Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1#include <linux/delay.h>
   2#include <linux/dmaengine.h>
   3#include <linux/dma-mapping.h>
   4#include <linux/platform_device.h>
   5#include <linux/module.h>
   6#include <linux/of.h>
   7#include <linux/slab.h>
   8#include <linux/of_dma.h>
   9#include <linux/of_irq.h>
  10#include <linux/dmapool.h>
  11#include <linux/interrupt.h>
  12#include <linux/of_address.h>
  13#include <linux/pm_runtime.h>
  14#include "dmaengine.h"
  15
  16#define DESC_TYPE	27
  17#define DESC_TYPE_HOST	0x10
  18#define DESC_TYPE_TEARD	0x13
  19
  20#define TD_DESC_IS_RX	(1 << 16)
  21#define TD_DESC_DMA_NUM	10
  22
  23#define DESC_LENGTH_BITS_NUM	21
  24
  25#define DESC_TYPE_USB	(5 << 26)
  26#define DESC_PD_COMPLETE	(1 << 31)
  27
  28/* DMA engine */
  29#define DMA_TDFDQ	4
  30#define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
  31#define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
  32#define RXHPCRA0		4
  33
  34#define GCR_CHAN_ENABLE		(1 << 31)
  35#define GCR_TEARDOWN		(1 << 30)
  36#define GCR_STARV_RETRY		(1 << 24)
  37#define GCR_DESC_TYPE_HOST	(1 << 14)
  38
  39/* DMA scheduler */
  40#define DMA_SCHED_CTRL		0
  41#define DMA_SCHED_CTRL_EN	(1 << 31)
  42#define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
  43
  44#define SCHED_ENTRY0_CHAN(x)	((x) << 0)
  45#define SCHED_ENTRY0_IS_RX	(1 << 7)
  46
  47#define SCHED_ENTRY1_CHAN(x)	((x) << 8)
  48#define SCHED_ENTRY1_IS_RX	(1 << 15)
  49
  50#define SCHED_ENTRY2_CHAN(x)	((x) << 16)
  51#define SCHED_ENTRY2_IS_RX	(1 << 23)
  52
  53#define SCHED_ENTRY3_CHAN(x)	((x) << 24)
  54#define SCHED_ENTRY3_IS_RX	(1 << 31)
  55
  56/* Queue manager */
  57/* 4 KiB of memory for descriptors, 2 for each endpoint */
  58#define ALLOC_DECS_NUM		128
  59#define DESCS_AREAS		1
  60#define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
  61#define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
  62
  63#define QMGR_LRAM0_BASE		0x80
  64#define QMGR_LRAM_SIZE		0x84
  65#define QMGR_LRAM1_BASE		0x88
  66#define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
  67#define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
  68#define QMGR_MEMCTRL_IDX_SH	16
  69#define QMGR_MEMCTRL_DESC_SH	8
  70
  71#define QMGR_PEND(x)	(0x90 + (x) * 4)
  72
  73#define QMGR_PENDING_SLOT_Q(x)	(x / 32)
  74#define QMGR_PENDING_BIT_Q(x)	(x % 32)
  75
  76#define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
  77#define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
  78#define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
  79#define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
  80
  81/* Packet Descriptor */
  82#define PD2_ZERO_LENGTH		(1 << 19)
  83
  84struct cppi41_channel {
  85	struct dma_chan chan;
  86	struct dma_async_tx_descriptor txd;
  87	struct cppi41_dd *cdd;
  88	struct cppi41_desc *desc;
  89	dma_addr_t desc_phys;
  90	void __iomem *gcr_reg;
  91	int is_tx;
  92	u32 residue;
  93
  94	unsigned int q_num;
  95	unsigned int q_comp_num;
  96	unsigned int port_num;
  97
  98	unsigned td_retry;
  99	unsigned td_queued:1;
 100	unsigned td_seen:1;
 101	unsigned td_desc_seen:1;
 102
 103	struct list_head node;		/* Node for pending list */
 104};
 105
 106struct cppi41_desc {
 107	u32 pd0;
 108	u32 pd1;
 109	u32 pd2;
 110	u32 pd3;
 111	u32 pd4;
 112	u32 pd5;
 113	u32 pd6;
 114	u32 pd7;
 115} __aligned(32);
 116
 117struct chan_queues {
 118	u16 submit;
 119	u16 complete;
 120};
 121
 122struct cppi41_dd {
 123	struct dma_device ddev;
 124
 125	void *qmgr_scratch;
 126	dma_addr_t scratch_phys;
 127
 128	struct cppi41_desc *cd;
 129	dma_addr_t descs_phys;
 130	u32 first_td_desc;
 131	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
 132
 133	void __iomem *ctrl_mem;
 134	void __iomem *sched_mem;
 135	void __iomem *qmgr_mem;
 136	unsigned int irq;
 137	const struct chan_queues *queues_rx;
 138	const struct chan_queues *queues_tx;
 139	struct chan_queues td_queue;
 140	u16 first_completion_queue;
 141	u16 qmgr_num_pend;
 142	u32 n_chans;
 143	u8 platform;
 144
 145	struct list_head pending;	/* Pending queued transfers */
 146	spinlock_t lock;		/* Lock for pending list */
 147
 148	/* context for suspend/resume */
 149	unsigned int dma_tdfdq;
 150
 151	bool is_suspended;
 152};
 153
 154static struct chan_queues am335x_usb_queues_tx[] = {
 155	/* USB0 ENDP 1 */
 156	[ 0] = { .submit = 32, .complete =  93},
