Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PRNG: Pseudo Random Number Generator
  4 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
  5 *       AES 128 cipher
  6 *
  7 *  (C) Neil Horman <nhorman@tuxdriver.com>
 
 
 
 
 
 
 
  8 */
  9
 10#include <crypto/internal/cipher.h>
 11#include <crypto/internal/rng.h>
 12#include <linux/err.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/moduleparam.h>
 16#include <linux/string.h>
 17
 18#define DEFAULT_PRNG_KEY "0123456789abcdef"
 19#define DEFAULT_PRNG_KSZ 16
 20#define DEFAULT_BLK_SZ 16
 21#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
 22
 23/*
 24 * Flags for the prng_context flags field
 25 */
 26
 27#define PRNG_FIXED_SIZE 0x1
 28#define PRNG_NEED_RESET 0x2
 29
 30/*
 31 * Note: DT is our counter value
 32 *	 I is our intermediate value
 33 *	 V is our seed vector
 34 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 35 * for implementation details
 36 */
 37
 38
 39struct prng_context {
 40	spinlock_t prng_lock;
 41	unsigned char rand_data[DEFAULT_BLK_SZ];
 42	unsigned char last_rand_data[DEFAULT_BLK_SZ];
 43	unsigned char DT[DEFAULT_BLK_SZ];
 44	unsigned char I[DEFAULT_BLK_SZ];
 45	unsigned char V[DEFAULT_BLK_SZ];
 46	u32 rand_data_valid;
 47	struct crypto_cipher *tfm;
 48	u32 flags;
 49};
 50
 51static int dbg;
 52
 53static void hexdump(char *note, unsigned char *buf, unsigned int len)
 54{
 55	if (dbg) {
 56		printk(KERN_CRIT "%s", note);
 57		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 58				16, 1,
 59				buf, len, false);
 60	}
 61}
 62
 63#define dbgprint(format, args...) do {\
 64if (dbg)\
 65	printk(format, ##args);\
 66} while (0)
 67
 68static void xor_vectors(unsigned char *in1, unsigned char *in2,
 69			unsigned char *out, unsigned int size)
 70{
 71	int i;
 72
 73	for (i = 0; i < size; i++)
 74		out[i] = in1[i] ^ in2[i];
 75
 76}
 77/*
 78 * Returns DEFAULT_BLK_SZ bytes of random data per call
 79 * returns 0 if generation succeeded, <0 if something went wrong
 80 */
 81static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
 82{
 83	int i;
 84	unsigned char tmp[DEFAULT_BLK_SZ];
 85	unsigned char *output = NULL;
 86
 87
 88	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
 89		ctx);
 90
 91	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
 92	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
 93	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
 94
 95	/*
 96	 * This algorithm is a 3 stage state machine
 97	 */
 98	for (i = 0; i < 3; i++) {
 99
100		switch (i) {
101		case 0:
102			/*
103			 * Start by encrypting the counter value
104			 * This gives us an intermediate value I
105			 */
106			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
107			output = ctx->I;
108			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
109			break;
110		case 1:
111
112			/*
113			 * Next xor I with our secret vector V
114			 * encrypt that result to obtain our
115			 * pseudo random data which we output
116			 */
117			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
118			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
119			output = ctx->rand_data;
120			break;
121		case 2:
122			/*
123			 * First check that we didn't produce the same
124			 * random data that we did last time around through this
125			 */
126			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
127					DEFAULT_BLK_SZ)) {
128				if (cont_test) {
129					panic("cprng %p Failed repetition check!\n",
130						ctx);
131				}
132
133				printk(KERN_ERR
134					"ctx %p Failed repetition check!\n",
135					ctx);
136
137				ctx->flags |= PRNG_NEED_RESET;
138				return -EINVAL;
139			}
140			memcpy(ctx->last_rand_data, ctx->rand_data,
141				DEFAULT_BLK_SZ);
142
143			/*
144			 * Lastly xor the random data with I
145			 * and encrypt that to obtain a new secret vector V
146			 */
147			xor_vectors(ctx->rand_data, ctx->I, tmp,
148				DEFAULT_BLK_SZ);
149			output = ctx->V;
150			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
151			break;
152		}
153
154
155		/* do the encryption */
156		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
157
158	}
159
160	/*
161	 * Now update our DT value
162	 */
163	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
164		ctx->DT[i] += 1;
165		if (ctx->DT[i] != 0)
166			break;
167	}
168
169	dbgprint("Returning new block for context %p\n", ctx);
170	ctx->rand_data_valid = 0;
171
172	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
173	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
174	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
175	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
176
177	return 0;
178}
179
180/* Our exported functions */
181static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
182				int do_cont_test)
183{
184	unsigned char *ptr = buf;
185	unsigned int byte_count = (unsigned int)nbytes;
186	int err;
187
188
189	spin_lock_bh(&ctx->prng_lock);
190
191	err = -EINVAL;
192	if (ctx->flags & PRNG_NEED_RESET)
193		goto done;
194
195	/*
196	 * If the FIXED_SIZE flag is on, only return whole blocks of
197	 * pseudo random data
198	 */
199	err = -EINVAL;
200	if (ctx->flags & PRNG_FIXED_SIZE) {
201		if (nbytes < DEFAULT_BLK_SZ)
202			goto done;
203		byte_count = DEFAULT_BLK_SZ;
204	}
205
206	/*
207	 * Return 0 in case of success as mandated by the kernel
208	 * crypto API interface definition.
