Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Cryptographic API.
   4 *
   5 * Support for ATMEL SHA1/SHA256 HW acceleration.
   6 *
   7 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   8 * Author: Nicolas Royer <nicolas@eukrea.com>
   9 *
 
 
 
 
  10 * Some ideas are from omap-sham.c drivers.
  11 */
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/err.h>
  18#include <linux/clk.h>
  19#include <linux/io.h>
  20#include <linux/hw_random.h>
  21#include <linux/platform_device.h>
  22
  23#include <linux/device.h>
  24#include <linux/dmaengine.h>
  25#include <linux/init.h>
  26#include <linux/errno.h>
  27#include <linux/interrupt.h>
  28#include <linux/irq.h>
  29#include <linux/scatterlist.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/delay.h>
  33#include <linux/crypto.h>
 
  34#include <crypto/scatterwalk.h>
  35#include <crypto/algapi.h>
  36#include <crypto/sha1.h>
  37#include <crypto/sha2.h>
  38#include <crypto/hash.h>
  39#include <crypto/internal/hash.h>
 
  40#include "atmel-sha-regs.h"
  41#include "atmel-authenc.h"
  42
  43#define ATMEL_SHA_PRIORITY	300
  44
  45/* SHA flags */
  46#define SHA_FLAGS_BUSY			BIT(0)
  47#define	SHA_FLAGS_FINAL			BIT(1)
  48#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  49#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  50#define SHA_FLAGS_INIT			BIT(4)
  51#define SHA_FLAGS_CPU			BIT(5)
  52#define SHA_FLAGS_DMA_READY		BIT(6)
  53#define SHA_FLAGS_DUMP_REG	BIT(7)
  54
  55/* bits[11:8] are reserved. */
  56
  57#define SHA_FLAGS_FINUP		BIT(16)
  58#define SHA_FLAGS_SG		BIT(17)
  59#define SHA_FLAGS_ERROR		BIT(23)
  60#define SHA_FLAGS_PAD		BIT(24)
  61#define SHA_FLAGS_RESTORE	BIT(25)
  62#define SHA_FLAGS_IDATAR0	BIT(26)
  63#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
  64
  65#define SHA_OP_INIT	0
  66#define SHA_OP_UPDATE	1
  67#define SHA_OP_FINAL	2
  68#define SHA_OP_DIGEST	3
  69
  70#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  71
  72#define ATMEL_SHA_DMA_THRESHOLD		56
  73
  74struct atmel_sha_caps {
  75	bool	has_dma;
  76	bool	has_dualbuff;
  77	bool	has_sha224;
  78	bool	has_sha_384_512;
  79	bool	has_uihv;
  80	bool	has_hmac;
  81};
  82
  83struct atmel_sha_dev;
  84
  85/*
  86 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  87 * tested by the ahash_prepare_alg() function.
  88 */
  89struct atmel_sha_reqctx {
  90	struct atmel_sha_dev	*dd;
  91	unsigned long	flags;
  92	unsigned long	op;
  93
  94	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  95	u64	digcnt[2];
  96	size_t	bufcnt;
  97	size_t	buflen;
  98	dma_addr_t	dma_addr;
  99
 100	/* walk state */
 101	struct scatterlist	*sg;
 102	unsigned int	offset;	/* offset in current sg */
 103	unsigned int	total;	/* total request */
 104
 105	size_t block_size;
 106	size_t hash_size;
 107
 108	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 109};
 110
 111typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 112
 113struct atmel_sha_ctx {
 114	struct atmel_sha_dev	*dd;
 115	atmel_sha_fn_t		start;
 116
 117	unsigned long		flags;
 118};
 119
 120#define ATMEL_SHA_QUEUE_LENGTH	50
 121
 122struct atmel_sha_dma {
 123	struct dma_chan			*chan;
 124	struct dma_slave_config dma_conf;
 125	struct scatterlist	*sg;
 126	int			nents;
 127	unsigned int		last_sg_length;
 128};
 129
 130struct atmel_sha_dev {
 131	struct list_head	list;
 132	unsigned long		phys_base;
 133	struct device		*dev;
 134	struct clk			*iclk;
 135	int					irq;
 136	void __iomem		*io_base;
 137
 138	spinlock_t		lock;
 
 139	struct tasklet_struct	done_task;
 140	struct tasklet_struct	queue_task;
 141
 142	unsigned long		flags;
 143	struct crypto_queue	queue;
 144	struct ahash_request	*req;
 145	bool			is_async;
 146	bool			force_complete;
 147	atmel_sha_fn_t		resume;
 148	atmel_sha_fn_t		cpu_transfer_complete;
 149
 150	struct atmel_sha_dma	dma_lch_in;
 151
 152	struct atmel_sha_caps	caps;
 153
 154	struct scatterlist	tmp;
 155
 156	u32	hw_version;
 157};
 158
 159struct atmel_sha_drv {
 160	struct list_head	dev_list;
 161	spinlock_t		lock;
 162};
 163
 164static struct atmel_sha_drv atmel_sha = {
 165	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 166	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 167};
 168
 169#ifdef VERBOSE_DEBUG
 170static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 171{
 172	switch (offset) {
 173	case SHA_CR:
 174		return "CR";
 175
 176	case SHA_MR:
 177		return "MR";
 178
 179	case SHA_IER:
 180		return "IER";
 181
 182	case SHA_IDR:
 183		return "IDR";
 184
 185	case SHA_IMR:
 186		return "IMR";
 187
 188	case SHA_ISR:
 189		return "ISR";
 190
 191	case SHA_MSR:
 192		return "MSR";
 193
 194	case SHA_BCR:
 195		return "BCR";
 196
 197	case SHA_REG_DIN(0):
 198	case SHA_REG_DIN(1):
 199	case SHA_REG_DIN(2):
 200	case SHA_REG_DIN(3):
 201	case SHA_REG_DIN(4):
 202	case SHA_REG_DIN(5):
 203	case SHA_REG_DIN(6):
 204	case SHA_REG_DIN(7):
 205	case SHA_REG_DIN(8):
 206	case SHA_REG_DIN(9):
 207	case SHA_REG_DIN(10):
 208	case SHA_REG_DIN(11):
 209	case SHA_REG_DIN(12):
 210	case SHA_REG_DIN(13):
 211	case SHA_REG_DIN(14):
 212	case SHA_REG_DIN(15):
 213		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 214		break;
 215
 216	case SHA_REG_DIGEST(0):
 217	case SHA_REG_DIGEST(1):
 218	case SHA_REG_DIGEST(2):
 219	case SHA_REG_DIGEST(3):
 220	case SHA_REG_DIGEST(4):
 221	case SHA_REG_DIGEST(5):
 222	case SHA_REG_DIGEST(6):
 223	case SHA_REG_DIGEST(7):
 224	case SHA_REG_DIGEST(8):
 225	case SHA_REG_DIGEST(9):
 226	case SHA_REG_DIGEST(10):
 227	case SHA_REG_DIGEST(11):
 228	case SHA_REG_DIGEST(12):
 229	case SHA_REG_DIGEST(13):
 230	case SHA_REG_DIGEST(14):
 231	case SHA_REG_DIGEST(15):
 232		if (wr)
 233			snprintf(tmp, sz, "IDATAR[%u]",
 234				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 235		else
 236			snprintf(tmp, sz, "ODATAR[%u]",
 237				 (offset - SHA_REG_DIGEST(0)) >> 2);
 238		break;
 239
 240	case SHA_HW_VERSION:
 241		return "HWVER";
 242
 243	default:
 244		snprintf(tmp, sz, "0x%02x", offset);
 245		break;
 246	}
 247
 248	return tmp;
 249}
 250
 251#endif /* VERBOSE_DEBUG */
 252
 253static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 254{
 255	u32 value = readl_relaxed(dd->io_base + offset);
 256
 257#ifdef VERBOSE_DEBUG
 258	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 259		char tmp[16];
 260
 261		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 262			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 263	}
 264#endif /* VERBOSE_DEBUG */
 265
 266	return value;
 267}
 268
 269static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 270					u32 offset, u32 value)
 271{
 272#ifdef VERBOSE_DEBUG
 273	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 274		char tmp[16];
 275
 276		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 277			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 278	}
 279#endif /* VERBOSE_DEBUG */
 280
 281	writel_relaxed(value, dd->io_base + offset);
 282}
 283
 284static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 285{
 286	struct ahash_request *req = dd->req;
 287
 288	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 289		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 290		       SHA_FLAGS_DUMP_REG);
 291
 292	clk_disable(dd->iclk);
 293
 294	if ((dd->is_async || dd->force_complete) && req->base.complete)
 295		ahash_request_complete(req, err);
 296
 297	/* handle new request */
 298	tasklet_schedule(&dd->queue_task);
 299
 300	return err;
 301}
 302
 303static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 304{
 305	size_t count;
 306
 307	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 308		count = min(ctx->sg->length - ctx->offset, ctx->total);
 309		count = min(count, ctx->buflen - ctx->bufcnt);
 310
 311		if (count <= 0) {
 312			/*
 313			* Check if count <= 0 because the buffer is full or
 314			* because the sg length is 0. In the latest case,
 315			* check if there is another sg in the list, a 0 length
 316			* sg doesn't necessarily mean the end of the sg list.
 317			*/
 318			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 319				ctx->sg = sg_next(ctx->sg);
 320				continue;
 321			} else {
 322				break;
 323			}
 324		}
 325
 326		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 327			ctx->offset, count, 0);
 328
 329		ctx->bufcnt += count;
 330		ctx->offset += count;
 331		ctx->total -= count;
 332
 333		if (ctx->offset == ctx->sg->length) {
 334			ctx->sg = sg_next(ctx->sg);
 335			if (ctx->sg)
 336				ctx->offset = 0;
 337			else
 338				ctx->total = 0;
 339		}
 340	}
 341
 342	return 0;
 343}
 344
 345/*
 346 * The purpose of this padding is to ensure that the padded message is a
 347 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 348 * The bit "1" is appended at the end of the message followed by
 349 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 350 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 351 * is appended.
 352 *
 353 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 354 *  - if message length < 56 bytes then padlen = 56 - message length
 355 *  - else padlen = 64 + 56 - message length
 356 *
 357 * For SHA384/SHA512, padlen is calculated as followed:
 358 *  - if message length < 112 bytes then padlen = 112 - message length
 359 *  - else padlen = 128 + 112 - message length
 360 */
 361static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 362{
 363	unsigned int index, padlen;
 364	__be64 bits[2];
 365	u64 size[2];
 366
 367	size[0] = ctx->digcnt[0];
 368	size[1] = ctx->digcnt[1];
 369
 370	size[0] += ctx->bufcnt;
 371	if (size[0] < ctx->bufcnt)
 372		size[1]++;
 373
 374	size[0] += length;
 375	if (size[0]  < length)
 376		size[1]++;
 377
 378	bits[1] = cpu_to_be64(size[0] << 3);
 379	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 380
 381	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 382	case SHA_FLAGS_SHA384:
 383	case SHA_FLAGS_SHA512:
 384		index = ctx->bufcnt & 0x7f;
 385		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 386		*(ctx->buffer + ctx->bufcnt) = 0x80;
 387		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 388		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 389		ctx->bufcnt += padlen + 16;
 390		ctx->flags |= SHA_FLAGS_PAD;
 391		break;
 392
 393	default:
 394		index = ctx->bufcnt & 0x3f;
 395		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 396		*(ctx->buffer + ctx->bufcnt) = 0x80;
 397		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 398		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 399		ctx->bufcnt += padlen + 8;
 400		ctx->flags |= SHA_FLAGS_PAD;
 401		break;
 402	}
 403}
 404
 405static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 406{
 407	struct atmel_sha_dev *dd = NULL;
 408	struct atmel_sha_dev *tmp;
 409
 410	spin_lock_bh(&atmel_sha.lock);
 411	if (!tctx->dd) {
 412		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 413			dd = tmp;
 414			break;
 415		}
 416		tctx->dd = dd;
 417	} else {
 418		dd = tctx->dd;
 419	}
 420
 421	spin_unlock_bh(&atmel_sha.lock);
 422
 423	return dd;
 424}
 425
 426static int atmel_sha_init(struct ahash_request *req)
 427{
 428	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 429	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 430	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 431	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 432
 433	ctx->dd = dd;
 434
 435	ctx->flags = 0;
 436
 437	dev_dbg(dd->dev, "init: digest size: %u\n",
 438		crypto_ahash_digestsize(tfm));
 439
 440	switch (crypto_ahash_digestsize(tfm)) {
 441	case SHA1_DIGEST_SIZE:
 442		ctx->flags |= SHA_FLAGS_SHA1;
 443		ctx->block_size = SHA1_BLOCK_SIZE;
 444		break;
 445	case SHA224_DIGEST_SIZE:
 446		ctx->flags |= SHA_FLAGS_SHA224;
 447		ctx->block_size = SHA224_BLOCK_SIZE;
 448		break;
 449	case SHA256_DIGEST_SIZE:
 450		ctx->flags |= SHA_FLAGS_SHA256;
 451		ctx->block_size = SHA256_BLOCK_SIZE;
 452		break;
 453	case SHA384_DIGEST_SIZE:
 454		ctx->flags |= SHA_FLAGS_SHA384;
 455		ctx->block_size = SHA384_BLOCK_SIZE;
 456		break;
 457	case SHA512_DIGEST_SIZE:
 458		ctx->flags |= SHA_FLAGS_SHA512;
 459		ctx->block_size = SHA512_BLOCK_SIZE;
 460		break;
 461	default:
 462		return -EINVAL;
 
 463	}
 464
 465	ctx->bufcnt = 0;
 466	ctx->digcnt[0] = 0;
 467	ctx->digcnt[1] = 0;
 468	ctx->buflen = SHA_BUFFER_LEN;
 469
 470	return 0;
 471}
 472
 473static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 474{
 475	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 476	u32 valmr = SHA_MR_MODE_AUTO;
 477	unsigned int i, hashsize = 0;
 478
 479	if (likely(dma)) {
 480		if (!dd->caps.has_dma)
 481			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 482		valmr = SHA_MR_MODE_PDC;
 483		if (dd->caps.has_dualbuff)
 484			valmr |= SHA_MR_DUALBUFF;
 485	} else {
 486		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 487	}
 488
 489	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 490	case SHA_FLAGS_SHA1:
 491		valmr |= SHA_MR_ALGO_SHA1;
 492		hashsize = SHA1_DIGEST_SIZE;
 493		break;
 494
 495	case SHA_FLAGS_SHA224:
 496		valmr |= SHA_MR_ALGO_SHA224;
 497		hashsize = SHA256_DIGEST_SIZE;
 498		break;
 499
 500	case SHA_FLAGS_SHA256:
 501		valmr |= SHA_MR_ALGO_SHA256;
 502		hashsize = SHA256_DIGEST_SIZE;
 503		break;
 504
 505	case SHA_FLAGS_SHA384:
 506		valmr |= SHA_MR_ALGO_SHA384;
 507		hashsize = SHA512_DIGEST_SIZE;
 508		break;
 509
 510	case SHA_FLAGS_SHA512:
 511		valmr |= SHA_MR_ALGO_SHA512;
 512		hashsize = SHA512_DIGEST_SIZE;
 513		break;
 514
 515	default:
 516		break;
 517	}
 518
 519	/* Setting CR_FIRST only for the first iteration */
 520	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 521		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 522	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 523		const u32 *hash = (const u32 *)ctx->digest;
 524
 525		/*
 526		 * Restore the hardware context: update the User Initialize
 527		 * Hash Value (UIHV) with the value saved when the latest
 528		 * 'update' operation completed on this very same crypto
 529		 * request.
 530		 */
 531		ctx->flags &= ~SHA_FLAGS_RESTORE;
 532		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 533		for (i = 0; i < hashsize / sizeof(u32); ++i)
 534			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 535		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 536		valmr |= SHA_MR_UIHV;
 537	}
 538	/*
 539	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 540	 * process concurrent requests: the internal registers used to store
 541	 * the hash/digest are still set to the partial digest output values
 542	 * computed during the latest round.
 543	 */
 544
 545	atmel_sha_write(dd, SHA_MR, valmr);
 546}
 547
 548static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 549						atmel_sha_fn_t resume)
 550{
 551	u32 isr = atmel_sha_read(dd, SHA_ISR);
 552
 553	if (unlikely(isr & SHA_INT_DATARDY))
 554		return resume(dd);
 555
 556	dd->resume = resume;
 557	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 558	return -EINPROGRESS;
 559}
 560
 561static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 562			      size_t length, int final)
 563{
 564	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 565	int count, len32;
 566	const u32 *buffer = (const u32 *)buf;
 567
 568	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 569		ctx->digcnt[1], ctx->digcnt[0], length, final);
 570
 571	atmel_sha_write_ctrl(dd, 0);
 572
 573	/* should be non-zero before next lines to disable clocks later */
 574	ctx->digcnt[0] += length;
 575	if (ctx->digcnt[0] < length)
 576		ctx->digcnt[1]++;
 577
 578	if (final)
 579		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 580
 581	len32 = DIV_ROUND_UP(length, sizeof(u32));
 582
 583	dd->flags |= SHA_FLAGS_CPU;
 584
 585	for (count = 0; count < len32; count++)
 586		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 587
 588	return -EINPROGRESS;
 589}
 590
 591static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 592		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 593{
 594	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 595	int len32;
 596
 597	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 598		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 599
 600	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 601	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 602	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 603	atmel_sha_write(dd, SHA_TCR, len32);
 604
 605	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 606	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 607	atmel_sha_write(dd, SHA_TNCR, len32);
 608
 609	atmel_sha_write_ctrl(dd, 1);
 610
 611	/* should be non-zero before next lines to disable clocks later */
 612	ctx->digcnt[0] += length1;
 613	if (ctx->digcnt[0] < length1)
 614		ctx->digcnt[1]++;
 615
 616	if (final)
 617		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 618
 619	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 620
 621	/* Start DMA transfer */
 622	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 623
 624	return -EINPROGRESS;
 625}
 626
 627static void atmel_sha_dma_callback(void *data)
 628{
 629	struct atmel_sha_dev *dd = data;
 630
 631	dd->is_async = true;
 632
 633	/* dma_lch_in - completed - wait DATRDY */
 634	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 635}
 636
 637static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 638		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 639{
 640	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 641	struct dma_async_tx_descriptor	*in_desc;
 642	struct scatterlist sg[2];
 643
 644	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 645		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 646
 647	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 648	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 649
 650	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 651
 652	if (length2) {
 653		sg_init_table(sg, 2);
 654		sg_dma_address(&sg[0]) = dma_addr1;
 655		sg_dma_len(&sg[0]) = length1;
 656		sg_dma_address(&sg[1]) = dma_addr2;
 657		sg_dma_len(&sg[1]) = length2;
 658		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 659			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 660	} else {
 661		sg_init_table(sg, 1);
 662		sg_dma_address(&sg[0]) = dma_addr1;
 663		sg_dma_len(&sg[0]) = length1;
 664		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 665			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 666	}
 667	if (!in_desc)
 668		return atmel_sha_complete(dd, -EINVAL);
 669
 670	in_desc->callback = atmel_sha_dma_callback;
 671	in_desc->callback_param = dd;
 672
 673	atmel_sha_write_ctrl(dd, 1);
 674
 675	/* should be non-zero before next lines to disable clocks later */
 676	ctx->digcnt[0] += length1;
 677	if (ctx->digcnt[0] < length1)
 678		ctx->digcnt[1]++;
 679
 680	if (final)
 681		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 682
 683	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 684
 685	/* Start DMA transfer */
 686	dmaengine_submit(in_desc);
 687	dma_async_issue_pending(dd->dma_lch_in.chan);
 688
 689	return -EINPROGRESS;
 690}
 691
 692static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 693		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 694{
 695	if (dd->caps.has_dma)
 696		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 697				dma_addr2, length2, final);
 698	else
 699		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 700				dma_addr2, length2, final);
 701}
 702
 703static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 704{
 705	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 706	int bufcnt;
 707
 708	atmel_sha_append_sg(ctx);
 709	atmel_sha_fill_padding(ctx, 0);
 710	bufcnt = ctx->bufcnt;
 711	ctx->bufcnt = 0;
 712
 713	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 714}
 715
 716static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 717					struct atmel_sha_reqctx *ctx,
 718					size_t length, int final)
 719{
 720	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 721				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 722	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 723		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 724				ctx->block_size);
 725		return atmel_sha_complete(dd, -EINVAL);
 726	}
 727
 728	ctx->flags &= ~SHA_FLAGS_SG;
 729
 730	/* next call does not fail... so no unmap in the case of error */
 731	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 732}
 733
 734static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 735{
 736	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 737	unsigned int final;
 738	size_t count;
 739
 740	atmel_sha_append_sg(ctx);
 741
 742	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 743
 744	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 745		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 746
 747	if (final)
 748		atmel_sha_fill_padding(ctx, 0);
 749
 750	if (final || (ctx->bufcnt == ctx->buflen)) {
 751		count = ctx->bufcnt;
 752		ctx->bufcnt = 0;
 753		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 754	}
 755
 756	return 0;
 757}
 758
 759static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 760{
 761	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 762	unsigned int length, final, tail;
 763	struct scatterlist *sg;
 764	unsigned int count;
 765
 766	if (!ctx->total)
 767		return 0;
 768
 769	if (ctx->bufcnt || ctx->offset)
 770		return atmel_sha_update_dma_slow(dd);
 771
 772	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 773		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 774
 775	sg = ctx->sg;
 776
 777	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 778		return atmel_sha_update_dma_slow(dd);
 779
 780	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 781		/* size is not ctx->block_size aligned */
 782		return atmel_sha_update_dma_slow(dd);
 783
 784	length = min(ctx->total, sg->length);
 785
 786	if (sg_is_last(sg)) {
 787		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 788			/* not last sg must be ctx->block_size aligned */
 789			tail = length & (ctx->block_size - 1);
 790			length -= tail;
 791		}
 792	}
 793
 794	ctx->total -= length;
 795	ctx->offset = length; /* offset where to start slow */
 796
 797	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 798
 799	/* Add padding */
 800	if (final) {
 801		tail = length & (ctx->block_size - 1);
 802		length -= tail;
 803		ctx->total += tail;
 804		ctx->offset = length; /* offset where to start slow */
 805
 806		sg = ctx->sg;
 807		atmel_sha_append_sg(ctx);
 808
 809		atmel_sha_fill_padding(ctx, length);
 810
 811		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 812			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 813		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 814			dev_err(dd->dev, "dma %zu bytes error\n",
 815				ctx->buflen + ctx->block_size);
 816			return atmel_sha_complete(dd, -EINVAL);
 817		}
 818
 819		if (length == 0) {
 820			ctx->flags &= ~SHA_FLAGS_SG;
 821			count = ctx->bufcnt;
 822			ctx->bufcnt = 0;
 823			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 824					0, final);
 825		} else {
 826			ctx->sg = sg;
 827			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 828				DMA_TO_DEVICE)) {
 829					dev_err(dd->dev, "dma_map_sg  error\n");
 830					return atmel_sha_complete(dd, -EINVAL);
 831			}
 832
 833			ctx->flags |= SHA_FLAGS_SG;
 834
 835			count = ctx->bufcnt;
 836			ctx->bufcnt = 0;
 837			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 838					length, ctx->dma_addr, count, final);
 839		}
 840	}
 841
 842	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 843		dev_err(dd->dev, "dma_map_sg  error\n");
 844		return atmel_sha_complete(dd, -EINVAL);
 845	}
 846
 847	ctx->flags |= SHA_FLAGS_SG;
 848
 849	/* next call does not fail... so no unmap in the case of error */
 850	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 851								0, final);
 852}
 853
 854static void atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 855{
 856	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 857
 858	if (ctx->flags & SHA_FLAGS_SG) {
 859		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 860		if (ctx->sg->length == ctx->offset) {
 861			ctx->sg = sg_next(ctx->sg);
 862			if (ctx->sg)
 863				ctx->offset = 0;
 864		}
 865		if (ctx->flags & SHA_FLAGS_PAD) {
 866			dma_unmap_single(dd->dev, ctx->dma_addr,
 867				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 868		}
 869	} else {
 870		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 871						ctx->block_size, DMA_TO_DEVICE);
 872	}
 
