Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2016,2017 IBM Corporation.
 
 
 
 
 
   4 */
   5
   6#define pr_fmt(fmt) "xive: " fmt
   7
   8#include <linux/types.h>
   9#include <linux/threads.h>
  10#include <linux/kernel.h>
  11#include <linux/irq.h>
  12#include <linux/irqdomain.h>
  13#include <linux/debugfs.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/seq_file.h>
  17#include <linux/init.h>
  18#include <linux/cpu.h>
  19#include <linux/of.h>
  20#include <linux/slab.h>
  21#include <linux/spinlock.h>
  22#include <linux/msi.h>
  23#include <linux/vmalloc.h>
  24
 
  25#include <asm/io.h>
  26#include <asm/smp.h>
  27#include <asm/machdep.h>
  28#include <asm/irq.h>
  29#include <asm/errno.h>
  30#include <asm/xive.h>
  31#include <asm/xive-regs.h>
  32#include <asm/xmon.h>
  33
  34#include "xive-internal.h"
  35
  36#undef DEBUG_FLUSH
  37#undef DEBUG_ALL
  38
  39#ifdef DEBUG_ALL
  40#define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
  41					 smp_processor_id(), ## __VA_ARGS__)
  42#else
  43#define DBG_VERBOSE(fmt...)	do { } while(0)
  44#endif
  45
  46bool __xive_enabled;
  47EXPORT_SYMBOL_GPL(__xive_enabled);
  48bool xive_cmdline_disabled;
  49
  50/* We use only one priority for now */
  51static u8 xive_irq_priority;
  52
  53/* TIMA exported to KVM */
  54void __iomem *xive_tima;
  55EXPORT_SYMBOL_GPL(xive_tima);
  56u32 xive_tima_offset;
  57
  58/* Backend ops */
  59static const struct xive_ops *xive_ops;
  60
  61/* Our global interrupt domain */
  62static struct irq_domain *xive_irq_domain;
  63
  64#ifdef CONFIG_SMP
  65/* The IPIs use the same logical irq number when on the same chip */
  66static struct xive_ipi_desc {
  67	unsigned int irq;
  68	char name[16];
  69	atomic_t started;
  70} *xive_ipis;
  71
  72/*
  73 * Use early_cpu_to_node() for hot-plugged CPUs
  74 */
  75static unsigned int xive_ipi_cpu_to_irq(unsigned int cpu)
  76{
  77	return xive_ipis[early_cpu_to_node(cpu)].irq;
  78}
  79#endif
  80
  81/* Xive state for each CPU */
  82static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  83
  84/* An invalid CPU target */
  85#define XIVE_INVALID_TARGET	(-1)
  86
  87/*
  88 * Global toggle to switch on/off StoreEOI
 
  89 */
  90static bool xive_store_eoi = true;
 
  91
  92static bool xive_is_store_eoi(struct xive_irq_data *xd)
  93{
  94	return xd->flags & XIVE_IRQ_FLAG_STORE_EOI && xive_store_eoi;
  95}
  96
  97/*
  98 * Read the next entry in a queue, return its content if it's valid
  99 * or 0 if there is no new entry.
 100 *
 101 * The queue pointer is moved forward unless "just_peek" is set
 102 */
 103static u32 xive_read_eq(struct xive_q *q, bool just_peek)
 104{
 105	u32 cur;
 106
 107	if (!q->qpage)
 108		return 0;
 109	cur = be32_to_cpup(q->qpage + q->idx);
 110
 111	/* Check valid bit (31) vs current toggle polarity */
 112	if ((cur >> 31) == q->toggle)
 113		return 0;
 114
 115	/* If consuming from the queue ... */
 116	if (!just_peek) {
 117		/* Next entry */
 118		q->idx = (q->idx + 1) & q->msk;
 119
 120		/* Wrap around: flip valid toggle */
 121		if (q->idx == 0)
 122			q->toggle ^= 1;
 123	}
 124	/* Mask out the valid bit (31) */
 125	return cur & 0x7fffffff;
 126}
 127
 128/*
 129 * Scans all the queue that may have interrupts in them
 130 * (based on "pending_prio") in priority order until an
 131 * interrupt is found or all the queues are empty.
 132 *
 133 * Then updates the CPPR (Current Processor Priority
 134 * Register) based on the most favored interrupt found
 135 * (0xff if none) and return what was found (0 if none).
 136 *
 137 * If just_peek is set, return the most favored pending
 138 * interrupt if any but don't update the queue pointers.
 139 *
 140 * Note: This function can operate generically on any number
 141 * of queues (up to 8). The current implementation of the XIVE
 142 * driver only uses a single queue however.
 143 *
 144 * Note2: This will also "flush" "the pending_count" of a queue
 145 * into the "count" when that queue is observed to be empty.
 146 * This is used to keep track of the amount of interrupts
 147 * targetting a queue. When an interrupt is moved away from
 148 * a queue, we only decrement that queue count once the queue
 149 * has been observed empty to avoid races.
 150 */
 151static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 152{
 153	u32 irq = 0;
 154	u8 prio = 0;
 155
 156	/* Find highest pending priority */
 157	while (xc->pending_prio != 0) {
 158		struct xive_q *q;
 159
 160		prio = ffs(xc->pending_prio) - 1;
 161		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 162
 163		/* Try to fetch */
 164		irq = xive_read_eq(&xc->queue[prio], just_peek);
 165
 166		/* Found something ? That's it */
 167		if (irq) {
 168			if (just_peek || irq_to_desc(irq))
 169				break;
 170			/*
 171			 * We should never get here; if we do then we must
 172			 * have failed to synchronize the interrupt properly
 173			 * when shutting it down.
 174			 */
 175			pr_crit("xive: got interrupt %d without descriptor, dropping\n",
 176				irq);
 177			WARN_ON(1);
 178			continue;
 179		}
 180
 181		/* Clear pending bits */
 182		xc->pending_prio &= ~(1 << prio);
 183
 184		/*
 185		 * Check if the queue count needs adjusting due to
 186		 * interrupts being moved away. See description of
 187		 * xive_dec_target_count()
 188		 */
 189		q = &xc->queue[prio];
 190		if (atomic_read(&q->pending_count)) {
 191			int p = atomic_xchg(&q->pending_count, 0);
 192			if (p) {
 193				WARN_ON(p > atomic_read(&q->count));
 194				atomic_sub(p, &q->count);
 195			}
 196		}
 197	}
 198
 199	/* If nothing was found, set CPPR to 0xff */
 200	if (irq == 0)
 201		prio = 0xff;
 202
 203	/* Update HW CPPR to match if necessary */
 204	if (prio != xc->cppr) {
 205		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 206		xc->cppr = prio;
 207		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 208	}
 209
 210	return irq;
 211}
 212
 213/*
 214 * This is used to perform the magic loads from an ESB
 215 * described in xive-regs.h
 216 */
 217static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 218{
 219	u64 val;
 220
 221	if (offset == XIVE_ESB_SET_PQ_10 && xive_is_store_eoi(xd))
 222		offset |= XIVE_ESB_LD_ST_MO;
 
 223
 224	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 225		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 226	else
 227		val = in_be64(xd->eoi_mmio + offset);
 228
 229	return (u8)val;
 230}
 231
 232static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 233{
 
 
 
 
 234	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 235		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 236	else
 237		out_be64(xd->eoi_mmio + offset, data);
 238}
 239
 240#if defined(CONFIG_XMON) || defined(CONFIG_DEBUG_FS)
 241static void xive_irq_data_dump(struct xive_irq_data *xd, char *buffer, size_t size)
 242{
 243	u64 val = xive_esb_read(xd, XIVE_ESB_GET);
 244
 245	snprintf(buffer, size, "flags=%c%c%c PQ=%c%c 0x%016llx 0x%016llx",
 246		 xive_is_store_eoi(xd) ? 'S' : ' ',
 247		 xd->flags & XIVE_IRQ_FLAG_LSI ? 'L' : ' ',
 248		 xd->flags & XIVE_IRQ_FLAG_H_INT_ESB ? 'H' : ' ',
 249		 val & XIVE_ESB_VAL_P ? 'P' : '-',
 250		 val & XIVE_ESB_VAL_Q ? 'Q' : '-',
 251		 xd->trig_page, xd->eoi_page);
 252}
 253#endif
 254
 255#ifdef CONFIG_XMON
 256static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 257{
 258	u32 i0, i1, idx;
 259
 260	if (!q->qpage)
 261		return;
 262	idx = q->idx;
 263	i0 = be32_to_cpup(q->qpage + idx);
 264	idx = (idx + 1) & q->msk;
 265	i1 = be32_to_cpup(q->qpage + idx);
 266	xmon_printf("%s idx=%d T=%d %08x %08x ...", name,
 267		     q->idx, q->toggle, i0, i1);
 268}
 269
 270notrace void xmon_xive_do_dump(int cpu)
 271{
 272	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 273
 274	xmon_printf("CPU %d:", cpu);
 275	if (xc) {
 276		xmon_printf("pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
 277
 278#ifdef CONFIG_SMP
 279		{
 280			char buffer[128];
 281
 282			xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
 283			xmon_printf("IPI=0x%08x %s", xc->hw_ipi, buffer);
 284		}
 285#endif
 286		xive_dump_eq("EQ", &xc->queue[xive_irq_priority]);
 287	}
 288	xmon_printf("\n");
 289}
 290
 291static struct irq_data *xive_get_irq_data(u32 hw_irq)
 292{
 293	unsigned int irq = irq_find_mapping(xive_irq_domain, hw_irq);
 294
 295	return irq ? irq_get_irq_data(irq) : NULL;
 296}
 297
 298int xmon_xive_get_irq_config(u32 hw_irq, struct irq_data *d)
 299{
 300	int rc;
 301	u32 target;
 302	u8 prio;
 303	u32 lirq;
 304
 305	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
 306	if (rc) {
 307		xmon_printf("IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
 308		return rc;
 309	}
 310
 311	xmon_printf("IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
 312		    hw_irq, target, prio, lirq);
 313
 314	if (!d)
 315		d = xive_get_irq_data(hw_irq);
 316
 317	if (d) {
 318		char buffer[128];
 319
 320		xive_irq_data_dump(irq_data_get_irq_handler_data(d),
 321				   buffer, sizeof(buffer));
 322		xmon_printf("%s", buffer);
 323	}
 324
 325	xmon_printf("\n");
 326	return 0;
 327}
 328
 329void xmon_xive_get_irq_all(void)
 330{
 331	unsigned int i;
 332	struct irq_desc *desc;
 333
 334	for_each_irq_desc(i, desc) {
 335		struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
 336
 337		if (d)
 338			xmon_xive_get_irq_config(irqd_to_hwirq(d), d);
 339	}
 
 340}
 341
 342#endif /* CONFIG_XMON */
 343
 344static unsigned int xive_get_irq(void)
 345{
 346	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 347	u32 irq;
 348
 349	/*
 350	 * This can be called either as a result of a HW interrupt or
 351	 * as a "replay" because EOI decided there was still something
 352	 * in one of the queues.
 353	 *
 354	 * First we perform an ACK cycle in order to update our mask
 355	 * of pending priorities. This will also have the effect of
 356	 * updating the CPPR to the most favored pending interrupts.
 357	 *
 358	 * In the future, if we have a way to differentiate a first
 359	 * entry (on HW interrupt) from a replay triggered by EOI,
 360	 * we could skip this on replays unless we soft-mask tells us
 361	 * that a new HW interrupt occurred.
 362	 */
 363	xive_ops->update_pending(xc);
 364
 365	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 366
 367	/* Scan our queue(s) for interrupts */
 368	irq = xive_scan_interrupts(xc, false);
 369
 370	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 371	    irq, xc->pending_prio);
 372
 373	/* Return pending interrupt if any */
 374	if (irq == XIVE_BAD_IRQ)
 375		return 0;
 376	return irq;
 377}
 378
 379/*
 380 * After EOI'ing an interrupt, we need to re-check the queue
 381 * to see if another interrupt is pending since multiple
 382 * interrupts can coalesce into a single notification to the
 383 * CPU.
 384 *
 385 * If we find that there is indeed more in there, we call
 386 * force_external_irq_replay() to make Linux synthetize an
 387 * external interrupt on the next call to local_irq_restore().
 388 */
 389static void xive_do_queue_eoi(struct xive_cpu *xc)
 390{
 391	if (xive_scan_interrupts(xc, true) != 0) {
 392		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 393		force_external_irq_replay();
 394	}
 395}
 396
 397/*
 398 * EOI an interrupt at the source. There are several methods
 399 * to do this depending on the HW version and source type
 400 */
 401static void xive_do_source_eoi(struct xive_irq_data *xd)
 402{
 403	u8 eoi_val;
 404
 405	xd->stale_p = false;
 406
 407	/* If the XIVE supports the new "store EOI facility, use it */
 408	if (xive_is_store_eoi(xd)) {
 409		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 410		return;
 411	}
 
 
 
 
 
 
 
 
 
 
 
 412
 413	/*
 414	 * For LSIs, we use the "EOI cycle" special load rather than
 415	 * PQ bits, as they are automatically re-triggered in HW when
 416	 * still pending.
 417	 */
 418	if (xd->flags & XIVE_IRQ_FLAG_LSI) {
 419		xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 420		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421	}
 422
 423	/*
 424	 * Otherwise, we use the special MMIO that does a clear of
 425	 * both P and Q and returns the old Q. This allows us to then
 426	 * do a re-trigger if Q was set rather than synthesizing an
 427	 * interrupt in software
 428	 */
 429	eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 430	DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 431
 432	/* Re-trigger if needed */
 433	if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 434		out_be64(xd->trig_mmio, 0);
 435}
 436
 437/* irq_chip eoi callback, called with irq descriptor lock held */
 438static void xive_irq_eoi(struct irq_data *d)
 439{
 440	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 441	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 442
 443	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 444		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 445
 446	/*
 447	 * EOI the source if it hasn't been disabled and hasn't
 448	 * been passed-through to a KVM guest
 449	 */
 450	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 451	    !(xd->flags & XIVE_IRQ_FLAG_NO_EOI))
 452		xive_do_source_eoi(xd);
 453	else
 454		xd->stale_p = true;
 455
 456	/*
 457	 * Clear saved_p to indicate that it's no longer occupying
 458	 * a queue slot on the target queue
 459	 */
 460	xd->saved_p = false;
 461
 462	/* Check for more work in the queue */
 463	xive_do_queue_eoi(xc);
 464}
 465
 466/*
 467 * Helper used to mask and unmask an interrupt source.
 
