Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) 2006 ARM Ltd.
   4 * Copyright (c) 2010 ST-Ericsson SA
   5 * Copyirght (c) 2017 Linaro Ltd.
   6 *
   7 * Author: Peter Pearse <peter.pearse@arm.com>
   8 * Author: Linus Walleij <linus.walleij@linaro.org>
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Documentation: ARM DDI 0196G == PL080
  11 * Documentation: ARM DDI 0218E == PL081
  12 * Documentation: S3C6410 User's Manual == PL080S
  13 *
  14 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  15 * channel.
  16 *
  17 * The PL080 has 8 channels available for simultaneous use, and the PL081
  18 * has only two channels. So on these DMA controllers the number of channels
  19 * and the number of incoming DMA signals are two totally different things.
  20 * It is usually not possible to theoretically handle all physical signals,
  21 * so a multiplexing scheme with possible denial of use is necessary.
  22 *
  23 * The PL080 has a dual bus master, PL081 has a single master.
  24 *
  25 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  26 * It differs in following aspects:
  27 * - CH_CONFIG register at different offset,
  28 * - separate CH_CONTROL2 register for transfer size,
  29 * - bigger maximum transfer size,
  30 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  31 * - no support for peripheral flow control.
  32 *
  33 * Memory to peripheral transfer may be visualized as
  34 *	Get data from memory to DMAC
  35 *	Until no data left
  36 *		On burst request from peripheral
  37 *			Destination burst from DMAC to peripheral
  38 *			Clear burst request
  39 *	Raise terminal count interrupt
  40 *
  41 * For peripherals with a FIFO:
  42 * Source      burst size == half the depth of the peripheral FIFO
  43 * Destination burst size == the depth of the peripheral FIFO
  44 *
  45 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  46 * signals, the DMA controller will simply facilitate its AHB master.)
  47 *
  48 * ASSUMES default (little) endianness for DMA transfers
  49 *
  50 * The PL08x has two flow control settings:
  51 *  - DMAC flow control: the transfer size defines the number of transfers
  52 *    which occur for the current LLI entry, and the DMAC raises TC at the
  53 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  54 *    to both the BREQ and SREQ signals (contrary to documented),
  55 *    transferring data if either is active.  The LBREQ and LSREQ signals
  56 *    are ignored.
  57 *
  58 *  - Peripheral flow control: the transfer size is ignored (and should be
  59 *    zero).  The data is transferred from the current LLI entry, until
  60 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  61 *    will then move to the next LLI entry. Unsupported by PL080S.
  62 */
  63#include <linux/amba/bus.h>
  64#include <linux/amba/pl08x.h>
  65#include <linux/debugfs.h>
  66#include <linux/delay.h>
  67#include <linux/device.h>
  68#include <linux/dmaengine.h>
  69#include <linux/dmapool.h>
  70#include <linux/dma-mapping.h>
  71#include <linux/export.h>
  72#include <linux/init.h>
  73#include <linux/interrupt.h>
  74#include <linux/module.h>
  75#include <linux/of.h>
  76#include <linux/of_dma.h>
  77#include <linux/pm_runtime.h>
  78#include <linux/seq_file.h>
  79#include <linux/slab.h>
  80#include <linux/amba/pl080.h>
  81
  82#include "dmaengine.h"
  83#include "virt-dma.h"
  84
  85#define DRIVER_NAME	"pl08xdmac"
  86
  87#define PL80X_DMA_BUSWIDTHS \
  88	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
  89	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  90	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  91	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
  92
  93static struct amba_driver pl08x_amba_driver;
  94struct pl08x_driver_data;
  95
  96/**
  97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  98 * @config_offset: offset to the configuration register
  99 * @channels: the number of channels available in this variant
 100 * @signals: the number of request signals available from the hardware
 101 * @dualmaster: whether this version supports dual AHB masters or not.
 102 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
 103 *	channels have Nomadik security extension bits that need to be checked
 104 *	for permission before use and some registers are missing
 105 * @pl080s: whether this variant is a Samsung PL080S, which has separate
 106 *	register and LLI word for transfer size.
 107 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
 108 * @max_transfer_size: the maximum single element transfer size for this
 109 *	PL08x variant.
 110 */
 111struct vendor_data {
 112	u8 config_offset;
 113	u8 channels;
 114	u8 signals;
 115	bool dualmaster;
 116	bool nomadik;
 117	bool pl080s;
 118	bool ftdmac020;
 119	u32 max_transfer_size;
 120};
 121
 122/**
 123 * struct pl08x_bus_data - information of source or destination
 124 * busses for a transfer
 125 * @addr: current address
 126 * @maxwidth: the maximum width of a transfer on this bus
 127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 128 */
 129struct pl08x_bus_data {
 130	dma_addr_t addr;
 131	u8 maxwidth;
 132	u8 buswidth;
 133};
 134
 135#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 136
 137/**
 138 * struct pl08x_phy_chan - holder for the physical channels
 139 * @id: physical index to this channel
 140 * @base: memory base address for this physical channel
 141 * @reg_config: configuration address for this physical channel
 142 * @reg_control: control address for this physical channel
 143 * @reg_src: transfer source address register
 144 * @reg_dst: transfer destination address register
 145 * @reg_lli: transfer LLI address register
 146 * @reg_busy: if the variant has a special per-channel busy register,
 147 * this contains a pointer to it
 148 * @lock: a lock to use when altering an instance of this struct
 149 * @serving: the virtual channel currently being served by this physical
 150 * channel
 151 * @locked: channel unavailable for the system, e.g. dedicated to secure
 152 * world
 153 * @ftdmac020: channel is on a FTDMAC020
 154 * @pl080s: channel is on a PL08s
 155 */
 156struct pl08x_phy_chan {
 157	unsigned int id;
 158	void __iomem *base;
 159	void __iomem *reg_config;
 160	void __iomem *reg_control;
 161	void __iomem *reg_src;
 162	void __iomem *reg_dst;
 163	void __iomem *reg_lli;
 164	void __iomem *reg_busy;
 165	spinlock_t lock;
 166	struct pl08x_dma_chan *serving;
 167	bool locked;
 168	bool ftdmac020;
 169	bool pl080s;
 170};
 171
 172/**
 173 * struct pl08x_sg - structure containing data per sg
 174 * @src_addr: src address of sg
 175 * @dst_addr: dst address of sg
 176 * @len: transfer len in bytes
 177 * @node: node for txd's dsg_list
 178 */
 179struct pl08x_sg {
 180	dma_addr_t src_addr;
 181	dma_addr_t dst_addr;
 182	size_t len;
 183	struct list_head node;
 184};
 185
 186/**
 187 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 188 * @vd: virtual DMA descriptor
 189 * @dsg_list: list of children sg's
 190 * @llis_bus: DMA memory address (physical) start for the LLIs
 191 * @llis_va: virtual memory address start for the LLIs
 192 * @cctl: control reg values for current txd
 193 * @ccfg: config reg values for current txd
 194 * @done: this marks completed descriptors, which should not have their
 195 *   mux released.
 196 * @cyclic: indicate cyclic transfers
 197 */
 198struct pl08x_txd {
 199	struct virt_dma_desc vd;
 200	struct list_head dsg_list;
 201	dma_addr_t llis_bus;
 202	u32 *llis_va;
 203	/* Default cctl value for LLIs */
 204	u32 cctl;
 205	/*
 206	 * Settings to be put into the physical channel when we
 207	 * trigger this txd.  Other registers are in llis_va[0].
 208	 */
 209	u32 ccfg;
 210	bool done;
 211	bool cyclic;
 212};
 213
 214/**
 215 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
 216 * states
 217 * @PL08X_CHAN_IDLE: the channel is idle
 218 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 219 * channel and is running a transfer on it
 220 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 221 * channel, but the transfer is currently paused
 222 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 223 * channel to become available (only pertains to memcpy channels)
 224 */
 225enum pl08x_dma_chan_state {
 226	PL08X_CHAN_IDLE,
 227	PL08X_CHAN_RUNNING,
 228	PL08X_CHAN_PAUSED,
 229	PL08X_CHAN_WAITING,
 230};
 231
 232/**
 233 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 234 * @vc: wrapped virtual channel
 235 * @phychan: the physical channel utilized by this channel, if there is one
 236 * @name: name of channel
 237 * @cd: channel platform data
 238 * @cfg: slave configuration
 239 * @at: active transaction on this channel
 240 * @host: a pointer to the host (internal use)
 241 * @state: whether the channel is idle, paused, running etc
 242 * @slave: whether this channel is a device (slave) or for memcpy
 243 * @signal: the physical DMA request signal which this channel is using
 244 * @mux_use: count of descriptors using this DMA request signal setting
 245 * @waiting_at: time in jiffies when this channel moved to waiting state
 246 */
 247struct pl08x_dma_chan {
 248	struct virt_dma_chan vc;
 249	struct pl08x_phy_chan *phychan;
 250	const char *name;
 251	struct pl08x_channel_data *cd;
 252	struct dma_slave_config cfg;
 253	struct pl08x_txd *at;
 254	struct pl08x_driver_data *host;
 255	enum pl08x_dma_chan_state state;
 256	bool slave;
 257	int signal;
 258	unsigned mux_use;
 259	unsigned long waiting_at;
 260};
 261
 262/**
 263 * struct pl08x_driver_data - the local state holder for the PL08x
 264 * @slave: optional slave engine for this instance
 265 * @memcpy: memcpy engine for this instance
 266 * @has_slave: the PL08x has a slave engine (routed signals)
 267 * @base: virtual memory base (remapped) for the PL08x
 268 * @adev: the corresponding AMBA (PrimeCell) bus entry
 269 * @vd: vendor data for this PL08x variant
 270 * @pd: platform data passed in from the platform/machine
 271 * @phy_chans: array of data for the physical channels
 272 * @pool: a pool for the LLI descriptors
 273 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 274 * fetches
 275 * @mem_buses: set to indicate memory transfers on AHB2.
 276 * @lli_words: how many words are used in each LLI item for this variant
 277 */
 278struct pl08x_driver_data {
 279	struct dma_device slave;
 280	struct dma_device memcpy;
 281	bool has_slave;
 282	void __iomem *base;
 283	struct amba_device *adev;
 284	const struct vendor_data *vd;
 285	struct pl08x_platform_data *pd;
 286	struct pl08x_phy_chan *phy_chans;
 287	struct dma_pool *pool;
 288	u8 lli_buses;
 289	u8 mem_buses;
 290	u8 lli_words;
 291};
 292
 293/*
 294 * PL08X specific defines
 295 */
 296
 297/* The order of words in an LLI. */
 298#define PL080_LLI_SRC		0
 299#define PL080_LLI_DST		1
 300#define PL080_LLI_LLI		2
 301#define PL080_LLI_CCTL		3
 302#define PL080S_LLI_CCTL2	4
 303
 304/* Total words in an LLI. */
 305#define PL080_LLI_WORDS		4
 306#define PL080S_LLI_WORDS	8
 307
 308/*
 309 * Number of LLIs in each LLI buffer allocated for one transfer
 310 * (maximum times we call dma_pool_alloc on this pool without freeing)
 311 */
 312#define MAX_NUM_TSFR_LLIS	512
 313#define PL08X_ALIGN		8
 314
 315static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 316{
 317	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 318}
 319
 320static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 321{
 322	return container_of(tx, struct pl08x_txd, vd.tx);
 323}
 324
 325/*
 326 * Mux handling.
 327 *
 328 * This gives us the DMA request input to the PL08x primecell which the
 329 * peripheral described by the channel data will be routed to, possibly
 330 * via a board/SoC specific external MUX.  One important point to note
 331 * here is that this does not depend on the physical channel.
 332 */
 333static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 334{
 335	const struct pl08x_platform_data *pd = plchan->host->pd;
 336	int ret;
 337
 338	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 339		ret = pd->get_xfer_signal(plchan->cd);
 340		if (ret < 0) {
 341			plchan->mux_use = 0;
 342			return ret;
 343		}
 344
 345		plchan->signal = ret;
 346	}
 347	return 0;
 348}
 349
 350static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 351{
 352	const struct pl08x_platform_data *pd = plchan->host->pd;
 353
 354	if (plchan->signal >= 0) {
 355		WARN_ON(plchan->mux_use == 0);
 356
 357		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 358			pd->put_xfer_signal(plchan->cd, plchan->signal);
 359			plchan->signal = -1;
 360		}
 361	}
 362}
 363
 364/*
 365 * Physical channel handling
 366 */
 367
 368/* Whether a certain channel is busy or not */
 369static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 370{
 371	unsigned int val;
 372
 373	/* If we have a special busy register, take a shortcut */
 374	if (ch->reg_busy) {
 375		val = readl(ch->reg_busy);
 376		return !!(val & BIT(ch->id));
 377	}
 378	val = readl(ch->reg_config);
 379	return val & PL080_CONFIG_ACTIVE;
 380}
 381
 382/*
 383 * pl08x_write_lli() - Write an LLI into the DMA controller.
 384 *
 385 * The PL08x derivatives support linked lists, but the first item of the
 386 * list containing the source, destination, control word and next LLI is
 387 * ignored. Instead the driver has to write those values directly into the
 388 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
 389 * register need to be set up for the first transfer.
 390 */
 391static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 392		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 393{
 394	if (pl08x->vd->pl080s)
 395		dev_vdbg(&pl08x->adev->dev,
 396			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 397			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 398			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 399			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 400			lli[PL080S_LLI_CCTL2], ccfg);
 401	else
 402		dev_vdbg(&pl08x->adev->dev,
 403			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 404			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 405			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 406			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 407
 408	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
 409	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
 410	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
 411
 412	/*
 413	 * The FTMAC020 has a different layout in the CCTL word of the LLI
 414	 * and the CCTL register which is split in CSR and SIZE registers.
 415	 * Convert the LLI item CCTL into the proper values to write into
 416	 * the CSR and SIZE registers.
 417	 */
 418	if (phychan->ftdmac020) {
 419		u32 llictl = lli[PL080_LLI_CCTL];
 420		u32 val = 0;
 421
 422		/* Write the transfer size (12 bits) to the size register */
 423		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
 424			       phychan->base + FTDMAC020_CH_SIZE);
 425		/*
 426		 * Then write the control bits 28..16 to the control register
 427		 * by shuffleing the bits around to where they are in the
 428		 * main register. The mapping is as follows:
 429		 * Bit 28: TC_MSK - mask on all except last LLI
 430		 * Bit 27..25: SRC_WIDTH
 431		 * Bit 24..22: DST_WIDTH
 432		 * Bit 21..20: SRCAD_CTRL
 433		 * Bit 19..17: DSTAD_CTRL
 434		 * Bit 17: SRC_SEL
 435		 * Bit 16: DST_SEL
 436		 */
 437		if (llictl & FTDMAC020_LLI_TC_MSK)
 438			val |= FTDMAC020_CH_CSR_TC_MSK;
 439		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 440			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
 441			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
 442		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 443			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
 444			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
 445		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
 446			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
 447			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
 448		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
 449			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
 450			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
 451		if (llictl & FTDMAC020_LLI_SRC_SEL)
 452			val |= FTDMAC020_CH_CSR_SRC_SEL;
 453		if (llictl & FTDMAC020_LLI_DST_SEL)
 454			val |= FTDMAC020_CH_CSR_DST_SEL;
 455
 456		/*
 457		 * Set up the bits that exist in the CSR but are not
 458		 * part the LLI, i.e. only gets written to the control
 459		 * register right here.
 460		 *
 461		 * FIXME: do not just handle memcpy, also handle slave DMA.
 462		 */
 463		switch (pl08x->pd->memcpy_burst_size) {
 464		default:
 465		case PL08X_BURST_SZ_1:
 466			val |= PL080_BSIZE_1 <<
 467				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 468			break;
 469		case PL08X_BURST_SZ_4:
 470			val |= PL080_BSIZE_4 <<
 471				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 472			break;
 473		case PL08X_BURST_SZ_8:
 474			val |= PL080_BSIZE_8 <<
 475				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 476			break;
 477		case PL08X_BURST_SZ_16:
 478			val |= PL080_BSIZE_16 <<
 479				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 480			break;
 481		case PL08X_BURST_SZ_32:
 482			val |= PL080_BSIZE_32 <<
 483				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 484			break;
 485		case PL08X_BURST_SZ_64:
 486			val |= PL080_BSIZE_64 <<
 487				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 488			break;
 489		case PL08X_BURST_SZ_128:
 490			val |= PL080_BSIZE_128 <<
 491				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 492			break;
 493		case PL08X_BURST_SZ_256:
 494			val |= PL080_BSIZE_256 <<
 495				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 496			break;
 497		}
 498
 499		/* Protection flags */
 500		if (pl08x->pd->memcpy_prot_buff)
 501			val |= FTDMAC020_CH_CSR_PROT2;
 502		if (pl08x->pd->memcpy_prot_cache)
 503			val |= FTDMAC020_CH_CSR_PROT3;
 504		/* We are the kernel, so we are in privileged mode */
 505		val |= FTDMAC020_CH_CSR_PROT1;
 506
 507		writel_relaxed(val, phychan->reg_control);
 508	} else {
 509		/* Bits are just identical */
 510		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
 511	}
 512
 513	/* Second control word on the PL080s */
 514	if (pl08x->vd->pl080s)
 515		writel_relaxed(lli[PL080S_LLI_CCTL2],
 516				phychan->base + PL080S_CH_CONTROL2);
 517
 518	writel(ccfg, phychan->reg_config);
 519}
 520
 521/*
 522 * Set the initial DMA register values i.e. those for the first LLI
 523 * The next LLI pointer and the configuration interrupt bit have
 524 * been set when the LLIs were constructed.  Poke them into the hardware
 525 * and start the transfer.
 526 */
 527static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 528{
 529	struct pl08x_driver_data *pl08x = plchan->host;
 530	struct pl08x_phy_chan *phychan = plchan->phychan;
 531	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 532	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 533	u32 val;
 534
 535	list_del(&txd->vd.node);
 536
 537	plchan->at = txd;
 538
 539	/* Wait for channel inactive */
 540	while (pl08x_phy_channel_busy(phychan))
 541		cpu_relax();
 542
 543	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 544
 545	/* Enable the DMA channel */
 546	/* Do not access config register until channel shows as disabled */
 547	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
 548		cpu_relax();
 549
 550	/* Do not access config register until channel shows as inactive */
 551	if (phychan->ftdmac020) {
 552		val = readl(phychan->reg_config);
 553		while (val & FTDMAC020_CH_CFG_BUSY)
 554			val = readl(phychan->reg_config);
 555
 556		val = readl(phychan->reg_control);
 557		while (val & FTDMAC020_CH_CSR_EN)
 558			val = readl(phychan->reg_control);
 559
 560		writel(val | FTDMAC020_CH_CSR_EN,
 561		       phychan->reg_control);
 562	} else {
 563		val = readl(phychan->reg_config);
 564		while ((val & PL080_CONFIG_ACTIVE) ||
 565		       (val & PL080_CONFIG_ENABLE))
 566			val = readl(phychan->reg_config);
 567
 568		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 569	}
 570}
 571
 572/*
 573 * Pause the channel by setting the HALT bit.
 574 *
 575 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 576 * the FIFO can only drain if the peripheral is still requesting data.
 577 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 578 *
 579 * For P->M transfers, disable the peripheral first to stop it filling
 580 * the DMAC FIFO, and then pause the DMAC.
 581 */
 582static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 583{
 584	u32 val;
 585	int timeout;
 586
 587	if (ch->ftdmac020) {
 588		/* Use the enable bit on the FTDMAC020 */
 589		val = readl(ch->reg_control);
 590		val &= ~FTDMAC020_CH_CSR_EN;
 591		writel(val, ch->reg_control);
 592		return;
 593	}
 594
 595	/* Set the HALT bit and wait for the FIFO to drain */
 596	val = readl(ch->reg_config);
 597	val |= PL080_CONFIG_HALT;
 598	writel(val, ch->reg_config);
 599
 600	/* Wait for channel inactive */
 601	for (timeout = 1000; timeout; timeout--) {
 602		if (!pl08x_phy_channel_busy(ch))
 603			break;
 604		udelay(1);
 605	}
 606	if (pl08x_phy_channel_busy(ch))
 607		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 608}
 609
 610static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 611{
 612	u32 val;
 613
 614	/* Use the enable bit on the FTDMAC020 */
 615	if (ch->ftdmac020) {
 616		val = readl(ch->reg_control);
 617		val |= FTDMAC020_CH_CSR_EN;
 618		writel(val, ch->reg_control);
 619		return;
 620	}
 621
 622	/* Clear the HALT bit */
 623	val = readl(ch->reg_config);
 624	val &= ~PL080_CONFIG_HALT;
 625	writel(val, ch->reg_config);
 626}
 627
 628/*
 629 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 630 * clears any pending interrupt status.  This should not be used for
 631 * an on-going transfer, but as a method of shutting down a channel
 632 * (eg, when it's no longer used) or terminating a transfer.
 633 */
 634static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 635	struct pl08x_phy_chan *ch)
 636{
 637	u32 val;
 638
 639	/* The layout for the FTDMAC020 is different */
 640	if (ch->ftdmac020) {
 641		/* Disable all interrupts */
 642		val = readl(ch->reg_config);
 643		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
 644			FTDMAC020_CH_CFG_INT_ERR_MASK |
 645			FTDMAC020_CH_CFG_INT_TC_MASK);
 646		writel(val, ch->reg_config);
 647
 648		/* Abort and disable channel */
 649		val = readl(ch->reg_control);
 650		val &= ~FTDMAC020_CH_CSR_EN;
 651		val |= FTDMAC020_CH_CSR_ABT;
 652		writel(val, ch->reg_control);
 653
 654		/* Clear ABT and ERR interrupt flags */
 655		writel(BIT(ch->id) | BIT(ch->id + 16),
 656		       pl08x->base + PL080_ERR_CLEAR);
 657		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 658
 659		return;
 660	}
 661
 662	val = readl(ch->reg_config);
 663	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 664		 PL080_CONFIG_TC_IRQ_MASK);
 665	writel(val, ch->reg_config);
 666
 667	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
 668	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 669}
 670
 671static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
 672{
 673	u32 val;
 674	u32 bytes;
 675
 676	if (ch->ftdmac020) {
 677		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
 678
 679		val = readl(ch->reg_control);
 680		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
 681		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
 682	} else if (ch->pl080s) {
 683		val = readl(ch->base + PL080S_CH_CONTROL2);
 684		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 685
 686		val = readl(ch->reg_control);
 687		val &= PL080_CONTROL_SWIDTH_MASK;
 688		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 689	} else {
