Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * eBPF JIT compiler
  4 *
  5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
  6 *		  IBM Corporation
  7 *
  8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
 
 
 
 
 
 
  9 */
 10#include <linux/moduleloader.h>
 11#include <asm/cacheflush.h>
 12#include <asm/asm-compat.h>
 13#include <linux/netdevice.h>
 14#include <linux/filter.h>
 15#include <linux/if_vlan.h>
 16#include <linux/kernel.h>
 17#include <linux/memory.h>
 18#include <linux/bpf.h>
 19
 20#include <asm/kprobes.h>
 21#include <asm/code-patching.h>
 22
 23#include "bpf_jit.h"
 24
 25static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
 26{
 27	memset32(area, BREAKPOINT_INSTRUCTION, size / 4);
 
 28}
 29
 30int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr)
 
 31{
 32	if (!exit_addr || is_offset_in_branch_range(exit_addr - (ctx->idx * 4))) {
 33		PPC_JMP(exit_addr);
 34	} else if (ctx->alt_exit_addr) {
 35		if (WARN_ON(!is_offset_in_branch_range((long)ctx->alt_exit_addr - (ctx->idx * 4))))
 36			return -1;
 37		PPC_JMP(ctx->alt_exit_addr);
 38	} else {
 39		ctx->alt_exit_addr = ctx->idx * 4;
 40		bpf_jit_build_epilogue(image, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41	}
 42
 43	return 0;
 44}
 
 
 
 
 
 
 
 
 
 
 
 45
 46struct powerpc_jit_data {
 47	/* address of rw header */
 48	struct bpf_binary_header *hdr;
 49	/* address of ro final header */
 50	struct bpf_binary_header *fhdr;
 51	u32 *addrs;
 52	u8 *fimage;
 53	u32 proglen;
 54	struct codegen_context ctx;
 55};
 56
 57bool bpf_jit_needs_zext(void)
 58{
 59	return true;
 60}
 61
 62struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
 63{
 64	u32 proglen;
 65	u32 alloclen;
 66	u8 *image = NULL;
 67	u32 *code_base;
 68	u32 *addrs;
 69	struct powerpc_jit_data *jit_data;
 70	struct codegen_context cgctx;
 71	int pass;
 72	int flen;
 73	struct bpf_binary_header *fhdr = NULL;
 74	struct bpf_binary_header *hdr = NULL;
 75	struct bpf_prog *org_fp = fp;
 76	struct bpf_prog *tmp_fp;
 77	bool bpf_blinded = false;
 78	bool extra_pass = false;
 79	u8 *fimage = NULL;
 80	u32 *fcode_base;
 81	u32 extable_len;
 82	u32 fixup_len;
 83
 84	if (!fp->jit_requested)
 85		return org_fp;
 86
 87	tmp_fp = bpf_jit_blind_constants(org_fp);
 88	if (IS_ERR(tmp_fp))
 89		return org_fp;
 90
 91	if (tmp_fp != org_fp) {
 92		bpf_blinded = true;
 93		fp = tmp_fp;
 94	}
 95
 96	jit_data = fp->aux->jit_data;
 97	if (!jit_data) {
 98		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
 99		if (!jit_data) {
100			fp = org_fp;
101			goto out;
 
 
 
 
 
 
 
 
102		}
103		fp->aux->jit_data = jit_data;
104	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
106	flen = fp->len;
107	addrs = jit_data->addrs;
108	if (addrs) {
109		cgctx = jit_data->ctx;
110		/*
111		 * JIT compiled to a writable location (image/code_base) first.
112		 * It is then moved to the readonly final location (fimage/fcode_base)
113		 * using instruction patching.
114		 */
115		fimage = jit_data->fimage;
116		fhdr = jit_data->fhdr;
117		proglen = jit_data->proglen;
118		hdr = jit_data->hdr;
119		image = (void *)hdr + ((void *)fimage - (void *)fhdr);
120		extra_pass = true;
121		/* During extra pass, ensure index is reset before repopulating extable entries */
122		cgctx.exentry_idx = 0;
123		goto skip_init_ctx;
124	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126	addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
127	if (addrs == NULL) {
128		fp = org_fp;
129		goto out_addrs;
130	}
 