 157	[ 1] = { .submit = 34, .complete =  94},
 158	[ 2] = { .submit = 36, .complete =  95},
 159	[ 3] = { .submit = 38, .complete =  96},
 160	[ 4] = { .submit = 40, .complete =  97},
 161	[ 5] = { .submit = 42, .complete =  98},
 162	[ 6] = { .submit = 44, .complete =  99},
 163	[ 7] = { .submit = 46, .complete = 100},
 164	[ 8] = { .submit = 48, .complete = 101},
 165	[ 9] = { .submit = 50, .complete = 102},
 166	[10] = { .submit = 52, .complete = 103},
 167	[11] = { .submit = 54, .complete = 104},
 168	[12] = { .submit = 56, .complete = 105},
 169	[13] = { .submit = 58, .complete = 106},
 170	[14] = { .submit = 60, .complete = 107},
 171
 172	/* USB1 ENDP1 */
 173	[15] = { .submit = 62, .complete = 125},
 174	[16] = { .submit = 64, .complete = 126},
 175	[17] = { .submit = 66, .complete = 127},
 176	[18] = { .submit = 68, .complete = 128},
 177	[19] = { .submit = 70, .complete = 129},
 178	[20] = { .submit = 72, .complete = 130},
 179	[21] = { .submit = 74, .complete = 131},
 180	[22] = { .submit = 76, .complete = 132},
 181	[23] = { .submit = 78, .complete = 133},
 182	[24] = { .submit = 80, .complete = 134},
 183	[25] = { .submit = 82, .complete = 135},
 184	[26] = { .submit = 84, .complete = 136},
 185	[27] = { .submit = 86, .complete = 137},
 186	[28] = { .submit = 88, .complete = 138},
 187	[29] = { .submit = 90, .complete = 139},
 188};
 189
 190static const struct chan_queues am335x_usb_queues_rx[] = {
 191	/* USB0 ENDP 1 */
 192	[ 0] = { .submit =  1, .complete = 109},
 193	[ 1] = { .submit =  2, .complete = 110},
 194	[ 2] = { .submit =  3, .complete = 111},
 195	[ 3] = { .submit =  4, .complete = 112},
 196	[ 4] = { .submit =  5, .complete = 113},
 197	[ 5] = { .submit =  6, .complete = 114},
 198	[ 6] = { .submit =  7, .complete = 115},
 199	[ 7] = { .submit =  8, .complete = 116},
 200	[ 8] = { .submit =  9, .complete = 117},
 201	[ 9] = { .submit = 10, .complete = 118},
 202	[10] = { .submit = 11, .complete = 119},
 203	[11] = { .submit = 12, .complete = 120},
 204	[12] = { .submit = 13, .complete = 121},
 205	[13] = { .submit = 14, .complete = 122},
 206	[14] = { .submit = 15, .complete = 123},
 207
 208	/* USB1 ENDP 1 */
 209	[15] = { .submit = 16, .complete = 141},
 210	[16] = { .submit = 17, .complete = 142},
 211	[17] = { .submit = 18, .complete = 143},
 212	[18] = { .submit = 19, .complete = 144},
 213	[19] = { .submit = 20, .complete = 145},
 214	[20] = { .submit = 21, .complete = 146},
 215	[21] = { .submit = 22, .complete = 147},
 216	[22] = { .submit = 23, .complete = 148},
 217	[23] = { .submit = 24, .complete = 149},
 218	[24] = { .submit = 25, .complete = 150},
 219	[25] = { .submit = 26, .complete = 151},
 220	[26] = { .submit = 27, .complete = 152},
 221	[27] = { .submit = 28, .complete = 153},
 222	[28] = { .submit = 29, .complete = 154},
 223	[29] = { .submit = 30, .complete = 155},
 224};
 225
 226static const struct chan_queues da8xx_usb_queues_tx[] = {
 227	[0] = { .submit =  16, .complete = 24},
 228	[1] = { .submit =  18, .complete = 24},
 229	[2] = { .submit =  20, .complete = 24},
 230	[3] = { .submit =  22, .complete = 24},
 231};
 232
 233static const struct chan_queues da8xx_usb_queues_rx[] = {
 234	[0] = { .submit =  1, .complete = 26},
 235	[1] = { .submit =  3, .complete = 26},
 236	[2] = { .submit =  5, .complete = 26},
 237	[3] = { .submit =  7, .complete = 26},
 238};
 239
 240struct cppi_glue_infos {
 241	const struct chan_queues *queues_rx;
 242	const struct chan_queues *queues_tx;
 243	struct chan_queues td_queue;
 244	u16 first_completion_queue;
 245	u16 qmgr_num_pend;
 246};
 247
 248static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
 249{
 250	return container_of(c, struct cppi41_channel, chan);
 251}
 252
 253static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
 254{
 255	struct cppi41_channel *c;
 256	u32 descs_size;
 257	u32 desc_num;
 258
 259	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
 260
 261	if (!((desc >= cdd->descs_phys) &&
 262			(desc < (cdd->descs_phys + descs_size)))) {
 263		return NULL;
 264	}
 265
 266	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
 267	BUG_ON(desc_num >= ALLOC_DECS_NUM);
 268	c = cdd->chan_busy[desc_num];
 269	cdd->chan_busy[desc_num] = NULL;
 270
 271	/* Usecount for chan_busy[], paired with push_desc_queue() */
 272	pm_runtime_put(cdd->ddev.dev);
 273
 274	return c;
 275}
 276
 277static void cppi_writel(u32 val, void *__iomem *mem)
