445{
446 struct vmw_user_dma_buffer *user_bo;
447 struct ttm_buffer_object *tmp;
448 int ret;
449
450 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
451 if (unlikely(!user_bo)) {
452 DRM_ERROR("Failed to allocate a buffer.\n");
453 return -ENOMEM;
454 }
455
456 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
457 (dev_priv->has_mob) ?
458 &vmw_sys_placement :
459 &vmw_vram_sys_placement, true,
460 &vmw_user_dmabuf_destroy);
461 if (unlikely(ret != 0))
462 return ret;
463
464 tmp = ttm_bo_reference(&user_bo->dma.base);
465 ret = ttm_prime_object_init(tfile,
466 size,
467 &user_bo->prime,
468 shareable,
469 ttm_buffer_type,
470 &vmw_user_dmabuf_release,
471 &vmw_user_dmabuf_ref_obj_release);
472 if (unlikely(ret != 0)) {
473 ttm_bo_unref(&tmp);
474 goto out_no_base_object;
475 }
476
477 *p_dma_buf = &user_bo->dma;
478 if (p_base) {
479 *p_base = &user_bo->prime.base;
480 kref_get(&(*p_base)->refcount);
481 }
482 *handle = user_bo->prime.base.hash.key;
483
484out_no_base_object:
485 return ret;
486}
487
488/**
489 * vmw_user_dmabuf_verify_access - verify access permissions on this
490 * buffer object.
491 *
492 * @bo: Pointer to the buffer object being accessed
493 * @tfile: Identifying the caller.
494 */
495int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
496 struct ttm_object_file *tfile)
497{
498 struct vmw_user_dma_buffer *vmw_user_bo;
499
500 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
501 return -EPERM;
502
503 vmw_user_bo = vmw_user_dma_buffer(bo);
504
505 /* Check that the caller has opened the object. */
506 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
507 return 0;
508
509 DRM_ERROR("Could not grant buffer access.\n");
510 return -EPERM;
511}
512
513/**
514 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
515 * access, idling previous GPU operations on the buffer and optionally
516 * blocking it for further command submissions.
517 *
518 * @user_bo: Pointer to the buffer object being grabbed for CPU access
519 * @tfile: Identifying the caller.
520 * @flags: Flags indicating how the grab should be performed.
521 *
522 * A blocking grab will be automatically released when @tfile is closed.
523 */
524static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
525 struct ttm_object_file *tfile,
526 uint32_t flags)
527{
528 struct ttm_buffer_object *bo = &user_bo->dma.base;
529 bool existed;
530 int ret;
531
532 if (flags & drm_vmw_synccpu_allow_cs) {
533 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
534 long lret;
535
536 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
537 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
538 if (!lret)
539 return -EBUSY;
540 else if (lret < 0)
541 return lret;
542 return 0;
543 }
544
545 ret = ttm_bo_synccpu_write_grab
546 (bo, !!(flags & drm_vmw_synccpu_dontblock));
547 if (unlikely(ret != 0))
548 return ret;
549
550 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
551 TTM_REF_SYNCCPU_WRITE, &existed, false);
552 if (ret != 0 || existed)
553 ttm_bo_synccpu_write_release(&user_bo->dma.base);
554
555 return ret;
556}
557
558/**
559 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
560 * and unblock command submission on the buffer if blocked.
561 *
562 * @handle: Handle identifying the buffer object.
563 * @tfile: Identifying the caller.
564 * @flags: Flags indicating the type of release.
565 */
566static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
567 struct ttm_object_file *tfile,
568 uint32_t flags)
569{
570 if (!(flags & drm_vmw_synccpu_allow_cs))
571 return ttm_ref_object_base_unref(tfile, handle,
572 TTM_REF_SYNCCPU_WRITE);
573
574 return 0;
575}
576
577/**
578 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
579 * functionality.
580 *
581 * @dev: Identifies the drm device.
582 * @data: Pointer to the ioctl argument.
583 * @file_priv: Identifies the caller.
584 *
585 * This function checks the ioctl arguments for validity and calls the
586 * relevant synccpu functions.