 
 468 */
 469static void xive_do_source_set_mask(struct xive_irq_data *xd,
 470				    bool mask)
 471{
 472	u64 val;
 473
 474	pr_debug("%s: HW 0x%x %smask\n", __func__, xd->hw_irq, mask ? "" : "un");
 475
 476	/*
 477	 * If the interrupt had P set, it may be in a queue.
 478	 *
 479	 * We need to make sure we don't re-enable it until it
 480	 * has been fetched from that queue and EOId. We keep
 481	 * a copy of that P state and use it to restore the
 482	 * ESB accordingly on unmask.
 483	 */
 484	if (mask) {
 485		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 486		if (!xd->stale_p && !!(val & XIVE_ESB_VAL_P))
 487			xd->saved_p = true;
 488		xd->stale_p = false;
 489	} else if (xd->saved_p) {
 490		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 491		xd->saved_p = false;
 492	} else {
 493		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 494		xd->stale_p = false;
 495	}
 496}
 497
 498/*
 499 * Try to chose "cpu" as a new interrupt target. Increments
 500 * the queue accounting for that target if it's not already
 501 * full.
 502 */
 503static bool xive_try_pick_target(int cpu)
 504{
 505	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 506	struct xive_q *q = &xc->queue[xive_irq_priority];
 507	int max;
 508
 509	/*
 510	 * Calculate max number of interrupts in that queue.
 511	 *
 512	 * We leave a gap of 1 just in case...
 513	 */
 514	max = (q->msk + 1) - 1;
 515	return !!atomic_add_unless(&q->count, 1, max);
 516}
 517
 518/*
 519 * Un-account an interrupt for a target CPU. We don't directly
 520 * decrement q->count since the interrupt might still be present
 521 * in the queue.
 522 *
 523 * Instead increment a separate counter "pending_count" which
 524 * will be substracted from "count" later when that CPU observes
 525 * the queue to be empty.
 526 */
 527static void xive_dec_target_count(int cpu)
 528{
 529	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 530	struct xive_q *q = &xc->queue[xive_irq_priority];
 531
 532	if (WARN_ON(cpu < 0 || !xc)) {
 533		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 534		return;
 535	}
 536
 537	/*
 538	 * We increment the "pending count" which will be used
 539	 * to decrement the target queue count whenever it's next
 540	 * processed and found empty. This ensure that we don't
 541	 * decrement while we still have the interrupt there
 542	 * occupying a slot.
 543	 */
 544	atomic_inc(&q->pending_count);
 545}
 546
 547/* Find a tentative CPU target in a CPU mask */
 548static int xive_find_target_in_mask(const struct cpumask *mask,
 549				    unsigned int fuzz)
 550{
 551	int cpu, first, num, i;
 552
 553	/* Pick up a starting point CPU in the mask based on  fuzz */
 554	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 555	first = fuzz % num;
 556
 557	/* Locate it */
 558	cpu = cpumask_first(mask);
 559	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 560		cpu = cpumask_next(cpu, mask);
 561
 562	/* Sanity check */
 563	if (WARN_ON(cpu >= nr_cpu_ids))
 564		cpu = cpumask_first(cpu_online_mask);
 565
 566	/* Remember first one to handle wrap-around */
 567	first = cpu;
 568
 569	/*
 570	 * Now go through the entire mask until we find a valid
 571	 * target.
 572	 */
 573	do {
 574		/*
 575		 * We re-check online as the fallback case passes us
 576		 * an untested affinity mask
 577		 */
 578		if (cpu_online(cpu) && xive_try_pick_target(cpu))
 579			return cpu;
 580		cpu = cpumask_next(cpu, mask);
 
 
 581		/* Wrap around */
 582		if (cpu >= nr_cpu_ids)
 583			cpu = cpumask_first(mask);
 584	} while (cpu != first);
 585
 586	return -1;
 587}
 588
 589/*
 590 * Pick a target CPU for an interrupt. This is done at
 591 * startup or if the affinity is changed in a way that
 592 * invalidates the current target.
 593 */
 594static int xive_pick_irq_target(struct irq_data *d,
 595				const struct cpumask *affinity)
 596{
 597	static unsigned int fuzz;
 598	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 599	cpumask_var_t mask;
 600	int cpu = -1;
 601
 602	/*
 603	 * If we have chip IDs, first we try to build a mask of
 604	 * CPUs matching the CPU and find a target in there
 605	 */
 606	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 607		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 608		/* Build a mask of matching chip IDs */
 609		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 610			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 611			if (xc->chip_id == xd->src_chip)
 612				cpumask_set_cpu(cpu, mask);
 613		}
 614		/* Try to find a target */
 615		if (cpumask_empty(mask))
 616			cpu = -1;
 617		else
 618			cpu = xive_find_target_in_mask(mask, fuzz++);
 619		free_cpumask_var(mask);
 620		if (cpu >= 0)
 621			return cpu;
 622		fuzz--;
 623	}
 624
 625	/* No chip IDs, fallback to using the affinity mask */
 626	return xive_find_target_in_mask(affinity, fuzz++);
 627}
 628
 629static unsigned int xive_irq_startup(struct irq_data *d)
 630{
 631	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 632	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 633	int target, rc;
 634
 635	xd->saved_p = false;
 636	xd->stale_p = false;
 637
 638	pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
 
 
 
 
 
 
 
 
 639
 640	/* Pick a target */
 641	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 642	if (target == XIVE_INVALID_TARGET) {
 643		/* Try again breaking affinity */
 644		target = xive_pick_irq_target(d, cpu_online_mask);
 645		if (target == XIVE_INVALID_TARGET)
 646			return -ENXIO;
 647		pr_warn("irq %d started with broken affinity\n", d->irq);
 648	}
 649
 650	/* Sanity check */
 651	if (WARN_ON(target == XIVE_INVALID_TARGET ||
 652		    target >= nr_cpu_ids))
 653		target = smp_processor_id();
 654
 655	xd->target = target;
 656
 657	/*
 658	 * Configure the logical number to be the Linux IRQ number
 659	 * and set the target queue
 660	 */
 661	rc = xive_ops->configure_irq(hw_irq,
 662				     get_hard_smp_processor_id(target),
 663				     xive_irq_priority, d->irq);
 664	if (rc)
 665		return rc;
 666
 667	/* Unmask the ESB */
 668	xive_do_source_set_mask(xd, false);
 669
 670	return 0;
 671}
 672
 673/* called with irq descriptor lock held */
 674static void xive_irq_shutdown(struct irq_data *d)
 675{
 676	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 677	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 678
 679	pr_debug("%s: irq %d [0x%x] data @%p\n", __func__, d->irq, hw_irq, d);
 
 680
 681	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 682		return;
 683
 684	/* Mask the interrupt at the source */
 685	xive_do_source_set_mask(xd, true);
 686
 687	/*
 
 
 
 
 
 
 
 
 
 
 688	 * Mask the interrupt in HW in the IVT/EAS and set the number
 689	 * to be the "bad" IRQ number
 690	 */
 691	xive_ops->configure_irq(hw_irq,
 692				get_hard_smp_processor_id(xd->target),
 693				0xff, XIVE_BAD_IRQ);
 694
 695	xive_dec_target_count(xd->target);
 696	xd->target = XIVE_INVALID_TARGET;
 697}
 698
 699static void xive_irq_unmask(struct irq_data *d)
 700{
 701	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 702
 703	pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704
 705	xive_do_source_set_mask(xd, false);
 706}
 707
 708static void xive_irq_mask(struct irq_data *d)
 709{
 710	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 711
 712	pr_debug("%s: irq %d data @%p\n", __func__, d->irq, xd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713
 714	xive_do_source_set_mask(xd, true);
 715}
 716
 717static int xive_irq_set_affinity(struct irq_data *d,
 718				 const struct cpumask *cpumask,
 719				 bool force)
 720{
 721	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 722	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 723	u32 target, old_target;
 724	int rc = 0;
 725
 726	pr_debug("%s: irq %d/0x%x\n", __func__, d->irq, hw_irq);
 727
 728	/* Is this valid ? */
 729	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 730		return -EINVAL;
 731
 
 
 
 
 732	/*
 733	 * If existing target is already in the new mask, and is
 734	 * online then do nothing.
 735	 */
 736	if (xd->target != XIVE_INVALID_TARGET &&
 737	    cpu_online(xd->target) &&
 738	    cpumask_test_cpu(xd->target, cpumask))
 739		return IRQ_SET_MASK_OK;
 740
 741	/* Pick a new target */
 742	target = xive_pick_irq_target(d, cpumask);
 743
 744	/* No target found */
 745	if (target == XIVE_INVALID_TARGET)
 746		return -ENXIO;
 747
 748	/* Sanity check */
 749	if (WARN_ON(target >= nr_cpu_ids))
 750		target = smp_processor_id();
 751
 752	old_target = xd->target;
 753
 754	/*
 755	 * Only configure the irq if it's not currently passed-through to
 756	 * a KVM guest
 757	 */
 758	if (!irqd_is_forwarded_to_vcpu(d))
 759		rc = xive_ops->configure_irq(hw_irq,
 760					     get_hard_smp_processor_id(target),
 761					     xive_irq_priority, d->irq);
 762	if (rc < 0) {
 763		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 764		return rc;
 765	}
 766
 767	pr_debug("  target: 0x%x\n", target);
 768	xd->target = target;
 769
 770	/* Give up previous target */
 771	if (old_target != XIVE_INVALID_TARGET)
 772	    xive_dec_target_count(old_target);
 773
 774	return IRQ_SET_MASK_OK;
 775}
 776
 777static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 778{
 779	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 780
 781	/*
 782	 * We only support these. This has really no effect other than setting
 783	 * the corresponding descriptor bits mind you but those will in turn
 784	 * affect the resend function when re-enabling an edge interrupt.
 785	 *
 786	 * Set the default to edge as explained in map().
 787	 */
 788	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 789		flow_type = IRQ_TYPE_EDGE_RISING;
 790
 791	if (flow_type != IRQ_TYPE_EDGE_RISING &&
 792	    flow_type != IRQ_TYPE_LEVEL_LOW)
 793		return -EINVAL;
 794
 795	irqd_set_trigger_type(d, flow_type);
 796
 797	/*
 798	 * Double check it matches what the FW thinks
 799	 *
 800	 * NOTE: We don't know yet if the PAPR interface will provide
 801	 * the LSI vs MSI information apart from the device-tree so
 802	 * this check might have to move into an optional backend call
 803	 * that is specific to the native backend
 804	 */
 805	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 806	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 807		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 808			d->irq, (u32)irqd_to_hwirq(d),
 809			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 810			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 811	}
 812
 813	return IRQ_SET_MASK_OK_NOCOPY;
 814}
 815
 816static int xive_irq_retrigger(struct irq_data *d)
 817{
 818	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 819
 820	/* This should be only for MSIs */
 821	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 822		return 0;
 823
 824	/*
 825	 * To perform a retrigger, we first set the PQ bits to
 826	 * 11, then perform an EOI.
 827	 */
 828	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 829	xive_do_source_eoi(xd);
 
 
 
 
 
 
 
 830
 831	return 1;
 832}
 833
 834/*
 835 * Caller holds the irq descriptor lock, so this won't be called
 836 * concurrently with xive_get_irqchip_state on the same interrupt.
 837 */
 838static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 839{
 840	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 841	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 842	int rc;
 843	u8 pq;
 844
 845	/*
 
 
 
 
 
 
 
 846	 * This is called by KVM with state non-NULL for enabling
 847	 * pass-through or NULL for disabling it
 848	 */
 849	if (state) {
 850		irqd_set_forwarded_to_vcpu(d);
 851
 852		/* Set it to PQ=10 state to prevent further sends */
 853		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 854		if (!xd->stale_p) {
 855			xd->saved_p = !!(pq & XIVE_ESB_VAL_P);
 856			xd->stale_p = !xd->saved_p;
 857		}
 858
 859		/* No target ? nothing to do */
 860		if (xd->target == XIVE_INVALID_TARGET) {
 861			/*
 862			 * An untargetted interrupt should have been
 863			 * also masked at the source
 864			 */
 865			WARN_ON(xd->saved_p);
 866
 867			return 0;
 868		}
 869
 870		/*
 871		 * If P was set, adjust state to PQ=11 to indicate
 872		 * that a resend is needed for the interrupt to reach
 873		 * the guest. Also remember the value of P.
 874		 *
 875		 * This also tells us that it's in flight to a host queue
 876		 * or has already been fetched but hasn't been EOIed yet
 877		 * by the host. This it's potentially using up a host
 878		 * queue slot. This is important to know because as long
 879		 * as this is the case, we must not hard-unmask it when
 880		 * "returning" that interrupt to the host.
 881		 *
 882		 * This saved_p is cleared by the host EOI, when we know
 883		 * for sure the queue slot is no longer in use.
 884		 */
 885		if (xd->saved_p) {
 886			xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 
 887
 888			/*
 889			 * Sync the XIVE source HW to ensure the interrupt
 890			 * has gone through the EAS before we change its
 891			 * target to the guest. That should guarantee us
 892			 * that we *will* eventually get an EOI for it on
 893			 * the host. Otherwise there would be a small window
 894			 * for P to be seen here but the interrupt going
 895			 * to the guest queue.
 896			 */
 897			if (xive_ops->sync_source)
 898				xive_ops->sync_source(hw_irq);
 899		}
 