 
 873}
 874
 875static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 876{
 877	struct ahash_request *req = dd->req;
 878	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 879	int err;
 880
 881	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 882		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 883
 884	if (ctx->flags & SHA_FLAGS_CPU)
 885		err = atmel_sha_update_cpu(dd);
 886	else
 887		err = atmel_sha_update_dma_start(dd);
 888
 889	/* wait for dma completion before can take more data */
 890	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 891			err, ctx->digcnt[1], ctx->digcnt[0]);
 892
 893	return err;
 894}
 895
 896static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 897{
 898	struct ahash_request *req = dd->req;
 899	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 900	int err = 0;
 901	int count;
 902
 903	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 904		atmel_sha_fill_padding(ctx, 0);
 905		count = ctx->bufcnt;
 906		ctx->bufcnt = 0;
 907		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 908	}
 909	/* faster to handle last block with cpu */
 910	else {
 911		atmel_sha_fill_padding(ctx, 0);
 912		count = ctx->bufcnt;
 913		ctx->bufcnt = 0;
 914		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 915	}
 916
 917	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 918
 919	return err;
 920}
 921
 922static void atmel_sha_copy_hash(struct ahash_request *req)
 923{
 924	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 925	u32 *hash = (u32 *)ctx->digest;
 926	unsigned int i, hashsize;
 927
 928	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 929	case SHA_FLAGS_SHA1:
 930		hashsize = SHA1_DIGEST_SIZE;
 931		break;
 932
 933	case SHA_FLAGS_SHA224:
 934	case SHA_FLAGS_SHA256:
 935		hashsize = SHA256_DIGEST_SIZE;
 936		break;
 937
 938	case SHA_FLAGS_SHA384:
 939	case SHA_FLAGS_SHA512:
 940		hashsize = SHA512_DIGEST_SIZE;
 941		break;
 942
 943	default:
 944		/* Should not happen... */
 945		return;
 946	}
 947
 948	for (i = 0; i < hashsize / sizeof(u32); ++i)
 949		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 950	ctx->flags |= SHA_FLAGS_RESTORE;
 951}
 952
 953static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 954{
 955	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 956
 957	if (!req->result)
 958		return;
 959
 960	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 961	default:
 962	case SHA_FLAGS_SHA1:
 963		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 964		break;
 965
 966	case SHA_FLAGS_SHA224:
 967		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 968		break;
 969
 970	case SHA_FLAGS_SHA256:
 971		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 972		break;
 973
 974	case SHA_FLAGS_SHA384:
 975		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 976		break;
 977
 978	case SHA_FLAGS_SHA512:
 979		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 980		break;
 981	}
 982}
 983
 984static int atmel_sha_finish(struct ahash_request *req)
 985{
 986	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 987	struct atmel_sha_dev *dd = ctx->dd;
 988
 989	if (ctx->digcnt[0] || ctx->digcnt[1])
 990		atmel_sha_copy_ready_hash(req);
 991
 992	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 993		ctx->digcnt[0], ctx->bufcnt);
 994
 995	return 0;
 996}
 997
 998static void atmel_sha_finish_req(struct ahash_request *req, int err)
 999{
1000	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1001	struct atmel_sha_dev *dd = ctx->dd;
1002
1003	if (!err) {
1004		atmel_sha_copy_hash(req);
1005		if (SHA_FLAGS_FINAL & dd->flags)
1006			err = atmel_sha_finish(req);
1007	} else {
1008		ctx->flags |= SHA_FLAGS_ERROR;
1009	}
1010
1011	/* atomic operation is not needed here */
1012	(void)atmel_sha_complete(dd, err);
1013}
1014
1015static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1016{
1017	int err;
1018
1019	err = clk_enable(dd->iclk);
1020	if (err)
1021		return err;
1022
1023	if (!(SHA_FLAGS_INIT & dd->flags)) {
1024		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1025		dd->flags |= SHA_FLAGS_INIT;
 
1026	}
1027
1028	return 0;
1029}
1030
1031static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1032{
1033	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1034}
1035
1036static int atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1037{
1038	int err;
1039
1040	err = atmel_sha_hw_init(dd);
1041	if (err)
1042		return err;
1043
1044	dd->hw_version = atmel_sha_get_version(dd);
1045
1046	dev_info(dd->dev,
1047			"version: 0x%x\n", dd->hw_version);
1048
1049	clk_disable(dd->iclk);
1050
1051	return 0;
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		crypto_request_complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %u\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
1254static void atmel_sha_alg_init(struct ahash_alg *alg)
1255{
1256	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
1257	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
1258	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_ctx);
1259	alg->halg.base.cra_module = THIS_MODULE;
1260	alg->halg.base.cra_init = atmel_sha_cra_init;
1261
1262	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
1263
1264	alg->init = atmel_sha_init;
1265	alg->update = atmel_sha_update;
1266	alg->final = atmel_sha_final;
1267	alg->finup = atmel_sha_finup;
1268	alg->digest = atmel_sha_digest;
1269	alg->export = atmel_sha_export;
1270	alg->import = atmel_sha_import;
1271}
1272
1273static struct ahash_alg sha_1_256_algs[] = {
1274{
1275	.halg.base.cra_name		= "sha1",
1276	.halg.base.cra_driver_name	= "atmel-sha1",
1277	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
1278
1279	.halg.digestsize = SHA1_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280},
1281{
1282	.halg.base.cra_name		= "sha256",
1283	.halg.base.cra_driver_name	= "atmel-sha256",
1284	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
1285
1286	.halg.digestsize = SHA256_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287},
1288};
1289
1290static struct ahash_alg sha_224_alg = {
1291	.halg.base.cra_name		= "sha224",
1292	.halg.base.cra_driver_name	= "atmel-sha224",
1293	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
1294
1295	.halg.digestsize = SHA224_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296};
1297
1298static struct ahash_alg sha_384_512_algs[] = {
1299{
1300	.halg.base.cra_name		= "sha384",
1301	.halg.base.cra_driver_name	= "atmel-sha384",
1302	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
1303
1304	.halg.digestsize = SHA384_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305},
1306{
1307	.halg.base.cra_name		= "sha512",
1308	.halg.base.cra_driver_name	= "atmel-sha512",
1309	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
1310
1311	.halg.digestsize = SHA512_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312},
1313};
1314
1315static void atmel_sha_queue_task(unsigned long data)
1316{
1317	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1318
1319	atmel_sha_handle_queue(dd, NULL);
1320}
1321
1322static int atmel_sha_done(struct atmel_sha_dev *dd)
1323{
1324	int err = 0;
1325
1326	if (SHA_FLAGS_CPU & dd->flags) {
1327		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1328			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1329			goto finish;
1330		}
1331	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1332		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1333			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1334			atmel_sha_update_dma_stop(dd);
 
 
 
 
1335		}
1336		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1337			/* hash or semi-hash ready */
1338			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1339						SHA_FLAGS_OUTPUT_READY);
1340			err = atmel_sha_update_dma_start(dd);
1341			if (err != -EINPROGRESS)
1342				goto finish;
1343		}
1344	}
1345	return err;
1346
1347finish:
1348	/* finish curent request */
1349	atmel_sha_finish_req(dd->req, err);
1350
1351	return err;
1352}
1353
1354static void atmel_sha_done_task(unsigned long data)
1355{
1356	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1357
1358	dd->is_async = true;
1359	(void)dd->resume(dd);
1360}
1361
1362static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1363{
1364	struct atmel_sha_dev *sha_dd = dev_id;
1365	u32 reg;
1366
1367	reg = atmel_sha_read(sha_dd, SHA_ISR);
1368	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1369		atmel_sha_write(sha_dd, SHA_IDR, reg);
1370		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1371			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1372			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1373				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1374			tasklet_schedule(&sha_dd->done_task);
1375		} else {
1376			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1377		}
1378		return IRQ_HANDLED;
1379	}
1380
1381	return IRQ_NONE;
1382}
1383
1384
1385/* DMA transfer functions */
1386
1387static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1388					struct scatterlist *sg,
1389					size_t len)
1390{
1391	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1392	struct ahash_request *req = dd->req;
1393	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1394	size_t bs = ctx->block_size;
1395	int nents;
1396
1397	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1398		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1399			return false;
1400
1401		/*
1402		 * This is the last sg, the only one that is allowed to
1403		 * have an unaligned length.
1404		 */
1405		if (len <= sg->length) {
1406			dma->nents = nents + 1;
1407			dma->last_sg_length = sg->length;
1408			sg->length = ALIGN(len, sizeof(u32));
1409			return true;
1410		}
1411
1412		/* All other sg lengths MUST be aligned to the block size. */
1413		if (!IS_ALIGNED(sg->length, bs))
1414			return false;
1415
1416		len -= sg->length;
1417	}
1418
1419	return false;
1420}
1421
1422static void atmel_sha_dma_callback2(void *data)
1423{
1424	struct atmel_sha_dev *dd = data;
1425	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1426	struct scatterlist *sg;
1427	int nents;
1428
 
1429	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1430
1431	sg = dma->sg;
1432	for (nents = 0; nents < dma->nents - 1; ++nents)
1433		sg = sg_next(sg);
1434	sg->length = dma->last_sg_length;
1435
1436	dd->is_async = true;
1437	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1438}
1439
1440static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1441			       struct scatterlist *src,
1442			       size_t len,
1443			       atmel_sha_fn_t resume)
1444{
1445	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1446	struct dma_slave_config *config = &dma->dma_conf;
1447	struct dma_chan *chan = dma->chan;
1448	struct dma_async_tx_descriptor *desc;
1449	dma_cookie_t cookie;
1450	unsigned int sg_len;
1451	int err;
1452
1453	dd->resume = resume;
1454
1455	/*
1456	 * dma->nents has already been initialized by
1457	 * atmel_sha_dma_check_aligned().
1458	 */
1459	dma->sg = src;
1460	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1461	if (!sg_len) {
1462		err = -ENOMEM;
1463		goto exit;
1464	}
1465
1466	config->src_maxburst = 16;
1467	config->dst_maxburst = 16;
1468	err = dmaengine_slave_config(chan, config);
1469	if (err)
1470		goto unmap_sg;
1471
1472	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1473				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1474	if (!desc) {
1475		err = -ENOMEM;
1476		goto unmap_sg;
1477	}
1478
1479	desc->callback = atmel_sha_dma_callback2;
1480	desc->callback_param = dd;
1481	cookie = dmaengine_submit(desc);
1482	err = dma_submit_error(cookie);
1483	if (err)
1484		goto unmap_sg;
1485
1486	dma_async_issue_pending(chan);
1487
1488	return -EINPROGRESS;
1489
1490unmap_sg:
1491	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1492exit:
1493	return atmel_sha_complete(dd, err);
1494}
1495
1496
1497/* CPU transfer functions */
1498
1499static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1500{
1501	struct ahash_request *req = dd->req;
1502	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1503	const u32 *words = (const u32 *)ctx->buffer;
1504	size_t i, num_words;
1505	u32 isr, din, din_inc;
1506
1507	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1508	for (;;) {
1509		/* Write data into the Input Data Registers. */
1510		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1511		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1512			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1513
1514		ctx->offset += ctx->bufcnt;
1515		ctx->total -= ctx->bufcnt;
1516
1517		if (!ctx->total)
1518			break;
1519
1520		/*
1521		 * Prepare next block:
1522		 * Fill ctx->buffer now with the next data to be written into
1523		 * IDATARx: it gives time for the SHA hardware to process
1524		 * the current data so the SHA_INT_DATARDY flag might be set
1525		 * in SHA_ISR when polling this register at the beginning of
1526		 * the next loop.
1527		 */
1528		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1529		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1530					 ctx->offset, ctx->bufcnt, 0);
1531
1532		/* Wait for hardware to be ready again. */
1533		isr = atmel_sha_read(dd, SHA_ISR);
1534		if (!(isr & SHA_INT_DATARDY)) {
1535			/* Not ready yet. */
1536			dd->resume = atmel_sha_cpu_transfer;
1537			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1538			return -EINPROGRESS;
1539		}
1540	}
1541
1542	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1543		return dd->cpu_transfer_complete(dd);
1544
1545	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1546}
1547
1548static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1549			       struct scatterlist *sg,
1550			       unsigned int len,
1551			       bool idatar0_only,
1552			       bool wait_data_ready,
1553			       atmel_sha_fn_t resume)
1554{
1555	struct ahash_request *req = dd->req;
1556	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1557
1558	if (!len)
1559		return resume(dd);
1560
1561	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1562
1563	if (idatar0_only)
1564		ctx->flags |= SHA_FLAGS_IDATAR0;
1565
1566	if (wait_data_ready)
1567		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1568
1569	ctx->sg = sg;
1570	ctx->total = len;
1571	ctx->offset = 0;
1572
1573	/* Prepare the first block to be written. */
1574	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1575	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1576				 ctx->offset, ctx->bufcnt, 0);
1577
1578	dd->cpu_transfer_complete = resume;
1579	return atmel_sha_cpu_transfer(dd);
1580}
1581
1582static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1583			      const void *data, unsigned int datalen,
1584			      bool auto_padding,
1585			      atmel_sha_fn_t resume)
1586{
1587	struct ahash_request *req = dd->req;
1588	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1589	u32 msglen = (auto_padding) ? datalen : 0;
1590	u32 mr = SHA_MR_MODE_AUTO;
1591
1592	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1593		return atmel_sha_complete(dd, -EINVAL);
1594
1595	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1596	atmel_sha_write(dd, SHA_MR, mr);
1597	atmel_sha_write(dd, SHA_MSR, msglen);
1598	atmel_sha_write(dd, SHA_BCR, msglen);
1599	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1600
1601	sg_init_one(&dd->tmp, data, datalen);
1602	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1603}
1604
1605
1606/* hmac functions */
1607
1608struct atmel_sha_hmac_key {
1609	bool			valid;
1610	unsigned int		keylen;
1611	u8			buffer[SHA512_BLOCK_SIZE];
1612	u8			*keydup;
1613};
1614
1615static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1616{
1617	memset(hkey, 0, sizeof(*hkey));
1618}
1619
1620static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1621{
1622	kfree(hkey->keydup);
1623	memset(hkey, 0, sizeof(*hkey));
1624}
1625
1626static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1627					 const u8 *key,
1628					 unsigned int keylen)
1629{
1630	atmel_sha_hmac_key_release(hkey);
1631
1632	if (keylen > sizeof(hkey->buffer)) {
1633		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1634		if (!hkey->keydup)
1635			return -ENOMEM;
1636
1637	} else {
1638		memcpy(hkey->buffer, key, keylen);
1639	}
1640
1641	hkey->valid = true;
1642	hkey->keylen = keylen;
1643	return 0;
1644}
1645
1646static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1647					  const u8 **key,
1648					  unsigned int *keylen)
1649{
1650	if (!hkey->valid)
1651		return false;
1652
1653	*keylen = hkey->keylen;
1654	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1655	return true;
1656}
1657
1658
1659struct atmel_sha_hmac_ctx {
1660	struct atmel_sha_ctx	base;
1661
1662	struct atmel_sha_hmac_key	hkey;
1663	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1664	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1665	atmel_sha_fn_t		resume;
1666};
1667
1668static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1669				atmel_sha_fn_t resume);
1670static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1671				      const u8 *key, unsigned int keylen);
1672static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1673static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1674static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1675static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1676
1677static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1678static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1679static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1680static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1681
1682static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1683				atmel_sha_fn_t resume)
1684{
1685	struct ahash_request *req = dd->req;
1686	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1687	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1688	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1689	unsigned int keylen;
1690	const u8 *key;
1691	size_t bs;
1692
1693	hmac->resume = resume;
1694	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1695	case SHA_FLAGS_SHA1:
1696		ctx->block_size = SHA1_BLOCK_SIZE;
1697		ctx->hash_size = SHA1_DIGEST_SIZE;
1698		break;
1699
1700	case SHA_FLAGS_SHA224:
1701		ctx->block_size = SHA224_BLOCK_SIZE;
1702		ctx->hash_size = SHA256_DIGEST_SIZE;
1703		break;
1704
1705	case SHA_FLAGS_SHA256:
1706		ctx->block_size = SHA256_BLOCK_SIZE;
1707		ctx->hash_size = SHA256_DIGEST_SIZE;
1708		break;
1709
1710	case SHA_FLAGS_SHA384:
1711		ctx->block_size = SHA384_BLOCK_SIZE;
1712		ctx->hash_size = SHA512_DIGEST_SIZE;
1713		break;
1714
1715	case SHA_FLAGS_SHA512:
1716		ctx->block_size = SHA512_BLOCK_SIZE;
1717		ctx->hash_size = SHA512_DIGEST_SIZE;
1718		break;
1719
1720	default:
1721		return atmel_sha_complete(dd, -EINVAL);
1722	}
1723	bs = ctx->block_size;
1724
1725	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1726		return resume(dd);
1727
1728	/* Compute K' from K. */
1729	if (unlikely(keylen > bs))
1730		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1731
1732	/* Prepare ipad. */
1733	memcpy((u8 *)hmac->ipad, key, keylen);
1734	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1735	return atmel_sha_hmac_compute_ipad_hash(dd);
1736}
1737
1738static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1739				      const u8 *key, unsigned int keylen)
1740{
1741	return atmel_sha_cpu_hash(dd, key, keylen, true,
1742				  atmel_sha_hmac_prehash_key_done);
1743}
1744
1745static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1746{
1747	struct ahash_request *req = dd->req;
1748	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1749	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1750	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1751	size_t ds = crypto_ahash_digestsize(tfm);
1752	size_t bs = ctx->block_size;
1753	size_t i, num_words = ds / sizeof(u32);
1754
1755	/* Prepare ipad. */
1756	for (i = 0; i < num_words; ++i)
1757		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1758	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1759	return atmel_sha_hmac_compute_ipad_hash(dd);
1760}
1761
1762static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1763{
1764	struct ahash_request *req = dd->req;
1765	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1766	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1767	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1768	size_t bs = ctx->block_size;
1769	size_t i, num_words = bs / sizeof(u32);
1770
1771	unsafe_memcpy(hmac->opad, hmac->ipad, bs,
1772		      "fortified memcpy causes -Wrestrict warning");
1773	for (i = 0; i < num_words; ++i) {
1774		hmac->ipad[i] ^= 0x36363636;
1775		hmac->opad[i] ^= 0x5c5c5c5c;
1776	}
1777
1778	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1779				  atmel_sha_hmac_compute_opad_hash);
1780}
1781
1782static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1783{
1784	struct ahash_request *req = dd->req;
1785	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1786	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1787	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1788	size_t bs = ctx->block_size;
1789	size_t hs = ctx->hash_size;
1790	size_t i, num_words = hs / sizeof(u32);
1791
1792	for (i = 0; i < num_words; ++i)
1793		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1794	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1795				  atmel_sha_hmac_setup_done);
1796}
1797
1798static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1799{
1800	struct ahash_request *req = dd->req;
1801	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1802	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1803	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1804	size_t hs = ctx->hash_size;
1805	size_t i, num_words = hs / sizeof(u32);
1806
1807	for (i = 0; i < num_words; ++i)
1808		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1809	atmel_sha_hmac_key_release(&hmac->hkey);
1810	return hmac->resume(dd);
1811}
1812
1813static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1814{
1815	struct ahash_request *req = dd->req;
1816	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1817	int err;
1818
1819	err = atmel_sha_hw_init(dd);
1820	if (err)
1821		return atmel_sha_complete(dd, err);
1822
1823	switch (ctx->op) {
1824	case SHA_OP_INIT:
1825		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1826		break;
1827
1828	case SHA_OP_UPDATE:
1829		dd->resume = atmel_sha_done;
1830		err = atmel_sha_update_req(dd);
1831		break;
1832
1833	case SHA_OP_FINAL:
1834		dd->resume = atmel_sha_hmac_final;
1835		err = atmel_sha_final_req(dd);
1836		break;
1837
1838	case SHA_OP_DIGEST:
1839		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1840		break;
1841
1842	default:
1843		return atmel_sha_complete(dd, -EINVAL);
1844	}
1845
1846	return err;
1847}
1848
1849static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1850				 unsigned int keylen)
1851{
1852	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1853
1854	return atmel_sha_hmac_key_set(&hmac->hkey, key, keylen);
 
