Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* LRW: as defined by Cyril Guyot in
  3 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
  4 *
  5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  6 *
  7 * Based on ecb.c
  8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
  9 */
 10/* This implementation is checked against the test vectors in the above
 11 * document and by a test vector provided by Ken Buchanan at
 12 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 13 *
 14 * The test vectors are included in the testing module tcrypt.[ch] */
 15
 16#include <crypto/internal/skcipher.h>
 17#include <crypto/scatterwalk.h>
 18#include <linux/err.h>
 19#include <linux/init.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/scatterlist.h>
 23#include <linux/slab.h>
 24
 25#include <crypto/b128ops.h>
 26#include <crypto/gf128mul.h>
 27
 
 
 28#define LRW_BLOCK_SIZE 16
 29
 30struct lrw_tfm_ctx {
 31	struct crypto_skcipher *child;
 32
 33	/*
 34	 * optimizes multiplying a random (non incrementing, as at the
 35	 * start of a new sector) value with key2, we could also have
 36	 * used 4k optimization tables or no optimization at all. In the
 37	 * latter case we would have to store key2 here
 38	 */
 39	struct gf128mul_64k *table;
 40
 41	/*
 42	 * stores:
 43	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
 44	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
 45	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
 46	 * needed for optimized multiplication of incrementing values
 47	 * with key2
 48	 */
 49	be128 mulinc[128];
 50};
 51
 52struct lrw_request_ctx {
 
 
 53	be128 t;
 
 
 
 
 
 
 
 
 
 
 54	struct skcipher_request subreq;
 55};
 56
 57static inline void lrw_setbit128_bbe(void *b, int bit)
 58{
 59	__set_bit(bit ^ (0x80 -
 60#ifdef __BIG_ENDIAN
 61			 BITS_PER_LONG
 62#else
 63			 BITS_PER_BYTE
 64#endif
 65			), b);
 66}
 67
 68static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
 69		      unsigned int keylen)
 70{
 71	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
 72	struct crypto_skcipher *child = ctx->child;
 73	int err, bsize = LRW_BLOCK_SIZE;
 74	const u8 *tweak = key + keylen - bsize;
 75	be128 tmp = { 0 };
 76	int i;
 77
 78	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 79	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 80					 CRYPTO_TFM_REQ_MASK);
 81	err = crypto_skcipher_setkey(child, key, keylen - bsize);
 
 
 82	if (err)
 83		return err;
 84
 85	if (ctx->table)
 86		gf128mul_free_64k(ctx->table);
 87
 88	/* initialize multiplication table for Key2 */
 89	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 90	if (!ctx->table)
 91		return -ENOMEM;
 92
 93	/* initialize optimization table */
 94	for (i = 0; i < 128; i++) {
 95		lrw_setbit128_bbe(&tmp, i);
 96		ctx->mulinc[i] = tmp;
 97		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 98	}
 99
100	return 0;
101}
102
103/*
104 * Returns the number of trailing '1' bits in the words of the counter, which is
105 * represented by 4 32-bit words, arranged from least to most significant.
106 * At the same time, increments the counter by one.
107 *
108 * For example:
109 *
110 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
111 * int i = lrw_next_index(&counter);
112 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
113 */
114static int lrw_next_index(u32 *counter)
115{
116	int i, res = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
117
118	for (i = 0; i < 4; i++) {
119		if (counter[i] + 1 != 0)
120			return res + ffz(counter[i]++);
121
122		counter[i] = 0;
123		res += 32;
124	}
125
126	/*
127	 * If we get here, then x == 128 and we are incrementing the counter
128	 * from all ones to all zeros. This means we must return index 127, i.e.
129	 * the one corresponding to key2*{ 1,...,1 }.
130	 */
131	return 127;
132}
133
134/*
135 * We compute the tweak masks twice (both before and after the ECB encryption or
136 * decryption) to avoid having to allocate a temporary buffer and/or make
137 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
138 * just doing the lrw_next_index() calls again.
139 */
140static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
141{
 
 
 
