Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AMD Cryptographic Coprocessor (CCP) driver
  4 *
  5 * Copyright (C) 2013,2019 Advanced Micro Devices, Inc.
  6 *
  7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  8 * Author: Gary R Hook <gary.hook@amd.com>
 
 
 
 
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/kernel.h>
 13#include <linux/kthread.h>
 14#include <linux/sched.h>
 15#include <linux/interrupt.h>
 16#include <linux/spinlock.h>
 17#include <linux/spinlock_types.h>
 18#include <linux/types.h>
 19#include <linux/mutex.h>
 20#include <linux/delay.h>
 21#include <linux/hw_random.h>
 22#include <linux/cpu.h>
 23#include <linux/atomic.h>
 24#ifdef CONFIG_X86
 25#include <asm/cpu_device_id.h>
 26#endif
 27#include <linux/ccp.h>
 28
 29#include "ccp-dev.h"
 30
 31#define MAX_CCPS 32
 32
 33/* Limit CCP use to a specifed number of queues per device */
 34static unsigned int nqueues;
 35module_param(nqueues, uint, 0444);
 36MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)");
 37
 38/* Limit the maximum number of configured CCPs */
 39static atomic_t dev_count = ATOMIC_INIT(0);
 40static unsigned int max_devs = MAX_CCPS;
 41module_param(max_devs, uint, 0444);
 42MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)");
 43
 44struct ccp_tasklet_data {
 45	struct completion completion;
 46	struct ccp_cmd *cmd;
 47};
 48
 49/* Human-readable error strings */
 50#define CCP_MAX_ERROR_CODE	64
 51static char *ccp_error_codes[] = {
 52	"",
 53	"ILLEGAL_ENGINE",
 54	"ILLEGAL_KEY_ID",
 55	"ILLEGAL_FUNCTION_TYPE",
 56	"ILLEGAL_FUNCTION_MODE",
 57	"ILLEGAL_FUNCTION_ENCRYPT",
 58	"ILLEGAL_FUNCTION_SIZE",
 59	"Zlib_MISSING_INIT_EOM",
 60	"ILLEGAL_FUNCTION_RSVD",
 61	"ILLEGAL_BUFFER_LENGTH",
 62	"VLSB_FAULT",
 63	"ILLEGAL_MEM_ADDR",
 64	"ILLEGAL_MEM_SEL",
 65	"ILLEGAL_CONTEXT_ID",
 66	"ILLEGAL_KEY_ADDR",
 67	"0xF Reserved",
 68	"Zlib_ILLEGAL_MULTI_QUEUE",
 69	"Zlib_ILLEGAL_JOBID_CHANGE",
 70	"CMD_TIMEOUT",
 71	"IDMA0_AXI_SLVERR",
 72	"IDMA0_AXI_DECERR",
 73	"0x15 Reserved",
 74	"IDMA1_AXI_SLAVE_FAULT",
 75	"IDMA1_AIXI_DECERR",
 76	"0x18 Reserved",
 77	"ZLIBVHB_AXI_SLVERR",
 78	"ZLIBVHB_AXI_DECERR",
 79	"0x1B Reserved",
 80	"ZLIB_UNEXPECTED_EOM",
 81	"ZLIB_EXTRA_DATA",
 82	"ZLIB_BTYPE",
 83	"ZLIB_UNDEFINED_SYMBOL",
 84	"ZLIB_UNDEFINED_DISTANCE_S",
 85	"ZLIB_CODE_LENGTH_SYMBOL",
 86	"ZLIB _VHB_ILLEGAL_FETCH",
 87	"ZLIB_UNCOMPRESSED_LEN",
 88	"ZLIB_LIMIT_REACHED",
 89	"ZLIB_CHECKSUM_MISMATCH0",
 90	"ODMA0_AXI_SLVERR",
 91	"ODMA0_AXI_DECERR",
 92	"0x28 Reserved",
 93	"ODMA1_AXI_SLVERR",
 94	"ODMA1_AXI_DECERR",
 