209	 */
210	err = 0;
211
212	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
213		byte_count, ctx);
214
215
216remainder:
217	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
218		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
219			memset(buf, 0, nbytes);
220			err = -EINVAL;
221			goto done;
222		}
223	}
224
225	/*
226	 * Copy any data less than an entire block
227	 */
228	if (byte_count < DEFAULT_BLK_SZ) {
229empty_rbuf:
230		while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
231			*ptr = ctx->rand_data[ctx->rand_data_valid];
232			ptr++;
233			byte_count--;
234			ctx->rand_data_valid++;
235			if (byte_count == 0)
236				goto done;
237		}
238	}
239
240	/*
241	 * Now copy whole blocks
242	 */
243	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
244		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
245			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
246				memset(buf, 0, nbytes);
247				err = -EINVAL;
248				goto done;
249			}
250		}
251		if (ctx->rand_data_valid > 0)
252			goto empty_rbuf;
253		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
254		ctx->rand_data_valid += DEFAULT_BLK_SZ;
255		ptr += DEFAULT_BLK_SZ;
256	}
257
258	/*
259	 * Now go back and get any remaining partial block
260	 */
261	if (byte_count)
262		goto remainder;
263
264done:
265	spin_unlock_bh(&ctx->prng_lock);
266	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
267		err, ctx);
268	return err;
269}
270
271static void free_prng_context(struct prng_context *ctx)
272{
273	crypto_free_cipher(ctx->tfm);
274}
275
276static int reset_prng_context(struct prng_context *ctx,
277			      const unsigned char *key, size_t klen,
278			      const unsigned char *V, const unsigned char *DT)
279{
280	int ret;
281	const unsigned char *prng_key;
282
283	spin_lock_bh(&ctx->prng_lock);
284	ctx->flags |= PRNG_NEED_RESET;
285
286	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
287
288	if (!key)
289		klen = DEFAULT_PRNG_KSZ;
290
291	if (V)
292		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
293	else
294		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
295
296	if (DT)
297		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
298	else
299		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
300
301	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
302	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
303
304	ctx->rand_data_valid = DEFAULT_BLK_SZ;
305
306	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
307	if (ret) {
308		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
309			crypto_cipher_get_flags(ctx->tfm));
310		goto out;
311	}
312
313	ret = 0;
314	ctx->flags &= ~PRNG_NEED_RESET;
315out:
316	spin_unlock_bh(&ctx->prng_lock);
317	return ret;
318}
319
320static int cprng_init(struct crypto_tfm *tfm)
321{
322	struct prng_context *ctx = crypto_tfm_ctx(tfm);
323
324	spin_lock_init(&ctx->prng_lock);
325	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
326	if (IS_ERR(ctx->tfm)) {
327		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
328				ctx);
329		return PTR_ERR(ctx->tfm);
330	}
331
332	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
333		return -EINVAL;
334
335	/*
336	 * after allocation, we should always force the user to reset
337	 * so they don't inadvertently use the insecure default values
338	 * without specifying them intentially
339	 */
340	ctx->flags |= PRNG_NEED_RESET;
341	return 0;
342}
343
344static void cprng_exit(struct crypto_tfm *tfm)
345{
346	free_prng_context(crypto_tfm_ctx(tfm));
347}
348
349static int cprng_get_random(struct crypto_rng *tfm,
350			    const u8 *src, unsigned int slen,
351			    u8 *rdata, unsigned int dlen)
352{
353	struct prng_context *prng = crypto_rng_ctx(tfm);
354
355	return get_prng_bytes(rdata, dlen, prng, 0);
356}
357
358/*