 278{
 279	__raw_writel(val, mem);
 280}
 281
 282static u32 cppi_readl(void *__iomem *mem)
 283{
 284	return __raw_readl(mem);
 285}
 286
 287static u32 pd_trans_len(u32 val)
 288{
 289	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
 290}
 291
 292static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
 293{
 294	u32 desc;
 295
 296	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
 297	desc &= ~0x1f;
 298	return desc;
 299}
 300
 301static irqreturn_t cppi41_irq(int irq, void *data)
 302{
 303	struct cppi41_dd *cdd = data;
 304	u16 first_completion_queue = cdd->first_completion_queue;
 305	u16 qmgr_num_pend = cdd->qmgr_num_pend;
 306	struct cppi41_channel *c;
 307	int i;
 308
 309	for (i = QMGR_PENDING_SLOT_Q(first_completion_queue); i < qmgr_num_pend;
 310			i++) {
 311		u32 val;
 312		u32 q_num;
 313
 314		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
 315		if (i == QMGR_PENDING_SLOT_Q(first_completion_queue) && val) {
 316			u32 mask;
 317			/* set corresponding bit for completetion Q 93 */
 318			mask = 1 << QMGR_PENDING_BIT_Q(first_completion_queue);
 319			/* not set all bits for queues less than Q 93 */
 320			mask--;
 321			/* now invert and keep only Q 93+ set */
 322			val &= ~mask;
 323		}
 324
 325		if (val)
 326			__iormb();
 327
 328		while (val) {
 329			u32 desc, len;
 330
 331			/*
 332			 * This should never trigger, see the comments in
 333			 * push_desc_queue()
 334			 */
 335			WARN_ON(cdd->is_suspended);
 336
 337			q_num = __fls(val);
 338			val &= ~(1 << q_num);
 339			q_num += 32 * i;
 340			desc = cppi41_pop_desc(cdd, q_num);
 341			c = desc_to_chan(cdd, desc);
 342			if (WARN_ON(!c)) {
 343				pr_err("%s() q %d desc %08x\n", __func__,
 344						q_num, desc);
 345				continue;
 346			}
 347
 348			if (c->desc->pd2 & PD2_ZERO_LENGTH)
 349				len = 0;
 350			else
 351				len = pd_trans_len(c->desc->pd0);
 352
 353			c->residue = pd_trans_len(c->desc->pd6) - len;
 354			dma_cookie_complete(&c->txd);
 355			dmaengine_desc_get_callback_invoke(&c->txd, NULL);
 356		}
 357	}
 358	return IRQ_HANDLED;
 359}
 360
 361static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
 362{
 363	dma_cookie_t cookie;
 364
 365	cookie = dma_cookie_assign(tx);
 366
 367	return cookie;
 368}
 369
 370static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
 371{
 372	struct cppi41_channel *c = to_cpp41_chan(chan);
 373	struct cppi41_dd *cdd = c->cdd;
 374	int error;
 375
 376	error = pm_runtime_get_sync(cdd->ddev.dev);
 377	if (error < 0) {
 378		dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
 379			__func__, error);
 380		pm_runtime_put_noidle(cdd->ddev.dev);
 381
 382		return error;
 383	}
 384
 385	dma_cookie_init(chan);
 386	dma_async_tx_descriptor_init(&c->txd, chan);
 387	c->txd.tx_submit = cppi41_tx_submit;
 388
 389	if (!c->is_tx)
 390		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
 391
 392	pm_runtime_mark_last_busy(cdd->ddev.dev);
 393	pm_runtime_put_autosuspend(cdd->ddev.dev);
 394
 395	return 0;
 396}
 397
 398static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
 399{
 400	struct cppi41_channel *c = to_cpp41_chan(chan);
 401	struct cppi41_dd *cdd = c->cdd;
 402	int error;
 403
 404	error = pm_runtime_get_sync(cdd->ddev.dev);
 405	if (error < 0) {
 406		pm_runtime_put_noidle(cdd->ddev.dev);
 407
 408		return;
 409	}
 410
 411	WARN_ON(!list_empty(&cdd->pending));
 412
 413	pm_runtime_mark_last_busy(cdd->ddev.dev);
 414	pm_runtime_put_autosuspend(cdd->ddev.dev);
 415}
 416
 417static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
 418	dma_cookie_t cookie, struct dma_tx_state *txstate)
 419{
 420	struct cppi41_channel *c = to_cpp41_chan(chan);
 421	enum dma_status ret;
 422
 423	ret = dma_cookie_status(chan, cookie, txstate);
 424
 425	dma_set_residue(txstate, c->residue);
 426
 427	return ret;
 428}
 429
 430static void push_desc_queue(struct cppi41_channel *c)
 431{
 432	struct cppi41_dd *cdd = c->cdd;
 433	u32 desc_num;
 434	u32 desc_phys;
 435	u32 reg;
 436
 437	c->residue = 0;
 438
 439	reg = GCR_CHAN_ENABLE;
 440	if (!c->is_tx) {
 441		reg |= GCR_STARV_RETRY;
 442		reg |= GCR_DESC_TYPE_HOST;
 443		reg |= c->q_comp_num;
 444	}
 445
 446	cppi_writel(reg, c->gcr_reg);
 447
 448	/*
 449	 * We don't use writel() but __raw_writel() so we have to make sure
 450	 * that the DMA descriptor in coherent memory made to the main memory
 451	 * before starting the dma engine.