 900	} else {
 901		irqd_clr_forwarded_to_vcpu(d);
 902
 903		/* No host target ? hard mask and return */
 904		if (xd->target == XIVE_INVALID_TARGET) {
 905			xive_do_source_set_mask(xd, true);
 906			return 0;
 907		}
 908
 909		/*
 910		 * Sync the XIVE source HW to ensure the interrupt
 911		 * has gone through the EAS before we change its
 912		 * target to the host.
 913		 */
 914		if (xive_ops->sync_source)
 915			xive_ops->sync_source(hw_irq);
 916
 917		/*
 918		 * By convention we are called with the interrupt in
 919		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 920		 * have latched in Q whether there's a pending HW
 921		 * interrupt or not.
 922		 *
 923		 * First reconfigure the target.
 924		 */
 925		rc = xive_ops->configure_irq(hw_irq,
 926					     get_hard_smp_processor_id(xd->target),
 927					     xive_irq_priority, d->irq);
 928		if (rc)
 929			return rc;
 930
 931		/*
 932		 * Then if saved_p is not set, effectively re-enable the
 933		 * interrupt with an EOI. If it is set, we know there is
 934		 * still a message in a host queue somewhere that will be
 935		 * EOId eventually.
 936		 *
 937		 * Note: We don't check irqd_irq_disabled(). Effectively,
 938		 * we *will* let the irq get through even if masked if the
 939		 * HW is still firing it in order to deal with the whole
 940		 * saved_p business properly. If the interrupt triggers
 941		 * while masked, the generic code will re-mask it anyway.
 942		 */
 943		if (!xd->saved_p)
 944			xive_do_source_eoi(xd);
 945
 946	}
 947	return 0;
 948}
 949
 950/* Called with irq descriptor lock held. */
 951static int xive_get_irqchip_state(struct irq_data *data,
 952				  enum irqchip_irq_state which, bool *state)
 953{
 954	struct xive_irq_data *xd = irq_data_get_irq_handler_data(data);
 955	u8 pq;
 956
 957	switch (which) {
 958	case IRQCHIP_STATE_ACTIVE:
 959		pq = xive_esb_read(xd, XIVE_ESB_GET);
 960
 961		/*
 962		 * The esb value being all 1's means we couldn't get
 963		 * the PQ state of the interrupt through mmio. It may
 964		 * happen, for example when querying a PHB interrupt
 965		 * while the PHB is in an error state. We consider the
 966		 * interrupt to be inactive in that case.
 967		 */
 968		*state = (pq != XIVE_ESB_INVALID) && !xd->stale_p &&
 969			(xd->saved_p || (!!(pq & XIVE_ESB_VAL_P) &&
 970			 !irqd_irq_disabled(data)));
 971		return 0;
 972	default:
 973		return -EINVAL;
 974	}
 975}
 976
 977static struct irq_chip xive_irq_chip = {
 978	.name = "XIVE-IRQ",
 979	.irq_startup = xive_irq_startup,
 980	.irq_shutdown = xive_irq_shutdown,
 981	.irq_eoi = xive_irq_eoi,
 982	.irq_mask = xive_irq_mask,
 983	.irq_unmask = xive_irq_unmask,
 984	.irq_set_affinity = xive_irq_set_affinity,
 985	.irq_set_type = xive_irq_set_type,
 986	.irq_retrigger = xive_irq_retrigger,
 987	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 988	.irq_get_irqchip_state = xive_get_irqchip_state,
 989};
 990
 991bool is_xive_irq(struct irq_chip *chip)
 992{
 993	return chip == &xive_irq_chip;
 994}
 995EXPORT_SYMBOL_GPL(is_xive_irq);
 996
 997void xive_cleanup_irq_data(struct xive_irq_data *xd)
 998{
 999	pr_debug("%s for HW 0x%x\n", __func__, xd->hw_irq);
1000
1001	if (xd->eoi_mmio) {
1002		iounmap(xd->eoi_mmio);
1003		if (xd->eoi_mmio == xd->trig_mmio)
1004			xd->trig_mmio = NULL;
1005		xd->eoi_mmio = NULL;
1006	}
1007	if (xd->trig_mmio) {
1008		iounmap(xd->trig_mmio);
1009		xd->trig_mmio = NULL;
1010	}
1011}
1012EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
1013
1014static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
1015{
1016	struct xive_irq_data *xd;
1017	int rc;
1018
1019	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
1020	if (!xd)
1021		return -ENOMEM;
1022	rc = xive_ops->populate_irq_data(hw, xd);
1023	if (rc) {
1024		kfree(xd);
1025		return rc;
1026	}
1027	xd->target = XIVE_INVALID_TARGET;
1028	irq_set_handler_data(virq, xd);
1029
1030	/*
1031	 * Turn OFF by default the interrupt being mapped. A side
1032	 * effect of this check is the mapping the ESB page of the
1033	 * interrupt in the Linux address space. This prevents page
1034	 * fault issues in the crash handler which masks all
1035	 * interrupts.
1036	 */
1037	xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
1038
1039	return 0;
1040}
1041
1042void xive_irq_free_data(unsigned int virq)
1043{
1044	struct xive_irq_data *xd = irq_get_handler_data(virq);
1045
1046	if (!xd)
1047		return;
1048	irq_set_handler_data(virq, NULL);
1049	xive_cleanup_irq_data(xd);
1050	kfree(xd);
1051}
1052EXPORT_SYMBOL_GPL(xive_irq_free_data);
1053
1054#ifdef CONFIG_SMP
1055
1056static void xive_cause_ipi(int cpu)
1057{
1058	struct xive_cpu *xc;
1059	struct xive_irq_data *xd;
1060
1061	xc = per_cpu(xive_cpu, cpu);
1062
1063	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
1064		    smp_processor_id(), cpu, xc->hw_ipi);
1065
1066	xd = &xc->ipi_data;
1067	if (WARN_ON(!xd->trig_mmio))
1068		return;
1069	out_be64(xd->trig_mmio, 0);
1070}
1071
1072static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1073{
1074	return smp_ipi_demux();
1075}
1076
1077static void xive_ipi_eoi(struct irq_data *d)
1078{
1079	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1080
1081	/* Handle possible race with unplug and drop stale IPIs */
1082	if (!xc)
1083		return;
1084
1085	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1086		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1087
1088	xive_do_source_eoi(&xc->ipi_data);
 
 
 
1089	xive_do_queue_eoi(xc);
1090}
1091
1092static void xive_ipi_do_nothing(struct irq_data *d)
1093{
1094	/*
1095	 * Nothing to do, we never mask/unmask IPIs, but the callback
1096	 * has to exist for the struct irq_chip.
1097	 */
1098}
1099
1100static struct irq_chip xive_ipi_chip = {
1101	.name = "XIVE-IPI",
1102	.irq_eoi = xive_ipi_eoi,
1103	.irq_mask = xive_ipi_do_nothing,
1104	.irq_unmask = xive_ipi_do_nothing,
1105};
1106
1107/*
1108 * IPIs are marked per-cpu. We use separate HW interrupts under the
1109 * hood but associated with the same "linux" interrupt
1110 */
1111struct xive_ipi_alloc_info {
1112	irq_hw_number_t hwirq;
1113};
1114
1115static int xive_ipi_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1116				     unsigned int nr_irqs, void *arg)
1117{
1118	struct xive_ipi_alloc_info *info = arg;
1119	int i;
1120
1121	for (i = 0; i < nr_irqs; i++) {
1122		irq_domain_set_info(domain, virq + i, info->hwirq + i, &xive_ipi_chip,
1123				    domain->host_data, handle_percpu_irq,
1124				    NULL, NULL);
1125	}
1126	return 0;
1127}
1128
1129static const struct irq_domain_ops xive_ipi_irq_domain_ops = {
1130	.alloc  = xive_ipi_irq_domain_alloc,
1131};
1132
1133static int __init xive_init_ipis(void)
1134{
1135	struct fwnode_handle *fwnode;
1136	struct irq_domain *ipi_domain;
1137	unsigned int node;
1138	int ret = -ENOMEM;
1139
1140	fwnode = irq_domain_alloc_named_fwnode("XIVE-IPI");
1141	if (!fwnode)
1142		goto out;
1143
1144	ipi_domain = irq_domain_create_linear(fwnode, nr_node_ids,
1145					      &xive_ipi_irq_domain_ops, NULL);
1146	if (!ipi_domain)
1147		goto out_free_fwnode;
1148
1149	xive_ipis = kcalloc(nr_node_ids, sizeof(*xive_ipis), GFP_KERNEL | __GFP_NOFAIL);
1150	if (!xive_ipis)
1151		goto out_free_domain;
1152
1153	for_each_node(node) {
1154		struct xive_ipi_desc *xid = &xive_ipis[node];
1155		struct xive_ipi_alloc_info info = { node };
1156
1157		/*
1158		 * Map one IPI interrupt per node for all cpus of that node.
1159		 * Since the HW interrupt number doesn't have any meaning,
1160		 * simply use the node number.
1161		 */
1162		ret = irq_domain_alloc_irqs(ipi_domain, 1, node, &info);
1163		if (ret < 0)
1164			goto out_free_xive_ipis;
1165		xid->irq = ret;
1166
1167		snprintf(xid->name, sizeof(xid->name), "IPI-%d", node);
1168	}
1169
1170	return ret;
1171
1172out_free_xive_ipis:
1173	kfree(xive_ipis);
1174out_free_domain:
1175	irq_domain_remove(ipi_domain);
1176out_free_fwnode:
1177	irq_domain_free_fwnode(fwnode);
1178out:
1179	return ret;
1180}
1181
1182static int xive_request_ipi(unsigned int cpu)
1183{
1184	struct xive_ipi_desc *xid = &xive_ipis[early_cpu_to_node(cpu)];
1185	int ret;
1186
1187	if (atomic_inc_return(&xid->started) > 1)
1188		return 0;
1189
1190	ret = request_irq(xid->irq, xive_muxed_ipi_action,
1191			  IRQF_NO_DEBUG | IRQF_PERCPU | IRQF_NO_THREAD,
1192			  xid->name, NULL);
1193
1194	WARN(ret < 0, "Failed to request IPI %d: %d\n", xid->irq, ret);
1195	return ret;
1196}
1197
1198static int xive_setup_cpu_ipi(unsigned int cpu)
1199{
1200	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1201	struct xive_cpu *xc;
1202	int rc;
1203
1204	pr_debug("Setting up IPI for CPU %d\n", cpu);
1205
1206	xc = per_cpu(xive_cpu, cpu);
1207
1208	/* Check if we are already setup */
1209	if (xc->hw_ipi != XIVE_BAD_IRQ)
1210		return 0;
1211
1212	/* Register the IPI */
1213	xive_request_ipi(cpu);
1214
1215	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1216	if (xive_ops->get_ipi(cpu, xc))
1217		return -EIO;
1218
1219	/*
1220	 * Populate the IRQ data in the xive_cpu structure and
1221	 * configure the HW / enable the IPIs.
1222	 */
1223	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1224	if (rc) {
1225		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1226		return -EIO;
1227	}
1228	rc = xive_ops->configure_irq(xc->hw_ipi,
1229				     get_hard_smp_processor_id(cpu),
1230				     xive_irq_priority, xive_ipi_irq);
1231	if (rc) {
1232		pr_err("Failed to map IPI CPU %d\n", cpu);
1233		return -EIO;
1234	}
1235	pr_debug("CPU %d HW IPI 0x%x, virq %d, trig_mmio=%p\n", cpu,
1236		 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1237
1238	/* Unmask it */
1239	xive_do_source_set_mask(&xc->ipi_data, false);
1240
1241	return 0;
1242}
1243
1244noinstr static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1245{
1246	unsigned int xive_ipi_irq = xive_ipi_cpu_to_irq(cpu);
1247
1248	/* Disable the IPI and free the IRQ data */
1249
1250	/* Already cleaned up ? */
1251	if (xc->hw_ipi == XIVE_BAD_IRQ)
1252		return;
1253
1254	/* TODO: clear IPI mapping */
1255
1256	/* Mask the IPI */
1257	xive_do_source_set_mask(&xc->ipi_data, true);
1258
1259	/*
1260	 * Note: We don't call xive_cleanup_irq_data() to free
1261	 * the mappings as this is called from an IPI on kexec
1262	 * which is not a safe environment to call iounmap()
1263	 */
1264
1265	/* Deconfigure/mask in the backend */
1266	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1267				0xff, xive_ipi_irq);
1268
1269	/* Free the IPIs in the backend */
1270	xive_ops->put_ipi(cpu, xc);
1271}
1272
1273void __init xive_smp_probe(void)
1274{
1275	smp_ops->cause_ipi = xive_cause_ipi;
1276
1277	/* Register the IPI */
1278	xive_init_ipis();
1279
1280	/* Allocate and setup IPI for the boot CPU */
1281	xive_setup_cpu_ipi(smp_processor_id());
1282}
1283
1284#endif /* CONFIG_SMP */
1285
1286static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1287			       irq_hw_number_t hw)
1288{
1289	int rc;
1290
1291	/*
1292	 * Mark interrupts as edge sensitive by default so that resend
1293	 * actually works. Will fix that up below if needed.
1294	 */
1295	irq_clear_status_flags(virq, IRQ_LEVEL);
1296
 