359 *  This is the cprng_registered reset method the seed value is
360 *  interpreted as the tuple { V KEY DT}
361 *  V and KEY are required during reset, and DT is optional, detected
362 *  as being present by testing the length of the seed
363 */
364static int cprng_reset(struct crypto_rng *tfm,
365		       const u8 *seed, unsigned int slen)
366{
367	struct prng_context *prng = crypto_rng_ctx(tfm);
368	const u8 *key = seed + DEFAULT_BLK_SZ;
369	const u8 *dt = NULL;
370
371	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
372		return -EINVAL;
373
374	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
375		dt = key + DEFAULT_PRNG_KSZ;
376
377	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
378
379	if (prng->flags & PRNG_NEED_RESET)
380		return -EINVAL;
381	return 0;
382}
383
384#ifdef CONFIG_CRYPTO_FIPS
385static int fips_cprng_get_random(struct crypto_rng *tfm,
386				 const u8 *src, unsigned int slen,
387				 u8 *rdata, unsigned int dlen)
388{
389	struct prng_context *prng = crypto_rng_ctx(tfm);
390
391	return get_prng_bytes(rdata, dlen, prng, 1);
392}
393
394static int fips_cprng_reset(struct crypto_rng *tfm,
395			    const u8 *seed, unsigned int slen)
396{
397	u8 rdata[DEFAULT_BLK_SZ];
398	const u8 *key = seed + DEFAULT_BLK_SZ;
399	int rc;
400
401	struct prng_context *prng = crypto_rng_ctx(tfm);
402
403	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
404		return -EINVAL;
405
406	/* fips strictly requires seed != key */
407	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
408		return -EINVAL;
409
410	rc = cprng_reset(tfm, seed, slen);
411
412	if (!rc)
413		goto out;
414
415	/* this primes our continuity test */
416	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
417	prng->rand_data_valid = DEFAULT_BLK_SZ;
418
419out:
420	return rc;
421}
422#endif
423
424static struct rng_alg rng_algs[] = { {
425	.generate		= cprng_get_random,
426	.seed			= cprng_reset,
427	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
428	.base			=	{
429		.cra_name		= "stdrng",
430		.cra_driver_name	= "ansi_cprng",
431		.cra_priority		= 100,
432		.cra_ctxsize		= sizeof(struct prng_context),
433		.cra_module		= THIS_MODULE,
434		.cra_init		= cprng_init,
435		.cra_exit		= cprng_exit,
436	}
437#ifdef CONFIG_CRYPTO_FIPS
438}, {
439	.generate		= fips_cprng_get_random,
440	.seed			= fips_cprng_reset,
441	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
442	.base			=	{
443		.cra_name		= "fips(ansi_cprng)",
444		.cra_driver_name	= "fips_ansi_cprng",
445		.cra_priority		= 300,
446		.cra_ctxsize		= sizeof(struct prng_context),
447		.cra_module		= THIS_MODULE,
448		.cra_init		= cprng_init,
449		.cra_exit		= cprng_exit,
450	}
451#endif
452} };
453
454/* Module initalization */
455static int __init prng_mod_init(void)
456{
457	return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
458}
459
460static void __exit prng_mod_fini(void)
461{
462	crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
463}
464
465MODULE_LICENSE("GPL");
466MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
467MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
468module_param(dbg, int, 0);
469MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
470subsys_initcall(prng_mod_init);
471module_exit(prng_mod_fini);
472MODULE_ALIAS_CRYPTO("stdrng");
473MODULE_ALIAS_CRYPTO("ansi_cprng");
474MODULE_IMPORT_NS(CRYPTO_INTERNAL);
v4.17
 
  1/*
  2 * PRNG: Pseudo Random Number Generator
  3 *       Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
  4 *       AES 128 cipher
  5 *
  6 *  (C) Neil Horman <nhorman@tuxdriver.com>
  7 *
  8 *  This program is free software; you can redistribute it and/or modify it
  9 *  under the terms of the GNU General Public License as published by the
 10 *  Free Software Foundation; either version 2 of the License, or (at your
 11 *  any later version.