 452	 */
 453	__iowmb();
 454
 455	/*
 456	 * DMA transfers can take at least 200ms to complete with USB mass
 457	 * storage connected. To prevent autosuspend timeouts, we must use
 458	 * pm_runtime_get/put() when chan_busy[] is modified. This will get
 459	 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
 460	 * outcome of the transfer.
 461	 */
 462	pm_runtime_get(cdd->ddev.dev);
 463
 464	desc_phys = lower_32_bits(c->desc_phys);
 465	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 466	WARN_ON(cdd->chan_busy[desc_num]);
 467	cdd->chan_busy[desc_num] = c;
 468
 469	reg = (sizeof(struct cppi41_desc) - 24) / 4;
 470	reg |= desc_phys;
 471	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
 472}
 473
 474/*
 475 * Caller must hold cdd->lock to prevent push_desc_queue()
 476 * getting called out of order. We have both cppi41_dma_issue_pending()
 477 * and cppi41_runtime_resume() call this function.
 478 */
 479static void cppi41_run_queue(struct cppi41_dd *cdd)
 480{
 481	struct cppi41_channel *c, *_c;
 482
 483	list_for_each_entry_safe(c, _c, &cdd->pending, node) {
 484		push_desc_queue(c);
 485		list_del(&c->node);
 486	}
 487}
 488
 489static void cppi41_dma_issue_pending(struct dma_chan *chan)
 490{
 491	struct cppi41_channel *c = to_cpp41_chan(chan);
 492	struct cppi41_dd *cdd = c->cdd;
 493	unsigned long flags;
 494	int error;
 495
 496	error = pm_runtime_get(cdd->ddev.dev);
 497	if ((error != -EINPROGRESS) && error < 0) {
 498		pm_runtime_put_noidle(cdd->ddev.dev);
 499		dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
 500			error);
 501
 502		return;
 503	}
 504
 505	spin_lock_irqsave(&cdd->lock, flags);
 506	list_add_tail(&c->node, &cdd->pending);
 507	if (!cdd->is_suspended)
 508		cppi41_run_queue(cdd);
 509	spin_unlock_irqrestore(&cdd->lock, flags);
 510
 511	pm_runtime_mark_last_busy(cdd->ddev.dev);
 512	pm_runtime_put_autosuspend(cdd->ddev.dev);
 513}
 514
 515static u32 get_host_pd0(u32 length)
 516{
 517	u32 reg;
 518
 519	reg = DESC_TYPE_HOST << DESC_TYPE;
 520	reg |= length;
 521
 522	return reg;
 523}
 524
 525static u32 get_host_pd1(struct cppi41_channel *c)
 526{
 527	u32 reg;
 528
 529	reg = 0;
 530
 531	return reg;
 532}
 533
 534static u32 get_host_pd2(struct cppi41_channel *c)
 535{
 536	u32 reg;
 537
 538	reg = DESC_TYPE_USB;
 539	reg |= c->q_comp_num;
 540
 541	return reg;
 542}
 543
 544static u32 get_host_pd3(u32 length)
 545{
 546	u32 reg;
 547
 548	/* PD3 = packet size */
 549	reg = length;
 550
 551	return reg;
 552}
 553
 554static u32 get_host_pd6(u32 length)
 555{
 556	u32 reg;
 557
 558	/* PD6 buffer size */
 559	reg = DESC_PD_COMPLETE;
 560	reg |= length;
 561
 562	return reg;
 563}
 564
 565static u32 get_host_pd4_or_7(u32 addr)
 566{
 567	u32 reg;
 568
 569	reg = addr;
 570
 571	return reg;
 572}
 573
 574static u32 get_host_pd5(void)
 575{
 576	u32 reg;
 577
 578	reg = 0;
 579
 580	return reg;
 581}
 582
 583static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
 584	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
 585	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
 586{
 587	struct cppi41_channel *c = to_cpp41_chan(chan);
 588	struct cppi41_desc *d;
 589	struct scatterlist *sg;
 590	unsigned int i;
 591
 592	d = c->desc;
 593	for_each_sg(sgl, sg, sg_len, i) {
 594		u32 addr;
 595		u32 len;
 596
 597		/* We need to use more than one desc once musb supports sg */
 598		addr = lower_32_bits(sg_dma_address(sg));
 599		len = sg_dma_len(sg);
 600
 601		d->pd0 = get_host_pd0(len);
 602		d->pd1 = get_host_pd1(c);
 603		d->pd2 = get_host_pd2(c);
 604		d->pd3 = get_host_pd3(len);
 605		d->pd4 = get_host_pd4_or_7(addr);
 606		d->pd5 = get_host_pd5();
 607		d->pd6 = get_host_pd6(len);
 608		d->pd7 = get_host_pd4_or_7(addr);
 609
 610		d++;
 611	}
 612
 613	return &c->txd;
 614}
 615