587 */
588int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
589 struct drm_file *file_priv)
590{
591 struct drm_vmw_synccpu_arg *arg =
592 (struct drm_vmw_synccpu_arg *) data;
593 struct vmw_dma_buffer *dma_buf;
594 struct vmw_user_dma_buffer *user_bo;
595 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
596 struct ttm_base_object *buffer_base;
597 int ret;
598
599 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
600 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
601 drm_vmw_synccpu_dontblock |
602 drm_vmw_synccpu_allow_cs)) != 0) {
603 DRM_ERROR("Illegal synccpu flags.\n");
604 return -EINVAL;
605 }
606
607 switch (arg->op) {
608 case drm_vmw_synccpu_grab:
609 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
610 &buffer_base);
611 if (unlikely(ret != 0))
612 return ret;
613
614 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
615 dma);
616 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
617 vmw_dmabuf_unreference(&dma_buf);
618 ttm_base_object_unref(&buffer_base);
619 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
620 ret != -EBUSY)) {
621 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
622 (unsigned int) arg->handle);
623 return ret;
624 }
625 break;
626 case drm_vmw_synccpu_release:
627 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
628 arg->flags);
629 if (unlikely(ret != 0)) {
630 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
631 (unsigned int) arg->handle);
632 return ret;
633 }
634 break;
635 default:
636 DRM_ERROR("Invalid synccpu operation.\n");
637 return -EINVAL;
638 }
639
640 return 0;
641}
642
643int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
644 struct drm_file *file_priv)
645{
646 struct vmw_private *dev_priv = vmw_priv(dev);
647 union drm_vmw_alloc_dmabuf_arg *arg =
648 (union drm_vmw_alloc_dmabuf_arg *)data;
649 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
650 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
651 struct vmw_dma_buffer *dma_buf;
652 uint32_t handle;
653 int ret;
654
655 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
656 if (unlikely(ret != 0))
657 return ret;
658
659 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
660 req->size, false, &handle, &dma_buf,
661 NULL);
662 if (unlikely(ret != 0))
663 goto out_no_dmabuf;
664
665 rep->handle = handle;
666 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
667 rep->cur_gmr_id = handle;
668 rep->cur_gmr_offset = 0;
669
670 vmw_dmabuf_unreference(&dma_buf);
671
672out_no_dmabuf:
673 ttm_read_unlock(&dev_priv->reservation_sem);
674
675 return ret;
676}
677
678int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
679 struct drm_file *file_priv)
680{
681 struct drm_vmw_unref_dmabuf_arg *arg =
682 (struct drm_vmw_unref_dmabuf_arg *)data;
683
684 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
685 arg->handle,
686 TTM_REF_USAGE);
687}
688
689int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
690 uint32_t handle, struct vmw_dma_buffer **out,
691 struct ttm_base_object **p_base)
692{
693 struct vmw_user_dma_buffer *vmw_user_bo;
694 struct ttm_base_object *base;
695
696 base = ttm_base_object_lookup(tfile, handle);
697 if (unlikely(base == NULL)) {
698 pr_err("Invalid buffer object handle 0x%08lx\n",
699 (unsigned long)handle);
700 return -ESRCH;
701 }
702
703 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
704 ttm_base_object_unref(&base);
705 pr_err("Invalid buffer object handle 0x%08lx\n",
706 (unsigned long)handle);
707 return -EINVAL;
708 }
709
710 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
711 prime.base);
712 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
713 if (p_base)
714 *p_base = base;
715 else
716 ttm_base_object_unref(&base);
717 *out = &vmw_user_bo->dma;
718
719 return 0;
720}
721
722int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
723 struct vmw_dma_buffer *dma_buf,
724 uint32_t *handle)
725{
726 struct vmw_user_dma_buffer *user_bo;
727
728 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
729 return -EINVAL;
730
731 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
732
733 *handle = user_bo->prime.base.hash.key;
734 return ttm_ref_object_add(tfile, &user_bo->prime.base,
735 TTM_REF_USAGE, NULL, false);
736}
737
738/**
739 * vmw_dumb_create - Create a dumb kms buffer
740 *
741 * @file_priv: Pointer to a struct drm_file identifying the caller.
742 * @dev: Pointer to the drm device.
743 * @args: Pointer to a struct drm_mode_create_dumb structure
744 *
745 * This is a driver callback for the core drm create_dumb functionality.
746 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
747 * that the arguments have a different format.