 
 
 
 
1855}
1856
1857static int atmel_sha_hmac_init(struct ahash_request *req)
1858{
1859	int err;
1860
1861	err = atmel_sha_init(req);
1862	if (err)
1863		return err;
1864
1865	return atmel_sha_enqueue(req, SHA_OP_INIT);
1866}
1867
1868static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1869{
1870	struct ahash_request *req = dd->req;
1871	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1872	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1873	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1874	size_t bs = ctx->block_size;
1875	size_t hs = ctx->hash_size;
1876
1877	ctx->bufcnt = 0;
1878	ctx->digcnt[0] = bs;
1879	ctx->digcnt[1] = 0;
1880	ctx->flags |= SHA_FLAGS_RESTORE;
1881	memcpy(ctx->digest, hmac->ipad, hs);
1882	return atmel_sha_complete(dd, 0);
1883}
1884
1885static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1886{
1887	struct ahash_request *req = dd->req;
1888	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1889	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1890	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1891	u32 *digest = (u32 *)ctx->digest;
1892	size_t ds = crypto_ahash_digestsize(tfm);
1893	size_t bs = ctx->block_size;
1894	size_t hs = ctx->hash_size;
1895	size_t i, num_words;
1896	u32 mr;
1897
1898	/* Save d = SHA((K' + ipad) | msg). */
1899	num_words = ds / sizeof(u32);
1900	for (i = 0; i < num_words; ++i)
1901		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1902
1903	/* Restore context to finish computing SHA((K' + opad) | d). */
1904	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1905	num_words = hs / sizeof(u32);
1906	for (i = 0; i < num_words; ++i)
1907		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1908
1909	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1910	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1911	atmel_sha_write(dd, SHA_MR, mr);
1912	atmel_sha_write(dd, SHA_MSR, bs + ds);
1913	atmel_sha_write(dd, SHA_BCR, ds);
1914	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1915
1916	sg_init_one(&dd->tmp, digest, ds);
1917	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1918				   atmel_sha_hmac_final_done);
1919}
1920
1921static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1922{
1923	/*
1924	 * req->result might not be sizeof(u32) aligned, so copy the
1925	 * digest into ctx->digest[] before memcpy() the data into
1926	 * req->result.
1927	 */
1928	atmel_sha_copy_hash(dd->req);
1929	atmel_sha_copy_ready_hash(dd->req);
1930	return atmel_sha_complete(dd, 0);
1931}
1932
1933static int atmel_sha_hmac_digest(struct ahash_request *req)
1934{
1935	int err;
1936
1937	err = atmel_sha_init(req);
1938	if (err)
1939		return err;
1940
1941	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
1942}
1943
1944static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
1945{
1946	struct ahash_request *req = dd->req;
1947	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1948	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1949	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1950	struct scatterlist *sgbuf;
1951	size_t hs = ctx->hash_size;
1952	size_t i, num_words = hs / sizeof(u32);
1953	bool use_dma = false;
1954	u32 mr;
1955
1956	/* Special case for empty message. */
1957	if (!req->nbytes) {
1958		req->nbytes = 0;
1959		ctx->bufcnt = 0;
1960		ctx->digcnt[0] = 0;
1961		ctx->digcnt[1] = 0;
1962		switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1963		case SHA_FLAGS_SHA1:
1964		case SHA_FLAGS_SHA224:
1965		case SHA_FLAGS_SHA256:
1966			atmel_sha_fill_padding(ctx, 64);
1967			break;
1968
1969		case SHA_FLAGS_SHA384:
1970		case SHA_FLAGS_SHA512:
1971			atmel_sha_fill_padding(ctx, 128);
1972			break;
1973		}
1974		sg_init_one(&dd->tmp, ctx->buffer, ctx->bufcnt);
1975	}
1976
1977	/* Check DMA threshold and alignment. */
1978	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
1979	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
1980		use_dma = true;
1981
1982	/* Write both initial hash values to compute a HMAC. */
1983	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1984	for (i = 0; i < num_words; ++i)
1985		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
1986
1987	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
1988	for (i = 0; i < num_words; ++i)
1989		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1990
1991	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
1992	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
1993	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
1994	if (use_dma)
1995		mr |= SHA_MR_MODE_IDATAR0;
1996	else
1997		mr |= SHA_MR_MODE_AUTO;
1998	atmel_sha_write(dd, SHA_MR, mr);
1999
2000	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2001	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2002
2003	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2004
2005	/* Special case for empty message. */
2006	if (!req->nbytes) {
2007		sgbuf = &dd->tmp;
2008		req->nbytes = ctx->bufcnt;
2009	} else {
2010		sgbuf = req->src;
2011	}
2012
2013	/* Process data. */
2014	if (use_dma)
2015		return atmel_sha_dma_start(dd, sgbuf, req->nbytes,
2016					   atmel_sha_hmac_final_done);
2017
2018	return atmel_sha_cpu_start(dd, sgbuf, req->nbytes, false, true,
2019				   atmel_sha_hmac_final_done);
2020}
2021
2022static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2023{
2024	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2025
2026	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2027				 sizeof(struct atmel_sha_reqctx));
2028	hmac->base.start = atmel_sha_hmac_start;
2029	atmel_sha_hmac_key_init(&hmac->hkey);
2030
2031	return 0;
2032}
2033
2034static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2035{
2036	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2037
2038	atmel_sha_hmac_key_release(&hmac->hkey);
2039}
2040
2041static void atmel_sha_hmac_alg_init(struct ahash_alg *alg)
2042{
2043	alg->halg.base.cra_priority = ATMEL_SHA_PRIORITY;
2044	alg->halg.base.cra_flags = CRYPTO_ALG_ASYNC;
2045	alg->halg.base.cra_ctxsize = sizeof(struct atmel_sha_hmac_ctx);
2046	alg->halg.base.cra_module = THIS_MODULE;
2047	alg->halg.base.cra_init	= atmel_sha_hmac_cra_init;
2048	alg->halg.base.cra_exit	= atmel_sha_hmac_cra_exit;
2049
2050	alg->halg.statesize = sizeof(struct atmel_sha_reqctx);
2051
2052	alg->init = atmel_sha_hmac_init;
2053	alg->update = atmel_sha_update;
2054	alg->final = atmel_sha_final;
2055	alg->digest = atmel_sha_hmac_digest;
2056	alg->setkey = atmel_sha_hmac_setkey;
2057	alg->export = atmel_sha_export;
2058	alg->import = atmel_sha_import;
2059}
2060
2061static struct ahash_alg sha_hmac_algs[] = {
2062{
2063	.halg.base.cra_name		= "hmac(sha1)",
2064	.halg.base.cra_driver_name	= "atmel-hmac-sha1",
2065	.halg.base.cra_blocksize	= SHA1_BLOCK_SIZE,
2066
2067	.halg.digestsize = SHA1_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068},
2069{
2070	.halg.base.cra_name		= "hmac(sha224)",
2071	.halg.base.cra_driver_name	= "atmel-hmac-sha224",
2072	.halg.base.cra_blocksize	= SHA224_BLOCK_SIZE,
2073
2074	.halg.digestsize = SHA224_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075},
2076{
2077	.halg.base.cra_name		= "hmac(sha256)",
2078	.halg.base.cra_driver_name	= "atmel-hmac-sha256",
2079	.halg.base.cra_blocksize	= SHA256_BLOCK_SIZE,
2080
2081	.halg.digestsize = SHA256_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082},
2083{
2084	.halg.base.cra_name		= "hmac(sha384)",
2085	.halg.base.cra_driver_name	= "atmel-hmac-sha384",
2086	.halg.base.cra_blocksize	= SHA384_BLOCK_SIZE,
2087
2088	.halg.digestsize = SHA384_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089},
2090{
2091	.halg.base.cra_name		= "hmac(sha512)",
2092	.halg.base.cra_driver_name	= "atmel-hmac-sha512",
2093	.halg.base.cra_blocksize	= SHA512_BLOCK_SIZE,
2094
2095	.halg.digestsize = SHA512_DIGEST_SIZE,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2096},
2097};
2098
2099#if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2100/* authenc functions */
2101
2102static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2103static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2104static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2105
2106
2107struct atmel_sha_authenc_ctx {
2108	struct crypto_ahash	*tfm;
2109};
2110
2111struct atmel_sha_authenc_reqctx {
2112	struct atmel_sha_reqctx	base;
2113
2114	atmel_aes_authenc_fn_t	cb;
2115	struct atmel_aes_dev	*aes_dev;
2116
2117	/* _init() parameters. */
2118	struct scatterlist	*assoc;
2119	u32			assoclen;
2120	u32			textlen;
2121
2122	/* _final() parameters. */
2123	u32			*digest;
2124	unsigned int		digestlen;
2125};
2126
2127static void atmel_sha_authenc_complete(void *data, int err)
 
2128{
2129	struct ahash_request *req = data;
2130	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2131
2132	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2133}
2134
2135static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2136{
2137	struct ahash_request *req = dd->req;
2138	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2139	int err;
2140
2141	/*
2142	 * Force atmel_sha_complete() to call req->base.complete(), ie
2143	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2144	 */
2145	dd->force_complete = true;
2146
2147	err = atmel_sha_hw_init(dd);
2148	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2149}
2150
2151bool atmel_sha_authenc_is_ready(void)
2152{
2153	struct atmel_sha_ctx dummy;
2154
2155	dummy.dd = NULL;
2156	return (atmel_sha_find_dev(&dummy) != NULL);
2157}
2158EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2159
2160unsigned int atmel_sha_authenc_get_reqsize(void)
2161{
2162	return sizeof(struct atmel_sha_authenc_reqctx);
2163}
2164EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2165
2166struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2167{
2168	struct atmel_sha_authenc_ctx *auth;
2169	struct crypto_ahash *tfm;
2170	struct atmel_sha_ctx *tctx;
2171	const char *name;
2172	int err = -EINVAL;
2173
2174	switch (mode & SHA_FLAGS_MODE_MASK) {
2175	case SHA_FLAGS_HMAC_SHA1:
2176		name = "atmel-hmac-sha1";
2177		break;
2178
2179	case SHA_FLAGS_HMAC_SHA224:
2180		name = "atmel-hmac-sha224";
2181		break;
2182
2183	case SHA_FLAGS_HMAC_SHA256:
2184		name = "atmel-hmac-sha256";
2185		break;
2186
2187	case SHA_FLAGS_HMAC_SHA384:
2188		name = "atmel-hmac-sha384";
2189		break;
2190
2191	case SHA_FLAGS_HMAC_SHA512:
2192		name = "atmel-hmac-sha512";
2193		break;
2194
2195	default:
2196		goto error;
2197	}
2198
2199	tfm = crypto_alloc_ahash(name, 0, 0);
 
 
2200	if (IS_ERR(tfm)) {
2201		err = PTR_ERR(tfm);
2202		goto error;
2203	}
2204	tctx = crypto_ahash_ctx(tfm);
2205	tctx->start = atmel_sha_authenc_start;
2206	tctx->flags = mode;
2207
2208	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2209	if (!auth) {
2210		err = -ENOMEM;
2211		goto err_free_ahash;
2212	}
2213	auth->tfm = tfm;
2214
2215	return auth;
2216
2217err_free_ahash:
2218	crypto_free_ahash(tfm);
2219error:
2220	return ERR_PTR(err);
2221}
2222EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2223
2224void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2225{
2226	if (auth)
2227		crypto_free_ahash(auth->tfm);
2228	kfree(auth);
2229}
2230EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2231
2232int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2233			     const u8 *key, unsigned int keylen, u32 flags)
 
2234{
2235	struct crypto_ahash *tfm = auth->tfm;
 
2236
2237	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2238	crypto_ahash_set_flags(tfm, flags & CRYPTO_TFM_REQ_MASK);
2239	return crypto_ahash_setkey(tfm, key, keylen);
 
 
 