 
131
132	memset(&cgctx, 0, sizeof(struct codegen_context));
133	bpf_jit_init_reg_mapping(&cgctx);
134
135	/* Make sure that the stack is quadword aligned. */
136	cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
 
 
 
 
 
 
 
 
137
138	/* Scouting faux-generate pass 0 */
139	if (bpf_jit_build_body(fp, NULL, NULL, &cgctx, addrs, 0, false)) {
140		/* We hit something illegal or unsupported. */
141		fp = org_fp;
142		goto out_addrs;
143	}
144
145	/*
146	 * If we have seen a tail call, we need a second pass.
147	 * This is because bpf_jit_emit_common_epilogue() is called
148	 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
149	 * We also need a second pass if we ended up with too large
150	 * a program so as to ensure BPF_EXIT branches are in range.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151	 */
152	if (cgctx.seen & SEEN_TAILCALL || !is_offset_in_branch_range((long)cgctx.idx * 4)) {
153		cgctx.idx = 0;
154		if (bpf_jit_build_body(fp, NULL, NULL, &cgctx, addrs, 0, false)) {
155			fp = org_fp;
156			goto out_addrs;
157		}
158	}
159
160	bpf_jit_realloc_regs(&cgctx);
 
 
 
 
 
 
 
161	/*
162	 * Pretend to build prologue, given the features we've seen.  This will
163	 * update ctgtx.idx as it pretends to output instructions, then we can
164	 * calculate total size from idx.
165	 */
166	bpf_jit_build_prologue(NULL, &cgctx);
167	addrs[fp->len] = cgctx.idx * 4;
168	bpf_jit_build_epilogue(NULL, &cgctx);
169
170	fixup_len = fp->aux->num_exentries * BPF_FIXUP_LEN * 4;
171	extable_len = fp->aux->num_exentries * sizeof(struct exception_table_entry);
172
173	proglen = cgctx.idx * 4;
174	alloclen = proglen + FUNCTION_DESCR_SIZE + fixup_len + extable_len;
175
176	fhdr = bpf_jit_binary_pack_alloc(alloclen, &fimage, 4, &hdr, &image,
177					      bpf_jit_fill_ill_insns);
178	if (!fhdr) {
179		fp = org_fp;
180		goto out_addrs;
181	}
182
183	if (extable_len)
184		fp->aux->extable = (void *)fimage + FUNCTION_DESCR_SIZE + proglen + fixup_len;
185
186skip_init_ctx:
187	code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
188	fcode_base = (u32 *)(fimage + FUNCTION_DESCR_SIZE);
189
190	/* Code generation passes 1-2 */
191	for (pass = 1; pass < 3; pass++) {
192		/* Now build the prologue, body code & epilogue for real. */
193		cgctx.idx = 0;
194		cgctx.alt_exit_addr = 0;
195		bpf_jit_build_prologue(code_base, &cgctx);
196		if (bpf_jit_build_body(fp, code_base, fcode_base, &cgctx, addrs, pass,
197				       extra_pass)) {
198			bpf_arch_text_copy(&fhdr->size, &hdr->size, sizeof(hdr->size));
199			bpf_jit_binary_pack_free(fhdr, hdr);
200			fp = org_fp;
201			goto out_addrs;
202		}
203		bpf_jit_build_epilogue(code_base, &cgctx);
204
205		if (bpf_jit_enable > 1)
206			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
207				proglen - (cgctx.idx * 4), cgctx.seen);
208	}
209
210	if (bpf_jit_enable > 1)
211		/*
212		 * Note that we output the base address of the code_base
213		 * rather than image, since opcodes are in code_base.
214		 */
215		bpf_jit_dump(flen, proglen, pass, code_base);
216
217#ifdef CONFIG_PPC64_ELF_ABI_V1
 