142	const int bs = LRW_BLOCK_SIZE;
143	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
144	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
145	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
146	be128 t = rctx->t;
147	struct skcipher_walk w;
148	__be32 *iv;
149	u32 counter[4];
150	int err;
151
152	if (second_pass) {
153		req = &rctx->subreq;
154		/* set to our TFM to enforce correct alignment: */
155		skcipher_request_set_tfm(req, tfm);
 
 
 
 
 
 
 
 
 
 
 
156	}
157
158	err = skcipher_walk_virt(&w, req, false);
159	if (err)
160		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
162	iv = (__be32 *)w.iv;
163	counter[0] = be32_to_cpu(iv[3]);
164	counter[1] = be32_to_cpu(iv[2]);
165	counter[2] = be32_to_cpu(iv[1]);
166	counter[3] = be32_to_cpu(iv[0]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168	while (w.nbytes) {
169		unsigned int avail = w.nbytes;
170		be128 *wsrc;
171		be128 *wdst;
172
173		wsrc = w.src.virt.addr;
174		wdst = w.dst.virt.addr;
175
176		do {
177			be128_xor(wdst++, &t, wsrc++);
 
178
179			/* T <- I*Key2, using the optimization
180			 * discussed in the specification */
181			be128_xor(&t, &t,
182				  &ctx->mulinc[lrw_next_index(counter)]);
 
183		} while ((avail -= bs) >= bs);
184
185		if (second_pass && w.nbytes == w.total) {
186			iv[0] = cpu_to_be32(counter[3]);
187			iv[1] = cpu_to_be32(counter[2]);
188			iv[2] = cpu_to_be32(counter[1]);
189			iv[3] = cpu_to_be32(counter[0]);
190		}
191
192		err = skcipher_walk_done(&w, avail);
193	}
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195	return err;
196}
197
198static int lrw_xor_tweak_pre(struct skcipher_request *req)
199{
200	return lrw_xor_tweak(req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201}
202
203static int lrw_xor_tweak_post(struct skcipher_request *req)
204{
205	return lrw_xor_tweak(req, true);
 
 
 
 
 
206}
207
208static void lrw_crypt_done(void *data, int err)
209{
210	struct skcipher_request *req = data;
 
 
 
211
212	if (!err) {
213		struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 
 
214
215		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
216		err = lrw_xor_tweak_post(req);
217	}
218
219	skcipher_request_complete(req, err);
 
220}
221
222static void lrw_init_crypt(struct skcipher_request *req)
223{
224	const struct lrw_tfm_ctx *ctx =
225		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
227	struct skcipher_request *subreq = &rctx->subreq;
 
 
 
 
 
 
 
228
229	skcipher_request_set_tfm(subreq, ctx->child);
230	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
231				      req);
232	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
233	skcipher_request_set_crypt(subreq, req->dst, req->dst,
234				   req->cryptlen, req->iv);
235
236	/* calculate first value of T */
237	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 
238
239	/* T <- I*Key2 */
240	gf128mul_64k_bbe(&rctx->t, ctx->table);
241}
242
243static int lrw_encrypt(struct skcipher_request *req)
244{
245	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
246	struct skcipher_request *subreq = &rctx->subreq;
 
 
 
 
 
 
 
 
 
 
 
 
247
248	lrw_init_crypt(req);
249	return lrw_xor_tweak_pre(req) ?:
250		crypto_skcipher_encrypt(subreq) ?:
251		lrw_xor_tweak_post(req);
 
 
252}
253
254static int lrw_decrypt(struct skcipher_request *req)
255{
256	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
257	struct skcipher_request *subreq = &rctx->subreq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
259	lrw_init_crypt(req);
260	return lrw_xor_tweak_pre(req) ?:
261		crypto_skcipher_decrypt(subreq) ?:
262		lrw_xor_tweak_post(req);
263}
264
265static int lrw_init_tfm(struct crypto_skcipher *tfm)
266{
267	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
268	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
269	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
270	struct crypto_skcipher *cipher;
271
272	cipher = crypto_spawn_skcipher(spawn);
273	if (IS_ERR(cipher))
274		return PTR_ERR(cipher);
275
276	ctx->child = cipher;
277
278	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
279					 sizeof(struct lrw_request_ctx));
280
281	return 0;
282}
283
284static void lrw_exit_tfm(struct crypto_skcipher *tfm)
285{
286	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
287
288	if (ctx->table)
289		gf128mul_free_64k(ctx->table);
290	crypto_free_skcipher(ctx->child);
291}
292
293static void lrw_free_instance(struct skcipher_instance *inst)
294{
295	crypto_drop_skcipher(skcipher_instance_ctx(inst));
296	kfree(inst);
297}
298
299static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
300{
301	struct crypto_skcipher_spawn *spawn;
302	struct skcipher_alg_common *alg;
303	struct skcipher_instance *inst;
 