2240}
2241EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2242
2243int atmel_sha_authenc_schedule(struct ahash_request *req,
2244			       struct atmel_sha_authenc_ctx *auth,
2245			       atmel_aes_authenc_fn_t cb,
2246			       struct atmel_aes_dev *aes_dev)
2247{
2248	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2249	struct atmel_sha_reqctx *ctx = &authctx->base;
2250	struct crypto_ahash *tfm = auth->tfm;
2251	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2252	struct atmel_sha_dev *dd;
2253
2254	/* Reset request context (MUST be done first). */
2255	memset(authctx, 0, sizeof(*authctx));
2256
2257	/* Get SHA device. */
2258	dd = atmel_sha_find_dev(tctx);
2259	if (!dd)
2260		return cb(aes_dev, -ENODEV, false);
2261
2262	/* Init request context. */
2263	ctx->dd = dd;
2264	ctx->buflen = SHA_BUFFER_LEN;
2265	authctx->cb = cb;
2266	authctx->aes_dev = aes_dev;
2267	ahash_request_set_tfm(req, tfm);
2268	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2269
2270	return atmel_sha_handle_queue(dd, req);
2271}
2272EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2273
2274int atmel_sha_authenc_init(struct ahash_request *req,
2275			   struct scatterlist *assoc, unsigned int assoclen,
2276			   unsigned int textlen,
2277			   atmel_aes_authenc_fn_t cb,
2278			   struct atmel_aes_dev *aes_dev)
2279{
2280	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2281	struct atmel_sha_reqctx *ctx = &authctx->base;
2282	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2283	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2284	struct atmel_sha_dev *dd = ctx->dd;
2285
2286	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2287		return atmel_sha_complete(dd, -EINVAL);
2288
2289	authctx->cb = cb;
2290	authctx->aes_dev = aes_dev;
2291	authctx->assoc = assoc;
2292	authctx->assoclen = assoclen;
2293	authctx->textlen = textlen;
2294
2295	ctx->flags = hmac->base.flags;
2296	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2297}
2298EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2299
2300static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2301{
2302	struct ahash_request *req = dd->req;
2303	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2304	struct atmel_sha_reqctx *ctx = &authctx->base;
2305	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2306	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2307	size_t hs = ctx->hash_size;
2308	size_t i, num_words = hs / sizeof(u32);
2309	u32 mr, msg_size;
2310
2311	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2312	for (i = 0; i < num_words; ++i)
2313		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2314
2315	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2316	for (i = 0; i < num_words; ++i)
2317		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2318
2319	mr = (SHA_MR_MODE_IDATAR0 |
2320	      SHA_MR_HMAC |
2321	      SHA_MR_DUALBUFF);
2322	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2323	atmel_sha_write(dd, SHA_MR, mr);
2324
2325	msg_size = authctx->assoclen + authctx->textlen;
2326	atmel_sha_write(dd, SHA_MSR, msg_size);
2327	atmel_sha_write(dd, SHA_BCR, msg_size);
2328
2329	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2330
2331	/* Process assoc data. */
2332	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2333				   true, false,
2334				   atmel_sha_authenc_init_done);
2335}
2336
2337static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2338{
2339	struct ahash_request *req = dd->req;
2340	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2341
2342	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2343}
2344
2345int atmel_sha_authenc_final(struct ahash_request *req,
2346			    u32 *digest, unsigned int digestlen,
2347			    atmel_aes_authenc_fn_t cb,
2348			    struct atmel_aes_dev *aes_dev)
2349{
2350	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2351	struct atmel_sha_reqctx *ctx = &authctx->base;
2352	struct atmel_sha_dev *dd = ctx->dd;
2353
2354	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2355	case SHA_FLAGS_SHA1:
2356		authctx->digestlen = SHA1_DIGEST_SIZE;
2357		break;
2358
2359	case SHA_FLAGS_SHA224:
2360		authctx->digestlen = SHA224_DIGEST_SIZE;
2361		break;
2362
2363	case SHA_FLAGS_SHA256:
2364		authctx->digestlen = SHA256_DIGEST_SIZE;
2365		break;
2366
2367	case SHA_FLAGS_SHA384:
2368		authctx->digestlen = SHA384_DIGEST_SIZE;
2369		break;
2370
2371	case SHA_FLAGS_SHA512:
2372		authctx->digestlen = SHA512_DIGEST_SIZE;
2373		break;
2374
2375	default:
2376		return atmel_sha_complete(dd, -EINVAL);
2377	}
2378	if (authctx->digestlen > digestlen)
2379		authctx->digestlen = digestlen;
2380
2381	authctx->cb = cb;
2382	authctx->aes_dev = aes_dev;
2383	authctx->digest = digest;
2384	return atmel_sha_wait_for_data_ready(dd,
2385					     atmel_sha_authenc_final_done);
2386}
2387EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2388
2389static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2390{
2391	struct ahash_request *req = dd->req;
2392	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2393	size_t i, num_words = authctx->digestlen / sizeof(u32);
2394
2395	for (i = 0; i < num_words; ++i)
2396		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2397
2398	return atmel_sha_complete(dd, 0);
2399}
2400
2401void atmel_sha_authenc_abort(struct ahash_request *req)
2402{
2403	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2404	struct atmel_sha_reqctx *ctx = &authctx->base;
2405	struct atmel_sha_dev *dd = ctx->dd;
2406
2407	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2408	dd->is_async = false;
2409	dd->force_complete = false;
2410	(void)atmel_sha_complete(dd, 0);
2411}
2412EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2413
2414#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2415
2416
2417static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2418{
2419	int i;
2420
2421	if (dd->caps.has_hmac)
2422		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2423			crypto_unregister_ahash(&sha_hmac_algs[i]);
2424
2425	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2426		crypto_unregister_ahash(&sha_1_256_algs[i]);
2427
2428	if (dd->caps.has_sha224)
2429		crypto_unregister_ahash(&sha_224_alg);
2430
2431	if (dd->caps.has_sha_384_512) {
2432		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2433			crypto_unregister_ahash(&sha_384_512_algs[i]);
2434	}
2435}
2436
2437static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2438{
2439	int err, i, j;
2440
2441	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2442		atmel_sha_alg_init(&sha_1_256_algs[i]);
2443
2444		err = crypto_register_ahash(&sha_1_256_algs[i]);
2445		if (err)
2446			goto err_sha_1_256_algs;
2447	}
2448
2449	if (dd->caps.has_sha224) {
2450		atmel_sha_alg_init(&sha_224_alg);
2451
2452		err = crypto_register_ahash(&sha_224_alg);
2453		if (err)
2454			goto err_sha_224_algs;
2455	}
2456
2457	if (dd->caps.has_sha_384_512) {
2458		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2459			atmel_sha_alg_init(&sha_384_512_algs[i]);
2460
2461			err = crypto_register_ahash(&sha_384_512_algs[i]);
2462			if (err)
2463				goto err_sha_384_512_algs;
2464		}
2465	}
2466
2467	if (dd->caps.has_hmac) {
2468		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2469			atmel_sha_hmac_alg_init(&sha_hmac_algs[i]);
2470
2471			err = crypto_register_ahash(&sha_hmac_algs[i]);
2472			if (err)
2473				goto err_sha_hmac_algs;
2474		}
2475	}
2476
2477	return 0;
2478
2479	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2480err_sha_hmac_algs:
2481	for (j = 0; j < i; j++)
2482		crypto_unregister_ahash(&sha_hmac_algs[j]);
2483	i = ARRAY_SIZE(sha_384_512_algs);
2484err_sha_384_512_algs:
2485	for (j = 0; j < i; j++)
2486		crypto_unregister_ahash(&sha_384_512_algs[j]);
2487	crypto_unregister_ahash(&sha_224_alg);
2488err_sha_224_algs:
2489	i = ARRAY_SIZE(sha_1_256_algs);
2490err_sha_1_256_algs:
2491	for (j = 0; j < i; j++)
2492		crypto_unregister_ahash(&sha_1_256_algs[j]);
2493
2494	return err;
2495}
2496
2497static int atmel_sha_dma_init(struct atmel_sha_dev *dd)
2498{
2499	dd->dma_lch_in.chan = dma_request_chan(dd->dev, "tx");
2500	if (IS_ERR(dd->dma_lch_in.chan)) {
2501		return dev_err_probe(dd->dev, PTR_ERR(dd->dma_lch_in.chan),
2502			"DMA channel is not available\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2503	}
2504
 
2505	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2506		SHA_REG_DIN(0);
2507	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2508	dd->dma_lch_in.dma_conf.src_addr_width =
2509		DMA_SLAVE_BUSWIDTH_4_BYTES;
2510	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2511	dd->dma_lch_in.dma_conf.dst_addr_width =
2512		DMA_SLAVE_BUSWIDTH_4_BYTES;
2513	dd->dma_lch_in.dma_conf.device_fc = false;
2514
2515	return 0;
2516}
2517
2518static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2519{
2520	dma_release_channel(dd->dma_lch_in.chan);
2521}
2522
2523static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2524{
2525
2526	dd->caps.has_dma = 0;
2527	dd->caps.has_dualbuff = 0;
2528	dd->caps.has_sha224 = 0;
2529	dd->caps.has_sha_384_512 = 0;
2530	dd->caps.has_uihv = 0;
2531	dd->caps.has_hmac = 0;
2532
2533	/* keep only major version number */
2534	switch (dd->hw_version & 0xff0) {
2535	case 0x700:
2536	case 0x600:
2537	case 0x510:
2538		dd->caps.has_dma = 1;
2539		dd->caps.has_dualbuff = 1;
2540		dd->caps.has_sha224 = 1;
2541		dd->caps.has_sha_384_512 = 1;
2542		dd->caps.has_uihv = 1;
2543		dd->caps.has_hmac = 1;
2544		break;
2545	case 0x420:
2546		dd->caps.has_dma = 1;
2547		dd->caps.has_dualbuff = 1;
2548		dd->caps.has_sha224 = 1;
2549		dd->caps.has_sha_384_512 = 1;
2550		dd->caps.has_uihv = 1;
2551		break;
2552	case 0x410:
2553		dd->caps.has_dma = 1;
2554		dd->caps.has_dualbuff = 1;
2555		dd->caps.has_sha224 = 1;
2556		dd->caps.has_sha_384_512 = 1;
2557		break;
2558	case 0x400:
2559		dd->caps.has_dma = 1;
2560		dd->caps.has_dualbuff = 1;
2561		dd->caps.has_sha224 = 1;
2562		break;
2563	case 0x320:
2564		break;
2565	default:
2566		dev_warn(dd->dev,
2567				"Unmanaged sha version, set minimum capabilities\n");
2568		break;
2569	}
2570}
2571
 
2572static const struct of_device_id atmel_sha_dt_ids[] = {
2573	{ .compatible = "atmel,at91sam9g46-sha" },
2574	{ /* sentinel */ }
2575};
2576
2577MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2578
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2579static int atmel_sha_probe(struct platform_device *pdev)
2580{
2581	struct atmel_sha_dev *sha_dd;
 
2582	struct device *dev = &pdev->dev;
2583	struct resource *sha_res;
2584	int err;
2585
2586	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2587	if (!sha_dd)
2588		return -ENOMEM;
 
 
2589
2590	sha_dd->dev = dev;
2591
2592	platform_set_drvdata(pdev, sha_dd);
2593
2594	INIT_LIST_HEAD(&sha_dd->list);
2595	spin_lock_init(&sha_dd->lock);
2596
2597	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2598					(unsigned long)sha_dd);
2599	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2600					(unsigned long)sha_dd);
2601
2602	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2603
2604	sha_dd->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &sha_res);
2605	if (IS_ERR(sha_dd->io_base)) {
2606		err = PTR_ERR(sha_dd->io_base);
2607		goto err_tasklet_kill;
 
 
2608	}
2609	sha_dd->phys_base = sha_res->start;
2610
2611	/* Get the IRQ */
2612	sha_dd->irq = platform_get_irq(pdev,  0);
2613	if (sha_dd->irq < 0) {
 
2614		err = sha_dd->irq;
2615		goto err_tasklet_kill;
2616	}
2617
2618	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2619			       IRQF_SHARED, "atmel-sha", sha_dd);
2620	if (err) {
2621		dev_err(dev, "unable to request sha irq.\n");
2622		goto err_tasklet_kill;
2623	}
2624
2625	/* Initializing the clock */
2626	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2627	if (IS_ERR(sha_dd->iclk)) {
2628		dev_err(dev, "clock initialization failed.\n");
2629		err = PTR_ERR(sha_dd->iclk);
2630		goto err_tasklet_kill;
 
 
 
 
 
 
 
2631	}
2632
2633	err = clk_prepare(sha_dd->iclk);
2634	if (err)
2635		goto err_tasklet_kill;
2636
2637	err = atmel_sha_hw_version_init(sha_dd);
2638	if (err)
2639		goto err_iclk_unprepare;
2640
2641	atmel_sha_get_cap(sha_dd);
2642
2643	if (sha_dd->caps.has_dma) {
2644		err = atmel_sha_dma_init(sha_dd);
 
 
 
 
 
 
 
 
 
 
 
 
 
2645		if (err)
2646			goto err_iclk_unprepare;
2647
2648		dev_info(dev, "using %s for DMA transfers\n",
2649				dma_chan_name(sha_dd->dma_lch_in.chan));
2650	}
2651
2652	spin_lock(&atmel_sha.lock);
2653	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2654	spin_unlock(&atmel_sha.lock);
2655
2656	err = atmel_sha_register_algs(sha_dd);
2657	if (err)
2658		goto err_algs;
2659
2660	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2661			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2662			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2663
2664	return 0;
2665
2666err_algs:
2667	spin_lock(&atmel_sha.lock);
2668	list_del(&sha_dd->list);
2669	spin_unlock(&atmel_sha.lock);
2670	if (sha_dd->caps.has_dma)
2671		atmel_sha_dma_cleanup(sha_dd);
2672err_iclk_unprepare:
 
2673	clk_unprepare(sha_dd->iclk);
2674err_tasklet_kill:
2675	tasklet_kill(&sha_dd->queue_task);
2676	tasklet_kill(&sha_dd->done_task);
 
 
2677
2678	return err;
2679}
2680
2681static void atmel_sha_remove(struct platform_device *pdev)
2682{
2683	struct atmel_sha_dev *sha_dd = platform_get_drvdata(pdev);
2684
 
 
 
2685	spin_lock(&atmel_sha.lock);
2686	list_del(&sha_dd->list);
2687	spin_unlock(&atmel_sha.lock);
2688
2689	atmel_sha_unregister_algs(sha_dd);
2690
2691	tasklet_kill(&sha_dd->queue_task);
2692	tasklet_kill(&sha_dd->done_task);
2693
2694	if (sha_dd->caps.has_dma)
2695		atmel_sha_dma_cleanup(sha_dd);
2696
2697	clk_unprepare(sha_dd->iclk);
 
 
2698}
2699
2700static struct platform_driver atmel_sha_driver = {
2701	.probe		= atmel_sha_probe,
2702	.remove_new	= atmel_sha_remove,
2703	.driver		= {
2704		.name	= "atmel_sha",
2705		.of_match_table	= atmel_sha_dt_ids,
2706	},
2707};
2708
2709module_platform_driver(atmel_sha_driver);
2710
2711MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2712MODULE_LICENSE("GPL v2");
2713MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
v4.17
 
   1/*
   2 * Cryptographic API.
   3 *
   4 * Support for ATMEL SHA1/SHA256 HW acceleration.
   5 *
   6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
   7 * Author: Nicolas Royer <nicolas@eukrea.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as published
  11 * by the Free Software Foundation.
  12 *
  13 * Some ideas are from omap-sham.c drivers.
  14 */
  15
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/err.h>
  21#include <linux/clk.h>
  22#include <linux/io.h>
  23#include <linux/hw_random.h>
  24#include <linux/platform_device.h>
  25
  26#include <linux/device.h>
 
  27#include <linux/init.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/irq.h>
  31#include <linux/scatterlist.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/of_device.h>
  34#include <linux/delay.h>
  35#include <linux/crypto.h>
  36#include <linux/cryptohash.h>
  37#include <crypto/scatterwalk.h>
  38#include <crypto/algapi.h>
  39#include <crypto/sha.h>
 
  40#include <crypto/hash.h>
  41#include <crypto/internal/hash.h>
  42#include <linux/platform_data/crypto-atmel.h>
  43#include "atmel-sha-regs.h"
  44#include "atmel-authenc.h"
  45
 