 616static void cppi41_compute_td_desc(struct cppi41_desc *d)
 617{
 618	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
 619}
 620
 621static int cppi41_tear_down_chan(struct cppi41_channel *c)
 622{
 623	struct dmaengine_result abort_result;
 624	struct cppi41_dd *cdd = c->cdd;
 625	struct cppi41_desc *td;
 626	u32 reg;
 627	u32 desc_phys;
 628	u32 td_desc_phys;
 629
 630	td = cdd->cd;
 631	td += cdd->first_td_desc;
 632
 633	td_desc_phys = cdd->descs_phys;
 634	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
 635
 636	if (!c->td_queued) {
 637		cppi41_compute_td_desc(td);
 638		__iowmb();
 639
 640		reg = (sizeof(struct cppi41_desc) - 24) / 4;
 641		reg |= td_desc_phys;
 642		cppi_writel(reg, cdd->qmgr_mem +
 643				QMGR_QUEUE_D(cdd->td_queue.submit));
 644
 645		reg = GCR_CHAN_ENABLE;
 646		if (!c->is_tx) {
 647			reg |= GCR_STARV_RETRY;
 648			reg |= GCR_DESC_TYPE_HOST;
 649			reg |= cdd->td_queue.complete;
 650		}
 651		reg |= GCR_TEARDOWN;
 652		cppi_writel(reg, c->gcr_reg);
 653		c->td_queued = 1;
 654		c->td_retry = 500;
 655	}
 656
 657	if (!c->td_seen || !c->td_desc_seen) {
 658
 659		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
 660		if (!desc_phys && c->is_tx)
 661			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 662
 663		if (desc_phys == c->desc_phys) {
 664			c->td_desc_seen = 1;
 665
 666		} else if (desc_phys == td_desc_phys) {
 667			u32 pd0;
 668
 669			__iormb();
 670			pd0 = td->pd0;
 671			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
 672			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
 673			WARN_ON((pd0 & 0x1f) != c->port_num);
 674			c->td_seen = 1;
 675		} else if (desc_phys) {
 676			WARN_ON_ONCE(1);
 677		}
 678	}
 679	c->td_retry--;
 680	/*
 681	 * If the TX descriptor / channel is in use, the caller needs to poke
 682	 * his TD bit multiple times. After that he hardware releases the
 683	 * transfer descriptor followed by TD descriptor. Waiting seems not to
 684	 * cause any difference.
 685	 * RX seems to be thrown out right away. However once the TearDown
 686	 * descriptor gets through we are done. If we have seens the transfer
 687	 * descriptor before the TD we fetch it from enqueue, it has to be
 688	 * there waiting for us.
 689	 */
 690	if (!c->td_seen && c->td_retry) {
 691		udelay(1);
 692		return -EAGAIN;
 693	}
 694	WARN_ON(!c->td_retry);
 695
 696	if (!c->td_desc_seen) {
 697		desc_phys = cppi41_pop_desc(cdd, c->q_num);
 698		if (!desc_phys)
 699			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 700		WARN_ON(!desc_phys);
 701	}
 702
 703	c->td_queued = 0;
 704	c->td_seen = 0;
 705	c->td_desc_seen = 0;
 706	cppi_writel(0, c->gcr_reg);
 707
 708	/* Invoke the callback to do the necessary clean-up */
 709	abort_result.result = DMA_TRANS_ABORTED;
 710	dma_cookie_complete(&c->txd);
 711	dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
 712
 713	return 0;
 714}
 715
 716static int cppi41_stop_chan(struct dma_chan *chan)
 717{
 718	struct cppi41_channel *c = to_cpp41_chan(chan);
 719	struct cppi41_dd *cdd = c->cdd;
 720	u32 desc_num;
 721	u32 desc_phys;
 722	int ret;
 723
 724	desc_phys = lower_32_bits(c->desc_phys);
 725	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 726	if (!cdd->chan_busy[desc_num])
 727		return 0;
 728
 729	ret = cppi41_tear_down_chan(c);
 730	if (ret)
 731		return ret;
 732
 733	WARN_ON(!cdd->chan_busy[desc_num]);
 734	cdd->chan_busy[desc_num] = NULL;
 735
 736	/* Usecount for chan_busy[], paired with push_desc_queue() */
 737	pm_runtime_put(cdd->ddev.dev);
 738
 739	return 0;
 740}
 741
 742static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
 743{
 744	struct cppi41_channel *cchan, *chans;
 745	int i;
 746	u32 n_chans = cdd->n_chans;
 747
 748	/*
 749	 * The channels can only be used as TX or as RX. So we add twice
 750	 * that much dma channels because USB can only do RX or TX.