748 */
749int vmw_dumb_create(struct drm_file *file_priv,
750 struct drm_device *dev,
751 struct drm_mode_create_dumb *args)
752{
753 struct vmw_private *dev_priv = vmw_priv(dev);
754 struct vmw_dma_buffer *dma_buf;
755 int ret;
756
757 args->pitch = args->width * ((args->bpp + 7) / 8);
758 args->size = args->pitch * args->height;
759
760 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
761 if (unlikely(ret != 0))
762 return ret;
763
764 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
765 args->size, false, &args->handle,
766 &dma_buf, NULL);
767 if (unlikely(ret != 0))
768 goto out_no_dmabuf;
769
770 vmw_dmabuf_unreference(&dma_buf);
771out_no_dmabuf:
772 ttm_read_unlock(&dev_priv->reservation_sem);
773 return ret;
774}
775
776/**
777 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
778 *
779 * @file_priv: Pointer to a struct drm_file identifying the caller.
780 * @dev: Pointer to the drm device.
781 * @handle: Handle identifying the dumb buffer.
782 * @offset: The address space offset returned.
783 *
784 * This is a driver callback for the core drm dumb_map_offset functionality.
785 */
786int vmw_dumb_map_offset(struct drm_file *file_priv,
787 struct drm_device *dev, uint32_t handle,
788 uint64_t *offset)
789{
790 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
791 struct vmw_dma_buffer *out_buf;
792 int ret;
793
794 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
795 if (ret != 0)
796 return -EINVAL;
797
798 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
799 vmw_dmabuf_unreference(&out_buf);
800 return 0;
801}
802
803/**
804 * vmw_dumb_destroy - Destroy a dumb boffer
805 *
806 * @file_priv: Pointer to a struct drm_file identifying the caller.
807 * @dev: Pointer to the drm device.
808 * @handle: Handle identifying the dumb buffer.
809 *
810 * This is a driver callback for the core drm dumb_destroy functionality.
811 */
812int vmw_dumb_destroy(struct drm_file *file_priv,
813 struct drm_device *dev,
814 uint32_t handle)
815{
816 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
817 handle, TTM_REF_USAGE);
818}
819
820/**
821 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
822 *
823 * @res: The resource for which to allocate a backup buffer.
824 * @interruptible: Whether any sleeps during allocation should be
825 * performed while interruptible.
826 */
827static int vmw_resource_buf_alloc(struct vmw_resource *res,
828 bool interruptible)
829{
830 unsigned long size =
831 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
832 struct vmw_dma_buffer *backup;
833 int ret;
834
835 if (likely(res->backup)) {
836 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
837 return 0;
838 }
839
840 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
841 if (unlikely(!backup))
842 return -ENOMEM;
843
844 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
845 res->func->backup_placement,
846 interruptible,
847 &vmw_dmabuf_bo_free);
848 if (unlikely(ret != 0))
849 goto out_no_dmabuf;
850
851 res->backup = backup;
852
853out_no_dmabuf:
854 return ret;
855}
856
857/**
858 * vmw_resource_do_validate - Make a resource up-to-date and visible
859 * to the device.
860 *
861 * @res: The resource to make visible to the device.
862 * @val_buf: Information about a buffer possibly
863 * containing backup data if a bind operation is needed.
864 *
865 * On hardware resource shortage, this function returns -EBUSY and
866 * should be retried once resources have been freed up.
867 */
868static int vmw_resource_do_validate(struct vmw_resource *res,
869 struct ttm_validate_buffer *val_buf)
870{
871 int ret = 0;
872 const struct vmw_res_func *func = res->func;
873
874 if (unlikely(res->id == -1)) {
875 ret = func->create(res);
876 if (unlikely(ret != 0))
877 return ret;
878 }
879
880 if (func->bind &&
881 ((func->needs_backup && list_empty(&res->mob_head) &&
882 val_buf->bo != NULL) ||
883 (!func->needs_backup && val_buf->bo != NULL))) {
884 ret = func->bind(res, val_buf);
885 if (unlikely(ret != 0))
886 goto out_bind_failed;
887 if (func->needs_backup)
888 list_add_tail(&res->mob_head, &res->backup->res_list);
889 }
890
891 /*
892 * Only do this on write operations, and move to
893 * vmw_resource_unreserve if it can be called after
894 * backup buffers have been unreserved. Otherwise
895 * sort out locking.
896 */
897 res->res_dirty = true;
898
899 return 0;
900
901out_bind_failed:
902 func->destroy(res);
903
904 return ret;
905}
906
907/**
908 * vmw_resource_unreserve - Unreserve a resource previously reserved for
909 * command submission.