 95};
 96
 97void ccp_log_error(struct ccp_device *d, unsigned int e)
 98{
 99	if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
100		return;
101
102	if (e < ARRAY_SIZE(ccp_error_codes))
103		dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
104	else
105		dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
106}
107
108/* List of CCPs, CCP count, read-write access lock, and access functions
109 *
110 * Lock structure: get ccp_unit_lock for reading whenever we need to
111 * examine the CCP list. While holding it for reading we can acquire
112 * the RR lock to update the round-robin next-CCP pointer. The unit lock
113 * must be acquired before the RR lock.
114 *
115 * If the unit-lock is acquired for writing, we have total control over
116 * the list, so there's no value in getting the RR lock.
117 */
118static DEFINE_RWLOCK(ccp_unit_lock);
119static LIST_HEAD(ccp_units);
120
121/* Round-robin counter */
122static DEFINE_SPINLOCK(ccp_rr_lock);
123static struct ccp_device *ccp_rr;
124
125/**
126 * ccp_add_device - add a CCP device to the list
127 *
128 * @ccp: ccp_device struct pointer
129 *
130 * Put this CCP on the unit list, which makes it available
131 * for use.
132 *
133 * Returns zero if a CCP device is present, -ENODEV otherwise.
134 */
135void ccp_add_device(struct ccp_device *ccp)
136{
137	unsigned long flags;
138
139	write_lock_irqsave(&ccp_unit_lock, flags);
140	list_add_tail(&ccp->entry, &ccp_units);
141	if (!ccp_rr)
142		/* We already have the list lock (we're first) so this
143		 * pointer can't change on us. Set its initial value.
144		 */
145		ccp_rr = ccp;
146	write_unlock_irqrestore(&ccp_unit_lock, flags);
147}
148
149/**
150 * ccp_del_device - remove a CCP device from the list
151 *
152 * @ccp: ccp_device struct pointer
153 *
154 * Remove this unit from the list of devices. If the next device
155 * up for use is this one, adjust the pointer. If this is the last
156 * device, NULL the pointer.
157 */
158void ccp_del_device(struct ccp_device *ccp)
159{
160	unsigned long flags;
161
162	write_lock_irqsave(&ccp_unit_lock, flags);
163	if (ccp_rr == ccp) {
164		/* ccp_unit_lock is read/write; any read access
165		 * will be suspended while we make changes to the
166		 * list and RR pointer.
167		 */
168		if (list_is_last(&ccp_rr->entry, &ccp_units))
169			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
170						  entry);
171		else
172			ccp_rr = list_next_entry(ccp_rr, entry);
173	}
174	list_del(&ccp->entry);
175	if (list_empty(&ccp_units))
176		ccp_rr = NULL;
177	write_unlock_irqrestore(&ccp_unit_lock, flags);
178}
179
180
181
182int ccp_register_rng(struct ccp_device *ccp)
183{
184	int ret = 0;
185
186	dev_dbg(ccp->dev, "Registering RNG...\n");
187	/* Register an RNG */
188	ccp->hwrng.name = ccp->rngname;
189	ccp->hwrng.read = ccp_trng_read;
190	ret = hwrng_register(&ccp->hwrng);
191	if (ret)
192		dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
193
194	return ret;
195}
196
197void ccp_unregister_rng(struct ccp_device *ccp)
198{
199	if (ccp->hwrng.name)
200		hwrng_unregister(&ccp->hwrng);
201}
202
203static struct ccp_device *ccp_get_device(void)
204{
205	unsigned long flags;
206	struct ccp_device *dp = NULL;
207
208	/* We round-robin through the unit list.
209	 * The (ccp_rr) pointer refers to the next unit to use.
210	 */
211	read_lock_irqsave(&ccp_unit_lock, flags);
212	if (!list_empty(&ccp_units)) {
213		spin_lock(&ccp_rr_lock);
214		dp = ccp_rr;
215		if (list_is_last(&ccp_rr->entry, &ccp_units))
216			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
217						  entry);
218		else
219			ccp_rr = list_next_entry(ccp_rr, entry);
220		spin_unlock(&ccp_rr_lock);
221	}
222	read_unlock_irqrestore(&ccp_unit_lock, flags);
223
224	return dp;
225}
226
227/**
228 * ccp_present - check if a CCP device is present
229 *
230 * Returns zero if a CCP device is present, -ENODEV otherwise.
231 */
232int ccp_present(void)
233{
234	unsigned long flags;
235	int ret;
236
237	read_lock_irqsave(&ccp_unit_lock, flags);
238	ret = list_empty(&ccp_units);
239	read_unlock_irqrestore(&ccp_unit_lock, flags);
240
241	return ret ? -ENODEV : 0;
242}
243EXPORT_SYMBOL_GPL(ccp_present);
244
245/**
246 * ccp_version - get the version of the CCP device
247 *
248 * Returns the version from the first unit on the list;
249 * otherwise a zero if no CCP device is present
250 */
251unsigned int ccp_version(void)
252{
253	struct ccp_device *dp;
254	unsigned long flags;
255	int ret = 0;
256
257	read_lock_irqsave(&ccp_unit_lock, flags);
258	if (!list_empty(&ccp_units)) {
259		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
260		ret = dp->vdata->version;
261	}
262	read_unlock_irqrestore(&ccp_unit_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ccp_version);
267
268/**
269 * ccp_enqueue_cmd - queue an operation for processing by the CCP
270 *
271 * @cmd: ccp_cmd struct to be processed
272 *
273 * Queue a cmd to be processed by the CCP. If queueing the cmd
274 * would exceed the defined length of the cmd queue the cmd will
275 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
276 * result in a return code of -EBUSY.
277 *
278 * The callback routine specified in the ccp_cmd struct will be
279 * called to notify the caller of completion (if the cmd was not
280 * backlogged) or advancement out of the backlog. If the cmd has
281 * advanced out of the backlog the "err" value of the callback
282 * will be -EINPROGRESS. Any other "err" value during callback is
283 * the result of the operation.
284 *
285 * The cmd has been successfully queued if:
286 *   the return code is -EINPROGRESS or
287 *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
288 */
289int ccp_enqueue_cmd(struct ccp_cmd *cmd)
290{
291	struct ccp_device *ccp;
292	unsigned long flags;
293	unsigned int i;
294	int ret;
295
296	/* Some commands might need to be sent to a specific device */
297	ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
298
299	if (!ccp)
300		return -ENODEV;
301
302	/* Caller must supply a callback routine */
303	if (!cmd->callback)
304		return -EINVAL;
305
306	cmd->ccp = ccp;
307
308	spin_lock_irqsave(&ccp->cmd_lock, flags);
309
310	i = ccp->cmd_q_count;
311
312	if (ccp->cmd_count >= MAX_CMD_QLEN) {
313		if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
314			ret = -EBUSY;
315			list_add_tail(&cmd->entry, &ccp->backlog);
316		} else {
317			ret = -ENOSPC;
318		}
319	} else {
320		ret = -EINPROGRESS;
321		ccp->cmd_count++;
322		list_add_tail(&cmd->entry, &ccp->cmd);
323
324		/* Find an idle queue */
325		if (!ccp->suspending) {
326			for (i = 0; i < ccp->cmd_q_count; i++) {
327				if (ccp->cmd_q[i].active)
328					continue;
329
330				break;
331			}
332		}
333	}
334
335	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
336
337	/* If we found an idle queue, wake it up */
338	if (i < ccp->cmd_q_count)
339		wake_up_process(ccp->cmd_q[i].kthread);
340
341	return ret;
342}
343EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
344
345static void ccp_do_cmd_backlog(struct work_struct *work)
346{
347	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
348	struct ccp_device *ccp = cmd->ccp;
349	unsigned long flags;
350	unsigned int i;
351
352	cmd->callback(cmd->data, -EINPROGRESS);
353
354	spin_lock_irqsave(&ccp->cmd_lock, flags);
355
356	ccp->cmd_count++;
357	list_add_tail(&cmd->entry, &ccp->cmd);
358
359	/* Find an idle queue */
360	for (i = 0; i < ccp->cmd_q_count; i++) {
361		if (ccp->cmd_q[i].active)
362			continue;
363
364		break;
365	}
366
367	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
368
369	/* If we found an idle queue, wake it up */
370	if (i < ccp->cmd_q_count)
371		wake_up_process(ccp->cmd_q[i].kthread);
372}
373
374static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
375{
376	struct ccp_device *ccp = cmd_q->ccp;
377	struct ccp_cmd *cmd = NULL;
378	struct ccp_cmd *backlog = NULL;
379	unsigned long flags;
380
381	spin_lock_irqsave(&ccp->cmd_lock, flags);
382
383	cmd_q->active = 0;
384
385	if (ccp->suspending) {
386		cmd_q->suspended = 1;
387
388		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
389		wake_up_interruptible(&ccp->suspend_queue);
390
391		return NULL;
392	}
393
394	if (ccp->cmd_count) {
395		cmd_q->active = 1;
396
397		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
398		list_del(&cmd->entry);
399
400		ccp->cmd_count--;
401	}
402
403	if (!list_empty(&ccp->backlog)) {
404		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
405					   entry);
406		list_del(&backlog->entry);
407	}
408
409	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
410
411	if (backlog) {
412		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
413		schedule_work(&backlog->work);
414	}
415
416	return cmd;
417}
418
419static void ccp_do_cmd_complete(unsigned long data)
420{
421	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
422	struct ccp_cmd *cmd = tdata->cmd;
423
424	cmd->callback(cmd->data, cmd->ret);
425
426	complete(&tdata->completion);
427}
428
429/**
430 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
431 *
432 * @data: thread-specific data
433 */
434int ccp_cmd_queue_thread(void *data)
435{
436	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
437	struct ccp_cmd *cmd;
438	struct ccp_tasklet_data tdata;
439	struct tasklet_struct tasklet;
440
441	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
442
443	set_current_state(TASK_INTERRUPTIBLE);
444	while (!kthread_should_stop()) {
445		schedule();
446
447		set_current_state(TASK_INTERRUPTIBLE);
448
449		cmd = ccp_dequeue_cmd(cmd_q);
450		if (!cmd)
451			continue;
452
453		__set_current_state(TASK_RUNNING);
454
455		/* Execute the command */
456		cmd->ret = ccp_run_cmd(cmd_q, cmd);
457
458		/* Schedule the completion callback */
459		tdata.cmd = cmd;
460		init_completion(&tdata.completion);
461		tasklet_schedule(&tasklet);
462		wait_for_completion(&tdata.completion);
463	}
464
465	__set_current_state(TASK_RUNNING);
466
467	return 0;
468}
469
470/**
471 * ccp_alloc_struct - allocate and initialize the ccp_device struct
472 *
473 * @sp: sp_device struct of the CCP
474 */
475struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
476{
477	struct device *dev = sp->dev;
478	struct ccp_device *ccp;
479
480	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
481	if (!ccp)
482		return NULL;
483	ccp->dev = dev;
484	ccp->sp = sp;
485	ccp->axcache = sp->axcache;
486
487	INIT_LIST_HEAD(&ccp->cmd);
488	INIT_LIST_HEAD(&ccp->backlog);
489
490	spin_lock_init(&ccp->cmd_lock);
491	mutex_init(&ccp->req_mutex);
492	mutex_init(&ccp->sb_mutex);
493	ccp->sb_count = KSB_COUNT;
494	ccp->sb_start = 0;
495
496	/* Initialize the wait queues */
497	init_waitqueue_head(&ccp->sb_queue);
498	init_waitqueue_head(&ccp->suspend_queue);
499
500	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
501	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
502
503	return ccp;
504}
505
506int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
507{
508	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
509	u32 trng_value;
510	int len = min_t(int, sizeof(trng_value), max);
511
512	/* Locking is provided by the caller so we can update device
513	 * hwrng-related fields safely
514	 */
515	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
516	if (!trng_value) {
517		/* Zero is returned if not data is available or if a
518		 * bad-entropy error is present. Assume an error if
519		 * we exceed TRNG_RETRIES reads of zero.
520		 */
521		if (ccp->hwrng_retries++ > TRNG_RETRIES)
522			return -EIO;
523
524		return 0;
525	}
526
527	/* Reset the counter and save the rng value */
528	ccp->hwrng_retries = 0;
529	memcpy(data, &trng_value, len);
530
531	return len;
532}
533
 