 690		/* Plain PL08x */
 691		val = readl(ch->reg_control);
 692		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 693
 694		val &= PL080_CONTROL_SWIDTH_MASK;
 695		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 696	}
 697
 698	switch (val) {
 699	case PL080_WIDTH_8BIT:
 700		break;
 701	case PL080_WIDTH_16BIT:
 702		bytes *= 2;
 703		break;
 704	case PL080_WIDTH_32BIT:
 705		bytes *= 4;
 706		break;
 707	}
 708	return bytes;
 709}
 710
 711static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
 712{
 713	u32 val;
 714	u32 bytes;
 715
 716	if (ch->ftdmac020) {
 717		val = llis_va[PL080_LLI_CCTL];
 718		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 719
 720		val = llis_va[PL080_LLI_CCTL];
 721		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
 722		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 723	} else if (ch->pl080s) {
 724		val = llis_va[PL080S_LLI_CCTL2];
 725		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 726
 727		val = llis_va[PL080_LLI_CCTL];
 728		val &= PL080_CONTROL_SWIDTH_MASK;
 729		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 730	} else {
 731		/* Plain PL08x */
 732		val = llis_va[PL080_LLI_CCTL];
 733		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 734
 735		val &= PL080_CONTROL_SWIDTH_MASK;
 736		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 737	}
 738
 739	switch (val) {
 740	case PL080_WIDTH_8BIT:
 741		break;
 742	case PL080_WIDTH_16BIT:
 743		bytes *= 2;
 744		break;
 745	case PL080_WIDTH_32BIT:
 746		bytes *= 4;
 747		break;
 748	}
 749	return bytes;
 750}
 751
 752/* The channel should be paused when calling this */
 753static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 754{
 755	struct pl08x_driver_data *pl08x = plchan->host;
 756	const u32 *llis_va, *llis_va_limit;
 757	struct pl08x_phy_chan *ch;
 758	dma_addr_t llis_bus;
 759	struct pl08x_txd *txd;
 760	u32 llis_max_words;
 761	size_t bytes;
 762	u32 clli;
 763
 764	ch = plchan->phychan;
 765	txd = plchan->at;
 766
 767	if (!ch || !txd)
 768		return 0;
 769
 770	/*
 771	 * Follow the LLIs to get the number of remaining
 772	 * bytes in the currently active transaction.
 773	 */
 774	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
 775
 776	/* First get the remaining bytes in the active transfer */
 777	bytes = get_bytes_in_phy_channel(ch);
 778
 779	if (!clli)
 780		return bytes;
 781
 782	llis_va = txd->llis_va;
 783	llis_bus = txd->llis_bus;
 784
 785	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 786	BUG_ON(clli < llis_bus || clli >= llis_bus +
 787						sizeof(u32) * llis_max_words);
 788
 789	/*
 790	 * Locate the next LLI - as this is an array,
 791	 * it's simple maths to find.
 792	 */
 793	llis_va += (clli - llis_bus) / sizeof(u32);
 794
 795	llis_va_limit = llis_va + llis_max_words;
 796
 797	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 798		bytes += get_bytes_in_lli(ch, llis_va);
 799
 800		/*
 801		 * A LLI pointer going backward terminates the LLI list
 802		 */
 803		if (llis_va[PL080_LLI_LLI] <= clli)
 804			break;
 805	}
 806
 807	return bytes;
 808}
 809
 810/*
 811 * Allocate a physical channel for a virtual channel
 812 *
 813 * Try to locate a physical channel to be used for this transfer. If all
 814 * are taken return NULL and the requester will have to cope by using
 815 * some fallback PIO mode or retrying later.
 816 */
 817static struct pl08x_phy_chan *
 818pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 819		      struct pl08x_dma_chan *virt_chan)
 820{
 821	struct pl08x_phy_chan *ch = NULL;
 822	unsigned long flags;
 823	int i;
 824
 825	for (i = 0; i < pl08x->vd->channels; i++) {
 826		ch = &pl08x->phy_chans[i];
 827
 828		spin_lock_irqsave(&ch->lock, flags);
 829
 830		if (!ch->locked && !ch->serving) {
 831			ch->serving = virt_chan;
 832			spin_unlock_irqrestore(&ch->lock, flags);
 833			break;
 834		}
 835
 836		spin_unlock_irqrestore(&ch->lock, flags);
 837	}
 838
 839	if (i == pl08x->vd->channels) {
 840		/* No physical channel available, cope with it */
 841		return NULL;
 842	}
 843
 844	return ch;
 845}
 846
 847/* Mark the physical channel as free.  Note, this write is atomic. */
 848static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 849					 struct pl08x_phy_chan *ch)
 850{
 851	ch->serving = NULL;
 852}
 853
 854/*
 855 * Try to allocate a physical channel.  When successful, assign it to
 856 * this virtual channel, and initiate the next descriptor.  The
 857 * virtual channel lock must be held at this point.
 858 */
 859static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 860{
 861	struct pl08x_driver_data *pl08x = plchan->host;
 862	struct pl08x_phy_chan *ch;
 863
 864	ch = pl08x_get_phy_channel(pl08x, plchan);
 865	if (!ch) {
 866		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 867		plchan->state = PL08X_CHAN_WAITING;
 868		plchan->waiting_at = jiffies;
 869		return;
 870	}
 871
 872	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 873		ch->id, plchan->name);
 874
 875	plchan->phychan = ch;
 876	plchan->state = PL08X_CHAN_RUNNING;
 877	pl08x_start_next_txd(plchan);
 878}
 879
 880static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 881	struct pl08x_dma_chan *plchan)
 882{
 883	struct pl08x_driver_data *pl08x = plchan->host;
 884
 885	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 886		ch->id, plchan->name);
 887
 888	/*
 889	 * We do this without taking the lock; we're really only concerned
 890	 * about whether this pointer is NULL or not, and we're guaranteed
 891	 * that this will only be called when it _already_ is non-NULL.
 892	 */
 893	ch->serving = plchan;
 894	plchan->phychan = ch;
 895	plchan->state = PL08X_CHAN_RUNNING;
 896	pl08x_start_next_txd(plchan);
 897}
 898
 899/*
 900 * Free a physical DMA channel, potentially reallocating it to another
 901 * virtual channel if we have any pending.
 902 */
 903static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 904{
 905	struct pl08x_driver_data *pl08x = plchan->host;
 906	struct pl08x_dma_chan *p, *next;
 907	unsigned long waiting_at;
 908 retry:
 909	next = NULL;
 910	waiting_at = jiffies;
 911
 912	/*
 913	 * Find a waiting virtual channel for the next transfer.
 914	 * To be fair, time when each channel reached waiting state is compared
 915	 * to select channel that is waiting for the longest time.
 916	 */
 917	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 918		if (p->state == PL08X_CHAN_WAITING &&
 919		    p->waiting_at <= waiting_at) {
 920			next = p;
 921			waiting_at = p->waiting_at;
 922		}
 923
 924	if (!next && pl08x->has_slave) {
 925		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 926			if (p->state == PL08X_CHAN_WAITING &&
 927			    p->waiting_at <= waiting_at) {
 928				next = p;
 929				waiting_at = p->waiting_at;
 930			}
 931	}
 932
 933	/* Ensure that the physical channel is stopped */
 934	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 935
 936	if (next) {
 937		bool success;
 938
 939		/*
 940		 * Eww.  We know this isn't going to deadlock
 941		 * but lockdep probably doesn't.
 942		 */
 943		spin_lock(&next->vc.lock);
 944		/* Re-check the state now that we have the lock */
 945		success = next->state == PL08X_CHAN_WAITING;
 946		if (success)
 947			pl08x_phy_reassign_start(plchan->phychan, next);
 948		spin_unlock(&next->vc.lock);
 949
 950		/* If the state changed, try to find another channel */
 951		if (!success)
 952			goto retry;
 953	} else {
 954		/* No more jobs, so free up the physical channel */
 955		pl08x_put_phy_channel(pl08x, plchan->phychan);
 956	}
 957
 958	plchan->phychan = NULL;
 959	plchan->state = PL08X_CHAN_IDLE;
 960}
 961
 962/*
 963 * LLI handling
 964 */
 965
 966static inline unsigned int
 967pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
 968			u32 cctl,
 969			bool source)
 970{
 971	u32 val;
 972
 973	if (pl08x->vd->ftdmac020) {
 974		if (source)
 975			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 976				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 977		else
 978			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 979				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 980	} else {
 981		if (source)
 982			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
 983				PL080_CONTROL_SWIDTH_SHIFT;
 984		else
 985			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
 986				PL080_CONTROL_DWIDTH_SHIFT;
 987	}
 988
 989	switch (val) {
 990	case PL080_WIDTH_8BIT:
 991		return 1;
 992	case PL080_WIDTH_16BIT:
 993		return 2;
 994	case PL080_WIDTH_32BIT:
 995		return 4;
 996	default:
 997		break;
 998	}
 999	BUG();
1000	return 0;
1001}
1002
1003static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004					 u32 cctl,
1005					 u8 srcwidth, u8 dstwidth,
1006					 size_t tsize)
1007{
1008	u32 retbits = cctl;
1009
1010	/*
1011	 * Remove all src, dst and transfer size bits, then set the
1012	 * width and size according to the parameters. The bit offsets
1013	 * are different in the FTDMAC020 so we need to accound for this.
1014	 */
1015	if (pl08x->vd->ftdmac020) {
1016		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020		switch (srcwidth) {
1021		case 1:
1022			retbits |= PL080_WIDTH_8BIT <<
1023				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024			break;
1025		case 2:
1026			retbits |= PL080_WIDTH_16BIT <<
1027				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028			break;
1029		case 4:
1030			retbits |= PL080_WIDTH_32BIT <<
1031				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032			break;
1033		default:
1034			BUG();
1035			break;
1036		}
1037
1038		switch (dstwidth) {
1039		case 1:
1040			retbits |= PL080_WIDTH_8BIT <<
1041				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042			break;
1043		case 2:
1044			retbits |= PL080_WIDTH_16BIT <<
1045				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046			break;
1047		case 4:
1048			retbits |= PL080_WIDTH_32BIT <<
1049				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050			break;
1051		default:
1052			BUG();
1053			break;
1054		}
1055
1056		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058	} else {
1059		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063		switch (srcwidth) {
1064		case 1:
1065			retbits |= PL080_WIDTH_8BIT <<
1066				PL080_CONTROL_SWIDTH_SHIFT;
1067			break;
1068		case 2:
1069			retbits |= PL080_WIDTH_16BIT <<
1070				PL080_CONTROL_SWIDTH_SHIFT;
1071			break;
1072		case 4:
1073			retbits |= PL080_WIDTH_32BIT <<
1074				PL080_CONTROL_SWIDTH_SHIFT;
1075			break;
1076		default:
1077			BUG();
1078			break;
1079		}
1080
1081		switch (dstwidth) {
1082		case 1:
1083			retbits |= PL080_WIDTH_8BIT <<
1084				PL080_CONTROL_DWIDTH_SHIFT;
1085			break;
1086		case 2:
1087			retbits |= PL080_WIDTH_16BIT <<
1088				PL080_CONTROL_DWIDTH_SHIFT;
1089			break;
1090		case 4:
1091			retbits |= PL080_WIDTH_32BIT <<
1092				PL080_CONTROL_DWIDTH_SHIFT;
1093			break;
1094		default:
1095			BUG();
1096			break;
1097		}
1098
1099		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101	}
1102
1103	return retbits;
1104}
1105
1106struct pl08x_lli_build_data {
1107	struct pl08x_txd *txd;
1108	struct pl08x_bus_data srcbus;
1109	struct pl08x_bus_data dstbus;
1110	size_t remainder;
1111	u32 lli_bus;
1112};
1113
1114/*
1115 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117 * masters address with width requirements of transfer (by sending few byte by
1118 * byte data), slave is still not aligned, then its width will be reduced to
1119 * BYTE.
1120 * - prefers the destination bus if both available
1121 * - prefers bus with fixed address (i.e. peripheral)
1122 */
1123static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124				    struct pl08x_lli_build_data *bd,
1125				    struct pl08x_bus_data **mbus,
1126				    struct pl08x_bus_data **sbus,
1127				    u32 cctl)
1128{
1129	bool dst_incr;
1130	bool src_incr;
1131
1132	/*
1133	 * The FTDMAC020 only supports memory-to-memory transfer, so
1134	 * source and destination always increase.
1135	 */
1136	if (pl08x->vd->ftdmac020) {
1137		dst_incr = true;
1138		src_incr = true;
1139	} else {
1140		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142	}
1143
1144	/*
1145	 * If either bus is not advancing, i.e. it is a peripheral, that
1146	 * one becomes master
1147	 */
1148	if (!dst_incr) {
1149		*mbus = &bd->dstbus;
1150		*sbus = &bd->srcbus;
1151	} else if (!src_incr) {
1152		*mbus = &bd->srcbus;
1153		*sbus = &bd->dstbus;
1154	} else {
1155		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156			*mbus = &bd->dstbus;
1157			*sbus = &bd->srcbus;
1158		} else {
1159			*mbus = &bd->srcbus;
1160			*sbus = &bd->dstbus;
1161		}
1162	}
1163}
1164
1165/*
1166 * Fills in one LLI for a certain transfer descriptor and advance the counter
1167 */
1168static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169				    struct pl08x_lli_build_data *bd,
1170				    int num_llis, int len, u32 cctl, u32 cctl2)
1171{
1172	u32 offset = num_llis * pl08x->lli_words;
1173	u32 *llis_va = bd->txd->llis_va + offset;
1174	dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178	/* Advance the offset to next LLI. */
1179	offset += pl08x->lli_words;
1180
1181	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185	llis_va[PL080_LLI_CCTL] = cctl;
1186	if (pl08x->vd->pl080s)
1187		llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189	if (pl08x->vd->ftdmac020) {
1190		/* FIXME: only memcpy so far so both increase */
1191		bd->srcbus.addr += len;
1192		bd->dstbus.addr += len;
1193	} else {
1194		if (cctl & PL080_CONTROL_SRC_INCR)
1195			bd->srcbus.addr += len;
1196		if (cctl & PL080_CONTROL_DST_INCR)
1197			bd->dstbus.addr += len;
1198	}
1199
1200	BUG_ON(bd->remainder < len);
1201
1202	bd->remainder -= len;
1203}
1204
1205static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207			int num_llis, size_t *total_bytes)
1208{
1209	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211	(*total_bytes) += len;
1212}
1213
1214#if 1
1215static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216			   const u32 *llis_va, int num_llis)
1217{
1218	int i;
1219
1220	if (pl08x->vd->pl080s) {
1221		dev_vdbg(&pl08x->adev->dev,
1222			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1223			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224		for (i = 0; i < num_llis; i++) {
1225			dev_vdbg(&pl08x->adev->dev,
1226				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227				i, llis_va, llis_va[PL080_LLI_SRC],
1228				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229				llis_va[PL080_LLI_CCTL],
1230				llis_va[PL080S_LLI_CCTL2]);
1231			llis_va += pl08x->lli_words;
1232		}
1233	} else {
1234		dev_vdbg(&pl08x->adev->dev,
1235			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1236			"lli", "", "csrc", "cdst", "clli", "cctl");
1237		for (i = 0; i < num_llis; i++) {
1238			dev_vdbg(&pl08x->adev->dev,
1239				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240				i, llis_va, llis_va[PL080_LLI_SRC],
1241				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242				llis_va[PL080_LLI_CCTL]);
1243			llis_va += pl08x->lli_words;
1244		}
1245	}
1246}
1247#else
1248static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249				  const u32 *llis_va, int num_llis) {}
1250#endif
1251
1252/*
1253 * This fills in the table of LLIs for the transfer descriptor
1254 * Note that we assume we never have to change the burst sizes
1255 * Return 0 for error
1256 */
1257static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258			      struct pl08x_txd *txd)
1259{
1260	struct pl08x_bus_data *mbus, *sbus;
1261	struct pl08x_lli_build_data bd;
1262	int num_llis = 0;
1263	u32 cctl, early_bytes = 0;
1264	size_t max_bytes_per_lli, total_bytes;
1265	u32 *llis_va, *last_lli;
1266	struct pl08x_sg *dsg;
1267
1268	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269	if (!txd->llis_va) {
1270		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271		return 0;
1272	}
1273
1274	bd.txd = txd;
1275	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276	cctl = txd->cctl;
1277
1278	/* Find maximum width of the source bus */
1279	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280
1281	/* Find maximum width of the destination bus */
1282	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283
1284	list_for_each_entry(dsg, &txd->dsg_list, node) {
1285		total_bytes = 0;
1286		cctl = txd->cctl;
1287
1288		bd.srcbus.addr = dsg->src_addr;
1289		bd.dstbus.addr = dsg->dst_addr;
1290		bd.remainder = dsg->len;
1291		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295
1296		dev_vdbg(&pl08x->adev->dev,
1297			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298			(u64)bd.srcbus.addr,
1299			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300			bd.srcbus.buswidth,
1301			(u64)bd.dstbus.addr,
1302			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303			bd.dstbus.buswidth,
1304			bd.remainder);
1305		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306			mbus == &bd.srcbus ? "src" : "dst",
1307			sbus == &bd.srcbus ? "src" : "dst");
1308
1309		/*
1310		 * Zero length is only allowed if all these requirements are
1311		 * met:
1312		 * - flow controller is peripheral.
1313		 * - src.addr is aligned to src.width
1314		 * - dst.addr is aligned to dst.width
1315		 *
1316		 * sg_len == 1 should be true, as there can be two cases here:
1317		 *
1318		 * - Memory addresses are contiguous and are not scattered.
1319		 *   Here, Only one sg will be passed by user driver, with
1320		 *   memory address and zero length. We pass this to controller
1321		 *   and after the transfer it will receive the last burst
1322		 *   request from peripheral and so transfer finishes.
1323		 *
1324		 * - Memory addresses are scattered and are not contiguous.
1325		 *   Here, Obviously as DMA controller doesn't know when a lli's
1326		 *   transfer gets over, it can't load next lli. So in this
1327		 *   case, there has to be an assumption that only one lli is
1328		 *   supported. Thus, we can't have scattered addresses.
1329		 */
1330		if (!bd.remainder) {
1331			u32 fc;
1332
1333			/* FTDMAC020 only does memory-to-memory */
1334			if (pl08x->vd->ftdmac020)
1335				fc = PL080_FLOW_MEM2MEM;
1336			else
1337				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1341				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342					__func__);
1343				return 0;
1344			}
1345
1346			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347				!IS_BUS_ALIGNED(&bd.dstbus)) {
1348				dev_err(&pl08x->adev->dev,
1349					"%s src & dst address must be aligned to src"
1350					" & dst width if peripheral is flow controller",
1351					__func__);
1352				return 0;
1353			}
1354
1355			cctl = pl08x_lli_control_bits(pl08x, cctl,
1356					bd.srcbus.buswidth, bd.dstbus.buswidth,
1357					0);
1358			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359					0, cctl, 0);
1360			break;
1361		}
1362
1363		/*
1364		 * Send byte by byte for following cases
1365		 * - Less than a bus width available
1366		 * - until master bus is aligned
1367		 */
1368		if (bd.remainder < mbus->buswidth)
1369			early_bytes = bd.remainder;
1370		else if (!IS_BUS_ALIGNED(mbus)) {
1371			early_bytes = mbus->buswidth -
1372				(mbus->addr & (mbus->buswidth - 1));
1373			if ((bd.remainder - early_bytes) < mbus->buswidth)
1374				early_bytes = bd.remainder;
1375		}
1376
1377		if (early_bytes) {
1378			dev_vdbg(&pl08x->adev->dev,
1379				"%s byte width LLIs (remain 0x%08zx)\n",
1380				__func__, bd.remainder);
1381			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382				num_llis++, &total_bytes);
1383		}
1384
1385		if (bd.remainder) {
1386			/*
1387			 * Master now aligned
1388			 * - if slave is not then we must set its width down
1389			 */
1390			if (!IS_BUS_ALIGNED(sbus)) {
1391				dev_dbg(&pl08x->adev->dev,
1392					"%s set down bus width to one byte\n",
1393					__func__);
1394
1395				sbus->buswidth = 1;
1396			}
1397
1398			/*
1399			 * Bytes transferred = tsize * src width, not
1400			 * MIN(buswidths)
1401			 */
1402			max_bytes_per_lli = bd.srcbus.buswidth *
1403						pl08x->vd->max_transfer_size;
1404			dev_vdbg(&pl08x->adev->dev,
1405				"%s max bytes per lli = %zu\n",
1406				__func__, max_bytes_per_lli);
1407
1408			/*
1409			 * Make largest possible LLIs until less than one bus
1410			 * width left
1411			 */
1412			while (bd.remainder > (mbus->buswidth - 1)) {
1413				size_t lli_len, tsize, width;
1414
1415				/*
1416				 * If enough left try to send max possible,
1417				 * otherwise try to send the remainder
1418				 */
1419				lli_len = min(bd.remainder, max_bytes_per_lli);
1420
1421				/*
1422				 * Check against maximum bus alignment:
1423				 * Calculate actual transfer size in relation to
1424				 * bus width an get a maximum remainder of the
1425				 * highest bus width - 1
1426				 */
1427				width = max(mbus->buswidth, sbus->buswidth);
1428				lli_len = (lli_len / width) * width;
1429				tsize = lli_len / bd.srcbus.buswidth;
1430
1431				dev_vdbg(&pl08x->adev->dev,
1432					"%s fill lli with single lli chunk of "
1433					"size 0x%08zx (remainder 0x%08zx)\n",
1434					__func__, lli_len, bd.remainder);
1435
1436				cctl = pl08x_lli_control_bits(pl08x, cctl,
1437					bd.srcbus.buswidth, bd.dstbus.buswidth,
1438					tsize);
1439				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440						lli_len, cctl, tsize);
1441				total_bytes += lli_len;
1442			}
1443
1444			/*
1445			 * Send any odd bytes
1446			 */
1447			if (bd.remainder) {
1448				dev_vdbg(&pl08x->adev->dev,
1449					"%s align with boundary, send odd bytes (remain %zu)\n",
1450					__func__, bd.remainder);
1451				prep_byte_width_lli(pl08x, &bd, &cctl,
1452					bd.remainder, num_llis++, &total_bytes);
1453			}
1454		}
1455
1456		if (total_bytes != dsg->len) {
1457			dev_err(&pl08x->adev->dev,
1458				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459				__func__, total_bytes, dsg->len);
1460			return 0;
1461		}
1462
1463		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464			dev_err(&pl08x->adev->dev,
1465				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466				__func__, MAX_NUM_TSFR_LLIS);
1467			return 0;
1468		}
1469	}
1470
1471	llis_va = txd->llis_va;
1472	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473
1474	if (txd->cyclic) {
1475		/* Link back to the first LLI. */
1476		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477	} else {
1478		/* The final LLI terminates the LLI. */
1479		last_lli[PL080_LLI_LLI] = 0;
1480		/* The final LLI element shall also fire an interrupt. */
1481		if (pl08x->vd->ftdmac020)
1482			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483		else
1484			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485	}
1486
1487	pl08x_dump_lli(pl08x, llis_va, num_llis);
1488
1489	return num_llis;
1490}
1491
1492static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493			   struct pl08x_txd *txd)
1494{
1495	struct pl08x_sg *dsg, *_dsg;
1496
1497	if (txd->llis_va)
1498		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501		list_del(&dsg->node);
1502		kfree(dsg);
1503	}
1504
1505	kfree(txd);
1506}
1507
1508static void pl08x_desc_free(struct virt_dma_desc *vd)
1509{
1510	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513	dma_descriptor_unmap(&vd->tx);
1514	if (!txd->done)
1515		pl08x_release_mux(plchan);
1516
1517	pl08x_free_txd(plchan->host, txd);
1518}
1519
1520static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521				struct pl08x_dma_chan *plchan)
1522{
1523	LIST_HEAD(head);
1524
1525	vchan_get_all_descriptors(&plchan->vc, &head);
1526	vchan_dma_desc_free_list(&plchan->vc, &head);
1527}
1528
1529/*
1530 * The DMA ENGINE API
1531 */
1532static void pl08x_free_chan_resources(struct dma_chan *chan)
1533{
1534	/* Ensure all queued descriptors are freed */
1535	vchan_free_chan_resources(to_virt_chan(chan));
1536}
1537
 