 
 
 
 
 
 
 
 
 
 
 
 
1297	rc = xive_irq_alloc_data(virq, hw);
1298	if (rc)
1299		return rc;
1300
1301	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1302
1303	return 0;
1304}
1305
1306static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1307{
1308	xive_irq_free_data(virq);
 
 
 
 
 
 
 
 
1309}
1310
1311static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1312				 const u32 *intspec, unsigned int intsize,
1313				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1314
1315{
1316	*out_hwirq = intspec[0];
1317
1318	/*
1319	 * If intsize is at least 2, we look for the type in the second cell,
1320	 * we assume the LSB indicates a level interrupt.
1321	 */
1322	if (intsize > 1) {
1323		if (intspec[1] & 1)
1324			*out_flags = IRQ_TYPE_LEVEL_LOW;
1325		else
1326			*out_flags = IRQ_TYPE_EDGE_RISING;
1327	} else
1328		*out_flags = IRQ_TYPE_LEVEL_LOW;
1329
1330	return 0;
1331}
1332
1333static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1334				 enum irq_domain_bus_token bus_token)
1335{
1336	return xive_ops->match(node);
1337}
1338
1339#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1340static const char * const esb_names[] = { "RESET", "OFF", "PENDING", "QUEUED" };
1341
1342static const struct {
1343	u64  mask;
1344	char *name;
1345} xive_irq_flags[] = {
1346	{ XIVE_IRQ_FLAG_STORE_EOI, "STORE_EOI" },
1347	{ XIVE_IRQ_FLAG_LSI,       "LSI"       },
1348	{ XIVE_IRQ_FLAG_H_INT_ESB, "H_INT_ESB" },
1349	{ XIVE_IRQ_FLAG_NO_EOI,    "NO_EOI"    },
1350};
1351
1352static void xive_irq_domain_debug_show(struct seq_file *m, struct irq_domain *d,
1353				       struct irq_data *irqd, int ind)
1354{
1355	struct xive_irq_data *xd;
1356	u64 val;
1357	int i;
1358
1359	/* No IRQ domain level information. To be done */
1360	if (!irqd)
1361		return;
1362
1363	if (!is_xive_irq(irq_data_get_irq_chip(irqd)))
1364		return;
1365
1366	seq_printf(m, "%*sXIVE:\n", ind, "");
1367	ind++;
1368
1369	xd = irq_data_get_irq_handler_data(irqd);
1370	if (!xd) {
1371		seq_printf(m, "%*snot assigned\n", ind, "");
1372		return;
1373	}
1374
1375	val = xive_esb_read(xd, XIVE_ESB_GET);
1376	seq_printf(m, "%*sESB:      %s\n", ind, "", esb_names[val & 0x3]);
1377	seq_printf(m, "%*sPstate:   %s %s\n", ind, "", xd->stale_p ? "stale" : "",
1378		   xd->saved_p ? "saved" : "");
1379	seq_printf(m, "%*sTarget:   %d\n", ind, "", xd->target);
1380	seq_printf(m, "%*sChip:     %d\n", ind, "", xd->src_chip);
1381	seq_printf(m, "%*sTrigger:  0x%016llx\n", ind, "", xd->trig_page);
1382	seq_printf(m, "%*sEOI:      0x%016llx\n", ind, "", xd->eoi_page);
1383	seq_printf(m, "%*sFlags:    0x%llx\n", ind, "", xd->flags);
1384	for (i = 0; i < ARRAY_SIZE(xive_irq_flags); i++) {
1385		if (xd->flags & xive_irq_flags[i].mask)
1386			seq_printf(m, "%*s%s\n", ind + 12, "", xive_irq_flags[i].name);
1387	}
1388}
1389#endif
1390
1391#ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1392static int xive_irq_domain_translate(struct irq_domain *d,
1393				     struct irq_fwspec *fwspec,
1394				     unsigned long *hwirq,
1395				     unsigned int *type)
1396{
1397	return xive_irq_domain_xlate(d, to_of_node(fwspec->fwnode),
1398				     fwspec->param, fwspec->param_count,
1399				     hwirq, type);
1400}
1401
1402static int xive_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1403				 unsigned int nr_irqs, void *arg)
1404{
1405	struct irq_fwspec *fwspec = arg;
1406	irq_hw_number_t hwirq;
1407	unsigned int type = IRQ_TYPE_NONE;
1408	int i, rc;
1409
1410	rc = xive_irq_domain_translate(domain, fwspec, &hwirq, &type);
1411	if (rc)
1412		return rc;
1413
1414	pr_debug("%s %d/0x%lx #%d\n", __func__, virq, hwirq, nr_irqs);
1415
1416	for (i = 0; i < nr_irqs; i++) {
1417		/* TODO: call xive_irq_domain_map() */
1418
1419		/*
1420		 * Mark interrupts as edge sensitive by default so that resend
1421		 * actually works. Will fix that up below if needed.
1422		 */
1423		irq_clear_status_flags(virq, IRQ_LEVEL);
1424
1425		/* allocates and sets handler data */
1426		rc = xive_irq_alloc_data(virq + i, hwirq + i);
1427		if (rc)
1428			return rc;
1429
1430		irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
1431					      &xive_irq_chip, domain->host_data);
1432		irq_set_handler(virq + i, handle_fasteoi_irq);
1433	}
1434
1435	return 0;
1436}
1437
1438static void xive_irq_domain_free(struct irq_domain *domain,
1439				 unsigned int virq, unsigned int nr_irqs)
1440{
1441	int i;
1442
1443	pr_debug("%s %d #%d\n", __func__, virq, nr_irqs);
1444
1445	for (i = 0; i < nr_irqs; i++)
1446		xive_irq_free_data(virq + i);
1447}
1448#endif
1449
1450static const struct irq_domain_ops xive_irq_domain_ops = {
1451#ifdef	CONFIG_IRQ_DOMAIN_HIERARCHY
1452	.alloc	= xive_irq_domain_alloc,
1453	.free	= xive_irq_domain_free,
1454	.translate = xive_irq_domain_translate,
1455#endif
1456	.match = xive_irq_domain_match,
1457	.map = xive_irq_domain_map,
1458	.unmap = xive_irq_domain_unmap,
1459	.xlate = xive_irq_domain_xlate,
1460#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
1461	.debug_show = xive_irq_domain_debug_show,
1462#endif
1463};
1464
1465static void __init xive_init_host(struct device_node *np)
1466{
1467	xive_irq_domain = irq_domain_add_tree(np, &xive_irq_domain_ops, NULL);
 
1468	if (WARN_ON(xive_irq_domain == NULL))
1469		return;
1470	irq_set_default_host(xive_irq_domain);
1471}
1472
1473static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1474{
1475	if (xc->queue[xive_irq_priority].qpage)
1476		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1477}
1478
1479static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1480{
1481	int rc = 0;
1482
1483	/* We setup 1 queues for now with a 64k page */
1484	if (!xc->queue[xive_irq_priority].qpage)
1485		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1486
1487	return rc;
1488}
1489
1490static int xive_prepare_cpu(unsigned int cpu)
1491{
1492	struct xive_cpu *xc;
1493
1494	xc = per_cpu(xive_cpu, cpu);
1495	if (!xc) {
 
 
1496		xc = kzalloc_node(sizeof(struct xive_cpu),
1497				  GFP_KERNEL, cpu_to_node(cpu));
1498		if (!xc)
1499			return -ENOMEM;
1500		xc->hw_ipi = XIVE_BAD_IRQ;
1501		xc->chip_id = XIVE_INVALID_CHIP_ID;
1502		if (xive_ops->prepare_cpu)
1503			xive_ops->prepare_cpu(cpu, xc);
1504
1505		per_cpu(xive_cpu, cpu) = xc;
1506	}
1507
1508	/* Setup EQs if not already */
1509	return xive_setup_cpu_queues(cpu, xc);
1510}
1511
1512static void xive_setup_cpu(void)
1513{
1514	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1515
1516	/* The backend might have additional things to do */
1517	if (xive_ops->setup_cpu)
1518		xive_ops->setup_cpu(smp_processor_id(), xc);
1519
1520	/* Set CPPR to 0xff to enable flow of interrupts */
1521	xc->cppr = 0xff;
1522	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1523}
1524
1525#ifdef CONFIG_SMP
1526void xive_smp_setup_cpu(void)
1527{
1528	pr_debug("SMP setup CPU %d\n", smp_processor_id());
1529
1530	/* This will have already been done on the boot CPU */
1531	if (smp_processor_id() != boot_cpuid)
1532		xive_setup_cpu();
1533
1534}
1535
1536int xive_smp_prepare_cpu(unsigned int cpu)
1537{
1538	int rc;
1539
1540	/* Allocate per-CPU data and queues */
1541	rc = xive_prepare_cpu(cpu);
1542	if (rc)
1543		return rc;
1544
1545	/* Allocate and setup IPI for the new CPU */
1546	return xive_setup_cpu_ipi(cpu);
1547}
1548
1549#ifdef CONFIG_HOTPLUG_CPU
1550static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1551{
1552	u32 irq;
1553
1554	/* We assume local irqs are disabled */
1555	WARN_ON(!irqs_disabled());
1556
1557	/* Check what's already in the CPU queue */
1558	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1559		/*
1560		 * We need to re-route that interrupt to its new destination.
1561		 * First get and lock the descriptor
1562		 */
1563		struct irq_desc *desc = irq_to_desc(irq);
1564		struct irq_data *d = irq_desc_get_irq_data(desc);
1565		struct xive_irq_data *xd;
 
1566
1567		/*
1568		 * Ignore anything that isn't a XIVE irq and ignore
1569		 * IPIs, so can just be dropped.
1570		 */
1571		if (d->domain != xive_irq_domain)
1572			continue;
1573
1574		/*
1575		 * The IRQ should have already been re-routed, it's just a
1576		 * stale in the old queue, so re-trigger it in order to make
1577		 * it reach is new destination.
1578		 */
1579#ifdef DEBUG_FLUSH
1580		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1581			cpu, irq);
1582#endif
1583		raw_spin_lock(&desc->lock);
1584		xd = irq_desc_get_handler_data(desc);
1585
1586		/*
1587		 * Clear saved_p to indicate that it's no longer pending
1588		 */
1589		xd->saved_p = false;
1590
1591		/*
1592		 * For LSIs, we EOI, this will cause a resend if it's
1593		 * still asserted. Otherwise do an MSI retrigger.
1594		 */
1595		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1596			xive_do_source_eoi(xd);
1597		else
1598			xive_irq_retrigger(d);
1599
1600		raw_spin_unlock(&desc->lock);
1601	}
1602}
1603
1604void xive_smp_disable_cpu(void)
1605{
1606	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1607	unsigned int cpu = smp_processor_id();
1608
1609	/* Migrate interrupts away from the CPU */
1610	irq_migrate_all_off_this_cpu();
1611
1612	/* Set CPPR to 0 to disable flow of interrupts */
1613	xc->cppr = 0;
1614	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1615
1616	/* Flush everything still in the queue */
1617	xive_flush_cpu_queue(cpu, xc);
1618
1619	/* Re-enable CPPR  */
1620	xc->cppr = 0xff;
1621	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1622}
1623
1624void xive_flush_interrupt(void)
1625{
1626	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1627	unsigned int cpu = smp_processor_id();
1628
1629	/* Called if an interrupt occurs while the CPU is hot unplugged */
1630	xive_flush_cpu_queue(cpu, xc);
1631}
1632
1633#endif /* CONFIG_HOTPLUG_CPU */
1634
1635#endif /* CONFIG_SMP */
1636
1637noinstr void xive_teardown_cpu(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638{
1639	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1640	unsigned int cpu = smp_processor_id();
1641
1642	/* Set CPPR to 0 to disable flow of interrupts */
1643	xc->cppr = 0;
1644	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1645
 