534bool ccp_queues_suspended(struct ccp_device *ccp)
535{
536	unsigned int suspended = 0;
537	unsigned long flags;
538	unsigned int i;
539
540	spin_lock_irqsave(&ccp->cmd_lock, flags);
541
542	for (i = 0; i < ccp->cmd_q_count; i++)
543		if (ccp->cmd_q[i].suspended)
544			suspended++;
545
546	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
547
548	return ccp->cmd_q_count == suspended;
549}
550
551void ccp_dev_suspend(struct sp_device *sp)
552{
553	struct ccp_device *ccp = sp->ccp_data;
554	unsigned long flags;
555	unsigned int i;
556
557	/* If there's no device there's nothing to do */
558	if (!ccp)
559		return;
560
561	spin_lock_irqsave(&ccp->cmd_lock, flags);
562
563	ccp->suspending = 1;
564
565	/* Wake all the queue kthreads to prepare for suspend */
566	for (i = 0; i < ccp->cmd_q_count; i++)
567		wake_up_process(ccp->cmd_q[i].kthread);
568
569	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
570
571	/* Wait for all queue kthreads to say they're done */
572	while (!ccp_queues_suspended(ccp))
573		wait_event_interruptible(ccp->suspend_queue,
574					 ccp_queues_suspended(ccp));
 