 12 *
 13 *
 14 */
 15
 
 16#include <crypto/internal/rng.h>
 17#include <linux/err.h>
 18#include <linux/init.h>
 19#include <linux/module.h>
 20#include <linux/moduleparam.h>
 21#include <linux/string.h>
 22
 23#define DEFAULT_PRNG_KEY "0123456789abcdef"
 24#define DEFAULT_PRNG_KSZ 16
 25#define DEFAULT_BLK_SZ 16
 26#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
 27
 28/*
 29 * Flags for the prng_context flags field
 30 */
 31
 32#define PRNG_FIXED_SIZE 0x1
 33#define PRNG_NEED_RESET 0x2
 34
 35/*
 36 * Note: DT is our counter value
 37 *	 I is our intermediate value
 38 *	 V is our seed vector
 39 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
 40 * for implementation details
 41 */
 42
 43
 44struct prng_context {
 45	spinlock_t prng_lock;
 46	unsigned char rand_data[DEFAULT_BLK_SZ];
 47	unsigned char last_rand_data[DEFAULT_BLK_SZ];
 48	unsigned char DT[DEFAULT_BLK_SZ];
 49	unsigned char I[DEFAULT_BLK_SZ];
 50	unsigned char V[DEFAULT_BLK_SZ];
 51	u32 rand_data_valid;
 52	struct crypto_cipher *tfm;
 53	u32 flags;
 54};
 55
 56static int dbg;
 57
 58static void hexdump(char *note, unsigned char *buf, unsigned int len)
 59{
 60	if (dbg) {
 61		printk(KERN_CRIT "%s", note);
 62		print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
 63				16, 1,
 64				buf, len, false);
 65	}
 66}
 67
 68#define dbgprint(format, args...) do {\
 69if (dbg)\
 70	printk(format, ##args);\
 71} while (0)
 72
 73static void xor_vectors(unsigned char *in1, unsigned char *in2,
 74			unsigned char *out, unsigned int size)
 75{
 76	int i;
 77
 78	for (i = 0; i < size; i++)
 79		out[i] = in1[i] ^ in2[i];
 80
 81}
 82/*
 83 * Returns DEFAULT_BLK_SZ bytes of random data per call
 84 * returns 0 if generation succeeded, <0 if something went wrong
 85 */
 86static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
 87{
 88	int i;
 89	unsigned char tmp[DEFAULT_BLK_SZ];
 90	unsigned char *output = NULL;
 91
 92
 93	dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
 94		ctx);
 95
 96	hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
 97	hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
 98	hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
 99
100	/*
101	 * This algorithm is a 3 stage state machine
102	 */
103	for (i = 0; i < 3; i++) {
104
105		switch (i) {
106		case 0:
107			/*
108			 * Start by encrypting the counter value
109			 * This gives us an intermediate value I
110			 */
111			memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
112			output = ctx->I;
113			hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
114			break;
115		case 1:
116
117			/*
118			 * Next xor I with our secret vector V
119			 * encrypt that result to obtain our
120			 * pseudo random data which we output
121			 */
122			xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
123			hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
124			output = ctx->rand_data;
125			break;
126		case 2:
127			/*
128			 * First check that we didn't produce the same
129			 * random data that we did last time around through this
130			 */
131			if (!memcmp(ctx->rand_data, ctx->last_rand_data,
132					DEFAULT_BLK_SZ)) {
133				if (cont_test) {
134					panic("cprng %p Failed repetition check!\n",
135						ctx);
136				}
137
138				printk(KERN_ERR
139					"ctx %p Failed repetition check!\n",
140					ctx);
141
142				ctx->flags |= PRNG_NEED_RESET;
143				return -EINVAL;
144			}
145			memcpy(ctx->last_rand_data, ctx->rand_data,
146				DEFAULT_BLK_SZ);
147
148			/*
149			 * Lastly xor the random data with I
150			 * and encrypt that to obtain a new secret vector V
151			 */
152			xor_vectors(ctx->rand_data, ctx->I, tmp,
153				DEFAULT_BLK_SZ);
154			output = ctx->V;
155			hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
156			break;
157		}
158
159
160		/* do the encryption */
161		crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
162
163	}
164
165	/*
166	 * Now update our DT value
167	 */
168	for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
169		ctx->DT[i] += 1;
170		if (ctx->DT[i] != 0)
171			break;
172	}
173
174	dbgprint("Returning new block for context %p\n", ctx);
175	ctx->rand_data_valid = 0;
176
177	hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
178	hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
179	hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
180	hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
181
182	return 0;
183}
184
185/* Our exported functions */
186static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
187				int do_cont_test)
188{
189	unsigned char *ptr = buf;
190	unsigned int byte_count = (unsigned int)nbytes;
191	int err;
192
193
194	spin_lock_bh(&ctx->prng_lock);
195
196	err = -EINVAL;
197	if (ctx->flags & PRNG_NEED_RESET)
198		goto done;
199
200	/*
201	 * If the FIXED_SIZE flag is on, only return whole blocks of
202	 * pseudo random data
203	 */
204	err = -EINVAL;
205	if (ctx->flags & PRNG_FIXED_SIZE) {
206		if (nbytes < DEFAULT_BLK_SZ)
207			goto done;
208		byte_count = DEFAULT_BLK_SZ;
209	}
210
211	/*
212	 * Return 0 in case of success as mandated by the kernel
213	 * crypto API interface definition.