 
  46/* SHA flags */
  47#define SHA_FLAGS_BUSY			BIT(0)
  48#define	SHA_FLAGS_FINAL			BIT(1)
  49#define SHA_FLAGS_DMA_ACTIVE	BIT(2)
  50#define SHA_FLAGS_OUTPUT_READY	BIT(3)
  51#define SHA_FLAGS_INIT			BIT(4)
  52#define SHA_FLAGS_CPU			BIT(5)
  53#define SHA_FLAGS_DMA_READY		BIT(6)
  54#define SHA_FLAGS_DUMP_REG	BIT(7)
  55
  56/* bits[11:8] are reserved. */
  57
  58#define SHA_FLAGS_FINUP		BIT(16)
  59#define SHA_FLAGS_SG		BIT(17)
  60#define SHA_FLAGS_ERROR		BIT(23)
  61#define SHA_FLAGS_PAD		BIT(24)
  62#define SHA_FLAGS_RESTORE	BIT(25)
  63#define SHA_FLAGS_IDATAR0	BIT(26)
  64#define SHA_FLAGS_WAIT_DATARDY	BIT(27)
  65
  66#define SHA_OP_INIT	0
  67#define SHA_OP_UPDATE	1
  68#define SHA_OP_FINAL	2
  69#define SHA_OP_DIGEST	3
  70
  71#define SHA_BUFFER_LEN		(PAGE_SIZE / 16)
  72
  73#define ATMEL_SHA_DMA_THRESHOLD		56
  74
  75struct atmel_sha_caps {
  76	bool	has_dma;
  77	bool	has_dualbuff;
  78	bool	has_sha224;
  79	bool	has_sha_384_512;
  80	bool	has_uihv;
  81	bool	has_hmac;
  82};
  83
  84struct atmel_sha_dev;
  85
  86/*
  87 * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  88 * tested by the ahash_prepare_alg() function.
  89 */
  90struct atmel_sha_reqctx {
  91	struct atmel_sha_dev	*dd;
  92	unsigned long	flags;
  93	unsigned long	op;
  94
  95	u8	digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  96	u64	digcnt[2];
  97	size_t	bufcnt;
  98	size_t	buflen;
  99	dma_addr_t	dma_addr;
 100
 101	/* walk state */
 102	struct scatterlist	*sg;
 103	unsigned int	offset;	/* offset in current sg */
 104	unsigned int	total;	/* total request */
 105
 106	size_t block_size;
 107	size_t hash_size;
 108
 109	u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 110};
 111
 112typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
 113
 114struct atmel_sha_ctx {
 115	struct atmel_sha_dev	*dd;
 116	atmel_sha_fn_t		start;
 117
 118	unsigned long		flags;
 119};
 120
 121#define ATMEL_SHA_QUEUE_LENGTH	50
 122
 123struct atmel_sha_dma {
 124	struct dma_chan			*chan;
 125	struct dma_slave_config dma_conf;
 126	struct scatterlist	*sg;
 127	int			nents;
 128	unsigned int		last_sg_length;
 129};
 130
 131struct atmel_sha_dev {
 132	struct list_head	list;
 133	unsigned long		phys_base;
 134	struct device		*dev;
 135	struct clk			*iclk;
 136	int					irq;
 137	void __iomem		*io_base;
 138
 139	spinlock_t		lock;
 140	int			err;
 141	struct tasklet_struct	done_task;
 142	struct tasklet_struct	queue_task;
 143
 144	unsigned long		flags;
 145	struct crypto_queue	queue;
 146	struct ahash_request	*req;
 147	bool			is_async;
 148	bool			force_complete;
 149	atmel_sha_fn_t		resume;
 150	atmel_sha_fn_t		cpu_transfer_complete;
 151
 152	struct atmel_sha_dma	dma_lch_in;
 153
 154	struct atmel_sha_caps	caps;
 155
 156	struct scatterlist	tmp;
 157
 158	u32	hw_version;
 159};
 160
 161struct atmel_sha_drv {
 162	struct list_head	dev_list;
 163	spinlock_t		lock;
 164};
 165
 166static struct atmel_sha_drv atmel_sha = {
 167	.dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
 168	.lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
 169};
 170
 171#ifdef VERBOSE_DEBUG
 172static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
 173{
 174	switch (offset) {
 175	case SHA_CR:
 176		return "CR";
 177
 178	case SHA_MR:
 179		return "MR";
 180
 181	case SHA_IER:
 182		return "IER";
 183
 184	case SHA_IDR:
 185		return "IDR";
 186
 187	case SHA_IMR:
 188		return "IMR";
 189
 190	case SHA_ISR:
 191		return "ISR";
 192
 193	case SHA_MSR:
 194		return "MSR";
 195
 196	case SHA_BCR:
 197		return "BCR";
 198
 199	case SHA_REG_DIN(0):
 200	case SHA_REG_DIN(1):
 201	case SHA_REG_DIN(2):
 202	case SHA_REG_DIN(3):
 203	case SHA_REG_DIN(4):
 204	case SHA_REG_DIN(5):
 205	case SHA_REG_DIN(6):
 206	case SHA_REG_DIN(7):
 207	case SHA_REG_DIN(8):
 208	case SHA_REG_DIN(9):
 209	case SHA_REG_DIN(10):
 210	case SHA_REG_DIN(11):
 211	case SHA_REG_DIN(12):
 212	case SHA_REG_DIN(13):
 213	case SHA_REG_DIN(14):
 214	case SHA_REG_DIN(15):
 215		snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
 216		break;
 217
 218	case SHA_REG_DIGEST(0):
 219	case SHA_REG_DIGEST(1):
 220	case SHA_REG_DIGEST(2):
 221	case SHA_REG_DIGEST(3):
 222	case SHA_REG_DIGEST(4):
 223	case SHA_REG_DIGEST(5):
 224	case SHA_REG_DIGEST(6):
 225	case SHA_REG_DIGEST(7):
 226	case SHA_REG_DIGEST(8):
 227	case SHA_REG_DIGEST(9):
 228	case SHA_REG_DIGEST(10):
 229	case SHA_REG_DIGEST(11):
 230	case SHA_REG_DIGEST(12):
 231	case SHA_REG_DIGEST(13):
 232	case SHA_REG_DIGEST(14):
 233	case SHA_REG_DIGEST(15):
 234		if (wr)
 235			snprintf(tmp, sz, "IDATAR[%u]",
 236				 16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
 237		else
 238			snprintf(tmp, sz, "ODATAR[%u]",
 239				 (offset - SHA_REG_DIGEST(0)) >> 2);
 240		break;
 241
 242	case SHA_HW_VERSION:
 243		return "HWVER";
 244
 245	default:
 246		snprintf(tmp, sz, "0x%02x", offset);
 247		break;
 248	}
 249
 250	return tmp;
 251}
 252
 253#endif /* VERBOSE_DEBUG */
 254
 255static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
 256{
 257	u32 value = readl_relaxed(dd->io_base + offset);
 258
 259#ifdef VERBOSE_DEBUG
 260	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 261		char tmp[16];
 262
 263		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
 264			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
 265	}
 266#endif /* VERBOSE_DEBUG */
 267
 268	return value;
 269}
 270
 271static inline void atmel_sha_write(struct atmel_sha_dev *dd,
 272					u32 offset, u32 value)
 273{
 274#ifdef VERBOSE_DEBUG
 275	if (dd->flags & SHA_FLAGS_DUMP_REG) {
 276		char tmp[16];
 277
 278		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
 279			 atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
 280	}
 281#endif /* VERBOSE_DEBUG */
 282
 283	writel_relaxed(value, dd->io_base + offset);
 284}
 285
 286static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
 287{
 288	struct ahash_request *req = dd->req;
 289
 290	dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
 291		       SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
 292		       SHA_FLAGS_DUMP_REG);
 293
 294	clk_disable(dd->iclk);
 295
 296	if ((dd->is_async || dd->force_complete) && req->base.complete)
 297		req->base.complete(&req->base, err);
 298
 299	/* handle new request */
 300	tasklet_schedule(&dd->queue_task);
 301
 302	return err;
 303}
 304
 305static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
 306{
 307	size_t count;
 308
 309	while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
 310		count = min(ctx->sg->length - ctx->offset, ctx->total);
 311		count = min(count, ctx->buflen - ctx->bufcnt);
 312
 313		if (count <= 0) {
 314			/*
 315			* Check if count <= 0 because the buffer is full or
 316			* because the sg length is 0. In the latest case,
 317			* check if there is another sg in the list, a 0 length
 318			* sg doesn't necessarily mean the end of the sg list.
 319			*/
 320			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 321				ctx->sg = sg_next(ctx->sg);
 322				continue;
 323			} else {
 324				break;
 325			}
 326		}
 327
 328		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 329			ctx->offset, count, 0);
 330
 331		ctx->bufcnt += count;
 332		ctx->offset += count;
 333		ctx->total -= count;
 334
 335		if (ctx->offset == ctx->sg->length) {
 336			ctx->sg = sg_next(ctx->sg);
 337			if (ctx->sg)
 338				ctx->offset = 0;
 339			else
 340				ctx->total = 0;
 341		}
 342	}
 343
 344	return 0;
 345}
 346
 347/*
 348 * The purpose of this padding is to ensure that the padded message is a
 349 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 350 * The bit "1" is appended at the end of the message followed by
 351 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 352 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 353 * is appended.
 354 *
 355 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 356 *  - if message length < 56 bytes then padlen = 56 - message length
 357 *  - else padlen = 64 + 56 - message length
 358 *
 359 * For SHA384/SHA512, padlen is calculated as followed:
 360 *  - if message length < 112 bytes then padlen = 112 - message length
 361 *  - else padlen = 128 + 112 - message length
 362 */
 363static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
 364{
 365	unsigned int index, padlen;
 366	u64 bits[2];
 367	u64 size[2];
 368
 369	size[0] = ctx->digcnt[0];
 370	size[1] = ctx->digcnt[1];
 371
 372	size[0] += ctx->bufcnt;
 373	if (size[0] < ctx->bufcnt)
 374		size[1]++;
 375
 376	size[0] += length;
 377	if (size[0]  < length)
 378		size[1]++;
 379
 380	bits[1] = cpu_to_be64(size[0] << 3);
 381	bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
 382
 383	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 384	case SHA_FLAGS_SHA384:
 385	case SHA_FLAGS_SHA512:
 386		index = ctx->bufcnt & 0x7f;
 387		padlen = (index < 112) ? (112 - index) : ((128+112) - index);
 388		*(ctx->buffer + ctx->bufcnt) = 0x80;
 389		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 390		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 391		ctx->bufcnt += padlen + 16;
 392		ctx->flags |= SHA_FLAGS_PAD;
 393		break;
 394
 395	default:
 396		index = ctx->bufcnt & 0x3f;
 397		padlen = (index < 56) ? (56 - index) : ((64+56) - index);
 398		*(ctx->buffer + ctx->bufcnt) = 0x80;
 399		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
 400		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 401		ctx->bufcnt += padlen + 8;
 402		ctx->flags |= SHA_FLAGS_PAD;
 403		break;
 404	}
 405}
 406
 407static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
 408{
 409	struct atmel_sha_dev *dd = NULL;
 410	struct atmel_sha_dev *tmp;
 411
 412	spin_lock_bh(&atmel_sha.lock);
 413	if (!tctx->dd) {
 414		list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
 415			dd = tmp;
 416			break;
 417		}
 418		tctx->dd = dd;
 419	} else {
 420		dd = tctx->dd;
 421	}
 422
 423	spin_unlock_bh(&atmel_sha.lock);
 424
 425	return dd;
 426}
 427
 428static int atmel_sha_init(struct ahash_request *req)
 429{
 430	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 431	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 432	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 433	struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
 434
 435	ctx->dd = dd;
 436
 437	ctx->flags = 0;
 438
 439	dev_dbg(dd->dev, "init: digest size: %d\n",
 440		crypto_ahash_digestsize(tfm));
 441
 442	switch (crypto_ahash_digestsize(tfm)) {
 443	case SHA1_DIGEST_SIZE:
 444		ctx->flags |= SHA_FLAGS_SHA1;
 445		ctx->block_size = SHA1_BLOCK_SIZE;
 446		break;
 447	case SHA224_DIGEST_SIZE:
 448		ctx->flags |= SHA_FLAGS_SHA224;
 449		ctx->block_size = SHA224_BLOCK_SIZE;
 450		break;
 451	case SHA256_DIGEST_SIZE:
 452		ctx->flags |= SHA_FLAGS_SHA256;
 453		ctx->block_size = SHA256_BLOCK_SIZE;
 454		break;
 455	case SHA384_DIGEST_SIZE:
 456		ctx->flags |= SHA_FLAGS_SHA384;
 457		ctx->block_size = SHA384_BLOCK_SIZE;
 458		break;
 459	case SHA512_DIGEST_SIZE:
 460		ctx->flags |= SHA_FLAGS_SHA512;
 461		ctx->block_size = SHA512_BLOCK_SIZE;
 462		break;
 463	default:
 464		return -EINVAL;
 465		break;
 466	}
 467
 468	ctx->bufcnt = 0;
 469	ctx->digcnt[0] = 0;
 470	ctx->digcnt[1] = 0;
 471	ctx->buflen = SHA_BUFFER_LEN;
 472
 473	return 0;
 474}
 475
 476static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
 477{
 478	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 479	u32 valmr = SHA_MR_MODE_AUTO;
 480	unsigned int i, hashsize = 0;
 481
 482	if (likely(dma)) {
 483		if (!dd->caps.has_dma)
 484			atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
 485		valmr = SHA_MR_MODE_PDC;
 486		if (dd->caps.has_dualbuff)
 487			valmr |= SHA_MR_DUALBUFF;
 488	} else {
 489		atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 490	}
 491
 492	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 493	case SHA_FLAGS_SHA1:
 494		valmr |= SHA_MR_ALGO_SHA1;
 495		hashsize = SHA1_DIGEST_SIZE;
 496		break;
 497
 498	case SHA_FLAGS_SHA224:
 499		valmr |= SHA_MR_ALGO_SHA224;
 500		hashsize = SHA256_DIGEST_SIZE;
 501		break;
 502
 503	case SHA_FLAGS_SHA256:
 504		valmr |= SHA_MR_ALGO_SHA256;
 505		hashsize = SHA256_DIGEST_SIZE;
 506		break;
 507
 508	case SHA_FLAGS_SHA384:
 509		valmr |= SHA_MR_ALGO_SHA384;
 510		hashsize = SHA512_DIGEST_SIZE;
 511		break;
 512
 513	case SHA_FLAGS_SHA512:
 514		valmr |= SHA_MR_ALGO_SHA512;
 515		hashsize = SHA512_DIGEST_SIZE;
 516		break;
 517
 518	default:
 519		break;
 520	}
 521
 522	/* Setting CR_FIRST only for the first iteration */
 523	if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
 524		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 525	} else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
 526		const u32 *hash = (const u32 *)ctx->digest;
 527
 528		/*
 529		 * Restore the hardware context: update the User Initialize
 530		 * Hash Value (UIHV) with the value saved when the latest
 531		 * 'update' operation completed on this very same crypto
 532		 * request.
 533		 */
 534		ctx->flags &= ~SHA_FLAGS_RESTORE;
 535		atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
 536		for (i = 0; i < hashsize / sizeof(u32); ++i)
 537			atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
 538		atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
 539		valmr |= SHA_MR_UIHV;
 540	}
 541	/*
 542	 * WARNING: If the UIHV feature is not available, the hardware CANNOT
 543	 * process concurrent requests: the internal registers used to store
 544	 * the hash/digest are still set to the partial digest output values
 545	 * computed during the latest round.
 546	 */
 547
 548	atmel_sha_write(dd, SHA_MR, valmr);
 549}
 550
 551static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
 552						atmel_sha_fn_t resume)
 553{
 554	u32 isr = atmel_sha_read(dd, SHA_ISR);
 555
 556	if (unlikely(isr & SHA_INT_DATARDY))
 557		return resume(dd);
 558
 559	dd->resume = resume;
 560	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 561	return -EINPROGRESS;
 562}
 563
 564static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
 565			      size_t length, int final)
 566{
 567	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 568	int count, len32;
 569	const u32 *buffer = (const u32 *)buf;
 570
 571	dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 572		ctx->digcnt[1], ctx->digcnt[0], length, final);
 573
 574	atmel_sha_write_ctrl(dd, 0);
 575
 576	/* should be non-zero before next lines to disable clocks later */
 577	ctx->digcnt[0] += length;
 578	if (ctx->digcnt[0] < length)
 579		ctx->digcnt[1]++;
 580
 581	if (final)
 582		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 583
 584	len32 = DIV_ROUND_UP(length, sizeof(u32));
 585
 586	dd->flags |= SHA_FLAGS_CPU;
 587
 588	for (count = 0; count < len32; count++)
 589		atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
 590
 591	return -EINPROGRESS;
 592}
 593
 594static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 595		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 596{
 597	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 598	int len32;
 599
 600	dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 601		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 602
 603	len32 = DIV_ROUND_UP(length1, sizeof(u32));
 604	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
 605	atmel_sha_write(dd, SHA_TPR, dma_addr1);
 606	atmel_sha_write(dd, SHA_TCR, len32);
 607
 608	len32 = DIV_ROUND_UP(length2, sizeof(u32));
 609	atmel_sha_write(dd, SHA_TNPR, dma_addr2);
 610	atmel_sha_write(dd, SHA_TNCR, len32);
 611
 612	atmel_sha_write_ctrl(dd, 1);
 613
 614	/* should be non-zero before next lines to disable clocks later */
 615	ctx->digcnt[0] += length1;
 616	if (ctx->digcnt[0] < length1)
 617		ctx->digcnt[1]++;
 618
 619	if (final)
 620		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 621
 622	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 623
 624	/* Start DMA transfer */
 625	atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
 626
 627	return -EINPROGRESS;
 628}
 629
 630static void atmel_sha_dma_callback(void *data)
 631{
 632	struct atmel_sha_dev *dd = data;
 633
 634	dd->is_async = true;
 635
 636	/* dma_lch_in - completed - wait DATRDY */
 637	atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
 638}
 639
 640static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 641		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 642{
 643	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 644	struct dma_async_tx_descriptor	*in_desc;
 645	struct scatterlist sg[2];
 646
 647	dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
 648		ctx->digcnt[1], ctx->digcnt[0], length1, final);
 649
 650	dd->dma_lch_in.dma_conf.src_maxburst = 16;
 651	dd->dma_lch_in.dma_conf.dst_maxburst = 16;
 652
 653	dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
 654
 655	if (length2) {
 656		sg_init_table(sg, 2);
 657		sg_dma_address(&sg[0]) = dma_addr1;
 658		sg_dma_len(&sg[0]) = length1;
 659		sg_dma_address(&sg[1]) = dma_addr2;
 660		sg_dma_len(&sg[1]) = length2;
 661		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
 662			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 663	} else {
 664		sg_init_table(sg, 1);
 665		sg_dma_address(&sg[0]) = dma_addr1;
 666		sg_dma_len(&sg[0]) = length1;
 667		in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
 668			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 669	}
 670	if (!in_desc)
 671		return atmel_sha_complete(dd, -EINVAL);
 672
 673	in_desc->callback = atmel_sha_dma_callback;
 674	in_desc->callback_param = dd;
 675
 676	atmel_sha_write_ctrl(dd, 1);
 677
 678	/* should be non-zero before next lines to disable clocks later */
 679	ctx->digcnt[0] += length1;
 680	if (ctx->digcnt[0] < length1)
 681		ctx->digcnt[1]++;
 682
 683	if (final)
 684		dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
 685
 686	dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
 687
 688	/* Start DMA transfer */
 689	dmaengine_submit(in_desc);
 690	dma_async_issue_pending(dd->dma_lch_in.chan);
 691
 692	return -EINPROGRESS;
 693}
 694
 695static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
 696		size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
 697{
 698	if (dd->caps.has_dma)
 699		return atmel_sha_xmit_dma(dd, dma_addr1, length1,
 700				dma_addr2, length2, final);
 701	else
 702		return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
 703				dma_addr2, length2, final);
 704}
 705
 706static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
 707{
 708	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 709	int bufcnt;
 710
 711	atmel_sha_append_sg(ctx);
 712	atmel_sha_fill_padding(ctx, 0);
 713	bufcnt = ctx->bufcnt;
 714	ctx->bufcnt = 0;
 715
 716	return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
 717}
 718
 719static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
 720					struct atmel_sha_reqctx *ctx,
 721					size_t length, int final)
 722{
 723	ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 724				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 725	if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 726		dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
 727				ctx->block_size);
 728		return atmel_sha_complete(dd, -EINVAL);
 729	}
 730
 731	ctx->flags &= ~SHA_FLAGS_SG;
 732
 733	/* next call does not fail... so no unmap in the case of error */
 734	return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
 735}
 736
 737static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
 738{
 739	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 740	unsigned int final;
 741	size_t count;
 742
 743	atmel_sha_append_sg(ctx);
 744
 745	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 746
 747	dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
 748		 ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
 749
 750	if (final)
 751		atmel_sha_fill_padding(ctx, 0);
 752
 753	if (final || (ctx->bufcnt == ctx->buflen)) {
 754		count = ctx->bufcnt;
 755		ctx->bufcnt = 0;
 756		return atmel_sha_xmit_dma_map(dd, ctx, count, final);
 757	}
 758
 759	return 0;
 760}
 761
 762static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
 763{
 764	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 765	unsigned int length, final, tail;
 766	struct scatterlist *sg;
 767	unsigned int count;
 768
 769	if (!ctx->total)
 770		return 0;
 771
 772	if (ctx->bufcnt || ctx->offset)
 773		return atmel_sha_update_dma_slow(dd);
 774
 775	dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
 776		ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
 777
 778	sg = ctx->sg;
 779
 780	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 781		return atmel_sha_update_dma_slow(dd);
 782
 783	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
 784		/* size is not ctx->block_size aligned */
 785		return atmel_sha_update_dma_slow(dd);
 786
 787	length = min(ctx->total, sg->length);
 788
 789	if (sg_is_last(sg)) {
 790		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 791			/* not last sg must be ctx->block_size aligned */
 792			tail = length & (ctx->block_size - 1);
 793			length -= tail;
 794		}
 795	}
 796
 797	ctx->total -= length;
 798	ctx->offset = length; /* offset where to start slow */
 799
 800	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 801
 802	/* Add padding */
 803	if (final) {
 804		tail = length & (ctx->block_size - 1);
 805		length -= tail;
 806		ctx->total += tail;
 807		ctx->offset = length; /* offset where to start slow */
 808
 809		sg = ctx->sg;
 810		atmel_sha_append_sg(ctx);
 811
 812		atmel_sha_fill_padding(ctx, length);
 813
 814		ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
 815			ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 816		if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
 817			dev_err(dd->dev, "dma %zu bytes error\n",
 818				ctx->buflen + ctx->block_size);
 819			return atmel_sha_complete(dd, -EINVAL);
 820		}
 821
 822		if (length == 0) {
 823			ctx->flags &= ~SHA_FLAGS_SG;
 824			count = ctx->bufcnt;
 825			ctx->bufcnt = 0;
 826			return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
 827					0, final);
 828		} else {
 829			ctx->sg = sg;
 830			if (!dma_map_sg(dd->dev, ctx->sg, 1,
 831				DMA_TO_DEVICE)) {
 832					dev_err(dd->dev, "dma_map_sg  error\n");
 833					return atmel_sha_complete(dd, -EINVAL);
 834			}
 835
 836			ctx->flags |= SHA_FLAGS_SG;
 837
 838			count = ctx->bufcnt;
 839			ctx->bufcnt = 0;
 840			return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
 841					length, ctx->dma_addr, count, final);
 842		}
 843	}
 844
 845	if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 846		dev_err(dd->dev, "dma_map_sg  error\n");
 847		return atmel_sha_complete(dd, -EINVAL);
 848	}
 849
 850	ctx->flags |= SHA_FLAGS_SG;
 851
 852	/* next call does not fail... so no unmap in the case of error */
 853	return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
 854								0, final);
 855}
 856
 857static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
 858{
 859	struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
 860
 861	if (ctx->flags & SHA_FLAGS_SG) {
 862		dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
 863		if (ctx->sg->length == ctx->offset) {
 864			ctx->sg = sg_next(ctx->sg);
 865			if (ctx->sg)
 866				ctx->offset = 0;
 867		}
 868		if (ctx->flags & SHA_FLAGS_PAD) {
 869			dma_unmap_single(dd->dev, ctx->dma_addr,
 870				ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
 871		}
 872	} else {
 873		dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
 874						ctx->block_size, DMA_TO_DEVICE);
 875	}
 876
 877	return 0;
 878}
 879
 880static int atmel_sha_update_req(struct atmel_sha_dev *dd)
 881{
 882	struct ahash_request *req = dd->req;
 883	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 884	int err;
 885
 886	dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
 887		ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
 888
 889	if (ctx->flags & SHA_FLAGS_CPU)
 890		err = atmel_sha_update_cpu(dd);
 891	else
 892		err = atmel_sha_update_dma_start(dd);
 893
 894	/* wait for dma completion before can take more data */
 895	dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
 896			err, ctx->digcnt[1], ctx->digcnt[0]);
 897
 898	return err;
 899}
 900
 901static int atmel_sha_final_req(struct atmel_sha_dev *dd)
 902{
 903	struct ahash_request *req = dd->req;
 904	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 905	int err = 0;
 906	int count;
 907
 908	if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
 909		atmel_sha_fill_padding(ctx, 0);
 910		count = ctx->bufcnt;
 911		ctx->bufcnt = 0;
 912		err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
 913	}
 914	/* faster to handle last block with cpu */
 915	else {
 916		atmel_sha_fill_padding(ctx, 0);
 917		count = ctx->bufcnt;
 918		ctx->bufcnt = 0;
 919		err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
 920	}
 921
 922	dev_dbg(dd->dev, "final_req: err: %d\n", err);
 923
 924	return err;
 925}
 926
 927static void atmel_sha_copy_hash(struct ahash_request *req)
 928{
 929	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 930	u32 *hash = (u32 *)ctx->digest;
 931	unsigned int i, hashsize;
 932
 933	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 934	case SHA_FLAGS_SHA1:
 935		hashsize = SHA1_DIGEST_SIZE;
 936		break;
 937
 938	case SHA_FLAGS_SHA224:
 939	case SHA_FLAGS_SHA256:
 940		hashsize = SHA256_DIGEST_SIZE;
 941		break;
 942
 943	case SHA_FLAGS_SHA384:
 944	case SHA_FLAGS_SHA512:
 945		hashsize = SHA512_DIGEST_SIZE;
 946		break;
 947
 948	default:
 949		/* Should not happen... */
 950		return;
 951	}
 952
 953	for (i = 0; i < hashsize / sizeof(u32); ++i)
 954		hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
 955	ctx->flags |= SHA_FLAGS_RESTORE;
 956}
 957
 958static void atmel_sha_copy_ready_hash(struct ahash_request *req)
 959{
 960	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 961
 962	if (!req->result)
 963		return;
 964
 965	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
 966	default:
 967	case SHA_FLAGS_SHA1:
 968		memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
 969		break;
 970
 971	case SHA_FLAGS_SHA224:
 972		memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
 973		break;
 974
 975	case SHA_FLAGS_SHA256:
 976		memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
 977		break;
 978
 979	case SHA_FLAGS_SHA384:
 980		memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
 981		break;
 982
 983	case SHA_FLAGS_SHA512:
 984		memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
 985		break;
 986	}
 987}
 988
 989static int atmel_sha_finish(struct ahash_request *req)
 990{
 991	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
 992	struct atmel_sha_dev *dd = ctx->dd;
 993
 994	if (ctx->digcnt[0] || ctx->digcnt[1])
 995		atmel_sha_copy_ready_hash(req);
 996
 997	dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
 998		ctx->digcnt[0], ctx->bufcnt);
 999
1000	return 0;
1001}
1002
1003static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004{
1005	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006	struct atmel_sha_dev *dd = ctx->dd;
1007
1008	if (!err) {
1009		atmel_sha_copy_hash(req);
1010		if (SHA_FLAGS_FINAL & dd->flags)
1011			err = atmel_sha_finish(req);
1012	} else {
1013		ctx->flags |= SHA_FLAGS_ERROR;
1014	}
1015
1016	/* atomic operation is not needed here */
1017	(void)atmel_sha_complete(dd, err);
1018}
1019
1020static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021{
1022	int err;
1023
1024	err = clk_enable(dd->iclk);
1025	if (err)
1026		return err;
1027
1028	if (!(SHA_FLAGS_INIT & dd->flags)) {
1029		atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030		dd->flags |= SHA_FLAGS_INIT;
1031		dd->err = 0;
1032	}
1033
1034	return 0;
1035}
1036
1037static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038{
1039	return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040}
1041
1042static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043{
1044	atmel_sha_hw_init(dd);
 