 
218	/* Function descriptor nastiness: Address + TOC */
219	((u64 *)image)[0] = (u64)fcode_base;
220	((u64 *)image)[1] = local_paca->kernel_toc;
221#endif
222
223	fp->bpf_func = (void *)fimage;
224	fp->jited = 1;
225	fp->jited_len = proglen + FUNCTION_DESCR_SIZE;
226
227	if (!fp->is_func || extra_pass) {
228		if (bpf_jit_binary_pack_finalize(fp, fhdr, hdr)) {
229			fp = org_fp;
230			goto out_addrs;
231		}
232		bpf_prog_fill_jited_linfo(fp, addrs);
233out_addrs:
234		kfree(addrs);
235		kfree(jit_data);
236		fp->aux->jit_data = NULL;
237	} else {
238		jit_data->addrs = addrs;
239		jit_data->ctx = cgctx;
240		jit_data->proglen = proglen;
241		jit_data->fimage = fimage;
242		jit_data->fhdr = fhdr;
243		jit_data->hdr = hdr;
244	}
245
246out:
247	if (bpf_blinded)
248		bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
249
250	return fp;
251}
252
253/*
254 * The caller should check for (BPF_MODE(code) == BPF_PROBE_MEM) before calling
255 * this function, as this only applies to BPF_PROBE_MEM, for now.
256 */
257int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, u32 *fimage, int pass,
258			  struct codegen_context *ctx, int insn_idx, int jmp_off,
259			  int dst_reg)
260{
261	off_t offset;
262	unsigned long pc;
263	struct exception_table_entry *ex, *ex_entry;
264	u32 *fixup;
265
266	/* Populate extable entries only in the last pass */
267	if (pass != 2)
268		return 0;
269
270	if (!fp->aux->extable ||
271	    WARN_ON_ONCE(ctx->exentry_idx >= fp->aux->num_exentries))
272		return -EINVAL;
273
274	/*
275	 * Program is first written to image before copying to the
276	 * final location (fimage). Accordingly, update in the image first.
277	 * As all offsets used are relative, copying as is to the
278	 * final location should be alright.
279	 */
280	pc = (unsigned long)&image[insn_idx];
281	ex = (void *)fp->aux->extable - (void *)fimage + (void *)image;
282
283	fixup = (void *)ex -
284		(fp->aux->num_exentries * BPF_FIXUP_LEN * 4) +
285		(ctx->exentry_idx * BPF_FIXUP_LEN * 4);
286
287	fixup[0] = PPC_RAW_LI(dst_reg, 0);
288	if (IS_ENABLED(CONFIG_PPC32))
289		fixup[1] = PPC_RAW_LI(dst_reg - 1, 0); /* clear higher 32-bit register too */
290
291	fixup[BPF_FIXUP_LEN - 1] =
292		PPC_RAW_BRANCH((long)(pc + jmp_off) - (long)&fixup[BPF_FIXUP_LEN - 1]);
293
294	ex_entry = &ex[ctx->exentry_idx];
295
296	offset = pc - (long)&ex_entry->insn;
297	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
298		return -ERANGE;
299	ex_entry->insn = offset;
300
301	offset = (long)fixup - (long)&ex_entry->fixup;
302	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
303		return -ERANGE;
304	ex_entry->fixup = offset;
305
306	ctx->exentry_idx++;
307	return 0;
308}
309
310void *bpf_arch_text_copy(void *dst, void *src, size_t len)
311{
312	int err;
313
314	if (WARN_ON_ONCE(core_kernel_text((unsigned long)dst)))
315		return ERR_PTR(-EINVAL);
316
317	mutex_lock(&text_mutex);
318	err = patch_instructions(dst, src, len, false);
319	mutex_unlock(&text_mutex);
320
321	return err ? ERR_PTR(err) : dst;
322}
323
324int bpf_arch_text_invalidate(void *dst, size_t len)
325{
326	u32 insn = BREAKPOINT_INSTRUCTION;
327	int ret;
328
329	if (WARN_ON_ONCE(core_kernel_text((unsigned long)dst)))
330		return -EINVAL;
331
332	mutex_lock(&text_mutex);
333	ret = patch_instructions(dst, &insn, len, true);
334	mutex_unlock(&text_mutex);
335
336	return ret;
337}
338
339void bpf_jit_free(struct bpf_prog *fp)
340{
341	if (fp->jited) {
342		struct powerpc_jit_data *jit_data = fp->aux->jit_data;
343		struct bpf_binary_header *hdr;
344
345		/*
346		 * If we fail the final pass of JIT (from jit_subprogs),
347		 * the program may not be finalized yet. Call finalize here
348		 * before freeing it.
349		 */
350		if (jit_data) {
351			bpf_jit_binary_pack_finalize(fp, jit_data->fhdr, jit_data->hdr);
352			kvfree(jit_data->addrs);
353			kfree(jit_data);
354		}
355		hdr = bpf_jit_binary_pack_hdr(fp);
356		bpf_jit_binary_pack_free(hdr, NULL);
357		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
358	}
359
360	bpf_prog_unlock_free(fp);
361}
v4.17
  1/* bpf_jit_comp.c: BPF JIT compiler
 