 
575}
576
577void ccp_dev_resume(struct sp_device *sp)
578{
579	struct ccp_device *ccp = sp->ccp_data;
580	unsigned long flags;
581	unsigned int i;
582
583	/* If there's no device there's nothing to do */
584	if (!ccp)
585		return;
586
587	spin_lock_irqsave(&ccp->cmd_lock, flags);
588
589	ccp->suspending = 0;
590
591	/* Wake up all the kthreads */
592	for (i = 0; i < ccp->cmd_q_count; i++) {
593		ccp->cmd_q[i].suspended = 0;
594		wake_up_process(ccp->cmd_q[i].kthread);
595	}
596
597	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
 
 
598}
 
599
600int ccp_dev_init(struct sp_device *sp)
601{
602	struct device *dev = sp->dev;
603	struct ccp_device *ccp;
604	int ret;
605
606	/*
607	 * Check how many we have so far, and stop after reaching
608	 * that number
609	 */
610	if (atomic_inc_return(&dev_count) > max_devs)
611		return 0; /* don't fail the load */
612
613	ret = -ENOMEM;
614	ccp = ccp_alloc_struct(sp);
615	if (!ccp)
616		goto e_err;
617	sp->ccp_data = ccp;
618
619	if (!nqueues || (nqueues > MAX_HW_QUEUES))
620		ccp->max_q_count = MAX_HW_QUEUES;
621	else
622		ccp->max_q_count = nqueues;
623
624	ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
625	if (!ccp->vdata || !ccp->vdata->version) {
626		ret = -ENODEV;
627		dev_err(dev, "missing driver data\n");
628		goto e_err;
629	}
630
631	ccp->use_tasklet = sp->use_tasklet;
632
633	ccp->io_regs = sp->io_map + ccp->vdata->offset;
634	if (ccp->vdata->setup)
635		ccp->vdata->setup(ccp);
636
637	ret = ccp->vdata->perform->init(ccp);
638	if (ret) {
639		/* A positive number means that the device cannot be initialized,
640		 * but no additional message is required.
641		 */
642		if (ret > 0)
643			goto e_quiet;
644
645		/* An unexpected problem occurred, and should be reported in the log */
646		goto e_err;
647	}
648
649	dev_notice(dev, "ccp enabled\n");
650
651	return 0;
652
653e_err:
654	dev_notice(dev, "ccp initialization failed\n");
655
656e_quiet:
657	sp->ccp_data = NULL;
 
 
658
659	return ret;
660}
661
662void ccp_dev_destroy(struct sp_device *sp)
663{
664	struct ccp_device *ccp = sp->ccp_data;
665
666	if (!ccp)
667		return;
668
669	ccp->vdata->perform->destroy(ccp);
670}
v4.17
 