 
304	const char *cipher_name;
305	char ecb_name[CRYPTO_MAX_ALG_NAME];
306	u32 mask;
307	int err;
308
309	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
310	if (err)
311		return err;
 
 
 
312
313	cipher_name = crypto_attr_alg_name(tb[1]);
314	if (IS_ERR(cipher_name))
315		return PTR_ERR(cipher_name);
316
317	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318	if (!inst)
319		return -ENOMEM;
320
321	spawn = skcipher_instance_ctx(inst);
322
323	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
324				   cipher_name, 0, mask);
 
 
325	if (err == -ENOENT) {
326		err = -ENAMETOOLONG;
327		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
328			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
329			goto err_free_inst;
330
331		err = crypto_grab_skcipher(spawn,
332					   skcipher_crypto_instance(inst),
333					   ecb_name, 0, mask);
334	}
335
336	if (err)
337		goto err_free_inst;
338
339	alg = crypto_spawn_skcipher_alg_common(spawn);
340
341	err = -EINVAL;
342	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
343		goto err_free_inst;
344
345	if (alg->ivsize)
346		goto err_free_inst;
347
348	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
349				  &alg->base);
350	if (err)
351		goto err_free_inst;
352
353	err = -EINVAL;
354	cipher_name = alg->base.cra_name;
355
356	/* Alas we screwed up the naming so we have to mangle the
357	 * cipher name.
358	 */
359	if (!strncmp(cipher_name, "ecb(", 4)) {
360		int len;
361
362		len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
363		if (len < 2)
364			goto err_free_inst;
365
366		if (ecb_name[len - 1] != ')')
367			goto err_free_inst;
368
369		ecb_name[len - 1] = 0;
370
371		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
372			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
373			err = -ENAMETOOLONG;
374			goto err_free_inst;
375		}
376	} else
377		goto err_free_inst;
378
 
379	inst->alg.base.cra_priority = alg->base.cra_priority;
380	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
381	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
382				       (__alignof__(be128) - 1);
383
384	inst->alg.ivsize = LRW_BLOCK_SIZE;
385	inst->alg.min_keysize = alg->min_keysize + LRW_BLOCK_SIZE;
386	inst->alg.max_keysize = alg->max_keysize + LRW_BLOCK_SIZE;
 
 
387
388	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
389
390	inst->alg.init = lrw_init_tfm;
391	inst->alg.exit = lrw_exit_tfm;
392
393	inst->alg.setkey = lrw_setkey;
394	inst->alg.encrypt = lrw_encrypt;
395	inst->alg.decrypt = lrw_decrypt;
396
397	inst->free = lrw_free_instance;
398
399	err = skcipher_register_instance(tmpl, inst);
400	if (err) {
401err_free_inst:
402		lrw_free_instance(inst);
403	}
404	return err;
 
 
 
 
 
 
405}
406
407static struct crypto_template lrw_tmpl = {
408	.name = "lrw",
409	.create = lrw_create,
410	.module = THIS_MODULE,
411};
412
413static int __init lrw_module_init(void)
414{
415	return crypto_register_template(&lrw_tmpl);
416}
417
418static void __exit lrw_module_exit(void)
419{
420	crypto_unregister_template(&lrw_tmpl);
421}
422
423subsys_initcall(lrw_module_init);
424module_exit(lrw_module_exit);
425
426MODULE_LICENSE("GPL");
427MODULE_DESCRIPTION("LRW block cipher mode");
428MODULE_ALIAS_CRYPTO("lrw");
429MODULE_SOFTDEP("pre: ecb");
v4.17
 
