Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <crypto/algapi.h>
7#include <crypto/internal/aead.h>
8#include <crypto/authenc.h>
9#include <crypto/gcm.h>
10#include <linux/rtnetlink.h>
11#include <crypto/internal/des.h>
12#include "cc_driver.h"
13#include "cc_buffer_mgr.h"
14#include "cc_aead.h"
15#include "cc_request_mgr.h"
16#include "cc_hash.h"
17#include "cc_sram_mgr.h"
18
19#define template_aead template_u.aead
20
21#define MAX_AEAD_SETKEY_SEQ 12
22#define MAX_AEAD_PROCESS_SEQ 23
23
24#define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
25#define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
26
27#define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28
29struct cc_aead_handle {
30 u32 sram_workspace_addr;
31 struct list_head aead_list;
32};
33
34struct cc_hmac_s {
35 u8 *padded_authkey;
36 u8 *ipad_opad; /* IPAD, OPAD*/
37 dma_addr_t padded_authkey_dma_addr;
38 dma_addr_t ipad_opad_dma_addr;
39};
40
41struct cc_xcbc_s {
42 u8 *xcbc_keys; /* K1,K2,K3 */
43 dma_addr_t xcbc_keys_dma_addr;
44};
45
46struct cc_aead_ctx {
47 struct cc_drvdata *drvdata;
48 u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
49 u8 *enckey;
50 dma_addr_t enckey_dma_addr;
51 union {
52 struct cc_hmac_s hmac;
53 struct cc_xcbc_s xcbc;
54 } auth_state;
55 unsigned int enc_keylen;
56 unsigned int auth_keylen;
57 unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
58 unsigned int hash_len;
59 enum drv_cipher_mode cipher_mode;
60 enum cc_flow_mode flow_mode;
61 enum drv_hash_mode auth_mode;
62};
63
64static void cc_aead_exit(struct crypto_aead *tfm)
65{
66 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
67 struct device *dev = drvdata_to_dev(ctx->drvdata);
68
69 dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
70 crypto_tfm_alg_name(&tfm->base));
71
72 /* Unmap enckey buffer */
73 if (ctx->enckey) {
74 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
75 ctx->enckey_dma_addr);
76 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
77 &ctx->enckey_dma_addr);
78 ctx->enckey_dma_addr = 0;
79 ctx->enckey = NULL;
80 }
81
82 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
83 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
84
85 if (xcbc->xcbc_keys) {
86 dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
87 xcbc->xcbc_keys,
88 xcbc->xcbc_keys_dma_addr);
89 }
90 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
91 &xcbc->xcbc_keys_dma_addr);
92 xcbc->xcbc_keys_dma_addr = 0;
93 xcbc->xcbc_keys = NULL;
94 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
95 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
96
97 if (hmac->ipad_opad) {
98 dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
99 hmac->ipad_opad,
100 hmac->ipad_opad_dma_addr);
101 dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
102 &hmac->ipad_opad_dma_addr);
103 hmac->ipad_opad_dma_addr = 0;
104 hmac->ipad_opad = NULL;
105 }
106 if (hmac->padded_authkey) {
107 dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
108 hmac->padded_authkey,
109 hmac->padded_authkey_dma_addr);
110 dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
111 &hmac->padded_authkey_dma_addr);
112 hmac->padded_authkey_dma_addr = 0;
113 hmac->padded_authkey = NULL;
114 }
115 }
116}
117
118static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
119{
120 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
121
122 return cc_get_default_hash_len(ctx->drvdata);
123}
124
125static int cc_aead_init(struct crypto_aead *tfm)
126{
127 struct aead_alg *alg = crypto_aead_alg(tfm);
128 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 struct cc_crypto_alg *cc_alg =
130 container_of(alg, struct cc_crypto_alg, aead_alg);
131 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132
133 dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134 crypto_tfm_alg_name(&tfm->base));
135
136 /* Initialize modes in instance */
137 ctx->cipher_mode = cc_alg->cipher_mode;
138 ctx->flow_mode = cc_alg->flow_mode;
139 ctx->auth_mode = cc_alg->auth_mode;
140 ctx->drvdata = cc_alg->drvdata;
141 crypto_aead_set_reqsize_dma(tfm, sizeof(struct aead_req_ctx));
142
143 /* Allocate key buffer, cache line aligned */
144 ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145 &ctx->enckey_dma_addr, GFP_KERNEL);
146 if (!ctx->enckey) {
147 dev_err(dev, "Failed allocating key buffer\n");
148 goto init_failed;
149 }
150 dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151 ctx->enckey);
152
153 /* Set default authlen value */
154
155 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158
159 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160 /* (and temporary for user key - up to 256b) */
161 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162 &xcbc->xcbc_keys_dma_addr,
163 GFP_KERNEL);
164 if (!xcbc->xcbc_keys) {
165 dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166 goto init_failed;
167 }
168 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172
173 /* Allocate dma-coherent buffer for IPAD + OPAD */
174 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175 &hmac->ipad_opad_dma_addr,
176 GFP_KERNEL);
177
178 if (!hmac->ipad_opad) {
179 dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180 goto init_failed;
181 }
182
183 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184 hmac->ipad_opad);
185
186 hmac->padded_authkey = dma_alloc_coherent(dev,
187 MAX_HMAC_BLOCK_SIZE,
188 pkey_dma,
189 GFP_KERNEL);
190
191 if (!hmac->padded_authkey) {
192 dev_err(dev, "failed to allocate padded_authkey\n");
193 goto init_failed;
194 }
195 } else {
196 ctx->auth_state.hmac.ipad_opad = NULL;
197 ctx->auth_state.hmac.padded_authkey = NULL;
198 }
199 ctx->hash_len = cc_get_aead_hash_len(tfm);
200
201 return 0;
202
203init_failed:
204 cc_aead_exit(tfm);
205 return -ENOMEM;
206}
207
208static void cc_aead_complete(struct device *dev, void *cc_req, int err)
209{
210 struct aead_request *areq = (struct aead_request *)cc_req;
211 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
212 struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
213 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
214
215 /* BACKLOG notification */
216 if (err == -EINPROGRESS)
217 goto done;
218
219 cc_unmap_aead_request(dev, areq);
220
221 /* Restore ordinary iv pointer */
222 areq->iv = areq_ctx->backup_iv;
223
224 if (err)
225 goto done;
226
227 if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
228 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
229 ctx->authsize) != 0) {
230 dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
231 ctx->authsize, ctx->cipher_mode);
232 /* In case of payload authentication failure, MUST NOT
233 * revealed the decrypted message --> zero its memory.
234 */
235 sg_zero_buffer(areq->dst, sg_nents(areq->dst),
236 areq->cryptlen, areq->assoclen);
237 err = -EBADMSG;
238 }
239 /*ENCRYPT*/
240 } else if (areq_ctx->is_icv_fragmented) {
241 u32 skip = areq->cryptlen + areq_ctx->dst_offset;
242
243 cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
244 skip, (skip + ctx->authsize),
245 CC_SG_FROM_BUF);
246 }
247done:
248 aead_request_complete(areq, err);
249}
250
251static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
252 struct cc_aead_ctx *ctx)
253{
254 /* Load the AES key */
255 hw_desc_init(&desc[0]);
256 /* We are using for the source/user key the same buffer
257 * as for the output keys, * because after this key loading it
258 * is not needed anymore
259 */
260 set_din_type(&desc[0], DMA_DLLI,
261 ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
262 NS_BIT);
263 set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
264 set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
265 set_key_size_aes(&desc[0], ctx->auth_keylen);
266 set_flow_mode(&desc[0], S_DIN_to_AES);
267 set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
268
269 hw_desc_init(&desc[1]);
270 set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
271 set_flow_mode(&desc[1], DIN_AES_DOUT);
272 set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
273 AES_KEYSIZE_128, NS_BIT, 0);
274
275 hw_desc_init(&desc[2]);
276 set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
277 set_flow_mode(&desc[2], DIN_AES_DOUT);
278 set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
279 + AES_KEYSIZE_128),
280 AES_KEYSIZE_128, NS_BIT, 0);
281
282 hw_desc_init(&desc[3]);
283 set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
284 set_flow_mode(&desc[3], DIN_AES_DOUT);
285 set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
286 + 2 * AES_KEYSIZE_128),
287 AES_KEYSIZE_128, NS_BIT, 0);
288
289 return 4;
290}
291
292static unsigned int hmac_setkey(struct cc_hw_desc *desc,
293 struct cc_aead_ctx *ctx)
294{
295 unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
296 unsigned int digest_ofs = 0;
297 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
298 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
299 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
300 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
301 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
302
303 unsigned int idx = 0;
304 int i;
305
306 /* calc derived HMAC key */
307 for (i = 0; i < 2; i++) {
308 /* Load hash initial state */
309 hw_desc_init(&desc[idx]);
310 set_cipher_mode(&desc[idx], hash_mode);
311 set_din_sram(&desc[idx],
312 cc_larval_digest_addr(ctx->drvdata,
313 ctx->auth_mode),
314 digest_size);
315 set_flow_mode(&desc[idx], S_DIN_to_HASH);
316 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
317 idx++;
318
319 /* Load the hash current length*/
320 hw_desc_init(&desc[idx]);
321 set_cipher_mode(&desc[idx], hash_mode);
322 set_din_const(&desc[idx], 0, ctx->hash_len);
323 set_flow_mode(&desc[idx], S_DIN_to_HASH);
324 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
325 idx++;
326
327 /* Prepare ipad key */
328 hw_desc_init(&desc[idx]);
329 set_xor_val(&desc[idx], hmac_pad_const[i]);
330 set_cipher_mode(&desc[idx], hash_mode);
331 set_flow_mode(&desc[idx], S_DIN_to_HASH);
332 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
333 idx++;
334
335 /* Perform HASH update */
336 hw_desc_init(&desc[idx]);
337 set_din_type(&desc[idx], DMA_DLLI,
338 hmac->padded_authkey_dma_addr,
339 SHA256_BLOCK_SIZE, NS_BIT);
340 set_cipher_mode(&desc[idx], hash_mode);
341 set_xor_active(&desc[idx]);
342 set_flow_mode(&desc[idx], DIN_HASH);
343 idx++;
344
345 /* Get the digset */
346 hw_desc_init(&desc[idx]);
347 set_cipher_mode(&desc[idx], hash_mode);
348 set_dout_dlli(&desc[idx],
349 (hmac->ipad_opad_dma_addr + digest_ofs),
350 digest_size, NS_BIT, 0);
351 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
352 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
353 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
354 idx++;
355
356 digest_ofs += digest_size;
357 }
358
359 return idx;
360}
361
362static int validate_keys_sizes(struct cc_aead_ctx *ctx)
363{
364 struct device *dev = drvdata_to_dev(ctx->drvdata);
365
366 dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
367 ctx->enc_keylen, ctx->auth_keylen);
368
369 switch (ctx->auth_mode) {
370 case DRV_HASH_SHA1:
371 case DRV_HASH_SHA256:
372 break;
373 case DRV_HASH_XCBC_MAC:
374 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
375 ctx->auth_keylen != AES_KEYSIZE_192 &&
376 ctx->auth_keylen != AES_KEYSIZE_256)
377 return -ENOTSUPP;
378 break;
379 case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
380 if (ctx->auth_keylen > 0)
381 return -EINVAL;
382 break;
383 default:
384 dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
385 return -EINVAL;
386 }
387 /* Check cipher key size */
388 if (ctx->flow_mode == S_DIN_to_DES) {
389 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
390 dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
391 ctx->enc_keylen);
392 return -EINVAL;
393 }
394 } else { /* Default assumed to be AES ciphers */
395 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
396 ctx->enc_keylen != AES_KEYSIZE_192 &&
397 ctx->enc_keylen != AES_KEYSIZE_256) {
398 dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
399 ctx->enc_keylen);
400 return -EINVAL;
401 }
402 }
403
404 return 0; /* All tests of keys sizes passed */
405}
406
407/* This function prepers the user key so it can pass to the hmac processing
408 * (copy to intenral buffer or hash in case of key longer than block
409 */
410static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
411 unsigned int keylen)
412{
413 dma_addr_t key_dma_addr = 0;
414 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
415 struct device *dev = drvdata_to_dev(ctx->drvdata);
416 u32 larval_addr;
417 struct cc_crypto_req cc_req = {};
418 unsigned int blocksize;
419 unsigned int digestsize;
420 unsigned int hashmode;
421 unsigned int idx = 0;
422 int rc = 0;
423 u8 *key = NULL;
424 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
425 dma_addr_t padded_authkey_dma_addr =
426 ctx->auth_state.hmac.padded_authkey_dma_addr;
427
428 switch (ctx->auth_mode) { /* auth_key required and >0 */
429 case DRV_HASH_SHA1:
430 blocksize = SHA1_BLOCK_SIZE;
431 digestsize = SHA1_DIGEST_SIZE;
432 hashmode = DRV_HASH_HW_SHA1;
433 break;
434 case DRV_HASH_SHA256:
435 default:
436 blocksize = SHA256_BLOCK_SIZE;
437 digestsize = SHA256_DIGEST_SIZE;
438 hashmode = DRV_HASH_HW_SHA256;
439 }
440
441 if (keylen != 0) {
442
443 key = kmemdup(authkey, keylen, GFP_KERNEL);
444 if (!key)
445 return -ENOMEM;
446
447 key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
448 if (dma_mapping_error(dev, key_dma_addr)) {
449 dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
450 key, keylen);
451 kfree_sensitive(key);
452 return -ENOMEM;
453 }
454 if (keylen > blocksize) {
455 /* Load hash initial state */
456 hw_desc_init(&desc[idx]);
457 set_cipher_mode(&desc[idx], hashmode);
458 larval_addr = cc_larval_digest_addr(ctx->drvdata,
459 ctx->auth_mode);
460 set_din_sram(&desc[idx], larval_addr, digestsize);
461 set_flow_mode(&desc[idx], S_DIN_to_HASH);
462 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463 idx++;
464
465 /* Load the hash current length*/
466 hw_desc_init(&desc[idx]);
467 set_cipher_mode(&desc[idx], hashmode);
468 set_din_const(&desc[idx], 0, ctx->hash_len);
469 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470 set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472 idx++;
473
474 hw_desc_init(&desc[idx]);
475 set_din_type(&desc[idx], DMA_DLLI,
476 key_dma_addr, keylen, NS_BIT);
477 set_flow_mode(&desc[idx], DIN_HASH);
478 idx++;
479
480 /* Get hashed key */
481 hw_desc_init(&desc[idx]);
482 set_cipher_mode(&desc[idx], hashmode);
483 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484 digestsize, NS_BIT, 0);
485 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488 set_cipher_config0(&desc[idx],
489 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490 idx++;
491
492 hw_desc_init(&desc[idx]);
493 set_din_const(&desc[idx], 0, (blocksize - digestsize));
494 set_flow_mode(&desc[idx], BYPASS);
495 set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496 digestsize), (blocksize - digestsize),
497 NS_BIT, 0);
498 idx++;
499 } else {
500 hw_desc_init(&desc[idx]);
501 set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502 keylen, NS_BIT);
503 set_flow_mode(&desc[idx], BYPASS);
504 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505 keylen, NS_BIT, 0);
506 idx++;
507
508 if ((blocksize - keylen) != 0) {
509 hw_desc_init(&desc[idx]);
510 set_din_const(&desc[idx], 0,
511 (blocksize - keylen));
512 set_flow_mode(&desc[idx], BYPASS);
513 set_dout_dlli(&desc[idx],
514 (padded_authkey_dma_addr +
515 keylen),
516 (blocksize - keylen), NS_BIT, 0);
517 idx++;
518 }
519 }
520 } else {
521 hw_desc_init(&desc[idx]);
522 set_din_const(&desc[idx], 0, (blocksize - keylen));
523 set_flow_mode(&desc[idx], BYPASS);
524 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525 blocksize, NS_BIT, 0);
526 idx++;
527 }
528
529 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530 if (rc)
531 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532
533 if (key_dma_addr)
534 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535
536 kfree_sensitive(key);
537
538 return rc;
539}
540
541static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
542 unsigned int keylen)
543{
544 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
545 struct cc_crypto_req cc_req = {};
546 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547 unsigned int seq_len = 0;
548 struct device *dev = drvdata_to_dev(ctx->drvdata);
549 const u8 *enckey, *authkey;
550 int rc;
551
552 dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
553 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
554
555 /* STAT_PHASE_0: Init and sanity checks */
556
557 if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
558 struct crypto_authenc_keys keys;
559
560 rc = crypto_authenc_extractkeys(&keys, key, keylen);
561 if (rc)
562 return rc;
563 enckey = keys.enckey;
564 authkey = keys.authkey;
565 ctx->enc_keylen = keys.enckeylen;
566 ctx->auth_keylen = keys.authkeylen;
567
568 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
569 /* the nonce is stored in bytes at end of key */
570 if (ctx->enc_keylen <
571 (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
572 return -EINVAL;
573 /* Copy nonce from last 4 bytes in CTR key to
574 * first 4 bytes in CTR IV
575 */
576 memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
577 CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
578 /* Set CTR key size */
579 ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
580 }
581 } else { /* non-authenc - has just one key */
582 enckey = key;
583 authkey = NULL;
584 ctx->enc_keylen = keylen;
585 ctx->auth_keylen = 0;
586 }
587
588 rc = validate_keys_sizes(ctx);
589 if (rc)
590 return rc;
591
592 /* STAT_PHASE_1: Copy key to ctx */
593
594 /* Get key material */
595 memcpy(ctx->enckey, enckey, ctx->enc_keylen);
596 if (ctx->enc_keylen == 24)
597 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
598 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
599 memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
600 ctx->auth_keylen);
601 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
602 rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
603 if (rc)
604 return rc;
605 }
606
607 /* STAT_PHASE_2: Create sequence */
608
609 switch (ctx->auth_mode) {
610 case DRV_HASH_SHA1:
611 case DRV_HASH_SHA256:
612 seq_len = hmac_setkey(desc, ctx);
613 break;
614 case DRV_HASH_XCBC_MAC:
615 seq_len = xcbc_setkey(desc, ctx);
616 break;
617 case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
618 break; /* No auth. key setup */
619 default:
620 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
621 return -ENOTSUPP;
622 }
623
624 /* STAT_PHASE_3: Submit sequence to HW */
625
626 if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
627 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
628 if (rc) {
629 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
630 return rc;
631 }
632 }
633
634 /* Update STAT_PHASE_3 */
635 return rc;
636}
637
638static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
639 unsigned int keylen)
640{
641 struct crypto_authenc_keys keys;
642 int err;
643
644 err = crypto_authenc_extractkeys(&keys, key, keylen);
645 if (unlikely(err))
646 return err;
647
648 err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
649 cc_aead_setkey(aead, key, keylen);
650
651 memzero_explicit(&keys, sizeof(keys));
652 return err;
653}
654
655static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656 unsigned int keylen)
657{
658 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
659
660 if (keylen < 3)
661 return -EINVAL;
662
663 keylen -= 3;
664 memcpy(ctx->ctr_nonce, key + keylen, 3);
665
666 return cc_aead_setkey(tfm, key, keylen);
667}
668
669static int cc_aead_setauthsize(struct crypto_aead *authenc,
670 unsigned int authsize)
671{
672 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673 struct device *dev = drvdata_to_dev(ctx->drvdata);
674
675 /* Unsupported auth. sizes */
676 if (authsize == 0 ||
677 authsize > crypto_aead_maxauthsize(authenc)) {
678 return -ENOTSUPP;
679 }
680
681 ctx->authsize = authsize;
682 dev_dbg(dev, "authlen=%d\n", ctx->authsize);
683
684 return 0;
685}
686
687static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688 unsigned int authsize)
689{
690 switch (authsize) {
691 case 8:
692 case 12:
693 case 16:
694 break;
695 default:
696 return -EINVAL;
697 }
698
699 return cc_aead_setauthsize(authenc, authsize);
700}
701
702static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703 unsigned int authsize)
704{
705 switch (authsize) {
706 case 4:
707 case 6:
708 case 8:
709 case 10:
710 case 12:
711 case 14:
712 case 16:
713 break;
714 default:
715 return -EINVAL;
716 }
717
718 return cc_aead_setauthsize(authenc, authsize);
719}
720
721static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722 struct cc_hw_desc desc[], unsigned int *seq_size)
723{
724 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
727 enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728 unsigned int idx = *seq_size;
729 struct device *dev = drvdata_to_dev(ctx->drvdata);
730
731 switch (assoc_dma_type) {
732 case CC_DMA_BUF_DLLI:
733 dev_dbg(dev, "ASSOC buffer type DLLI\n");
734 hw_desc_init(&desc[idx]);
735 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736 areq_ctx->assoclen, NS_BIT);
737 set_flow_mode(&desc[idx], flow_mode);
738 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739 areq_ctx->cryptlen > 0)
740 set_din_not_last_indication(&desc[idx]);
741 break;
742 case CC_DMA_BUF_MLLI:
743 dev_dbg(dev, "ASSOC buffer type MLLI\n");
744 hw_desc_init(&desc[idx]);
745 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746 areq_ctx->assoc.mlli_nents, NS_BIT);
747 set_flow_mode(&desc[idx], flow_mode);
748 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749 areq_ctx->cryptlen > 0)
750 set_din_not_last_indication(&desc[idx]);
751 break;
752 case CC_DMA_BUF_NULL:
753 default:
754 dev_err(dev, "Invalid ASSOC buffer type\n");
755 }
756
757 *seq_size = (++idx);
758}
759
760static void cc_proc_authen_desc(struct aead_request *areq,
761 unsigned int flow_mode,
762 struct cc_hw_desc desc[],
763 unsigned int *seq_size, int direct)
764{
765 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
766 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767 unsigned int idx = *seq_size;
768 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770 struct device *dev = drvdata_to_dev(ctx->drvdata);
771
772 switch (data_dma_type) {
773 case CC_DMA_BUF_DLLI:
774 {
775 struct scatterlist *cipher =
776 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777 areq_ctx->dst_sgl : areq_ctx->src_sgl;
778
779 unsigned int offset =
780 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781 areq_ctx->dst_offset : areq_ctx->src_offset;
782 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783 hw_desc_init(&desc[idx]);
784 set_din_type(&desc[idx], DMA_DLLI,
785 (sg_dma_address(cipher) + offset),
786 areq_ctx->cryptlen, NS_BIT);
787 set_flow_mode(&desc[idx], flow_mode);
788 break;
789 }
790 case CC_DMA_BUF_MLLI:
791 {
792 /* DOUBLE-PASS flow (as default)
793 * assoc. + iv + data -compact in one table
794 * if assoclen is ZERO only IV perform
795 */
796 u32 mlli_addr = areq_ctx->assoc.sram_addr;
797 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
798
799 if (areq_ctx->is_single_pass) {
800 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801 mlli_addr = areq_ctx->dst.sram_addr;
802 mlli_nents = areq_ctx->dst.mlli_nents;
803 } else {
804 mlli_addr = areq_ctx->src.sram_addr;
805 mlli_nents = areq_ctx->src.mlli_nents;
806 }
807 }
808
809 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810 hw_desc_init(&desc[idx]);
811 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812 NS_BIT);
813 set_flow_mode(&desc[idx], flow_mode);
814 break;
815 }
816 case CC_DMA_BUF_NULL:
817 default:
818 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
819 }
820
821 *seq_size = (++idx);
822}
823
824static void cc_proc_cipher_desc(struct aead_request *areq,
825 unsigned int flow_mode,