  1/*
  2 * AMD Cryptographic Coprocessor (CCP) driver
  3 *
  4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
  5 *
  6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
  7 * Author: Gary R Hook <gary.hook@amd.com>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 */
 13
 
 14#include <linux/kernel.h>
 15#include <linux/kthread.h>
 16#include <linux/sched.h>
 17#include <linux/interrupt.h>
 18#include <linux/spinlock.h>
 19#include <linux/spinlock_types.h>
 20#include <linux/types.h>
 21#include <linux/mutex.h>
 22#include <linux/delay.h>
 23#include <linux/hw_random.h>
 24#include <linux/cpu.h>
 
 25#ifdef CONFIG_X86
 26#include <asm/cpu_device_id.h>
 27#endif
 28#include <linux/ccp.h>
 29
 30#include "ccp-dev.h"
 31
 
 
 
 
 
 
 
 
 
 
 
 
 
 32struct ccp_tasklet_data {
 33	struct completion completion;
 34	struct ccp_cmd *cmd;
 35};
 36
 37/* Human-readable error strings */
 
 38static char *ccp_error_codes[] = {
 39	"",
 40	"ERR 01: ILLEGAL_ENGINE",
 41	"ERR 02: ILLEGAL_KEY_ID",
 42	"ERR 03: ILLEGAL_FUNCTION_TYPE",
 43	"ERR 04: ILLEGAL_FUNCTION_MODE",
 44	"ERR 05: ILLEGAL_FUNCTION_ENCRYPT",
 45	"ERR 06: ILLEGAL_FUNCTION_SIZE",
 46	"ERR 07: Zlib_MISSING_INIT_EOM",
 47	"ERR 08: ILLEGAL_FUNCTION_RSVD",
 48	"ERR 09: ILLEGAL_BUFFER_LENGTH",
 49	"ERR 10: VLSB_FAULT",
 50	"ERR 11: ILLEGAL_MEM_ADDR",
 51	"ERR 12: ILLEGAL_MEM_SEL",
 52	"ERR 13: ILLEGAL_CONTEXT_ID",
 53	"ERR 14: ILLEGAL_KEY_ADDR",
 54	"ERR 15: 0xF Reserved",
 55	"ERR 16: Zlib_ILLEGAL_MULTI_QUEUE",
 56	"ERR 17: Zlib_ILLEGAL_JOBID_CHANGE",
 57	"ERR 18: CMD_TIMEOUT",
 58	"ERR 19: IDMA0_AXI_SLVERR",
 59	"ERR 20: IDMA0_AXI_DECERR",
 60	"ERR 21: 0x15 Reserved",
 61	"ERR 22: IDMA1_AXI_SLAVE_FAULT",
 62	"ERR 23: IDMA1_AIXI_DECERR",
 63	"ERR 24: 0x18 Reserved",
 64	"ERR 25: ZLIBVHB_AXI_SLVERR",
 65	"ERR 26: ZLIBVHB_AXI_DECERR",
 66	"ERR 27: 0x1B Reserved",
 67	"ERR 27: ZLIB_UNEXPECTED_EOM",
 68	"ERR 27: ZLIB_EXTRA_DATA",
 69	"ERR 30: ZLIB_BTYPE",
 70	"ERR 31: ZLIB_UNDEFINED_SYMBOL",
 71	"ERR 32: ZLIB_UNDEFINED_DISTANCE_S",
 72	"ERR 33: ZLIB_CODE_LENGTH_SYMBOL",
 73	"ERR 34: ZLIB _VHB_ILLEGAL_FETCH",
 74	"ERR 35: ZLIB_UNCOMPRESSED_LEN",
 75	"ERR 36: ZLIB_LIMIT_REACHED",
 76	"ERR 37: ZLIB_CHECKSUM_MISMATCH0",
 77	"ERR 38: ODMA0_AXI_SLVERR",
 78	"ERR 39: ODMA0_AXI_DECERR",
 79	"ERR 40: 0x28 Reserved",
 80	"ERR 41: ODMA1_AXI_SLVERR",
 81	"ERR 42: ODMA1_AXI_DECERR",
 82	"ERR 43: LSB_PARITY_ERR",
 83};
 84
 85void ccp_log_error(struct ccp_device *d, int e)
 86{
 87	dev_err(d->dev, "CCP error: %s (0x%x)\n", ccp_error_codes[e], e);
 
 
 
 
 