  1/* LRW: as defined by Cyril Guyot in
  2 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
  3 *
  4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  5 *
  6 * Based on ecb.c
  7 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  8 *
  9 * This program is free software; you can redistribute it and/or modify it
 10 * under the terms of the GNU General Public License as published by the Free
 11 * Software Foundation; either version 2 of the License, or (at your option)
 12 * any later version.
 13 */
 14/* This implementation is checked against the test vectors in the above
 15 * document and by a test vector provided by Ken Buchanan at
 16 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 17 *
 18 * The test vectors are included in the testing module tcrypt.[ch] */
 19
 20#include <crypto/internal/skcipher.h>
 21#include <crypto/scatterwalk.h>
 22#include <linux/err.h>
 23#include <linux/init.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/slab.h>
 28
 29#include <crypto/b128ops.h>
 30#include <crypto/gf128mul.h>
 31
 32#define LRW_BUFFER_SIZE 128u
 33
 34#define LRW_BLOCK_SIZE 16
 35
 36struct priv {
 37	struct crypto_skcipher *child;
 38
 39	/*
 40	 * optimizes multiplying a random (non incrementing, as at the
 41	 * start of a new sector) value with key2, we could also have
 42	 * used 4k optimization tables or no optimization at all. In the
 43	 * latter case we would have to store key2 here
 44	 */
 45	struct gf128mul_64k *table;
 46
 47	/*
 48	 * stores:
 49	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
 50	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
 51	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
 52	 * needed for optimized multiplication of incrementing values
 53	 * with key2
 54	 */
 55	be128 mulinc[128];
 56};
 57
 58struct rctx {
 59	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
 60
 61	be128 t;
 62
 63	be128 *ext;
 64
 65	struct scatterlist srcbuf[2];
 66	struct scatterlist dstbuf[2];
 67	struct scatterlist *src;
 68	struct scatterlist *dst;
 69
 70	unsigned int left;
 71
 72	struct skcipher_request subreq;
 73};
 74
 75static inline void setbit128_bbe(void *b, int bit)
 76{
 77	__set_bit(bit ^ (0x80 -
 78#ifdef __BIG_ENDIAN
 79			 BITS_PER_LONG
 80#else
 81			 BITS_PER_BYTE
 82#endif
 83			), b);
 84}
 85
 86static int setkey(struct crypto_skcipher *parent, const u8 *key,
 87		  unsigned int keylen)
 88{
 89	struct priv *ctx = crypto_skcipher_ctx(parent);
 90	struct crypto_skcipher *child = ctx->child;
 91	int err, bsize = LRW_BLOCK_SIZE;
 92	const u8 *tweak = key + keylen - bsize;
 93	be128 tmp = { 0 };
 94	int i;
 95
 96	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 97	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 98					 CRYPTO_TFM_REQ_MASK);
 99	err = crypto_skcipher_setkey(child, key, keylen - bsize);
100	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
101					  CRYPTO_TFM_RES_MASK);
102	if (err)
103		return err;
104
105	if (ctx->table)
106		gf128mul_free_64k(ctx->table);
107
108	/* initialize multiplication table for Key2 */
109	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
110	if (!ctx->table)
111		return -ENOMEM;
112
113	/* initialize optimization table */
114	for (i = 0; i < 128; i++) {
115		setbit128_bbe(&tmp, i);
116		ctx->mulinc[i] = tmp;
117		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
118	}
119
120	return 0;
121}
122
123static inline void inc(be128 *iv)
 
 
 
 
 
 
 
 
 
 
 
124{
125	be64_add_cpu(&iv->b, 1);
126	if (!iv->b)
127		be64_add_cpu(&iv->a, 1);
128}
129
130/* this returns the number of consequative 1 bits starting
131 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
132static inline int get_index128(be128 *block)
133{
134	int x;
135	__be32 *p = (__be32 *) block;
136
137	for (p += 3, x = 0; x < 128; p--, x += 32) {
138		u32 val = be32_to_cpup(p);
139
140		if (!~val)
141			continue;
 
142
143		return x + ffz(val);
 
144	}
145
146	return x;
 
 
 
 
 
147}
148
149static int post_crypt(struct skcipher_request *req)
 
 
 
 
 