826 struct cc_hw_desc desc[],
827 unsigned int *seq_size)
828{
829 unsigned int idx = *seq_size;
830 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(areq);
831 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834 struct device *dev = drvdata_to_dev(ctx->drvdata);
835
836 if (areq_ctx->cryptlen == 0)
837 return; /*null processing*/
838
839 switch (data_dma_type) {
840 case CC_DMA_BUF_DLLI:
841 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842 hw_desc_init(&desc[idx]);
843 set_din_type(&desc[idx], DMA_DLLI,
844 (sg_dma_address(areq_ctx->src_sgl) +
845 areq_ctx->src_offset), areq_ctx->cryptlen,
846 NS_BIT);
847 set_dout_dlli(&desc[idx],
848 (sg_dma_address(areq_ctx->dst_sgl) +
849 areq_ctx->dst_offset),
850 areq_ctx->cryptlen, NS_BIT, 0);
851 set_flow_mode(&desc[idx], flow_mode);
852 break;
853 case CC_DMA_BUF_MLLI:
854 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855 hw_desc_init(&desc[idx]);
856 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857 areq_ctx->src.mlli_nents, NS_BIT);
858 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859 areq_ctx->dst.mlli_nents, NS_BIT, 0);
860 set_flow_mode(&desc[idx], flow_mode);
861 break;
862 case CC_DMA_BUF_NULL:
863 default:
864 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
865 }
866
867 *seq_size = (++idx);
868}
869
870static void cc_proc_digest_desc(struct aead_request *req,
871 struct cc_hw_desc desc[],
872 unsigned int *seq_size)
873{
874 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
877 unsigned int idx = *seq_size;
878 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880 int direct = req_ctx->gen_ctx.op_type;
881
882 /* Get final ICV result */
883 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884 hw_desc_init(&desc[idx]);
885 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888 NS_BIT, 1);
889 set_queue_last_ind(ctx->drvdata, &desc[idx]);
890 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891 set_aes_not_hash_mode(&desc[idx]);
892 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893 } else {
894 set_cipher_config0(&desc[idx],
895 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896 set_cipher_mode(&desc[idx], hash_mode);
897 }
898 } else { /*Decrypt*/
899 /* Get ICV out from hardware */
900 hw_desc_init(&desc[idx]);
901 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904 ctx->authsize, NS_BIT, 1);
905 set_queue_last_ind(ctx->drvdata, &desc[idx]);
906 set_cipher_config0(&desc[idx],
907 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911 set_aes_not_hash_mode(&desc[idx]);
912 } else {
913 set_cipher_mode(&desc[idx], hash_mode);
914 }
915 }
916
917 *seq_size = (++idx);
918}
919
920static void cc_set_cipher_desc(struct aead_request *req,
921 struct cc_hw_desc desc[],
922 unsigned int *seq_size)
923{
924 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
927 unsigned int hw_iv_size = req_ctx->hw_iv_size;
928 unsigned int idx = *seq_size;
929 int direct = req_ctx->gen_ctx.op_type;
930
931 /* Setup cipher state */
932 hw_desc_init(&desc[idx]);
933 set_cipher_config0(&desc[idx], direct);
934 set_flow_mode(&desc[idx], ctx->flow_mode);
935 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936 hw_iv_size, NS_BIT);
937 if (ctx->cipher_mode == DRV_CIPHER_CTR)
938 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939 else
940 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941 set_cipher_mode(&desc[idx], ctx->cipher_mode);
942 idx++;
943
944 /* Setup enc. key */
945 hw_desc_init(&desc[idx]);
946 set_cipher_config0(&desc[idx], direct);
947 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948 set_flow_mode(&desc[idx], ctx->flow_mode);
949 if (ctx->flow_mode == S_DIN_to_AES) {
950 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952 ctx->enc_keylen), NS_BIT);
953 set_key_size_aes(&desc[idx], ctx->enc_keylen);
954 } else {
955 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956 ctx->enc_keylen, NS_BIT);
957 set_key_size_des(&desc[idx], ctx->enc_keylen);
958 }
959 set_cipher_mode(&desc[idx], ctx->cipher_mode);
960 idx++;
961
962 *seq_size = idx;
963}
964
965static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966 unsigned int *seq_size, unsigned int data_flow_mode)
967{
968 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
969 int direct = req_ctx->gen_ctx.op_type;
970 unsigned int idx = *seq_size;
971
972 if (req_ctx->cryptlen == 0)
973 return; /*null processing*/
974
975 cc_set_cipher_desc(req, desc, &idx);
976 cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978 /* We must wait for DMA to write all cipher */
979 hw_desc_init(&desc[idx]);
980 set_din_no_dma(&desc[idx], 0, 0xfffff0);
981 set_dout_no_dma(&desc[idx], 0, 0, 1);
982 idx++;
983 }
984
985 *seq_size = idx;
986}
987
988static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989 unsigned int *seq_size)
990{
991 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997 unsigned int idx = *seq_size;
998
999 /* Loading hash ipad xor key state */
1000 hw_desc_init(&desc[idx]);
1001 set_cipher_mode(&desc[idx], hash_mode);
1002 set_din_type(&desc[idx], DMA_DLLI,
1003 ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004 NS_BIT);
1005 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007 idx++;
1008
1009 /* Load init. digest len (64 bytes) */
1010 hw_desc_init(&desc[idx]);
1011 set_cipher_mode(&desc[idx], hash_mode);
1012 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013 ctx->hash_len);
1014 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016 idx++;
1017
1018 *seq_size = idx;
1019}
1020
1021static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022 unsigned int *seq_size)
1023{
1024 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026 unsigned int idx = *seq_size;
1027
1028 /* Loading MAC state */
1029 hw_desc_init(&desc[idx]);
1030 set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036 set_aes_not_hash_mode(&desc[idx]);
1037 idx++;
1038
1039 /* Setup XCBC MAC K1 */
1040 hw_desc_init(&desc[idx]);
1041 set_din_type(&desc[idx], DMA_DLLI,
1042 ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043 AES_KEYSIZE_128, NS_BIT);
1044 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049 set_aes_not_hash_mode(&desc[idx]);
1050 idx++;
1051
1052 /* Setup XCBC MAC K2 */
1053 hw_desc_init(&desc[idx]);
1054 set_din_type(&desc[idx], DMA_DLLI,
1055 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056 AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062 set_aes_not_hash_mode(&desc[idx]);
1063 idx++;
1064
1065 /* Setup XCBC MAC K3 */
1066 hw_desc_init(&desc[idx]);
1067 set_din_type(&desc[idx], DMA_DLLI,
1068 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070 set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075 set_aes_not_hash_mode(&desc[idx]);
1076 idx++;
1077
1078 *seq_size = idx;
1079}
1080
1081static void cc_proc_header_desc(struct aead_request *req,
1082 struct cc_hw_desc desc[],
1083 unsigned int *seq_size)
1084{
1085 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1086 unsigned int idx = *seq_size;
1087
1088 /* Hash associated data */
1089 if (areq_ctx->assoclen > 0)
1090 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1091
1092 /* Hash IV */
1093 *seq_size = idx;
1094}
1095
1096static void cc_proc_scheme_desc(struct aead_request *req,
1097 struct cc_hw_desc desc[],
1098 unsigned int *seq_size)
1099{
1100 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1101 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1102 struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1103 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1105 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1106 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1107 unsigned int idx = *seq_size;
1108
1109 hw_desc_init(&desc[idx]);
1110 set_cipher_mode(&desc[idx], hash_mode);
1111 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1112 ctx->hash_len);
1113 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1114 set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1115 set_cipher_do(&desc[idx], DO_PAD);
1116 idx++;
1117
1118 /* Get final ICV result */
1119 hw_desc_init(&desc[idx]);
1120 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1121 digest_size);
1122 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1123 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1124 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1125 set_cipher_mode(&desc[idx], hash_mode);
1126 idx++;
1127
1128 /* Loading hash opad xor key state */
1129 hw_desc_init(&desc[idx]);
1130 set_cipher_mode(&desc[idx], hash_mode);
1131 set_din_type(&desc[idx], DMA_DLLI,
1132 (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1133 digest_size, NS_BIT);
1134 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1135 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1136 idx++;
1137
1138 /* Load init. digest len (64 bytes) */
1139 hw_desc_init(&desc[idx]);
1140 set_cipher_mode(&desc[idx], hash_mode);
1141 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1142 ctx->hash_len);
1143 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1144 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1146 idx++;
1147
1148 /* Perform HASH update */
1149 hw_desc_init(&desc[idx]);
1150 set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1151 digest_size);
1152 set_flow_mode(&desc[idx], DIN_HASH);
1153 idx++;
1154
1155 *seq_size = idx;
1156}
1157
1158static void cc_mlli_to_sram(struct aead_request *req,
1159 struct cc_hw_desc desc[], unsigned int *seq_size)
1160{
1161 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1162 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1163 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1164 struct device *dev = drvdata_to_dev(ctx->drvdata);
1165
1166 if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1167 req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1168 !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1169 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1170 ctx->drvdata->mlli_sram_addr,
1171 req_ctx->mlli_params.mlli_len);
1172 /* Copy MLLI table host-to-sram */
1173 hw_desc_init(&desc[*seq_size]);
1174 set_din_type(&desc[*seq_size], DMA_DLLI,
1175 req_ctx->mlli_params.mlli_dma_addr,
1176 req_ctx->mlli_params.mlli_len, NS_BIT);
1177 set_dout_sram(&desc[*seq_size],
1178 ctx->drvdata->mlli_sram_addr,
1179 req_ctx->mlli_params.mlli_len);
1180 set_flow_mode(&desc[*seq_size], BYPASS);
1181 (*seq_size)++;
1182 }
1183}
1184
1185static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1186 enum cc_flow_mode setup_flow_mode,
1187 bool is_single_pass)
1188{
1189 enum cc_flow_mode data_flow_mode;
1190
1191 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1192 if (setup_flow_mode == S_DIN_to_AES)
1193 data_flow_mode = is_single_pass ?
1194 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1195 else
1196 data_flow_mode = is_single_pass ?
1197 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1198 } else { /* Decrypt */
1199 if (setup_flow_mode == S_DIN_to_AES)
1200 data_flow_mode = is_single_pass ?
1201 AES_and_HASH : DIN_AES_DOUT;
1202 else
1203 data_flow_mode = is_single_pass ?
1204 DES_and_HASH : DIN_DES_DOUT;
1205 }
1206
1207 return data_flow_mode;
1208}
1209
1210static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1211 unsigned int *seq_size)
1212{
1213 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1216 int direct = req_ctx->gen_ctx.op_type;
1217 unsigned int data_flow_mode =
1218 cc_get_data_flow(direct, ctx->flow_mode,
1219 req_ctx->is_single_pass);
1220
1221 if (req_ctx->is_single_pass) {
1222 /*
1223 * Single-pass flow
1224 */
1225 cc_set_hmac_desc(req, desc, seq_size);
1226 cc_set_cipher_desc(req, desc, seq_size);
1227 cc_proc_header_desc(req, desc, seq_size);
1228 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1229 cc_proc_scheme_desc(req, desc, seq_size);
1230 cc_proc_digest_desc(req, desc, seq_size);
1231 return;
1232 }
1233
1234 /*
1235 * Double-pass flow
1236 * Fallback for unsupported single-pass modes,
1237 * i.e. using assoc. data of non-word-multiple
1238 */
1239 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1240 /* encrypt first.. */
1241 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1242 /* authenc after..*/
1243 cc_set_hmac_desc(req, desc, seq_size);
1244 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1245 cc_proc_scheme_desc(req, desc, seq_size);
1246 cc_proc_digest_desc(req, desc, seq_size);
1247
1248 } else { /*DECRYPT*/
1249 /* authenc first..*/
1250 cc_set_hmac_desc(req, desc, seq_size);
1251 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1252 cc_proc_scheme_desc(req, desc, seq_size);
1253 /* decrypt after.. */
1254 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1255 /* read the digest result with setting the completion bit
1256 * must be after the cipher operation
1257 */
1258 cc_proc_digest_desc(req, desc, seq_size);
1259 }
1260}
1261
1262static void
1263cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1264 unsigned int *seq_size)
1265{
1266 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1267 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1268 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1269 int direct = req_ctx->gen_ctx.op_type;
1270 unsigned int data_flow_mode =
1271 cc_get_data_flow(direct, ctx->flow_mode,
1272 req_ctx->is_single_pass);
1273
1274 if (req_ctx->is_single_pass) {
1275 /*
1276 * Single-pass flow
1277 */
1278 cc_set_xcbc_desc(req, desc, seq_size);
1279 cc_set_cipher_desc(req, desc, seq_size);
1280 cc_proc_header_desc(req, desc, seq_size);
1281 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1282 cc_proc_digest_desc(req, desc, seq_size);
1283 return;
1284 }
1285
1286 /*
1287 * Double-pass flow
1288 * Fallback for unsupported single-pass modes,
1289 * i.e. using assoc. data of non-word-multiple
1290 */
1291 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1292 /* encrypt first.. */
1293 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1294 /* authenc after.. */
1295 cc_set_xcbc_desc(req, desc, seq_size);
1296 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1297 cc_proc_digest_desc(req, desc, seq_size);
1298 } else { /*DECRYPT*/
1299 /* authenc first.. */
1300 cc_set_xcbc_desc(req, desc, seq_size);
1301 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1302 /* decrypt after..*/
1303 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304 /* read the digest result with setting the completion bit
1305 * must be after the cipher operation
1306 */
1307 cc_proc_digest_desc(req, desc, seq_size);
1308 }
1309}
1310
1311static int validate_data_size(struct cc_aead_ctx *ctx,
1312 enum drv_crypto_direction direct,
1313 struct aead_request *req)
1314{
1315 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1316 struct device *dev = drvdata_to_dev(ctx->drvdata);
1317 unsigned int assoclen = areq_ctx->assoclen;
1318 unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1319 (req->cryptlen - ctx->authsize) : req->cryptlen;
1320
1321 if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1322 req->cryptlen < ctx->authsize)
1323 goto data_size_err;
1324
1325 areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1326
1327 switch (ctx->flow_mode) {
1328 case S_DIN_to_AES:
1329 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1330 !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1331 goto data_size_err;
1332 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1333 break;
1334 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1335 if (areq_ctx->plaintext_authenticate_only)
1336 areq_ctx->is_single_pass = false;
1337 break;
1338 }
1339
1340 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1341 areq_ctx->is_single_pass = false;
1342
1343 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1344 !IS_ALIGNED(cipherlen, sizeof(u32)))
1345 areq_ctx->is_single_pass = false;
1346
1347 break;
1348 case S_DIN_to_DES:
1349 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1350 goto data_size_err;
1351 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1352 areq_ctx->is_single_pass = false;
1353 break;
1354 default:
1355 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1356 goto data_size_err;
1357 }
1358
1359 return 0;
1360
1361data_size_err:
1362 return -EINVAL;
1363}
1364
1365static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1366{
1367 unsigned int len = 0;
1368
1369 if (header_size == 0)
1370 return 0;
1371
1372 if (header_size < ((1UL << 16) - (1UL << 8))) {
1373 len = 2;
1374
1375 pa0_buff[0] = (header_size >> 8) & 0xFF;
1376 pa0_buff[1] = header_size & 0xFF;
1377 } else {
1378 len = 6;
1379
1380 pa0_buff[0] = 0xFF;
1381 pa0_buff[1] = 0xFE;
1382 pa0_buff[2] = (header_size >> 24) & 0xFF;
1383 pa0_buff[3] = (header_size >> 16) & 0xFF;
1384 pa0_buff[4] = (header_size >> 8) & 0xFF;
1385 pa0_buff[5] = header_size & 0xFF;
1386 }
1387
1388 return len;
1389}
1390
1391static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1392{
1393 __be32 data;
1394
1395 memset(block, 0, csize);
1396 block += csize;
1397
1398 if (csize >= 4)
1399 csize = 4;
1400 else if (msglen > (1 << (8 * csize)))
1401 return -EOVERFLOW;
1402
1403 data = cpu_to_be32(msglen);
1404 memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1405
1406 return 0;
1407}
1408
1409static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1410 unsigned int *seq_size)
1411{
1412 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1413 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1414 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1415 unsigned int idx = *seq_size;
1416 unsigned int cipher_flow_mode;
1417 dma_addr_t mac_result;
1418
1419 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1420 cipher_flow_mode = AES_to_HASH_and_DOUT;
1421 mac_result = req_ctx->mac_buf_dma_addr;
1422 } else { /* Encrypt */
1423 cipher_flow_mode = AES_and_HASH;
1424 mac_result = req_ctx->icv_dma_addr;
1425 }
1426
1427 /* load key */
1428 hw_desc_init(&desc[idx]);
1429 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1430 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1431 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1432 ctx->enc_keylen), NS_BIT);
1433 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1434 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1435 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1436 set_flow_mode(&desc[idx], S_DIN_to_AES);
1437 idx++;
1438
1439 /* load ctr state */
1440 hw_desc_init(&desc[idx]);
1441 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1442 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1443 set_din_type(&desc[idx], DMA_DLLI,
1444 req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1445 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1447 set_flow_mode(&desc[idx], S_DIN_to_AES);
1448 idx++;
1449
1450 /* load MAC key */
1451 hw_desc_init(&desc[idx]);
1452 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1453 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1454 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1455 ctx->enc_keylen), NS_BIT);
1456 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1457 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1458 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1460 set_aes_not_hash_mode(&desc[idx]);
1461 idx++;
1462
1463 /* load MAC state */
1464 hw_desc_init(&desc[idx]);
1465 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1466 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1468 AES_BLOCK_SIZE, NS_BIT);
1469 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1471 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1472 set_aes_not_hash_mode(&desc[idx]);
1473 idx++;
1474
1475 /* process assoc data */
1476 if (req_ctx->assoclen > 0) {
1477 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1478 } else {
1479 hw_desc_init(&desc[idx]);
1480 set_din_type(&desc[idx], DMA_DLLI,
1481 sg_dma_address(&req_ctx->ccm_adata_sg),
1482 AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1483 set_flow_mode(&desc[idx], DIN_HASH);
1484 idx++;
1485 }
1486
1487 /* process the cipher */
1488 if (req_ctx->cryptlen)
1489 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1490
1491 /* Read temporal MAC */
1492 hw_desc_init(&desc[idx]);
1493 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1494 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1495 NS_BIT, 0);
1496 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1497 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1498 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1499 set_aes_not_hash_mode(&desc[idx]);
1500 idx++;
1501
1502 /* load AES-CTR state (for last MAC calculation)*/
1503 hw_desc_init(&desc[idx]);
1504 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1505 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1506 set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1507 AES_BLOCK_SIZE, NS_BIT);
1508 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1509 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1510 set_flow_mode(&desc[idx], S_DIN_to_AES);
1511 idx++;
1512
1513 hw_desc_init(&desc[idx]);
1514 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1515 set_dout_no_dma(&desc[idx], 0, 0, 1);
1516 idx++;
1517
1518 /* encrypt the "T" value and store MAC in mac_state */
1519 hw_desc_init(&desc[idx]);
1520 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1521 ctx->authsize, NS_BIT);
1522 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1523 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1524 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1525 idx++;
1526
1527 *seq_size = idx;
1528 return 0;
1529}
1530
1531static int config_ccm_adata(struct aead_request *req)
1532{
1533 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1534 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1535 struct device *dev = drvdata_to_dev(ctx->drvdata);
1536 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1537 //unsigned int size_of_a = 0, rem_a_size = 0;
1538 unsigned int lp = req->iv[0];
1539 /* Note: The code assume that req->iv[0] already contains the value
1540 * of L' of RFC3610
1541 */
1542 unsigned int l = lp + 1; /* This is L' of RFC 3610. */
1543 unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
1544 u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1545 u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1546 u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1547 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1548 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1549 req->cryptlen :
1550 (req->cryptlen - ctx->authsize);
1551 int rc;
1552
1553 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1554 memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1555
1556 /* taken from crypto/ccm.c */
1557 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1558 if (l < 2 || l > 8) {
1559 dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
1560 return -EINVAL;
1561 }
1562 memcpy(b0, req->iv, AES_BLOCK_SIZE);
1563
1564 /* format control info per RFC 3610 and
1565 * NIST Special Publication 800-38C
1566 */
1567 *b0 |= (8 * ((m - 2) / 2));
1568 if (req_ctx->assoclen > 0)
1569 *b0 |= 64; /* Enable bit 6 if Adata exists. */
1570
1571 rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
1572 if (rc) {
1573 dev_err(dev, "message len overflow detected");
1574 return rc;
1575 }
1576 /* END of "taken from crypto/ccm.c" */
1577
1578 /* l(a) - size of associated data. */
1579 req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1580
1581 memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1582 req->iv[15] = 1;
1583
1584 memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1585 ctr_count_0[15] = 0;
1586
1587 return 0;
1588}
1589
1590static void cc_proc_rfc4309_ccm(struct aead_request *req)
1591{
1592 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1593 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1594 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1595
1596 /* L' */
1597 memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1598 /* For RFC 4309, always use 4 bytes for message length
1599 * (at most 2^32-1 bytes).