214	 */
215	err = 0;
216
217	dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
218		byte_count, ctx);
219
220
221remainder:
222	if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
223		if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
224			memset(buf, 0, nbytes);
225			err = -EINVAL;
226			goto done;
227		}
228	}
229
230	/*
231	 * Copy any data less than an entire block
232	 */
233	if (byte_count < DEFAULT_BLK_SZ) {
234empty_rbuf:
235		while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
236			*ptr = ctx->rand_data[ctx->rand_data_valid];
237			ptr++;
238			byte_count--;
239			ctx->rand_data_valid++;
240			if (byte_count == 0)
241				goto done;
242		}
243	}
244
245	/*
246	 * Now copy whole blocks
247	 */
248	for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
249		if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
250			if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
251				memset(buf, 0, nbytes);
252				err = -EINVAL;
253				goto done;
254			}
255		}
256		if (ctx->rand_data_valid > 0)
257			goto empty_rbuf;
258		memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
259		ctx->rand_data_valid += DEFAULT_BLK_SZ;
260		ptr += DEFAULT_BLK_SZ;
261	}
262
263	/*
264	 * Now go back and get any remaining partial block
265	 */
266	if (byte_count)
267		goto remainder;
268
269done:
270	spin_unlock_bh(&ctx->prng_lock);
271	dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
272		err, ctx);
273	return err;
274}
275
276static void free_prng_context(struct prng_context *ctx)
277{
278	crypto_free_cipher(ctx->tfm);
279}
280
281static int reset_prng_context(struct prng_context *ctx,
282			      const unsigned char *key, size_t klen,
283			      const unsigned char *V, const unsigned char *DT)
284{
285	int ret;
286	const unsigned char *prng_key;
287
288	spin_lock_bh(&ctx->prng_lock);
289	ctx->flags |= PRNG_NEED_RESET;
290
291	prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
292
293	if (!key)
294		klen = DEFAULT_PRNG_KSZ;
295
296	if (V)
297		memcpy(ctx->V, V, DEFAULT_BLK_SZ);
298	else
299		memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
300
301	if (DT)
302		memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
303	else
304		memset(ctx->DT, 0, DEFAULT_BLK_SZ);
305
306	memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
307	memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
308
309	ctx->rand_data_valid = DEFAULT_BLK_SZ;
310
311	ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
312	if (ret) {
313		dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
314			crypto_cipher_get_flags(ctx->tfm));
315		goto out;
316	}
317
318	ret = 0;
319	ctx->flags &= ~PRNG_NEED_RESET;
320out:
321	spin_unlock_bh(&ctx->prng_lock);
322	return ret;
323}
324
325static int cprng_init(struct crypto_tfm *tfm)
326{
327	struct prng_context *ctx = crypto_tfm_ctx(tfm);
328
329	spin_lock_init(&ctx->prng_lock);
330	ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
331	if (IS_ERR(ctx->tfm)) {
332		dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
333				ctx);
334		return PTR_ERR(ctx->tfm);
335	}
336
337	if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
338		return -EINVAL;
339
340	/*
341	 * after allocation, we should always force the user to reset
342	 * so they don't inadvertently use the insecure default values
343	 * without specifying them intentially
344	 */
345	ctx->flags |= PRNG_NEED_RESET;
346	return 0;
347}
348
349static void cprng_exit(struct crypto_tfm *tfm)
350{
351	free_prng_context(crypto_tfm_ctx(tfm));
352}
353
354static int cprng_get_random(struct crypto_rng *tfm,