1646	if (xive_ops->teardown_cpu)
1647		xive_ops->teardown_cpu(cpu, xc);
1648
1649#ifdef CONFIG_SMP
1650	/* Get rid of IPI */
1651	xive_cleanup_cpu_ipi(cpu, xc);
1652#endif
1653
1654	/* Disable and free the queues */
1655	xive_cleanup_cpu_queues(cpu, xc);
1656}
1657
1658void xive_shutdown(void)
1659{
1660	xive_ops->shutdown();
1661}
1662
1663bool __init xive_core_init(struct device_node *np, const struct xive_ops *ops,
1664			   void __iomem *area, u32 offset, u8 max_prio)
1665{
1666	xive_tima = area;
1667	xive_tima_offset = offset;
1668	xive_ops = ops;
1669	xive_irq_priority = max_prio;
1670
1671	ppc_md.get_irq = xive_get_irq;
1672	__xive_enabled = true;
1673
1674	pr_debug("Initializing host..\n");
1675	xive_init_host(np);
1676
1677	pr_debug("Initializing boot CPU..\n");
1678
1679	/* Allocate per-CPU data and queues */
1680	xive_prepare_cpu(smp_processor_id());
1681
1682	/* Get ready for interrupts */
1683	xive_setup_cpu();
1684
1685	pr_info("Interrupt handling initialized with %s backend\n",
1686		xive_ops->name);
1687	pr_info("Using priority %d for all interrupts\n", max_prio);
1688
1689	return true;
1690}
1691
1692__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1693{
1694	unsigned int alloc_order;
1695	struct page *pages;
1696	__be32 *qpage;
1697
1698	alloc_order = xive_alloc_order(queue_shift);
1699	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1700	if (!pages)
1701		return ERR_PTR(-ENOMEM);
1702	qpage = (__be32 *)page_address(pages);
1703	memset(qpage, 0, 1 << queue_shift);
1704
1705	return qpage;
1706}
1707
1708static int __init xive_off(char *arg)
1709{
1710	xive_cmdline_disabled = true;
1711	return 1;
1712}
1713__setup("xive=off", xive_off);
1714
1715static int __init xive_store_eoi_cmdline(char *arg)
1716{
1717	if (!arg)
1718		return 1;
1719
1720	if (strncmp(arg, "off", 3) == 0) {
1721		pr_info("StoreEOI disabled on kernel command line\n");
1722		xive_store_eoi = false;
1723	}
1724	return 1;
1725}
1726__setup("xive.store-eoi=", xive_store_eoi_cmdline);
1727
1728#ifdef CONFIG_DEBUG_FS
1729static void xive_debug_show_ipi(struct seq_file *m, int cpu)
1730{
1731	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1732
1733	seq_printf(m, "CPU %d: ", cpu);
1734	if (xc) {
1735		seq_printf(m, "pp=%02x CPPR=%02x ", xc->pending_prio, xc->cppr);
1736
1737#ifdef CONFIG_SMP
1738		{
1739			char buffer[128];
1740
1741			xive_irq_data_dump(&xc->ipi_data, buffer, sizeof(buffer));
1742			seq_printf(m, "IPI=0x%08x %s", xc->hw_ipi, buffer);
1743		}
1744#endif
1745	}
1746	seq_puts(m, "\n");
1747}
1748
1749static void xive_debug_show_irq(struct seq_file *m, struct irq_data *d)
1750{
1751	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1752	int rc;
1753	u32 target;
1754	u8 prio;
1755	u32 lirq;
1756	char buffer[128];
1757
1758	rc = xive_ops->get_irq_config(hw_irq, &target, &prio, &lirq);
1759	if (rc) {
1760		seq_printf(m, "IRQ 0x%08x : no config rc=%d\n", hw_irq, rc);
1761		return;
1762	}
1763
1764	seq_printf(m, "IRQ 0x%08x : target=0x%x prio=%02x lirq=0x%x ",
1765		   hw_irq, target, prio, lirq);
1766
1767	xive_irq_data_dump(irq_data_get_irq_handler_data(d), buffer, sizeof(buffer));
1768	seq_puts(m, buffer);
1769	seq_puts(m, "\n");
1770}
1771
1772static int xive_irq_debug_show(struct seq_file *m, void *private)
1773{
1774	unsigned int i;
1775	struct irq_desc *desc;
1776
1777	for_each_irq_desc(i, desc) {
1778		struct irq_data *d = irq_domain_get_irq_data(xive_irq_domain, i);
1779
1780		if (d)
1781			xive_debug_show_irq(m, d);
1782	}
1783	return 0;
1784}
1785DEFINE_SHOW_ATTRIBUTE(xive_irq_debug);
1786
1787static int xive_ipi_debug_show(struct seq_file *m, void *private)
1788{
1789	int cpu;
1790
1791	if (xive_ops->debug_show)
1792		xive_ops->debug_show(m, private);
1793
1794	for_each_online_cpu(cpu)
1795		xive_debug_show_ipi(m, cpu);
1796	return 0;
1797}
1798DEFINE_SHOW_ATTRIBUTE(xive_ipi_debug);
1799
1800static void xive_eq_debug_show_one(struct seq_file *m, struct xive_q *q, u8 prio)
1801{
1802	int i;
1803
1804	seq_printf(m, "EQ%d idx=%d T=%d\n", prio, q->idx, q->toggle);
1805	if (q->qpage) {
1806		for (i = 0; i < q->msk + 1; i++) {
1807			if (!(i % 8))
1808				seq_printf(m, "%05d ", i);
1809			seq_printf(m, "%08x%s", be32_to_cpup(q->qpage + i),
1810				   (i + 1) % 8 ? " " : "\n");
1811		}
1812	}
1813	seq_puts(m, "\n");
1814}
1815
1816static int xive_eq_debug_show(struct seq_file *m, void *private)
1817{
1818	int cpu = (long)m->private;
1819	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
1820
1821	if (xc)
1822		xive_eq_debug_show_one(m, &xc->queue[xive_irq_priority],
1823				       xive_irq_priority);
1824	return 0;
1825}
1826DEFINE_SHOW_ATTRIBUTE(xive_eq_debug);
1827
1828static void xive_core_debugfs_create(void)
1829{
1830	struct dentry *xive_dir;
1831	struct dentry *xive_eq_dir;
1832	long cpu;
1833	char name[16];
1834
1835	xive_dir = debugfs_create_dir("xive", arch_debugfs_dir);
1836	if (IS_ERR(xive_dir))
1837		return;
1838
1839	debugfs_create_file("ipis", 0400, xive_dir,
1840			    NULL, &xive_ipi_debug_fops);
1841	debugfs_create_file("interrupts", 0400, xive_dir,
1842			    NULL, &xive_irq_debug_fops);
1843	xive_eq_dir = debugfs_create_dir("eqs", xive_dir);
1844	for_each_possible_cpu(cpu) {
1845		snprintf(name, sizeof(name), "cpu%ld", cpu);
1846		debugfs_create_file(name, 0400, xive_eq_dir, (void *)cpu,
1847				    &xive_eq_debug_fops);
1848	}
1849	debugfs_create_bool("store-eoi", 0600, xive_dir, &xive_store_eoi);
1850
1851	if (xive_ops->debug_create)
1852		xive_ops->debug_create(xive_dir);
1853}
1854#else
1855static inline void xive_core_debugfs_create(void) { }
1856#endif /* CONFIG_DEBUG_FS */
1857
1858int xive_core_debug_init(void)
1859{
1860	if (xive_enabled() && IS_ENABLED(CONFIG_DEBUG_FS))
1861		xive_core_debugfs_create();
1862
1863	return 0;
1864}
v4.17
 
   1/*
   2 * Copyright 2016,2017 IBM Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License
   6 * as published by the Free Software Foundation; either version
   7 * 2 of the License, or (at your option) any later version.
   8 */
   9
  10#define pr_fmt(fmt) "xive: " fmt
  11
  12#include <linux/types.h>
  13#include <linux/threads.h>
  14#include <linux/kernel.h>
  15#include <linux/irq.h>
 
  16#include <linux/debugfs.h>
  17#include <linux/smp.h>
  18#include <linux/interrupt.h>
  19#include <linux/seq_file.h>
  20#include <linux/init.h>
  21#include <linux/cpu.h>
  22#include <linux/of.h>
  23#include <linux/slab.h>
  24#include <linux/spinlock.h>
  25#include <linux/msi.h>
 
  26
  27#include <asm/prom.h>
  28#include <asm/io.h>
  29#include <asm/smp.h>
  30#include <asm/machdep.h>
  31#include <asm/irq.h>
  32#include <asm/errno.h>
  33#include <asm/xive.h>
  34#include <asm/xive-regs.h>
  35#include <asm/xmon.h>
  36
  37#include "xive-internal.h"
  38
  39#undef DEBUG_FLUSH
  40#undef DEBUG_ALL
  41
  42#ifdef DEBUG_ALL
  43#define DBG_VERBOSE(fmt, ...)	pr_devel("cpu %d - " fmt, \
  44					 smp_processor_id(), ## __VA_ARGS__)
  45#else
  46#define DBG_VERBOSE(fmt...)	do { } while(0)
  47#endif
  48
  49bool __xive_enabled;
  50EXPORT_SYMBOL_GPL(__xive_enabled);
  51bool xive_cmdline_disabled;
  52
  53/* We use only one priority for now */
  54static u8 xive_irq_priority;
  55
  56/* TIMA exported to KVM */
  57void __iomem *xive_tima;
  58EXPORT_SYMBOL_GPL(xive_tima);
  59u32 xive_tima_offset;
  60
  61/* Backend ops */
  62static const struct xive_ops *xive_ops;
  63
  64/* Our global interrupt domain */
  65static struct irq_domain *xive_irq_domain;
  66
  67#ifdef CONFIG_SMP
  68/* The IPIs all use the same logical irq number */
  69static u32 xive_ipi_irq;
 
 
 
 
 
 
 
 
 
 
 
 
  70#endif
  71
  72/* Xive state for each CPU */
  73static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
  74
 
 
 
  75/*
  76 * A "disabled" interrupt should never fire, to catch problems
  77 * we set its logical number to this
  78 */
  79#define XIVE_BAD_IRQ		0x7fffffff
  80#define XIVE_MAX_IRQ		(XIVE_BAD_IRQ - 1)
  81
  82/* An invalid CPU target */
  83#define XIVE_INVALID_TARGET	(-1)
 
 
  84
  85/*
  86 * Read the next entry in a queue, return its content if it's valid
  87 * or 0 if there is no new entry.
  88 *
  89 * The queue pointer is moved forward unless "just_peek" is set
  90 */
  91static u32 xive_read_eq(struct xive_q *q, bool just_peek)
  92{
  93	u32 cur;
  94
  95	if (!q->qpage)
  96		return 0;
  97	cur = be32_to_cpup(q->qpage + q->idx);
  98
  99	/* Check valid bit (31) vs current toggle polarity */
 100	if ((cur >> 31) == q->toggle)
 101		return 0;
 102
 103	/* If consuming from the queue ... */
 104	if (!just_peek) {
 105		/* Next entry */
 106		q->idx = (q->idx + 1) & q->msk;
 107
 108		/* Wrap around: flip valid toggle */
 109		if (q->idx == 0)
 110			q->toggle ^= 1;
 111	}
 112	/* Mask out the valid bit (31) */
 113	return cur & 0x7fffffff;
 114}
 115
 116/*
 117 * Scans all the queue that may have interrupts in them
 118 * (based on "pending_prio") in priority order until an
 119 * interrupt is found or all the queues are empty.
 120 *
 121 * Then updates the CPPR (Current Processor Priority
 122 * Register) based on the most favored interrupt found
 123 * (0xff if none) and return what was found (0 if none).
 124 *
 125 * If just_peek is set, return the most favored pending
 126 * interrupt if any but don't update the queue pointers.
 127 *
 128 * Note: This function can operate generically on any number
 129 * of queues (up to 8). The current implementation of the XIVE
 130 * driver only uses a single queue however.
 131 *
 132 * Note2: This will also "flush" "the pending_count" of a queue
 133 * into the "count" when that queue is observed to be empty.
 134 * This is used to keep track of the amount of interrupts
 135 * targetting a queue. When an interrupt is moved away from
 136 * a queue, we only decrement that queue count once the queue
 137 * has been observed empty to avoid races.
 138 */
 139static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
 140{
 141	u32 irq = 0;
 142	u8 prio;
 143
 144	/* Find highest pending priority */
 145	while (xc->pending_prio != 0) {
 146		struct xive_q *q;
 147
 148		prio = ffs(xc->pending_prio) - 1;
 149		DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
 150
 151		/* Try to fetch */
 152		irq = xive_read_eq(&xc->queue[prio], just_peek);
 153
 154		/* Found something ? That's it */
 155		if (irq)
 156			break;
 
 
 
 
 
 
 
 
 
 
 
 157
 158		/* Clear pending bits */
 159		xc->pending_prio &= ~(1 << prio);
 160
 161		/*
 162		 * Check if the queue count needs adjusting due to
 163		 * interrupts being moved away. See description of
 164		 * xive_dec_target_count()
 165		 */
 166		q = &xc->queue[prio];
 167		if (atomic_read(&q->pending_count)) {
 168			int p = atomic_xchg(&q->pending_count, 0);
 169			if (p) {
 170				WARN_ON(p > atomic_read(&q->count));
 171				atomic_sub(p, &q->count);
 172			}
 173		}
 174	}
 175
 176	/* If nothing was found, set CPPR to 0xff */
 177	if (irq == 0)
 178		prio = 0xff;
 179
 180	/* Update HW CPPR to match if necessary */
 181	if (prio != xc->cppr) {
 182		DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
 183		xc->cppr = prio;
 184		out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
 185	}
 186
 187	return irq;
 188}
 189
 190/*
 191 * This is used to perform the magic loads from an ESB
 192 * described in xive.h
 193 */
 194static notrace u8 xive_esb_read(struct xive_irq_data *xd, u32 offset)
 195{
 196	u64 val;
 197
 198	/* Handle HW errata */
 199	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 200		offset |= offset << 4;
 201
 202	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 203		val = xive_ops->esb_rw(xd->hw_irq, offset, 0, 0);
 204	else
 205		val = in_be64(xd->eoi_mmio + offset);
 206
 207	return (u8)val;
 208}
 209
 210static void xive_esb_write(struct xive_irq_data *xd, u32 offset, u64 data)
 211{
 212	/* Handle HW errata */
 213	if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
 214		offset |= offset << 4;
 215
 216	if ((xd->flags & XIVE_IRQ_FLAG_H_INT_ESB) && xive_ops->esb_rw)
 217		xive_ops->esb_rw(xd->hw_irq, offset, data, 1);
 218	else
 219		out_be64(xd->eoi_mmio + offset, data);
 220}
 221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222#ifdef CONFIG_XMON
 223static notrace void xive_dump_eq(const char *name, struct xive_q *q)
 224{
 225	u32 i0, i1, idx;
 226
 227	if (!q->qpage)
 228		return;
 229	idx = q->idx;
 230	i0 = be32_to_cpup(q->qpage + idx);
 231	idx = (idx + 1) & q->msk;
 232	i1 = be32_to_cpup(q->qpage + idx);
 233	xmon_printf("  %s Q T=%d %08x %08x ...\n", name,
 234		    q->toggle, i0, i1);
 235}
 236
 237notrace void xmon_xive_do_dump(int cpu)
 238{
 239	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 240
 241	xmon_printf("XIVE state for CPU %d:\n", cpu);
 242	xmon_printf("  pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
 243	xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
 