 
  2 *
  3 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
 
  4 *
  5 * Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
  6 * Ported to ppc32 by Denis Kirjanov <kda@linux-powerpc.org>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License
 10 * as published by the Free Software Foundation; version 2
 11 * of the License.
 12 */
 13#include <linux/moduleloader.h>
 14#include <asm/cacheflush.h>
 
 15#include <linux/netdevice.h>
 16#include <linux/filter.h>
 17#include <linux/if_vlan.h>
 
 
 
 
 
 
 18
 19#include "bpf_jit32.h"
 20
 21static inline void bpf_flush_icache(void *start, void *end)
 22{
 23	smp_wmb();
 24	flush_icache_range((unsigned long)start, (unsigned long)end);
 25}
 26
 27static void bpf_jit_build_prologue(struct bpf_prog *fp, u32 *image,
 28				   struct codegen_context *ctx)
 29{
 30	int i;
 31	const struct sock_filter *filter = fp->insns;
 32
 33	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 34		/* Make stackframe */
 35		if (ctx->seen & SEEN_DATAREF) {
 36			/* If we call any helpers (for loads), save LR */
 37			EMIT(PPC_INST_MFLR | __PPC_RT(R0));
 38			PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
 39
 40			/* Back up non-volatile regs. */
 41			PPC_BPF_STL(r_D, 1, -(REG_SZ*(32-r_D)));
 42			PPC_BPF_STL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 43		}
 44		if (ctx->seen & SEEN_MEM) {
 45			/*
 46			 * Conditionally save regs r15-r31 as some will be used
 47			 * for M[] data.
 48			 */
 49			for (i = r_M; i < (r_M+16); i++) {
 50				if (ctx->seen & (1 << (i-r_M)))
 51					PPC_BPF_STL(i, 1, -(REG_SZ*(32-i)));
 52			}
 53		}
 54		PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
 55	}
 56
 57	if (ctx->seen & SEEN_DATAREF) {
 58		/*
 59		 * If this filter needs to access skb data,
 60		 * prepare r_D and r_HL:
 61		 *  r_HL = skb->len - skb->data_len
 62		 *  r_D	 = skb->data
 63		 */
 64		PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
 65							 data_len));
 66		PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
 67		PPC_SUB(r_HL, r_HL, r_scratch1);
 68		PPC_LL_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
 69	}
 70
 71	if (ctx->seen & SEEN_XREG) {
 72		/*
 73		 * TODO: Could also detect whether first instr. sets X and
 74		 * avoid this (as below, with A).
 75		 */
 76		PPC_LI(r_X, 0);
 77	}
 
 
 
 78
 79	/* make sure we dont leak kernel information to user */
 80	if (bpf_needs_clear_a(&filter[0]))
 81		PPC_LI(r_A, 0);
 82}
 83
 84static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
 85{
 86	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87
 88	if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
 89		PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
 90		if (ctx->seen & SEEN_DATAREF) {
 91			PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
 92			PPC_MTLR(0);
 93			PPC_BPF_LL(r_D, 1, -(REG_SZ*(32-r_D)));
 94			PPC_BPF_LL(r_HL, 1, -(REG_SZ*(32-r_HL)));
 95		}
 96		if (ctx->seen & SEEN_MEM) {
 97			/* Restore any saved non-vol registers */
 98			for (i = r_M; i < (r_M+16); i++) {
 99				if (ctx->seen & (1 << (i-r_M)))
100					PPC_BPF_LL(i, 1, -(REG_SZ*(32-i)));
101			}
102		}
 
103	}
104	/* The RETs have left a return value in R3. */
105
106	PPC_BLR();
107}
108
109#define CHOOSE_LOAD_FUNC(K, func) \
110	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
111
112/* Assemble the body code between the prologue & epilogue. */
113static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
114			      struct codegen_context *ctx,
115			      unsigned int *addrs)
116{
117	const struct sock_filter *filter = fp->insns;
118	int flen = fp->len;
119	u8 *func;
120	unsigned int true_cond;
121	int i;
122
123	/* Start of epilogue code */
124	unsigned int exit_addr = addrs[flen];
125
126	for (i = 0; i < flen; i++) {
127		unsigned int K = filter[i].k;
128		u16 code = bpf_anc_helper(&filter[i]);
129
 
 
 
 
130		/*
131		 * addrs[] maps a BPF bytecode address into a real offset from
132		 * the start of the body code.
 