910 *
911 * @res: Pointer to the struct vmw_resource to unreserve.
912 * @switch_backup: Backup buffer has been switched.
913 * @new_backup: Pointer to new backup buffer if command submission
914 * switched. May be NULL.
915 * @new_backup_offset: New backup offset if @switch_backup is true.
916 *
917 * Currently unreserving a resource means putting it back on the device's
918 * resource lru list, so that it can be evicted if necessary.
919 */
920void vmw_resource_unreserve(struct vmw_resource *res,
921 bool switch_backup,
922 struct vmw_dma_buffer *new_backup,
923 unsigned long new_backup_offset)
924{
925 struct vmw_private *dev_priv = res->dev_priv;
926
927 if (!list_empty(&res->lru_head))
928 return;
929
930 if (switch_backup && new_backup != res->backup) {
931 if (res->backup) {
932 lockdep_assert_held(&res->backup->base.resv->lock.base);
933 list_del_init(&res->mob_head);
934 vmw_dmabuf_unreference(&res->backup);
935 }
936
937 if (new_backup) {
938 res->backup = vmw_dmabuf_reference(new_backup);
939 lockdep_assert_held(&new_backup->base.resv->lock.base);
940 list_add_tail(&res->mob_head, &new_backup->res_list);
941 } else {
942 res->backup = NULL;
943 }
944 }
945 if (switch_backup)
946 res->backup_offset = new_backup_offset;
947
948 if (!res->func->may_evict || res->id == -1 || res->pin_count)
949 return;
950
951 write_lock(&dev_priv->resource_lock);
952 list_add_tail(&res->lru_head,
953 &res->dev_priv->res_lru[res->func->res_type]);
954 write_unlock(&dev_priv->resource_lock);
955}
956
957/**
958 * vmw_resource_check_buffer - Check whether a backup buffer is needed
959 * for a resource and in that case, allocate
960 * one, reserve and validate it.
961 *
962 * @res: The resource for which to allocate a backup buffer.
963 * @interruptible: Whether any sleeps during allocation should be
964 * performed while interruptible.
965 * @val_buf: On successful return contains data about the
966 * reserved and validated backup buffer.
967 */
968static int
969vmw_resource_check_buffer(struct vmw_resource *res,
970 bool interruptible,
971 struct ttm_validate_buffer *val_buf)
972{
973 struct ttm_operation_ctx ctx = { true, false };
974 struct list_head val_list;
975 bool backup_dirty = false;
976 int ret;
977
978 if (unlikely(res->backup == NULL)) {
979 ret = vmw_resource_buf_alloc(res, interruptible);
980 if (unlikely(ret != 0))
981 return ret;
982 }
983
984 INIT_LIST_HEAD(&val_list);
985 val_buf->bo = ttm_bo_reference(&res->backup->base);
986 val_buf->shared = false;
987 list_add_tail(&val_buf->head, &val_list);
988 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
989 if (unlikely(ret != 0))
990 goto out_no_reserve;
991
992 if (res->func->needs_backup && list_empty(&res->mob_head))
993 return 0;
994
995 backup_dirty = res->backup_dirty;
996 ret = ttm_bo_validate(&res->backup->base,
997 res->func->backup_placement,
998 &ctx);
999
1000 if (unlikely(ret != 0))
1001 goto out_no_validate;
1002
1003 return 0;
1004
1005out_no_validate:
1006 ttm_eu_backoff_reservation(NULL, &val_list);
1007out_no_reserve:
1008 ttm_bo_unref(&val_buf->bo);
1009 if (backup_dirty)
1010 vmw_dmabuf_unreference(&res->backup);
1011
1012 return ret;
1013}
1014
1015/**
1016 * vmw_resource_reserve - Reserve a resource for command submission
1017 *
1018 * @res: The resource to reserve.
1019 *
1020 * This function takes the resource off the LRU list and make sure
1021 * a backup buffer is present for guest-backed resources. However,
1022 * the buffer may not be bound to the resource at this point.