355			    const u8 *src, unsigned int slen,
356			    u8 *rdata, unsigned int dlen)
357{
358	struct prng_context *prng = crypto_rng_ctx(tfm);
359
360	return get_prng_bytes(rdata, dlen, prng, 0);
361}
362
363/*
364 *  This is the cprng_registered reset method the seed value is
365 *  interpreted as the tuple { V KEY DT}
366 *  V and KEY are required during reset, and DT is optional, detected
367 *  as being present by testing the length of the seed
368 */
369static int cprng_reset(struct crypto_rng *tfm,
370		       const u8 *seed, unsigned int slen)
371{
372	struct prng_context *prng = crypto_rng_ctx(tfm);
373	const u8 *key = seed + DEFAULT_BLK_SZ;
374	const u8 *dt = NULL;
375
376	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
377		return -EINVAL;
378
379	if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
380		dt = key + DEFAULT_PRNG_KSZ;
381
382	reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
383
384	if (prng->flags & PRNG_NEED_RESET)
385		return -EINVAL;
386	return 0;
387}
388
389#ifdef CONFIG_CRYPTO_FIPS
390static int fips_cprng_get_random(struct crypto_rng *tfm,
391				 const u8 *src, unsigned int slen,
392				 u8 *rdata, unsigned int dlen)
393{
394	struct prng_context *prng = crypto_rng_ctx(tfm);
395
396	return get_prng_bytes(rdata, dlen, prng, 1);
397}
398
399static int fips_cprng_reset(struct crypto_rng *tfm,
400			    const u8 *seed, unsigned int slen)
401{
402	u8 rdata[DEFAULT_BLK_SZ];
403	const u8 *key = seed + DEFAULT_BLK_SZ;
404	int rc;
405
406	struct prng_context *prng = crypto_rng_ctx(tfm);
407
408	if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
409		return -EINVAL;
410
411	/* fips strictly requires seed != key */
412	if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
413		return -EINVAL;
414
415	rc = cprng_reset(tfm, seed, slen);
416
417	if (!rc)
418		goto out;
419
420	/* this primes our continuity test */
421	rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
422	prng->rand_data_valid = DEFAULT_BLK_SZ;
423
424out:
425	return rc;
426}
427#endif
428
429static struct rng_alg rng_algs[] = { {
430	.generate		= cprng_get_random,
431	.seed			= cprng_reset,
432	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
433	.base			=	{
434		.cra_name		= "stdrng",
435		.cra_driver_name	= "ansi_cprng",
436		.cra_priority		= 100,
437		.cra_ctxsize		= sizeof(struct prng_context),
438		.cra_module		= THIS_MODULE,
439		.cra_init		= cprng_init,
440		.cra_exit		= cprng_exit,
441	}
442#ifdef CONFIG_CRYPTO_FIPS
443}, {
444	.generate		= fips_cprng_get_random,
445	.seed			= fips_cprng_reset,
446	.seedsize		= DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
447	.base			=	{
448		.cra_name		= "fips(ansi_cprng)",
449		.cra_driver_name	= "fips_ansi_cprng",
450		.cra_priority		= 300,
451		.cra_ctxsize		= sizeof(struct prng_context),
452		.cra_module		= THIS_MODULE,
453		.cra_init		= cprng_init,
454		.cra_exit		= cprng_exit,
455	}
456#endif
457} };
458
459/* Module initalization */
460static int __init prng_mod_init(void)
461{
462	return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
463}
464
465static void __exit prng_mod_fini(void)
466{
467	crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
468}
469
470MODULE_LICENSE("GPL");
471MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
472MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
473module_param(dbg, int, 0);
474MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
475module_init(prng_mod_init);
476module_exit(prng_mod_fini);
477MODULE_ALIAS_CRYPTO("stdrng");
478MODULE_ALIAS_CRYPTO("ansi_cprng");