 
 
 
1045
1046	dd->hw_version = atmel_sha_get_version(dd);
1047
1048	dev_info(dd->dev,
1049			"version: 0x%x\n", dd->hw_version);
1050
1051	clk_disable(dd->iclk);
 
 
1052}
1053
1054static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055				  struct ahash_request *req)
1056{
1057	struct crypto_async_request *async_req, *backlog;
1058	struct atmel_sha_ctx *ctx;
1059	unsigned long flags;
1060	bool start_async;
1061	int err = 0, ret = 0;
1062
1063	spin_lock_irqsave(&dd->lock, flags);
1064	if (req)
1065		ret = ahash_enqueue_request(&dd->queue, req);
1066
1067	if (SHA_FLAGS_BUSY & dd->flags) {
1068		spin_unlock_irqrestore(&dd->lock, flags);
1069		return ret;
1070	}
1071
1072	backlog = crypto_get_backlog(&dd->queue);
1073	async_req = crypto_dequeue_request(&dd->queue);
1074	if (async_req)
1075		dd->flags |= SHA_FLAGS_BUSY;
1076
1077	spin_unlock_irqrestore(&dd->lock, flags);
1078
1079	if (!async_req)
1080		return ret;
1081
1082	if (backlog)
1083		backlog->complete(backlog, -EINPROGRESS);
1084
1085	ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087	dd->req = ahash_request_cast(async_req);
1088	start_async = (dd->req != req);
1089	dd->is_async = start_async;
1090	dd->force_complete = false;
1091
1092	/* WARNING: ctx->start() MAY change dd->is_async. */
1093	err = ctx->start(dd);
1094	return (start_async) ? ret : err;
1095}
1096
1097static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099static int atmel_sha_start(struct atmel_sha_dev *dd)
1100{
1101	struct ahash_request *req = dd->req;
1102	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103	int err;
1104
1105	dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106						ctx->op, req->nbytes);
1107
1108	err = atmel_sha_hw_init(dd);
1109	if (err)
1110		return atmel_sha_complete(dd, err);
1111
1112	/*
1113	 * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114	 *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115	 *                its job later in the done_task.
1116	 *                This is the main path.
1117	 *
1118	 * 0: the SHA driver can continue its job then release the hardware
1119	 *    later, if needed, with atmel_sha_finish_req().
1120	 *    This is the alternate path.
1121	 *
1122	 * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123	 *      been called, hence the hardware has been released.
1124	 *      The SHA driver must stop its job without calling
1125	 *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126	 *      called a second time.
1127	 *
1128	 * Please note that currently, atmel_sha_final_req() never returns 0.
1129	 */
1130
1131	dd->resume = atmel_sha_done;
1132	if (ctx->op == SHA_OP_UPDATE) {
1133		err = atmel_sha_update_req(dd);
1134		if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135			/* no final() after finup() */
1136			err = atmel_sha_final_req(dd);
1137	} else if (ctx->op == SHA_OP_FINAL) {
1138		err = atmel_sha_final_req(dd);
1139	}
1140
1141	if (!err)
1142		/* done_task will not finish it, so do it here */
1143		atmel_sha_finish_req(req, err);
1144
1145	dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147	return err;
1148}
1149
1150static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151{
1152	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153	struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154	struct atmel_sha_dev *dd = tctx->dd;
1155
1156	ctx->op = op;
1157
1158	return atmel_sha_handle_queue(dd, req);
1159}
1160
1161static int atmel_sha_update(struct ahash_request *req)
1162{
1163	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165	if (!req->nbytes)
1166		return 0;
1167
1168	ctx->total = req->nbytes;
1169	ctx->sg = req->src;
1170	ctx->offset = 0;
1171
1172	if (ctx->flags & SHA_FLAGS_FINUP) {
1173		if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174			/* faster to use CPU for short transfers */
1175			ctx->flags |= SHA_FLAGS_CPU;
1176	} else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177		atmel_sha_append_sg(ctx);
1178		return 0;
1179	}
1180	return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181}
1182
1183static int atmel_sha_final(struct ahash_request *req)
1184{
1185	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187	ctx->flags |= SHA_FLAGS_FINUP;
1188
1189	if (ctx->flags & SHA_FLAGS_ERROR)
1190		return 0; /* uncompleted hash is not needed */
1191
1192	if (ctx->flags & SHA_FLAGS_PAD)
1193		/* copy ready hash (+ finalize hmac) */
1194		return atmel_sha_finish(req);
1195
1196	return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197}
1198
1199static int atmel_sha_finup(struct ahash_request *req)
1200{
1201	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202	int err1, err2;
1203
1204	ctx->flags |= SHA_FLAGS_FINUP;
1205
1206	err1 = atmel_sha_update(req);
1207	if (err1 == -EINPROGRESS ||
1208	    (err1 == -EBUSY && (ahash_request_flags(req) &
1209				CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210		return err1;
1211
1212	/*
1213	 * final() has to be always called to cleanup resources
1214	 * even if udpate() failed, except EINPROGRESS
1215	 */
1216	err2 = atmel_sha_final(req);
1217
1218	return err1 ?: err2;
1219}
1220
1221static int atmel_sha_digest(struct ahash_request *req)
1222{
1223	return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224}
1225
1226
1227static int atmel_sha_export(struct ahash_request *req, void *out)
1228{
1229	const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231	memcpy(out, ctx, sizeof(*ctx));
1232	return 0;
1233}
1234
1235static int atmel_sha_import(struct ahash_request *req, const void *in)
1236{
1237	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239	memcpy(ctx, in, sizeof(*ctx));
1240	return 0;
1241}
1242
1243static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244{
1245	struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248				 sizeof(struct atmel_sha_reqctx));
1249	ctx->start = atmel_sha_start;
1250
1251	return 0;
1252}
1253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254static struct ahash_alg sha_1_256_algs[] = {
1255{
1256	.init		= atmel_sha_init,
1257	.update		= atmel_sha_update,
1258	.final		= atmel_sha_final,
1259	.finup		= atmel_sha_finup,
1260	.digest		= atmel_sha_digest,
1261	.export		= atmel_sha_export,
1262	.import		= atmel_sha_import,
1263	.halg = {
1264		.digestsize	= SHA1_DIGEST_SIZE,
1265		.statesize	= sizeof(struct atmel_sha_reqctx),
1266		.base	= {
1267			.cra_name		= "sha1",
1268			.cra_driver_name	= "atmel-sha1",
1269			.cra_priority		= 100,
1270			.cra_flags		= CRYPTO_ALG_ASYNC,
1271			.cra_blocksize		= SHA1_BLOCK_SIZE,
1272			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1273			.cra_alignmask		= 0,
1274			.cra_module		= THIS_MODULE,
1275			.cra_init		= atmel_sha_cra_init,
1276		}
1277	}
1278},
1279{
1280	.init		= atmel_sha_init,
1281	.update		= atmel_sha_update,
1282	.final		= atmel_sha_final,
1283	.finup		= atmel_sha_finup,
1284	.digest		= atmel_sha_digest,
1285	.export		= atmel_sha_export,
1286	.import		= atmel_sha_import,
1287	.halg = {
1288		.digestsize	= SHA256_DIGEST_SIZE,
1289		.statesize	= sizeof(struct atmel_sha_reqctx),
1290		.base	= {
1291			.cra_name		= "sha256",
1292			.cra_driver_name	= "atmel-sha256",
1293			.cra_priority		= 100,
1294			.cra_flags		= CRYPTO_ALG_ASYNC,
1295			.cra_blocksize		= SHA256_BLOCK_SIZE,
1296			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1297			.cra_alignmask		= 0,
1298			.cra_module		= THIS_MODULE,
1299			.cra_init		= atmel_sha_cra_init,
1300		}
1301	}
1302},
1303};
1304
1305static struct ahash_alg sha_224_alg = {
1306	.init		= atmel_sha_init,
1307	.update		= atmel_sha_update,
1308	.final		= atmel_sha_final,
1309	.finup		= atmel_sha_finup,
1310	.digest		= atmel_sha_digest,
1311	.export		= atmel_sha_export,
1312	.import		= atmel_sha_import,
1313	.halg = {
1314		.digestsize	= SHA224_DIGEST_SIZE,
1315		.statesize	= sizeof(struct atmel_sha_reqctx),
1316		.base	= {
1317			.cra_name		= "sha224",
1318			.cra_driver_name	= "atmel-sha224",
1319			.cra_priority		= 100,
1320			.cra_flags		= CRYPTO_ALG_ASYNC,
1321			.cra_blocksize		= SHA224_BLOCK_SIZE,
1322			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1323			.cra_alignmask		= 0,
1324			.cra_module		= THIS_MODULE,
1325			.cra_init		= atmel_sha_cra_init,
1326		}
1327	}
1328};
1329
1330static struct ahash_alg sha_384_512_algs[] = {
1331{
1332	.init		= atmel_sha_init,
1333	.update		= atmel_sha_update,
1334	.final		= atmel_sha_final,
1335	.finup		= atmel_sha_finup,
1336	.digest		= atmel_sha_digest,
1337	.export		= atmel_sha_export,
1338	.import		= atmel_sha_import,
1339	.halg = {
1340		.digestsize	= SHA384_DIGEST_SIZE,
1341		.statesize	= sizeof(struct atmel_sha_reqctx),
1342		.base	= {
1343			.cra_name		= "sha384",
1344			.cra_driver_name	= "atmel-sha384",
1345			.cra_priority		= 100,
1346			.cra_flags		= CRYPTO_ALG_ASYNC,
1347			.cra_blocksize		= SHA384_BLOCK_SIZE,
1348			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1349			.cra_alignmask		= 0x3,
1350			.cra_module		= THIS_MODULE,
1351			.cra_init		= atmel_sha_cra_init,
1352		}
1353	}
1354},
1355{
1356	.init		= atmel_sha_init,
1357	.update		= atmel_sha_update,
1358	.final		= atmel_sha_final,
1359	.finup		= atmel_sha_finup,
1360	.digest		= atmel_sha_digest,
1361	.export		= atmel_sha_export,
1362	.import		= atmel_sha_import,
1363	.halg = {
1364		.digestsize	= SHA512_DIGEST_SIZE,
1365		.statesize	= sizeof(struct atmel_sha_reqctx),
1366		.base	= {
1367			.cra_name		= "sha512",
1368			.cra_driver_name	= "atmel-sha512",
1369			.cra_priority		= 100,
1370			.cra_flags		= CRYPTO_ALG_ASYNC,
1371			.cra_blocksize		= SHA512_BLOCK_SIZE,
1372			.cra_ctxsize		= sizeof(struct atmel_sha_ctx),
1373			.cra_alignmask		= 0x3,
1374			.cra_module		= THIS_MODULE,
1375			.cra_init		= atmel_sha_cra_init,
1376		}
1377	}
1378},
1379};
1380
1381static void atmel_sha_queue_task(unsigned long data)
1382{
1383	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384
1385	atmel_sha_handle_queue(dd, NULL);
1386}
1387
1388static int atmel_sha_done(struct atmel_sha_dev *dd)
1389{
1390	int err = 0;
1391
1392	if (SHA_FLAGS_CPU & dd->flags) {
1393		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394			dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395			goto finish;
1396		}
1397	} else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398		if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399			dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400			atmel_sha_update_dma_stop(dd);
1401			if (dd->err) {
1402				err = dd->err;
1403				goto finish;
1404			}
1405		}
1406		if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407			/* hash or semi-hash ready */
1408			dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409						SHA_FLAGS_OUTPUT_READY);
1410			err = atmel_sha_update_dma_start(dd);
1411			if (err != -EINPROGRESS)
1412				goto finish;
1413		}
1414	}
1415	return err;
1416
1417finish:
1418	/* finish curent request */
1419	atmel_sha_finish_req(dd->req, err);
1420
1421	return err;
1422}
1423
1424static void atmel_sha_done_task(unsigned long data)
1425{
1426	struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427
1428	dd->is_async = true;
1429	(void)dd->resume(dd);
1430}
1431
1432static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433{
1434	struct atmel_sha_dev *sha_dd = dev_id;
1435	u32 reg;
1436
1437	reg = atmel_sha_read(sha_dd, SHA_ISR);
1438	if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439		atmel_sha_write(sha_dd, SHA_IDR, reg);
1440		if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441			sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442			if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443				sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444			tasklet_schedule(&sha_dd->done_task);
1445		} else {
1446			dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447		}
1448		return IRQ_HANDLED;
1449	}
1450
1451	return IRQ_NONE;
1452}
1453
1454
1455/* DMA transfer functions */
1456
1457static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458					struct scatterlist *sg,
1459					size_t len)
1460{
1461	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462	struct ahash_request *req = dd->req;
1463	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464	size_t bs = ctx->block_size;
1465	int nents;
1466
1467	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469			return false;
1470
1471		/*
1472		 * This is the last sg, the only one that is allowed to
1473		 * have an unaligned length.
1474		 */
1475		if (len <= sg->length) {
1476			dma->nents = nents + 1;
1477			dma->last_sg_length = sg->length;
1478			sg->length = ALIGN(len, sizeof(u32));
1479			return true;
1480		}
1481
1482		/* All other sg lengths MUST be aligned to the block size. */
1483		if (!IS_ALIGNED(sg->length, bs))
1484			return false;
1485
1486		len -= sg->length;
1487	}
1488
1489	return false;
1490}
1491
1492static void atmel_sha_dma_callback2(void *data)
1493{
1494	struct atmel_sha_dev *dd = data;
1495	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496	struct scatterlist *sg;
1497	int nents;
1498
1499	dmaengine_terminate_all(dma->chan);
1500	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501
1502	sg = dma->sg;
1503	for (nents = 0; nents < dma->nents - 1; ++nents)
1504		sg = sg_next(sg);
1505	sg->length = dma->last_sg_length;
1506
1507	dd->is_async = true;
1508	(void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509}
1510
1511static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512			       struct scatterlist *src,
1513			       size_t len,
1514			       atmel_sha_fn_t resume)
1515{
1516	struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517	struct dma_slave_config *config = &dma->dma_conf;
1518	struct dma_chan *chan = dma->chan;
1519	struct dma_async_tx_descriptor *desc;
1520	dma_cookie_t cookie;
1521	unsigned int sg_len;
1522	int err;
1523
1524	dd->resume = resume;
1525
1526	/*
1527	 * dma->nents has already been initialized by
1528	 * atmel_sha_dma_check_aligned().
1529	 */
1530	dma->sg = src;
1531	sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532	if (!sg_len) {
1533		err = -ENOMEM;
1534		goto exit;
1535	}
1536
1537	config->src_maxburst = 16;
1538	config->dst_maxburst = 16;
1539	err = dmaengine_slave_config(chan, config);
1540	if (err)
1541		goto unmap_sg;
1542
1543	desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545	if (!desc) {
1546		err = -ENOMEM;
1547		goto unmap_sg;
1548	}
1549
1550	desc->callback = atmel_sha_dma_callback2;
1551	desc->callback_param = dd;
1552	cookie = dmaengine_submit(desc);
1553	err = dma_submit_error(cookie);
1554	if (err)
1555		goto unmap_sg;
1556
1557	dma_async_issue_pending(chan);
1558
1559	return -EINPROGRESS;
1560
1561unmap_sg:
1562	dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563exit:
1564	return atmel_sha_complete(dd, err);
1565}
1566
1567
1568/* CPU transfer functions */
1569
1570static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571{
1572	struct ahash_request *req = dd->req;
1573	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574	const u32 *words = (const u32 *)ctx->buffer;
1575	size_t i, num_words;
1576	u32 isr, din, din_inc;
1577
1578	din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579	for (;;) {
1580		/* Write data into the Input Data Registers. */
1581		num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582		for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583			atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584
1585		ctx->offset += ctx->bufcnt;
1586		ctx->total -= ctx->bufcnt;
1587
1588		if (!ctx->total)
1589			break;
1590
1591		/*
1592		 * Prepare next block:
1593		 * Fill ctx->buffer now with the next data to be written into
1594		 * IDATARx: it gives time for the SHA hardware to process
1595		 * the current data so the SHA_INT_DATARDY flag might be set
1596		 * in SHA_ISR when polling this register at the beginning of
1597		 * the next loop.
1598		 */
1599		ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600		scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601					 ctx->offset, ctx->bufcnt, 0);
1602
1603		/* Wait for hardware to be ready again. */
1604		isr = atmel_sha_read(dd, SHA_ISR);
1605		if (!(isr & SHA_INT_DATARDY)) {
1606			/* Not ready yet. */
1607			dd->resume = atmel_sha_cpu_transfer;
1608			atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609			return -EINPROGRESS;
1610		}
1611	}
1612
1613	if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614		return dd->cpu_transfer_complete(dd);
1615
1616	return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617}
1618
1619static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620			       struct scatterlist *sg,
1621			       unsigned int len,
1622			       bool idatar0_only,
1623			       bool wait_data_ready,
1624			       atmel_sha_fn_t resume)
1625{
1626	struct ahash_request *req = dd->req;
1627	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628
1629	if (!len)
1630		return resume(dd);
1631
1632	ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633
1634	if (idatar0_only)
1635		ctx->flags |= SHA_FLAGS_IDATAR0;
1636
1637	if (wait_data_ready)
1638		ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639
1640	ctx->sg = sg;
1641	ctx->total = len;
1642	ctx->offset = 0;
1643
1644	/* Prepare the first block to be written. */
1645	ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646	scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647				 ctx->offset, ctx->bufcnt, 0);
1648
1649	dd->cpu_transfer_complete = resume;
1650	return atmel_sha_cpu_transfer(dd);
1651}
1652
1653static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654			      const void *data, unsigned int datalen,
1655			      bool auto_padding,
1656			      atmel_sha_fn_t resume)
1657{
1658	struct ahash_request *req = dd->req;
1659	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660	u32 msglen = (auto_padding) ? datalen : 0;
1661	u32 mr = SHA_MR_MODE_AUTO;
1662
1663	if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664		return atmel_sha_complete(dd, -EINVAL);
1665
1666	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667	atmel_sha_write(dd, SHA_MR, mr);
1668	atmel_sha_write(dd, SHA_MSR, msglen);
1669	atmel_sha_write(dd, SHA_BCR, msglen);
1670	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671
1672	sg_init_one(&dd->tmp, data, datalen);
1673	return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674}
1675
1676
1677/* hmac functions */
1678
1679struct atmel_sha_hmac_key {
1680	bool			valid;
1681	unsigned int		keylen;
1682	u8			buffer[SHA512_BLOCK_SIZE];
1683	u8			*keydup;
1684};
1685
1686static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687{
1688	memset(hkey, 0, sizeof(*hkey));
1689}
1690
1691static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692{
1693	kfree(hkey->keydup);
1694	memset(hkey, 0, sizeof(*hkey));
1695}
1696
1697static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698					 const u8 *key,
1699					 unsigned int keylen)
1700{
1701	atmel_sha_hmac_key_release(hkey);
1702
1703	if (keylen > sizeof(hkey->buffer)) {
1704		hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705		if (!hkey->keydup)
1706			return -ENOMEM;
1707
1708	} else {
1709		memcpy(hkey->buffer, key, keylen);
1710	}
1711
1712	hkey->valid = true;
1713	hkey->keylen = keylen;
1714	return 0;
1715}
1716
1717static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718					  const u8 **key,
1719					  unsigned int *keylen)
1720{
1721	if (!hkey->valid)
1722		return false;
1723
1724	*keylen = hkey->keylen;
1725	*key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726	return true;
1727}
1728
1729
1730struct atmel_sha_hmac_ctx {
1731	struct atmel_sha_ctx	base;
1732
1733	struct atmel_sha_hmac_key	hkey;
1734	u32			ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735	u32			opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736	atmel_sha_fn_t		resume;
1737};
1738
1739static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740				atmel_sha_fn_t resume);
1741static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742				      const u8 *key, unsigned int keylen);
1743static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747
1748static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752
1753static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754				atmel_sha_fn_t resume)
1755{
1756	struct ahash_request *req = dd->req;
1757	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760	unsigned int keylen;
1761	const u8 *key;
1762	size_t bs;
1763
1764	hmac->resume = resume;
1765	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766	case SHA_FLAGS_SHA1:
1767		ctx->block_size = SHA1_BLOCK_SIZE;
1768		ctx->hash_size = SHA1_DIGEST_SIZE;
1769		break;
1770
1771	case SHA_FLAGS_SHA224:
1772		ctx->block_size = SHA224_BLOCK_SIZE;
1773		ctx->hash_size = SHA256_DIGEST_SIZE;
1774		break;
1775
1776	case SHA_FLAGS_SHA256:
1777		ctx->block_size = SHA256_BLOCK_SIZE;
1778		ctx->hash_size = SHA256_DIGEST_SIZE;
1779		break;
1780
1781	case SHA_FLAGS_SHA384:
1782		ctx->block_size = SHA384_BLOCK_SIZE;
1783		ctx->hash_size = SHA512_DIGEST_SIZE;
1784		break;
1785
1786	case SHA_FLAGS_SHA512:
1787		ctx->block_size = SHA512_BLOCK_SIZE;
1788		ctx->hash_size = SHA512_DIGEST_SIZE;
1789		break;
1790
1791	default:
1792		return atmel_sha_complete(dd, -EINVAL);
1793	}
1794	bs = ctx->block_size;
1795
1796	if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797		return resume(dd);
1798
1799	/* Compute K' from K. */
1800	if (unlikely(keylen > bs))
1801		return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802
1803	/* Prepare ipad. */
1804	memcpy((u8 *)hmac->ipad, key, keylen);
1805	memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806	return atmel_sha_hmac_compute_ipad_hash(dd);
1807}
1808
1809static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810				      const u8 *key, unsigned int keylen)
1811{
1812	return atmel_sha_cpu_hash(dd, key, keylen, true,
1813				  atmel_sha_hmac_prehash_key_done);
1814}
1815
1816static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817{
1818	struct ahash_request *req = dd->req;
1819	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822	size_t ds = crypto_ahash_digestsize(tfm);
1823	size_t bs = ctx->block_size;
1824	size_t i, num_words = ds / sizeof(u32);
1825
1826	/* Prepare ipad. */
1827	for (i = 0; i < num_words; ++i)
1828		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829	memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830	return atmel_sha_hmac_compute_ipad_hash(dd);
1831}
1832
1833static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834{
1835	struct ahash_request *req = dd->req;
1836	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839	size_t bs = ctx->block_size;
1840	size_t i, num_words = bs / sizeof(u32);
1841
1842	memcpy(hmac->opad, hmac->ipad, bs);
 