1600 */
1601 areq_ctx->ctr_iv[0] = 3;
1602
1603 /* In RFC 4309 there is an 11-bytes nonce+IV part,
1604 * that we build here.
1605 */
1606 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1607 CCM_BLOCK_NONCE_SIZE);
1608 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1609 CCM_BLOCK_IV_SIZE);
1610 req->iv = areq_ctx->ctr_iv;
1611}
1612
1613static void cc_set_ghash_desc(struct aead_request *req,
1614 struct cc_hw_desc desc[], unsigned int *seq_size)
1615{
1616 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1617 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1618 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1619 unsigned int idx = *seq_size;
1620
1621 /* load key to AES*/
1622 hw_desc_init(&desc[idx]);
1623 set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1624 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1625 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1626 ctx->enc_keylen, NS_BIT);
1627 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1628 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1629 set_flow_mode(&desc[idx], S_DIN_to_AES);
1630 idx++;
1631
1632 /* process one zero block to generate hkey */
1633 hw_desc_init(&desc[idx]);
1634 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1635 set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1636 NS_BIT, 0);
1637 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1638 idx++;
1639
1640 /* Memory Barrier */
1641 hw_desc_init(&desc[idx]);
1642 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1643 set_dout_no_dma(&desc[idx], 0, 0, 1);
1644 idx++;
1645
1646 /* Load GHASH subkey */
1647 hw_desc_init(&desc[idx]);
1648 set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1649 AES_BLOCK_SIZE, NS_BIT);
1650 set_dout_no_dma(&desc[idx], 0, 0, 1);
1651 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1652 set_aes_not_hash_mode(&desc[idx]);
1653 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1654 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1655 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1656 idx++;
1657
1658 /* Configure Hash Engine to work with GHASH.
1659 * Since it was not possible to extend HASH submodes to add GHASH,
1660 * The following command is necessary in order to
1661 * select GHASH (according to HW designers)
1662 */
1663 hw_desc_init(&desc[idx]);
1664 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1665 set_dout_no_dma(&desc[idx], 0, 0, 1);
1666 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1667 set_aes_not_hash_mode(&desc[idx]);
1668 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1669 set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1670 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1671 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1672 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1673 idx++;
1674
1675 /* Load GHASH initial STATE (which is 0). (for any hash there is an
1676 * initial state)
1677 */
1678 hw_desc_init(&desc[idx]);
1679 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1680 set_dout_no_dma(&desc[idx], 0, 0, 1);
1681 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1682 set_aes_not_hash_mode(&desc[idx]);
1683 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1684 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1685 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1686 idx++;
1687
1688 *seq_size = idx;
1689}
1690
1691static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1692 unsigned int *seq_size)
1693{
1694 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1695 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1696 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1697 unsigned int idx = *seq_size;
1698
1699 /* load key to AES*/
1700 hw_desc_init(&desc[idx]);
1701 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1702 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1703 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1704 ctx->enc_keylen, NS_BIT);
1705 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1706 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1707 set_flow_mode(&desc[idx], S_DIN_to_AES);
1708 idx++;
1709
1710 if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1711 /* load AES/CTR initial CTR value inc by 2*/
1712 hw_desc_init(&desc[idx]);
1713 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1715 set_din_type(&desc[idx], DMA_DLLI,
1716 req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1717 NS_BIT);
1718 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1719 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1720 set_flow_mode(&desc[idx], S_DIN_to_AES);
1721 idx++;
1722 }
1723
1724 *seq_size = idx;
1725}
1726
1727static void cc_proc_gcm_result(struct aead_request *req,
1728 struct cc_hw_desc desc[],
1729 unsigned int *seq_size)
1730{
1731 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1732 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1733 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1734 dma_addr_t mac_result;
1735 unsigned int idx = *seq_size;
1736
1737 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1738 mac_result = req_ctx->mac_buf_dma_addr;
1739 } else { /* Encrypt */
1740 mac_result = req_ctx->icv_dma_addr;
1741 }
1742
1743 /* process(ghash) gcm_block_len */
1744 hw_desc_init(&desc[idx]);
1745 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1746 AES_BLOCK_SIZE, NS_BIT);
1747 set_flow_mode(&desc[idx], DIN_HASH);
1748 idx++;
1749
1750 /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1751 hw_desc_init(&desc[idx]);
1752 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1753 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1754 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1755 NS_BIT, 0);
1756 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1757 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1758 set_aes_not_hash_mode(&desc[idx]);
1759
1760 idx++;
1761
1762 /* load AES/CTR initial CTR value inc by 1*/
1763 hw_desc_init(&desc[idx]);
1764 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1765 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1766 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1767 AES_BLOCK_SIZE, NS_BIT);
1768 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1769 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1770 set_flow_mode(&desc[idx], S_DIN_to_AES);
1771 idx++;
1772
1773 /* Memory Barrier */
1774 hw_desc_init(&desc[idx]);
1775 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1776 set_dout_no_dma(&desc[idx], 0, 0, 1);
1777 idx++;
1778
1779 /* process GCTR on stored GHASH and store MAC in mac_state*/
1780 hw_desc_init(&desc[idx]);
1781 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1782 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1783 AES_BLOCK_SIZE, NS_BIT);
1784 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1785 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1786 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1787 idx++;
1788
1789 *seq_size = idx;
1790}
1791
1792static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1793 unsigned int *seq_size)
1794{
1795 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1796 unsigned int cipher_flow_mode;
1797
1798 //in RFC4543 no data to encrypt. just copy data from src to dest.
1799 if (req_ctx->plaintext_authenticate_only) {
1800 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1801 cc_set_ghash_desc(req, desc, seq_size);
1802 /* process(ghash) assoc data */
1803 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1804 cc_set_gctr_desc(req, desc, seq_size);
1805 cc_proc_gcm_result(req, desc, seq_size);
1806 return 0;
1807 }
1808
1809 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810 cipher_flow_mode = AES_and_HASH;
1811 } else { /* Encrypt */
1812 cipher_flow_mode = AES_to_HASH_and_DOUT;
1813 }
1814
1815 // for gcm and rfc4106.
1816 cc_set_ghash_desc(req, desc, seq_size);
1817 /* process(ghash) assoc data */
1818 if (req_ctx->assoclen > 0)
1819 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1820 cc_set_gctr_desc(req, desc, seq_size);
1821 /* process(gctr+ghash) */
1822 if (req_ctx->cryptlen)
1823 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1824 cc_proc_gcm_result(req, desc, seq_size);
1825
1826 return 0;
1827}
1828
1829static int config_gcm_context(struct aead_request *req)
1830{
1831 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1832 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1833 struct aead_req_ctx *req_ctx = aead_request_ctx_dma(req);
1834 struct device *dev = drvdata_to_dev(ctx->drvdata);
1835
1836 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1837 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1838 req->cryptlen :
1839 (req->cryptlen - ctx->authsize);
1840 __be32 counter = cpu_to_be32(2);
1841
1842 dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1843 __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1844
1845 memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1846
1847 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1848
1849 memcpy(req->iv + 12, &counter, 4);
1850 memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1851
1852 counter = cpu_to_be32(1);
1853 memcpy(req->iv + 12, &counter, 4);
1854 memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1855
1856 if (!req_ctx->plaintext_authenticate_only) {
1857 __be64 temp64;
1858
1859 temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1860 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1861 temp64 = cpu_to_be64(cryptlen * 8);
1862 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1863 } else {
1864 /* rfc4543=> all data(AAD,IV,Plain) are considered additional
1865 * data that is nothing is encrypted.
1866 */
1867 __be64 temp64;
1868
1869 temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
1870 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871 temp64 = 0;
1872 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873 }
1874
1875 return 0;
1876}
1877
1878static void cc_proc_rfc4_gcm(struct aead_request *req)
1879{
1880 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1883
1884 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885 ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887 GCM_BLOCK_RFC4_IV_SIZE);
1888 req->iv = areq_ctx->ctr_iv;
1889}
1890
1891static int cc_proc_aead(struct aead_request *req,
1892 enum drv_crypto_direction direct)
1893{
1894 int rc = 0;
1895 int seq_len = 0;
1896 struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1897 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1898 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1899 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
1900 struct device *dev = drvdata_to_dev(ctx->drvdata);
1901 struct cc_crypto_req cc_req = {};
1902
1903 dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1904 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1905 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1906 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1907
1908 /* STAT_PHASE_0: Init and sanity checks */
1909
1910 /* Check data length according to mode */
1911 if (validate_data_size(ctx, direct, req)) {
1912 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1913 req->cryptlen, areq_ctx->assoclen);
1914 return -EINVAL;
1915 }
1916
1917 /* Setup request structure */
1918 cc_req.user_cb = cc_aead_complete;
1919 cc_req.user_arg = req;
1920
1921 /* Setup request context */
1922 areq_ctx->gen_ctx.op_type = direct;
1923 areq_ctx->req_authsize = ctx->authsize;
1924 areq_ctx->cipher_mode = ctx->cipher_mode;
1925
1926 /* STAT_PHASE_1: Map buffers */
1927
1928 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1929 /* Build CTR IV - Copy nonce from last 4 bytes in
1930 * CTR key to first 4 bytes in CTR IV
1931 */
1932 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1933 CTR_RFC3686_NONCE_SIZE);
1934 memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1935 CTR_RFC3686_IV_SIZE);
1936 /* Initialize counter portion of counter block */
1937 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1938 CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1939
1940 /* Replace with counter iv */
1941 req->iv = areq_ctx->ctr_iv;
1942 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1943 } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1944 (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1945 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1946 if (areq_ctx->ctr_iv != req->iv) {
1947 memcpy(areq_ctx->ctr_iv, req->iv,
1948 crypto_aead_ivsize(tfm));
1949 req->iv = areq_ctx->ctr_iv;
1950 }
1951 } else {
1952 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1953 }
1954
1955 if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1956 rc = config_ccm_adata(req);
1957 if (rc) {
1958 dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1959 rc);
1960 goto exit;
1961 }
1962 } else {
1963 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1964 }
1965
1966 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1967 rc = config_gcm_context(req);
1968 if (rc) {
1969 dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1970 rc);
1971 goto exit;
1972 }
1973 }
1974
1975 rc = cc_map_aead_request(ctx->drvdata, req);
1976 if (rc) {
1977 dev_err(dev, "map_request() failed\n");
1978 goto exit;
1979 }
1980
1981 /* STAT_PHASE_2: Create sequence */
1982
1983 /* Load MLLI tables to SRAM if necessary */
1984 cc_mlli_to_sram(req, desc, &seq_len);
1985
1986 switch (ctx->auth_mode) {
1987 case DRV_HASH_SHA1:
1988 case DRV_HASH_SHA256:
1989 cc_hmac_authenc(req, desc, &seq_len);
1990 break;
1991 case DRV_HASH_XCBC_MAC:
1992 cc_xcbc_authenc(req, desc, &seq_len);
1993 break;
1994 case DRV_HASH_NULL:
1995 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1996 cc_ccm(req, desc, &seq_len);
1997 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
1998 cc_gcm(req, desc, &seq_len);
1999 break;
2000 default:
2001 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2002 cc_unmap_aead_request(dev, req);
2003 rc = -ENOTSUPP;
2004 goto exit;
2005 }
2006
2007 /* STAT_PHASE_3: Lock HW and push sequence */
2008
2009 rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2010
2011 if (rc != -EINPROGRESS && rc != -EBUSY) {
2012 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2013 cc_unmap_aead_request(dev, req);
2014 }
2015
2016exit:
2017 return rc;
2018}
2019
2020static int cc_aead_encrypt(struct aead_request *req)
2021{
2022 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2023 int rc;
2024
2025 memset(areq_ctx, 0, sizeof(*areq_ctx));
2026
2027 /* No generated IV required */
2028 areq_ctx->backup_iv = req->iv;
2029 areq_ctx->assoclen = req->assoclen;
2030
2031 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2032 if (rc != -EINPROGRESS && rc != -EBUSY)
2033 req->iv = areq_ctx->backup_iv;
2034
2035 return rc;
2036}
2037
2038static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2039{
2040 /* Very similar to cc_aead_encrypt() above. */
2041
2042 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2043 int rc;
2044
2045 rc = crypto_ipsec_check_assoclen(req->assoclen);
2046 if (rc)
2047 goto out;
2048
2049 memset(areq_ctx, 0, sizeof(*areq_ctx));
2050
2051 /* No generated IV required */
2052 areq_ctx->backup_iv = req->iv;
2053 areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2054
2055 cc_proc_rfc4309_ccm(req);
2056
2057 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2058 if (rc != -EINPROGRESS && rc != -EBUSY)
2059 req->iv = areq_ctx->backup_iv;
2060out:
2061 return rc;
2062}
2063
2064static int cc_aead_decrypt(struct aead_request *req)
2065{
2066 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2067 int rc;
2068
2069 memset(areq_ctx, 0, sizeof(*areq_ctx));
2070
2071 /* No generated IV required */
2072 areq_ctx->backup_iv = req->iv;
2073 areq_ctx->assoclen = req->assoclen;
2074
2075 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2076 if (rc != -EINPROGRESS && rc != -EBUSY)
2077 req->iv = areq_ctx->backup_iv;
2078
2079 return rc;
2080}
2081
2082static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2083{
2084 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2085 int rc;
2086
2087 rc = crypto_ipsec_check_assoclen(req->assoclen);
2088 if (rc)
2089 goto out;
2090
2091 memset(areq_ctx, 0, sizeof(*areq_ctx));
2092
2093 /* No generated IV required */
2094 areq_ctx->backup_iv = req->iv;
2095 areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2096
2097 cc_proc_rfc4309_ccm(req);
2098
2099 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2100 if (rc != -EINPROGRESS && rc != -EBUSY)
2101 req->iv = areq_ctx->backup_iv;
2102
2103out:
2104 return rc;
2105}
2106
2107static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2108 unsigned int keylen)
2109{
2110 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2111 struct device *dev = drvdata_to_dev(ctx->drvdata);
2112
2113 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2114
2115 if (keylen < 4)
2116 return -EINVAL;
2117
2118 keylen -= 4;
2119 memcpy(ctx->ctr_nonce, key + keylen, 4);
2120
2121 return cc_aead_setkey(tfm, key, keylen);
2122}
2123
2124static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2125 unsigned int keylen)
2126{
2127 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2128 struct device *dev = drvdata_to_dev(ctx->drvdata);
2129
2130 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2131
2132 if (keylen < 4)
2133 return -EINVAL;
2134
2135 keylen -= 4;
2136 memcpy(ctx->ctr_nonce, key + keylen, 4);
2137
2138 return cc_aead_setkey(tfm, key, keylen);
2139}
2140
2141static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2142 unsigned int authsize)
2143{
2144 switch (authsize) {
2145 case 4:
2146 case 8:
2147 case 12:
2148 case 13:
2149 case 14:
2150 case 15:
2151 case 16:
2152 break;
2153 default:
2154 return -EINVAL;
2155 }
2156
2157 return cc_aead_setauthsize(authenc, authsize);
2158}
2159
2160static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2161 unsigned int authsize)
2162{
2163 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2164 struct device *dev = drvdata_to_dev(ctx->drvdata);
2165
2166 dev_dbg(dev, "authsize %d\n", authsize);
2167
2168 switch (authsize) {
2169 case 8:
2170 case 12:
2171 case 16:
2172 break;
2173 default:
2174 return -EINVAL;
2175 }
2176
2177 return cc_aead_setauthsize(authenc, authsize);
2178}
2179
2180static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2181 unsigned int authsize)
2182{
2183 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2184 struct device *dev = drvdata_to_dev(ctx->drvdata);
2185
2186 dev_dbg(dev, "authsize %d\n", authsize);
2187
2188 if (authsize != 16)
2189 return -EINVAL;
2190
2191 return cc_aead_setauthsize(authenc, authsize);
2192}
2193
2194static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2195{
2196 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2197 int rc;
2198
2199 rc = crypto_ipsec_check_assoclen(req->assoclen);
2200 if (rc)
2201 goto out;
2202
2203 memset(areq_ctx, 0, sizeof(*areq_ctx));
2204
2205 /* No generated IV required */
2206 areq_ctx->backup_iv = req->iv;
2207 areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2208
2209 cc_proc_rfc4_gcm(req);
2210
2211 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2212 if (rc != -EINPROGRESS && rc != -EBUSY)
2213 req->iv = areq_ctx->backup_iv;
2214out:
2215 return rc;
2216}
2217
2218static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2219{
2220 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2221 int rc;
2222
2223 rc = crypto_ipsec_check_assoclen(req->assoclen);