133		 */
134		addrs[i] = ctx->idx * 4;
135
136		switch (code) {
137			/*** ALU ops ***/
138		case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
139			ctx->seen |= SEEN_XREG;
140			PPC_ADD(r_A, r_A, r_X);
141			break;
142		case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
143			if (!K)
144				break;
145			PPC_ADDI(r_A, r_A, IMM_L(K));
146			if (K >= 32768)
147				PPC_ADDIS(r_A, r_A, IMM_HA(K));
148			break;
149		case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
150			ctx->seen |= SEEN_XREG;
151			PPC_SUB(r_A, r_A, r_X);
152			break;
153		case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
154			if (!K)
155				break;
156			PPC_ADDI(r_A, r_A, IMM_L(-K));
157			if (K >= 32768)
158				PPC_ADDIS(r_A, r_A, IMM_HA(-K));
159			break;
160		case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
161			ctx->seen |= SEEN_XREG;
162			PPC_MULW(r_A, r_A, r_X);
163			break;
164		case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
165			if (K < 32768)
166				PPC_MULI(r_A, r_A, K);
167			else {
168				PPC_LI32(r_scratch1, K);
169				PPC_MULW(r_A, r_A, r_scratch1);
170			}
171			break;
172		case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */
173		case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
174			ctx->seen |= SEEN_XREG;
175			PPC_CMPWI(r_X, 0);
176			if (ctx->pc_ret0 != -1) {
177				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
178			} else {
179				PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
180				PPC_LI(r_ret, 0);
181				PPC_JMP(exit_addr);
182			}
183			if (code == (BPF_ALU | BPF_MOD | BPF_X)) {
184				PPC_DIVWU(r_scratch1, r_A, r_X);
185				PPC_MULW(r_scratch1, r_X, r_scratch1);
186				PPC_SUB(r_A, r_A, r_scratch1);
187			} else {
188				PPC_DIVWU(r_A, r_A, r_X);
189			}
190			break;
191		case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */
192			PPC_LI32(r_scratch2, K);
193			PPC_DIVWU(r_scratch1, r_A, r_scratch2);
194			PPC_MULW(r_scratch1, r_scratch2, r_scratch1);
195			PPC_SUB(r_A, r_A, r_scratch1);
196			break;
197		case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */
198			if (K == 1)
199				break;
200			PPC_LI32(r_scratch1, K);
201			PPC_DIVWU(r_A, r_A, r_scratch1);
202			break;
203		case BPF_ALU | BPF_AND | BPF_X:
204			ctx->seen |= SEEN_XREG;
205			PPC_AND(r_A, r_A, r_X);
206			break;
207		case BPF_ALU | BPF_AND | BPF_K:
208			if (!IMM_H(K))
209				PPC_ANDI(r_A, r_A, K);
210			else {
211				PPC_LI32(r_scratch1, K);
212				PPC_AND(r_A, r_A, r_scratch1);
213			}
214			break;
215		case BPF_ALU | BPF_OR | BPF_X:
216			ctx->seen |= SEEN_XREG;
217			PPC_OR(r_A, r_A, r_X);
218			break;
219		case BPF_ALU | BPF_OR | BPF_K:
220			if (IMM_L(K))
221				PPC_ORI(r_A, r_A, IMM_L(K));
222			if (K >= 65536)
223				PPC_ORIS(r_A, r_A, IMM_H(K));
224			break;
225		case BPF_ANC | SKF_AD_ALU_XOR_X:
226		case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */
227			ctx->seen |= SEEN_XREG;
228			PPC_XOR(r_A, r_A, r_X);
229			break;
230		case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
231			if (IMM_L(K))
232				PPC_XORI(r_A, r_A, IMM_L(K));
233			if (K >= 65536)
234				PPC_XORIS(r_A, r_A, IMM_H(K));
235			break;
236		case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */
237			ctx->seen |= SEEN_XREG;
238			PPC_SLW(r_A, r_A, r_X);
239			break;
240		case BPF_ALU | BPF_LSH | BPF_K:
241			if (K == 0)
242				break;
243			else
244				PPC_SLWI(r_A, r_A, K);
245			break;
246		case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */
247			ctx->seen |= SEEN_XREG;
248			PPC_SRW(r_A, r_A, r_X);