 
 
 
 
 
 
 
1538/*
1539 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1540 * If slaves are relying on interrupts to signal completion this function
1541 * must not be called with interrupts disabled.
1542 */
1543static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1544		dma_cookie_t cookie, struct dma_tx_state *txstate)
1545{
1546	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1547	struct virt_dma_desc *vd;
1548	unsigned long flags;
1549	enum dma_status ret;
1550	size_t bytes = 0;
1551
1552	ret = dma_cookie_status(chan, cookie, txstate);
1553	if (ret == DMA_COMPLETE)
1554		return ret;
1555
1556	/*
1557	 * There's no point calculating the residue if there's
1558	 * no txstate to store the value.
1559	 */
1560	if (!txstate) {
1561		if (plchan->state == PL08X_CHAN_PAUSED)
1562			ret = DMA_PAUSED;
1563		return ret;
1564	}
1565
1566	spin_lock_irqsave(&plchan->vc.lock, flags);
1567	ret = dma_cookie_status(chan, cookie, txstate);
1568	if (ret != DMA_COMPLETE) {
1569		vd = vchan_find_desc(&plchan->vc, cookie);
1570		if (vd) {
1571			/* On the issued list, so hasn't been processed yet */
1572			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1573			struct pl08x_sg *dsg;
1574
1575			list_for_each_entry(dsg, &txd->dsg_list, node)
1576				bytes += dsg->len;
1577		} else {
1578			bytes = pl08x_getbytes_chan(plchan);
1579		}
1580	}
1581	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1582
1583	/*
1584	 * This cookie not complete yet
1585	 * Get number of bytes left in the active transactions and queue
1586	 */
1587	dma_set_residue(txstate, bytes);
1588
1589	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1590		ret = DMA_PAUSED;
1591
1592	/* Whether waiting or running, we're in progress */
1593	return ret;
1594}
1595
1596/* PrimeCell DMA extension */
1597struct burst_table {
1598	u32 burstwords;
1599	u32 reg;
1600};
1601
1602static const struct burst_table burst_sizes[] = {
1603	{
1604		.burstwords = 256,
1605		.reg = PL080_BSIZE_256,
1606	},
1607	{
1608		.burstwords = 128,
1609		.reg = PL080_BSIZE_128,
1610	},
1611	{
1612		.burstwords = 64,
1613		.reg = PL080_BSIZE_64,
1614	},
1615	{
1616		.burstwords = 32,
1617		.reg = PL080_BSIZE_32,
1618	},
1619	{
1620		.burstwords = 16,
1621		.reg = PL080_BSIZE_16,
1622	},
1623	{
1624		.burstwords = 8,
1625		.reg = PL080_BSIZE_8,
1626	},
1627	{
1628		.burstwords = 4,
1629		.reg = PL080_BSIZE_4,
1630	},
1631	{
1632		.burstwords = 0,
1633		.reg = PL080_BSIZE_1,
1634	},
1635};
1636
1637/*
1638 * Given the source and destination available bus masks, select which
1639 * will be routed to each port.  We try to have source and destination
1640 * on separate ports, but always respect the allowable settings.
1641 */
1642static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1643{
1644	u32 cctl = 0;
1645	u32 dst_ahb2;
1646	u32 src_ahb2;
1647
1648	/* The FTDMAC020 use different bits to indicate src/dst bus */
1649	if (ftdmac020) {
1650		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1651		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1652	} else {
1653		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1654		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1655	}
1656
1657	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1658		cctl |= dst_ahb2;
1659	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1660		cctl |= src_ahb2;
1661
1662	return cctl;
1663}
1664
1665static u32 pl08x_cctl(u32 cctl)
1666{
1667	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1668		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1669		  PL080_CONTROL_PROT_MASK);
1670
1671	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1672	return cctl | PL080_CONTROL_PROT_SYS;
1673}
1674
1675static u32 pl08x_width(enum dma_slave_buswidth width)
1676{
1677	switch (width) {
1678	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1679		return PL080_WIDTH_8BIT;
1680	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1681		return PL080_WIDTH_16BIT;
1682	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1683		return PL080_WIDTH_32BIT;
1684	default:
1685		return ~0;
1686	}
1687}
1688
1689static u32 pl08x_burst(u32 maxburst)
1690{
1691	int i;
1692
1693	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1694		if (burst_sizes[i].burstwords <= maxburst)
1695			break;
1696
1697	return burst_sizes[i].reg;
1698}
1699
1700static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1701	enum dma_slave_buswidth addr_width, u32 maxburst)
1702{
1703	u32 width, burst, cctl = 0;
1704
1705	width = pl08x_width(addr_width);
1706	if (width == ~0)
1707		return ~0;
1708
1709	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1710	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1711
1712	/*
1713	 * If this channel will only request single transfers, set this
1714	 * down to ONE element.  Also select one element if no maxburst
1715	 * is specified.
1716	 */
1717	if (plchan->cd->single)
1718		maxburst = 1;
1719
1720	burst = pl08x_burst(maxburst);
1721	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1722	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1723
1724	return pl08x_cctl(cctl);
1725}
1726
1727/*
1728 * Slave transactions callback to the slave device to allow
1729 * synchronization of slave DMA signals with the DMAC enable
1730 */
1731static void pl08x_issue_pending(struct dma_chan *chan)
1732{
1733	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734	unsigned long flags;
1735
1736	spin_lock_irqsave(&plchan->vc.lock, flags);
1737	if (vchan_issue_pending(&plchan->vc)) {
1738		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1739			pl08x_phy_alloc_and_start(plchan);
1740	}
1741	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742}
1743
1744static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1745{
1746	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1747
1748	if (txd)
1749		INIT_LIST_HEAD(&txd->dsg_list);
1750	return txd;
1751}
1752
1753static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1754{
1755	u32 cctl = 0;
1756
1757	/* Conjure cctl */
1758	switch (pl08x->pd->memcpy_burst_size) {
1759	default:
1760		dev_err(&pl08x->adev->dev,
1761			"illegal burst size for memcpy, set to 1\n");
1762		fallthrough;
1763	case PL08X_BURST_SZ_1:
1764		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1765			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1766		break;
1767	case PL08X_BURST_SZ_4:
1768		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1769			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1770		break;
1771	case PL08X_BURST_SZ_8:
1772		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1773			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1774		break;
1775	case PL08X_BURST_SZ_16:
1776		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1777			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1778		break;
1779	case PL08X_BURST_SZ_32:
1780		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1781			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1782		break;
1783	case PL08X_BURST_SZ_64:
1784		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1785			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1786		break;
1787	case PL08X_BURST_SZ_128:
1788		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1789			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1790		break;
1791	case PL08X_BURST_SZ_256:
1792		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1793			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1794		break;
1795	}
1796
1797	switch (pl08x->pd->memcpy_bus_width) {
1798	default:
1799		dev_err(&pl08x->adev->dev,
1800			"illegal bus width for memcpy, set to 8 bits\n");
1801		fallthrough;
1802	case PL08X_BUS_WIDTH_8_BITS:
1803		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1804			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1805		break;
1806	case PL08X_BUS_WIDTH_16_BITS:
1807		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1808			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1809		break;
1810	case PL08X_BUS_WIDTH_32_BITS:
1811		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813		break;
1814	}
1815
1816	/* Protection flags */
1817	if (pl08x->pd->memcpy_prot_buff)
1818		cctl |= PL080_CONTROL_PROT_BUFF;
1819	if (pl08x->pd->memcpy_prot_cache)
1820		cctl |= PL080_CONTROL_PROT_CACHE;
1821
1822	/* We are the kernel, so we are in privileged mode */
1823	cctl |= PL080_CONTROL_PROT_SYS;
1824
1825	/* Both to be incremented or the code will break */
1826	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1827
1828	if (pl08x->vd->dualmaster)
1829		cctl |= pl08x_select_bus(false,
1830					 pl08x->mem_buses,
1831					 pl08x->mem_buses);
1832
1833	return cctl;
1834}
1835
1836static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1837{
1838	u32 cctl = 0;
1839
1840	/* Conjure cctl */
1841	switch (pl08x->pd->memcpy_bus_width) {
1842	default:
1843		dev_err(&pl08x->adev->dev,
1844			"illegal bus width for memcpy, set to 8 bits\n");
1845		fallthrough;
1846	case PL08X_BUS_WIDTH_8_BITS:
1847		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1848			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1849		break;
1850	case PL08X_BUS_WIDTH_16_BITS:
1851		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1852			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1853		break;
1854	case PL08X_BUS_WIDTH_32_BITS:
1855		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857		break;
1858	}
1859
1860	/*
1861	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1862	 * the last LLI item by other code.
1863	 */
1864	cctl |= FTDMAC020_LLI_TC_MSK;
1865
1866	/*
1867	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1868	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1869	 */
1870	if (pl08x->vd->dualmaster)
1871		cctl |= pl08x_select_bus(true,
1872					 pl08x->mem_buses,
1873					 pl08x->mem_buses);
1874
1875	return cctl;
1876}
1877
1878/*
1879 * Initialize a descriptor to be used by memcpy submit
1880 */
1881static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1882		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1883		size_t len, unsigned long flags)
1884{
1885	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1886	struct pl08x_driver_data *pl08x = plchan->host;
1887	struct pl08x_txd *txd;
1888	struct pl08x_sg *dsg;
1889	int ret;
1890
1891	txd = pl08x_get_txd(plchan);
1892	if (!txd) {
1893		dev_err(&pl08x->adev->dev,
1894			"%s no memory for descriptor\n", __func__);
1895		return NULL;
1896	}
1897
1898	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1899	if (!dsg) {
1900		pl08x_free_txd(pl08x, txd);
1901		return NULL;
1902	}
1903	list_add_tail(&dsg->node, &txd->dsg_list);
1904
1905	dsg->src_addr = src;
1906	dsg->dst_addr = dest;
1907	dsg->len = len;
1908	if (pl08x->vd->ftdmac020) {
1909		/* Writing CCFG zero ENABLES all interrupts */
1910		txd->ccfg = 0;
1911		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1912	} else {
1913		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1914			PL080_CONFIG_TC_IRQ_MASK |
1915			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1916		txd->cctl = pl08x_memcpy_cctl(pl08x);
1917	}
1918
1919	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1920	if (!ret) {
1921		pl08x_free_txd(pl08x, txd);
1922		return NULL;
1923	}
1924
1925	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1926}
1927
1928static struct pl08x_txd *pl08x_init_txd(
1929		struct dma_chan *chan,
1930		enum dma_transfer_direction direction,
1931		dma_addr_t *slave_addr)
1932{
1933	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1934	struct pl08x_driver_data *pl08x = plchan->host;
1935	struct pl08x_txd *txd;
1936	enum dma_slave_buswidth addr_width;
1937	int ret, tmp;
1938	u8 src_buses, dst_buses;
1939	u32 maxburst, cctl;
1940
1941	txd = pl08x_get_txd(plchan);
1942	if (!txd) {
1943		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1944		return NULL;
1945	}
1946
1947	/*
1948	 * Set up addresses, the PrimeCell configured address
1949	 * will take precedence since this may configure the
1950	 * channel target address dynamically at runtime.
1951	 */
1952	if (direction == DMA_MEM_TO_DEV) {
1953		cctl = PL080_CONTROL_SRC_INCR;
1954		*slave_addr = plchan->cfg.dst_addr;
1955		addr_width = plchan->cfg.dst_addr_width;
1956		maxburst = plchan->cfg.dst_maxburst;
1957		src_buses = pl08x->mem_buses;
1958		dst_buses = plchan->cd->periph_buses;
1959	} else if (direction == DMA_DEV_TO_MEM) {
1960		cctl = PL080_CONTROL_DST_INCR;
1961		*slave_addr = plchan->cfg.src_addr;
1962		addr_width = plchan->cfg.src_addr_width;
1963		maxburst = plchan->cfg.src_maxburst;
1964		src_buses = plchan->cd->periph_buses;
1965		dst_buses = pl08x->mem_buses;
1966	} else {
1967		pl08x_free_txd(pl08x, txd);
1968		dev_err(&pl08x->adev->dev,
1969			"%s direction unsupported\n", __func__);
1970		return NULL;
1971	}
1972
1973	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1974	if (cctl == ~0) {
1975		pl08x_free_txd(pl08x, txd);
1976		dev_err(&pl08x->adev->dev,
1977			"DMA slave configuration botched?\n");
1978		return NULL;
1979	}
1980
1981	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1982
1983	if (plchan->cfg.device_fc)
1984		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1985			PL080_FLOW_PER2MEM_PER;
1986	else
1987		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1988			PL080_FLOW_PER2MEM;
1989
1990	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1991		PL080_CONFIG_TC_IRQ_MASK |
1992		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1993
1994	ret = pl08x_request_mux(plchan);
1995	if (ret < 0) {
1996		pl08x_free_txd(pl08x, txd);
1997		dev_dbg(&pl08x->adev->dev,
1998			"unable to mux for transfer on %s due to platform restrictions\n",
1999			plchan->name);
2000		return NULL;
2001	}
2002
2003	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2004		 plchan->signal, plchan->name);
2005
2006	/* Assign the flow control signal to this channel */
2007	if (direction == DMA_MEM_TO_DEV)
2008		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2009	else
2010		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2011
2012	return txd;
2013}
2014
2015static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2016			   enum dma_transfer_direction direction,
2017			   dma_addr_t slave_addr,
2018			   dma_addr_t buf_addr,
2019			   unsigned int len)
2020{
2021	struct pl08x_sg *dsg;
2022
2023	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2024	if (!dsg)
2025		return -ENOMEM;
2026
2027	list_add_tail(&dsg->node, &txd->dsg_list);
2028
2029	dsg->len = len;
2030	if (direction == DMA_MEM_TO_DEV) {
2031		dsg->src_addr = buf_addr;
2032		dsg->dst_addr = slave_addr;
2033	} else {
2034		dsg->src_addr = slave_addr;
2035		dsg->dst_addr = buf_addr;
2036	}
2037
2038	return 0;
2039}
2040
2041static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2042		struct dma_chan *chan, struct scatterlist *sgl,
2043		unsigned int sg_len, enum dma_transfer_direction direction,
2044		unsigned long flags, void *context)
2045{
2046	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2047	struct pl08x_driver_data *pl08x = plchan->host;
2048	struct pl08x_txd *txd;
2049	struct scatterlist *sg;
2050	int ret, tmp;
2051	dma_addr_t slave_addr;
2052
2053	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2054			__func__, sg_dma_len(sgl), plchan->name);
2055
2056	txd = pl08x_init_txd(chan, direction, &slave_addr);
2057	if (!txd)
2058		return NULL;
2059
2060	for_each_sg(sgl, sg, sg_len, tmp) {
2061		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2062				      sg_dma_address(sg),
2063				      sg_dma_len(sg));
2064		if (ret) {
2065			pl08x_release_mux(plchan);
2066			pl08x_free_txd(pl08x, txd);
2067			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2068					__func__);
2069			return NULL;
2070		}
2071	}
2072
2073	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2074	if (!ret) {
2075		pl08x_release_mux(plchan);
2076		pl08x_free_txd(pl08x, txd);
2077		return NULL;
2078	}
2079
2080	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2081}
2082
2083static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2084		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2085		size_t period_len, enum dma_transfer_direction direction,
2086		unsigned long flags)
2087{
2088	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2089	struct pl08x_driver_data *pl08x = plchan->host;
2090	struct pl08x_txd *txd;
2091	int ret, tmp;
2092	dma_addr_t slave_addr;
2093
2094	dev_dbg(&pl08x->adev->dev,
2095		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2096		__func__, period_len, buf_len,
2097		direction == DMA_MEM_TO_DEV ? "to" : "from",
2098		plchan->name);
2099
2100	txd = pl08x_init_txd(chan, direction, &slave_addr);
2101	if (!txd)
2102		return NULL;
2103
2104	txd->cyclic = true;
2105	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2106	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2107		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2108				      buf_addr + tmp, period_len);
2109		if (ret) {
2110			pl08x_release_mux(plchan);
2111			pl08x_free_txd(pl08x, txd);
2112			return NULL;
2113		}
2114	}
2115
2116	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2117	if (!ret) {
2118		pl08x_release_mux(plchan);
2119		pl08x_free_txd(pl08x, txd);
2120		return NULL;
2121	}
2122
2123	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2124}
2125
2126static int pl08x_config(struct dma_chan *chan,
2127			struct dma_slave_config *config)
2128{
2129	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2130	struct pl08x_driver_data *pl08x = plchan->host;
2131
2132	if (!plchan->slave)
2133		return -EINVAL;
2134
2135	/* Reject definitely invalid configurations */
2136	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2137	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2138		return -EINVAL;
2139
2140	if (config->device_fc && pl08x->vd->pl080s) {
2141		dev_err(&pl08x->adev->dev,
2142			"%s: PL080S does not support peripheral flow control\n",
2143			__func__);
2144		return -EINVAL;
2145	}
2146
2147	plchan->cfg = *config;
2148
2149	return 0;
2150}
2151
2152static int pl08x_terminate_all(struct dma_chan *chan)
2153{
2154	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2155	struct pl08x_driver_data *pl08x = plchan->host;
2156	unsigned long flags;
2157
2158	spin_lock_irqsave(&plchan->vc.lock, flags);
2159	if (!plchan->phychan && !plchan->at) {
2160		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2161		return 0;
2162	}
2163
2164	plchan->state = PL08X_CHAN_IDLE;
2165
2166	if (plchan->phychan) {
2167		/*
2168		 * Mark physical channel as free and free any slave
2169		 * signal
2170		 */
2171		pl08x_phy_free(plchan);
2172	}
2173	/* Dequeue jobs and free LLIs */
2174	if (plchan->at) {
2175		vchan_terminate_vdesc(&plchan->at->vd);
2176		plchan->at = NULL;
2177	}
2178	/* Dequeue jobs not yet fired as well */
2179	pl08x_free_txd_list(pl08x, plchan);
2180
2181	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2182
2183	return 0;
2184}
2185
2186static void pl08x_synchronize(struct dma_chan *chan)
2187{
2188	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2189
2190	vchan_synchronize(&plchan->vc);
2191}
2192
2193static int pl08x_pause(struct dma_chan *chan)
2194{
2195	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2196	unsigned long flags;
2197
2198	/*
2199	 * Anything succeeds on channels with no physical allocation and
2200	 * no queued transfers.
2201	 */
2202	spin_lock_irqsave(&plchan->vc.lock, flags);
2203	if (!plchan->phychan && !plchan->at) {
2204		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2205		return 0;
2206	}
2207
2208	pl08x_pause_phy_chan(plchan->phychan);
2209	plchan->state = PL08X_CHAN_PAUSED;
2210
2211	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2212
2213	return 0;
2214}
2215
2216static int pl08x_resume(struct dma_chan *chan)
2217{
2218	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2219	unsigned long flags;
2220
2221	/*
2222	 * Anything succeeds on channels with no physical allocation and
2223	 * no queued transfers.
2224	 */
2225	spin_lock_irqsave(&plchan->vc.lock, flags);
2226	if (!plchan->phychan && !plchan->at) {
2227		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2228		return 0;
2229	}
2230
2231	pl08x_resume_phy_chan(plchan->phychan);
2232	plchan->state = PL08X_CHAN_RUNNING;
2233
2234	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2235
2236	return 0;
2237}
2238
2239bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2240{
2241	struct pl08x_dma_chan *plchan;
2242	char *name = chan_id;
2243
2244	/* Reject channels for devices not bound to this driver */
2245	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2246		return false;
2247
2248	plchan = to_pl08x_chan(chan);
2249
2250	/* Check that the channel is not taken! */
2251	if (!strcmp(plchan->name, name))
2252		return true;
2253
2254	return false;
2255}
2256EXPORT_SYMBOL_GPL(pl08x_filter_id);
2257
2258static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2259{
2260	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2261
2262	return plchan->cd == chan_id;
2263}
2264
2265/*
2266 * Just check that the device is there and active
2267 * TODO: turn this bit on/off depending on the number of physical channels
2268 * actually used, if it is zero... well shut it off. That will save some
2269 * power. Cut the clock at the same time.
2270 */
2271static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2272{
2273	/* The Nomadik variant does not have the config register */
2274	if (pl08x->vd->nomadik)
2275		return;
2276	/* The FTDMAC020 variant does this in another register */
2277	if (pl08x->vd->ftdmac020) {
2278		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2279		return;
2280	}
2281	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2282}
2283
2284static irqreturn_t pl08x_irq(int irq, void *dev)
2285{
2286	struct pl08x_driver_data *pl08x = dev;
2287	u32 mask = 0, err, tc, i;
2288
2289	/* check & clear - ERR & TC interrupts */
2290	err = readl(pl08x->base + PL080_ERR_STATUS);
2291	if (err) {
2292		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2293			__func__, err);
2294		writel(err, pl08x->base + PL080_ERR_CLEAR);
2295	}
2296	tc = readl(pl08x->base + PL080_TC_STATUS);
2297	if (tc)
2298		writel(tc, pl08x->base + PL080_TC_CLEAR);
2299
2300	if (!err && !tc)
2301		return IRQ_NONE;
2302
2303	for (i = 0; i < pl08x->vd->channels; i++) {
2304		if ((BIT(i) & err) || (BIT(i) & tc)) {
2305			/* Locate physical channel */
2306			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2307			struct pl08x_dma_chan *plchan = phychan->serving;
2308			struct pl08x_txd *tx;
2309
2310			if (!plchan) {
2311				dev_err(&pl08x->adev->dev,
2312					"%s Error TC interrupt on unused channel: 0x%08x\n",
2313					__func__, i);
2314				continue;
2315			}
2316
2317			spin_lock(&plchan->vc.lock);
2318			tx = plchan->at;
2319			if (tx && tx->cyclic) {
2320				vchan_cyclic_callback(&tx->vd);
2321			} else if (tx) {
2322				plchan->at = NULL;
2323				/*
2324				 * This descriptor is done, release its mux
2325				 * reservation.
2326				 */
2327				pl08x_release_mux(plchan);
2328				tx->done = true;
2329				vchan_cookie_complete(&tx->vd);
2330
2331				/*
2332				 * And start the next descriptor (if any),
2333				 * otherwise free this channel.
2334				 */
2335				if (vchan_next_desc(&plchan->vc))
2336					pl08x_start_next_txd(plchan);
2337				else
2338					pl08x_phy_free(plchan);
2339			}
2340			spin_unlock(&plchan->vc.lock);
2341
2342			mask |= BIT(i);
2343		}
2344	}
2345
2346	return mask ? IRQ_HANDLED : IRQ_NONE;
2347}
2348
2349static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2350{
2351	chan->slave = true;
2352	chan->name = chan->cd->bus_id;
2353	chan->cfg.src_addr = chan->cd->addr;
2354	chan->cfg.dst_addr = chan->cd->addr;
2355}
2356
2357/*
2358 * Initialise the DMAC memcpy/slave channels.
2359 * Make a local wrapper to hold required data
2360 */
2361static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2362		struct dma_device *dmadev, unsigned int channels, bool slave)
2363{
2364	struct pl08x_dma_chan *chan;
2365	int i;
2366
2367	INIT_LIST_HEAD(&dmadev->channels);
2368
2369	/*
2370	 * Register as many memcpy as we have physical channels,
2371	 * we won't always be able to use all but the code will have
2372	 * to cope with that situation.
2373	 */
2374	for (i = 0; i < channels; i++) {
2375		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2376		if (!chan)
2377			return -ENOMEM;
2378
2379		chan->host = pl08x;
2380		chan->state = PL08X_CHAN_IDLE;
2381		chan->signal = -1;
2382
2383		if (slave) {
2384			chan->cd = &pl08x->pd->slave_channels[i];
2385			/*
2386			 * Some implementations have muxed signals, whereas some
2387			 * use a mux in front of the signals and need dynamic
2388			 * assignment of signals.
2389			 */
2390			chan->signal = i;
2391			pl08x_dma_slave_init(chan);
2392		} else {
2393			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2394			if (!chan->cd) {
2395				kfree(chan);
2396				return -ENOMEM;
2397			}
2398			chan->cd->bus_id = "memcpy";
2399			chan->cd->periph_buses = pl08x->pd->mem_buses;
2400			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2401			if (!chan->name) {
2402				kfree(chan->cd);
2403				kfree(chan);
2404				return -ENOMEM;
2405			}
2406		}
2407		dev_dbg(&pl08x->adev->dev,
2408			 "initialize virtual channel \"%s\"\n",
2409			 chan->name);
2410
2411		chan->vc.desc_free = pl08x_desc_free;
2412		vchan_init(&chan->vc, dmadev);
2413	}
2414	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2415		 i, slave ? "slave" : "memcpy");
2416	return i;
2417}
2418
2419static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2420{
2421	struct pl08x_dma_chan *chan = NULL;
2422	struct pl08x_dma_chan *next;
2423
2424	list_for_each_entry_safe(chan,
2425				 next, &dmadev->channels, vc.chan.device_node) {
2426		list_del(&chan->vc.chan.device_node);
2427		kfree(chan);
2428	}
2429}
2430
2431#ifdef CONFIG_DEBUG_FS
2432static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2433{
2434	switch (state) {
2435	case PL08X_CHAN_IDLE:
2436		return "idle";
2437	case PL08X_CHAN_RUNNING:
2438		return "running";
2439	case PL08X_CHAN_PAUSED:
2440		return "paused";
2441	case PL08X_CHAN_WAITING:
2442		return "waiting";
2443	default:
2444		break;
2445	}
2446	return "UNKNOWN STATE";
2447}
2448
2449static int pl08x_debugfs_show(struct seq_file *s, void *data)
2450{
2451	struct pl08x_driver_data *pl08x = s->private;
2452	struct pl08x_dma_chan *chan;
2453	struct pl08x_phy_chan *ch;
2454	unsigned long flags;
2455	int i;
2456
2457	seq_printf(s, "PL08x physical channels:\n");
2458	seq_printf(s, "CHANNEL:\tUSER:\n");
2459	seq_printf(s, "--------\t-----\n");
2460	for (i = 0; i < pl08x->vd->channels; i++) {
2461		struct pl08x_dma_chan *virt_chan;
2462
2463		ch = &pl08x->phy_chans[i];
2464
2465		spin_lock_irqsave(&ch->lock, flags);
2466		virt_chan = ch->serving;
2467
2468		seq_printf(s, "%d\t\t%s%s\n",
2469			   ch->id,
2470			   virt_chan ? virt_chan->name : "(none)",
2471			   ch->locked ? " LOCKED" : "");
2472
2473		spin_unlock_irqrestore(&ch->lock, flags);
2474	}
2475
2476	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2477	seq_printf(s, "CHANNEL:\tSTATE:\n");
2478	seq_printf(s, "--------\t------\n");
2479	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2480		seq_printf(s, "%s\t\t%s\n", chan->name,
2481			   pl08x_state_str(chan->state));
2482	}
2483
2484	if (pl08x->has_slave) {
2485		seq_printf(s, "\nPL08x virtual slave channels:\n");
2486		seq_printf(s, "CHANNEL:\tSTATE:\n");
2487		seq_printf(s, "--------\t------\n");
2488		list_for_each_entry(chan, &pl08x->slave.channels,
2489				    vc.chan.device_node) {
2490			seq_printf(s, "%s\t\t%s\n", chan->name,
2491				   pl08x_state_str(chan->state));
2492		}
2493	}
2494
2495	return 0;
2496}
2497
2498DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
 