1023 *
1024 */
1025int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1026 bool no_backup)
1027{
1028 struct vmw_private *dev_priv = res->dev_priv;
1029 int ret;
1030
1031 write_lock(&dev_priv->resource_lock);
1032 list_del_init(&res->lru_head);
1033 write_unlock(&dev_priv->resource_lock);
1034
1035 if (res->func->needs_backup && res->backup == NULL &&
1036 !no_backup) {
1037 ret = vmw_resource_buf_alloc(res, interruptible);
1038 if (unlikely(ret != 0)) {
1039 DRM_ERROR("Failed to allocate a backup buffer "
1040 "of size %lu. bytes\n",
1041 (unsigned long) res->backup_size);
1042 return ret;
1043 }
1044 }
1045
1046 return 0;
1047}
1048
1049/**
1050 * vmw_resource_backoff_reservation - Unreserve and unreference a
1051 * backup buffer
1052 *.
1053 * @val_buf: Backup buffer information.
1054 */
1055static void
1056vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1057{
1058 struct list_head val_list;
1059
1060 if (likely(val_buf->bo == NULL))
1061 return;
1062
1063 INIT_LIST_HEAD(&val_list);
1064 list_add_tail(&val_buf->head, &val_list);
1065 ttm_eu_backoff_reservation(NULL, &val_list);
1066 ttm_bo_unref(&val_buf->bo);
1067}
1068
1069/**
1070 * vmw_resource_do_evict - Evict a resource, and transfer its data
1071 * to a backup buffer.
1072 *
1073 * @res: The resource to evict.
1074 * @interruptible: Whether to wait interruptible.
1075 */
1076static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1077{
1078 struct ttm_validate_buffer val_buf;
1079 const struct vmw_res_func *func = res->func;
1080 int ret;
1081
1082 BUG_ON(!func->may_evict);
1083
1084 val_buf.bo = NULL;
1085 val_buf.shared = false;
1086 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1087 if (unlikely(ret != 0))
1088 return ret;
1089
1090 if (unlikely(func->unbind != NULL &&
1091 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1092 ret = func->unbind(res, res->res_dirty, &val_buf);
1093 if (unlikely(ret != 0))
1094 goto out_no_unbind;
1095 list_del_init(&res->mob_head);
1096 }
1097 ret = func->destroy(res);
1098 res->backup_dirty = true;
1099 res->res_dirty = false;
1100out_no_unbind:
1101 vmw_resource_backoff_reservation(&val_buf);
1102
1103 return ret;
1104}
1105
1106
1107/**
1108 * vmw_resource_validate - Make a resource up-to-date and visible
1109 * to the device.
1110 *
1111 * @res: The resource to make visible to the device.
1112 *
1113 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1114 * be reserved and validated.
1115 * On hardware resource shortage, this function will repeatedly evict
1116 * resources of the same type until the validation succeeds.
1117 */
1118int vmw_resource_validate(struct vmw_resource *res)
1119{
1120 int ret;
1121 struct vmw_resource *evict_res;
1122 struct vmw_private *dev_priv = res->dev_priv;
1123 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1124 struct ttm_validate_buffer val_buf;
1125 unsigned err_count = 0;
1126
1127 if (!res->func->create)
1128 return 0;
1129
1130 val_buf.bo = NULL;
1131 val_buf.shared = false;
1132 if (res->backup)
1133 val_buf.bo = &res->backup->base;
1134 do {
1135 ret = vmw_resource_do_validate(res, &val_buf);
1136 if (likely(ret != -EBUSY))
1137 break;
1138
1139 write_lock(&dev_priv->resource_lock);
1140 if (list_empty(lru_list) || !res->func->may_evict) {
1141 DRM_ERROR("Out of device device resources "
1142 "for %s.\n", res->func->type_name);
1143 ret = -EBUSY;
1144 write_unlock(&dev_priv->resource_lock);
1145 break;
1146 }
1147
1148 evict_res = vmw_resource_reference
1149 (list_first_entry(lru_list, struct vmw_resource,
1150 lru_head));
1151 list_del_init(&evict_res->lru_head);
1152
1153 write_unlock(&dev_priv->resource_lock);
1154
1155 ret = vmw_resource_do_evict(evict_res, true);
1156 if (unlikely(ret != 0)) {
1157 write_lock(&dev_priv->resource_lock);
1158 list_add_tail(&evict_res->lru_head, lru_list);
1159 write_unlock(&dev_priv->resource_lock);
1160 if (ret == -ERESTARTSYS ||
1161 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1162 vmw_resource_unreference(&evict_res);
1163 goto out_no_validate;
1164 }
1165 }
1166
1167 vmw_resource_unreference(&evict_res);
1168 } while (1);
1169
1170 if (unlikely(ret != 0))
1171 goto out_no_validate;
1172 else if (!res->func->needs_backup && res->backup) {
1173 list_del_init(&res->mob_head);
1174 vmw_dmabuf_unreference(&res->backup);
1175 }
1176
1177 return 0;
1178
1179out_no_validate:
1180 return ret;
1181}
1182
1183/**
1184 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1185 * object without unreserving it.