 
 88}
 89
 90/* List of CCPs, CCP count, read-write access lock, and access functions
 91 *
 92 * Lock structure: get ccp_unit_lock for reading whenever we need to
 93 * examine the CCP list. While holding it for reading we can acquire
 94 * the RR lock to update the round-robin next-CCP pointer. The unit lock
 95 * must be acquired before the RR lock.
 96 *
 97 * If the unit-lock is acquired for writing, we have total control over
 98 * the list, so there's no value in getting the RR lock.
 99 */
100static DEFINE_RWLOCK(ccp_unit_lock);
101static LIST_HEAD(ccp_units);
102
103/* Round-robin counter */
104static DEFINE_SPINLOCK(ccp_rr_lock);
105static struct ccp_device *ccp_rr;
106
107/**
108 * ccp_add_device - add a CCP device to the list
109 *
110 * @ccp: ccp_device struct pointer
111 *
112 * Put this CCP on the unit list, which makes it available
113 * for use.
114 *
115 * Returns zero if a CCP device is present, -ENODEV otherwise.
116 */
117void ccp_add_device(struct ccp_device *ccp)
118{
119	unsigned long flags;
120
121	write_lock_irqsave(&ccp_unit_lock, flags);
122	list_add_tail(&ccp->entry, &ccp_units);
123	if (!ccp_rr)
124		/* We already have the list lock (we're first) so this
125		 * pointer can't change on us. Set its initial value.
126		 */
127		ccp_rr = ccp;
128	write_unlock_irqrestore(&ccp_unit_lock, flags);
129}
130
131/**
132 * ccp_del_device - remove a CCP device from the list
133 *
134 * @ccp: ccp_device struct pointer
135 *
136 * Remove this unit from the list of devices. If the next device
137 * up for use is this one, adjust the pointer. If this is the last
138 * device, NULL the pointer.
139 */
140void ccp_del_device(struct ccp_device *ccp)
141{
142	unsigned long flags;
143
144	write_lock_irqsave(&ccp_unit_lock, flags);
145	if (ccp_rr == ccp) {
146		/* ccp_unit_lock is read/write; any read access
147		 * will be suspended while we make changes to the
148		 * list and RR pointer.
149		 */
150		if (list_is_last(&ccp_rr->entry, &ccp_units))
151			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
152						  entry);
153		else
154			ccp_rr = list_next_entry(ccp_rr, entry);
155	}
156	list_del(&ccp->entry);
157	if (list_empty(&ccp_units))
158		ccp_rr = NULL;
159	write_unlock_irqrestore(&ccp_unit_lock, flags);
160}
161
162
163
164int ccp_register_rng(struct ccp_device *ccp)
165{
166	int ret = 0;
167
168	dev_dbg(ccp->dev, "Registering RNG...\n");
169	/* Register an RNG */
170	ccp->hwrng.name = ccp->rngname;
171	ccp->hwrng.read = ccp_trng_read;
172	ret = hwrng_register(&ccp->hwrng);
173	if (ret)
174		dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
175
176	return ret;
177}
178
179void ccp_unregister_rng(struct ccp_device *ccp)
180{
181	if (ccp->hwrng.name)
182		hwrng_unregister(&ccp->hwrng);
183}
184
185static struct ccp_device *ccp_get_device(void)
186{
187	unsigned long flags;
188	struct ccp_device *dp = NULL;
189
190	/* We round-robin through the unit list.
191	 * The (ccp_rr) pointer refers to the next unit to use.
192	 */
193	read_lock_irqsave(&ccp_unit_lock, flags);
194	if (!list_empty(&ccp_units)) {
195		spin_lock(&ccp_rr_lock);
196		dp = ccp_rr;
197		if (list_is_last(&ccp_rr->entry, &ccp_units))
198			ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
199						  entry);
200		else
201			ccp_rr = list_next_entry(ccp_rr, entry);
202		spin_unlock(&ccp_rr_lock);
203	}
204	read_unlock_irqrestore(&ccp_unit_lock, flags);
205
206	return dp;
207}
208
209/**
210 * ccp_present - check if a CCP device is present
211 *
212 * Returns zero if a CCP device is present, -ENODEV otherwise.
213 */
214int ccp_present(void)
215{
216	unsigned long flags;
217	int ret;
218
219	read_lock_irqsave(&ccp_unit_lock, flags);
220	ret = list_empty(&ccp_units);
221	read_unlock_irqrestore(&ccp_unit_lock, flags);
222
223	return ret ? -ENODEV : 0;
224}
225EXPORT_SYMBOL_GPL(ccp_present);
226
227/**
228 * ccp_version - get the version of the CCP device
229 *
230 * Returns the version from the first unit on the list;
231 * otherwise a zero if no CCP device is present
232 */
233unsigned int ccp_version(void)
234{
235	struct ccp_device *dp;
236	unsigned long flags;
237	int ret = 0;
238
239	read_lock_irqsave(&ccp_unit_lock, flags);
240	if (!list_empty(&ccp_units)) {
241		dp = list_first_entry(&ccp_units, struct ccp_device, entry);
242		ret = dp->vdata->version;
243	}
244	read_unlock_irqrestore(&ccp_unit_lock, flags);
245
246	return ret;
247}
248EXPORT_SYMBOL_GPL(ccp_version);
249
250/**
251 * ccp_enqueue_cmd - queue an operation for processing by the CCP
252 *
253 * @cmd: ccp_cmd struct to be processed
254 *
255 * Queue a cmd to be processed by the CCP. If queueing the cmd
256 * would exceed the defined length of the cmd queue the cmd will
257 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
258 * result in a return code of -EBUSY.
259 *
260 * The callback routine specified in the ccp_cmd struct will be
261 * called to notify the caller of completion (if the cmd was not
262 * backlogged) or advancement out of the backlog. If the cmd has
263 * advanced out of the backlog the "err" value of the callback
264 * will be -EINPROGRESS. Any other "err" value during callback is
265 * the result of the operation.
266 *
267 * The cmd has been successfully queued if:
268 *   the return code is -EINPROGRESS or
269 *   the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
270 */
271int ccp_enqueue_cmd(struct ccp_cmd *cmd)
272{
273	struct ccp_device *ccp;
274	unsigned long flags;
275	unsigned int i;
276	int ret;
277
278	/* Some commands might need to be sent to a specific device */
279	ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
280
281	if (!ccp)
282		return -ENODEV;
283
284	/* Caller must supply a callback routine */
285	if (!cmd->callback)
286		return -EINVAL;
287
288	cmd->ccp = ccp;
289
290	spin_lock_irqsave(&ccp->cmd_lock, flags);
291
292	i = ccp->cmd_q_count;
293
294	if (ccp->cmd_count >= MAX_CMD_QLEN) {
295		if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
296			ret = -EBUSY;