 
 
 
 
 
 
 
 
 
2499
2500static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2501{
2502	/* Expose a simple debugfs interface to view all clocks */
2503	debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2504			    NULL, pl08x, &pl08x_debugfs_fops);
 
2505}
2506
2507#else
2508static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509{
2510}
2511#endif
2512
2513#ifdef CONFIG_OF
2514static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2515					 u32 id)
2516{
2517	struct pl08x_dma_chan *chan;
2518
2519	/* Trying to get a slave channel from something with no slave support */
2520	if (!pl08x->has_slave)
2521		return NULL;
2522
2523	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2524		if (chan->signal == id)
2525			return &chan->vc.chan;
2526	}
2527
2528	return NULL;
2529}
2530
2531static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2532				       struct of_dma *ofdma)
2533{
2534	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2535	struct dma_chan *dma_chan;
2536	struct pl08x_dma_chan *plchan;
2537
2538	if (!pl08x)
2539		return NULL;
2540
2541	if (dma_spec->args_count != 2) {
2542		dev_err(&pl08x->adev->dev,
2543			"DMA channel translation requires two cells\n");
2544		return NULL;
2545	}
2546
2547	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2548	if (!dma_chan) {
2549		dev_err(&pl08x->adev->dev,
2550			"DMA slave channel not found\n");
2551		return NULL;
2552	}
2553
2554	plchan = to_pl08x_chan(dma_chan);
2555	dev_dbg(&pl08x->adev->dev,
2556		"translated channel for signal %d\n",
2557		dma_spec->args[0]);
2558
2559	/* Augment channel data for applicable AHB buses */
2560	plchan->cd->periph_buses = dma_spec->args[1];
2561	return dma_get_slave_channel(dma_chan);
2562}
2563
2564static int pl08x_of_probe(struct amba_device *adev,
2565			  struct pl08x_driver_data *pl08x,
2566			  struct device_node *np)
2567{
2568	struct pl08x_platform_data *pd;
2569	struct pl08x_channel_data *chanp = NULL;
2570	u32 val;
2571	int ret;
2572	int i;
2573
2574	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2575	if (!pd)
2576		return -ENOMEM;
2577
2578	/* Eligible bus masters for fetching LLIs */
2579	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2580		pd->lli_buses |= PL08X_AHB1;
2581	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2582		pd->lli_buses |= PL08X_AHB2;
2583	if (!pd->lli_buses) {
2584		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2585		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2586	}
2587
2588	/* Eligible bus masters for memory access */
2589	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2590		pd->mem_buses |= PL08X_AHB1;
2591	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2592		pd->mem_buses |= PL08X_AHB2;
2593	if (!pd->mem_buses) {
2594		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2595		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2596	}
2597
2598	/* Parse the memcpy channel properties */
2599	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2600	if (ret) {
2601		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2602		val = 1;
2603	}
2604	switch (val) {
2605	default:
2606		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2607		fallthrough;
2608	case 1:
2609		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2610		break;
2611	case 4:
2612		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2613		break;
2614	case 8:
2615		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2616		break;
2617	case 16:
2618		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2619		break;
2620	case 32:
2621		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2622		break;
2623	case 64:
2624		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2625		break;
2626	case 128:
2627		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2628		break;
2629	case 256:
2630		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2631		break;
2632	}
2633
2634	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2635	if (ret) {
2636		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2637		val = 8;
2638	}
2639	switch (val) {
2640	default:
2641		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2642		fallthrough;
2643	case 8:
2644		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2645		break;
2646	case 16:
2647		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2648		break;
2649	case 32:
2650		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2651		break;
2652	}
2653
2654	/*
2655	 * Allocate channel data for all possible slave channels (one
2656	 * for each possible signal), channels will then be allocated
2657	 * for a device and have it's AHB interfaces set up at
2658	 * translation time.
2659	 */
2660	if (pl08x->vd->signals) {
2661		chanp = devm_kcalloc(&adev->dev,
2662				     pl08x->vd->signals,
2663				     sizeof(struct pl08x_channel_data),
2664				     GFP_KERNEL);
2665		if (!chanp)
2666			return -ENOMEM;
2667
2668		pd->slave_channels = chanp;
2669		for (i = 0; i < pl08x->vd->signals; i++) {
2670			/*
2671			 * chanp->periph_buses will be assigned at translation
2672			 */
2673			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2674			chanp++;
2675		}
2676		pd->num_slave_channels = pl08x->vd->signals;
2677	}
2678
2679	pl08x->pd = pd;
2680
2681	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2682					  pl08x);
2683}
2684#else
2685static inline int pl08x_of_probe(struct amba_device *adev,
2686				 struct pl08x_driver_data *pl08x,
2687				 struct device_node *np)
2688{
2689	return -EINVAL;
2690}
2691#endif
2692
2693static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2694{
2695	struct pl08x_driver_data *pl08x;
2696	struct vendor_data *vd = id->data;
2697	struct device_node *np = adev->dev.of_node;
2698	u32 tsfr_size;
2699	int ret = 0;
2700	int i;
2701
2702	ret = amba_request_regions(adev, NULL);
2703	if (ret)
2704		return ret;
2705
2706	/* Ensure that we can do DMA */
2707	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2708	if (ret)
2709		goto out_no_pl08x;
2710
2711	/* Create the driver state holder */
2712	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2713	if (!pl08x) {
2714		ret = -ENOMEM;
2715		goto out_no_pl08x;
2716	}
2717
2718	/* Assign useful pointers to the driver state */
2719	pl08x->adev = adev;
2720	pl08x->vd = vd;
2721
2722	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2723	if (!pl08x->base) {
2724		ret = -ENOMEM;
2725		goto out_no_ioremap;
2726	}
2727
2728	if (vd->ftdmac020) {
2729		u32 val;
2730
2731		val = readl(pl08x->base + FTDMAC020_REVISION);
2732		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2733			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2734		val = readl(pl08x->base + FTDMAC020_FEATURE);
2735		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2736			 "%s built-in bridge, %s, %s linked lists\n",
2737			 (val >> 12) & 0x0f,
2738			 (val & BIT(10)) ? "no" : "has",
2739			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2740			 (val & BIT(8)) ? "supports" : "does not support");
2741
2742		/* Vendor data from feature register */
2743		if (!(val & BIT(8)))
2744			dev_warn(&pl08x->adev->dev,
2745				 "linked lists not supported, required\n");
2746		vd->channels = (val >> 12) & 0x0f;
2747		vd->dualmaster = !!(val & BIT(9));
2748	}
2749
2750	/* Initialize memcpy engine */
2751	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2752	pl08x->memcpy.dev = &adev->dev;
2753	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2754	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
 
2755	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2756	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2757	pl08x->memcpy.device_config = pl08x_config;
2758	pl08x->memcpy.device_pause = pl08x_pause;
2759	pl08x->memcpy.device_resume = pl08x_resume;
2760	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2761	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2762	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2763	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2764	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2765	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2766	if (vd->ftdmac020)
2767		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2768
2769
2770	/*
2771	 * Initialize slave engine, if the block has no signals, that means
2772	 * we have no slave support.
2773	 */
2774	if (vd->signals) {
2775		pl08x->has_slave = true;
2776		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2777		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2778		pl08x->slave.dev = &adev->dev;
2779		pl08x->slave.device_free_chan_resources =
2780			pl08x_free_chan_resources;
 
 
2781		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2782		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2783		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2784		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2785		pl08x->slave.device_config = pl08x_config;
2786		pl08x->slave.device_pause = pl08x_pause;
2787		pl08x->slave.device_resume = pl08x_resume;
2788		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2789		pl08x->slave.device_synchronize = pl08x_synchronize;
2790		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2791		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2792		pl08x->slave.directions =
2793			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2794		pl08x->slave.residue_granularity =
2795			DMA_RESIDUE_GRANULARITY_SEGMENT;
2796	}
2797
2798	/* Get the platform data */
2799	pl08x->pd = dev_get_platdata(&adev->dev);
2800	if (!pl08x->pd) {
2801		if (np) {
2802			ret = pl08x_of_probe(adev, pl08x, np);
2803			if (ret)
2804				goto out_no_platdata;
2805		} else {
2806			dev_err(&adev->dev, "no platform data supplied\n");
2807			ret = -EINVAL;
2808			goto out_no_platdata;
2809		}
2810	} else {
2811		pl08x->slave.filter.map = pl08x->pd->slave_map;
2812		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2813		pl08x->slave.filter.fn = pl08x_filter_fn;
2814	}
2815
2816	/* By default, AHB1 only.  If dualmaster, from platform */
2817	pl08x->lli_buses = PL08X_AHB1;
2818	pl08x->mem_buses = PL08X_AHB1;
2819	if (pl08x->vd->dualmaster) {
2820		pl08x->lli_buses = pl08x->pd->lli_buses;
2821		pl08x->mem_buses = pl08x->pd->mem_buses;
2822	}
2823
2824	if (vd->pl080s)
2825		pl08x->lli_words = PL080S_LLI_WORDS;
2826	else
2827		pl08x->lli_words = PL080_LLI_WORDS;
2828	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2829
2830	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2831	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2832						tsfr_size, PL08X_ALIGN, 0);
2833	if (!pl08x->pool) {
2834		ret = -ENOMEM;
2835		goto out_no_lli_pool;
2836	}
2837
2838	/* Turn on the PL08x */
2839	pl08x_ensure_on(pl08x);
2840
2841	/* Clear any pending interrupts */
2842	if (vd->ftdmac020)
2843		/* This variant has error IRQs in bits 16-19 */
2844		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2845	else
2846		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2847	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2848
2849	/* Attach the interrupt handler */
2850	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2851	if (ret) {
2852		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2853			__func__, adev->irq[0]);
2854		goto out_no_irq;
2855	}
2856
2857	/* Initialize physical channels */
2858	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2859			GFP_KERNEL);
2860	if (!pl08x->phy_chans) {
2861		ret = -ENOMEM;
2862		goto out_no_phychans;
2863	}
2864
2865	for (i = 0; i < vd->channels; i++) {
2866		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2867
2868		ch->id = i;
2869		ch->base = pl08x->base + PL080_Cx_BASE(i);
2870		if (vd->ftdmac020) {
2871			/* FTDMA020 has a special channel busy register */
2872			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2873			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2874			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2875			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2876			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2877			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2878			ch->ftdmac020 = true;
2879		} else {
2880			ch->reg_config = ch->base + vd->config_offset;
2881			ch->reg_control = ch->base + PL080_CH_CONTROL;
2882			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2883			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2884			ch->reg_lli = ch->base + PL080_CH_LLI;
2885		}
2886		if (vd->pl080s)
2887			ch->pl080s = true;
2888
2889		spin_lock_init(&ch->lock);
2890
2891		/*
2892		 * Nomadik variants can have channels that are locked
2893		 * down for the secure world only. Lock up these channels
2894		 * by perpetually serving a dummy virtual channel.
2895		 */
2896		if (vd->nomadik) {
2897			u32 val;
2898
2899			val = readl(ch->reg_config);
2900			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2901				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2902				ch->locked = true;
2903			}
2904		}
2905
2906		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2907			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2908	}
2909
2910	/* Register as many memcpy channels as there are physical channels */
2911	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2912					      pl08x->vd->channels, false);
2913	if (ret <= 0) {
2914		dev_warn(&pl08x->adev->dev,
2915			 "%s failed to enumerate memcpy channels - %d\n",
2916			 __func__, ret);
2917		goto out_no_memcpy;
2918	}
2919
2920	/* Register slave channels */
2921	if (pl08x->has_slave) {
2922		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2923					pl08x->pd->num_slave_channels, true);
2924		if (ret < 0) {
2925			dev_warn(&pl08x->adev->dev,
2926				 "%s failed to enumerate slave channels - %d\n",
2927				 __func__, ret);
2928			goto out_no_slave;
2929		}
2930	}
2931
2932	ret = dma_async_device_register(&pl08x->memcpy);
2933	if (ret) {
2934		dev_warn(&pl08x->adev->dev,
2935			"%s failed to register memcpy as an async device - %d\n",
2936			__func__, ret);
2937		goto out_no_memcpy_reg;
2938	}
2939
2940	if (pl08x->has_slave) {
2941		ret = dma_async_device_register(&pl08x->slave);
2942		if (ret) {
2943			dev_warn(&pl08x->adev->dev,
2944			"%s failed to register slave as an async device - %d\n",
2945			__func__, ret);
2946			goto out_no_slave_reg;
2947		}
2948	}
2949
2950	amba_set_drvdata(adev, pl08x);
2951	init_pl08x_debugfs(pl08x);
2952	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2953		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2954		 (unsigned long long)adev->res.start, adev->irq[0]);
2955
2956	return 0;
2957
2958out_no_slave_reg:
2959	dma_async_device_unregister(&pl08x->memcpy);
2960out_no_memcpy_reg:
2961	if (pl08x->has_slave)
2962		pl08x_free_virtual_channels(&pl08x->slave);
2963out_no_slave:
2964	pl08x_free_virtual_channels(&pl08x->memcpy);
2965out_no_memcpy:
2966	kfree(pl08x->phy_chans);
2967out_no_phychans:
2968	free_irq(adev->irq[0], pl08x);
2969out_no_irq:
2970	dma_pool_destroy(pl08x->pool);
2971out_no_lli_pool:
2972out_no_platdata:
2973	iounmap(pl08x->base);
2974out_no_ioremap:
2975	kfree(pl08x);
2976out_no_pl08x:
2977	amba_release_regions(adev);
2978	return ret;
2979}
2980
2981/* PL080 has 8 channels and the PL080 have just 2 */
2982static struct vendor_data vendor_pl080 = {
2983	.config_offset = PL080_CH_CONFIG,
2984	.channels = 8,
2985	.signals = 16,
2986	.dualmaster = true,
2987	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2988};
2989
2990static struct vendor_data vendor_nomadik = {
2991	.config_offset = PL080_CH_CONFIG,
2992	.channels = 8,
2993	.signals = 32,
2994	.dualmaster = true,
2995	.nomadik = true,
2996	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2997};
2998
2999static struct vendor_data vendor_pl080s = {
3000	.config_offset = PL080S_CH_CONFIG,
3001	.channels = 8,
3002	.signals = 32,
3003	.pl080s = true,
3004	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3005};
3006
3007static struct vendor_data vendor_pl081 = {
3008	.config_offset = PL080_CH_CONFIG,
3009	.channels = 2,
3010	.signals = 16,
3011	.dualmaster = false,
3012	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3013};
3014
3015static struct vendor_data vendor_ftdmac020 = {
3016	.config_offset = PL080_CH_CONFIG,
3017	.ftdmac020 = true,
3018	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3019};
3020
3021static const struct amba_id pl08x_ids[] = {
3022	/* Samsung PL080S variant */
3023	{
3024		.id	= 0x0a141080,
3025		.mask	= 0xffffffff,
3026		.data	= &vendor_pl080s,
3027	},
3028	/* PL080 */
3029	{
3030		.id	= 0x00041080,
3031		.mask	= 0x000fffff,
3032		.data	= &vendor_pl080,
3033	},
3034	/* PL081 */
3035	{
3036		.id	= 0x00041081,
3037		.mask	= 0x000fffff,
3038		.data	= &vendor_pl081,
3039	},
3040	/* Nomadik 8815 PL080 variant */
3041	{
3042		.id	= 0x00280080,
3043		.mask	= 0x00ffffff,
3044		.data	= &vendor_nomadik,
3045	},
3046	/* Faraday Technology FTDMAC020 */
3047	{
3048		.id	= 0x0003b080,
3049		.mask	= 0x000fffff,
3050		.data	= &vendor_ftdmac020,
3051	},
3052	{ 0, 0 },
3053};
3054
3055MODULE_DEVICE_TABLE(amba, pl08x_ids);
3056
3057static struct amba_driver pl08x_amba_driver = {
3058	.drv.name	= DRIVER_NAME,
3059	.id_table	= pl08x_ids,
3060	.probe		= pl08x_probe,
3061};
3062
3063static int __init pl08x_init(void)
3064{
3065	int retval;
3066	retval = amba_driver_register(&pl08x_amba_driver);
3067	if (retval)
3068		printk(KERN_WARNING DRIVER_NAME
3069		       "failed to register as an AMBA device (%d)\n",
3070		       retval);
3071	return retval;
3072}
3073subsys_initcall(pl08x_init);
v4.17
 