 
150{
151	struct rctx *rctx = skcipher_request_ctx(req);
152	be128 *buf = rctx->ext ?: rctx->buf;
153	struct skcipher_request *subreq;
154	const int bs = LRW_BLOCK_SIZE;
 
 
 
 
155	struct skcipher_walk w;
156	struct scatterlist *sg;
157	unsigned offset;
158	int err;
159
160	subreq = &rctx->subreq;
161	err = skcipher_walk_virt(&w, subreq, false);
162
163	while (w.nbytes) {
164		unsigned int avail = w.nbytes;
165		be128 *wdst;
166
167		wdst = w.dst.virt.addr;
168
169		do {
170			be128_xor(wdst, buf++, wdst);
171			wdst++;
172		} while ((avail -= bs) >= bs);
173
174		err = skcipher_walk_done(&w, avail);
175	}
176
177	rctx->left -= subreq->cryptlen;
178
179	if (err || !rctx->left)
180		goto out;
181
182	rctx->dst = rctx->dstbuf;
183
184	scatterwalk_done(&w.out, 0, 1);
185	sg = w.out.sg;
186	offset = w.out.offset;
187
188	if (rctx->dst != sg) {
189		rctx->dst[0] = *sg;
190		sg_unmark_end(rctx->dst);
191		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
192	}
193	rctx->dst[0].length -= offset - sg->offset;
194	rctx->dst[0].offset = offset;
195
196out:
197	return err;
198}
199
200static int pre_crypt(struct skcipher_request *req)
201{
202	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
203	struct rctx *rctx = skcipher_request_ctx(req);
204	struct priv *ctx = crypto_skcipher_ctx(tfm);
205	be128 *buf = rctx->ext ?: rctx->buf;
206	struct skcipher_request *subreq;
207	const int bs = LRW_BLOCK_SIZE;
208	struct skcipher_walk w;
209	struct scatterlist *sg;
210	unsigned cryptlen;
211	unsigned offset;
212	be128 *iv;
213	bool more;
214	int err;
215
216	subreq = &rctx->subreq;
217	skcipher_request_set_tfm(subreq, tfm);
218
219	cryptlen = subreq->cryptlen;
220	more = rctx->left > cryptlen;
221	if (!more)
222		cryptlen = rctx->left;
223
224	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
225				   cryptlen, req->iv);
226
227	err = skcipher_walk_virt(&w, subreq, false);
228	iv = w.iv;
229
230	while (w.nbytes) {
231		unsigned int avail = w.nbytes;
232		be128 *wsrc;
233		be128 *wdst;
234
235		wsrc = w.src.virt.addr;
236		wdst = w.dst.virt.addr;
237
238		do {
239			*buf++ = rctx->t;
240			be128_xor(wdst++, &rctx->t, wsrc++);
241
242			/* T <- I*Key2, using the optimization
243			 * discussed in the specification */
244			be128_xor(&rctx->t, &rctx->t,
245				  &ctx->mulinc[get_index128(iv)]);
246			inc(iv);
247		} while ((avail -= bs) >= bs);
248
 
 
 
 
 
 
 