 244#ifdef CONFIG_SMP
 245	{
 246		u64 val = xive_esb_read(&xc->ipi_data, XIVE_ESB_GET);
 247		xmon_printf("  IPI state: %x:%c%c\n", xc->hw_ipi,
 248			val & XIVE_ESB_VAL_P ? 'P' : 'p',
 249			val & XIVE_ESB_VAL_Q ? 'Q' : 'q');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250	}
 251#endif
 252}
 
 253#endif /* CONFIG_XMON */
 254
 255static unsigned int xive_get_irq(void)
 256{
 257	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 258	u32 irq;
 259
 260	/*
 261	 * This can be called either as a result of a HW interrupt or
 262	 * as a "replay" because EOI decided there was still something
 263	 * in one of the queues.
 264	 *
 265	 * First we perform an ACK cycle in order to update our mask
 266	 * of pending priorities. This will also have the effect of
 267	 * updating the CPPR to the most favored pending interrupts.
 268	 *
 269	 * In the future, if we have a way to differenciate a first
 270	 * entry (on HW interrupt) from a replay triggered by EOI,
 271	 * we could skip this on replays unless we soft-mask tells us
 272	 * that a new HW interrupt occurred.
 273	 */
 274	xive_ops->update_pending(xc);
 275
 276	DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
 277
 278	/* Scan our queue(s) for interrupts */
 279	irq = xive_scan_interrupts(xc, false);
 280
 281	DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
 282	    irq, xc->pending_prio);
 283
 284	/* Return pending interrupt if any */
 285	if (irq == XIVE_BAD_IRQ)
 286		return 0;
 287	return irq;
 288}
 289
 290/*
 291 * After EOI'ing an interrupt, we need to re-check the queue
 292 * to see if another interrupt is pending since multiple
 293 * interrupts can coalesce into a single notification to the
 294 * CPU.
 295 *
 296 * If we find that there is indeed more in there, we call
 297 * force_external_irq_replay() to make Linux synthetize an
 298 * external interrupt on the next call to local_irq_restore().
 299 */
 300static void xive_do_queue_eoi(struct xive_cpu *xc)
 301{
 302	if (xive_scan_interrupts(xc, true) != 0) {
 303		DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
 304		force_external_irq_replay();
 305	}
 306}
 307
 308/*
 309 * EOI an interrupt at the source. There are several methods
 310 * to do this depending on the HW version and source type
 311 */
 312void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
 313{
 
 
 
 
 314	/* If the XIVE supports the new "store EOI facility, use it */
 315	if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
 316		xive_esb_write(xd, XIVE_ESB_STORE_EOI, 0);
 317	else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
 318		/*
 319		 * The FW told us to call it. This happens for some
 320		 * interrupt sources that need additional HW whacking
 321		 * beyond the ESB manipulation. For example LPC interrupts
 322		 * on P9 DD1.0 need a latch to be clared in the LPC bridge
 323		 * itself. The Firmware will take care of it.
 324		 */
 325		if (WARN_ON_ONCE(!xive_ops->eoi))
 326			return;
 327		xive_ops->eoi(hw_irq);
 328	} else {
 329		u8 eoi_val;
 330
 331		/*
 332		 * Otherwise for EOI, we use the special MMIO that does
 333		 * a clear of both P and Q and returns the old Q,
 334		 * except for LSIs where we use the "EOI cycle" special
 335		 * load.
 336		 *
 337		 * This allows us to then do a re-trigger if Q was set
 338		 * rather than synthesizing an interrupt in software
 339		 *
 340		 * For LSIs, using the HW EOI cycle works around a problem
 341		 * on P9 DD1 PHBs where the other ESB accesses don't work
 342		 * properly.
 343		 */
 344		if (xd->flags & XIVE_IRQ_FLAG_LSI)
 345			xive_esb_read(xd, XIVE_ESB_LOAD_EOI);
 346		else {
 347			eoi_val = xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 348			DBG_VERBOSE("eoi_val=%x\n", eoi_val);
 349
 350			/* Re-trigger if needed */
 351			if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
 352				out_be64(xd->trig_mmio, 0);
 353		}
 354	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 355}
 356
 357/* irq_chip eoi callback */
 358static void xive_irq_eoi(struct irq_data *d)
 359{
 360	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 361	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
 362
 363	DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
 364		    d->irq, irqd_to_hwirq(d), xc->pending_prio);
 365
 366	/*
 367	 * EOI the source if it hasn't been disabled and hasn't
 368	 * been passed-through to a KVM guest
 369	 */
 370	if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d) &&
 371	    !(xd->flags & XIVE_IRQ_NO_EOI))
 372		xive_do_source_eoi(irqd_to_hwirq(d), xd);
 
 
 373
 374	/*
 375	 * Clear saved_p to indicate that it's no longer occupying
 376	 * a queue slot on the target queue
 377	 */
 378	xd->saved_p = false;
 379
 380	/* Check for more work in the queue */
 381	xive_do_queue_eoi(xc);
 382}
 383
 384/*
 385 * Helper used to mask and unmask an interrupt source. This
 386 * is only called for normal interrupts that do not require
 387 * masking/unmasking via firmware.
 388 */
 389static void xive_do_source_set_mask(struct xive_irq_data *xd,
 390				    bool mask)
 391{
 392	u64 val;
 393
 
 
 394	/*
 395	 * If the interrupt had P set, it may be in a queue.
 396	 *
 397	 * We need to make sure we don't re-enable it until it
 398	 * has been fetched from that queue and EOId. We keep
 399	 * a copy of that P state and use it to restore the
 400	 * ESB accordingly on unmask.
 401	 */
 402	if (mask) {
 403		val = xive_esb_read(xd, XIVE_ESB_SET_PQ_01);
 404		xd->saved_p = !!(val & XIVE_ESB_VAL_P);
 405	} else if (xd->saved_p)
 
 
 406		xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 407	else
 
 408		xive_esb_read(xd, XIVE_ESB_SET_PQ_00);
 
 
 409}
 410
 411/*
 412 * Try to chose "cpu" as a new interrupt target. Increments
 413 * the queue accounting for that target if it's not already
 414 * full.
 415 */
 416static bool xive_try_pick_target(int cpu)
 417{
 418	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 419	struct xive_q *q = &xc->queue[xive_irq_priority];
 420	int max;
 421
 422	/*
 423	 * Calculate max number of interrupts in that queue.
 424	 *
 425	 * We leave a gap of 1 just in case...
 426	 */
 427	max = (q->msk + 1) - 1;
 428	return !!atomic_add_unless(&q->count, 1, max);
 429}
 430
 431/*
 432 * Un-account an interrupt for a target CPU. We don't directly
 433 * decrement q->count since the interrupt might still be present
 434 * in the queue.
 435 *
 436 * Instead increment a separate counter "pending_count" which
 437 * will be substracted from "count" later when that CPU observes
 438 * the queue to be empty.
 439 */
 440static void xive_dec_target_count(int cpu)
 441{
 442	struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 443	struct xive_q *q = &xc->queue[xive_irq_priority];
 444
 445	if (unlikely(WARN_ON(cpu < 0 || !xc))) {
 446		pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
 447		return;
 448	}
 449
 450	/*
 451	 * We increment the "pending count" which will be used
 452	 * to decrement the target queue count whenever it's next
 453	 * processed and found empty. This ensure that we don't
 454	 * decrement while we still have the interrupt there
 455	 * occupying a slot.
 456	 */
 457	atomic_inc(&q->pending_count);
 458}
 459
 460/* Find a tentative CPU target in a CPU mask */
 461static int xive_find_target_in_mask(const struct cpumask *mask,
 462				    unsigned int fuzz)
 463{
 464	int cpu, first, num, i;
 465
 466	/* Pick up a starting point CPU in the mask based on  fuzz */
 467	num = min_t(int, cpumask_weight(mask), nr_cpu_ids);
 468	first = fuzz % num;
 469
 470	/* Locate it */
 471	cpu = cpumask_first(mask);
 472	for (i = 0; i < first && cpu < nr_cpu_ids; i++)
 473		cpu = cpumask_next(cpu, mask);
 474
 475	/* Sanity check */
 476	if (WARN_ON(cpu >= nr_cpu_ids))
 477		cpu = cpumask_first(cpu_online_mask);
 478
 479	/* Remember first one to handle wrap-around */
 480	first = cpu;
 481
 482	/*
 483	 * Now go through the entire mask until we find a valid
 484	 * target.
 485	 */
 486	for (;;) {
 487		/*
 488		 * We re-check online as the fallback case passes us
 489		 * an untested affinity mask
 490		 */
 491		if (cpu_online(cpu) && xive_try_pick_target(cpu))
 492			return cpu;
 493		cpu = cpumask_next(cpu, mask);
 494		if (cpu == first)
 495			break;
 496		/* Wrap around */
 497		if (cpu >= nr_cpu_ids)
 498			cpu = cpumask_first(mask);
 499	}
 
 500	return -1;
 501}
 502
 503/*
 504 * Pick a target CPU for an interrupt. This is done at
 505 * startup or if the affinity is changed in a way that
 506 * invalidates the current target.
 507 */
 508static int xive_pick_irq_target(struct irq_data *d,
 509				const struct cpumask *affinity)
 510{
 511	static unsigned int fuzz;
 512	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 513	cpumask_var_t mask;
 514	int cpu = -1;
 515
 516	/*
 517	 * If we have chip IDs, first we try to build a mask of
 518	 * CPUs matching the CPU and find a target in there
 519	 */
 520	if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
 521		zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
 522		/* Build a mask of matching chip IDs */
 523		for_each_cpu_and(cpu, affinity, cpu_online_mask) {
 524			struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
 525			if (xc->chip_id == xd->src_chip)
 526				cpumask_set_cpu(cpu, mask);
 527		}
 528		/* Try to find a target */
 529		if (cpumask_empty(mask))
 530			cpu = -1;
 531		else
 532			cpu = xive_find_target_in_mask(mask, fuzz++);
 533		free_cpumask_var(mask);
 534		if (cpu >= 0)
 535			return cpu;
 536		fuzz--;
 537	}
 538
 539	/* No chip IDs, fallback to using the affinity mask */
 540	return xive_find_target_in_mask(affinity, fuzz++);
 541}
 542
 543static unsigned int xive_irq_startup(struct irq_data *d)
 544{
 545	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 546	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 547	int target, rc;
 548
 549	pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
 550		 d->irq, hw_irq, d);
 551
 552#ifdef CONFIG_PCI_MSI
 553	/*
 554	 * The generic MSI code returns with the interrupt disabled on the
 555	 * card, using the MSI mask bits. Firmware doesn't appear to unmask
 556	 * at that level, so we do it here by hand.
 557	 */
 558	if (irq_data_get_msi_desc(d))
 559		pci_msi_unmask_irq(d);
 560#endif
 561
 562	/* Pick a target */
 563	target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
 564	if (target == XIVE_INVALID_TARGET) {
 565		/* Try again breaking affinity */
 566		target = xive_pick_irq_target(d, cpu_online_mask);
 567		if (target == XIVE_INVALID_TARGET)
 568			return -ENXIO;
 569		pr_warn("irq %d started with broken affinity\n", d->irq);
 570	}
 571
 572	/* Sanity check */
 573	if (WARN_ON(target == XIVE_INVALID_TARGET ||
 574		    target >= nr_cpu_ids))
 575		target = smp_processor_id();
 576
 577	xd->target = target;
 578
 579	/*
 580	 * Configure the logical number to be the Linux IRQ number
 581	 * and set the target queue
 582	 */
 583	rc = xive_ops->configure_irq(hw_irq,
 584				     get_hard_smp_processor_id(target),
 585				     xive_irq_priority, d->irq);
 586	if (rc)
 587		return rc;
 588
 589	/* Unmask the ESB */
 590	xive_do_source_set_mask(xd, false);
 591
 592	return 0;
 593}
 594
 