2224 if (rc)
2225 goto out;
2226
2227 memset(areq_ctx, 0, sizeof(*areq_ctx));
2228
2229 //plaintext is not encryped with rfc4543
2230 areq_ctx->plaintext_authenticate_only = true;
2231
2232 /* No generated IV required */
2233 areq_ctx->backup_iv = req->iv;
2234 areq_ctx->assoclen = req->assoclen;
2235
2236 cc_proc_rfc4_gcm(req);
2237
2238 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2239 if (rc != -EINPROGRESS && rc != -EBUSY)
2240 req->iv = areq_ctx->backup_iv;
2241out:
2242 return rc;
2243}
2244
2245static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2246{
2247 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2248 int rc;
2249
2250 rc = crypto_ipsec_check_assoclen(req->assoclen);
2251 if (rc)
2252 goto out;
2253
2254 memset(areq_ctx, 0, sizeof(*areq_ctx));
2255
2256 /* No generated IV required */
2257 areq_ctx->backup_iv = req->iv;
2258 areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2259
2260 cc_proc_rfc4_gcm(req);
2261
2262 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2263 if (rc != -EINPROGRESS && rc != -EBUSY)
2264 req->iv = areq_ctx->backup_iv;
2265out:
2266 return rc;
2267}
2268
2269static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2270{
2271 struct aead_req_ctx *areq_ctx = aead_request_ctx_dma(req);
2272 int rc;
2273
2274 rc = crypto_ipsec_check_assoclen(req->assoclen);
2275 if (rc)
2276 goto out;
2277
2278 memset(areq_ctx, 0, sizeof(*areq_ctx));
2279
2280 //plaintext is not decryped with rfc4543
2281 areq_ctx->plaintext_authenticate_only = true;
2282
2283 /* No generated IV required */
2284 areq_ctx->backup_iv = req->iv;
2285 areq_ctx->assoclen = req->assoclen;
2286
2287 cc_proc_rfc4_gcm(req);
2288
2289 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2290 if (rc != -EINPROGRESS && rc != -EBUSY)
2291 req->iv = areq_ctx->backup_iv;
2292out:
2293 return rc;
2294}
2295
2296/* aead alg */
2297static struct cc_alg_template aead_algs[] = {
2298 {
2299 .name = "authenc(hmac(sha1),cbc(aes))",
2300 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2301 .blocksize = AES_BLOCK_SIZE,
2302 .template_aead = {
2303 .setkey = cc_aead_setkey,
2304 .setauthsize = cc_aead_setauthsize,
2305 .encrypt = cc_aead_encrypt,
2306 .decrypt = cc_aead_decrypt,
2307 .init = cc_aead_init,
2308 .exit = cc_aead_exit,
2309 .ivsize = AES_BLOCK_SIZE,
2310 .maxauthsize = SHA1_DIGEST_SIZE,
2311 },
2312 .cipher_mode = DRV_CIPHER_CBC,
2313 .flow_mode = S_DIN_to_AES,
2314 .auth_mode = DRV_HASH_SHA1,
2315 .min_hw_rev = CC_HW_REV_630,
2316 .std_body = CC_STD_NIST,
2317 },
2318 {
2319 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2320 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2321 .blocksize = DES3_EDE_BLOCK_SIZE,
2322 .template_aead = {
2323 .setkey = cc_des3_aead_setkey,
2324 .setauthsize = cc_aead_setauthsize,
2325 .encrypt = cc_aead_encrypt,
2326 .decrypt = cc_aead_decrypt,
2327 .init = cc_aead_init,
2328 .exit = cc_aead_exit,
2329 .ivsize = DES3_EDE_BLOCK_SIZE,
2330 .maxauthsize = SHA1_DIGEST_SIZE,
2331 },
2332 .cipher_mode = DRV_CIPHER_CBC,
2333 .flow_mode = S_DIN_to_DES,
2334 .auth_mode = DRV_HASH_SHA1,
2335 .min_hw_rev = CC_HW_REV_630,
2336 .std_body = CC_STD_NIST,
2337 },
2338 {
2339 .name = "authenc(hmac(sha256),cbc(aes))",
2340 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2341 .blocksize = AES_BLOCK_SIZE,
2342 .template_aead = {
2343 .setkey = cc_aead_setkey,
2344 .setauthsize = cc_aead_setauthsize,
2345 .encrypt = cc_aead_encrypt,
2346 .decrypt = cc_aead_decrypt,
2347 .init = cc_aead_init,
2348 .exit = cc_aead_exit,
2349 .ivsize = AES_BLOCK_SIZE,
2350 .maxauthsize = SHA256_DIGEST_SIZE,
2351 },
2352 .cipher_mode = DRV_CIPHER_CBC,
2353 .flow_mode = S_DIN_to_AES,
2354 .auth_mode = DRV_HASH_SHA256,
2355 .min_hw_rev = CC_HW_REV_630,
2356 .std_body = CC_STD_NIST,
2357 },
2358 {
2359 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2360 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2361 .blocksize = DES3_EDE_BLOCK_SIZE,
2362 .template_aead = {
2363 .setkey = cc_des3_aead_setkey,
2364 .setauthsize = cc_aead_setauthsize,
2365 .encrypt = cc_aead_encrypt,
2366 .decrypt = cc_aead_decrypt,
2367 .init = cc_aead_init,
2368 .exit = cc_aead_exit,
2369 .ivsize = DES3_EDE_BLOCK_SIZE,
2370 .maxauthsize = SHA256_DIGEST_SIZE,
2371 },
2372 .cipher_mode = DRV_CIPHER_CBC,
2373 .flow_mode = S_DIN_to_DES,
2374 .auth_mode = DRV_HASH_SHA256,
2375 .min_hw_rev = CC_HW_REV_630,
2376 .std_body = CC_STD_NIST,
2377 },
2378 {
2379 .name = "authenc(xcbc(aes),cbc(aes))",
2380 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2381 .blocksize = AES_BLOCK_SIZE,
2382 .template_aead = {
2383 .setkey = cc_aead_setkey,
2384 .setauthsize = cc_aead_setauthsize,
2385 .encrypt = cc_aead_encrypt,
2386 .decrypt = cc_aead_decrypt,
2387 .init = cc_aead_init,
2388 .exit = cc_aead_exit,
2389 .ivsize = AES_BLOCK_SIZE,
2390 .maxauthsize = AES_BLOCK_SIZE,
2391 },
2392 .cipher_mode = DRV_CIPHER_CBC,
2393 .flow_mode = S_DIN_to_AES,
2394 .auth_mode = DRV_HASH_XCBC_MAC,
2395 .min_hw_rev = CC_HW_REV_630,
2396 .std_body = CC_STD_NIST,
2397 },
2398 {
2399 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2400 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2401 .blocksize = 1,
2402 .template_aead = {
2403 .setkey = cc_aead_setkey,
2404 .setauthsize = cc_aead_setauthsize,
2405 .encrypt = cc_aead_encrypt,
2406 .decrypt = cc_aead_decrypt,
2407 .init = cc_aead_init,
2408 .exit = cc_aead_exit,
2409 .ivsize = CTR_RFC3686_IV_SIZE,
2410 .maxauthsize = SHA1_DIGEST_SIZE,
2411 },
2412 .cipher_mode = DRV_CIPHER_CTR,
2413 .flow_mode = S_DIN_to_AES,
2414 .auth_mode = DRV_HASH_SHA1,
2415 .min_hw_rev = CC_HW_REV_630,
2416 .std_body = CC_STD_NIST,
2417 },
2418 {
2419 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2420 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2421 .blocksize = 1,
2422 .template_aead = {
2423 .setkey = cc_aead_setkey,
2424 .setauthsize = cc_aead_setauthsize,
2425 .encrypt = cc_aead_encrypt,
2426 .decrypt = cc_aead_decrypt,
2427 .init = cc_aead_init,
2428 .exit = cc_aead_exit,
2429 .ivsize = CTR_RFC3686_IV_SIZE,
2430 .maxauthsize = SHA256_DIGEST_SIZE,
2431 },
2432 .cipher_mode = DRV_CIPHER_CTR,
2433 .flow_mode = S_DIN_to_AES,
2434 .auth_mode = DRV_HASH_SHA256,
2435 .min_hw_rev = CC_HW_REV_630,
2436 .std_body = CC_STD_NIST,
2437 },
2438 {
2439 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2440 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2441 .blocksize = 1,
2442 .template_aead = {
2443 .setkey = cc_aead_setkey,
2444 .setauthsize = cc_aead_setauthsize,
2445 .encrypt = cc_aead_encrypt,
2446 .decrypt = cc_aead_decrypt,
2447 .init = cc_aead_init,
2448 .exit = cc_aead_exit,
2449 .ivsize = CTR_RFC3686_IV_SIZE,
2450 .maxauthsize = AES_BLOCK_SIZE,
2451 },
2452 .cipher_mode = DRV_CIPHER_CTR,
2453 .flow_mode = S_DIN_to_AES,
2454 .auth_mode = DRV_HASH_XCBC_MAC,
2455 .min_hw_rev = CC_HW_REV_630,
2456 .std_body = CC_STD_NIST,
2457 },
2458 {
2459 .name = "ccm(aes)",
2460 .driver_name = "ccm-aes-ccree",
2461 .blocksize = 1,
2462 .template_aead = {
2463 .setkey = cc_aead_setkey,
2464 .setauthsize = cc_ccm_setauthsize,
2465 .encrypt = cc_aead_encrypt,
2466 .decrypt = cc_aead_decrypt,
2467 .init = cc_aead_init,
2468 .exit = cc_aead_exit,
2469 .ivsize = AES_BLOCK_SIZE,
2470 .maxauthsize = AES_BLOCK_SIZE,
2471 },
2472 .cipher_mode = DRV_CIPHER_CCM,
2473 .flow_mode = S_DIN_to_AES,
2474 .auth_mode = DRV_HASH_NULL,
2475 .min_hw_rev = CC_HW_REV_630,
2476 .std_body = CC_STD_NIST,
2477 },
2478 {
2479 .name = "rfc4309(ccm(aes))",
2480 .driver_name = "rfc4309-ccm-aes-ccree",
2481 .blocksize = 1,
2482 .template_aead = {
2483 .setkey = cc_rfc4309_ccm_setkey,
2484 .setauthsize = cc_rfc4309_ccm_setauthsize,
2485 .encrypt = cc_rfc4309_ccm_encrypt,
2486 .decrypt = cc_rfc4309_ccm_decrypt,
2487 .init = cc_aead_init,
2488 .exit = cc_aead_exit,
2489 .ivsize = CCM_BLOCK_IV_SIZE,
2490 .maxauthsize = AES_BLOCK_SIZE,
2491 },
2492 .cipher_mode = DRV_CIPHER_CCM,
2493 .flow_mode = S_DIN_to_AES,
2494 .auth_mode = DRV_HASH_NULL,
2495 .min_hw_rev = CC_HW_REV_630,
2496 .std_body = CC_STD_NIST,
2497 },
2498 {
2499 .name = "gcm(aes)",
2500 .driver_name = "gcm-aes-ccree",
2501 .blocksize = 1,
2502 .template_aead = {
2503 .setkey = cc_aead_setkey,
2504 .setauthsize = cc_gcm_setauthsize,
2505 .encrypt = cc_aead_encrypt,
2506 .decrypt = cc_aead_decrypt,
2507 .init = cc_aead_init,
2508 .exit = cc_aead_exit,
2509 .ivsize = 12,
2510 .maxauthsize = AES_BLOCK_SIZE,
2511 },
2512 .cipher_mode = DRV_CIPHER_GCTR,
2513 .flow_mode = S_DIN_to_AES,
2514 .auth_mode = DRV_HASH_NULL,
2515 .min_hw_rev = CC_HW_REV_630,
2516 .std_body = CC_STD_NIST,
2517 },
2518 {
2519 .name = "rfc4106(gcm(aes))",
2520 .driver_name = "rfc4106-gcm-aes-ccree",
2521 .blocksize = 1,
2522 .template_aead = {
2523 .setkey = cc_rfc4106_gcm_setkey,
2524 .setauthsize = cc_rfc4106_gcm_setauthsize,
2525 .encrypt = cc_rfc4106_gcm_encrypt,
2526 .decrypt = cc_rfc4106_gcm_decrypt,
2527 .init = cc_aead_init,
2528 .exit = cc_aead_exit,
2529 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2530 .maxauthsize = AES_BLOCK_SIZE,
2531 },
2532 .cipher_mode = DRV_CIPHER_GCTR,
2533 .flow_mode = S_DIN_to_AES,
2534 .auth_mode = DRV_HASH_NULL,
2535 .min_hw_rev = CC_HW_REV_630,
2536 .std_body = CC_STD_NIST,
2537 },
2538 {
2539 .name = "rfc4543(gcm(aes))",
2540 .driver_name = "rfc4543-gcm-aes-ccree",
2541 .blocksize = 1,
2542 .template_aead = {
2543 .setkey = cc_rfc4543_gcm_setkey,
2544 .setauthsize = cc_rfc4543_gcm_setauthsize,
2545 .encrypt = cc_rfc4543_gcm_encrypt,
2546 .decrypt = cc_rfc4543_gcm_decrypt,
2547 .init = cc_aead_init,
2548 .exit = cc_aead_exit,
2549 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2550 .maxauthsize = AES_BLOCK_SIZE,
2551 },
2552 .cipher_mode = DRV_CIPHER_GCTR,
2553 .flow_mode = S_DIN_to_AES,
2554 .auth_mode = DRV_HASH_NULL,
2555 .min_hw_rev = CC_HW_REV_630,
2556 .std_body = CC_STD_NIST,
2557 },
2558};
2559
2560static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2561 struct device *dev)
2562{
2563 struct cc_crypto_alg *t_alg;
2564 struct aead_alg *alg;
2565
2566 t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
2567 if (!t_alg)
2568 return ERR_PTR(-ENOMEM);
2569
2570 alg = &tmpl->template_aead;
2571
2572 if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s",
2573 tmpl->name) >= CRYPTO_MAX_ALG_NAME)
2574 return ERR_PTR(-EINVAL);
2575 if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2576 tmpl->driver_name) >= CRYPTO_MAX_ALG_NAME)
2577 return ERR_PTR(-EINVAL);
2578
2579 alg->base.cra_module = THIS_MODULE;
2580 alg->base.cra_priority = CC_CRA_PRIO;
2581
2582 alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2583 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2584 alg->base.cra_blocksize = tmpl->blocksize;
2585 alg->init = cc_aead_init;
2586 alg->exit = cc_aead_exit;
2587
2588 t_alg->aead_alg = *alg;
2589
2590 t_alg->cipher_mode = tmpl->cipher_mode;
2591 t_alg->flow_mode = tmpl->flow_mode;
2592 t_alg->auth_mode = tmpl->auth_mode;
2593
2594 return t_alg;
2595}
2596
2597int cc_aead_free(struct cc_drvdata *drvdata)
2598{
2599 struct cc_crypto_alg *t_alg, *n;
2600 struct cc_aead_handle *aead_handle = drvdata->aead_handle;
2601
2602 /* Remove registered algs */
2603 list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
2604 crypto_unregister_aead(&t_alg->aead_alg);
2605 list_del(&t_alg->entry);
2606 }
2607
2608 return 0;
2609}
2610
2611int cc_aead_alloc(struct cc_drvdata *drvdata)
2612{
2613 struct cc_aead_handle *aead_handle;
2614 struct cc_crypto_alg *t_alg;
2615 int rc = -ENOMEM;
2616 int alg;
2617 struct device *dev = drvdata_to_dev(drvdata);
2618
2619 aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
2620 if (!aead_handle) {
2621 rc = -ENOMEM;
2622 goto fail0;
2623 }
2624
2625 INIT_LIST_HEAD(&aead_handle->aead_list);
2626 drvdata->aead_handle = aead_handle;
2627
2628 aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2629 MAX_HMAC_DIGEST_SIZE);
2630
2631 if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2632 rc = -ENOMEM;
2633 goto fail1;
2634 }
2635
2636 /* Linux crypto */
2637 for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2638 if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2639 !(drvdata->std_bodies & aead_algs[alg].std_body))
2640 continue;
2641
2642 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2643 if (IS_ERR(t_alg)) {
2644 rc = PTR_ERR(t_alg);
2645 dev_err(dev, "%s alg allocation failed\n",
2646 aead_algs[alg].driver_name);
2647 goto fail1;
2648 }
2649 t_alg->drvdata = drvdata;
2650 rc = crypto_register_aead(&t_alg->aead_alg);
2651 if (rc) {
2652 dev_err(dev, "%s alg registration failed\n",
2653 t_alg->aead_alg.base.cra_driver_name);
2654 goto fail1;
2655 }
2656
2657 list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2658 dev_dbg(dev, "Registered %s\n",
2659 t_alg->aead_alg.base.cra_driver_name);
2660 }
2661
2662 return 0;
2663
2664fail1:
2665 cc_aead_free(drvdata);
2666fail0:
2667 return rc;
2668}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
3
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <crypto/algapi.h>
7#include <crypto/internal/aead.h>
8#include <crypto/authenc.h>
9#include <crypto/des.h>
10#include <linux/rtnetlink.h>
11#include "cc_driver.h"
12#include "cc_buffer_mgr.h"
13#include "cc_aead.h"
14#include "cc_request_mgr.h"
15#include "cc_hash.h"
16#include "cc_sram_mgr.h"
17
18#define template_aead template_u.aead
19
20#define MAX_AEAD_SETKEY_SEQ 12
21#define MAX_AEAD_PROCESS_SEQ 23
22
23#define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
24#define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
25
26#define AES_CCM_RFC4309_NONCE_SIZE 3
27#define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28
29/* Value of each ICV_CMP byte (of 8) in case of success */
30#define ICV_VERIF_OK 0x01
31
32struct cc_aead_handle {
33 cc_sram_addr_t sram_workspace_addr;
34 struct list_head aead_list;
35};
36
37struct cc_hmac_s {
38 u8 *padded_authkey;
39 u8 *ipad_opad; /* IPAD, OPAD*/
40 dma_addr_t padded_authkey_dma_addr;
41 dma_addr_t ipad_opad_dma_addr;
42};
43
44struct cc_xcbc_s {
45 u8 *xcbc_keys; /* K1,K2,K3 */
46 dma_addr_t xcbc_keys_dma_addr;
47};
48
49struct cc_aead_ctx {
50 struct cc_drvdata *drvdata;
51 u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
52 u8 *enckey;
53 dma_addr_t enckey_dma_addr;
54 union {
55 struct cc_hmac_s hmac;
56 struct cc_xcbc_s xcbc;
57 } auth_state;
58 unsigned int enc_keylen;
59 unsigned int auth_keylen;
60 unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
61 enum drv_cipher_mode cipher_mode;
62 enum cc_flow_mode flow_mode;
63 enum drv_hash_mode auth_mode;
64};
65
66static inline bool valid_assoclen(struct aead_request *req)
67{
68 return ((req->assoclen == 16) || (req->assoclen == 20));
69}
70
71static void cc_aead_exit(struct crypto_aead *tfm)
72{
73 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
74 struct device *dev = drvdata_to_dev(ctx->drvdata);
75
76 dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
77 crypto_tfm_alg_name(&tfm->base));
78
79 /* Unmap enckey buffer */
80 if (ctx->enckey) {
81 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
82 ctx->enckey_dma_addr);
83 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
84 &ctx->enckey_dma_addr);
85 ctx->enckey_dma_addr = 0;
86 ctx->enckey = NULL;
87 }
88
89 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
90 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
91
92 if (xcbc->xcbc_keys) {
93 dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
94 xcbc->xcbc_keys,
95 xcbc->xcbc_keys_dma_addr);
96 }
97 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
98 &xcbc->xcbc_keys_dma_addr);
99 xcbc->xcbc_keys_dma_addr = 0;
100 xcbc->xcbc_keys = NULL;
101 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
102 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
103
104 if (hmac->ipad_opad) {
105 dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
106 hmac->ipad_opad,
107 hmac->ipad_opad_dma_addr);
108 dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
109 &hmac->ipad_opad_dma_addr);
110 hmac->ipad_opad_dma_addr = 0;
111 hmac->ipad_opad = NULL;
112 }
113 if (hmac->padded_authkey) {
114 dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
115 hmac->padded_authkey,
116 hmac->padded_authkey_dma_addr);
117 dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
118 &hmac->padded_authkey_dma_addr);
119 hmac->padded_authkey_dma_addr = 0;
120 hmac->padded_authkey = NULL;
121 }
122 }
123}
124
125static int cc_aead_init(struct crypto_aead *tfm)
126{
127 struct aead_alg *alg = crypto_aead_alg(tfm);
128 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129 struct cc_crypto_alg *cc_alg =
130 container_of(alg, struct cc_crypto_alg, aead_alg);
131 struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132
133 dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134 crypto_tfm_alg_name(&tfm->base));
135
136 /* Initialize modes in instance */
137 ctx->cipher_mode = cc_alg->cipher_mode;
138 ctx->flow_mode = cc_alg->flow_mode;
139 ctx->auth_mode = cc_alg->auth_mode;
140 ctx->drvdata = cc_alg->drvdata;
141 crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
142
143 /* Allocate key buffer, cache line aligned */
144 ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145 &ctx->enckey_dma_addr, GFP_KERNEL);
146 if (!ctx->enckey) {
147 dev_err(dev, "Failed allocating key buffer\n");
148 goto init_failed;
149 }
150 dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151 ctx->enckey);
152
153 /* Set default authlen value */
154
155 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158
159 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160 /* (and temporary for user key - up to 256b) */
161 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162 &xcbc->xcbc_keys_dma_addr,
163 GFP_KERNEL);
164 if (!xcbc->xcbc_keys) {
165 dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166 goto init_failed;
167 }
168 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172
173 /* Allocate dma-coherent buffer for IPAD + OPAD */
174 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175 &hmac->ipad_opad_dma_addr,
176 GFP_KERNEL);
177
178 if (!hmac->ipad_opad) {
179 dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180 goto init_failed;
181 }
182
183 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184 hmac->ipad_opad);
185
186 hmac->padded_authkey = dma_alloc_coherent(dev,
187 MAX_HMAC_BLOCK_SIZE,
188 pkey_dma,
189 GFP_KERNEL);
190
191 if (!hmac->padded_authkey) {
192 dev_err(dev, "failed to allocate padded_authkey\n");
193 goto init_failed;
194 }
195 } else {
196 ctx->auth_state.hmac.ipad_opad = NULL;
197 ctx->auth_state.hmac.padded_authkey = NULL;
198 }
199
200 return 0;
201
202init_failed:
203 cc_aead_exit(tfm);
204 return -ENOMEM;
205}
206
207static void cc_aead_complete(struct device *dev, void *cc_req, int err)
208{
209 struct aead_request *areq = (struct aead_request *)cc_req;
210 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
211 struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
212 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
213
214 cc_unmap_aead_request(dev, areq);
215
216 /* Restore ordinary iv pointer */
217 areq->iv = areq_ctx->backup_iv;
218
219 if (err)
220 goto done;
221
222 if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
223 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
224 ctx->authsize) != 0) {
225 dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
226 ctx->authsize, ctx->cipher_mode);
227 /* In case of payload authentication failure, MUST NOT
228 * revealed the decrypted message --> zero its memory.