249		err = skcipher_walk_done(&w, avail);
250	}
251
252	skcipher_request_set_tfm(subreq, ctx->child);
253	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
254				   cryptlen, NULL);
255
256	if (err || !more)
257		goto out;
258
259	rctx->src = rctx->srcbuf;
260
261	scatterwalk_done(&w.in, 0, 1);
262	sg = w.in.sg;
263	offset = w.in.offset;
264
265	if (rctx->src != sg) {
266		rctx->src[0] = *sg;
267		sg_unmark_end(rctx->src);
268		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
269	}
270	rctx->src[0].length -= offset - sg->offset;
271	rctx->src[0].offset = offset;
272
273out:
274	return err;
275}
276
277static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
278{
279	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
280	struct rctx *rctx = skcipher_request_ctx(req);
281	struct skcipher_request *subreq;
282	gfp_t gfp;
283
284	subreq = &rctx->subreq;
285	skcipher_request_set_callback(subreq, req->base.flags, done, req);
286
287	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
288							   GFP_ATOMIC;
289	rctx->ext = NULL;
290
291	subreq->cryptlen = LRW_BUFFER_SIZE;
292	if (req->cryptlen > LRW_BUFFER_SIZE) {
293		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
294
295		rctx->ext = kmalloc(n, gfp);
296		if (rctx->ext)
297			subreq->cryptlen = n;
298	}
299
300	rctx->src = req->src;
301	rctx->dst = req->dst;
302	rctx->left = req->cryptlen;
303
304	/* calculate first value of T */
305	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
306
307	/* T <- I*Key2 */
308	gf128mul_64k_bbe(&rctx->t, ctx->table);
309
310	return 0;
311}
312
313static void exit_crypt(struct skcipher_request *req)
314{
315	struct rctx *rctx = skcipher_request_ctx(req);
316
317	rctx->left = 0;
318
319	if (rctx->ext)
320		kzfree(rctx->ext);
321}
322
323static int do_encrypt(struct skcipher_request *req, int err)
324{
325	struct rctx *rctx = skcipher_request_ctx(req);
326	struct skcipher_request *subreq;
327
328	subreq = &rctx->subreq;
329
330	while (!err && rctx->left) {
331		err = pre_crypt(req) ?:
332		      crypto_skcipher_encrypt(subreq) ?:
333		      post_crypt(req);
334
335		if (err == -EINPROGRESS || err == -EBUSY)
336			return err;
337	}
338
339	exit_crypt(req);
340	return err;
341}
342
343static void encrypt_done(struct crypto_async_request *areq, int err)
344{
345	struct skcipher_request *req = areq->data;
346	struct skcipher_request *subreq;
347	struct rctx *rctx;
348
349	rctx = skcipher_request_ctx(req);
350
351	if (err == -EINPROGRESS) {
352		if (rctx->left != req->cryptlen)
353			return;
354		goto out;
355	}
356
357	subreq = &rctx->subreq;
358	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 
 
 
 
359
360	err = do_encrypt(req, err ?: post_crypt(req));
361	if (rctx->left)
362		return;
363
364out:
365	skcipher_request_complete(req, err);
366}
367
368static int encrypt(struct skcipher_request *req)
369{
370	return do_encrypt(req, init_crypt(req, encrypt_done));
371}
372
373static int do_decrypt(struct skcipher_request *req, int err)
374{
375	struct rctx *rctx = skcipher_request_ctx(req);
376	struct skcipher_request *subreq;
377
378	subreq = &rctx->subreq;
379
380	while (!err && rctx->left) {
381		err = pre_crypt(req) ?:
382		      crypto_skcipher_decrypt(subreq) ?:
383		      post_crypt(req);
384
385		if (err == -EINPROGRESS || err == -EBUSY)
386			return err;
387	}
388
389	exit_crypt(req);
390	return err;
391}
392
393static void decrypt_done(struct crypto_async_request *areq, int err)
394{
395	struct skcipher_request *req = areq->data;
396	struct skcipher_request *subreq;
397	struct rctx *rctx;
398
399	rctx = skcipher_request_ctx(req);
400
401	if (err == -EINPROGRESS) {
402		if (rctx->left != req->cryptlen)
403			return;
404		goto out;
405	}
406
407	subreq = &rctx->subreq;
408	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
409
410	err = do_decrypt(req, err ?: post_crypt(req));
411	if (rctx->left)
412		return;
413
414out:
415	skcipher_request_complete(req, err);
416}
417
418static int decrypt(struct skcipher_request *req)
419{
420	return do_decrypt(req, init_crypt(req, decrypt_done));
 
421}
422
423static int init_tfm(struct crypto_skcipher *tfm)
424{
425	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
426	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
427	struct priv *ctx = crypto_skcipher_ctx(tfm);
428	struct crypto_skcipher *cipher;
429
430	cipher = crypto_spawn_skcipher(spawn);
431	if (IS_ERR(cipher))
432		return PTR_ERR(cipher);
433
434	ctx->child = cipher;
435
436	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
437					 sizeof(struct rctx));
438
439	return 0;
440}
441
442static void exit_tfm(struct crypto_skcipher *tfm)
443{
444	struct priv *ctx = crypto_skcipher_ctx(tfm);
445
446	if (ctx->table)
447		gf128mul_free_64k(ctx->table);
448	crypto_free_skcipher(ctx->child);
449}
450
451static void free(struct skcipher_instance *inst)
452{
453	crypto_drop_skcipher(skcipher_instance_ctx(inst));
454	kfree(inst);
455}
456
457static int create(struct crypto_template *tmpl, struct rtattr **tb)
458{
459	struct crypto_skcipher_spawn *spawn;
 