1186 *
1187 * @bo: Pointer to the struct ttm_buffer_object to fence.
1188 * @fence: Pointer to the fence. If NULL, this function will
1189 * insert a fence into the command stream..
1190 *
1191 * Contrary to the ttm_eu version of this function, it takes only
1192 * a single buffer object instead of a list, and it also doesn't
1193 * unreserve the buffer object, which needs to be done separately.
1194 */
1195void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1196 struct vmw_fence_obj *fence)
1197{
1198 struct ttm_bo_device *bdev = bo->bdev;
1199
1200 struct vmw_private *dev_priv =
1201 container_of(bdev, struct vmw_private, bdev);
1202
1203 if (fence == NULL) {
1204 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1205 reservation_object_add_excl_fence(bo->resv, &fence->base);
1206 dma_fence_put(&fence->base);
1207 } else
1208 reservation_object_add_excl_fence(bo->resv, &fence->base);
1209}
1210
1211/**
1212 * vmw_resource_move_notify - TTM move_notify_callback
1213 *
1214 * @bo: The TTM buffer object about to move.
1215 * @mem: The struct ttm_mem_reg indicating to what memory
1216 * region the move is taking place.
1217 *
1218 * Evicts the Guest Backed hardware resource if the backup
1219 * buffer is being moved out of MOB memory.
1220 * Note that this function should not race with the resource
1221 * validation code as long as it accesses only members of struct
1222 * resource that remain static while bo::res is !NULL and
1223 * while we have @bo reserved. struct resource::backup is *not* a
1224 * static member. The resource validation code will take care
1225 * to set @bo::res to NULL, while having @bo reserved when the
1226 * buffer is no longer bound to the resource, so @bo:res can be
1227 * used to determine whether there is a need to unbind and whether
1228 * it is safe to unbind.
1229 */
1230void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1231 struct ttm_mem_reg *mem)
1232{
1233 struct vmw_dma_buffer *dma_buf;
1234
1235 if (mem == NULL)
1236 return;
1237
1238 if (bo->destroy != vmw_dmabuf_bo_free &&
1239 bo->destroy != vmw_user_dmabuf_destroy)
1240 return;
1241
1242 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1243
1244 /*
1245 * Kill any cached kernel maps before move. An optimization could
1246 * be to do this iff source or destination memory type is VRAM.
1247 */
1248 vmw_dma_buffer_unmap(dma_buf);
1249
1250 if (mem->mem_type != VMW_PL_MOB) {
1251 struct vmw_resource *res, *n;
1252 struct ttm_validate_buffer val_buf;
1253
1254 val_buf.bo = bo;
1255 val_buf.shared = false;
1256
1257 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1258
1259 if (unlikely(res->func->unbind == NULL))
1260 continue;
1261
1262 (void) res->func->unbind(res, true, &val_buf);
1263 res->backup_dirty = true;
1264 res->res_dirty = false;
1265 list_del_init(&res->mob_head);
1266 }
1267
1268 (void) ttm_bo_wait(bo, false, false);
1269 }
1270}
1271
1272
1273/**
1274 * vmw_resource_swap_notify - swapout notify callback.
1275 *
1276 * @bo: The buffer object to be swapped out.
1277 */
1278void vmw_resource_swap_notify(struct ttm_buffer_object *bo)
1279{
1280 if (bo->destroy != vmw_dmabuf_bo_free &&
1281 bo->destroy != vmw_user_dmabuf_destroy)
1282 return;
1283
1284 /* Kill any cached kernel maps before swapout */
1285 vmw_dma_buffer_unmap(vmw_dma_buffer(bo));
1286}
1287
1288
1289/**
1290 * vmw_query_readback_all - Read back cached query states
1291 *
1292 * @dx_query_mob: Buffer containing the DX query MOB
1293 *
1294 * Read back cached states from the device if they exist. This function
1295 * assumings binding_mutex is held.