 751	 */
 752	n_chans *= 2;
 753
 754	chans = devm_kcalloc(dev, n_chans, sizeof(*chans), GFP_KERNEL);
 755	if (!chans)
 756		return -ENOMEM;
 757
 758	for (i = 0; i < n_chans; i++) {
 759		cchan = &chans[i];
 760
 761		cchan->cdd = cdd;
 762		if (i & 1) {
 763			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
 764			cchan->is_tx = 1;
 765		} else {
 766			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
 767			cchan->is_tx = 0;
 768		}
 769		cchan->port_num = i >> 1;
 770		cchan->desc = &cdd->cd[i];
 771		cchan->desc_phys = cdd->descs_phys;
 772		cchan->desc_phys += i * sizeof(struct cppi41_desc);
 773		cchan->chan.device = &cdd->ddev;
 774		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
 775	}
 776	cdd->first_td_desc = n_chans;
 777
 778	return 0;
 779}
 780
 781static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
 782{
 783	unsigned int mem_decs;
 784	int i;
 785
 786	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
 787
 788	for (i = 0; i < DESCS_AREAS; i++) {
 789
 790		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
 791		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 792
 793		dma_free_coherent(dev, mem_decs, cdd->cd,
 794				cdd->descs_phys);
 795	}
 796}
 797
 798static void disable_sched(struct cppi41_dd *cdd)
 799{
 800	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 801}
 802
 803static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
 804{
 805	disable_sched(cdd);
 806
 807	purge_descs(dev, cdd);
 808
 809	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 810	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 811	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
 812			cdd->scratch_phys);
 813}
 814
 815static int init_descs(struct device *dev, struct cppi41_dd *cdd)
 816{
 817	unsigned int desc_size;
 818	unsigned int mem_decs;
 819	int i;
 820	u32 reg;
 821	u32 idx;
 822
 823	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
 824			(sizeof(struct cppi41_desc) - 1));
 825	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
 826	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
 827
 828	desc_size = sizeof(struct cppi41_desc);
 829	mem_decs = ALLOC_DECS_NUM * desc_size;
 830
 831	idx = 0;
 832	for (i = 0; i < DESCS_AREAS; i++) {
 833
 834		reg = idx << QMGR_MEMCTRL_IDX_SH;
 835		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
 836		reg |= ilog2(ALLOC_DECS_NUM) - 5;
 837
 838		BUILD_BUG_ON(DESCS_AREAS != 1);
 839		cdd->cd = dma_alloc_coherent(dev, mem_decs,
 840				&cdd->descs_phys, GFP_KERNEL);
 841		if (!cdd->cd)
 842			return -ENOMEM;
 843
 844		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
 845		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 846
 847		idx += ALLOC_DECS_NUM;
 848	}
 849	return 0;
 850}
 851
 852static void init_sched(struct cppi41_dd *cdd)
 853{
 854	unsigned ch;
 855	unsigned word;
 856	u32 reg;
 857
 858	word = 0;
 859	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 860	for (ch = 0; ch < cdd->n_chans; ch += 2) {
 861
 862		reg = SCHED_ENTRY0_CHAN(ch);
 863		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
 864
 865		reg |= SCHED_ENTRY2_CHAN(ch + 1);
 866		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
 867		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
 868		word++;
 869	}
 870	reg = cdd->n_chans * 2 - 1;
 871	reg |= DMA_SCHED_CTRL_EN;
 872	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
 873}
 874
 875static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
 876{
 877	int ret;
 878
 879	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
 880	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
 881			&cdd->scratch_phys, GFP_KERNEL);
 882	if (!cdd->qmgr_scratch)
 883		return -ENOMEM;
 884
 885	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 886	cppi_writel(TOTAL_DESCS_NUM, cdd->qmgr_mem + QMGR_LRAM_SIZE);
 887	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
 888
 889	ret = init_descs(dev, cdd);
 890	if (ret)
 891		goto err_td;
 892
 893	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
 894	init_sched(cdd);
 895
 896	return 0;
 897err_td:
 898	deinit_cppi41(dev, cdd);
 899	return ret;
 900}
 901
 902static struct platform_driver cpp41_dma_driver;
 903/*
 904 * The param format is:
 905 * X Y
 906 * X: Port
 907 * Y: 0 = RX else TX
 908 */
 909#define INFO_PORT	0
 910#define INFO_IS_TX	1
 911
 912static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
 913{
 914	struct cppi41_channel *cchan;
 915	struct cppi41_dd *cdd;
 916	const struct chan_queues *queues;
 917	u32 *num = param;
 918