460	struct skcipher_instance *inst;
461	struct crypto_attr_type *algt;
462	struct skcipher_alg *alg;
463	const char *cipher_name;
464	char ecb_name[CRYPTO_MAX_ALG_NAME];
 
465	int err;
466
467	algt = crypto_get_attr_type(tb);
468	if (IS_ERR(algt))
469		return PTR_ERR(algt);
470
471	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
472		return -EINVAL;
473
474	cipher_name = crypto_attr_alg_name(tb[1]);
475	if (IS_ERR(cipher_name))
476		return PTR_ERR(cipher_name);
477
478	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
479	if (!inst)
480		return -ENOMEM;
481
482	spawn = skcipher_instance_ctx(inst);
483
484	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
485	err = crypto_grab_skcipher(spawn, cipher_name, 0,
486				   crypto_requires_sync(algt->type,
487							algt->mask));
488	if (err == -ENOENT) {
489		err = -ENAMETOOLONG;
490		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
491			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
492			goto err_free_inst;
493
494		err = crypto_grab_skcipher(spawn, ecb_name, 0,
495					   crypto_requires_sync(algt->type,
496								algt->mask));
497	}
498
499	if (err)
500		goto err_free_inst;
501
502	alg = crypto_skcipher_spawn_alg(spawn);
503
504	err = -EINVAL;
505	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
506		goto err_drop_spawn;
507
508	if (crypto_skcipher_alg_ivsize(alg))
509		goto err_drop_spawn;
510
511	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
512				  &alg->base);
513	if (err)
514		goto err_drop_spawn;
515
516	err = -EINVAL;
517	cipher_name = alg->base.cra_name;
518
519	/* Alas we screwed up the naming so we have to mangle the
520	 * cipher name.
521	 */
522	if (!strncmp(cipher_name, "ecb(", 4)) {
523		unsigned len;
524
525		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
526		if (len < 2 || len >= sizeof(ecb_name))
527			goto err_drop_spawn;
528
529		if (ecb_name[len - 1] != ')')
530			goto err_drop_spawn;
531
532		ecb_name[len - 1] = 0;
533
534		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
535			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
536			err = -ENAMETOOLONG;
537			goto err_drop_spawn;
538		}
539	} else
540		goto err_drop_spawn;
541
542	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
543	inst->alg.base.cra_priority = alg->base.cra_priority;
544	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
545	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
546				       (__alignof__(u64) - 1);
547
548	inst->alg.ivsize = LRW_BLOCK_SIZE;
549	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
550				LRW_BLOCK_SIZE;
551	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
552				LRW_BLOCK_SIZE;
553
554	inst->alg.base.cra_ctxsize = sizeof(struct priv);
555
556	inst->alg.init = init_tfm;
557	inst->alg.exit = exit_tfm;
558
559	inst->alg.setkey = setkey;
560	inst->alg.encrypt = encrypt;
561	inst->alg.decrypt = decrypt;
562
563	inst->free = free;
564
565	err = skcipher_register_instance(tmpl, inst);
566	if (err)
567		goto err_drop_spawn;
568
569out:
570	return err;
571
572err_drop_spawn:
573	crypto_drop_skcipher(spawn);
574err_free_inst:
575	kfree(inst);
576	goto out;
577}
578
579static struct crypto_template crypto_tmpl = {
580	.name = "lrw",
581	.create = create,
582	.module = THIS_MODULE,
583};
584
585static int __init crypto_module_init(void)
586{
587	return crypto_register_template(&crypto_tmpl);
588}
589
590static void __exit crypto_module_exit(void)
591{
592	crypto_unregister_template(&crypto_tmpl);
593}
594
595module_init(crypto_module_init);
596module_exit(crypto_module_exit);
597
598MODULE_LICENSE("GPL");
599MODULE_DESCRIPTION("LRW block cipher mode");
600MODULE_ALIAS_CRYPTO("lrw");