297			list_add_tail(&cmd->entry, &ccp->backlog);
298		} else {
299			ret = -ENOSPC;
300		}
301	} else {
302		ret = -EINPROGRESS;
303		ccp->cmd_count++;
304		list_add_tail(&cmd->entry, &ccp->cmd);
305
306		/* Find an idle queue */
307		if (!ccp->suspending) {
308			for (i = 0; i < ccp->cmd_q_count; i++) {
309				if (ccp->cmd_q[i].active)
310					continue;
311
312				break;
313			}
314		}
315	}
316
317	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
318
319	/* If we found an idle queue, wake it up */
320	if (i < ccp->cmd_q_count)
321		wake_up_process(ccp->cmd_q[i].kthread);
322
323	return ret;
324}
325EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
326
327static void ccp_do_cmd_backlog(struct work_struct *work)
328{
329	struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
330	struct ccp_device *ccp = cmd->ccp;
331	unsigned long flags;
332	unsigned int i;
333
334	cmd->callback(cmd->data, -EINPROGRESS);
335
336	spin_lock_irqsave(&ccp->cmd_lock, flags);
337
338	ccp->cmd_count++;
339	list_add_tail(&cmd->entry, &ccp->cmd);
340
341	/* Find an idle queue */
342	for (i = 0; i < ccp->cmd_q_count; i++) {
343		if (ccp->cmd_q[i].active)
344			continue;
345
346		break;
347	}
348
349	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
350
351	/* If we found an idle queue, wake it up */
352	if (i < ccp->cmd_q_count)
353		wake_up_process(ccp->cmd_q[i].kthread);
354}
355
356static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
357{
358	struct ccp_device *ccp = cmd_q->ccp;
359	struct ccp_cmd *cmd = NULL;
360	struct ccp_cmd *backlog = NULL;
361	unsigned long flags;
362
363	spin_lock_irqsave(&ccp->cmd_lock, flags);
364
365	cmd_q->active = 0;
366
367	if (ccp->suspending) {
368		cmd_q->suspended = 1;
369
370		spin_unlock_irqrestore(&ccp->cmd_lock, flags);
371		wake_up_interruptible(&ccp->suspend_queue);
372
373		return NULL;
374	}
375
376	if (ccp->cmd_count) {
377		cmd_q->active = 1;
378
379		cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
380		list_del(&cmd->entry);
381
382		ccp->cmd_count--;
383	}
384
385	if (!list_empty(&ccp->backlog)) {
386		backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
387					   entry);
388		list_del(&backlog->entry);
389	}
390
391	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
392
393	if (backlog) {
394		INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
395		schedule_work(&backlog->work);
396	}
397
398	return cmd;
399}
400
401static void ccp_do_cmd_complete(unsigned long data)
402{
403	struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
404	struct ccp_cmd *cmd = tdata->cmd;
405
406	cmd->callback(cmd->data, cmd->ret);
407
408	complete(&tdata->completion);
409}
410
411/**
412 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
413 *
414 * @data: thread-specific data
415 */
416int ccp_cmd_queue_thread(void *data)
417{
418	struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
419	struct ccp_cmd *cmd;
420	struct ccp_tasklet_data tdata;
421	struct tasklet_struct tasklet;
422
423	tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
424
425	set_current_state(TASK_INTERRUPTIBLE);
426	while (!kthread_should_stop()) {
427		schedule();
428
429		set_current_state(TASK_INTERRUPTIBLE);
430
431		cmd = ccp_dequeue_cmd(cmd_q);
432		if (!cmd)
433			continue;
434
435		__set_current_state(TASK_RUNNING);
436
437		/* Execute the command */
438		cmd->ret = ccp_run_cmd(cmd_q, cmd);
439
440		/* Schedule the completion callback */
441		tdata.cmd = cmd;
442		init_completion(&tdata.completion);
443		tasklet_schedule(&tasklet);
444		wait_for_completion(&tdata.completion);
445	}
446
447	__set_current_state(TASK_RUNNING);
448
449	return 0;
450}
451
452/**
453 * ccp_alloc_struct - allocate and initialize the ccp_device struct
454 *
455 * @dev: device struct of the CCP
456 */
457struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
458{
459	struct device *dev = sp->dev;
460	struct ccp_device *ccp;
461
462	ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
463	if (!ccp)
464		return NULL;
465	ccp->dev = dev;
466	ccp->sp = sp;
467	ccp->axcache = sp->axcache;
468
469	INIT_LIST_HEAD(&ccp->cmd);
470	INIT_LIST_HEAD(&ccp->backlog);
471
472	spin_lock_init(&ccp->cmd_lock);
473	mutex_init(&ccp->req_mutex);
474	mutex_init(&ccp->sb_mutex);
475	ccp->sb_count = KSB_COUNT;
476	ccp->sb_start = 0;
477
478	/* Initialize the wait queues */
479	init_waitqueue_head(&ccp->sb_queue);
480	init_waitqueue_head(&ccp->suspend_queue);
481
482	snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
483	snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
484
485	return ccp;
486}
487
488int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
489{
490	struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
491	u32 trng_value;
492	int len = min_t(int, sizeof(trng_value), max);
493
494	/* Locking is provided by the caller so we can update device
495	 * hwrng-related fields safely
496	 */
497	trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
498	if (!trng_value) {
499		/* Zero is returned if not data is available or if a
500		 * bad-entropy error is present. Assume an error if
501		 * we exceed TRNG_RETRIES reads of zero.
502		 */
503		if (ccp->hwrng_retries++ > TRNG_RETRIES)
504			return -EIO;
505
506		return 0;
507	}
508
509	/* Reset the counter and save the rng value */
510	ccp->hwrng_retries = 0;
511	memcpy(data, &trng_value, len);
512
513	return len;
514}
515
516#ifdef CONFIG_PM
517bool ccp_queues_suspended(struct ccp_device *ccp)
518{
519	unsigned int suspended = 0;
520	unsigned long flags;
521	unsigned int i;
522
523	spin_lock_irqsave(&ccp->cmd_lock, flags);
524
525	for (i = 0; i < ccp->cmd_q_count; i++)
526		if (ccp->cmd_q[i].suspended)
527			suspended++;
528
529	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
530
531	return ccp->cmd_q_count == suspended;
532}
533
534int ccp_dev_suspend(struct sp_device *sp, pm_message_t state)
535{
536	struct ccp_device *ccp = sp->ccp_data;
537	unsigned long flags;
538	unsigned int i;
539
 