 919	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
 920		return false;
 921
 922	cchan = to_cpp41_chan(chan);
 923
 924	if (cchan->port_num != num[INFO_PORT])
 925		return false;
 926
 927	if (cchan->is_tx && !num[INFO_IS_TX])
 928		return false;
 929	cdd = cchan->cdd;
 930	if (cchan->is_tx)
 931		queues = cdd->queues_tx;
 932	else
 933		queues = cdd->queues_rx;
 934
 935	BUILD_BUG_ON(ARRAY_SIZE(am335x_usb_queues_rx) !=
 936		     ARRAY_SIZE(am335x_usb_queues_tx));
 937	if (WARN_ON(cchan->port_num >= ARRAY_SIZE(am335x_usb_queues_rx)))
 938		return false;
 939
 940	cchan->q_num = queues[cchan->port_num].submit;
 941	cchan->q_comp_num = queues[cchan->port_num].complete;
 942	return true;
 943}
 944
 945static struct of_dma_filter_info cpp41_dma_info = {
 946	.filter_fn = cpp41_dma_filter_fn,
 947};
 948
 949static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
 950		struct of_dma *ofdma)
 951{
 952	int count = dma_spec->args_count;
 953	struct of_dma_filter_info *info = ofdma->of_dma_data;
 954
 955	if (!info || !info->filter_fn)
 956		return NULL;
 957
 958	if (count != 2)
 959		return NULL;
 960
 961	return dma_request_channel(info->dma_cap, info->filter_fn,
 962			&dma_spec->args[0]);
 963}
 964
 965static const struct cppi_glue_infos am335x_usb_infos = {
 966	.queues_rx = am335x_usb_queues_rx,
 967	.queues_tx = am335x_usb_queues_tx,
 968	.td_queue = { .submit = 31, .complete = 0 },
 969	.first_completion_queue = 93,
 970	.qmgr_num_pend = 5,
 971};
 972
 973static const struct cppi_glue_infos da8xx_usb_infos = {
 974	.queues_rx = da8xx_usb_queues_rx,
 975	.queues_tx = da8xx_usb_queues_tx,
 976	.td_queue = { .submit = 31, .complete = 0 },
 977	.first_completion_queue = 24,
 978	.qmgr_num_pend = 2,
 979};
 980
 981static const struct of_device_id cppi41_dma_ids[] = {
 982	{ .compatible = "ti,am3359-cppi41", .data = &am335x_usb_infos},
 983	{ .compatible = "ti,da830-cppi41", .data = &da8xx_usb_infos},
 984	{},
 985};
 986MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
 987
 988static const struct cppi_glue_infos *get_glue_info(struct device *dev)
 989{
 990	const struct of_device_id *of_id;
 991
 992	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
 993	if (!of_id)
 994		return NULL;
 995	return of_id->data;
 996}
 997
 998#define CPPI41_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 999				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1000				BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1001				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1002
1003static int cppi41_dma_probe(struct platform_device *pdev)
1004{
1005	struct cppi41_dd *cdd;
1006	struct device *dev = &pdev->dev;
1007	const struct cppi_glue_infos *glue_info;
1008	struct resource *mem;
1009	int index;
1010	int irq;
1011	int ret;
1012
1013	glue_info = get_glue_info(dev);
1014	if (!glue_info)
1015		return -EINVAL;
1016
1017	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1018	if (!cdd)
1019		return -ENOMEM;
1020
1021	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1022	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1023	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1024	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1025	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1026	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1027	cdd->ddev.device_terminate_all = cppi41_stop_chan;
1028	cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1029	cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1030	cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1031	cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1032	cdd->ddev.dev = dev;
1033	INIT_LIST_HEAD(&cdd->ddev.channels);
1034	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1035
1036	index = of_property_match_string(dev->of_node,
1037					 "reg-names", "controller");
1038	if (index < 0)
1039		return index;
1040
1041	mem = platform_get_resource(pdev, IORESOURCE_MEM, index);
1042	cdd->ctrl_mem = devm_ioremap_resource(dev, mem);
1043	if (IS_ERR(cdd->ctrl_mem))
1044		return PTR_ERR(cdd->ctrl_mem);
1045
1046	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 1);
1047	cdd->sched_mem = devm_ioremap_resource(dev, mem);
1048	if (IS_ERR(cdd->sched_mem))
1049		return PTR_ERR(cdd->sched_mem);
1050
1051	mem = platform_get_resource(pdev, IORESOURCE_MEM, index + 2);
1052	cdd->qmgr_mem = devm_ioremap_resource(dev, mem);
1053	if (IS_ERR(cdd->qmgr_mem))
1054		return PTR_ERR(cdd->qmgr_mem);
1055
1056	spin_lock_init(&cdd->lock);
1057	INIT_LIST_HEAD(&cdd->pending);
1058
1059	platform_set_drvdata(pdev, cdd);
1060