1843	for (i = 0; i < num_words; ++i) {
1844		hmac->ipad[i] ^= 0x36363636;
1845		hmac->opad[i] ^= 0x5c5c5c5c;
1846	}
1847
1848	return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849				  atmel_sha_hmac_compute_opad_hash);
1850}
1851
1852static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853{
1854	struct ahash_request *req = dd->req;
1855	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858	size_t bs = ctx->block_size;
1859	size_t hs = ctx->hash_size;
1860	size_t i, num_words = hs / sizeof(u32);
1861
1862	for (i = 0; i < num_words; ++i)
1863		hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864	return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865				  atmel_sha_hmac_setup_done);
1866}
1867
1868static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869{
1870	struct ahash_request *req = dd->req;
1871	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874	size_t hs = ctx->hash_size;
1875	size_t i, num_words = hs / sizeof(u32);
1876
1877	for (i = 0; i < num_words; ++i)
1878		hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879	atmel_sha_hmac_key_release(&hmac->hkey);
1880	return hmac->resume(dd);
1881}
1882
1883static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884{
1885	struct ahash_request *req = dd->req;
1886	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887	int err;
1888
1889	err = atmel_sha_hw_init(dd);
1890	if (err)
1891		return atmel_sha_complete(dd, err);
1892
1893	switch (ctx->op) {
1894	case SHA_OP_INIT:
1895		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896		break;
1897
1898	case SHA_OP_UPDATE:
1899		dd->resume = atmel_sha_done;
1900		err = atmel_sha_update_req(dd);
1901		break;
1902
1903	case SHA_OP_FINAL:
1904		dd->resume = atmel_sha_hmac_final;
1905		err = atmel_sha_final_req(dd);
1906		break;
1907
1908	case SHA_OP_DIGEST:
1909		err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910		break;
1911
1912	default:
1913		return atmel_sha_complete(dd, -EINVAL);
1914	}
1915
1916	return err;
1917}
1918
1919static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920				 unsigned int keylen)
1921{
1922	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923
1924	if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926		return -EINVAL;
1927	}
1928
1929	return 0;
1930}
1931
1932static int atmel_sha_hmac_init(struct ahash_request *req)
1933{
1934	int err;
1935
1936	err = atmel_sha_init(req);
1937	if (err)
1938		return err;
1939
1940	return atmel_sha_enqueue(req, SHA_OP_INIT);
1941}
1942
1943static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944{
1945	struct ahash_request *req = dd->req;
1946	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949	size_t bs = ctx->block_size;
1950	size_t hs = ctx->hash_size;
1951
1952	ctx->bufcnt = 0;
1953	ctx->digcnt[0] = bs;
1954	ctx->digcnt[1] = 0;
1955	ctx->flags |= SHA_FLAGS_RESTORE;
1956	memcpy(ctx->digest, hmac->ipad, hs);
1957	return atmel_sha_complete(dd, 0);
1958}
1959
1960static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961{
1962	struct ahash_request *req = dd->req;
1963	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966	u32 *digest = (u32 *)ctx->digest;
1967	size_t ds = crypto_ahash_digestsize(tfm);
1968	size_t bs = ctx->block_size;
1969	size_t hs = ctx->hash_size;
1970	size_t i, num_words;
1971	u32 mr;
1972
1973	/* Save d = SHA((K' + ipad) | msg). */
1974	num_words = ds / sizeof(u32);
1975	for (i = 0; i < num_words; ++i)
1976		digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977
1978	/* Restore context to finish computing SHA((K' + opad) | d). */
1979	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980	num_words = hs / sizeof(u32);
1981	for (i = 0; i < num_words; ++i)
1982		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983
1984	mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985	mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986	atmel_sha_write(dd, SHA_MR, mr);
1987	atmel_sha_write(dd, SHA_MSR, bs + ds);
1988	atmel_sha_write(dd, SHA_BCR, ds);
1989	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990
1991	sg_init_one(&dd->tmp, digest, ds);
1992	return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993				   atmel_sha_hmac_final_done);
1994}
1995
1996static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997{
1998	/*
1999	 * req->result might not be sizeof(u32) aligned, so copy the
2000	 * digest into ctx->digest[] before memcpy() the data into
2001	 * req->result.
2002	 */
2003	atmel_sha_copy_hash(dd->req);
2004	atmel_sha_copy_ready_hash(dd->req);
2005	return atmel_sha_complete(dd, 0);
2006}
2007
2008static int atmel_sha_hmac_digest(struct ahash_request *req)
2009{
2010	int err;
2011
2012	err = atmel_sha_init(req);
2013	if (err)
2014		return err;
2015
2016	return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017}
2018
2019static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020{
2021	struct ahash_request *req = dd->req;
2022	struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
 
2025	size_t hs = ctx->hash_size;
2026	size_t i, num_words = hs / sizeof(u32);
2027	bool use_dma = false;
2028	u32 mr;
2029
2030	/* Special case for empty message. */
2031	if (!req->nbytes)
2032		return atmel_sha_complete(dd, -EINVAL); // TODO:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2033
2034	/* Check DMA threshold and alignment. */
2035	if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036	    atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037		use_dma = true;
2038
2039	/* Write both initial hash values to compute a HMAC. */
2040	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041	for (i = 0; i < num_words; ++i)
2042		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043
2044	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045	for (i = 0; i < num_words; ++i)
2046		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047
2048	/* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049	mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051	if (use_dma)
2052		mr |= SHA_MR_MODE_IDATAR0;
2053	else
2054		mr |= SHA_MR_MODE_AUTO;
2055	atmel_sha_write(dd, SHA_MR, mr);
2056
2057	atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058	atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059
2060	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061
 
 
 
 
 
 
 