 
 
 
540	spin_lock_irqsave(&ccp->cmd_lock, flags);
541
542	ccp->suspending = 1;
543
544	/* Wake all the queue kthreads to prepare for suspend */
545	for (i = 0; i < ccp->cmd_q_count; i++)
546		wake_up_process(ccp->cmd_q[i].kthread);
547
548	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
549
550	/* Wait for all queue kthreads to say they're done */
551	while (!ccp_queues_suspended(ccp))
552		wait_event_interruptible(ccp->suspend_queue,
553					 ccp_queues_suspended(ccp));
554
555	return 0;
556}
557
558int ccp_dev_resume(struct sp_device *sp)
559{
560	struct ccp_device *ccp = sp->ccp_data;
561	unsigned long flags;
562	unsigned int i;
563
 
 
 
 
564	spin_lock_irqsave(&ccp->cmd_lock, flags);
565
566	ccp->suspending = 0;
567
568	/* Wake up all the kthreads */
569	for (i = 0; i < ccp->cmd_q_count; i++) {
570		ccp->cmd_q[i].suspended = 0;
571		wake_up_process(ccp->cmd_q[i].kthread);
572	}
573
574	spin_unlock_irqrestore(&ccp->cmd_lock, flags);
575
576	return 0;
577}
578#endif
579
580int ccp_dev_init(struct sp_device *sp)
581{
582	struct device *dev = sp->dev;
583	struct ccp_device *ccp;
584	int ret;
585
 
 
 
 
 
 
 
586	ret = -ENOMEM;
587	ccp = ccp_alloc_struct(sp);
588	if (!ccp)
589		goto e_err;
590	sp->ccp_data = ccp;
591
 
 
 
 
 
592	ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
593	if (!ccp->vdata || !ccp->vdata->version) {
594		ret = -ENODEV;
595		dev_err(dev, "missing driver data\n");
596		goto e_err;
597	}
598
599	ccp->use_tasklet = sp->use_tasklet;
600
601	ccp->io_regs = sp->io_map + ccp->vdata->offset;
602	if (ccp->vdata->setup)
603		ccp->vdata->setup(ccp);
604
605	ret = ccp->vdata->perform->init(ccp);
606	if (ret)
 
 
 
 
 
 
 
607		goto e_err;
 
608
609	dev_notice(dev, "ccp enabled\n");
610
611	return 0;
612
613e_err:
 
 
 
614	sp->ccp_data = NULL;
615
616	dev_notice(dev, "ccp initialization failed\n");
617
618	return ret;
619}
620
621void ccp_dev_destroy(struct sp_device *sp)
622{
623	struct ccp_device *ccp = sp->ccp_data;
624
625	if (!ccp)
626		return;
627
628	ccp->vdata->perform->destroy(ccp);
629}