1061	pm_runtime_enable(dev);
1062	pm_runtime_set_autosuspend_delay(dev, 100);
1063	pm_runtime_use_autosuspend(dev);
1064	ret = pm_runtime_get_sync(dev);
1065	if (ret < 0)
1066		goto err_get_sync;
1067
1068	cdd->queues_rx = glue_info->queues_rx;
1069	cdd->queues_tx = glue_info->queues_tx;
1070	cdd->td_queue = glue_info->td_queue;
1071	cdd->qmgr_num_pend = glue_info->qmgr_num_pend;
1072	cdd->first_completion_queue = glue_info->first_completion_queue;
1073
1074	ret = of_property_read_u32(dev->of_node,
1075				   "#dma-channels", &cdd->n_chans);
1076	if (ret)
1077		goto err_get_n_chans;
1078
1079	ret = init_cppi41(dev, cdd);
1080	if (ret)
1081		goto err_init_cppi;
1082
1083	ret = cppi41_add_chans(dev, cdd);
1084	if (ret)
1085		goto err_chans;
1086
1087	irq = irq_of_parse_and_map(dev->of_node, 0);
1088	if (!irq) {
1089		ret = -EINVAL;
1090		goto err_chans;
1091	}
1092
1093	ret = devm_request_irq(&pdev->dev, irq, cppi41_irq, IRQF_SHARED,
1094			dev_name(dev), cdd);
1095	if (ret)
1096		goto err_chans;
1097	cdd->irq = irq;
1098
1099	ret = dma_async_device_register(&cdd->ddev);
1100	if (ret)
1101		goto err_chans;
1102
1103	ret = of_dma_controller_register(dev->of_node,
1104			cppi41_dma_xlate, &cpp41_dma_info);
1105	if (ret)
1106		goto err_of;
1107
1108	pm_runtime_mark_last_busy(dev);
1109	pm_runtime_put_autosuspend(dev);
1110
1111	return 0;
1112err_of:
1113	dma_async_device_unregister(&cdd->ddev);
1114err_chans:
1115	deinit_cppi41(dev, cdd);
1116err_init_cppi:
1117	pm_runtime_dont_use_autosuspend(dev);
1118err_get_n_chans:
1119err_get_sync:
1120	pm_runtime_put_sync(dev);
1121	pm_runtime_disable(dev);
1122	return ret;
1123}
1124
1125static int cppi41_dma_remove(struct platform_device *pdev)
1126{
1127	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1128	int error;
1129
1130	error = pm_runtime_get_sync(&pdev->dev);
1131	if (error < 0)
1132		dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1133			__func__, error);
1134	of_dma_controller_free(pdev->dev.of_node);
1135	dma_async_device_unregister(&cdd->ddev);
1136
1137	devm_free_irq(&pdev->dev, cdd->irq, cdd);
1138	deinit_cppi41(&pdev->dev, cdd);
1139	pm_runtime_dont_use_autosuspend(&pdev->dev);
1140	pm_runtime_put_sync(&pdev->dev);
1141	pm_runtime_disable(&pdev->dev);
1142	return 0;
1143}
1144
1145static int __maybe_unused cppi41_suspend(struct device *dev)
1146{
1147	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1148
1149	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1150	disable_sched(cdd);
1151
1152	return 0;
1153}
1154
1155static int __maybe_unused cppi41_resume(struct device *dev)
1156{
1157	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1158	struct cppi41_channel *c;
1159	int i;
1160
1161	for (i = 0; i < DESCS_AREAS; i++)
1162		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1163
1164	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1165		if (!c->is_tx)
1166			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1167
1168	init_sched(cdd);
1169
1170	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1171	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1172	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1173	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1174
1175	return 0;
1176}
1177
1178static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1179{
1180	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1181	unsigned long flags;
1182
1183	spin_lock_irqsave(&cdd->lock, flags);
1184	cdd->is_suspended = true;
1185	WARN_ON(!list_empty(&cdd->pending));
1186	spin_unlock_irqrestore(&cdd->lock, flags);
1187
1188	return 0;
1189}
1190
1191static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1192{
1193	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1194	unsigned long flags;
1195
1196	spin_lock_irqsave(&cdd->lock, flags);
1197	cdd->is_suspended = false;
1198	cppi41_run_queue(cdd);
1199	spin_unlock_irqrestore(&cdd->lock, flags);
1200
1201	return 0;
1202}
1203
1204static const struct dev_pm_ops cppi41_pm_ops = {
1205	SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1206	SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1207			   cppi41_runtime_resume,
1208			   NULL)
1209};
1210
1211static struct platform_driver cpp41_dma_driver = {
1212	.probe  = cppi41_dma_probe,
1213	.remove = cppi41_dma_remove,
1214	.driver = {
1215		.name = "cppi41-dma-engine",
1216		.pm = &cppi41_pm_ops,
1217		.of_match_table = of_match_ptr(cppi41_dma_ids),
1218	},
1219};
1220
1221module_platform_driver(cpp41_dma_driver);
1222MODULE_LICENSE("GPL");
1223MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");