1296 */
1297int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1298{
1299 struct vmw_resource *dx_query_ctx;
1300 struct vmw_private *dev_priv;
1301 struct {
1302 SVGA3dCmdHeader header;
1303 SVGA3dCmdDXReadbackAllQuery body;
1304 } *cmd;
1305
1306
1307 /* No query bound, so do nothing */
1308 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1309 return 0;
1310
1311 dx_query_ctx = dx_query_mob->dx_query_ctx;
1312 dev_priv = dx_query_ctx->dev_priv;
1313
1314 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1315 if (unlikely(cmd == NULL)) {
1316 DRM_ERROR("Failed reserving FIFO space for "
1317 "query MOB read back.\n");
1318 return -ENOMEM;
1319 }
1320
1321 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1322 cmd->header.size = sizeof(cmd->body);
1323 cmd->body.cid = dx_query_ctx->id;
1324
1325 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1326
1327 /* Triggers a rebind the next time affected context is bound */
1328 dx_query_mob->dx_query_ctx = NULL;
1329
1330 return 0;
1331}
1332
1333
1334
1335/**
1336 * vmw_query_move_notify - Read back cached query states
1337 *
1338 * @bo: The TTM buffer object about to move.
1339 * @mem: The memory region @bo is moving to.
1340 *
1341 * Called before the query MOB is swapped out to read back cached query
1342 * states from the device.
1343 */
1344void vmw_query_move_notify(struct ttm_buffer_object *bo,
1345 struct ttm_mem_reg *mem)
1346{
1347 struct vmw_dma_buffer *dx_query_mob;
1348 struct ttm_bo_device *bdev = bo->bdev;
1349 struct vmw_private *dev_priv;
1350
1351
1352 dev_priv = container_of(bdev, struct vmw_private, bdev);
1353
1354 mutex_lock(&dev_priv->binding_mutex);
1355
1356 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1357 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1358 mutex_unlock(&dev_priv->binding_mutex);
1359 return;
1360 }
1361
1362 /* If BO is being moved from MOB to system memory */
1363 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1364 struct vmw_fence_obj *fence;
1365
1366 (void) vmw_query_readback_all(dx_query_mob);
1367 mutex_unlock(&dev_priv->binding_mutex);
1368
1369 /* Create a fence and attach the BO to it */
1370 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1371 vmw_fence_single_bo(bo, fence);
1372
1373 if (fence != NULL)
1374 vmw_fence_obj_unreference(&fence);
1375
1376 (void) ttm_bo_wait(bo, false, false);
1377 } else
1378 mutex_unlock(&dev_priv->binding_mutex);
1379
1380}
1381
1382/**
1383 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1384 *
1385 * @res: The resource being queried.
1386 */
1387bool vmw_resource_needs_backup(const struct vmw_resource *res)
1388{
1389 return res->func->needs_backup;
1390}
1391
1392/**
1393 * vmw_resource_evict_type - Evict all resources of a specific type
1394 *
1395 * @dev_priv: Pointer to a device private struct
1396 * @type: The resource type to evict
1397 *
1398 * To avoid thrashing starvation or as part of the hibernation sequence,
1399 * try to evict all evictable resources of a specific type.
1400 */
1401static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1402 enum vmw_res_type type)
1403{
1404 struct list_head *lru_list = &dev_priv->res_lru[type];
1405 struct vmw_resource *evict_res;
1406 unsigned err_count = 0;
1407 int ret;
1408
1409 do {
1410 write_lock(&dev_priv->resource_lock);
1411
1412 if (list_empty(lru_list))
1413 goto out_unlock;
1414
1415 evict_res = vmw_resource_reference(
1416 list_first_entry(lru_list, struct vmw_resource,
1417 lru_head));
1418 list_del_init(&evict_res->lru_head);
1419 write_unlock(&dev_priv->resource_lock);
1420
1421 ret = vmw_resource_do_evict(evict_res, false);
1422 if (unlikely(ret != 0)) {
1423 write_lock(&dev_priv->resource_lock);
1424 list_add_tail(&evict_res->lru_head, lru_list);
1425 write_unlock(&dev_priv->resource_lock);
1426 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1427 vmw_resource_unreference(&evict_res);
1428 return;
1429 }
1430 }
1431
1432 vmw_resource_unreference(&evict_res);
1433 } while (1);
1434
1435out_unlock:
1436 write_unlock(&dev_priv->resource_lock);
1437}
1438
1439/**
1440 * vmw_resource_evict_all - Evict all evictable resources
1441 *
1442 * @dev_priv: Pointer to a device private struct
1443 *
1444 * To avoid thrashing starvation or as part of the hibernation sequence,
1445 * evict all evictable resources. In particular this means that all
1446 * guest-backed resources that are registered with the device are
1447 * evicted and the OTable becomes clean.