229 */
230 cc_zero_sgl(areq->dst, areq_ctx->cryptlen);
231 err = -EBADMSG;
232 }
233 } else { /*ENCRYPT*/
234 if (areq_ctx->is_icv_fragmented) {
235 u32 skip = areq->cryptlen + areq_ctx->dst_offset;
236
237 cc_copy_sg_portion(dev, areq_ctx->mac_buf,
238 areq_ctx->dst_sgl, skip,
239 (skip + ctx->authsize),
240 CC_SG_FROM_BUF);
241 }
242
243 /* If an IV was generated, copy it back to the user provided
244 * buffer.
245 */
246 if (areq_ctx->backup_giv) {
247 if (ctx->cipher_mode == DRV_CIPHER_CTR)
248 memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
249 CTR_RFC3686_NONCE_SIZE,
250 CTR_RFC3686_IV_SIZE);
251 else if (ctx->cipher_mode == DRV_CIPHER_CCM)
252 memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
253 CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE);
254 }
255 }
256done:
257 aead_request_complete(areq, err);
258}
259
260static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
261 struct cc_aead_ctx *ctx)
262{
263 /* Load the AES key */
264 hw_desc_init(&desc[0]);
265 /* We are using for the source/user key the same buffer
266 * as for the output keys, * because after this key loading it
267 * is not needed anymore
268 */
269 set_din_type(&desc[0], DMA_DLLI,
270 ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
271 NS_BIT);
272 set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
273 set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
274 set_key_size_aes(&desc[0], ctx->auth_keylen);
275 set_flow_mode(&desc[0], S_DIN_to_AES);
276 set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
277
278 hw_desc_init(&desc[1]);
279 set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
280 set_flow_mode(&desc[1], DIN_AES_DOUT);
281 set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
282 AES_KEYSIZE_128, NS_BIT, 0);
283
284 hw_desc_init(&desc[2]);
285 set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
286 set_flow_mode(&desc[2], DIN_AES_DOUT);
287 set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
288 + AES_KEYSIZE_128),
289 AES_KEYSIZE_128, NS_BIT, 0);
290
291 hw_desc_init(&desc[3]);
292 set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
293 set_flow_mode(&desc[3], DIN_AES_DOUT);
294 set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
295 + 2 * AES_KEYSIZE_128),
296 AES_KEYSIZE_128, NS_BIT, 0);
297
298 return 4;
299}
300
301static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
302{
303 unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
304 unsigned int digest_ofs = 0;
305 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
306 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
307 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
308 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
309 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
310
311 unsigned int idx = 0;
312 int i;
313
314 /* calc derived HMAC key */
315 for (i = 0; i < 2; i++) {
316 /* Load hash initial state */
317 hw_desc_init(&desc[idx]);
318 set_cipher_mode(&desc[idx], hash_mode);
319 set_din_sram(&desc[idx],
320 cc_larval_digest_addr(ctx->drvdata,
321 ctx->auth_mode),
322 digest_size);
323 set_flow_mode(&desc[idx], S_DIN_to_HASH);
324 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
325 idx++;
326
327 /* Load the hash current length*/
328 hw_desc_init(&desc[idx]);
329 set_cipher_mode(&desc[idx], hash_mode);
330 set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
331 set_flow_mode(&desc[idx], S_DIN_to_HASH);
332 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
333 idx++;
334
335 /* Prepare ipad key */
336 hw_desc_init(&desc[idx]);
337 set_xor_val(&desc[idx], hmac_pad_const[i]);
338 set_cipher_mode(&desc[idx], hash_mode);
339 set_flow_mode(&desc[idx], S_DIN_to_HASH);
340 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
341 idx++;
342
343 /* Perform HASH update */
344 hw_desc_init(&desc[idx]);
345 set_din_type(&desc[idx], DMA_DLLI,
346 hmac->padded_authkey_dma_addr,
347 SHA256_BLOCK_SIZE, NS_BIT);
348 set_cipher_mode(&desc[idx], hash_mode);
349 set_xor_active(&desc[idx]);
350 set_flow_mode(&desc[idx], DIN_HASH);
351 idx++;
352
353 /* Get the digset */
354 hw_desc_init(&desc[idx]);
355 set_cipher_mode(&desc[idx], hash_mode);
356 set_dout_dlli(&desc[idx],
357 (hmac->ipad_opad_dma_addr + digest_ofs),
358 digest_size, NS_BIT, 0);
359 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
360 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
361 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
362 idx++;
363
364 digest_ofs += digest_size;
365 }
366
367 return idx;
368}
369
370static int validate_keys_sizes(struct cc_aead_ctx *ctx)
371{
372 struct device *dev = drvdata_to_dev(ctx->drvdata);
373
374 dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
375 ctx->enc_keylen, ctx->auth_keylen);
376
377 switch (ctx->auth_mode) {
378 case DRV_HASH_SHA1:
379 case DRV_HASH_SHA256:
380 break;
381 case DRV_HASH_XCBC_MAC:
382 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
383 ctx->auth_keylen != AES_KEYSIZE_192 &&
384 ctx->auth_keylen != AES_KEYSIZE_256)
385 return -ENOTSUPP;
386 break;
387 case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
388 if (ctx->auth_keylen > 0)
389 return -EINVAL;
390 break;
391 default:
392 dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
393 return -EINVAL;
394 }
395 /* Check cipher key size */
396 if (ctx->flow_mode == S_DIN_to_DES) {
397 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
398 dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
399 ctx->enc_keylen);
400 return -EINVAL;
401 }
402 } else { /* Default assumed to be AES ciphers */
403 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
404 ctx->enc_keylen != AES_KEYSIZE_192 &&
405 ctx->enc_keylen != AES_KEYSIZE_256) {
406 dev_err(dev, "Invalid cipher(AES) key size: %u\n",
407 ctx->enc_keylen);
408 return -EINVAL;
409 }
410 }
411
412 return 0; /* All tests of keys sizes passed */
413}
414
415/* This function prepers the user key so it can pass to the hmac processing
416 * (copy to intenral buffer or hash in case of key longer than block
417 */
418static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *key,
419 unsigned int keylen)
420{
421 dma_addr_t key_dma_addr = 0;
422 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
423 struct device *dev = drvdata_to_dev(ctx->drvdata);
424 u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
425 struct cc_crypto_req cc_req = {};
426 unsigned int blocksize;
427 unsigned int digestsize;
428 unsigned int hashmode;
429 unsigned int idx = 0;
430 int rc = 0;
431 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
432 dma_addr_t padded_authkey_dma_addr =
433 ctx->auth_state.hmac.padded_authkey_dma_addr;
434
435 switch (ctx->auth_mode) { /* auth_key required and >0 */
436 case DRV_HASH_SHA1:
437 blocksize = SHA1_BLOCK_SIZE;
438 digestsize = SHA1_DIGEST_SIZE;
439 hashmode = DRV_HASH_HW_SHA1;
440 break;
441 case DRV_HASH_SHA256:
442 default:
443 blocksize = SHA256_BLOCK_SIZE;
444 digestsize = SHA256_DIGEST_SIZE;
445 hashmode = DRV_HASH_HW_SHA256;
446 }
447
448 if (keylen != 0) {
449 key_dma_addr = dma_map_single(dev, (void *)key, keylen,
450 DMA_TO_DEVICE);
451 if (dma_mapping_error(dev, key_dma_addr)) {
452 dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
453 key, keylen);
454 return -ENOMEM;
455 }
456 if (keylen > blocksize) {
457 /* Load hash initial state */
458 hw_desc_init(&desc[idx]);
459 set_cipher_mode(&desc[idx], hashmode);
460 set_din_sram(&desc[idx], larval_addr, digestsize);
461 set_flow_mode(&desc[idx], S_DIN_to_HASH);
462 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463 idx++;
464
465 /* Load the hash current length*/
466 hw_desc_init(&desc[idx]);
467 set_cipher_mode(&desc[idx], hashmode);
468 set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
469 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470 set_flow_mode(&desc[idx], S_DIN_to_HASH);
471 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472 idx++;
473
474 hw_desc_init(&desc[idx]);
475 set_din_type(&desc[idx], DMA_DLLI,
476 key_dma_addr, keylen, NS_BIT);
477 set_flow_mode(&desc[idx], DIN_HASH);
478 idx++;
479
480 /* Get hashed key */
481 hw_desc_init(&desc[idx]);
482 set_cipher_mode(&desc[idx], hashmode);
483 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484 digestsize, NS_BIT, 0);
485 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488 set_cipher_config0(&desc[idx],
489 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490 idx++;
491
492 hw_desc_init(&desc[idx]);
493 set_din_const(&desc[idx], 0, (blocksize - digestsize));
494 set_flow_mode(&desc[idx], BYPASS);
495 set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496 digestsize), (blocksize - digestsize),
497 NS_BIT, 0);
498 idx++;
499 } else {
500 hw_desc_init(&desc[idx]);
501 set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502 keylen, NS_BIT);
503 set_flow_mode(&desc[idx], BYPASS);
504 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505 keylen, NS_BIT, 0);
506 idx++;
507
508 if ((blocksize - keylen) != 0) {
509 hw_desc_init(&desc[idx]);
510 set_din_const(&desc[idx], 0,
511 (blocksize - keylen));
512 set_flow_mode(&desc[idx], BYPASS);
513 set_dout_dlli(&desc[idx],
514 (padded_authkey_dma_addr +
515 keylen),
516 (blocksize - keylen), NS_BIT, 0);
517 idx++;
518 }
519 }
520 } else {
521 hw_desc_init(&desc[idx]);
522 set_din_const(&desc[idx], 0, (blocksize - keylen));
523 set_flow_mode(&desc[idx], BYPASS);
524 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525 blocksize, NS_BIT, 0);
526 idx++;
527 }
528
529 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530 if (rc)
531 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532
533 if (key_dma_addr)
534 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535
536 return rc;
537}
538
539static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
540 unsigned int keylen)
541{
542 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
543 struct rtattr *rta = (struct rtattr *)key;
544 struct cc_crypto_req cc_req = {};
545 struct crypto_authenc_key_param *param;
546 struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547 int rc = -EINVAL;
548 unsigned int seq_len = 0;
549 struct device *dev = drvdata_to_dev(ctx->drvdata);
550
551 dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
552 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
553
554 /* STAT_PHASE_0: Init and sanity checks */
555
556 if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
557 if (!RTA_OK(rta, keylen))
558 goto badkey;
559 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
560 goto badkey;
561 if (RTA_PAYLOAD(rta) < sizeof(*param))
562 goto badkey;
563 param = RTA_DATA(rta);
564 ctx->enc_keylen = be32_to_cpu(param->enckeylen);
565 key += RTA_ALIGN(rta->rta_len);
566 keylen -= RTA_ALIGN(rta->rta_len);
567 if (keylen < ctx->enc_keylen)
568 goto badkey;
569 ctx->auth_keylen = keylen - ctx->enc_keylen;
570
571 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
572 /* the nonce is stored in bytes at end of key */
573 if (ctx->enc_keylen <
574 (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
575 goto badkey;
576 /* Copy nonce from last 4 bytes in CTR key to
577 * first 4 bytes in CTR IV
578 */
579 memcpy(ctx->ctr_nonce, key + ctx->auth_keylen +
580 ctx->enc_keylen - CTR_RFC3686_NONCE_SIZE,
581 CTR_RFC3686_NONCE_SIZE);
582 /* Set CTR key size */
583 ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
584 }
585 } else { /* non-authenc - has just one key */
586 ctx->enc_keylen = keylen;
587 ctx->auth_keylen = 0;
588 }
589
590 rc = validate_keys_sizes(ctx);
591 if (rc)
592 goto badkey;
593
594 /* STAT_PHASE_1: Copy key to ctx */
595
596 /* Get key material */
597 memcpy(ctx->enckey, key + ctx->auth_keylen, ctx->enc_keylen);
598 if (ctx->enc_keylen == 24)
599 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
600 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
601 memcpy(ctx->auth_state.xcbc.xcbc_keys, key, ctx->auth_keylen);
602 } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
603 rc = cc_get_plain_hmac_key(tfm, key, ctx->auth_keylen);
604 if (rc)
605 goto badkey;
606 }
607
608 /* STAT_PHASE_2: Create sequence */
609
610 switch (ctx->auth_mode) {
611 case DRV_HASH_SHA1:
612 case DRV_HASH_SHA256:
613 seq_len = hmac_setkey(desc, ctx);
614 break;
615 case DRV_HASH_XCBC_MAC:
616 seq_len = xcbc_setkey(desc, ctx);
617 break;
618 case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
619 break; /* No auth. key setup */
620 default:
621 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
622 rc = -ENOTSUPP;
623 goto badkey;
624 }
625
626 /* STAT_PHASE_3: Submit sequence to HW */
627
628 if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
629 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
630 if (rc) {
631 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
632 goto setkey_error;
633 }
634 }
635
636 /* Update STAT_PHASE_3 */
637 return rc;
638
639badkey:
640 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
641
642setkey_error:
643 return rc;
644}
645
646static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
647 unsigned int keylen)
648{
649 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
650
651 if (keylen < 3)
652 return -EINVAL;
653
654 keylen -= 3;
655 memcpy(ctx->ctr_nonce, key + keylen, 3);
656
657 return cc_aead_setkey(tfm, key, keylen);
658}
659
660static int cc_aead_setauthsize(struct crypto_aead *authenc,
661 unsigned int authsize)
662{
663 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
664 struct device *dev = drvdata_to_dev(ctx->drvdata);
665
666 /* Unsupported auth. sizes */
667 if (authsize == 0 ||
668 authsize > crypto_aead_maxauthsize(authenc)) {
669 return -ENOTSUPP;
670 }
671
672 ctx->authsize = authsize;
673 dev_dbg(dev, "authlen=%d\n", ctx->authsize);
674
675 return 0;
676}
677
678static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
679 unsigned int authsize)
680{
681 switch (authsize) {
682 case 8:
683 case 12:
684 case 16:
685 break;
686 default:
687 return -EINVAL;
688 }
689
690 return cc_aead_setauthsize(authenc, authsize);
691}
692
693static int cc_ccm_setauthsize(struct crypto_aead *authenc,
694 unsigned int authsize)
695{
696 switch (authsize) {
697 case 4:
698 case 6:
699 case 8:
700 case 10:
701 case 12:
702 case 14:
703 case 16:
704 break;
705 default:
706 return -EINVAL;
707 }
708
709 return cc_aead_setauthsize(authenc, authsize);
710}
711
712static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
713 struct cc_hw_desc desc[], unsigned int *seq_size)
714{
715 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
716 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
717 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
718 enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
719 unsigned int idx = *seq_size;
720 struct device *dev = drvdata_to_dev(ctx->drvdata);
721
722 switch (assoc_dma_type) {
723 case CC_DMA_BUF_DLLI:
724 dev_dbg(dev, "ASSOC buffer type DLLI\n");
725 hw_desc_init(&desc[idx]);
726 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
727 areq->assoclen, NS_BIT);
728 set_flow_mode(&desc[idx], flow_mode);
729 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
730 areq_ctx->cryptlen > 0)
731 set_din_not_last_indication(&desc[idx]);
732 break;
733 case CC_DMA_BUF_MLLI:
734 dev_dbg(dev, "ASSOC buffer type MLLI\n");
735 hw_desc_init(&desc[idx]);
736 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
737 areq_ctx->assoc.mlli_nents, NS_BIT);
738 set_flow_mode(&desc[idx], flow_mode);
739 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
740 areq_ctx->cryptlen > 0)
741 set_din_not_last_indication(&desc[idx]);
742 break;
743 case CC_DMA_BUF_NULL:
744 default:
745 dev_err(dev, "Invalid ASSOC buffer type\n");
746 }
747
748 *seq_size = (++idx);
749}
750
751static void cc_proc_authen_desc(struct aead_request *areq,
752 unsigned int flow_mode,
753 struct cc_hw_desc desc[],
754 unsigned int *seq_size, int direct)
755{
756 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
757 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
758 unsigned int idx = *seq_size;
759 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
760 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
761 struct device *dev = drvdata_to_dev(ctx->drvdata);
762
763 switch (data_dma_type) {
764 case CC_DMA_BUF_DLLI:
765 {
766 struct scatterlist *cipher =
767 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
768 areq_ctx->dst_sgl : areq_ctx->src_sgl;
769
770 unsigned int offset =
771 (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
772 areq_ctx->dst_offset : areq_ctx->src_offset;
773 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
774 hw_desc_init(&desc[idx]);
775 set_din_type(&desc[idx], DMA_DLLI,
776 (sg_dma_address(cipher) + offset),
777 areq_ctx->cryptlen, NS_BIT);
778 set_flow_mode(&desc[idx], flow_mode);
779 break;
780 }
781 case CC_DMA_BUF_MLLI:
782 {
783 /* DOUBLE-PASS flow (as default)
784 * assoc. + iv + data -compact in one table
785 * if assoclen is ZERO only IV perform
786 */
787 cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
788 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
789
790 if (areq_ctx->is_single_pass) {
791 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
792 mlli_addr = areq_ctx->dst.sram_addr;
793 mlli_nents = areq_ctx->dst.mlli_nents;
794 } else {
795 mlli_addr = areq_ctx->src.sram_addr;
796 mlli_nents = areq_ctx->src.mlli_nents;
797 }
798 }
799
800 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
801 hw_desc_init(&desc[idx]);
802 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
803 NS_BIT);
804 set_flow_mode(&desc[idx], flow_mode);
805 break;
806 }
807 case CC_DMA_BUF_NULL:
808 default:
809 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
810 }
811
812 *seq_size = (++idx);
813}
814
815static void cc_proc_cipher_desc(struct aead_request *areq,
816 unsigned int flow_mode,
817 struct cc_hw_desc desc[],
818 unsigned int *seq_size)
819{
820 unsigned int idx = *seq_size;
821 struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
822 enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
823 struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
824 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
825 struct device *dev = drvdata_to_dev(ctx->drvdata);
826
827 if (areq_ctx->cryptlen == 0)
828 return; /*null processing*/
829
830 switch (data_dma_type) {
831 case CC_DMA_BUF_DLLI:
832 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
833 hw_desc_init(&desc[idx]);
834 set_din_type(&desc[idx], DMA_DLLI,
835 (sg_dma_address(areq_ctx->src_sgl) +
836 areq_ctx->src_offset), areq_ctx->cryptlen,
837 NS_BIT);
838 set_dout_dlli(&desc[idx],
839 (sg_dma_address(areq_ctx->dst_sgl) +
840 areq_ctx->dst_offset),
841 areq_ctx->cryptlen, NS_BIT, 0);
842 set_flow_mode(&desc[idx], flow_mode);
843 break;
844 case CC_DMA_BUF_MLLI:
845 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
846 hw_desc_init(&desc[idx]);
847 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
848 areq_ctx->src.mlli_nents, NS_BIT);
849 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
850 areq_ctx->dst.mlli_nents, NS_BIT, 0);
851 set_flow_mode(&desc[idx], flow_mode);
852 break;
853 case CC_DMA_BUF_NULL:
854 default:
855 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
856 }
857
858 *seq_size = (++idx);
859}
860
861static void cc_proc_digest_desc(struct aead_request *req,
862 struct cc_hw_desc desc[],
863 unsigned int *seq_size)
864{
865 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
866 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
867 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
868 unsigned int idx = *seq_size;
869 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
870 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
871 int direct = req_ctx->gen_ctx.op_type;
872
873 /* Get final ICV result */
874 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
875 hw_desc_init(&desc[idx]);
876 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
877 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
878 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
879 NS_BIT, 1);
880 set_queue_last_ind(ctx->drvdata, &desc[idx]);
881 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
882 set_aes_not_hash_mode(&desc[idx]);
883 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
884 } else {
885 set_cipher_config0(&desc[idx],
886 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
887 set_cipher_mode(&desc[idx], hash_mode);
888 }
889 } else { /*Decrypt*/
890 /* Get ICV out from hardware */
891 hw_desc_init(&desc[idx]);
892 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
893 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
894 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
895 ctx->authsize, NS_BIT, 1);
896 set_queue_last_ind(ctx->drvdata, &desc[idx]);
897 set_cipher_config0(&desc[idx],
898 HASH_DIGEST_RESULT_LITTLE_ENDIAN);
899 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
900 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
901 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
902 set_aes_not_hash_mode(&desc[idx]);
903 } else {
904 set_cipher_mode(&desc[idx], hash_mode);
905 }
906 }
907
908 *seq_size = (++idx);
909}
910
911static void cc_set_cipher_desc(struct aead_request *req,
912 struct cc_hw_desc desc[],
913 unsigned int *seq_size)
914{
915 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
916 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
917 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
918 unsigned int hw_iv_size = req_ctx->hw_iv_size;
919 unsigned int idx = *seq_size;
920 int direct = req_ctx->gen_ctx.op_type;
921
922 /* Setup cipher state */
923 hw_desc_init(&desc[idx]);
924 set_cipher_config0(&desc[idx], direct);
925 set_flow_mode(&desc[idx], ctx->flow_mode);
926 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
927 hw_iv_size, NS_BIT);
928 if (ctx->cipher_mode == DRV_CIPHER_CTR)
929 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
930 else
931 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
932 set_cipher_mode(&desc[idx], ctx->cipher_mode);
933 idx++;
934
935 /* Setup enc. key */
936 hw_desc_init(&desc[idx]);
937 set_cipher_config0(&desc[idx], direct);
938 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
939 set_flow_mode(&desc[idx], ctx->flow_mode);
940 if (ctx->flow_mode == S_DIN_to_AES) {
941 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