   1/*
   2 * Copyright (c) 2006 ARM Ltd.
   3 * Copyright (c) 2010 ST-Ericsson SA
   4 * Copyirght (c) 2017 Linaro Ltd.
   5 *
   6 * Author: Peter Pearse <peter.pearse@arm.com>
   7 * Author: Linus Walleij <linus.walleij@linaro.org>
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * The full GNU General Public License is in this distribution in the file
  20 * called COPYING.
  21 *
  22 * Documentation: ARM DDI 0196G == PL080
  23 * Documentation: ARM DDI 0218E == PL081
  24 * Documentation: S3C6410 User's Manual == PL080S
  25 *
  26 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  27 * channel.
  28 *
  29 * The PL080 has 8 channels available for simultaneous use, and the PL081
  30 * has only two channels. So on these DMA controllers the number of channels
  31 * and the number of incoming DMA signals are two totally different things.
  32 * It is usually not possible to theoretically handle all physical signals,
  33 * so a multiplexing scheme with possible denial of use is necessary.
  34 *
  35 * The PL080 has a dual bus master, PL081 has a single master.
  36 *
  37 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  38 * It differs in following aspects:
  39 * - CH_CONFIG register at different offset,
  40 * - separate CH_CONTROL2 register for transfer size,
  41 * - bigger maximum transfer size,
  42 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  43 * - no support for peripheral flow control.
  44 *
  45 * Memory to peripheral transfer may be visualized as
  46 *	Get data from memory to DMAC
  47 *	Until no data left
  48 *		On burst request from peripheral
  49 *			Destination burst from DMAC to peripheral
  50 *			Clear burst request
  51 *	Raise terminal count interrupt
  52 *
  53 * For peripherals with a FIFO:
  54 * Source      burst size == half the depth of the peripheral FIFO
  55 * Destination burst size == the depth of the peripheral FIFO
  56 *
  57 * (Bursts are irrelevant for mem to mem transfers - there are no burst
  58 * signals, the DMA controller will simply facilitate its AHB master.)
  59 *
  60 * ASSUMES default (little) endianness for DMA transfers
  61 *
  62 * The PL08x has two flow control settings:
  63 *  - DMAC flow control: the transfer size defines the number of transfers
  64 *    which occur for the current LLI entry, and the DMAC raises TC at the
  65 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
  66 *    to both the BREQ and SREQ signals (contrary to documented),
  67 *    transferring data if either is active.  The LBREQ and LSREQ signals
  68 *    are ignored.
  69 *
  70 *  - Peripheral flow control: the transfer size is ignored (and should be
  71 *    zero).  The data is transferred from the current LLI entry, until
  72 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
  73 *    will then move to the next LLI entry. Unsupported by PL080S.
  74 */
  75#include <linux/amba/bus.h>
  76#include <linux/amba/pl08x.h>
  77#include <linux/debugfs.h>
  78#include <linux/delay.h>
  79#include <linux/device.h>
  80#include <linux/dmaengine.h>
  81#include <linux/dmapool.h>
  82#include <linux/dma-mapping.h>
  83#include <linux/export.h>
  84#include <linux/init.h>
  85#include <linux/interrupt.h>
  86#include <linux/module.h>
  87#include <linux/of.h>
  88#include <linux/of_dma.h>
  89#include <linux/pm_runtime.h>
  90#include <linux/seq_file.h>
  91#include <linux/slab.h>
  92#include <linux/amba/pl080.h>
  93
  94#include "dmaengine.h"
  95#include "virt-dma.h"
  96
  97#define DRIVER_NAME	"pl08xdmac"
  98
  99#define PL80X_DMA_BUSWIDTHS \
 100	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
 101	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 102	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 103	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
 104
 105static struct amba_driver pl08x_amba_driver;
 106struct pl08x_driver_data;
 107
 108/**
 109 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
 110 * @config_offset: offset to the configuration register
 111 * @channels: the number of channels available in this variant
 112 * @signals: the number of request signals available from the hardware
 113 * @dualmaster: whether this version supports dual AHB masters or not.
 114 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
 115 *	channels have Nomadik security extension bits that need to be checked
 116 *	for permission before use and some registers are missing
 117 * @pl080s: whether this variant is a Samsung PL080S, which has separate
 118 *	register and LLI word for transfer size.
 119 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
 120 * @max_transfer_size: the maximum single element transfer size for this
 121 *	PL08x variant.
 122 */
 123struct vendor_data {
 124	u8 config_offset;
 125	u8 channels;
 126	u8 signals;
 127	bool dualmaster;
 128	bool nomadik;
 129	bool pl080s;
 130	bool ftdmac020;
 131	u32 max_transfer_size;
 132};
 133
 134/**
 135 * struct pl08x_bus_data - information of source or destination
 136 * busses for a transfer
 137 * @addr: current address
 138 * @maxwidth: the maximum width of a transfer on this bus
 139 * @buswidth: the width of this bus in bytes: 1, 2 or 4
 140 */
 141struct pl08x_bus_data {
 142	dma_addr_t addr;
 143	u8 maxwidth;
 144	u8 buswidth;
 145};
 146
 147#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
 148
 149/**
 150 * struct pl08x_phy_chan - holder for the physical channels
 151 * @id: physical index to this channel
 152 * @base: memory base address for this physical channel
 153 * @reg_config: configuration address for this physical channel
 154 * @reg_control: control address for this physical channel
 155 * @reg_src: transfer source address register
 156 * @reg_dst: transfer destination address register
 157 * @reg_lli: transfer LLI address register
 158 * @reg_busy: if the variant has a special per-channel busy register,
 159 * this contains a pointer to it
 160 * @lock: a lock to use when altering an instance of this struct
 161 * @serving: the virtual channel currently being served by this physical
 162 * channel
 163 * @locked: channel unavailable for the system, e.g. dedicated to secure
 164 * world
 165 * @ftdmac020: channel is on a FTDMAC020
 166 * @pl080s: channel is on a PL08s
 167 */
 168struct pl08x_phy_chan {
 169	unsigned int id;
 170	void __iomem *base;
 171	void __iomem *reg_config;
 172	void __iomem *reg_control;
 173	void __iomem *reg_src;
 174	void __iomem *reg_dst;
 175	void __iomem *reg_lli;
 176	void __iomem *reg_busy;
 177	spinlock_t lock;
 178	struct pl08x_dma_chan *serving;
 179	bool locked;
 180	bool ftdmac020;
 181	bool pl080s;
 182};
 183
 184/**
 185 * struct pl08x_sg - structure containing data per sg
 186 * @src_addr: src address of sg
 187 * @dst_addr: dst address of sg
 188 * @len: transfer len in bytes
 189 * @node: node for txd's dsg_list
 190 */
 191struct pl08x_sg {
 192	dma_addr_t src_addr;
 193	dma_addr_t dst_addr;
 194	size_t len;
 195	struct list_head node;
 196};
 197
 198/**
 199 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
 200 * @vd: virtual DMA descriptor
 201 * @dsg_list: list of children sg's
 202 * @llis_bus: DMA memory address (physical) start for the LLIs
 203 * @llis_va: virtual memory address start for the LLIs
 204 * @cctl: control reg values for current txd
 205 * @ccfg: config reg values for current txd
 206 * @done: this marks completed descriptors, which should not have their
 207 *   mux released.
 208 * @cyclic: indicate cyclic transfers
 209 */
 210struct pl08x_txd {
 211	struct virt_dma_desc vd;
 212	struct list_head dsg_list;
 213	dma_addr_t llis_bus;
 214	u32 *llis_va;
 215	/* Default cctl value for LLIs */
 216	u32 cctl;
 217	/*
 218	 * Settings to be put into the physical channel when we
 219	 * trigger this txd.  Other registers are in llis_va[0].
 220	 */
 221	u32 ccfg;
 222	bool done;
 223	bool cyclic;
 224};
 225
 226/**
 227 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
 228 * states
 229 * @PL08X_CHAN_IDLE: the channel is idle
 230 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
 231 * channel and is running a transfer on it
 232 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
 233 * channel, but the transfer is currently paused
 234 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
 235 * channel to become available (only pertains to memcpy channels)
 236 */
 237enum pl08x_dma_chan_state {
 238	PL08X_CHAN_IDLE,
 239	PL08X_CHAN_RUNNING,
 240	PL08X_CHAN_PAUSED,
 241	PL08X_CHAN_WAITING,
 242};
 243
 244/**
 245 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
 246 * @vc: wrappped virtual channel
 247 * @phychan: the physical channel utilized by this channel, if there is one
 248 * @name: name of channel
 249 * @cd: channel platform data
 250 * @cfg: slave configuration
 251 * @at: active transaction on this channel
 252 * @host: a pointer to the host (internal use)
 253 * @state: whether the channel is idle, paused, running etc
 254 * @slave: whether this channel is a device (slave) or for memcpy
 255 * @signal: the physical DMA request signal which this channel is using
 256 * @mux_use: count of descriptors using this DMA request signal setting
 
 257 */
 258struct pl08x_dma_chan {
 259	struct virt_dma_chan vc;
 260	struct pl08x_phy_chan *phychan;
 261	const char *name;
 262	struct pl08x_channel_data *cd;
 263	struct dma_slave_config cfg;
 264	struct pl08x_txd *at;
 265	struct pl08x_driver_data *host;
 266	enum pl08x_dma_chan_state state;
 267	bool slave;
 268	int signal;
 269	unsigned mux_use;
 
 270};
 271
 272/**
 273 * struct pl08x_driver_data - the local state holder for the PL08x
 274 * @slave: optional slave engine for this instance
 275 * @memcpy: memcpy engine for this instance
 276 * @has_slave: the PL08x has a slave engine (routed signals)
 277 * @base: virtual memory base (remapped) for the PL08x
 278 * @adev: the corresponding AMBA (PrimeCell) bus entry
 279 * @vd: vendor data for this PL08x variant
 280 * @pd: platform data passed in from the platform/machine
 281 * @phy_chans: array of data for the physical channels
 282 * @pool: a pool for the LLI descriptors
 283 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 284 * fetches
 285 * @mem_buses: set to indicate memory transfers on AHB2.
 286 * @lli_words: how many words are used in each LLI item for this variant
 287 */
 288struct pl08x_driver_data {
 289	struct dma_device slave;
 290	struct dma_device memcpy;
 291	bool has_slave;
 292	void __iomem *base;
 293	struct amba_device *adev;
 294	const struct vendor_data *vd;
 295	struct pl08x_platform_data *pd;
 296	struct pl08x_phy_chan *phy_chans;
 297	struct dma_pool *pool;
 298	u8 lli_buses;
 299	u8 mem_buses;
 300	u8 lli_words;
 301};
 302
 303/*
 304 * PL08X specific defines
 305 */
 306
 307/* The order of words in an LLI. */
 308#define PL080_LLI_SRC		0
 309#define PL080_LLI_DST		1
 310#define PL080_LLI_LLI		2
 311#define PL080_LLI_CCTL		3
 312#define PL080S_LLI_CCTL2	4
 313
 314/* Total words in an LLI. */
 315#define PL080_LLI_WORDS		4
 316#define PL080S_LLI_WORDS	8
 317
 318/*
 319 * Number of LLIs in each LLI buffer allocated for one transfer
 320 * (maximum times we call dma_pool_alloc on this pool without freeing)
 321 */
 322#define MAX_NUM_TSFR_LLIS	512
 323#define PL08X_ALIGN		8
 324
 325static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
 326{
 327	return container_of(chan, struct pl08x_dma_chan, vc.chan);
 328}
 329
 330static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
 331{
 332	return container_of(tx, struct pl08x_txd, vd.tx);
 333}
 334
 335/*
 336 * Mux handling.
 337 *
 338 * This gives us the DMA request input to the PL08x primecell which the
 339 * peripheral described by the channel data will be routed to, possibly
 340 * via a board/SoC specific external MUX.  One important point to note
 341 * here is that this does not depend on the physical channel.
 342 */
 343static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
 344{
 345	const struct pl08x_platform_data *pd = plchan->host->pd;
 346	int ret;
 347
 348	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
 349		ret = pd->get_xfer_signal(plchan->cd);
 350		if (ret < 0) {
 351			plchan->mux_use = 0;
 352			return ret;
 353		}
 354
 355		plchan->signal = ret;
 356	}
 357	return 0;
 358}
 359
 360static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
 361{
 362	const struct pl08x_platform_data *pd = plchan->host->pd;
 363
 364	if (plchan->signal >= 0) {
 365		WARN_ON(plchan->mux_use == 0);
 366
 367		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
 368			pd->put_xfer_signal(plchan->cd, plchan->signal);
 369			plchan->signal = -1;
 370		}
 371	}
 372}
 373
 374/*
 375 * Physical channel handling
 376 */
 377
 378/* Whether a certain channel is busy or not */
 379static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
 380{
 381	unsigned int val;
 382
 383	/* If we have a special busy register, take a shortcut */
 384	if (ch->reg_busy) {
 385		val = readl(ch->reg_busy);
 386		return !!(val & BIT(ch->id));
 387	}
 388	val = readl(ch->reg_config);
 389	return val & PL080_CONFIG_ACTIVE;
 390}
 391
 392/*
 393 * pl08x_write_lli() - Write an LLI into the DMA controller.
 394 *
 395 * The PL08x derivatives support linked lists, but the first item of the
 396 * list containing the source, destination, control word and next LLI is
 397 * ignored. Instead the driver has to write those values directly into the
 398 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
 399 * register need to be set up for the first transfer.
 400 */
 401static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
 402		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
 403{
 404	if (pl08x->vd->pl080s)
 405		dev_vdbg(&pl08x->adev->dev,
 406			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 407			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
 408			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 409			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
 410			lli[PL080S_LLI_CCTL2], ccfg);
 411	else
 412		dev_vdbg(&pl08x->adev->dev,
 413			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
 414			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
 415			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
 416			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
 417
 418	writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
 419	writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
 420	writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
 421
 422	/*
 423	 * The FTMAC020 has a different layout in the CCTL word of the LLI
 424	 * and the CCTL register which is split in CSR and SIZE registers.
 425	 * Convert the LLI item CCTL into the proper values to write into
 426	 * the CSR and SIZE registers.
 427	 */
 428	if (phychan->ftdmac020) {
 429		u32 llictl = lli[PL080_LLI_CCTL];
 430		u32 val = 0;
 431
 432		/* Write the transfer size (12 bits) to the size register */
 433		writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
 434			       phychan->base + FTDMAC020_CH_SIZE);
 435		/*
 436		 * Then write the control bits 28..16 to the control register
 437		 * by shuffleing the bits around to where they are in the
 438		 * main register. The mapping is as follows:
 439		 * Bit 28: TC_MSK - mask on all except last LLI
 440		 * Bit 27..25: SRC_WIDTH
 441		 * Bit 24..22: DST_WIDTH
 442		 * Bit 21..20: SRCAD_CTRL
 443		 * Bit 19..17: DSTAD_CTRL
 444		 * Bit 17: SRC_SEL
 445		 * Bit 16: DST_SEL
 446		 */
 447		if (llictl & FTDMAC020_LLI_TC_MSK)
 448			val |= FTDMAC020_CH_CSR_TC_MSK;
 449		val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 450			(FTDMAC020_LLI_SRC_WIDTH_SHIFT -
 451			 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
 452		val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 453			(FTDMAC020_LLI_DST_WIDTH_SHIFT -
 454			 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
 455		val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
 456			(FTDMAC020_LLI_SRCAD_CTL_SHIFT -
 457			 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
 458		val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
 459			(FTDMAC020_LLI_DSTAD_CTL_SHIFT -
 460			 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
 461		if (llictl & FTDMAC020_LLI_SRC_SEL)
 462			val |= FTDMAC020_CH_CSR_SRC_SEL;
 463		if (llictl & FTDMAC020_LLI_DST_SEL)
 464			val |= FTDMAC020_CH_CSR_DST_SEL;
 465
 466		/*
 467		 * Set up the bits that exist in the CSR but are not
 468		 * part the LLI, i.e. only gets written to the control
 469		 * register right here.
 470		 *
 471		 * FIXME: do not just handle memcpy, also handle slave DMA.
 472		 */
 473		switch (pl08x->pd->memcpy_burst_size) {
 474		default:
 475		case PL08X_BURST_SZ_1:
 476			val |= PL080_BSIZE_1 <<
 477				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 478			break;
 479		case PL08X_BURST_SZ_4:
 480			val |= PL080_BSIZE_4 <<
 481				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 482			break;
 483		case PL08X_BURST_SZ_8:
 484			val |= PL080_BSIZE_8 <<
 485				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 486			break;
 487		case PL08X_BURST_SZ_16:
 488			val |= PL080_BSIZE_16 <<
 489				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 490			break;
 491		case PL08X_BURST_SZ_32:
 492			val |= PL080_BSIZE_32 <<
 493				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 494			break;
 495		case PL08X_BURST_SZ_64:
 496			val |= PL080_BSIZE_64 <<
 497				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 498			break;
 499		case PL08X_BURST_SZ_128:
 500			val |= PL080_BSIZE_128 <<
 501				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 502			break;
 503		case PL08X_BURST_SZ_256:
 504			val |= PL080_BSIZE_256 <<
 505				FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
 506			break;
 507		}
 508
 509		/* Protection flags */
 510		if (pl08x->pd->memcpy_prot_buff)
 511			val |= FTDMAC020_CH_CSR_PROT2;
 512		if (pl08x->pd->memcpy_prot_cache)
 513			val |= FTDMAC020_CH_CSR_PROT3;
 514		/* We are the kernel, so we are in privileged mode */
 515		val |= FTDMAC020_CH_CSR_PROT1;
 516
 517		writel_relaxed(val, phychan->reg_control);
 518	} else {
 519		/* Bits are just identical */
 520		writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
 521	}
 522
 523	/* Second control word on the PL080s */
 524	if (pl08x->vd->pl080s)
 525		writel_relaxed(lli[PL080S_LLI_CCTL2],
 526				phychan->base + PL080S_CH_CONTROL2);
 527
 528	writel(ccfg, phychan->reg_config);
 529}
 530
 531/*
 532 * Set the initial DMA register values i.e. those for the first LLI
 533 * The next LLI pointer and the configuration interrupt bit have
 534 * been set when the LLIs were constructed.  Poke them into the hardware
 535 * and start the transfer.
 536 */
 537static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
 538{
 539	struct pl08x_driver_data *pl08x = plchan->host;
 540	struct pl08x_phy_chan *phychan = plchan->phychan;
 541	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
 542	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
 543	u32 val;
 544
 545	list_del(&txd->vd.node);
 546
 547	plchan->at = txd;
 548
 549	/* Wait for channel inactive */
 550	while (pl08x_phy_channel_busy(phychan))
 551		cpu_relax();
 552
 553	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
 554
 555	/* Enable the DMA channel */
 556	/* Do not access config register until channel shows as disabled */
 557	while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
 558		cpu_relax();
 559
 560	/* Do not access config register until channel shows as inactive */
 561	if (phychan->ftdmac020) {
 562		val = readl(phychan->reg_config);
 563		while (val & FTDMAC020_CH_CFG_BUSY)
 564			val = readl(phychan->reg_config);
 565
 566		val = readl(phychan->reg_control);
 567		while (val & FTDMAC020_CH_CSR_EN)
 568			val = readl(phychan->reg_control);
 569
 570		writel(val | FTDMAC020_CH_CSR_EN,
 571		       phychan->reg_control);
 572	} else {
 573		val = readl(phychan->reg_config);
 574		while ((val & PL080_CONFIG_ACTIVE) ||
 575		       (val & PL080_CONFIG_ENABLE))
 576			val = readl(phychan->reg_config);
 577
 578		writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
 579	}
 580}
 581
 582/*
 583 * Pause the channel by setting the HALT bit.
 584 *
 585 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 586 * the FIFO can only drain if the peripheral is still requesting data.
 587 * (note: this can still timeout if the DMAC FIFO never drains of data.)
 588 *
 589 * For P->M transfers, disable the peripheral first to stop it filling
 590 * the DMAC FIFO, and then pause the DMAC.
 591 */
 592static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
 593{
 594	u32 val;
 595	int timeout;
 596
 597	if (ch->ftdmac020) {
 598		/* Use the enable bit on the FTDMAC020 */
 599		val = readl(ch->reg_control);
 600		val &= ~FTDMAC020_CH_CSR_EN;
 601		writel(val, ch->reg_control);
 602		return;
 603	}
 604
 605	/* Set the HALT bit and wait for the FIFO to drain */
 606	val = readl(ch->reg_config);
 607	val |= PL080_CONFIG_HALT;
 608	writel(val, ch->reg_config);
 609
 610	/* Wait for channel inactive */
 611	for (timeout = 1000; timeout; timeout--) {
 612		if (!pl08x_phy_channel_busy(ch))
 613			break;
 614		udelay(1);
 615	}
 616	if (pl08x_phy_channel_busy(ch))
 617		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
 618}
 619
 620static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
 621{
 622	u32 val;
 623
 624	/* Use the enable bit on the FTDMAC020 */
 625	if (ch->ftdmac020) {
 626		val = readl(ch->reg_control);
 627		val |= FTDMAC020_CH_CSR_EN;
 628		writel(val, ch->reg_control);
 629		return;
 630	}
 631
 632	/* Clear the HALT bit */
 633	val = readl(ch->reg_config);
 634	val &= ~PL080_CONFIG_HALT;
 635	writel(val, ch->reg_config);
 636}
 637
 638/*
 639 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 640 * clears any pending interrupt status.  This should not be used for
 641 * an on-going transfer, but as a method of shutting down a channel
 642 * (eg, when it's no longer used) or terminating a transfer.
 643 */
 644static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
 645	struct pl08x_phy_chan *ch)
 646{
 647	u32 val;
 648
 649	/* The layout for the FTDMAC020 is different */
 650	if (ch->ftdmac020) {
 651		/* Disable all interrupts */
 652		val = readl(ch->reg_config);
 653		val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
 654			FTDMAC020_CH_CFG_INT_ERR_MASK |
 655			FTDMAC020_CH_CFG_INT_TC_MASK);
 656		writel(val, ch->reg_config);
 657
 658		/* Abort and disable channel */
 659		val = readl(ch->reg_control);
 660		val &= ~FTDMAC020_CH_CSR_EN;
 661		val |= FTDMAC020_CH_CSR_ABT;
 662		writel(val, ch->reg_control);
 663
 664		/* Clear ABT and ERR interrupt flags */
 665		writel(BIT(ch->id) | BIT(ch->id + 16),
 666		       pl08x->base + PL080_ERR_CLEAR);
 667		writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 668
 669		return;
 670	}
 671
 672	val = readl(ch->reg_config);
 673	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
 674		 PL080_CONFIG_TC_IRQ_MASK);
 675	writel(val, ch->reg_config);
 676
 677	writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
 678	writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
 679}
 680
 681static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
 682{
 683	u32 val;
 684	u32 bytes;
 685
 686	if (ch->ftdmac020) {
 687		bytes = readl(ch->base + FTDMAC020_CH_SIZE);
 688
 689		val = readl(ch->reg_control);
 690		val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
 691		val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
 692	} else if (ch->pl080s) {
 693		val = readl(ch->base + PL080S_CH_CONTROL2);
 694		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 695
 696		val = readl(ch->reg_control);
 697		val &= PL080_CONTROL_SWIDTH_MASK;
 698		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 699	} else {
 700		/* Plain PL08x */
 701		val = readl(ch->reg_control);
 702		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 703
 704		val &= PL080_CONTROL_SWIDTH_MASK;
 705		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 706	}
 707
 708	switch (val) {
 709	case PL080_WIDTH_8BIT:
 710		break;
 711	case PL080_WIDTH_16BIT:
 712		bytes *= 2;
 713		break;
 714	case PL080_WIDTH_32BIT:
 715		bytes *= 4;
 716		break;
 717	}
 718	return bytes;
 719}
 720
 721static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
 722{
 723	u32 val;
 724	u32 bytes;
 725
 726	if (ch->ftdmac020) {
 727		val = llis_va[PL080_LLI_CCTL];
 728		bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
 729
 730		val = llis_va[PL080_LLI_CCTL];
 731		val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
 732		val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 733	} else if (ch->pl080s) {
 734		val = llis_va[PL080S_LLI_CCTL2];
 735		bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
 736
 737		val = llis_va[PL080_LLI_CCTL];
 738		val &= PL080_CONTROL_SWIDTH_MASK;
 739		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 740	} else {
 741		/* Plain PL08x */
 742		val = llis_va[PL080_LLI_CCTL];
 743		bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
 744
 745		val &= PL080_CONTROL_SWIDTH_MASK;
 746		val >>= PL080_CONTROL_SWIDTH_SHIFT;
 747	}
 748
 749	switch (val) {
 750	case PL080_WIDTH_8BIT:
 751		break;
 752	case PL080_WIDTH_16BIT:
 753		bytes *= 2;
 754		break;
 755	case PL080_WIDTH_32BIT:
 756		bytes *= 4;
 757		break;
 758	}
 759	return bytes;
 760}
 761
 762/* The channel should be paused when calling this */
 763static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
 764{
 765	struct pl08x_driver_data *pl08x = plchan->host;
 766	const u32 *llis_va, *llis_va_limit;
 767	struct pl08x_phy_chan *ch;
 768	dma_addr_t llis_bus;
 769	struct pl08x_txd *txd;
 770	u32 llis_max_words;
 771	size_t bytes;
 772	u32 clli;
 773
 774	ch = plchan->phychan;
 775	txd = plchan->at;
 776
 777	if (!ch || !txd)
 778		return 0;
 779
 780	/*
 781	 * Follow the LLIs to get the number of remaining
 782	 * bytes in the currently active transaction.
 783	 */
 784	clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
 785
 786	/* First get the remaining bytes in the active transfer */
 787	bytes = get_bytes_in_phy_channel(ch);
 788
 789	if (!clli)
 790		return bytes;
 791
 792	llis_va = txd->llis_va;
 793	llis_bus = txd->llis_bus;
 794
 795	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
 796	BUG_ON(clli < llis_bus || clli >= llis_bus +
 797						sizeof(u32) * llis_max_words);
 798
 799	/*
 800	 * Locate the next LLI - as this is an array,
 801	 * it's simple maths to find.
 802	 */
 803	llis_va += (clli - llis_bus) / sizeof(u32);
 804
 805	llis_va_limit = llis_va + llis_max_words;
 806
 807	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
 808		bytes += get_bytes_in_lli(ch, llis_va);
 809
 810		/*
 811		 * A LLI pointer going backward terminates the LLI list
 812		 */
 813		if (llis_va[PL080_LLI_LLI] <= clli)
 814			break;
 815	}
 816
 817	return bytes;
 818}
 819
 820/*
 821 * Allocate a physical channel for a virtual channel
 822 *
 823 * Try to locate a physical channel to be used for this transfer. If all
 824 * are taken return NULL and the requester will have to cope by using
 825 * some fallback PIO mode or retrying later.
 826 */
 827static struct pl08x_phy_chan *
 828pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
 829		      struct pl08x_dma_chan *virt_chan)
 830{
 831	struct pl08x_phy_chan *ch = NULL;
 832	unsigned long flags;
 833	int i;
 834
 835	for (i = 0; i < pl08x->vd->channels; i++) {
 836		ch = &pl08x->phy_chans[i];
 837
 838		spin_lock_irqsave(&ch->lock, flags);
 839
 840		if (!ch->locked && !ch->serving) {
 841			ch->serving = virt_chan;
 842			spin_unlock_irqrestore(&ch->lock, flags);
 843			break;
 844		}
 845
 846		spin_unlock_irqrestore(&ch->lock, flags);
 847	}
 848
 849	if (i == pl08x->vd->channels) {
 850		/* No physical channel available, cope with it */
 851		return NULL;
 852	}
 853
 854	return ch;
 855}
 856
 857/* Mark the physical channel as free.  Note, this write is atomic. */
 858static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
 859					 struct pl08x_phy_chan *ch)
 860{
 861	ch->serving = NULL;
 862}
 863
 864/*
 865 * Try to allocate a physical channel.  When successful, assign it to
 866 * this virtual channel, and initiate the next descriptor.  The
 867 * virtual channel lock must be held at this point.
 868 */
 869static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
 870{
 871	struct pl08x_driver_data *pl08x = plchan->host;
 872	struct pl08x_phy_chan *ch;
 873
 874	ch = pl08x_get_phy_channel(pl08x, plchan);
 875	if (!ch) {
 876		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
 877		plchan->state = PL08X_CHAN_WAITING;
 