 
2062	/* Process data. */
2063	if (use_dma)
2064		return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065					   atmel_sha_hmac_final_done);
2066
2067	return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068				   atmel_sha_hmac_final_done);
2069}
2070
2071static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072{
2073	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074
2075	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076				 sizeof(struct atmel_sha_reqctx));
2077	hmac->base.start = atmel_sha_hmac_start;
2078	atmel_sha_hmac_key_init(&hmac->hkey);
2079
2080	return 0;
2081}
2082
2083static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084{
2085	struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086
2087	atmel_sha_hmac_key_release(&hmac->hkey);
2088}
2089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090static struct ahash_alg sha_hmac_algs[] = {
2091{
2092	.init		= atmel_sha_hmac_init,
2093	.update		= atmel_sha_update,
2094	.final		= atmel_sha_final,
2095	.digest		= atmel_sha_hmac_digest,
2096	.setkey		= atmel_sha_hmac_setkey,
2097	.export		= atmel_sha_export,
2098	.import		= atmel_sha_import,
2099	.halg = {
2100		.digestsize	= SHA1_DIGEST_SIZE,
2101		.statesize	= sizeof(struct atmel_sha_reqctx),
2102		.base	= {
2103			.cra_name		= "hmac(sha1)",
2104			.cra_driver_name	= "atmel-hmac-sha1",
2105			.cra_priority		= 100,
2106			.cra_flags		= CRYPTO_ALG_ASYNC,
2107			.cra_blocksize		= SHA1_BLOCK_SIZE,
2108			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2109			.cra_alignmask		= 0,
2110			.cra_module		= THIS_MODULE,
2111			.cra_init		= atmel_sha_hmac_cra_init,
2112			.cra_exit		= atmel_sha_hmac_cra_exit,
2113		}
2114	}
2115},
2116{
2117	.init		= atmel_sha_hmac_init,
2118	.update		= atmel_sha_update,
2119	.final		= atmel_sha_final,
2120	.digest		= atmel_sha_hmac_digest,
2121	.setkey		= atmel_sha_hmac_setkey,
2122	.export		= atmel_sha_export,
2123	.import		= atmel_sha_import,
2124	.halg = {
2125		.digestsize	= SHA224_DIGEST_SIZE,
2126		.statesize	= sizeof(struct atmel_sha_reqctx),
2127		.base	= {
2128			.cra_name		= "hmac(sha224)",
2129			.cra_driver_name	= "atmel-hmac-sha224",
2130			.cra_priority		= 100,
2131			.cra_flags		= CRYPTO_ALG_ASYNC,
2132			.cra_blocksize		= SHA224_BLOCK_SIZE,
2133			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2134			.cra_alignmask		= 0,
2135			.cra_module		= THIS_MODULE,
2136			.cra_init		= atmel_sha_hmac_cra_init,
2137			.cra_exit		= atmel_sha_hmac_cra_exit,
2138		}
2139	}
2140},
2141{
2142	.init		= atmel_sha_hmac_init,
2143	.update		= atmel_sha_update,
2144	.final		= atmel_sha_final,
2145	.digest		= atmel_sha_hmac_digest,
2146	.setkey		= atmel_sha_hmac_setkey,
2147	.export		= atmel_sha_export,
2148	.import		= atmel_sha_import,
2149	.halg = {
2150		.digestsize	= SHA256_DIGEST_SIZE,
2151		.statesize	= sizeof(struct atmel_sha_reqctx),
2152		.base	= {
2153			.cra_name		= "hmac(sha256)",
2154			.cra_driver_name	= "atmel-hmac-sha256",
2155			.cra_priority		= 100,
2156			.cra_flags		= CRYPTO_ALG_ASYNC,
2157			.cra_blocksize		= SHA256_BLOCK_SIZE,
2158			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2159			.cra_alignmask		= 0,
2160			.cra_module		= THIS_MODULE,
2161			.cra_init		= atmel_sha_hmac_cra_init,
2162			.cra_exit		= atmel_sha_hmac_cra_exit,
2163		}
2164	}
2165},
2166{
2167	.init		= atmel_sha_hmac_init,
2168	.update		= atmel_sha_update,
2169	.final		= atmel_sha_final,
2170	.digest		= atmel_sha_hmac_digest,
2171	.setkey		= atmel_sha_hmac_setkey,
2172	.export		= atmel_sha_export,
2173	.import		= atmel_sha_import,
2174	.halg = {
2175		.digestsize	= SHA384_DIGEST_SIZE,
2176		.statesize	= sizeof(struct atmel_sha_reqctx),
2177		.base	= {
2178			.cra_name		= "hmac(sha384)",
2179			.cra_driver_name	= "atmel-hmac-sha384",
2180			.cra_priority		= 100,
2181			.cra_flags		= CRYPTO_ALG_ASYNC,
2182			.cra_blocksize		= SHA384_BLOCK_SIZE,
2183			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2184			.cra_alignmask		= 0,
2185			.cra_module		= THIS_MODULE,
2186			.cra_init		= atmel_sha_hmac_cra_init,
2187			.cra_exit		= atmel_sha_hmac_cra_exit,
2188		}
2189	}
2190},
2191{
2192	.init		= atmel_sha_hmac_init,
2193	.update		= atmel_sha_update,
2194	.final		= atmel_sha_final,
2195	.digest		= atmel_sha_hmac_digest,
2196	.setkey		= atmel_sha_hmac_setkey,
2197	.export		= atmel_sha_export,
2198	.import		= atmel_sha_import,
2199	.halg = {
2200		.digestsize	= SHA512_DIGEST_SIZE,
2201		.statesize	= sizeof(struct atmel_sha_reqctx),
2202		.base	= {
2203			.cra_name		= "hmac(sha512)",
2204			.cra_driver_name	= "atmel-hmac-sha512",
2205			.cra_priority		= 100,
2206			.cra_flags		= CRYPTO_ALG_ASYNC,
2207			.cra_blocksize		= SHA512_BLOCK_SIZE,
2208			.cra_ctxsize		= sizeof(struct atmel_sha_hmac_ctx),
2209			.cra_alignmask		= 0,
2210			.cra_module		= THIS_MODULE,
2211			.cra_init		= atmel_sha_hmac_cra_init,
2212			.cra_exit		= atmel_sha_hmac_cra_exit,
2213		}
2214	}
2215},
2216};
2217
2218#ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219/* authenc functions */
2220
2221static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224
2225
2226struct atmel_sha_authenc_ctx {
2227	struct crypto_ahash	*tfm;
2228};
2229
2230struct atmel_sha_authenc_reqctx {
2231	struct atmel_sha_reqctx	base;
2232
2233	atmel_aes_authenc_fn_t	cb;
2234	struct atmel_aes_dev	*aes_dev;
2235
2236	/* _init() parameters. */
2237	struct scatterlist	*assoc;
2238	u32			assoclen;
2239	u32			textlen;
2240
2241	/* _final() parameters. */
2242	u32			*digest;
2243	unsigned int		digestlen;
2244};
2245
2246static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247				       int err)
2248{
2249	struct ahash_request *req = areq->data;
2250	struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2251
2252	authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253}
2254
2255static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256{
2257	struct ahash_request *req = dd->req;
2258	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259	int err;
2260
2261	/*
2262	 * Force atmel_sha_complete() to call req->base.complete(), ie
2263	 * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264	 */
2265	dd->force_complete = true;
2266
2267	err = atmel_sha_hw_init(dd);
2268	return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269}
2270
2271bool atmel_sha_authenc_is_ready(void)
2272{
2273	struct atmel_sha_ctx dummy;
2274
2275	dummy.dd = NULL;
2276	return (atmel_sha_find_dev(&dummy) != NULL);
2277}
2278EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279
2280unsigned int atmel_sha_authenc_get_reqsize(void)
2281{
2282	return sizeof(struct atmel_sha_authenc_reqctx);
2283}
2284EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285
2286struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287{
2288	struct atmel_sha_authenc_ctx *auth;
2289	struct crypto_ahash *tfm;
2290	struct atmel_sha_ctx *tctx;
2291	const char *name;
2292	int err = -EINVAL;
2293
2294	switch (mode & SHA_FLAGS_MODE_MASK) {
2295	case SHA_FLAGS_HMAC_SHA1:
2296		name = "atmel-hmac-sha1";
2297		break;
2298
2299	case SHA_FLAGS_HMAC_SHA224:
2300		name = "atmel-hmac-sha224";
2301		break;
2302
2303	case SHA_FLAGS_HMAC_SHA256:
2304		name = "atmel-hmac-sha256";
2305		break;
2306
2307	case SHA_FLAGS_HMAC_SHA384:
2308		name = "atmel-hmac-sha384";
2309		break;
2310
2311	case SHA_FLAGS_HMAC_SHA512:
2312		name = "atmel-hmac-sha512";
2313		break;
2314
2315	default:
2316		goto error;
2317	}
2318
2319	tfm = crypto_alloc_ahash(name,
2320				 CRYPTO_ALG_TYPE_AHASH,
2321				 CRYPTO_ALG_TYPE_AHASH_MASK);
2322	if (IS_ERR(tfm)) {
2323		err = PTR_ERR(tfm);
2324		goto error;
2325	}
2326	tctx = crypto_ahash_ctx(tfm);
2327	tctx->start = atmel_sha_authenc_start;
2328	tctx->flags = mode;
2329
2330	auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331	if (!auth) {
2332		err = -ENOMEM;
2333		goto err_free_ahash;
2334	}
2335	auth->tfm = tfm;
2336
2337	return auth;
2338
2339err_free_ahash:
2340	crypto_free_ahash(tfm);
2341error:
2342	return ERR_PTR(err);
2343}
2344EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345
2346void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347{
2348	if (auth)
2349		crypto_free_ahash(auth->tfm);
2350	kfree(auth);
2351}
2352EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353
2354int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355			     const u8 *key, unsigned int keylen,
2356			     u32 *flags)
2357{
2358	struct crypto_ahash *tfm = auth->tfm;
2359	int err;
2360
2361	crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362	crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363	err = crypto_ahash_setkey(tfm, key, keylen);
2364	*flags = crypto_ahash_get_flags(tfm);
2365
2366	return err;
2367}
2368EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369
2370int atmel_sha_authenc_schedule(struct ahash_request *req,
2371			       struct atmel_sha_authenc_ctx *auth,
2372			       atmel_aes_authenc_fn_t cb,
2373			       struct atmel_aes_dev *aes_dev)
2374{
2375	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376	struct atmel_sha_reqctx *ctx = &authctx->base;
2377	struct crypto_ahash *tfm = auth->tfm;
2378	struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379	struct atmel_sha_dev *dd;
2380
2381	/* Reset request context (MUST be done first). */
2382	memset(authctx, 0, sizeof(*authctx));
2383
2384	/* Get SHA device. */
2385	dd = atmel_sha_find_dev(tctx);
2386	if (!dd)
2387		return cb(aes_dev, -ENODEV, false);
2388
2389	/* Init request context. */
2390	ctx->dd = dd;
2391	ctx->buflen = SHA_BUFFER_LEN;
2392	authctx->cb = cb;
2393	authctx->aes_dev = aes_dev;
2394	ahash_request_set_tfm(req, tfm);
2395	ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396
2397	return atmel_sha_handle_queue(dd, req);
2398}
2399EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400
2401int atmel_sha_authenc_init(struct ahash_request *req,
2402			   struct scatterlist *assoc, unsigned int assoclen,
2403			   unsigned int textlen,
2404			   atmel_aes_authenc_fn_t cb,
2405			   struct atmel_aes_dev *aes_dev)
2406{
2407	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408	struct atmel_sha_reqctx *ctx = &authctx->base;
2409	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411	struct atmel_sha_dev *dd = ctx->dd;
2412
2413	if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414		return atmel_sha_complete(dd, -EINVAL);
2415
2416	authctx->cb = cb;
2417	authctx->aes_dev = aes_dev;
2418	authctx->assoc = assoc;
2419	authctx->assoclen = assoclen;
2420	authctx->textlen = textlen;
2421
2422	ctx->flags = hmac->base.flags;
2423	return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424}
2425EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426
2427static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428{
2429	struct ahash_request *req = dd->req;
2430	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431	struct atmel_sha_reqctx *ctx = &authctx->base;
2432	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433	struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434	size_t hs = ctx->hash_size;
2435	size_t i, num_words = hs / sizeof(u32);
2436	u32 mr, msg_size;
2437
2438	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439	for (i = 0; i < num_words; ++i)
2440		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441
2442	atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443	for (i = 0; i < num_words; ++i)
2444		atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445
2446	mr = (SHA_MR_MODE_IDATAR0 |
2447	      SHA_MR_HMAC |
2448	      SHA_MR_DUALBUFF);
2449	mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450	atmel_sha_write(dd, SHA_MR, mr);
2451
2452	msg_size = authctx->assoclen + authctx->textlen;
2453	atmel_sha_write(dd, SHA_MSR, msg_size);
2454	atmel_sha_write(dd, SHA_BCR, msg_size);
2455
2456	atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457
2458	/* Process assoc data. */
2459	return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460				   true, false,
2461				   atmel_sha_authenc_init_done);
2462}
2463
2464static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465{
2466	struct ahash_request *req = dd->req;
2467	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468
2469	return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470}
2471
2472int atmel_sha_authenc_final(struct ahash_request *req,
2473			    u32 *digest, unsigned int digestlen,
2474			    atmel_aes_authenc_fn_t cb,
2475			    struct atmel_aes_dev *aes_dev)
2476{
2477	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478	struct atmel_sha_reqctx *ctx = &authctx->base;
2479	struct atmel_sha_dev *dd = ctx->dd;
2480
2481	switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482	case SHA_FLAGS_SHA1:
2483		authctx->digestlen = SHA1_DIGEST_SIZE;
2484		break;
2485
2486	case SHA_FLAGS_SHA224:
2487		authctx->digestlen = SHA224_DIGEST_SIZE;
2488		break;
2489
2490	case SHA_FLAGS_SHA256:
2491		authctx->digestlen = SHA256_DIGEST_SIZE;
2492		break;
2493
2494	case SHA_FLAGS_SHA384:
2495		authctx->digestlen = SHA384_DIGEST_SIZE;
2496		break;
2497
2498	case SHA_FLAGS_SHA512:
2499		authctx->digestlen = SHA512_DIGEST_SIZE;
2500		break;
2501
2502	default:
2503		return atmel_sha_complete(dd, -EINVAL);
2504	}
2505	if (authctx->digestlen > digestlen)
2506		authctx->digestlen = digestlen;
2507
2508	authctx->cb = cb;
2509	authctx->aes_dev = aes_dev;
2510	authctx->digest = digest;
2511	return atmel_sha_wait_for_data_ready(dd,
2512					     atmel_sha_authenc_final_done);
2513}
2514EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515
2516static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517{
2518	struct ahash_request *req = dd->req;
2519	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520	size_t i, num_words = authctx->digestlen / sizeof(u32);
2521
2522	for (i = 0; i < num_words; ++i)
2523		authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524
2525	return atmel_sha_complete(dd, 0);
2526}
2527
2528void atmel_sha_authenc_abort(struct ahash_request *req)
2529{
2530	struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531	struct atmel_sha_reqctx *ctx = &authctx->base;
2532	struct atmel_sha_dev *dd = ctx->dd;
2533
2534	/* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535	dd->is_async = false;
2536	dd->force_complete = false;
2537	(void)atmel_sha_complete(dd, 0);
2538}
2539EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540
2541#endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542
2543
2544static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545{
2546	int i;
2547
2548	if (dd->caps.has_hmac)
2549		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550			crypto_unregister_ahash(&sha_hmac_algs[i]);
2551
2552	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553		crypto_unregister_ahash(&sha_1_256_algs[i]);
2554
2555	if (dd->caps.has_sha224)
2556		crypto_unregister_ahash(&sha_224_alg);
2557
2558	if (dd->caps.has_sha_384_512) {
2559		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560			crypto_unregister_ahash(&sha_384_512_algs[i]);
2561	}
2562}
2563
2564static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565{
2566	int err, i, j;
2567
2568	for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
 
 
2569		err = crypto_register_ahash(&sha_1_256_algs[i]);
2570		if (err)
2571			goto err_sha_1_256_algs;
2572	}
2573
2574	if (dd->caps.has_sha224) {
 
 
2575		err = crypto_register_ahash(&sha_224_alg);
2576		if (err)
2577			goto err_sha_224_algs;
2578	}
2579
2580	if (dd->caps.has_sha_384_512) {
2581		for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
 
 
2582			err = crypto_register_ahash(&sha_384_512_algs[i]);
2583			if (err)
2584				goto err_sha_384_512_algs;
2585		}
2586	}
2587
2588	if (dd->caps.has_hmac) {
2589		for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
 
 
2590			err = crypto_register_ahash(&sha_hmac_algs[i]);
2591			if (err)
2592				goto err_sha_hmac_algs;
2593		}
2594	}
2595
2596	return 0;
2597
2598	/*i = ARRAY_SIZE(sha_hmac_algs);*/
2599err_sha_hmac_algs:
2600	for (j = 0; j < i; j++)
2601		crypto_unregister_ahash(&sha_hmac_algs[j]);
2602	i = ARRAY_SIZE(sha_384_512_algs);
2603err_sha_384_512_algs:
2604	for (j = 0; j < i; j++)
2605		crypto_unregister_ahash(&sha_384_512_algs[j]);
2606	crypto_unregister_ahash(&sha_224_alg);
2607err_sha_224_algs:
2608	i = ARRAY_SIZE(sha_1_256_algs);
2609err_sha_1_256_algs:
2610	for (j = 0; j < i; j++)
2611		crypto_unregister_ahash(&sha_1_256_algs[j]);
2612
2613	return err;
2614}
2615
2616static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617{
2618	struct at_dma_slave	*sl = slave;
2619
2620	if (sl && sl->dma_dev == chan->device->dev) {
2621		chan->private = sl;
2622		return true;
2623	} else {
2624		return false;
2625	}
2626}
2627
2628static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629				struct crypto_platform_data *pdata)
2630{
2631	dma_cap_mask_t mask_in;
2632
2633	/* Try to grab DMA channel */
2634	dma_cap_zero(mask_in);
2635	dma_cap_set(DMA_SLAVE, mask_in);
2636
2637	dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2638			atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2639	if (!dd->dma_lch_in.chan) {
2640		dev_warn(dd->dev, "no DMA channel available\n");
2641		return -ENODEV;
2642	}
2643
2644	dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2645	dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2646		SHA_REG_DIN(0);
2647	dd->dma_lch_in.dma_conf.src_maxburst = 1;
2648	dd->dma_lch_in.dma_conf.src_addr_width =
2649		DMA_SLAVE_BUSWIDTH_4_BYTES;
2650	dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2651	dd->dma_lch_in.dma_conf.dst_addr_width =
2652		DMA_SLAVE_BUSWIDTH_4_BYTES;
2653	dd->dma_lch_in.dma_conf.device_fc = false;
2654
2655	return 0;
2656}
2657
2658static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2659{
2660	dma_release_channel(dd->dma_lch_in.chan);
2661}
2662
2663static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2664{
2665
2666	dd->caps.has_dma = 0;
2667	dd->caps.has_dualbuff = 0;
2668	dd->caps.has_sha224 = 0;
2669	dd->caps.has_sha_384_512 = 0;
2670	dd->caps.has_uihv = 0;
2671	dd->caps.has_hmac = 0;
2672
2673	/* keep only major version number */
2674	switch (dd->hw_version & 0xff0) {
 
 
2675	case 0x510:
2676		dd->caps.has_dma = 1;
2677		dd->caps.has_dualbuff = 1;
2678		dd->caps.has_sha224 = 1;
2679		dd->caps.has_sha_384_512 = 1;
2680		dd->caps.has_uihv = 1;
2681		dd->caps.has_hmac = 1;
2682		break;
2683	case 0x420:
2684		dd->caps.has_dma = 1;
2685		dd->caps.has_dualbuff = 1;
2686		dd->caps.has_sha224 = 1;
2687		dd->caps.has_sha_384_512 = 1;
2688		dd->caps.has_uihv = 1;
2689		break;
2690	case 0x410:
2691		dd->caps.has_dma = 1;
2692		dd->caps.has_dualbuff = 1;
2693		dd->caps.has_sha224 = 1;
2694		dd->caps.has_sha_384_512 = 1;
2695		break;
2696	case 0x400:
2697		dd->caps.has_dma = 1;
2698		dd->caps.has_dualbuff = 1;
2699		dd->caps.has_sha224 = 1;
2700		break;
2701	case 0x320:
2702		break;
2703	default:
2704		dev_warn(dd->dev,
2705				"Unmanaged sha version, set minimum capabilities\n");
2706		break;
2707	}
2708}
2709
2710#if defined(CONFIG_OF)
2711static const struct of_device_id atmel_sha_dt_ids[] = {
2712	{ .compatible = "atmel,at91sam9g46-sha" },
2713	{ /* sentinel */ }
2714};
2715
2716MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2717
2718static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2719{
2720	struct device_node *np = pdev->dev.of_node;
2721	struct crypto_platform_data *pdata;
2722
2723	if (!np) {
2724		dev_err(&pdev->dev, "device node not found\n");
2725		return ERR_PTR(-EINVAL);
2726	}
2727
2728	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2729	if (!pdata)
2730		return ERR_PTR(-ENOMEM);
2731
2732	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2733					sizeof(*(pdata->dma_slave)),
2734					GFP_KERNEL);
2735	if (!pdata->dma_slave)
2736		return ERR_PTR(-ENOMEM);
2737
2738	return pdata;
2739}
2740#else /* CONFIG_OF */
2741static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2742{
2743	return ERR_PTR(-EINVAL);
2744}
2745#endif
2746
2747static int atmel_sha_probe(struct platform_device *pdev)
2748{
2749	struct atmel_sha_dev *sha_dd;
2750	struct crypto_platform_data	*pdata;
2751	struct device *dev = &pdev->dev;
2752	struct resource *sha_res;
2753	int err;
2754
2755	sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2756	if (sha_dd == NULL) {
2757		err = -ENOMEM;
2758		goto sha_dd_err;
2759	}
2760
2761	sha_dd->dev = dev;
2762
2763	platform_set_drvdata(pdev, sha_dd);
2764
2765	INIT_LIST_HEAD(&sha_dd->list);
2766	spin_lock_init(&sha_dd->lock);
2767
2768	tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2769					(unsigned long)sha_dd);
2770	tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2771					(unsigned long)sha_dd);
2772
2773	crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2774
2775	/* Get the base address */
2776	sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2777	if (!sha_res) {
2778		dev_err(dev, "no MEM resource info\n");
2779		err = -ENODEV;
2780		goto res_err;
2781	}
2782	sha_dd->phys_base = sha_res->start;
2783
2784	/* Get the IRQ */
2785	sha_dd->irq = platform_get_irq(pdev,  0);
2786	if (sha_dd->irq < 0) {
2787		dev_err(dev, "no IRQ resource info\n");
2788		err = sha_dd->irq;
2789		goto res_err;
2790	}
2791
2792	err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2793			       IRQF_SHARED, "atmel-sha", sha_dd);
2794	if (err) {
2795		dev_err(dev, "unable to request sha irq.\n");
2796		goto res_err;
2797	}
2798
2799	/* Initializing the clock */
2800	sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2801	if (IS_ERR(sha_dd->iclk)) {
2802		dev_err(dev, "clock initialization failed.\n");
2803		err = PTR_ERR(sha_dd->iclk);
2804		goto res_err;
2805	}
2806
2807	sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2808	if (IS_ERR(sha_dd->io_base)) {
2809		dev_err(dev, "can't ioremap\n");
2810		err = PTR_ERR(sha_dd->io_base);
2811		goto res_err;
2812	}
2813
2814	err = clk_prepare(sha_dd->iclk);
2815	if (err)
2816		goto res_err;
2817
2818	atmel_sha_hw_version_init(sha_dd);
 
 
2819
2820	atmel_sha_get_cap(sha_dd);
2821
2822	if (sha_dd->caps.has_dma) {
2823		pdata = pdev->dev.platform_data;
2824		if (!pdata) {
2825			pdata = atmel_sha_of_init(pdev);
2826			if (IS_ERR(pdata)) {
2827				dev_err(&pdev->dev, "platform data not available\n");
2828				err = PTR_ERR(pdata);
2829				goto iclk_unprepare;
2830			}
2831		}
2832		if (!pdata->dma_slave) {
2833			err = -ENXIO;
2834			goto iclk_unprepare;
2835		}
2836		err = atmel_sha_dma_init(sha_dd, pdata);
2837		if (err)
2838			goto err_sha_dma;
2839
2840		dev_info(dev, "using %s for DMA transfers\n",
2841				dma_chan_name(sha_dd->dma_lch_in.chan));
2842	}
2843
2844	spin_lock(&atmel_sha.lock);
2845	list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2846	spin_unlock(&atmel_sha.lock);
2847
2848	err = atmel_sha_register_algs(sha_dd);
2849	if (err)
2850		goto err_algs;
2851
2852	dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2853			sha_dd->caps.has_sha224 ? "/SHA224" : "",
2854			sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2855
2856	return 0;
2857
2858err_algs:
2859	spin_lock(&atmel_sha.lock);
2860	list_del(&sha_dd->list);
2861	spin_unlock(&atmel_sha.lock);
2862	if (sha_dd->caps.has_dma)
2863		atmel_sha_dma_cleanup(sha_dd);
2864err_sha_dma:
2865iclk_unprepare:
2866	clk_unprepare(sha_dd->iclk);
2867res_err:
2868	tasklet_kill(&sha_dd->queue_task);
2869	tasklet_kill(&sha_dd->done_task);
2870sha_dd_err:
2871	dev_err(dev, "initialization failed.\n");
2872
2873	return err;
2874}
2875
2876static int atmel_sha_remove(struct platform_device *pdev)
2877{
2878	struct atmel_sha_dev *sha_dd;
2879
2880	sha_dd = platform_get_drvdata(pdev);
2881	if (!sha_dd)
2882		return -ENODEV;
2883	spin_lock(&atmel_sha.lock);
2884	list_del(&sha_dd->list);
2885	spin_unlock(&atmel_sha.lock);
2886
2887	atmel_sha_unregister_algs(sha_dd);
2888
2889	tasklet_kill(&sha_dd->queue_task);
2890	tasklet_kill(&sha_dd->done_task);
2891
2892	if (sha_dd->caps.has_dma)
2893		atmel_sha_dma_cleanup(sha_dd);
2894
2895	clk_unprepare(sha_dd->iclk);
2896
2897	return 0;
2898}
2899
2900static struct platform_driver atmel_sha_driver = {
2901	.probe		= atmel_sha_probe,
2902	.remove		= atmel_sha_remove,
2903	.driver		= {
2904		.name	= "atmel_sha",
2905		.of_match_table	= of_match_ptr(atmel_sha_dt_ids),
2906	},
2907};
2908
2909module_platform_driver(atmel_sha_driver);
2910
2911MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2912MODULE_LICENSE("GPL v2");
2913MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");