942 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
943 ctx->enc_keylen), NS_BIT);
944 set_key_size_aes(&desc[idx], ctx->enc_keylen);
945 } else {
946 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
947 ctx->enc_keylen, NS_BIT);
948 set_key_size_des(&desc[idx], ctx->enc_keylen);
949 }
950 set_cipher_mode(&desc[idx], ctx->cipher_mode);
951 idx++;
952
953 *seq_size = idx;
954}
955
956static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
957 unsigned int *seq_size, unsigned int data_flow_mode)
958{
959 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
960 int direct = req_ctx->gen_ctx.op_type;
961 unsigned int idx = *seq_size;
962
963 if (req_ctx->cryptlen == 0)
964 return; /*null processing*/
965
966 cc_set_cipher_desc(req, desc, &idx);
967 cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
968 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
969 /* We must wait for DMA to write all cipher */
970 hw_desc_init(&desc[idx]);
971 set_din_no_dma(&desc[idx], 0, 0xfffff0);
972 set_dout_no_dma(&desc[idx], 0, 0, 1);
973 idx++;
974 }
975
976 *seq_size = idx;
977}
978
979static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
980 unsigned int *seq_size)
981{
982 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
983 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
984 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
985 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
986 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
987 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
988 unsigned int idx = *seq_size;
989
990 /* Loading hash ipad xor key state */
991 hw_desc_init(&desc[idx]);
992 set_cipher_mode(&desc[idx], hash_mode);
993 set_din_type(&desc[idx], DMA_DLLI,
994 ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
995 NS_BIT);
996 set_flow_mode(&desc[idx], S_DIN_to_HASH);
997 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
998 idx++;
999
1000 /* Load init. digest len (64 bytes) */
1001 hw_desc_init(&desc[idx]);
1002 set_cipher_mode(&desc[idx], hash_mode);
1003 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1004 ctx->drvdata->hash_len_sz);
1005 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1007 idx++;
1008
1009 *seq_size = idx;
1010}
1011
1012static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1013 unsigned int *seq_size)
1014{
1015 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1016 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1017 unsigned int idx = *seq_size;
1018
1019 /* Loading MAC state */
1020 hw_desc_init(&desc[idx]);
1021 set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1022 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1023 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1024 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1025 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1026 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1027 set_aes_not_hash_mode(&desc[idx]);
1028 idx++;
1029
1030 /* Setup XCBC MAC K1 */
1031 hw_desc_init(&desc[idx]);
1032 set_din_type(&desc[idx], DMA_DLLI,
1033 ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1034 AES_KEYSIZE_128, NS_BIT);
1035 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1036 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1037 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1038 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1039 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1040 set_aes_not_hash_mode(&desc[idx]);
1041 idx++;
1042
1043 /* Setup XCBC MAC K2 */
1044 hw_desc_init(&desc[idx]);
1045 set_din_type(&desc[idx], DMA_DLLI,
1046 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1047 AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1048 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1049 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1050 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1051 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1052 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1053 set_aes_not_hash_mode(&desc[idx]);
1054 idx++;
1055
1056 /* Setup XCBC MAC K3 */
1057 hw_desc_init(&desc[idx]);
1058 set_din_type(&desc[idx], DMA_DLLI,
1059 (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1060 2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1061 set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1062 set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1063 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1064 set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1065 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1066 set_aes_not_hash_mode(&desc[idx]);
1067 idx++;
1068
1069 *seq_size = idx;
1070}
1071
1072static void cc_proc_header_desc(struct aead_request *req,
1073 struct cc_hw_desc desc[],
1074 unsigned int *seq_size)
1075{
1076 unsigned int idx = *seq_size;
1077 /* Hash associated data */
1078 if (req->assoclen > 0)
1079 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1080
1081 /* Hash IV */
1082 *seq_size = idx;
1083}
1084
1085static void cc_proc_scheme_desc(struct aead_request *req,
1086 struct cc_hw_desc desc[],
1087 unsigned int *seq_size)
1088{
1089 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1090 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1091 struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1092 unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1093 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1094 unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1095 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1096 unsigned int idx = *seq_size;
1097
1098 hw_desc_init(&desc[idx]);
1099 set_cipher_mode(&desc[idx], hash_mode);
1100 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1101 ctx->drvdata->hash_len_sz);
1102 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1103 set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1104 set_cipher_do(&desc[idx], DO_PAD);
1105 idx++;
1106
1107 /* Get final ICV result */
1108 hw_desc_init(&desc[idx]);
1109 set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1110 digest_size);
1111 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1112 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1113 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1114 set_cipher_mode(&desc[idx], hash_mode);
1115 idx++;
1116
1117 /* Loading hash opad xor key state */
1118 hw_desc_init(&desc[idx]);
1119 set_cipher_mode(&desc[idx], hash_mode);
1120 set_din_type(&desc[idx], DMA_DLLI,
1121 (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1122 digest_size, NS_BIT);
1123 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1124 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1125 idx++;
1126
1127 /* Load init. digest len (64 bytes) */
1128 hw_desc_init(&desc[idx]);
1129 set_cipher_mode(&desc[idx], hash_mode);
1130 set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1131 ctx->drvdata->hash_len_sz);
1132 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1133 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1134 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1135 idx++;
1136
1137 /* Perform HASH update */
1138 hw_desc_init(&desc[idx]);
1139 set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1140 digest_size);
1141 set_flow_mode(&desc[idx], DIN_HASH);
1142 idx++;
1143
1144 *seq_size = idx;
1145}
1146
1147static void cc_mlli_to_sram(struct aead_request *req,
1148 struct cc_hw_desc desc[], unsigned int *seq_size)
1149{
1150 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1151 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1152 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1153 struct device *dev = drvdata_to_dev(ctx->drvdata);
1154
1155 if (req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1156 req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1157 !req_ctx->is_single_pass) {
1158 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1159 (unsigned int)ctx->drvdata->mlli_sram_addr,
1160 req_ctx->mlli_params.mlli_len);
1161 /* Copy MLLI table host-to-sram */
1162 hw_desc_init(&desc[*seq_size]);
1163 set_din_type(&desc[*seq_size], DMA_DLLI,
1164 req_ctx->mlli_params.mlli_dma_addr,
1165 req_ctx->mlli_params.mlli_len, NS_BIT);
1166 set_dout_sram(&desc[*seq_size],
1167 ctx->drvdata->mlli_sram_addr,
1168 req_ctx->mlli_params.mlli_len);
1169 set_flow_mode(&desc[*seq_size], BYPASS);
1170 (*seq_size)++;
1171 }
1172}
1173
1174static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1175 enum cc_flow_mode setup_flow_mode,
1176 bool is_single_pass)
1177{
1178 enum cc_flow_mode data_flow_mode;
1179
1180 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1181 if (setup_flow_mode == S_DIN_to_AES)
1182 data_flow_mode = is_single_pass ?
1183 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1184 else
1185 data_flow_mode = is_single_pass ?
1186 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1187 } else { /* Decrypt */
1188 if (setup_flow_mode == S_DIN_to_AES)
1189 data_flow_mode = is_single_pass ?
1190 AES_and_HASH : DIN_AES_DOUT;
1191 else
1192 data_flow_mode = is_single_pass ?
1193 DES_and_HASH : DIN_DES_DOUT;
1194 }
1195
1196 return data_flow_mode;
1197}
1198
1199static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1200 unsigned int *seq_size)
1201{
1202 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1203 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1204 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1205 int direct = req_ctx->gen_ctx.op_type;
1206 unsigned int data_flow_mode =
1207 cc_get_data_flow(direct, ctx->flow_mode,
1208 req_ctx->is_single_pass);
1209
1210 if (req_ctx->is_single_pass) {
1211 /**
1212 * Single-pass flow
1213 */
1214 cc_set_hmac_desc(req, desc, seq_size);
1215 cc_set_cipher_desc(req, desc, seq_size);
1216 cc_proc_header_desc(req, desc, seq_size);
1217 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1218 cc_proc_scheme_desc(req, desc, seq_size);
1219 cc_proc_digest_desc(req, desc, seq_size);
1220 return;
1221 }
1222
1223 /**
1224 * Double-pass flow
1225 * Fallback for unsupported single-pass modes,
1226 * i.e. using assoc. data of non-word-multiple
1227 */
1228 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1229 /* encrypt first.. */
1230 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1231 /* authenc after..*/
1232 cc_set_hmac_desc(req, desc, seq_size);
1233 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1234 cc_proc_scheme_desc(req, desc, seq_size);
1235 cc_proc_digest_desc(req, desc, seq_size);
1236
1237 } else { /*DECRYPT*/
1238 /* authenc first..*/
1239 cc_set_hmac_desc(req, desc, seq_size);
1240 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1241 cc_proc_scheme_desc(req, desc, seq_size);
1242 /* decrypt after.. */
1243 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1244 /* read the digest result with setting the completion bit
1245 * must be after the cipher operation
1246 */
1247 cc_proc_digest_desc(req, desc, seq_size);
1248 }
1249}
1250
1251static void
1252cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1253 unsigned int *seq_size)
1254{
1255 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1256 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1257 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1258 int direct = req_ctx->gen_ctx.op_type;
1259 unsigned int data_flow_mode =
1260 cc_get_data_flow(direct, ctx->flow_mode,
1261 req_ctx->is_single_pass);
1262
1263 if (req_ctx->is_single_pass) {
1264 /**
1265 * Single-pass flow
1266 */
1267 cc_set_xcbc_desc(req, desc, seq_size);
1268 cc_set_cipher_desc(req, desc, seq_size);
1269 cc_proc_header_desc(req, desc, seq_size);
1270 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1271 cc_proc_digest_desc(req, desc, seq_size);
1272 return;
1273 }
1274
1275 /**
1276 * Double-pass flow
1277 * Fallback for unsupported single-pass modes,
1278 * i.e. using assoc. data of non-word-multiple
1279 */
1280 if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1281 /* encrypt first.. */
1282 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1283 /* authenc after.. */
1284 cc_set_xcbc_desc(req, desc, seq_size);
1285 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1286 cc_proc_digest_desc(req, desc, seq_size);
1287 } else { /*DECRYPT*/
1288 /* authenc first.. */
1289 cc_set_xcbc_desc(req, desc, seq_size);
1290 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1291 /* decrypt after..*/
1292 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1293 /* read the digest result with setting the completion bit
1294 * must be after the cipher operation
1295 */
1296 cc_proc_digest_desc(req, desc, seq_size);
1297 }
1298}
1299
1300static int validate_data_size(struct cc_aead_ctx *ctx,
1301 enum drv_crypto_direction direct,
1302 struct aead_request *req)
1303{
1304 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1305 struct device *dev = drvdata_to_dev(ctx->drvdata);
1306 unsigned int assoclen = req->assoclen;
1307 unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1308 (req->cryptlen - ctx->authsize) : req->cryptlen;
1309
1310 if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1311 req->cryptlen < ctx->authsize)
1312 goto data_size_err;
1313
1314 areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1315
1316 switch (ctx->flow_mode) {
1317 case S_DIN_to_AES:
1318 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1319 !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1320 goto data_size_err;
1321 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1322 break;
1323 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1324 if (areq_ctx->plaintext_authenticate_only)
1325 areq_ctx->is_single_pass = false;
1326 break;
1327 }
1328
1329 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1330 areq_ctx->is_single_pass = false;
1331
1332 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1333 !IS_ALIGNED(cipherlen, sizeof(u32)))
1334 areq_ctx->is_single_pass = false;
1335
1336 break;
1337 case S_DIN_to_DES:
1338 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1339 goto data_size_err;
1340 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1341 areq_ctx->is_single_pass = false;
1342 break;
1343 default:
1344 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1345 goto data_size_err;
1346 }
1347
1348 return 0;
1349
1350data_size_err:
1351 return -EINVAL;
1352}
1353
1354static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1355{
1356 unsigned int len = 0;
1357
1358 if (header_size == 0)
1359 return 0;
1360
1361 if (header_size < ((1UL << 16) - (1UL << 8))) {
1362 len = 2;
1363
1364 pa0_buff[0] = (header_size >> 8) & 0xFF;
1365 pa0_buff[1] = header_size & 0xFF;
1366 } else {
1367 len = 6;
1368
1369 pa0_buff[0] = 0xFF;
1370 pa0_buff[1] = 0xFE;
1371 pa0_buff[2] = (header_size >> 24) & 0xFF;
1372 pa0_buff[3] = (header_size >> 16) & 0xFF;
1373 pa0_buff[4] = (header_size >> 8) & 0xFF;
1374 pa0_buff[5] = header_size & 0xFF;
1375 }
1376
1377 return len;
1378}
1379
1380static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1381{
1382 __be32 data;
1383
1384 memset(block, 0, csize);
1385 block += csize;
1386
1387 if (csize >= 4)
1388 csize = 4;
1389 else if (msglen > (1 << (8 * csize)))
1390 return -EOVERFLOW;
1391
1392 data = cpu_to_be32(msglen);
1393 memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1394
1395 return 0;
1396}
1397
1398static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1399 unsigned int *seq_size)
1400{
1401 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1402 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1403 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1404 unsigned int idx = *seq_size;
1405 unsigned int cipher_flow_mode;
1406 dma_addr_t mac_result;
1407
1408 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1409 cipher_flow_mode = AES_to_HASH_and_DOUT;
1410 mac_result = req_ctx->mac_buf_dma_addr;
1411 } else { /* Encrypt */
1412 cipher_flow_mode = AES_and_HASH;
1413 mac_result = req_ctx->icv_dma_addr;
1414 }
1415
1416 /* load key */
1417 hw_desc_init(&desc[idx]);
1418 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1419 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1420 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1421 ctx->enc_keylen), NS_BIT);
1422 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1423 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1424 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1425 set_flow_mode(&desc[idx], S_DIN_to_AES);
1426 idx++;
1427
1428 /* load ctr state */
1429 hw_desc_init(&desc[idx]);
1430 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1431 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1432 set_din_type(&desc[idx], DMA_DLLI,
1433 req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1434 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1435 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1436 set_flow_mode(&desc[idx], S_DIN_to_AES);
1437 idx++;
1438
1439 /* load MAC key */
1440 hw_desc_init(&desc[idx]);
1441 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1442 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1443 ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
1444 ctx->enc_keylen), NS_BIT);
1445 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1446 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1447 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1448 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1449 set_aes_not_hash_mode(&desc[idx]);
1450 idx++;
1451
1452 /* load MAC state */
1453 hw_desc_init(&desc[idx]);
1454 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1455 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1456 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1457 AES_BLOCK_SIZE, NS_BIT);
1458 set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1460 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1461 set_aes_not_hash_mode(&desc[idx]);
1462 idx++;
1463
1464 /* process assoc data */
1465 if (req->assoclen > 0) {
1466 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1467 } else {
1468 hw_desc_init(&desc[idx]);
1469 set_din_type(&desc[idx], DMA_DLLI,
1470 sg_dma_address(&req_ctx->ccm_adata_sg),
1471 AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1472 set_flow_mode(&desc[idx], DIN_HASH);
1473 idx++;
1474 }
1475
1476 /* process the cipher */
1477 if (req_ctx->cryptlen)
1478 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1479
1480 /* Read temporal MAC */
1481 hw_desc_init(&desc[idx]);
1482 set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1483 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1484 NS_BIT, 0);
1485 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1486 set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1487 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1488 set_aes_not_hash_mode(&desc[idx]);
1489 idx++;
1490
1491 /* load AES-CTR state (for last MAC calculation)*/
1492 hw_desc_init(&desc[idx]);
1493 set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1494 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1495 set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1496 AES_BLOCK_SIZE, NS_BIT);
1497 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1498 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1499 set_flow_mode(&desc[idx], S_DIN_to_AES);
1500 idx++;
1501
1502 hw_desc_init(&desc[idx]);
1503 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1504 set_dout_no_dma(&desc[idx], 0, 0, 1);
1505 idx++;
1506
1507 /* encrypt the "T" value and store MAC in mac_state */
1508 hw_desc_init(&desc[idx]);
1509 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1510 ctx->authsize, NS_BIT);
1511 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1512 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1513 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1514 idx++;
1515
1516 *seq_size = idx;
1517 return 0;
1518}
1519
1520static int config_ccm_adata(struct aead_request *req)
1521{
1522 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1523 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1524 struct device *dev = drvdata_to_dev(ctx->drvdata);
1525 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1526 //unsigned int size_of_a = 0, rem_a_size = 0;
1527 unsigned int lp = req->iv[0];
1528 /* Note: The code assume that req->iv[0] already contains the value
1529 * of L' of RFC3610
1530 */
1531 unsigned int l = lp + 1; /* This is L' of RFC 3610. */
1532 unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
1533 u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1534 u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1535 u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1536 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1537 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1538 req->cryptlen :
1539 (req->cryptlen - ctx->authsize);
1540 int rc;
1541
1542 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1543 memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1544
1545 /* taken from crypto/ccm.c */
1546 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1547 if (l < 2 || l > 8) {
1548 dev_err(dev, "illegal iv value %X\n", req->iv[0]);
1549 return -EINVAL;
1550 }
1551 memcpy(b0, req->iv, AES_BLOCK_SIZE);
1552
1553 /* format control info per RFC 3610 and
1554 * NIST Special Publication 800-38C
1555 */
1556 *b0 |= (8 * ((m - 2) / 2));
1557 if (req->assoclen > 0)
1558 *b0 |= 64; /* Enable bit 6 if Adata exists. */
1559
1560 rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
1561 if (rc) {
1562 dev_err(dev, "message len overflow detected");
1563 return rc;
1564 }
1565 /* END of "taken from crypto/ccm.c" */
1566
1567 /* l(a) - size of associated data. */
1568 req_ctx->ccm_hdr_size = format_ccm_a0(a0, req->assoclen);
1569
1570 memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1571 req->iv[15] = 1;
1572
1573 memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1574 ctr_count_0[15] = 0;
1575
1576 return 0;
1577}
1578
1579static void cc_proc_rfc4309_ccm(struct aead_request *req)
1580{
1581 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1582 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1583 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1584
1585 /* L' */
1586 memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1587 /* For RFC 4309, always use 4 bytes for message length
1588 * (at most 2^32-1 bytes).