 878		return;
 879	}
 880
 881	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
 882		ch->id, plchan->name);
 883
 884	plchan->phychan = ch;
 885	plchan->state = PL08X_CHAN_RUNNING;
 886	pl08x_start_next_txd(plchan);
 887}
 888
 889static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
 890	struct pl08x_dma_chan *plchan)
 891{
 892	struct pl08x_driver_data *pl08x = plchan->host;
 893
 894	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
 895		ch->id, plchan->name);
 896
 897	/*
 898	 * We do this without taking the lock; we're really only concerned
 899	 * about whether this pointer is NULL or not, and we're guaranteed
 900	 * that this will only be called when it _already_ is non-NULL.
 901	 */
 902	ch->serving = plchan;
 903	plchan->phychan = ch;
 904	plchan->state = PL08X_CHAN_RUNNING;
 905	pl08x_start_next_txd(plchan);
 906}
 907
 908/*
 909 * Free a physical DMA channel, potentially reallocating it to another
 910 * virtual channel if we have any pending.
 911 */
 912static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
 913{
 914	struct pl08x_driver_data *pl08x = plchan->host;
 915	struct pl08x_dma_chan *p, *next;
 916
 917 retry:
 918	next = NULL;
 
 919
 920	/* Find a waiting virtual channel for the next transfer. */
 
 
 
 
 921	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
 922		if (p->state == PL08X_CHAN_WAITING) {
 
 923			next = p;
 924			break;
 925		}
 926
 927	if (!next && pl08x->has_slave) {
 928		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
 929			if (p->state == PL08X_CHAN_WAITING) {
 