1448 */
1449void vmw_resource_evict_all(struct vmw_private *dev_priv)
1450{
1451 enum vmw_res_type type;
1452
1453 mutex_lock(&dev_priv->cmdbuf_mutex);
1454
1455 for (type = 0; type < vmw_res_max; ++type)
1456 vmw_resource_evict_type(dev_priv, type);
1457
1458 mutex_unlock(&dev_priv->cmdbuf_mutex);
1459}
1460
1461/**
1462 * vmw_resource_pin - Add a pin reference on a resource
1463 *
1464 * @res: The resource to add a pin reference on
1465 *
1466 * This function adds a pin reference, and if needed validates the resource.
1467 * Having a pin reference means that the resource can never be evicted, and
1468 * its id will never change as long as there is a pin reference.
1469 * This function returns 0 on success and a negative error code on failure.
1470 */
1471int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1472{
1473 struct ttm_operation_ctx ctx = { interruptible, false };
1474 struct vmw_private *dev_priv = res->dev_priv;
1475 int ret;
1476
1477 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1478 mutex_lock(&dev_priv->cmdbuf_mutex);
1479 ret = vmw_resource_reserve(res, interruptible, false);
1480 if (ret)
1481 goto out_no_reserve;
1482
1483 if (res->pin_count == 0) {
1484 struct vmw_dma_buffer *vbo = NULL;
1485
1486 if (res->backup) {
1487 vbo = res->backup;
1488
1489 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1490 if (!vbo->pin_count) {
1491 ret = ttm_bo_validate
1492 (&vbo->base,
1493 res->func->backup_placement,
1494 &ctx);
1495 if (ret) {
1496 ttm_bo_unreserve(&vbo->base);
1497 goto out_no_validate;
1498 }
1499 }
1500
1501 /* Do we really need to pin the MOB as well? */
1502 vmw_bo_pin_reserved(vbo, true);
1503 }
1504 ret = vmw_resource_validate(res);
1505 if (vbo)
1506 ttm_bo_unreserve(&vbo->base);
1507 if (ret)
1508 goto out_no_validate;
1509 }
1510 res->pin_count++;
1511
1512out_no_validate:
1513 vmw_resource_unreserve(res, false, NULL, 0UL);
1514out_no_reserve:
1515 mutex_unlock(&dev_priv->cmdbuf_mutex);
1516 ttm_write_unlock(&dev_priv->reservation_sem);
1517
1518 return ret;
1519}
1520
1521/**
1522 * vmw_resource_unpin - Remove a pin reference from a resource
1523 *
1524 * @res: The resource to remove a pin reference from
1525 *
1526 * Having a pin reference means that the resource can never be evicted, and
1527 * its id will never change as long as there is a pin reference.
1528 */
1529void vmw_resource_unpin(struct vmw_resource *res)
1530{
1531 struct vmw_private *dev_priv = res->dev_priv;
1532 int ret;
1533
1534 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1535 mutex_lock(&dev_priv->cmdbuf_mutex);
1536
1537 ret = vmw_resource_reserve(res, false, true);
1538 WARN_ON(ret);
1539
1540 WARN_ON(res->pin_count == 0);
1541 if (--res->pin_count == 0 && res->backup) {
1542 struct vmw_dma_buffer *vbo = res->backup;
1543
1544 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1545 vmw_bo_pin_reserved(vbo, false);
1546 ttm_bo_unreserve(&vbo->base);
1547 }
1548
1549 vmw_resource_unreserve(res, false, NULL, 0UL);
1550
1551 mutex_unlock(&dev_priv->cmdbuf_mutex);
1552 ttm_read_unlock(&dev_priv->reservation_sem);
1553}
1554
1555/**
1556 * vmw_res_type - Return the resource type
1557 *
1558 * @res: Pointer to the resource
1559 */
1560enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1561{
1562 return res->func->res_type;
1563}