1589 */
1590 areq_ctx->ctr_iv[0] = 3;
1591
1592 /* In RFC 4309 there is an 11-bytes nonce+IV part,
1593 * that we build here.
1594 */
1595 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1596 CCM_BLOCK_NONCE_SIZE);
1597 memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1598 CCM_BLOCK_IV_SIZE);
1599 req->iv = areq_ctx->ctr_iv;
1600 req->assoclen -= CCM_BLOCK_IV_SIZE;
1601}
1602
1603static void cc_set_ghash_desc(struct aead_request *req,
1604 struct cc_hw_desc desc[], unsigned int *seq_size)
1605{
1606 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1607 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1608 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1609 unsigned int idx = *seq_size;
1610
1611 /* load key to AES*/
1612 hw_desc_init(&desc[idx]);
1613 set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1614 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1615 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1616 ctx->enc_keylen, NS_BIT);
1617 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1618 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1619 set_flow_mode(&desc[idx], S_DIN_to_AES);
1620 idx++;
1621
1622 /* process one zero block to generate hkey */
1623 hw_desc_init(&desc[idx]);
1624 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1625 set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1626 NS_BIT, 0);
1627 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1628 idx++;
1629
1630 /* Memory Barrier */
1631 hw_desc_init(&desc[idx]);
1632 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1633 set_dout_no_dma(&desc[idx], 0, 0, 1);
1634 idx++;
1635
1636 /* Load GHASH subkey */
1637 hw_desc_init(&desc[idx]);
1638 set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1639 AES_BLOCK_SIZE, NS_BIT);
1640 set_dout_no_dma(&desc[idx], 0, 0, 1);
1641 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1642 set_aes_not_hash_mode(&desc[idx]);
1643 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1644 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1645 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1646 idx++;
1647
1648 /* Configure Hash Engine to work with GHASH.
1649 * Since it was not possible to extend HASH submodes to add GHASH,
1650 * The following command is necessary in order to
1651 * select GHASH (according to HW designers)
1652 */
1653 hw_desc_init(&desc[idx]);
1654 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1655 set_dout_no_dma(&desc[idx], 0, 0, 1);
1656 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1657 set_aes_not_hash_mode(&desc[idx]);
1658 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1659 set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1660 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1661 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1662 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1663 idx++;
1664
1665 /* Load GHASH initial STATE (which is 0). (for any hash there is an
1666 * initial state)
1667 */
1668 hw_desc_init(&desc[idx]);
1669 set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1670 set_dout_no_dma(&desc[idx], 0, 0, 1);
1671 set_flow_mode(&desc[idx], S_DIN_to_HASH);
1672 set_aes_not_hash_mode(&desc[idx]);
1673 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1674 set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1675 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1676 idx++;
1677
1678 *seq_size = idx;
1679}
1680
1681static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1682 unsigned int *seq_size)
1683{
1684 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1685 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1686 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1687 unsigned int idx = *seq_size;
1688
1689 /* load key to AES*/
1690 hw_desc_init(&desc[idx]);
1691 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1692 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1693 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1694 ctx->enc_keylen, NS_BIT);
1695 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1696 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1697 set_flow_mode(&desc[idx], S_DIN_to_AES);
1698 idx++;
1699
1700 if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1701 /* load AES/CTR initial CTR value inc by 2*/
1702 hw_desc_init(&desc[idx]);
1703 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1704 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1705 set_din_type(&desc[idx], DMA_DLLI,
1706 req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1707 NS_BIT);
1708 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1709 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1710 set_flow_mode(&desc[idx], S_DIN_to_AES);
1711 idx++;
1712 }
1713
1714 *seq_size = idx;
1715}
1716
1717static void cc_proc_gcm_result(struct aead_request *req,
1718 struct cc_hw_desc desc[],
1719 unsigned int *seq_size)
1720{
1721 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1722 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1723 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1724 dma_addr_t mac_result;
1725 unsigned int idx = *seq_size;
1726
1727 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1728 mac_result = req_ctx->mac_buf_dma_addr;
1729 } else { /* Encrypt */
1730 mac_result = req_ctx->icv_dma_addr;
1731 }
1732
1733 /* process(ghash) gcm_block_len */
1734 hw_desc_init(&desc[idx]);
1735 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1736 AES_BLOCK_SIZE, NS_BIT);
1737 set_flow_mode(&desc[idx], DIN_HASH);
1738 idx++;
1739
1740 /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1741 hw_desc_init(&desc[idx]);
1742 set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1743 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1744 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1745 NS_BIT, 0);
1746 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1747 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1748 set_aes_not_hash_mode(&desc[idx]);
1749
1750 idx++;
1751
1752 /* load AES/CTR initial CTR value inc by 1*/
1753 hw_desc_init(&desc[idx]);
1754 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1755 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1756 set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1757 AES_BLOCK_SIZE, NS_BIT);
1758 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1759 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1760 set_flow_mode(&desc[idx], S_DIN_to_AES);
1761 idx++;
1762
1763 /* Memory Barrier */
1764 hw_desc_init(&desc[idx]);
1765 set_din_no_dma(&desc[idx], 0, 0xfffff0);
1766 set_dout_no_dma(&desc[idx], 0, 0, 1);
1767 idx++;
1768
1769 /* process GCTR on stored GHASH and store MAC in mac_state*/
1770 hw_desc_init(&desc[idx]);
1771 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1772 set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1773 AES_BLOCK_SIZE, NS_BIT);
1774 set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1775 set_queue_last_ind(ctx->drvdata, &desc[idx]);
1776 set_flow_mode(&desc[idx], DIN_AES_DOUT);
1777 idx++;
1778
1779 *seq_size = idx;
1780}
1781
1782static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1783 unsigned int *seq_size)
1784{
1785 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1786 unsigned int cipher_flow_mode;
1787
1788 if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1789 cipher_flow_mode = AES_and_HASH;
1790 } else { /* Encrypt */
1791 cipher_flow_mode = AES_to_HASH_and_DOUT;
1792 }
1793
1794 //in RFC4543 no data to encrypt. just copy data from src to dest.
1795 if (req_ctx->plaintext_authenticate_only) {
1796 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1797 cc_set_ghash_desc(req, desc, seq_size);
1798 /* process(ghash) assoc data */
1799 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1800 cc_set_gctr_desc(req, desc, seq_size);
1801 cc_proc_gcm_result(req, desc, seq_size);
1802 return 0;
1803 }
1804
1805 // for gcm and rfc4106.
1806 cc_set_ghash_desc(req, desc, seq_size);
1807 /* process(ghash) assoc data */
1808 if (req->assoclen > 0)
1809 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1810 cc_set_gctr_desc(req, desc, seq_size);
1811 /* process(gctr+ghash) */
1812 if (req_ctx->cryptlen)
1813 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1814 cc_proc_gcm_result(req, desc, seq_size);
1815
1816 return 0;
1817}
1818
1819static int config_gcm_context(struct aead_request *req)
1820{
1821 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1822 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1823 struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1824 struct device *dev = drvdata_to_dev(ctx->drvdata);
1825
1826 unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1827 DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1828 req->cryptlen :
1829 (req->cryptlen - ctx->authsize);
1830 __be32 counter = cpu_to_be32(2);
1831
1832 dev_dbg(dev, "%s() cryptlen = %d, req->assoclen = %d ctx->authsize = %d\n",
1833 __func__, cryptlen, req->assoclen, ctx->authsize);
1834
1835 memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1836
1837 memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1838
1839 memcpy(req->iv + 12, &counter, 4);
1840 memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1841
1842 counter = cpu_to_be32(1);
1843 memcpy(req->iv + 12, &counter, 4);
1844 memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1845
1846 if (!req_ctx->plaintext_authenticate_only) {
1847 __be64 temp64;
1848
1849 temp64 = cpu_to_be64(req->assoclen * 8);
1850 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1851 temp64 = cpu_to_be64(cryptlen * 8);
1852 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1853 } else {
1854 /* rfc4543=> all data(AAD,IV,Plain) are considered additional
1855 * data that is nothing is encrypted.
1856 */
1857 __be64 temp64;
1858
1859 temp64 = cpu_to_be64((req->assoclen + GCM_BLOCK_RFC4_IV_SIZE +
1860 cryptlen) * 8);
1861 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1862 temp64 = 0;
1863 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1864 }
1865
1866 return 0;
1867}
1868
1869static void cc_proc_rfc4_gcm(struct aead_request *req)
1870{
1871 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1872 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1873 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1874
1875 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1876 ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1877 memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1878 GCM_BLOCK_RFC4_IV_SIZE);
1879 req->iv = areq_ctx->ctr_iv;
1880 req->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
1881}
1882
1883static int cc_proc_aead(struct aead_request *req,
1884 enum drv_crypto_direction direct)
1885{
1886 int rc = 0;
1887 int seq_len = 0;
1888 struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1889 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1890 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1891 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1892 struct device *dev = drvdata_to_dev(ctx->drvdata);
1893 struct cc_crypto_req cc_req = {};
1894
1895 dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1896 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1897 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1898 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1899
1900 /* STAT_PHASE_0: Init and sanity checks */
1901
1902 /* Check data length according to mode */
1903 if (validate_data_size(ctx, direct, req)) {
1904 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1905 req->cryptlen, req->assoclen);
1906 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
1907 return -EINVAL;
1908 }
1909
1910 /* Setup request structure */
1911 cc_req.user_cb = (void *)cc_aead_complete;
1912 cc_req.user_arg = (void *)req;
1913
1914 /* Setup request context */
1915 areq_ctx->gen_ctx.op_type = direct;
1916 areq_ctx->req_authsize = ctx->authsize;
1917 areq_ctx->cipher_mode = ctx->cipher_mode;
1918
1919 /* STAT_PHASE_1: Map buffers */
1920
1921 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1922 /* Build CTR IV - Copy nonce from last 4 bytes in
1923 * CTR key to first 4 bytes in CTR IV
1924 */
1925 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1926 CTR_RFC3686_NONCE_SIZE);
1927 if (!areq_ctx->backup_giv) /*User none-generated IV*/
1928 memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE,
1929 req->iv, CTR_RFC3686_IV_SIZE);
1930 /* Initialize counter portion of counter block */
1931 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1932 CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1933
1934 /* Replace with counter iv */
1935 req->iv = areq_ctx->ctr_iv;
1936 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1937 } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1938 (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1939 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1940 if (areq_ctx->ctr_iv != req->iv) {
1941 memcpy(areq_ctx->ctr_iv, req->iv,
1942 crypto_aead_ivsize(tfm));
1943 req->iv = areq_ctx->ctr_iv;
1944 }
1945 } else {
1946 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1947 }
1948
1949 if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1950 rc = config_ccm_adata(req);
1951 if (rc) {
1952 dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1953 rc);
1954 goto exit;
1955 }
1956 } else {
1957 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1958 }
1959
1960 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1961 rc = config_gcm_context(req);
1962 if (rc) {
1963 dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1964 rc);
1965 goto exit;
1966 }
1967 }
1968
1969 rc = cc_map_aead_request(ctx->drvdata, req);
1970 if (rc) {
1971 dev_err(dev, "map_request() failed\n");
1972 goto exit;
1973 }
1974
1975 /* do we need to generate IV? */
1976 if (areq_ctx->backup_giv) {
1977 /* set the DMA mapped IV address*/
1978 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1979 cc_req.ivgen_dma_addr[0] =
1980 areq_ctx->gen_ctx.iv_dma_addr +
1981 CTR_RFC3686_NONCE_SIZE;
1982 cc_req.ivgen_dma_addr_len = 1;
1983 } else if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1984 /* In ccm, the IV needs to exist both inside B0 and
1985 * inside the counter.It is also copied to iv_dma_addr
1986 * for other reasons (like returning it to the user).
1987 * So, using 3 (identical) IV outputs.