 930				next = p;
 931				break;
 932			}
 933	}
 934
 935	/* Ensure that the physical channel is stopped */
 936	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
 937
 938	if (next) {
 939		bool success;
 940
 941		/*
 942		 * Eww.  We know this isn't going to deadlock
 943		 * but lockdep probably doesn't.
 944		 */
 945		spin_lock(&next->vc.lock);
 946		/* Re-check the state now that we have the lock */
 947		success = next->state == PL08X_CHAN_WAITING;
 948		if (success)
 949			pl08x_phy_reassign_start(plchan->phychan, next);
 950		spin_unlock(&next->vc.lock);
 951
 952		/* If the state changed, try to find another channel */
 953		if (!success)
 954			goto retry;
 955	} else {
 956		/* No more jobs, so free up the physical channel */
 957		pl08x_put_phy_channel(pl08x, plchan->phychan);
 958	}
 959
 960	plchan->phychan = NULL;
 961	plchan->state = PL08X_CHAN_IDLE;
 962}
 963
 964/*
 965 * LLI handling
 966 */
 967
 968static inline unsigned int
 969pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
 970			u32 cctl,
 971			bool source)
 972{
 973	u32 val;
 974
 975	if (pl08x->vd->ftdmac020) {
 976		if (source)
 977			val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
 978				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
 979		else
 980			val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
 981				FTDMAC020_LLI_DST_WIDTH_SHIFT;
 982	} else {
 983		if (source)
 984			val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
 985				PL080_CONTROL_SWIDTH_SHIFT;
 986		else
 987			val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
 988				PL080_CONTROL_DWIDTH_SHIFT;
 989	}
 990
 991	switch (val) {
 992	case PL080_WIDTH_8BIT:
 993		return 1;
 994	case PL080_WIDTH_16BIT:
 995		return 2;
 996	case PL080_WIDTH_32BIT:
 997		return 4;
 998	default:
 999		break;
1000	}
1001	BUG();
1002	return 0;
1003}
1004
1005static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1006					 u32 cctl,
1007					 u8 srcwidth, u8 dstwidth,
1008					 size_t tsize)
1009{
1010	u32 retbits = cctl;
1011
1012	/*
1013	 * Remove all src, dst and transfer size bits, then set the
1014	 * width and size according to the parameters. The bit offsets
1015	 * are different in the FTDMAC020 so we need to accound for this.
1016	 */
1017	if (pl08x->vd->ftdmac020) {
1018		retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1019		retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1020		retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1021
1022		switch (srcwidth) {
1023		case 1:
1024			retbits |= PL080_WIDTH_8BIT <<
1025				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1026			break;
1027		case 2:
1028			retbits |= PL080_WIDTH_16BIT <<
1029				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1030			break;
1031		case 4:
1032			retbits |= PL080_WIDTH_32BIT <<
1033				FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1034			break;
1035		default:
1036			BUG();
1037			break;
1038		}
1039
1040		switch (dstwidth) {
1041		case 1:
1042			retbits |= PL080_WIDTH_8BIT <<
1043				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1044			break;
1045		case 2:
1046			retbits |= PL080_WIDTH_16BIT <<
1047				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1048			break;
1049		case 4:
1050			retbits |= PL080_WIDTH_32BIT <<
1051				FTDMAC020_LLI_DST_WIDTH_SHIFT;
1052			break;
1053		default:
1054			BUG();
1055			break;
1056		}
1057
1058		tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1059		retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1060	} else {
1061		retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1062		retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1063		retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1064
1065		switch (srcwidth) {
1066		case 1:
1067			retbits |= PL080_WIDTH_8BIT <<
1068				PL080_CONTROL_SWIDTH_SHIFT;
1069			break;
1070		case 2:
1071			retbits |= PL080_WIDTH_16BIT <<
1072				PL080_CONTROL_SWIDTH_SHIFT;
1073			break;
1074		case 4:
1075			retbits |= PL080_WIDTH_32BIT <<
1076				PL080_CONTROL_SWIDTH_SHIFT;
1077			break;
1078		default:
1079			BUG();
1080			break;
1081		}
1082
1083		switch (dstwidth) {
1084		case 1:
1085			retbits |= PL080_WIDTH_8BIT <<
1086				PL080_CONTROL_DWIDTH_SHIFT;
1087			break;
1088		case 2:
1089			retbits |= PL080_WIDTH_16BIT <<
1090				PL080_CONTROL_DWIDTH_SHIFT;
1091			break;
1092		case 4:
1093			retbits |= PL080_WIDTH_32BIT <<
1094				PL080_CONTROL_DWIDTH_SHIFT;
1095			break;
1096		default:
1097			BUG();
1098			break;
1099		}
1100
1101		tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1102		retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1103	}
1104
1105	return retbits;
1106}
1107
1108struct pl08x_lli_build_data {
1109	struct pl08x_txd *txd;
1110	struct pl08x_bus_data srcbus;
1111	struct pl08x_bus_data dstbus;
1112	size_t remainder;
1113	u32 lli_bus;
1114};
1115
1116/*
1117 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1118 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1119 * masters address with width requirements of transfer (by sending few byte by
1120 * byte data), slave is still not aligned, then its width will be reduced to
1121 * BYTE.
1122 * - prefers the destination bus if both available
1123 * - prefers bus with fixed address (i.e. peripheral)
1124 */
1125static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1126				    struct pl08x_lli_build_data *bd,
1127				    struct pl08x_bus_data **mbus,
1128				    struct pl08x_bus_data **sbus,
1129				    u32 cctl)
1130{
1131	bool dst_incr;
1132	bool src_incr;
1133
1134	/*
1135	 * The FTDMAC020 only supports memory-to-memory transfer, so
1136	 * source and destination always increase.
1137	 */
1138	if (pl08x->vd->ftdmac020) {
1139		dst_incr = true;
1140		src_incr = true;
1141	} else {
1142		dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1143		src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1144	}
1145
1146	/*
1147	 * If either bus is not advancing, i.e. it is a peripheral, that
1148	 * one becomes master
1149	 */
1150	if (!dst_incr) {
1151		*mbus = &bd->dstbus;
1152		*sbus = &bd->srcbus;
1153	} else if (!src_incr) {
1154		*mbus = &bd->srcbus;
1155		*sbus = &bd->dstbus;
1156	} else {
1157		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1158			*mbus = &bd->dstbus;
1159			*sbus = &bd->srcbus;
1160		} else {
1161			*mbus = &bd->srcbus;
1162			*sbus = &bd->dstbus;
1163		}
1164	}
1165}
1166
1167/*
1168 * Fills in one LLI for a certain transfer descriptor and advance the counter
1169 */
1170static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1171				    struct pl08x_lli_build_data *bd,
1172				    int num_llis, int len, u32 cctl, u32 cctl2)
1173{
1174	u32 offset = num_llis * pl08x->lli_words;
1175	u32 *llis_va = bd->txd->llis_va + offset;
1176	dma_addr_t llis_bus = bd->txd->llis_bus;
1177
1178	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1179
1180	/* Advance the offset to next LLI. */
1181	offset += pl08x->lli_words;
1182
1183	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1184	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1185	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1186	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1187	llis_va[PL080_LLI_CCTL] = cctl;
1188	if (pl08x->vd->pl080s)
1189		llis_va[PL080S_LLI_CCTL2] = cctl2;
1190
1191	if (pl08x->vd->ftdmac020) {
1192		/* FIXME: only memcpy so far so both increase */
1193		bd->srcbus.addr += len;
1194		bd->dstbus.addr += len;
1195	} else {
1196		if (cctl & PL080_CONTROL_SRC_INCR)
1197			bd->srcbus.addr += len;
1198		if (cctl & PL080_CONTROL_DST_INCR)
1199			bd->dstbus.addr += len;
1200	}
1201
1202	BUG_ON(bd->remainder < len);
1203
1204	bd->remainder -= len;
1205}
1206
1207static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1208			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1209			int num_llis, size_t *total_bytes)
1210{
1211	*cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1212	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1213	(*total_bytes) += len;
1214}
1215
1216#if 1
1217static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1218			   const u32 *llis_va, int num_llis)
1219{
1220	int i;
1221
1222	if (pl08x->vd->pl080s) {
1223		dev_vdbg(&pl08x->adev->dev,
1224			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1225			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1226		for (i = 0; i < num_llis; i++) {
1227			dev_vdbg(&pl08x->adev->dev,
1228				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1229				i, llis_va, llis_va[PL080_LLI_SRC],
1230				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1231				llis_va[PL080_LLI_CCTL],
1232				llis_va[PL080S_LLI_CCTL2]);
1233			llis_va += pl08x->lli_words;
1234		}
1235	} else {
1236		dev_vdbg(&pl08x->adev->dev,
1237			"%-3s %-9s  %-10s %-10s %-10s %s\n",
1238			"lli", "", "csrc", "cdst", "clli", "cctl");
1239		for (i = 0; i < num_llis; i++) {
1240			dev_vdbg(&pl08x->adev->dev,
1241				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1242				i, llis_va, llis_va[PL080_LLI_SRC],
1243				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1244				llis_va[PL080_LLI_CCTL]);
1245			llis_va += pl08x->lli_words;
1246		}
1247	}
1248}
1249#else
1250static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1251				  const u32 *llis_va, int num_llis) {}
1252#endif
1253
1254/*
1255 * This fills in the table of LLIs for the transfer descriptor
1256 * Note that we assume we never have to change the burst sizes
1257 * Return 0 for error
1258 */
1259static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1260			      struct pl08x_txd *txd)
1261{
1262	struct pl08x_bus_data *mbus, *sbus;
1263	struct pl08x_lli_build_data bd;
1264	int num_llis = 0;
1265	u32 cctl, early_bytes = 0;
1266	size_t max_bytes_per_lli, total_bytes;
1267	u32 *llis_va, *last_lli;
1268	struct pl08x_sg *dsg;
1269
1270	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1271	if (!txd->llis_va) {
1272		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1273		return 0;
1274	}
1275
1276	bd.txd = txd;
1277	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1278	cctl = txd->cctl;
1279
1280	/* Find maximum width of the source bus */
1281	bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1282
1283	/* Find maximum width of the destination bus */
1284	bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1285
1286	list_for_each_entry(dsg, &txd->dsg_list, node) {
1287		total_bytes = 0;
1288		cctl = txd->cctl;
1289
1290		bd.srcbus.addr = dsg->src_addr;
1291		bd.dstbus.addr = dsg->dst_addr;
1292		bd.remainder = dsg->len;
1293		bd.srcbus.buswidth = bd.srcbus.maxwidth;
1294		bd.dstbus.buswidth = bd.dstbus.maxwidth;
1295
1296		pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1297
1298		dev_vdbg(&pl08x->adev->dev,
1299			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1300			(u64)bd.srcbus.addr,
1301			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1302			bd.srcbus.buswidth,
1303			(u64)bd.dstbus.addr,
1304			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1305			bd.dstbus.buswidth,
1306			bd.remainder);
1307		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1308			mbus == &bd.srcbus ? "src" : "dst",
1309			sbus == &bd.srcbus ? "src" : "dst");
1310
1311		/*
1312		 * Zero length is only allowed if all these requirements are
1313		 * met:
1314		 * - flow controller is peripheral.
1315		 * - src.addr is aligned to src.width
1316		 * - dst.addr is aligned to dst.width
1317		 *
1318		 * sg_len == 1 should be true, as there can be two cases here:
1319		 *
1320		 * - Memory addresses are contiguous and are not scattered.
1321		 *   Here, Only one sg will be passed by user driver, with
1322		 *   memory address and zero length. We pass this to controller
1323		 *   and after the transfer it will receive the last burst
1324		 *   request from peripheral and so transfer finishes.
1325		 *
1326		 * - Memory addresses are scattered and are not contiguous.
1327		 *   Here, Obviously as DMA controller doesn't know when a lli's
1328		 *   transfer gets over, it can't load next lli. So in this
1329		 *   case, there has to be an assumption that only one lli is
1330		 *   supported. Thus, we can't have scattered addresses.
1331		 */
1332		if (!bd.remainder) {
1333			u32 fc;
1334
1335			/* FTDMAC020 only does memory-to-memory */
1336			if (pl08x->vd->ftdmac020)
1337				fc = PL080_FLOW_MEM2MEM;
1338			else
1339				fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1340					PL080_CONFIG_FLOW_CONTROL_SHIFT;
1341			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1342					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1343				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1344					__func__);
1345				return 0;
1346			}
1347
1348			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1349				!IS_BUS_ALIGNED(&bd.dstbus)) {
1350				dev_err(&pl08x->adev->dev,
1351					"%s src & dst address must be aligned to src"
1352					" & dst width if peripheral is flow controller",
1353					__func__);
1354				return 0;
1355			}
1356
1357			cctl = pl08x_lli_control_bits(pl08x, cctl,
1358					bd.srcbus.buswidth, bd.dstbus.buswidth,
1359					0);
1360			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1361					0, cctl, 0);
1362			break;
1363		}
1364
1365		/*
1366		 * Send byte by byte for following cases
1367		 * - Less than a bus width available
1368		 * - until master bus is aligned
1369		 */
1370		if (bd.remainder < mbus->buswidth)
1371			early_bytes = bd.remainder;
1372		else if (!IS_BUS_ALIGNED(mbus)) {
1373			early_bytes = mbus->buswidth -
1374				(mbus->addr & (mbus->buswidth - 1));
1375			if ((bd.remainder - early_bytes) < mbus->buswidth)
1376				early_bytes = bd.remainder;
1377		}
1378
1379		if (early_bytes) {
1380			dev_vdbg(&pl08x->adev->dev,
1381				"%s byte width LLIs (remain 0x%08zx)\n",
1382				__func__, bd.remainder);
1383			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1384				num_llis++, &total_bytes);
1385		}
1386
1387		if (bd.remainder) {
1388			/*
1389			 * Master now aligned
1390			 * - if slave is not then we must set its width down
1391			 */
1392			if (!IS_BUS_ALIGNED(sbus)) {
1393				dev_dbg(&pl08x->adev->dev,
1394					"%s set down bus width to one byte\n",
1395					__func__);
1396
1397				sbus->buswidth = 1;
1398			}
1399
1400			/*
1401			 * Bytes transferred = tsize * src width, not
1402			 * MIN(buswidths)
1403			 */
1404			max_bytes_per_lli = bd.srcbus.buswidth *
1405						pl08x->vd->max_transfer_size;
1406			dev_vdbg(&pl08x->adev->dev,
1407				"%s max bytes per lli = %zu\n",
1408				__func__, max_bytes_per_lli);
1409
1410			/*
1411			 * Make largest possible LLIs until less than one bus
1412			 * width left
1413			 */
1414			while (bd.remainder > (mbus->buswidth - 1)) {
1415				size_t lli_len, tsize, width;
1416
1417				/*
1418				 * If enough left try to send max possible,
1419				 * otherwise try to send the remainder
1420				 */
1421				lli_len = min(bd.remainder, max_bytes_per_lli);
1422
1423				/*
1424				 * Check against maximum bus alignment:
1425				 * Calculate actual transfer size in relation to
1426				 * bus width an get a maximum remainder of the
1427				 * highest bus width - 1
1428				 */
1429				width = max(mbus->buswidth, sbus->buswidth);
1430				lli_len = (lli_len / width) * width;
1431				tsize = lli_len / bd.srcbus.buswidth;
1432
1433				dev_vdbg(&pl08x->adev->dev,
1434					"%s fill lli with single lli chunk of "
1435					"size 0x%08zx (remainder 0x%08zx)\n",
1436					__func__, lli_len, bd.remainder);
1437
1438				cctl = pl08x_lli_control_bits(pl08x, cctl,
1439					bd.srcbus.buswidth, bd.dstbus.buswidth,
1440					tsize);
1441				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1442						lli_len, cctl, tsize);
1443				total_bytes += lli_len;
1444			}
1445
1446			/*
1447			 * Send any odd bytes
1448			 */
1449			if (bd.remainder) {
1450				dev_vdbg(&pl08x->adev->dev,
1451					"%s align with boundary, send odd bytes (remain %zu)\n",
1452					__func__, bd.remainder);
1453				prep_byte_width_lli(pl08x, &bd, &cctl,
1454					bd.remainder, num_llis++, &total_bytes);
1455			}
1456		}
1457
1458		if (total_bytes != dsg->len) {
1459			dev_err(&pl08x->adev->dev,
1460				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1461				__func__, total_bytes, dsg->len);
1462			return 0;
1463		}
1464
1465		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1466			dev_err(&pl08x->adev->dev,
1467				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1468				__func__, MAX_NUM_TSFR_LLIS);
1469			return 0;
1470		}
1471	}
1472
1473	llis_va = txd->llis_va;
1474	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1475
1476	if (txd->cyclic) {
1477		/* Link back to the first LLI. */
1478		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1479	} else {
1480		/* The final LLI terminates the LLI. */
1481		last_lli[PL080_LLI_LLI] = 0;
1482		/* The final LLI element shall also fire an interrupt. */
1483		if (pl08x->vd->ftdmac020)
1484			last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1485		else
1486			last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1487	}
1488
1489	pl08x_dump_lli(pl08x, llis_va, num_llis);
1490
1491	return num_llis;
1492}
1493
1494static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1495			   struct pl08x_txd *txd)
1496{
1497	struct pl08x_sg *dsg, *_dsg;
1498
1499	if (txd->llis_va)
1500		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1501
1502	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1503		list_del(&dsg->node);
1504		kfree(dsg);
1505	}
1506
1507	kfree(txd);
1508}
1509
1510static void pl08x_desc_free(struct virt_dma_desc *vd)
1511{
1512	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1513	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1514
1515	dma_descriptor_unmap(&vd->tx);
1516	if (!txd->done)
1517		pl08x_release_mux(plchan);
1518
1519	pl08x_free_txd(plchan->host, txd);
1520}
1521
1522static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1523				struct pl08x_dma_chan *plchan)
1524{
1525	LIST_HEAD(head);
1526
1527	vchan_get_all_descriptors(&plchan->vc, &head);
1528	vchan_dma_desc_free_list(&plchan->vc, &head);
1529}
1530
1531/*
1532 * The DMA ENGINE API
1533 */
1534static void pl08x_free_chan_resources(struct dma_chan *chan)
1535{
1536	/* Ensure all queued descriptors are freed */
1537	vchan_free_chan_resources(to_virt_chan(chan));
1538}
1539
1540static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1541		struct dma_chan *chan, unsigned long flags)
1542{
1543	struct dma_async_tx_descriptor *retval = NULL;
1544
1545	return retval;
1546}
1547
1548/*
1549 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1550 * If slaves are relying on interrupts to signal completion this function
1551 * must not be called with interrupts disabled.
1552 */
1553static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1554		dma_cookie_t cookie, struct dma_tx_state *txstate)
1555{
1556	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1557	struct virt_dma_desc *vd;
1558	unsigned long flags;
1559	enum dma_status ret;
1560	size_t bytes = 0;
1561
1562	ret = dma_cookie_status(chan, cookie, txstate);
1563	if (ret == DMA_COMPLETE)
1564		return ret;
1565
1566	/*
1567	 * There's no point calculating the residue if there's
1568	 * no txstate to store the value.
1569	 */
1570	if (!txstate) {
1571		if (plchan->state == PL08X_CHAN_PAUSED)
1572			ret = DMA_PAUSED;
1573		return ret;
1574	}
1575
1576	spin_lock_irqsave(&plchan->vc.lock, flags);
1577	ret = dma_cookie_status(chan, cookie, txstate);
1578	if (ret != DMA_COMPLETE) {
1579		vd = vchan_find_desc(&plchan->vc, cookie);
1580		if (vd) {
1581			/* On the issued list, so hasn't been processed yet */
1582			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1583			struct pl08x_sg *dsg;
1584
1585			list_for_each_entry(dsg, &txd->dsg_list, node)
1586				bytes += dsg->len;
1587		} else {
1588			bytes = pl08x_getbytes_chan(plchan);
1589		}
1590	}
1591	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1592
1593	/*
1594	 * This cookie not complete yet
1595	 * Get number of bytes left in the active transactions and queue
1596	 */
1597	dma_set_residue(txstate, bytes);
1598
1599	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1600		ret = DMA_PAUSED;
1601
1602	/* Whether waiting or running, we're in progress */
1603	return ret;
1604}
1605
1606/* PrimeCell DMA extension */
1607struct burst_table {
1608	u32 burstwords;
1609	u32 reg;
1610};
1611
1612static const struct burst_table burst_sizes[] = {
1613	{
1614		.burstwords = 256,
1615		.reg = PL080_BSIZE_256,
1616	},
1617	{
1618		.burstwords = 128,
1619		.reg = PL080_BSIZE_128,
1620	},
1621	{
1622		.burstwords = 64,
1623		.reg = PL080_BSIZE_64,
1624	},
1625	{
1626		.burstwords = 32,
1627		.reg = PL080_BSIZE_32,
1628	},
1629	{
1630		.burstwords = 16,
1631		.reg = PL080_BSIZE_16,
1632	},
1633	{
1634		.burstwords = 8,
1635		.reg = PL080_BSIZE_8,
1636	},
1637	{
1638		.burstwords = 4,
1639		.reg = PL080_BSIZE_4,
1640	},
1641	{
1642		.burstwords = 0,
1643		.reg = PL080_BSIZE_1,
1644	},
1645};
1646
1647/*
1648 * Given the source and destination available bus masks, select which
1649 * will be routed to each port.  We try to have source and destination
1650 * on separate ports, but always respect the allowable settings.
1651 */
1652static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1653{
1654	u32 cctl = 0;
1655	u32 dst_ahb2;
1656	u32 src_ahb2;
1657
1658	/* The FTDMAC020 use different bits to indicate src/dst bus */
1659	if (ftdmac020) {
1660		dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1661		src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1662	} else {
1663		dst_ahb2 = PL080_CONTROL_DST_AHB2;
1664		src_ahb2 = PL080_CONTROL_SRC_AHB2;
1665	}
1666
1667	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1668		cctl |= dst_ahb2;
1669	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1670		cctl |= src_ahb2;
1671
1672	return cctl;
1673}
1674
1675static u32 pl08x_cctl(u32 cctl)
1676{
1677	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1678		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1679		  PL080_CONTROL_PROT_MASK);
1680
1681	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1682	return cctl | PL080_CONTROL_PROT_SYS;
1683}
1684
1685static u32 pl08x_width(enum dma_slave_buswidth width)
1686{
1687	switch (width) {
1688	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1689		return PL080_WIDTH_8BIT;
1690	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1691		return PL080_WIDTH_16BIT;
1692	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1693		return PL080_WIDTH_32BIT;
1694	default:
1695		return ~0;
1696	}
1697}
1698
1699static u32 pl08x_burst(u32 maxburst)
1700{
1701	int i;
1702
1703	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1704		if (burst_sizes[i].burstwords <= maxburst)
1705			break;
1706
1707	return burst_sizes[i].reg;
1708}
1709
1710static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1711	enum dma_slave_buswidth addr_width, u32 maxburst)
1712{
1713	u32 width, burst, cctl = 0;
1714
1715	width = pl08x_width(addr_width);
1716	if (width == ~0)
1717		return ~0;
1718
1719	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1720	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1721
1722	/*
1723	 * If this channel will only request single transfers, set this
1724	 * down to ONE element.  Also select one element if no maxburst
1725	 * is specified.
1726	 */
1727	if (plchan->cd->single)
1728		maxburst = 1;
1729
1730	burst = pl08x_burst(maxburst);
1731	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1732	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1733
1734	return pl08x_cctl(cctl);
1735}
1736
1737/*
1738 * Slave transactions callback to the slave device to allow
1739 * synchronization of slave DMA signals with the DMAC enable
1740 */
1741static void pl08x_issue_pending(struct dma_chan *chan)
1742{
1743	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1744	unsigned long flags;
1745
1746	spin_lock_irqsave(&plchan->vc.lock, flags);
1747	if (vchan_issue_pending(&plchan->vc)) {
1748		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1749			pl08x_phy_alloc_and_start(plchan);
1750	}
1751	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1752}
1753
1754static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1755{
1756	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1757
1758	if (txd)
1759		INIT_LIST_HEAD(&txd->dsg_list);
1760	return txd;
1761}
1762
1763static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1764{
1765	u32 cctl = 0;
1766
1767	/* Conjure cctl */
1768	switch (pl08x->pd->memcpy_burst_size) {
1769	default:
1770		dev_err(&pl08x->adev->dev,
1771			"illegal burst size for memcpy, set to 1\n");
1772		/* Fall through */
1773	case PL08X_BURST_SZ_1:
1774		cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1775			PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1776		break;
1777	case PL08X_BURST_SZ_4:
1778		cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1779			PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1780		break;
1781	case PL08X_BURST_SZ_8:
1782		cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1783			PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1784		break;
1785	case PL08X_BURST_SZ_16:
1786		cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1787			PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1788		break;
1789	case PL08X_BURST_SZ_32:
1790		cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1791			PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1792		break;
1793	case PL08X_BURST_SZ_64:
1794		cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1795			PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1796		break;
1797	case PL08X_BURST_SZ_128:
1798		cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1799			PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1800		break;
1801	case PL08X_BURST_SZ_256:
1802		cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1803			PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1804		break;
1805	}
1806
1807	switch (pl08x->pd->memcpy_bus_width) {
1808	default:
1809		dev_err(&pl08x->adev->dev,
1810			"illegal bus width for memcpy, set to 8 bits\n");
1811		/* Fall through */
1812	case PL08X_BUS_WIDTH_8_BITS:
1813		cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1814			PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1815		break;
1816	case PL08X_BUS_WIDTH_16_BITS:
1817		cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1818			PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1819		break;
1820	case PL08X_BUS_WIDTH_32_BITS:
1821		cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1822			PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1823		break;
1824	}
1825
1826	/* Protection flags */
1827	if (pl08x->pd->memcpy_prot_buff)
1828		cctl |= PL080_CONTROL_PROT_BUFF;
1829	if (pl08x->pd->memcpy_prot_cache)
1830		cctl |= PL080_CONTROL_PROT_CACHE;
1831
1832	/* We are the kernel, so we are in privileged mode */
1833	cctl |= PL080_CONTROL_PROT_SYS;
1834
1835	/* Both to be incremented or the code will break */
1836	cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1837
1838	if (pl08x->vd->dualmaster)
1839		cctl |= pl08x_select_bus(false,
1840					 pl08x->mem_buses,
1841					 pl08x->mem_buses);
1842
1843	return cctl;
1844}
1845
1846static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1847{
1848	u32 cctl = 0;
1849
1850	/* Conjure cctl */
1851	switch (pl08x->pd->memcpy_bus_width) {
1852	default:
1853		dev_err(&pl08x->adev->dev,
1854			"illegal bus width for memcpy, set to 8 bits\n");
1855		/* Fall through */
1856	case PL08X_BUS_WIDTH_8_BITS:
1857		cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1858			PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1859		break;
1860	case PL08X_BUS_WIDTH_16_BITS:
1861		cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1862			PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1863		break;
1864	case PL08X_BUS_WIDTH_32_BITS:
1865		cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1866			PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1867		break;
1868	}
1869
1870	/*
1871	 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1872	 * the last LLI item by other code.
1873	 */
1874	cctl |= FTDMAC020_LLI_TC_MSK;
1875
1876	/*
1877	 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1878	 * and FTDMAC020_LLI_DSTAD_CTL as zero
1879	 */
1880	if (pl08x->vd->dualmaster)
1881		cctl |= pl08x_select_bus(true,
1882					 pl08x->mem_buses,
1883					 pl08x->mem_buses);
1884
1885	return cctl;
1886}
1887
1888/*
1889 * Initialize a descriptor to be used by memcpy submit
1890 */
1891static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1892		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1893		size_t len, unsigned long flags)
1894{
1895	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1896	struct pl08x_driver_data *pl08x = plchan->host;
1897	struct pl08x_txd *txd;
1898	struct pl08x_sg *dsg;
1899	int ret;
1900
1901	txd = pl08x_get_txd(plchan);
1902	if (!txd) {
1903		dev_err(&pl08x->adev->dev,
1904			"%s no memory for descriptor\n", __func__);
1905		return NULL;
1906	}
1907
1908	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1909	if (!dsg) {
1910		pl08x_free_txd(pl08x, txd);
1911		return NULL;
1912	}
1913	list_add_tail(&dsg->node, &txd->dsg_list);
1914
1915	dsg->src_addr = src;
1916	dsg->dst_addr = dest;
1917	dsg->len = len;
1918	if (pl08x->vd->ftdmac020) {
1919		/* Writing CCFG zero ENABLES all interrupts */
1920		txd->ccfg = 0;
1921		txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1922	} else {
1923		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1924			PL080_CONFIG_TC_IRQ_MASK |
1925			PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1926		txd->cctl = pl08x_memcpy_cctl(pl08x);
1927	}
1928
1929	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1930	if (!ret) {
1931		pl08x_free_txd(pl08x, txd);
1932		return NULL;
1933	}
1934
1935	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1936}
1937
1938static struct pl08x_txd *pl08x_init_txd(
1939		struct dma_chan *chan,
1940		enum dma_transfer_direction direction,
1941		dma_addr_t *slave_addr)
1942{
1943	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1944	struct pl08x_driver_data *pl08x = plchan->host;
1945	struct pl08x_txd *txd;
1946	enum dma_slave_buswidth addr_width;
1947	int ret, tmp;
1948	u8 src_buses, dst_buses;
1949	u32 maxburst, cctl;
1950
1951	txd = pl08x_get_txd(plchan);
1952	if (!txd) {
1953		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1954		return NULL;
1955	}
1956
1957	/*
1958	 * Set up addresses, the PrimeCell configured address
1959	 * will take precedence since this may configure the
1960	 * channel target address dynamically at runtime.
1961	 */
1962	if (direction == DMA_MEM_TO_DEV) {
1963		cctl = PL080_CONTROL_SRC_INCR;
1964		*slave_addr = plchan->cfg.dst_addr;
1965		addr_width = plchan->cfg.dst_addr_width;
1966		maxburst = plchan->cfg.dst_maxburst;
1967		src_buses = pl08x->mem_buses;
1968		dst_buses = plchan->cd->periph_buses;
1969	} else if (direction == DMA_DEV_TO_MEM) {
1970		cctl = PL080_CONTROL_DST_INCR;
1971		*slave_addr = plchan->cfg.src_addr;
1972		addr_width = plchan->cfg.src_addr_width;
1973		maxburst = plchan->cfg.src_maxburst;
1974		src_buses = plchan->cd->periph_buses;
1975		dst_buses = pl08x->mem_buses;
1976	} else {
1977		pl08x_free_txd(pl08x, txd);
1978		dev_err(&pl08x->adev->dev,
1979			"%s direction unsupported\n", __func__);
1980		return NULL;
1981	}
1982
1983	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1984	if (cctl == ~0) {
1985		pl08x_free_txd(pl08x, txd);
1986		dev_err(&pl08x->adev->dev,
1987			"DMA slave configuration botched?\n");
1988		return NULL;
1989	}
1990
1991	txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1992
1993	if (plchan->cfg.device_fc)
1994		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1995			PL080_FLOW_PER2MEM_PER;
1996	else
1997		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1998			PL080_FLOW_PER2MEM;
1999
2000	txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
2001		PL080_CONFIG_TC_IRQ_MASK |
2002		tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2003
2004	ret = pl08x_request_mux(plchan);
2005	if (ret < 0) {
2006		pl08x_free_txd(pl08x, txd);