 595static void xive_irq_shutdown(struct irq_data *d)
 596{
 597	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 598	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 599
 600	pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
 601		 d->irq, hw_irq, d);
 602
 603	if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
 604		return;
 605
 606	/* Mask the interrupt at the source */
 607	xive_do_source_set_mask(xd, true);
 608
 609	/*
 610	 * The above may have set saved_p. We clear it otherwise it
 611	 * will prevent re-enabling later on. It is ok to forget the
 612	 * fact that the interrupt might be in a queue because we are
 613	 * accounting that already in xive_dec_target_count() and will
 614	 * be re-routing it to a new queue with proper accounting when
 615	 * it's started up again
 616	 */
 617	xd->saved_p = false;
 618
 619	/*
 620	 * Mask the interrupt in HW in the IVT/EAS and set the number
 621	 * to be the "bad" IRQ number
 622	 */
 623	xive_ops->configure_irq(hw_irq,
 624				get_hard_smp_processor_id(xd->target),
 625				0xff, XIVE_BAD_IRQ);
 626
 627	xive_dec_target_count(xd->target);
 628	xd->target = XIVE_INVALID_TARGET;
 629}
 630
 631static void xive_irq_unmask(struct irq_data *d)
 632{
 633	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 634
 635	pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
 636
 637	/*
 638	 * This is a workaround for PCI LSI problems on P9, for
 639	 * these, we call FW to set the mask. The problems might
 640	 * be fixed by P9 DD2.0, if that is the case, firmware
 641	 * will no longer set that flag.
 642	 */
 643	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 644		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 645		xive_ops->configure_irq(hw_irq,
 646					get_hard_smp_processor_id(xd->target),
 647					xive_irq_priority, d->irq);
 648		return;
 649	}
 650
 651	xive_do_source_set_mask(xd, false);
 652}
 653
 654static void xive_irq_mask(struct irq_data *d)
 655{
 656	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 657
 658	pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
 659
 660	/*
 661	 * This is a workaround for PCI LSI problems on P9, for
 662	 * these, we call OPAL to set the mask. The problems might
 663	 * be fixed by P9 DD2.0, if that is the case, firmware
 664	 * will no longer set that flag.
 665	 */
 666	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
 667		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 668		xive_ops->configure_irq(hw_irq,
 669					get_hard_smp_processor_id(xd->target),
 670					0xff, d->irq);
 671		return;
 672	}
 673
 674	xive_do_source_set_mask(xd, true);
 675}
 676
 677static int xive_irq_set_affinity(struct irq_data *d,
 678				 const struct cpumask *cpumask,
 679				 bool force)
 680{
 681	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 682	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 683	u32 target, old_target;
 684	int rc = 0;
 685
 686	pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
 687
 688	/* Is this valid ? */
 689	if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
 690		return -EINVAL;
 691
 692	/* Don't do anything if the interrupt isn't started */
 693	if (!irqd_is_started(d))
 694		return IRQ_SET_MASK_OK;
 695
 696	/*
 697	 * If existing target is already in the new mask, and is
 698	 * online then do nothing.
 699	 */
 700	if (xd->target != XIVE_INVALID_TARGET &&
 701	    cpu_online(xd->target) &&
 702	    cpumask_test_cpu(xd->target, cpumask))
 703		return IRQ_SET_MASK_OK;
 704
 705	/* Pick a new target */
 706	target = xive_pick_irq_target(d, cpumask);
 707
 708	/* No target found */
 709	if (target == XIVE_INVALID_TARGET)
 710		return -ENXIO;
 711
 712	/* Sanity check */
 713	if (WARN_ON(target >= nr_cpu_ids))
 714		target = smp_processor_id();
 715
 716	old_target = xd->target;
 717
 718	/*
 719	 * Only configure the irq if it's not currently passed-through to
 720	 * a KVM guest
 721	 */
 722	if (!irqd_is_forwarded_to_vcpu(d))
 723		rc = xive_ops->configure_irq(hw_irq,
 724					     get_hard_smp_processor_id(target),
 725					     xive_irq_priority, d->irq);
 726	if (rc < 0) {
 727		pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
 728		return rc;
 729	}
 730
 731	pr_devel("  target: 0x%x\n", target);
 732	xd->target = target;
 733
 734	/* Give up previous target */
 735	if (old_target != XIVE_INVALID_TARGET)
 736	    xive_dec_target_count(old_target);
 737
 738	return IRQ_SET_MASK_OK;
 739}
 740
 741static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
 742{
 743	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 744
 745	/*
 746	 * We only support these. This has really no effect other than setting
 747	 * the corresponding descriptor bits mind you but those will in turn
 748	 * affect the resend function when re-enabling an edge interrupt.
 749	 *
 750	 * Set set the default to edge as explained in map().
 751	 */
 752	if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
 753		flow_type = IRQ_TYPE_EDGE_RISING;
 754
 755	if (flow_type != IRQ_TYPE_EDGE_RISING &&
 756	    flow_type != IRQ_TYPE_LEVEL_LOW)
 757		return -EINVAL;
 758
 759	irqd_set_trigger_type(d, flow_type);
 760
 761	/*
 762	 * Double check it matches what the FW thinks
 763	 *
 764	 * NOTE: We don't know yet if the PAPR interface will provide
 765	 * the LSI vs MSI information apart from the device-tree so
 766	 * this check might have to move into an optional backend call
 767	 * that is specific to the native backend
 768	 */
 769	if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
 770	    !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
 771		pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
 772			d->irq, (u32)irqd_to_hwirq(d),
 773			(flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
 774			(xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
 775	}
 776
 777	return IRQ_SET_MASK_OK_NOCOPY;
 778}
 779
 780static int xive_irq_retrigger(struct irq_data *d)
 781{
 782	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 783
 784	/* This should be only for MSIs */
 785	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
 786		return 0;
 787
 788	/*
 789	 * To perform a retrigger, we first set the PQ bits to
 790	 * 11, then perform an EOI.
 791	 */
 792	xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 793
 794	/*
 795	 * Note: We pass "0" to the hw_irq argument in order to
 796	 * avoid calling into the backend EOI code which we don't
 797	 * want to do in the case of a re-trigger. Backends typically
 798	 * only do EOI for LSIs anyway.
 799	 */
 800	xive_do_source_eoi(0, xd);
 801
 802	return 1;
 803}
 804
 
 
 
 
 805static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
 806{
 807	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
 808	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
 809	int rc;
 810	u8 pq;
 811
 812	/*
 813	 * We only support this on interrupts that do not require
 814	 * firmware calls for masking and unmasking
 815	 */
 816	if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
 817		return -EIO;
 818
 819	/*
 820	 * This is called by KVM with state non-NULL for enabling
 821	 * pass-through or NULL for disabling it
 822	 */
 823	if (state) {
 824		irqd_set_forwarded_to_vcpu(d);
 825
 826		/* Set it to PQ=10 state to prevent further sends */
 827		pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_10);
 
 
 
 
 828
 829		/* No target ? nothing to do */
 830		if (xd->target == XIVE_INVALID_TARGET) {
 831			/*
 832			 * An untargetted interrupt should have been
 833			 * also masked at the source
 834			 */
 835			WARN_ON(pq & 2);
 836
 837			return 0;
 838		}
 839
 840		/*
 841		 * If P was set, adjust state to PQ=11 to indicate
 842		 * that a resend is needed for the interrupt to reach
 843		 * the guest. Also remember the value of P.
 844		 *
 845		 * This also tells us that it's in flight to a host queue
 846		 * or has already been fetched but hasn't been EOIed yet
 847		 * by the host. This it's potentially using up a host
 848		 * queue slot. This is important to know because as long
 849		 * as this is the case, we must not hard-unmask it when
 850		 * "returning" that interrupt to the host.
 851		 *
 852		 * This saved_p is cleared by the host EOI, when we know
 853		 * for sure the queue slot is no longer in use.
 854		 */
 855		if (pq & 2) {
 856			pq = xive_esb_read(xd, XIVE_ESB_SET_PQ_11);
 857			xd->saved_p = true;
 858
 859			/*
 860			 * Sync the XIVE source HW to ensure the interrupt
 861			 * has gone through the EAS before we change its
 862			 * target to the guest. That should guarantee us
 863			 * that we *will* eventually get an EOI for it on
 864			 * the host. Otherwise there would be a small window
 865			 * for P to be seen here but the interrupt going
 866			 * to the guest queue.
 867			 */
 868			if (xive_ops->sync_source)
 869				xive_ops->sync_source(hw_irq);
 870		} else
 871			xd->saved_p = false;
 872	} else {
 873		irqd_clr_forwarded_to_vcpu(d);
 874
 875		/* No host target ? hard mask and return */
 876		if (xd->target == XIVE_INVALID_TARGET) {
 877			xive_do_source_set_mask(xd, true);
 878			return 0;
 879		}
 880
 881		/*
 882		 * Sync the XIVE source HW to ensure the interrupt
 883		 * has gone through the EAS before we change its
 884		 * target to the host.
 885		 */
 886		if (xive_ops->sync_source)
 887			xive_ops->sync_source(hw_irq);
 888
 889		/*
 890		 * By convention we are called with the interrupt in
 891		 * a PQ=10 or PQ=11 state, ie, it won't fire and will
 892		 * have latched in Q whether there's a pending HW
 893		 * interrupt or not.
 894		 *
 895		 * First reconfigure the target.
 896		 */
 897		rc = xive_ops->configure_irq(hw_irq,
 898					     get_hard_smp_processor_id(xd->target),
 899					     xive_irq_priority, d->irq);
 900		if (rc)
 901			return rc;
 902
 903		/*
 904		 * Then if saved_p is not set, effectively re-enable the
 905		 * interrupt with an EOI. If it is set, we know there is
 906		 * still a message in a host queue somewhere that will be
 907		 * EOId eventually.
 908		 *
 909		 * Note: We don't check irqd_irq_disabled(). Effectively,
 910		 * we *will* let the irq get through even if masked if the
 911		 * HW is still firing it in order to deal with the whole
 912		 * saved_p business properly. If the interrupt triggers
 913		 * while masked, the generic code will re-mask it anyway.
 914		 */
 915		if (!xd->saved_p)
 916			xive_do_source_eoi(hw_irq, xd);
 917
 918	}
 919	return 0;
 920}
 921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 922static struct irq_chip xive_irq_chip = {
 923	.name = "XIVE-IRQ",
 924	.irq_startup = xive_irq_startup,
 925	.irq_shutdown = xive_irq_shutdown,
 926	.irq_eoi = xive_irq_eoi,
 927	.irq_mask = xive_irq_mask,
 928	.irq_unmask = xive_irq_unmask,
 929	.irq_set_affinity = xive_irq_set_affinity,
 930	.irq_set_type = xive_irq_set_type,
 931	.irq_retrigger = xive_irq_retrigger,
 932	.irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
 
 933};
 934
 935bool is_xive_irq(struct irq_chip *chip)
 936{
 937	return chip == &xive_irq_chip;
 938}
 939EXPORT_SYMBOL_GPL(is_xive_irq);
 940
 941void xive_cleanup_irq_data(struct xive_irq_data *xd)
 942{
 
 
 943	if (xd->eoi_mmio) {
 944		iounmap(xd->eoi_mmio);
 945		if (xd->eoi_mmio == xd->trig_mmio)
 946			xd->trig_mmio = NULL;
 947		xd->eoi_mmio = NULL;
 948	}
 949	if (xd->trig_mmio) {
 950		iounmap(xd->trig_mmio);
 951		xd->trig_mmio = NULL;
 952	}
 953}
 954EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
 955
 956static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
 957{
 958	struct xive_irq_data *xd;
 959	int rc;
 960
 961	xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
 962	if (!xd)
 963		return -ENOMEM;
 964	rc = xive_ops->populate_irq_data(hw, xd);
 965	if (rc) {
 966		kfree(xd);
 967		return rc;
 968	}
 969	xd->target = XIVE_INVALID_TARGET;
 970	irq_set_handler_data(virq, xd);
 971
 
 
 
 
 
 
 
 
 
 972	return 0;
 973}
 974
 975static void xive_irq_free_data(unsigned int virq)
 976{
 977	struct xive_irq_data *xd = irq_get_handler_data(virq);
 978
 979	if (!xd)
 980		return;
 981	irq_set_handler_data(virq, NULL);
 982	xive_cleanup_irq_data(xd);
 983	kfree(xd);
 984}
 
 985
 986#ifdef CONFIG_SMP
 987
 988static void xive_cause_ipi(int cpu)
 989{
 990	struct xive_cpu *xc;
 991	struct xive_irq_data *xd;
 992
 993	xc = per_cpu(xive_cpu, cpu);
 994
 995	DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
 996		    smp_processor_id(), cpu, xc->hw_ipi);
 997
 998	xd = &xc->ipi_data;
 999	if (WARN_ON(!xd->trig_mmio))
1000		return;
1001	out_be64(xd->trig_mmio, 0);
1002}
1003
1004static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
1005{
1006	return smp_ipi_demux();
1007}
1008
1009static void xive_ipi_eoi(struct irq_data *d)
1010{
1011	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1012
 
 
 
 
1013	DBG_VERBOSE("IPI eoi: irq=%d [0x%lx] (HW IRQ 0x%x) pending=%02x\n",
1014		    d->irq, irqd_to_hwirq(d), xc->hw_ipi, xc->pending_prio);
1015
1016	/* Handle possible race with unplug and drop stale IPIs */
1017	if (!xc)
1018		return;
1019	xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1020	xive_do_queue_eoi(xc);
1021}
1022
1023static void xive_ipi_do_nothing(struct irq_data *d)
1024{
1025	/*
1026	 * Nothing to do, we never mask/unmask IPIs, but the callback
1027	 * has to exist for the struct irq_chip.
1028	 */
1029}
1030
1031static struct irq_chip xive_ipi_chip = {
1032	.name = "XIVE-IPI",
1033	.irq_eoi = xive_ipi_eoi,
1034	.irq_mask = xive_ipi_do_nothing,
1035	.irq_unmask = xive_ipi_do_nothing,
1036};
1037
1038static void __init xive_request_ipi(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039{
1040	unsigned int virq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041
1042	/*
1043	 * Initialization failed, move on, we might manage to
1044	 * reach the point where we display our errors before
1045	 * the system falls appart
1046	 */
1047	if (!xive_irq_domain)
1048		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1049
1050	/* Initialize it */
1051	virq = irq_create_mapping(xive_irq_domain, 0);
1052	xive_ipi_irq = virq;
1053
1054	WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1055			    IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1056}
1057
1058static int xive_setup_cpu_ipi(unsigned int cpu)
1059{
 