1988 */
1989 cc_req.ivgen_dma_addr[0] =
1990 areq_ctx->gen_ctx.iv_dma_addr +
1991 CCM_BLOCK_IV_OFFSET;
1992 cc_req.ivgen_dma_addr[1] =
1993 sg_dma_address(&areq_ctx->ccm_adata_sg) +
1994 CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET;
1995 cc_req.ivgen_dma_addr[2] =
1996 sg_dma_address(&areq_ctx->ccm_adata_sg) +
1997 CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET;
1998 cc_req.ivgen_dma_addr_len = 3;
1999 } else {
2000 cc_req.ivgen_dma_addr[0] =
2001 areq_ctx->gen_ctx.iv_dma_addr;
2002 cc_req.ivgen_dma_addr_len = 1;
2003 }
2004
2005 /* set the IV size (8/16 B long)*/
2006 cc_req.ivgen_size = crypto_aead_ivsize(tfm);
2007 }
2008
2009 /* STAT_PHASE_2: Create sequence */
2010
2011 /* Load MLLI tables to SRAM if necessary */
2012 cc_mlli_to_sram(req, desc, &seq_len);
2013
2014 /*TODO: move seq len by reference */
2015 switch (ctx->auth_mode) {
2016 case DRV_HASH_SHA1:
2017 case DRV_HASH_SHA256:
2018 cc_hmac_authenc(req, desc, &seq_len);
2019 break;
2020 case DRV_HASH_XCBC_MAC:
2021 cc_xcbc_authenc(req, desc, &seq_len);
2022 break;
2023 case DRV_HASH_NULL:
2024 if (ctx->cipher_mode == DRV_CIPHER_CCM)
2025 cc_ccm(req, desc, &seq_len);
2026 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
2027 cc_gcm(req, desc, &seq_len);
2028 break;
2029 default:
2030 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2031 cc_unmap_aead_request(dev, req);
2032 rc = -ENOTSUPP;
2033 goto exit;
2034 }
2035
2036 /* STAT_PHASE_3: Lock HW and push sequence */
2037
2038 rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2039
2040 if (rc != -EINPROGRESS && rc != -EBUSY) {
2041 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2042 cc_unmap_aead_request(dev, req);
2043 }
2044
2045exit:
2046 return rc;
2047}
2048
2049static int cc_aead_encrypt(struct aead_request *req)
2050{
2051 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2052 int rc;
2053
2054 /* No generated IV required */
2055 areq_ctx->backup_iv = req->iv;
2056 areq_ctx->backup_giv = NULL;
2057 areq_ctx->is_gcm4543 = false;
2058
2059 areq_ctx->plaintext_authenticate_only = false;
2060
2061 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2062 if (rc != -EINPROGRESS && rc != -EBUSY)
2063 req->iv = areq_ctx->backup_iv;
2064
2065 return rc;
2066}
2067
2068static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2069{
2070 /* Very similar to cc_aead_encrypt() above. */
2071
2072 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2073 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2074 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2075 struct device *dev = drvdata_to_dev(ctx->drvdata);
2076 int rc = -EINVAL;
2077
2078 if (!valid_assoclen(req)) {
2079 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2080 goto out;
2081 }
2082
2083 /* No generated IV required */
2084 areq_ctx->backup_iv = req->iv;
2085 areq_ctx->backup_giv = NULL;
2086 areq_ctx->is_gcm4543 = true;
2087
2088 cc_proc_rfc4309_ccm(req);
2089
2090 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2091 if (rc != -EINPROGRESS && rc != -EBUSY)
2092 req->iv = areq_ctx->backup_iv;
2093out:
2094 return rc;
2095}
2096
2097static int cc_aead_decrypt(struct aead_request *req)
2098{
2099 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2100 int rc;
2101
2102 /* No generated IV required */
2103 areq_ctx->backup_iv = req->iv;
2104 areq_ctx->backup_giv = NULL;
2105 areq_ctx->is_gcm4543 = false;
2106
2107 areq_ctx->plaintext_authenticate_only = false;
2108
2109 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2110 if (rc != -EINPROGRESS && rc != -EBUSY)
2111 req->iv = areq_ctx->backup_iv;
2112
2113 return rc;
2114}
2115
2116static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2117{
2118 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2119 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2120 struct device *dev = drvdata_to_dev(ctx->drvdata);
2121 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2122 int rc = -EINVAL;
2123
2124 if (!valid_assoclen(req)) {
2125 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2126 goto out;
2127 }
2128
2129 /* No generated IV required */
2130 areq_ctx->backup_iv = req->iv;
2131 areq_ctx->backup_giv = NULL;
2132
2133 areq_ctx->is_gcm4543 = true;
2134 cc_proc_rfc4309_ccm(req);
2135
2136 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2137 if (rc != -EINPROGRESS && rc != -EBUSY)
2138 req->iv = areq_ctx->backup_iv;
2139
2140out:
2141 return rc;
2142}
2143
2144static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2145 unsigned int keylen)
2146{
2147 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2148 struct device *dev = drvdata_to_dev(ctx->drvdata);
2149
2150 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2151
2152 if (keylen < 4)
2153 return -EINVAL;
2154
2155 keylen -= 4;
2156 memcpy(ctx->ctr_nonce, key + keylen, 4);
2157
2158 return cc_aead_setkey(tfm, key, keylen);
2159}
2160
2161static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2162 unsigned int keylen)
2163{
2164 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2165 struct device *dev = drvdata_to_dev(ctx->drvdata);
2166
2167 dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
2168
2169 if (keylen < 4)
2170 return -EINVAL;
2171
2172 keylen -= 4;
2173 memcpy(ctx->ctr_nonce, key + keylen, 4);
2174
2175 return cc_aead_setkey(tfm, key, keylen);
2176}
2177
2178static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2179 unsigned int authsize)
2180{
2181 switch (authsize) {
2182 case 4:
2183 case 8:
2184 case 12:
2185 case 13:
2186 case 14:
2187 case 15:
2188 case 16:
2189 break;
2190 default:
2191 return -EINVAL;
2192 }
2193
2194 return cc_aead_setauthsize(authenc, authsize);
2195}
2196
2197static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2198 unsigned int authsize)
2199{
2200 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2201 struct device *dev = drvdata_to_dev(ctx->drvdata);
2202
2203 dev_dbg(dev, "authsize %d\n", authsize);
2204
2205 switch (authsize) {
2206 case 8:
2207 case 12:
2208 case 16:
2209 break;
2210 default:
2211 return -EINVAL;
2212 }
2213
2214 return cc_aead_setauthsize(authenc, authsize);
2215}
2216
2217static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2218 unsigned int authsize)
2219{
2220 struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2221 struct device *dev = drvdata_to_dev(ctx->drvdata);
2222
2223 dev_dbg(dev, "authsize %d\n", authsize);
2224
2225 if (authsize != 16)
2226 return -EINVAL;
2227
2228 return cc_aead_setauthsize(authenc, authsize);
2229}
2230
2231static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2232{
2233 /* Very similar to cc_aead_encrypt() above. */
2234
2235 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2236 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2237 struct device *dev = drvdata_to_dev(ctx->drvdata);
2238 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2239 int rc = -EINVAL;
2240
2241 if (!valid_assoclen(req)) {
2242 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2243 goto out;
2244 }
2245
2246 /* No generated IV required */
2247 areq_ctx->backup_iv = req->iv;
2248 areq_ctx->backup_giv = NULL;
2249
2250 areq_ctx->plaintext_authenticate_only = false;
2251
2252 cc_proc_rfc4_gcm(req);
2253 areq_ctx->is_gcm4543 = true;
2254
2255 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2256 if (rc != -EINPROGRESS && rc != -EBUSY)
2257 req->iv = areq_ctx->backup_iv;
2258out:
2259 return rc;
2260}
2261
2262static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2263{
2264 /* Very similar to cc_aead_encrypt() above. */
2265
2266 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2267 int rc;
2268
2269 //plaintext is not encryped with rfc4543
2270 areq_ctx->plaintext_authenticate_only = true;
2271
2272 /* No generated IV required */
2273 areq_ctx->backup_iv = req->iv;
2274 areq_ctx->backup_giv = NULL;
2275
2276 cc_proc_rfc4_gcm(req);
2277 areq_ctx->is_gcm4543 = true;
2278
2279 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2280 if (rc != -EINPROGRESS && rc != -EBUSY)
2281 req->iv = areq_ctx->backup_iv;
2282
2283 return rc;
2284}
2285
2286static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2287{
2288 /* Very similar to cc_aead_decrypt() above. */
2289
2290 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2291 struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2292 struct device *dev = drvdata_to_dev(ctx->drvdata);
2293 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2294 int rc = -EINVAL;
2295
2296 if (!valid_assoclen(req)) {
2297 dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
2298 goto out;
2299 }
2300
2301 /* No generated IV required */
2302 areq_ctx->backup_iv = req->iv;
2303 areq_ctx->backup_giv = NULL;
2304
2305 areq_ctx->plaintext_authenticate_only = false;
2306
2307 cc_proc_rfc4_gcm(req);
2308 areq_ctx->is_gcm4543 = true;
2309
2310 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2311 if (rc != -EINPROGRESS && rc != -EBUSY)
2312 req->iv = areq_ctx->backup_iv;
2313out:
2314 return rc;
2315}
2316
2317static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2318{
2319 /* Very similar to cc_aead_decrypt() above. */
2320
2321 struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2322 int rc;
2323
2324 //plaintext is not decryped with rfc4543
2325 areq_ctx->plaintext_authenticate_only = true;
2326
2327 /* No generated IV required */
2328 areq_ctx->backup_iv = req->iv;
2329 areq_ctx->backup_giv = NULL;
2330
2331 cc_proc_rfc4_gcm(req);
2332 areq_ctx->is_gcm4543 = true;
2333
2334 rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2335 if (rc != -EINPROGRESS && rc != -EBUSY)
2336 req->iv = areq_ctx->backup_iv;
2337
2338 return rc;
2339}
2340
2341/* aead alg */
2342static struct cc_alg_template aead_algs[] = {
2343 {
2344 .name = "authenc(hmac(sha1),cbc(aes))",
2345 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2346 .blocksize = AES_BLOCK_SIZE,
2347 .type = CRYPTO_ALG_TYPE_AEAD,
2348 .template_aead = {
2349 .setkey = cc_aead_setkey,
2350 .setauthsize = cc_aead_setauthsize,
2351 .encrypt = cc_aead_encrypt,
2352 .decrypt = cc_aead_decrypt,
2353 .init = cc_aead_init,
2354 .exit = cc_aead_exit,
2355 .ivsize = AES_BLOCK_SIZE,
2356 .maxauthsize = SHA1_DIGEST_SIZE,
2357 },
2358 .cipher_mode = DRV_CIPHER_CBC,
2359 .flow_mode = S_DIN_to_AES,
2360 .auth_mode = DRV_HASH_SHA1,
2361 .min_hw_rev = CC_HW_REV_630,
2362 },
2363 {
2364 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2365 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2366 .blocksize = DES3_EDE_BLOCK_SIZE,
2367 .type = CRYPTO_ALG_TYPE_AEAD,
2368 .template_aead = {
2369 .setkey = cc_aead_setkey,
2370 .setauthsize = cc_aead_setauthsize,
2371 .encrypt = cc_aead_encrypt,
2372 .decrypt = cc_aead_decrypt,
2373 .init = cc_aead_init,
2374 .exit = cc_aead_exit,
2375 .ivsize = DES3_EDE_BLOCK_SIZE,
2376 .maxauthsize = SHA1_DIGEST_SIZE,
2377 },
2378 .cipher_mode = DRV_CIPHER_CBC,
2379 .flow_mode = S_DIN_to_DES,
2380 .auth_mode = DRV_HASH_SHA1,
2381 .min_hw_rev = CC_HW_REV_630,
2382 },
2383 {
2384 .name = "authenc(hmac(sha256),cbc(aes))",
2385 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2386 .blocksize = AES_BLOCK_SIZE,
2387 .type = CRYPTO_ALG_TYPE_AEAD,
2388 .template_aead = {
2389 .setkey = cc_aead_setkey,
2390 .setauthsize = cc_aead_setauthsize,
2391 .encrypt = cc_aead_encrypt,
2392 .decrypt = cc_aead_decrypt,
2393 .init = cc_aead_init,
2394 .exit = cc_aead_exit,
2395 .ivsize = AES_BLOCK_SIZE,
2396 .maxauthsize = SHA256_DIGEST_SIZE,
2397 },
2398 .cipher_mode = DRV_CIPHER_CBC,
2399 .flow_mode = S_DIN_to_AES,
2400 .auth_mode = DRV_HASH_SHA256,
2401 .min_hw_rev = CC_HW_REV_630,
2402 },
2403 {
2404 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2405 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2406 .blocksize = DES3_EDE_BLOCK_SIZE,
2407 .type = CRYPTO_ALG_TYPE_AEAD,
2408 .template_aead = {
2409 .setkey = cc_aead_setkey,
2410 .setauthsize = cc_aead_setauthsize,
2411 .encrypt = cc_aead_encrypt,
2412 .decrypt = cc_aead_decrypt,
2413 .init = cc_aead_init,
2414 .exit = cc_aead_exit,
2415 .ivsize = DES3_EDE_BLOCK_SIZE,
2416 .maxauthsize = SHA256_DIGEST_SIZE,
2417 },
2418 .cipher_mode = DRV_CIPHER_CBC,
2419 .flow_mode = S_DIN_to_DES,
2420 .auth_mode = DRV_HASH_SHA256,
2421 .min_hw_rev = CC_HW_REV_630,
2422 },
2423 {
2424 .name = "authenc(xcbc(aes),cbc(aes))",
2425 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2426 .blocksize = AES_BLOCK_SIZE,
2427 .type = CRYPTO_ALG_TYPE_AEAD,
2428 .template_aead = {
2429 .setkey = cc_aead_setkey,
2430 .setauthsize = cc_aead_setauthsize,
2431 .encrypt = cc_aead_encrypt,
2432 .decrypt = cc_aead_decrypt,
2433 .init = cc_aead_init,
2434 .exit = cc_aead_exit,
2435 .ivsize = AES_BLOCK_SIZE,
2436 .maxauthsize = AES_BLOCK_SIZE,
2437 },
2438 .cipher_mode = DRV_CIPHER_CBC,
2439 .flow_mode = S_DIN_to_AES,
2440 .auth_mode = DRV_HASH_XCBC_MAC,
2441 .min_hw_rev = CC_HW_REV_630,
2442 },
2443 {
2444 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2445 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2446 .blocksize = 1,
2447 .type = CRYPTO_ALG_TYPE_AEAD,
2448 .template_aead = {
2449 .setkey = cc_aead_setkey,
2450 .setauthsize = cc_aead_setauthsize,
2451 .encrypt = cc_aead_encrypt,
2452 .decrypt = cc_aead_decrypt,
2453 .init = cc_aead_init,
2454 .exit = cc_aead_exit,
2455 .ivsize = CTR_RFC3686_IV_SIZE,
2456 .maxauthsize = SHA1_DIGEST_SIZE,
2457 },
2458 .cipher_mode = DRV_CIPHER_CTR,
2459 .flow_mode = S_DIN_to_AES,
2460 .auth_mode = DRV_HASH_SHA1,
2461 .min_hw_rev = CC_HW_REV_630,
2462 },
2463 {
2464 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2465 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2466 .blocksize = 1,
2467 .type = CRYPTO_ALG_TYPE_AEAD,
2468 .template_aead = {
2469 .setkey = cc_aead_setkey,
2470 .setauthsize = cc_aead_setauthsize,
2471 .encrypt = cc_aead_encrypt,
2472 .decrypt = cc_aead_decrypt,
2473 .init = cc_aead_init,
2474 .exit = cc_aead_exit,
2475 .ivsize = CTR_RFC3686_IV_SIZE,
2476 .maxauthsize = SHA256_DIGEST_SIZE,
2477 },
2478 .cipher_mode = DRV_CIPHER_CTR,
2479 .flow_mode = S_DIN_to_AES,
2480 .auth_mode = DRV_HASH_SHA256,
2481 .min_hw_rev = CC_HW_REV_630,
2482 },
2483 {
2484 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2485 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2486 .blocksize = 1,
2487 .type = CRYPTO_ALG_TYPE_AEAD,
2488 .template_aead = {
2489 .setkey = cc_aead_setkey,
2490 .setauthsize = cc_aead_setauthsize,
2491 .encrypt = cc_aead_encrypt,
2492 .decrypt = cc_aead_decrypt,
2493 .init = cc_aead_init,
2494 .exit = cc_aead_exit,
2495 .ivsize = CTR_RFC3686_IV_SIZE,
2496 .maxauthsize = AES_BLOCK_SIZE,
2497 },
2498 .cipher_mode = DRV_CIPHER_CTR,
2499 .flow_mode = S_DIN_to_AES,
2500 .auth_mode = DRV_HASH_XCBC_MAC,
2501 .min_hw_rev = CC_HW_REV_630,
2502 },
2503 {
2504 .name = "ccm(aes)",
2505 .driver_name = "ccm-aes-ccree",
2506 .blocksize = 1,
2507 .type = CRYPTO_ALG_TYPE_AEAD,
2508 .template_aead = {
2509 .setkey = cc_aead_setkey,
2510 .setauthsize = cc_ccm_setauthsize,
2511 .encrypt = cc_aead_encrypt,
2512 .decrypt = cc_aead_decrypt,
2513 .init = cc_aead_init,
2514 .exit = cc_aead_exit,
2515 .ivsize = AES_BLOCK_SIZE,
2516 .maxauthsize = AES_BLOCK_SIZE,
2517 },
2518 .cipher_mode = DRV_CIPHER_CCM,
2519 .flow_mode = S_DIN_to_AES,
2520 .auth_mode = DRV_HASH_NULL,
2521 .min_hw_rev = CC_HW_REV_630,
2522 },
2523 {
2524 .name = "rfc4309(ccm(aes))",
2525 .driver_name = "rfc4309-ccm-aes-ccree",
2526 .blocksize = 1,
2527 .type = CRYPTO_ALG_TYPE_AEAD,
2528 .template_aead = {
2529 .setkey = cc_rfc4309_ccm_setkey,
2530 .setauthsize = cc_rfc4309_ccm_setauthsize,
2531 .encrypt = cc_rfc4309_ccm_encrypt,
2532 .decrypt = cc_rfc4309_ccm_decrypt,
2533 .init = cc_aead_init,
2534 .exit = cc_aead_exit,
2535 .ivsize = CCM_BLOCK_IV_SIZE,
2536 .maxauthsize = AES_BLOCK_SIZE,
2537 },
2538 .cipher_mode = DRV_CIPHER_CCM,
2539 .flow_mode = S_DIN_to_AES,
2540 .auth_mode = DRV_HASH_NULL,
2541 .min_hw_rev = CC_HW_REV_630,
2542 },
2543 {
2544 .name = "gcm(aes)",
2545 .driver_name = "gcm-aes-ccree",
2546 .blocksize = 1,
2547 .type = CRYPTO_ALG_TYPE_AEAD,
2548 .template_aead = {
2549 .setkey = cc_aead_setkey,
2550 .setauthsize = cc_gcm_setauthsize,
2551 .encrypt = cc_aead_encrypt,
2552 .decrypt = cc_aead_decrypt,
2553 .init = cc_aead_init,
2554 .exit = cc_aead_exit,
2555 .ivsize = 12,
2556 .maxauthsize = AES_BLOCK_SIZE,
2557 },
2558 .cipher_mode = DRV_CIPHER_GCTR,
2559 .flow_mode = S_DIN_to_AES,
2560 .auth_mode = DRV_HASH_NULL,
2561 .min_hw_rev = CC_HW_REV_630,
2562 },
2563 {
2564 .name = "rfc4106(gcm(aes))",
2565 .driver_name = "rfc4106-gcm-aes-ccree",
2566 .blocksize = 1,
2567 .type = CRYPTO_ALG_TYPE_AEAD,
2568 .template_aead = {
2569 .setkey = cc_rfc4106_gcm_setkey,
2570 .setauthsize = cc_rfc4106_gcm_setauthsize,
2571 .encrypt = cc_rfc4106_gcm_encrypt,
2572 .decrypt = cc_rfc4106_gcm_decrypt,
2573 .init = cc_aead_init,
2574 .exit = cc_aead_exit,
2575 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2576 .maxauthsize = AES_BLOCK_SIZE,
2577 },
2578 .cipher_mode = DRV_CIPHER_GCTR,
2579 .flow_mode = S_DIN_to_AES,
2580 .auth_mode = DRV_HASH_NULL,
2581 .min_hw_rev = CC_HW_REV_630,
2582 },
2583 {
2584 .name = "rfc4543(gcm(aes))",
2585 .driver_name = "rfc4543-gcm-aes-ccree",
2586 .blocksize = 1,
2587 .type = CRYPTO_ALG_TYPE_AEAD,
2588 .template_aead = {
2589 .setkey = cc_rfc4543_gcm_setkey,
2590 .setauthsize = cc_rfc4543_gcm_setauthsize,
2591 .encrypt = cc_rfc4543_gcm_encrypt,
2592 .decrypt = cc_rfc4543_gcm_decrypt,
2593 .init = cc_aead_init,
2594 .exit = cc_aead_exit,
2595 .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2596 .maxauthsize = AES_BLOCK_SIZE,
2597 },
2598 .cipher_mode = DRV_CIPHER_GCTR,
2599 .flow_mode = S_DIN_to_AES,
2600 .auth_mode = DRV_HASH_NULL,
2601 .min_hw_rev = CC_HW_REV_630,
2602 },
2603};
2604
2605static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2606 struct device *dev)
2607{
2608 struct cc_crypto_alg *t_alg;
2609 struct aead_alg *alg;
2610
2611 t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
2612 if (!t_alg)
2613 return ERR_PTR(-ENOMEM);
2614
2615 alg = &tmpl->template_aead;
2616
2617 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2618 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2619 tmpl->driver_name);
2620 alg->base.cra_module = THIS_MODULE;
2621 alg->base.cra_priority = CC_CRA_PRIO;
2622
2623 alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2624 alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
2625 tmpl->type;
2626 alg->init = cc_aead_init;
2627 alg->exit = cc_aead_exit;
2628
2629 t_alg->aead_alg = *alg;
2630
2631 t_alg->cipher_mode = tmpl->cipher_mode;
2632 t_alg->flow_mode = tmpl->flow_mode;
2633 t_alg->auth_mode = tmpl->auth_mode;
2634
2635 return t_alg;
2636}
2637
2638int cc_aead_free(struct cc_drvdata *drvdata)
2639{
2640 struct cc_crypto_alg *t_alg, *n;
2641 struct cc_aead_handle *aead_handle =
2642 (struct cc_aead_handle *)drvdata->aead_handle;
2643
2644 if (aead_handle) {
2645 /* Remove registered algs */
2646 list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
2647 entry) {
2648 crypto_unregister_aead(&t_alg->aead_alg);
2649 list_del(&t_alg->entry);
2650 kfree(t_alg);
2651 }
2652 kfree(aead_handle);
2653 drvdata->aead_handle = NULL;
2654 }
2655
2656 return 0;
2657}
2658
2659int cc_aead_alloc(struct cc_drvdata *drvdata)
2660{
2661 struct cc_aead_handle *aead_handle;
2662 struct cc_crypto_alg *t_alg;
2663 int rc = -ENOMEM;
2664 int alg;
2665 struct device *dev = drvdata_to_dev(drvdata);
2666
2667 aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
2668 if (!aead_handle) {
2669 rc = -ENOMEM;
2670 goto fail0;
2671 }
2672
2673 INIT_LIST_HEAD(&aead_handle->aead_list);
2674 drvdata->aead_handle = aead_handle;
2675
2676 aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2677 MAX_HMAC_DIGEST_SIZE);
2678
2679 if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2680 dev_err(dev, "SRAM pool exhausted\n");
2681 rc = -ENOMEM;
2682 goto fail1;
2683 }
2684
2685 /* Linux crypto */
2686 for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2687 if (aead_algs[alg].min_hw_rev > drvdata->hw_rev)
2688 continue;
2689
2690 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2691 if (IS_ERR(t_alg)) {
2692 rc = PTR_ERR(t_alg);
2693 dev_err(dev, "%s alg allocation failed\n",
2694 aead_algs[alg].driver_name);
2695 goto fail1;
2696 }
2697 t_alg->drvdata = drvdata;
2698 rc = crypto_register_aead(&t_alg->aead_alg);
2699 if (rc) {
2700 dev_err(dev, "%s alg registration failed\n",
2701 t_alg->aead_alg.base.cra_driver_name);
2702 goto fail2;
2703 } else {
2704 list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2705 dev_dbg(dev, "Registered %s\n",
2706 t_alg->aead_alg.base.cra_driver_name);
2707 }
2708 }
2709
2710 return 0;
2711
2712fail2:
2713 kfree(t_alg);
2714fail1:
2715 cc_aead_free(drvdata);
2716fail0:
2717 return rc;
2718}