2007		dev_dbg(&pl08x->adev->dev,
2008			"unable to mux for transfer on %s due to platform restrictions\n",
2009			plchan->name);
2010		return NULL;
2011	}
2012
2013	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2014		 plchan->signal, plchan->name);
2015
2016	/* Assign the flow control signal to this channel */
2017	if (direction == DMA_MEM_TO_DEV)
2018		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2019	else
2020		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2021
2022	return txd;
2023}
2024
2025static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2026			   enum dma_transfer_direction direction,
2027			   dma_addr_t slave_addr,
2028			   dma_addr_t buf_addr,
2029			   unsigned int len)
2030{
2031	struct pl08x_sg *dsg;
2032
2033	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2034	if (!dsg)
2035		return -ENOMEM;
2036
2037	list_add_tail(&dsg->node, &txd->dsg_list);
2038
2039	dsg->len = len;
2040	if (direction == DMA_MEM_TO_DEV) {
2041		dsg->src_addr = buf_addr;
2042		dsg->dst_addr = slave_addr;
2043	} else {
2044		dsg->src_addr = slave_addr;
2045		dsg->dst_addr = buf_addr;
2046	}
2047
2048	return 0;
2049}
2050
2051static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2052		struct dma_chan *chan, struct scatterlist *sgl,
2053		unsigned int sg_len, enum dma_transfer_direction direction,
2054		unsigned long flags, void *context)
2055{
2056	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2057	struct pl08x_driver_data *pl08x = plchan->host;
2058	struct pl08x_txd *txd;
2059	struct scatterlist *sg;
2060	int ret, tmp;
2061	dma_addr_t slave_addr;
2062
2063	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2064			__func__, sg_dma_len(sgl), plchan->name);
2065
2066	txd = pl08x_init_txd(chan, direction, &slave_addr);
2067	if (!txd)
2068		return NULL;
2069
2070	for_each_sg(sgl, sg, sg_len, tmp) {
2071		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2072				      sg_dma_address(sg),
2073				      sg_dma_len(sg));
2074		if (ret) {
2075			pl08x_release_mux(plchan);
2076			pl08x_free_txd(pl08x, txd);
2077			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2078					__func__);
2079			return NULL;
2080		}
2081	}
2082
2083	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2084	if (!ret) {
2085		pl08x_release_mux(plchan);
2086		pl08x_free_txd(pl08x, txd);
2087		return NULL;
2088	}
2089
2090	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2091}
2092
2093static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2094		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2095		size_t period_len, enum dma_transfer_direction direction,
2096		unsigned long flags)
2097{
2098	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2099	struct pl08x_driver_data *pl08x = plchan->host;
2100	struct pl08x_txd *txd;
2101	int ret, tmp;
2102	dma_addr_t slave_addr;
2103
2104	dev_dbg(&pl08x->adev->dev,
2105		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2106		__func__, period_len, buf_len,
2107		direction == DMA_MEM_TO_DEV ? "to" : "from",
2108		plchan->name);
2109
2110	txd = pl08x_init_txd(chan, direction, &slave_addr);
2111	if (!txd)
2112		return NULL;
2113
2114	txd->cyclic = true;
2115	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2116	for (tmp = 0; tmp < buf_len; tmp += period_len) {
2117		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2118				      buf_addr + tmp, period_len);
2119		if (ret) {
2120			pl08x_release_mux(plchan);
2121			pl08x_free_txd(pl08x, txd);
2122			return NULL;
2123		}
2124	}
2125
2126	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2127	if (!ret) {
2128		pl08x_release_mux(plchan);
2129		pl08x_free_txd(pl08x, txd);
2130		return NULL;
2131	}
2132
2133	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2134}
2135
2136static int pl08x_config(struct dma_chan *chan,
2137			struct dma_slave_config *config)
2138{
2139	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2140	struct pl08x_driver_data *pl08x = plchan->host;
2141
2142	if (!plchan->slave)
2143		return -EINVAL;
2144
2145	/* Reject definitely invalid configurations */
2146	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2147	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2148		return -EINVAL;
2149
2150	if (config->device_fc && pl08x->vd->pl080s) {
2151		dev_err(&pl08x->adev->dev,
2152			"%s: PL080S does not support peripheral flow control\n",
2153			__func__);
2154		return -EINVAL;
2155	}
2156
2157	plchan->cfg = *config;
2158
2159	return 0;
2160}
2161
2162static int pl08x_terminate_all(struct dma_chan *chan)
2163{
2164	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2165	struct pl08x_driver_data *pl08x = plchan->host;
2166	unsigned long flags;
2167
2168	spin_lock_irqsave(&plchan->vc.lock, flags);
2169	if (!plchan->phychan && !plchan->at) {
2170		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2171		return 0;
2172	}
2173
2174	plchan->state = PL08X_CHAN_IDLE;
2175
2176	if (plchan->phychan) {
2177		/*
2178		 * Mark physical channel as free and free any slave
2179		 * signal
2180		 */
2181		pl08x_phy_free(plchan);
2182	}
2183	/* Dequeue jobs and free LLIs */
2184	if (plchan->at) {
2185		vchan_terminate_vdesc(&plchan->at->vd);
2186		plchan->at = NULL;
2187	}
2188	/* Dequeue jobs not yet fired as well */
2189	pl08x_free_txd_list(pl08x, plchan);
2190
2191	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2192
2193	return 0;
2194}
2195
2196static void pl08x_synchronize(struct dma_chan *chan)
2197{
2198	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2199
2200	vchan_synchronize(&plchan->vc);
2201}
2202
2203static int pl08x_pause(struct dma_chan *chan)
2204{
2205	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2206	unsigned long flags;
2207
2208	/*
2209	 * Anything succeeds on channels with no physical allocation and
2210	 * no queued transfers.
2211	 */
2212	spin_lock_irqsave(&plchan->vc.lock, flags);
2213	if (!plchan->phychan && !plchan->at) {
2214		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2215		return 0;
2216	}
2217
2218	pl08x_pause_phy_chan(plchan->phychan);
2219	plchan->state = PL08X_CHAN_PAUSED;
2220
2221	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2222
2223	return 0;
2224}
2225
2226static int pl08x_resume(struct dma_chan *chan)
2227{
2228	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2229	unsigned long flags;
2230
2231	/*
2232	 * Anything succeeds on channels with no physical allocation and
2233	 * no queued transfers.
2234	 */
2235	spin_lock_irqsave(&plchan->vc.lock, flags);
2236	if (!plchan->phychan && !plchan->at) {
2237		spin_unlock_irqrestore(&plchan->vc.lock, flags);
2238		return 0;
2239	}
2240
2241	pl08x_resume_phy_chan(plchan->phychan);
2242	plchan->state = PL08X_CHAN_RUNNING;
2243
2244	spin_unlock_irqrestore(&plchan->vc.lock, flags);
2245
2246	return 0;
2247}
2248
2249bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2250{
2251	struct pl08x_dma_chan *plchan;
2252	char *name = chan_id;
2253
2254	/* Reject channels for devices not bound to this driver */
2255	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2256		return false;
2257
2258	plchan = to_pl08x_chan(chan);
2259
2260	/* Check that the channel is not taken! */
2261	if (!strcmp(plchan->name, name))
2262		return true;
2263
2264	return false;
2265}
2266EXPORT_SYMBOL_GPL(pl08x_filter_id);
2267
2268static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2269{
2270	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2271
2272	return plchan->cd == chan_id;
2273}
2274
2275/*
2276 * Just check that the device is there and active
2277 * TODO: turn this bit on/off depending on the number of physical channels
2278 * actually used, if it is zero... well shut it off. That will save some
2279 * power. Cut the clock at the same time.
2280 */
2281static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2282{
2283	/* The Nomadik variant does not have the config register */
2284	if (pl08x->vd->nomadik)
2285		return;
2286	/* The FTDMAC020 variant does this in another register */
2287	if (pl08x->vd->ftdmac020) {
2288		writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2289		return;
2290	}
2291	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2292}
2293
2294static irqreturn_t pl08x_irq(int irq, void *dev)
2295{
2296	struct pl08x_driver_data *pl08x = dev;
2297	u32 mask = 0, err, tc, i;
2298
2299	/* check & clear - ERR & TC interrupts */
2300	err = readl(pl08x->base + PL080_ERR_STATUS);
2301	if (err) {
2302		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2303			__func__, err);
2304		writel(err, pl08x->base + PL080_ERR_CLEAR);
2305	}
2306	tc = readl(pl08x->base + PL080_TC_STATUS);
2307	if (tc)
2308		writel(tc, pl08x->base + PL080_TC_CLEAR);
2309
2310	if (!err && !tc)
2311		return IRQ_NONE;
2312
2313	for (i = 0; i < pl08x->vd->channels; i++) {
2314		if ((BIT(i) & err) || (BIT(i) & tc)) {
2315			/* Locate physical channel */
2316			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2317			struct pl08x_dma_chan *plchan = phychan->serving;
2318			struct pl08x_txd *tx;
2319
2320			if (!plchan) {
2321				dev_err(&pl08x->adev->dev,
2322					"%s Error TC interrupt on unused channel: 0x%08x\n",
2323					__func__, i);
2324				continue;
2325			}
2326
2327			spin_lock(&plchan->vc.lock);
2328			tx = plchan->at;
2329			if (tx && tx->cyclic) {
2330				vchan_cyclic_callback(&tx->vd);
2331			} else if (tx) {
2332				plchan->at = NULL;
2333				/*
2334				 * This descriptor is done, release its mux
2335				 * reservation.
2336				 */
2337				pl08x_release_mux(plchan);
2338				tx->done = true;
2339				vchan_cookie_complete(&tx->vd);
2340
2341				/*
2342				 * And start the next descriptor (if any),
2343				 * otherwise free this channel.
2344				 */
2345				if (vchan_next_desc(&plchan->vc))
2346					pl08x_start_next_txd(plchan);
2347				else
2348					pl08x_phy_free(plchan);
2349			}
2350			spin_unlock(&plchan->vc.lock);
2351
2352			mask |= BIT(i);
2353		}
2354	}
2355
2356	return mask ? IRQ_HANDLED : IRQ_NONE;
2357}
2358
2359static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2360{
2361	chan->slave = true;
2362	chan->name = chan->cd->bus_id;
2363	chan->cfg.src_addr = chan->cd->addr;
2364	chan->cfg.dst_addr = chan->cd->addr;
2365}
2366
2367/*
2368 * Initialise the DMAC memcpy/slave channels.
2369 * Make a local wrapper to hold required data
2370 */
2371static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2372		struct dma_device *dmadev, unsigned int channels, bool slave)
2373{
2374	struct pl08x_dma_chan *chan;
2375	int i;
2376
2377	INIT_LIST_HEAD(&dmadev->channels);
2378
2379	/*
2380	 * Register as many many memcpy as we have physical channels,
2381	 * we won't always be able to use all but the code will have
2382	 * to cope with that situation.
2383	 */
2384	for (i = 0; i < channels; i++) {
2385		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2386		if (!chan)
2387			return -ENOMEM;
2388
2389		chan->host = pl08x;
2390		chan->state = PL08X_CHAN_IDLE;
2391		chan->signal = -1;
2392
2393		if (slave) {
2394			chan->cd = &pl08x->pd->slave_channels[i];
2395			/*
2396			 * Some implementations have muxed signals, whereas some
2397			 * use a mux in front of the signals and need dynamic
2398			 * assignment of signals.
2399			 */
2400			chan->signal = i;
2401			pl08x_dma_slave_init(chan);
2402		} else {
2403			chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2404			if (!chan->cd) {
2405				kfree(chan);
2406				return -ENOMEM;
2407			}
2408			chan->cd->bus_id = "memcpy";
2409			chan->cd->periph_buses = pl08x->pd->mem_buses;
2410			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2411			if (!chan->name) {
2412				kfree(chan->cd);
2413				kfree(chan);
2414				return -ENOMEM;
2415			}
2416		}
2417		dev_dbg(&pl08x->adev->dev,
2418			 "initialize virtual channel \"%s\"\n",
2419			 chan->name);
2420
2421		chan->vc.desc_free = pl08x_desc_free;
2422		vchan_init(&chan->vc, dmadev);
2423	}
2424	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2425		 i, slave ? "slave" : "memcpy");
2426	return i;
2427}
2428
2429static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2430{
2431	struct pl08x_dma_chan *chan = NULL;
2432	struct pl08x_dma_chan *next;
2433
2434	list_for_each_entry_safe(chan,
2435				 next, &dmadev->channels, vc.chan.device_node) {
2436		list_del(&chan->vc.chan.device_node);
2437		kfree(chan);
2438	}
2439}
2440
2441#ifdef CONFIG_DEBUG_FS
2442static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2443{
2444	switch (state) {
2445	case PL08X_CHAN_IDLE:
2446		return "idle";
2447	case PL08X_CHAN_RUNNING:
2448		return "running";
2449	case PL08X_CHAN_PAUSED:
2450		return "paused";
2451	case PL08X_CHAN_WAITING:
2452		return "waiting";
2453	default:
2454		break;
2455	}
2456	return "UNKNOWN STATE";
2457}
2458
2459static int pl08x_debugfs_show(struct seq_file *s, void *data)
2460{
2461	struct pl08x_driver_data *pl08x = s->private;
2462	struct pl08x_dma_chan *chan;
2463	struct pl08x_phy_chan *ch;
2464	unsigned long flags;
2465	int i;
2466
2467	seq_printf(s, "PL08x physical channels:\n");
2468	seq_printf(s, "CHANNEL:\tUSER:\n");
2469	seq_printf(s, "--------\t-----\n");
2470	for (i = 0; i < pl08x->vd->channels; i++) {
2471		struct pl08x_dma_chan *virt_chan;
2472
2473		ch = &pl08x->phy_chans[i];
2474
2475		spin_lock_irqsave(&ch->lock, flags);
2476		virt_chan = ch->serving;
2477
2478		seq_printf(s, "%d\t\t%s%s\n",
2479			   ch->id,
2480			   virt_chan ? virt_chan->name : "(none)",
2481			   ch->locked ? " LOCKED" : "");
2482
2483		spin_unlock_irqrestore(&ch->lock, flags);
2484	}
2485
2486	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2487	seq_printf(s, "CHANNEL:\tSTATE:\n");
2488	seq_printf(s, "--------\t------\n");
2489	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2490		seq_printf(s, "%s\t\t%s\n", chan->name,
2491			   pl08x_state_str(chan->state));
2492	}
2493
2494	if (pl08x->has_slave) {
2495		seq_printf(s, "\nPL08x virtual slave channels:\n");
2496		seq_printf(s, "CHANNEL:\tSTATE:\n");
2497		seq_printf(s, "--------\t------\n");
2498		list_for_each_entry(chan, &pl08x->slave.channels,
2499				    vc.chan.device_node) {
2500			seq_printf(s, "%s\t\t%s\n", chan->name,
2501				   pl08x_state_str(chan->state));
2502		}
2503	}
2504
2505	return 0;
2506}
2507
2508static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2509{
2510	return single_open(file, pl08x_debugfs_show, inode->i_private);
2511}
2512
2513static const struct file_operations pl08x_debugfs_operations = {
2514	.open		= pl08x_debugfs_open,
2515	.read		= seq_read,
2516	.llseek		= seq_lseek,
2517	.release	= single_release,
2518};
2519
2520static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2521{
2522	/* Expose a simple debugfs interface to view all clocks */
2523	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2524			S_IFREG | S_IRUGO, NULL, pl08x,
2525			&pl08x_debugfs_operations);
2526}
2527
2528#else
2529static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2530{
2531}
2532#endif
2533
2534#ifdef CONFIG_OF
2535static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2536					 u32 id)
2537{
2538	struct pl08x_dma_chan *chan;
2539
2540	/* Trying to get a slave channel from something with no slave support */
2541	if (!pl08x->has_slave)
2542		return NULL;
2543
2544	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2545		if (chan->signal == id)
2546			return &chan->vc.chan;
2547	}
2548
2549	return NULL;
2550}
2551
2552static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2553				       struct of_dma *ofdma)
2554{
2555	struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2556	struct dma_chan *dma_chan;
2557	struct pl08x_dma_chan *plchan;
2558
2559	if (!pl08x)
2560		return NULL;
2561
2562	if (dma_spec->args_count != 2) {
2563		dev_err(&pl08x->adev->dev,
2564			"DMA channel translation requires two cells\n");
2565		return NULL;
2566	}
2567
2568	dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2569	if (!dma_chan) {
2570		dev_err(&pl08x->adev->dev,
2571			"DMA slave channel not found\n");
2572		return NULL;
2573	}
2574
2575	plchan = to_pl08x_chan(dma_chan);
2576	dev_dbg(&pl08x->adev->dev,
2577		"translated channel for signal %d\n",
2578		dma_spec->args[0]);
2579
2580	/* Augment channel data for applicable AHB buses */
2581	plchan->cd->periph_buses = dma_spec->args[1];
2582	return dma_get_slave_channel(dma_chan);
2583}
2584
2585static int pl08x_of_probe(struct amba_device *adev,
2586			  struct pl08x_driver_data *pl08x,
2587			  struct device_node *np)
2588{
2589	struct pl08x_platform_data *pd;
2590	struct pl08x_channel_data *chanp = NULL;
2591	u32 val;
2592	int ret;
2593	int i;
2594
2595	pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2596	if (!pd)
2597		return -ENOMEM;
2598
2599	/* Eligible bus masters for fetching LLIs */
2600	if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2601		pd->lli_buses |= PL08X_AHB1;
2602	if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2603		pd->lli_buses |= PL08X_AHB2;
2604	if (!pd->lli_buses) {
2605		dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2606		pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2607	}
2608
2609	/* Eligible bus masters for memory access */
2610	if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2611		pd->mem_buses |= PL08X_AHB1;
2612	if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2613		pd->mem_buses |= PL08X_AHB2;
2614	if (!pd->mem_buses) {
2615		dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2616		pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2617	}
2618
2619	/* Parse the memcpy channel properties */
2620	ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2621	if (ret) {
2622		dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2623		val = 1;
2624	}
2625	switch (val) {
2626	default:
2627		dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2628		/* Fall through */
2629	case 1:
2630		pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2631		break;
2632	case 4:
2633		pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2634		break;
2635	case 8:
2636		pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2637		break;
2638	case 16:
2639		pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2640		break;
2641	case 32:
2642		pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2643		break;
2644	case 64:
2645		pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2646		break;
2647	case 128:
2648		pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2649		break;
2650	case 256:
2651		pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2652		break;
2653	}
2654
2655	ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2656	if (ret) {
2657		dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2658		val = 8;
2659	}
2660	switch (val) {
2661	default:
2662		dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2663		/* Fall through */
2664	case 8:
2665		pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2666		break;
2667	case 16:
2668		pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2669		break;
2670	case 32:
2671		pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2672		break;
2673	}
2674
2675	/*
2676	 * Allocate channel data for all possible slave channels (one
2677	 * for each possible signal), channels will then be allocated
2678	 * for a device and have it's AHB interfaces set up at
2679	 * translation time.
2680	 */
2681	if (pl08x->vd->signals) {
2682		chanp = devm_kcalloc(&adev->dev,
2683				     pl08x->vd->signals,
2684				     sizeof(struct pl08x_channel_data),
2685				     GFP_KERNEL);
2686		if (!chanp)
2687			return -ENOMEM;
2688
2689		pd->slave_channels = chanp;
2690		for (i = 0; i < pl08x->vd->signals; i++) {
2691			/*
2692			 * chanp->periph_buses will be assigned at translation
2693			 */
2694			chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2695			chanp++;
2696		}
2697		pd->num_slave_channels = pl08x->vd->signals;
2698	}
2699
2700	pl08x->pd = pd;
2701
2702	return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2703					  pl08x);
2704}
2705#else
2706static inline int pl08x_of_probe(struct amba_device *adev,
2707				 struct pl08x_driver_data *pl08x,
2708				 struct device_node *np)
2709{
2710	return -EINVAL;
2711}
2712#endif
2713
2714static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2715{
2716	struct pl08x_driver_data *pl08x;
2717	struct vendor_data *vd = id->data;
2718	struct device_node *np = adev->dev.of_node;
2719	u32 tsfr_size;
2720	int ret = 0;
2721	int i;
2722
2723	ret = amba_request_regions(adev, NULL);
2724	if (ret)
2725		return ret;
2726
2727	/* Ensure that we can do DMA */
2728	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2729	if (ret)
2730		goto out_no_pl08x;
2731
2732	/* Create the driver state holder */
2733	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2734	if (!pl08x) {
2735		ret = -ENOMEM;
2736		goto out_no_pl08x;
2737	}
2738
2739	/* Assign useful pointers to the driver state */
2740	pl08x->adev = adev;
2741	pl08x->vd = vd;
2742
2743	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2744	if (!pl08x->base) {
2745		ret = -ENOMEM;
2746		goto out_no_ioremap;
2747	}
2748
2749	if (vd->ftdmac020) {
2750		u32 val;
2751
2752		val = readl(pl08x->base + FTDMAC020_REVISION);
2753		dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2754			 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2755		val = readl(pl08x->base + FTDMAC020_FEATURE);
2756		dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2757			 "%s built-in bridge, %s, %s linked lists\n",
2758			 (val >> 12) & 0x0f,
2759			 (val & BIT(10)) ? "no" : "has",
2760			 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2761			 (val & BIT(8)) ? "supports" : "does not support");
2762
2763		/* Vendor data from feature register */
2764		if (!(val & BIT(8)))
2765			dev_warn(&pl08x->adev->dev,
2766				 "linked lists not supported, required\n");
2767		vd->channels = (val >> 12) & 0x0f;
2768		vd->dualmaster = !!(val & BIT(9));
2769	}
2770
2771	/* Initialize memcpy engine */
2772	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2773	pl08x->memcpy.dev = &adev->dev;
2774	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2775	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2776	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2777	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2778	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2779	pl08x->memcpy.device_config = pl08x_config;
2780	pl08x->memcpy.device_pause = pl08x_pause;
2781	pl08x->memcpy.device_resume = pl08x_resume;
2782	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2783	pl08x->memcpy.device_synchronize = pl08x_synchronize;
2784	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2785	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2786	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2787	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2788	if (vd->ftdmac020)
2789		pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2790
2791
2792	/*
2793	 * Initialize slave engine, if the block has no signals, that means
2794	 * we have no slave support.
2795	 */
2796	if (vd->signals) {
2797		pl08x->has_slave = true;
2798		dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2799		dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2800		pl08x->slave.dev = &adev->dev;
2801		pl08x->slave.device_free_chan_resources =
2802			pl08x_free_chan_resources;
2803		pl08x->slave.device_prep_dma_interrupt =
2804			pl08x_prep_dma_interrupt;
2805		pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2806		pl08x->slave.device_issue_pending = pl08x_issue_pending;
2807		pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2808		pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2809		pl08x->slave.device_config = pl08x_config;
2810		pl08x->slave.device_pause = pl08x_pause;
2811		pl08x->slave.device_resume = pl08x_resume;
2812		pl08x->slave.device_terminate_all = pl08x_terminate_all;
2813		pl08x->slave.device_synchronize = pl08x_synchronize;
2814		pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2815		pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2816		pl08x->slave.directions =
2817			BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2818		pl08x->slave.residue_granularity =
2819			DMA_RESIDUE_GRANULARITY_SEGMENT;
2820	}
2821
2822	/* Get the platform data */
2823	pl08x->pd = dev_get_platdata(&adev->dev);
2824	if (!pl08x->pd) {
2825		if (np) {
2826			ret = pl08x_of_probe(adev, pl08x, np);
2827			if (ret)
2828				goto out_no_platdata;
2829		} else {
2830			dev_err(&adev->dev, "no platform data supplied\n");
2831			ret = -EINVAL;
2832			goto out_no_platdata;
2833		}
2834	} else {
2835		pl08x->slave.filter.map = pl08x->pd->slave_map;
2836		pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2837		pl08x->slave.filter.fn = pl08x_filter_fn;
2838	}
2839
2840	/* By default, AHB1 only.  If dualmaster, from platform */
2841	pl08x->lli_buses = PL08X_AHB1;
2842	pl08x->mem_buses = PL08X_AHB1;
2843	if (pl08x->vd->dualmaster) {
2844		pl08x->lli_buses = pl08x->pd->lli_buses;
2845		pl08x->mem_buses = pl08x->pd->mem_buses;
2846	}
2847
2848	if (vd->pl080s)
2849		pl08x->lli_words = PL080S_LLI_WORDS;
2850	else
2851		pl08x->lli_words = PL080_LLI_WORDS;
2852	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2853
2854	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2855	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2856						tsfr_size, PL08X_ALIGN, 0);
2857	if (!pl08x->pool) {
2858		ret = -ENOMEM;
2859		goto out_no_lli_pool;
2860	}
2861
2862	/* Turn on the PL08x */
2863	pl08x_ensure_on(pl08x);
2864
2865	/* Clear any pending interrupts */
2866	if (vd->ftdmac020)
2867		/* This variant has error IRQs in bits 16-19 */
2868		writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2869	else
2870		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2871	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2872
2873	/* Attach the interrupt handler */
2874	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2875	if (ret) {
2876		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2877			__func__, adev->irq[0]);
2878		goto out_no_irq;
2879	}
2880
2881	/* Initialize physical channels */
2882	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2883			GFP_KERNEL);
2884	if (!pl08x->phy_chans) {
2885		ret = -ENOMEM;
2886		goto out_no_phychans;
2887	}
2888
2889	for (i = 0; i < vd->channels; i++) {
2890		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2891
2892		ch->id = i;
2893		ch->base = pl08x->base + PL080_Cx_BASE(i);
2894		if (vd->ftdmac020) {
2895			/* FTDMA020 has a special channel busy register */
2896			ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2897			ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2898			ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2899			ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2900			ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2901			ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2902			ch->ftdmac020 = true;
2903		} else {
2904			ch->reg_config = ch->base + vd->config_offset;
2905			ch->reg_control = ch->base + PL080_CH_CONTROL;
2906			ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2907			ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2908			ch->reg_lli = ch->base + PL080_CH_LLI;
2909		}
2910		if (vd->pl080s)
2911			ch->pl080s = true;
2912
2913		spin_lock_init(&ch->lock);
2914
2915		/*
2916		 * Nomadik variants can have channels that are locked
2917		 * down for the secure world only. Lock up these channels
2918		 * by perpetually serving a dummy virtual channel.
2919		 */
2920		if (vd->nomadik) {
2921			u32 val;
2922
2923			val = readl(ch->reg_config);
2924			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2925				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2926				ch->locked = true;
2927			}
2928		}
2929
2930		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2931			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2932	}
2933
2934	/* Register as many memcpy channels as there are physical channels */
2935	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2936					      pl08x->vd->channels, false);
2937	if (ret <= 0) {
2938		dev_warn(&pl08x->adev->dev,
2939			 "%s failed to enumerate memcpy channels - %d\n",
2940			 __func__, ret);
2941		goto out_no_memcpy;
2942	}
2943
2944	/* Register slave channels */
2945	if (pl08x->has_slave) {
2946		ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2947					pl08x->pd->num_slave_channels, true);
2948		if (ret < 0) {
2949			dev_warn(&pl08x->adev->dev,
2950				 "%s failed to enumerate slave channels - %d\n",
2951				 __func__, ret);
2952			goto out_no_slave;
2953		}
2954	}
2955
2956	ret = dma_async_device_register(&pl08x->memcpy);
2957	if (ret) {
2958		dev_warn(&pl08x->adev->dev,
2959			"%s failed to register memcpy as an async device - %d\n",
2960			__func__, ret);
2961		goto out_no_memcpy_reg;
2962	}
2963
2964	if (pl08x->has_slave) {
2965		ret = dma_async_device_register(&pl08x->slave);
2966		if (ret) {
2967			dev_warn(&pl08x->adev->dev,
2968			"%s failed to register slave as an async device - %d\n",
2969			__func__, ret);
2970			goto out_no_slave_reg;
2971		}
2972	}
2973
2974	amba_set_drvdata(adev, pl08x);
2975	init_pl08x_debugfs(pl08x);
2976	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2977		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2978		 (unsigned long long)adev->res.start, adev->irq[0]);
2979
2980	return 0;
2981
2982out_no_slave_reg:
2983	dma_async_device_unregister(&pl08x->memcpy);
2984out_no_memcpy_reg:
2985	if (pl08x->has_slave)
2986		pl08x_free_virtual_channels(&pl08x->slave);
2987out_no_slave:
2988	pl08x_free_virtual_channels(&pl08x->memcpy);
2989out_no_memcpy:
2990	kfree(pl08x->phy_chans);
2991out_no_phychans:
2992	free_irq(adev->irq[0], pl08x);
2993out_no_irq:
2994	dma_pool_destroy(pl08x->pool);
2995out_no_lli_pool:
2996out_no_platdata:
2997	iounmap(pl08x->base);
2998out_no_ioremap:
2999	kfree(pl08x);
3000out_no_pl08x:
3001	amba_release_regions(adev);
3002	return ret;
3003}
3004
3005/* PL080 has 8 channels and the PL080 have just 2 */
3006static struct vendor_data vendor_pl080 = {
3007	.config_offset = PL080_CH_CONFIG,
3008	.channels = 8,
3009	.signals = 16,
3010	.dualmaster = true,
3011	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3012};
3013
3014static struct vendor_data vendor_nomadik = {
3015	.config_offset = PL080_CH_CONFIG,
3016	.channels = 8,
3017	.signals = 32,
3018	.dualmaster = true,
3019	.nomadik = true,
3020	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3021};
3022
3023static struct vendor_data vendor_pl080s = {
3024	.config_offset = PL080S_CH_CONFIG,
3025	.channels = 8,
3026	.signals = 32,
3027	.pl080s = true,
3028	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3029};
3030
3031static struct vendor_data vendor_pl081 = {
3032	.config_offset = PL080_CH_CONFIG,
3033	.channels = 2,
3034	.signals = 16,
3035	.dualmaster = false,
3036	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3037};
3038
3039static struct vendor_data vendor_ftdmac020 = {
3040	.config_offset = PL080_CH_CONFIG,
3041	.ftdmac020 = true,
3042	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3043};
3044
3045static const struct amba_id pl08x_ids[] = {
3046	/* Samsung PL080S variant */
3047	{
3048		.id	= 0x0a141080,
3049		.mask	= 0xffffffff,
3050		.data	= &vendor_pl080s,
3051	},
3052	/* PL080 */
3053	{
3054		.id	= 0x00041080,
3055		.mask	= 0x000fffff,
3056		.data	= &vendor_pl080,
3057	},
3058	/* PL081 */
3059	{
3060		.id	= 0x00041081,
3061		.mask	= 0x000fffff,
3062		.data	= &vendor_pl081,
3063	},
3064	/* Nomadik 8815 PL080 variant */
3065	{
3066		.id	= 0x00280080,
3067		.mask	= 0x00ffffff,
3068		.data	= &vendor_nomadik,
3069	},
3070	/* Faraday Technology FTDMAC020 */
3071	{
3072		.id	= 0x0003b080,
3073		.mask	= 0x000fffff,
3074		.data	= &vendor_ftdmac020,
3075	},
3076	{ 0, 0 },
3077};
3078
3079MODULE_DEVICE_TABLE(amba, pl08x_ids);
3080
3081static struct amba_driver pl08x_amba_driver = {
3082	.drv.name	= DRIVER_NAME,
3083	.id_table	= pl08x_ids,
3084	.probe		= pl08x_probe,
3085};
3086
3087static int __init pl08x_init(void)
3088{
3089	int retval;
3090	retval = amba_driver_register(&pl08x_amba_driver);
3091	if (retval)
3092		printk(KERN_WARNING DRIVER_NAME
3093		       "failed to register as an AMBA device (%d)\n",
3094		       retval);
3095	return retval;
3096}
3097subsys_initcall(pl08x_init);