1060	struct xive_cpu *xc;
1061	int rc;
1062
1063	pr_debug("Setting up IPI for CPU %d\n", cpu);
1064
1065	xc = per_cpu(xive_cpu, cpu);
1066
1067	/* Check if we are already setup */
1068	if (xc->hw_ipi != 0)
1069		return 0;
1070
 
 
 
1071	/* Grab an IPI from the backend, this will populate xc->hw_ipi */
1072	if (xive_ops->get_ipi(cpu, xc))
1073		return -EIO;
1074
1075	/*
1076	 * Populate the IRQ data in the xive_cpu structure and
1077	 * configure the HW / enable the IPIs.
1078	 */
1079	rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1080	if (rc) {
1081		pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1082		return -EIO;
1083	}
1084	rc = xive_ops->configure_irq(xc->hw_ipi,
1085				     get_hard_smp_processor_id(cpu),
1086				     xive_irq_priority, xive_ipi_irq);
1087	if (rc) {
1088		pr_err("Failed to map IPI CPU %d\n", cpu);
1089		return -EIO;
1090	}
1091	pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1092	    xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1093
1094	/* Unmask it */
1095	xive_do_source_set_mask(&xc->ipi_data, false);
1096
1097	return 0;
1098}
1099
1100static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1101{
 
 
1102	/* Disable the IPI and free the IRQ data */
1103
1104	/* Already cleaned up ? */
1105	if (xc->hw_ipi == 0)
1106		return;
1107
 
 
1108	/* Mask the IPI */
1109	xive_do_source_set_mask(&xc->ipi_data, true);
1110
1111	/*
1112	 * Note: We don't call xive_cleanup_irq_data() to free
1113	 * the mappings as this is called from an IPI on kexec
1114	 * which is not a safe environment to call iounmap()
1115	 */
1116
1117	/* Deconfigure/mask in the backend */
1118	xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1119				0xff, xive_ipi_irq);
1120
1121	/* Free the IPIs in the backend */
1122	xive_ops->put_ipi(cpu, xc);
1123}
1124
1125void __init xive_smp_probe(void)
1126{
1127	smp_ops->cause_ipi = xive_cause_ipi;
1128
1129	/* Register the IPI */
1130	xive_request_ipi();
1131
1132	/* Allocate and setup IPI for the boot CPU */
1133	xive_setup_cpu_ipi(smp_processor_id());
1134}
1135
1136#endif /* CONFIG_SMP */
1137
1138static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1139			       irq_hw_number_t hw)
1140{
1141	int rc;
1142
1143	/*
1144	 * Mark interrupts as edge sensitive by default so that resend
1145	 * actually works. Will fix that up below if needed.
1146	 */
1147	irq_clear_status_flags(virq, IRQ_LEVEL);
1148
1149#ifdef CONFIG_SMP
1150	/* IPIs are special and come up with HW number 0 */
1151	if (hw == 0) {
1152		/*
1153		 * IPIs are marked per-cpu. We use separate HW interrupts under
1154		 * the hood but associated with the same "linux" interrupt
1155		 */
1156		irq_set_chip_and_handler(virq, &xive_ipi_chip,
1157					 handle_percpu_irq);
1158		return 0;
1159	}
1160#endif
1161
1162	rc = xive_irq_alloc_data(virq, hw);
1163	if (rc)
1164		return rc;
1165
1166	irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1167
1168	return 0;
1169}
1170
1171static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1172{
1173	struct irq_data *data = irq_get_irq_data(virq);
1174	unsigned int hw_irq;
1175
1176	/* XXX Assign BAD number */
1177	if (!data)
1178		return;
1179	hw_irq = (unsigned int)irqd_to_hwirq(data);
1180	if (hw_irq)
1181		xive_irq_free_data(virq);
1182}
1183
1184static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1185				 const u32 *intspec, unsigned int intsize,
1186				 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1187
1188{
1189	*out_hwirq = intspec[0];
1190
1191	/*
1192	 * If intsize is at least 2, we look for the type in the second cell,
1193	 * we assume the LSB indicates a level interrupt.
1194	 */
1195	if (intsize > 1) {
1196		if (intspec[1] & 1)
1197			*out_flags = IRQ_TYPE_LEVEL_LOW;
1198		else
1199			*out_flags = IRQ_TYPE_EDGE_RISING;
1200	} else
1201		*out_flags = IRQ_TYPE_LEVEL_LOW;
1202
1203	return 0;
1204}
1205
1206static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1207				 enum irq_domain_bus_token bus_token)
1208{
1209	return xive_ops->match(node);
1210}
1211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212static const struct irq_domain_ops xive_irq_domain_ops = {
 
 
 
 
 
1213	.match = xive_irq_domain_match,
1214	.map = xive_irq_domain_map,
1215	.unmap = xive_irq_domain_unmap,
1216	.xlate = xive_irq_domain_xlate,
 
 
 
1217};
1218
1219static void __init xive_init_host(void)
1220{
1221	xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1222					       &xive_irq_domain_ops, NULL);
1223	if (WARN_ON(xive_irq_domain == NULL))
1224		return;
1225	irq_set_default_host(xive_irq_domain);
1226}
1227
1228static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1229{
1230	if (xc->queue[xive_irq_priority].qpage)
1231		xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1232}
1233
1234static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1235{
1236	int rc = 0;
1237
1238	/* We setup 1 queues for now with a 64k page */
1239	if (!xc->queue[xive_irq_priority].qpage)
1240		rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1241
1242	return rc;
1243}
1244
1245static int xive_prepare_cpu(unsigned int cpu)
1246{
1247	struct xive_cpu *xc;
1248
1249	xc = per_cpu(xive_cpu, cpu);
1250	if (!xc) {
1251		struct device_node *np;
1252
1253		xc = kzalloc_node(sizeof(struct xive_cpu),
1254				  GFP_KERNEL, cpu_to_node(cpu));
1255		if (!xc)
1256			return -ENOMEM;
1257		np = of_get_cpu_node(cpu, NULL);
1258		if (np)
1259			xc->chip_id = of_get_ibm_chip_id(np);
1260		of_node_put(np);
1261
1262		per_cpu(xive_cpu, cpu) = xc;
1263	}
1264
1265	/* Setup EQs if not already */
1266	return xive_setup_cpu_queues(cpu, xc);
1267}
1268
1269static void xive_setup_cpu(void)
1270{
1271	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1272
1273	/* The backend might have additional things to do */
1274	if (xive_ops->setup_cpu)
1275		xive_ops->setup_cpu(smp_processor_id(), xc);
1276
1277	/* Set CPPR to 0xff to enable flow of interrupts */
1278	xc->cppr = 0xff;
1279	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1280}
1281
1282#ifdef CONFIG_SMP
1283void xive_smp_setup_cpu(void)
1284{
1285	pr_devel("SMP setup CPU %d\n", smp_processor_id());
1286
1287	/* This will have already been done on the boot CPU */
1288	if (smp_processor_id() != boot_cpuid)
1289		xive_setup_cpu();
1290
1291}
1292
1293int xive_smp_prepare_cpu(unsigned int cpu)
1294{
1295	int rc;
1296
1297	/* Allocate per-CPU data and queues */
1298	rc = xive_prepare_cpu(cpu);
1299	if (rc)
1300		return rc;
1301
1302	/* Allocate and setup IPI for the new CPU */
1303	return xive_setup_cpu_ipi(cpu);
1304}
1305
1306#ifdef CONFIG_HOTPLUG_CPU
1307static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1308{
1309	u32 irq;
1310
1311	/* We assume local irqs are disabled */
1312	WARN_ON(!irqs_disabled());
1313
1314	/* Check what's already in the CPU queue */
1315	while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1316		/*
1317		 * We need to re-route that interrupt to its new destination.
1318		 * First get and lock the descriptor
1319		 */
1320		struct irq_desc *desc = irq_to_desc(irq);
1321		struct irq_data *d = irq_desc_get_irq_data(desc);
1322		struct xive_irq_data *xd;
1323		unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1324
1325		/*
1326		 * Ignore anything that isn't a XIVE irq and ignore
1327		 * IPIs, so can just be dropped.
1328		 */
1329		if (d->domain != xive_irq_domain || hw_irq == 0)
1330			continue;
1331
1332		/*
1333		 * The IRQ should have already been re-routed, it's just a
1334		 * stale in the old queue, so re-trigger it in order to make
1335		 * it reach is new destination.
1336		 */
1337#ifdef DEBUG_FLUSH
1338		pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1339			cpu, irq);
1340#endif
1341		raw_spin_lock(&desc->lock);
1342		xd = irq_desc_get_handler_data(desc);
1343
1344		/*
 
 
 
 
 
1345		 * For LSIs, we EOI, this will cause a resend if it's
1346		 * still asserted. Otherwise do an MSI retrigger.
1347		 */
1348		if (xd->flags & XIVE_IRQ_FLAG_LSI)
1349			xive_do_source_eoi(irqd_to_hwirq(d), xd);
1350		else
1351			xive_irq_retrigger(d);
1352
1353		raw_spin_unlock(&desc->lock);
1354	}
1355}
1356
1357void xive_smp_disable_cpu(void)
1358{
1359	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1360	unsigned int cpu = smp_processor_id();
1361
1362	/* Migrate interrupts away from the CPU */
1363	irq_migrate_all_off_this_cpu();
1364
1365	/* Set CPPR to 0 to disable flow of interrupts */
1366	xc->cppr = 0;
1367	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1368
1369	/* Flush everything still in the queue */
1370	xive_flush_cpu_queue(cpu, xc);
1371
1372	/* Re-enable CPPR  */
1373	xc->cppr = 0xff;
1374	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1375}
1376
1377void xive_flush_interrupt(void)
1378{
1379	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1380	unsigned int cpu = smp_processor_id();
1381
1382	/* Called if an interrupt occurs while the CPU is hot unplugged */
1383	xive_flush_cpu_queue(cpu, xc);
1384}
1385
1386#endif /* CONFIG_HOTPLUG_CPU */
1387
1388#endif /* CONFIG_SMP */
1389
1390void xive_teardown_cpu(void)
1391{
1392	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1393	unsigned int cpu = smp_processor_id();
1394
1395	/* Set CPPR to 0 to disable flow of interrupts */
1396	xc->cppr = 0;
1397	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1398
1399	if (xive_ops->teardown_cpu)
1400		xive_ops->teardown_cpu(cpu, xc);
1401
1402#ifdef CONFIG_SMP
1403	/* Get rid of IPI */
1404	xive_cleanup_cpu_ipi(cpu, xc);
1405#endif
1406
1407	/* Disable and free the queues */
1408	xive_cleanup_cpu_queues(cpu, xc);
1409}
1410
1411void xive_kexec_teardown_cpu(int secondary)
1412{
1413	struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1414	unsigned int cpu = smp_processor_id();
1415
1416	/* Set CPPR to 0 to disable flow of interrupts */
1417	xc->cppr = 0;
1418	out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1419
1420	/* Backend cleanup if any */
1421	if (xive_ops->teardown_cpu)
1422		xive_ops->teardown_cpu(cpu, xc);
1423
1424#ifdef CONFIG_SMP
1425	/* Get rid of IPI */
1426	xive_cleanup_cpu_ipi(cpu, xc);
1427#endif
1428
1429	/* Disable and free the queues */
1430	xive_cleanup_cpu_queues(cpu, xc);
1431}
1432
1433void xive_shutdown(void)
1434{
1435	xive_ops->shutdown();
1436}
1437
1438bool __init xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1439			   u8 max_prio)
1440{
1441	xive_tima = area;
1442	xive_tima_offset = offset;
1443	xive_ops = ops;
1444	xive_irq_priority = max_prio;
1445
1446	ppc_md.get_irq = xive_get_irq;
1447	__xive_enabled = true;
1448
1449	pr_devel("Initializing host..\n");
1450	xive_init_host();
1451
1452	pr_devel("Initializing boot CPU..\n");
1453
1454	/* Allocate per-CPU data and queues */
1455	xive_prepare_cpu(smp_processor_id());
1456
1457	/* Get ready for interrupts */
1458	xive_setup_cpu();
1459
1460	pr_info("Interrupt handling initialized with %s backend\n",
1461		xive_ops->name);
1462	pr_info("Using priority %d for all interrupts\n", max_prio);
1463
1464	return true;
1465}
1466
1467__be32 *xive_queue_page_alloc(unsigned int cpu, u32 queue_shift)
1468{
1469	unsigned int alloc_order;
1470	struct page *pages;
1471	__be32 *qpage;
1472
1473	alloc_order = xive_alloc_order(queue_shift);
1474	pages = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, alloc_order);
1475	if (!pages)
1476		return ERR_PTR(-ENOMEM);
1477	qpage = (__be32 *)page_address(pages);
1478	memset(qpage, 0, 1 << queue_shift);
1479
1480	return qpage;
1481}
1482
1483static int __init xive_off(char *arg)
1484{
1485	xive_cmdline_disabled = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486	return 0;
1487}
1488__setup("xive=off", xive_off);