249			break;
250		case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */
251			if (K == 0)
252				break;
253			else
254				PPC_SRWI(r_A, r_A, K);
255			break;
256		case BPF_ALU | BPF_NEG:
257			PPC_NEG(r_A, r_A);
258			break;
259		case BPF_RET | BPF_K:
260			PPC_LI32(r_ret, K);
261			if (!K) {
262				if (ctx->pc_ret0 == -1)
263					ctx->pc_ret0 = i;
264			}
265			/*
266			 * If this isn't the very last instruction, branch to
267			 * the epilogue if we've stuff to clean up.  Otherwise,
268			 * if there's nothing to tidy, just return.  If we /are/
269			 * the last instruction, we're about to fall through to
270			 * the epilogue to return.
271			 */
272			if (i != flen - 1) {
273				/*
274				 * Note: 'seen' is properly valid only on pass
275				 * #2.	Both parts of this conditional are the
276				 * same instruction size though, meaning the
277				 * first pass will still correctly determine the
278				 * code size/addresses.
279				 */
280				if (ctx->seen)
281					PPC_JMP(exit_addr);
282				else
283					PPC_BLR();
284			}
285			break;
286		case BPF_RET | BPF_A:
287			PPC_MR(r_ret, r_A);
288			if (i != flen - 1) {
289				if (ctx->seen)
290					PPC_JMP(exit_addr);
291				else
292					PPC_BLR();
293			}
294			break;
295		case BPF_MISC | BPF_TAX: /* X = A */
296			PPC_MR(r_X, r_A);
297			break;
298		case BPF_MISC | BPF_TXA: /* A = X */
299			ctx->seen |= SEEN_XREG;
300			PPC_MR(r_A, r_X);
301			break;
302
303			/*** Constant loads/M[] access ***/
304		case BPF_LD | BPF_IMM: /* A = K */
305			PPC_LI32(r_A, K);
306			break;
307		case BPF_LDX | BPF_IMM: /* X = K */
308			PPC_LI32(r_X, K);
309			break;
310		case BPF_LD | BPF_MEM: /* A = mem[K] */
311			PPC_MR(r_A, r_M + (K & 0xf));
312			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
313			break;
314		case BPF_LDX | BPF_MEM: /* X = mem[K] */
315			PPC_MR(r_X, r_M + (K & 0xf));
316			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
317			break;
318		case BPF_ST: /* mem[K] = A */
319			PPC_MR(r_M + (K & 0xf), r_A);
320			ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
321			break;
322		case BPF_STX: /* mem[K] = X */
323			PPC_MR(r_M + (K & 0xf), r_X);
324			ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
325			break;
326		case BPF_LD | BPF_W | BPF_LEN: /*	A = skb->len; */
327			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
328			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
329			break;
330		case BPF_LDX | BPF_W | BPF_ABS: /* A = *((u32 *)(seccomp_data + K)); */
331			PPC_LWZ_OFFS(r_A, r_skb, K);
332			break;
333		case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */
334			PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
335			break;
336
337			/*** Ancillary info loads ***/
338		case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */
339			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
340						  protocol) != 2);
341			PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff,
342							    protocol));
343			break;
344		case BPF_ANC | SKF_AD_IFINDEX:
345		case BPF_ANC | SKF_AD_HATYPE:
346			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
347						ifindex) != 4);
348			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
349						type) != 2);
350			PPC_LL_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
351								dev));
352			PPC_CMPDI(r_scratch1, 0);
353			if (ctx->pc_ret0 != -1) {
354				PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
355			} else {
356				/* Exit, returning 0; first pass hits here. */
357				PPC_BCC_SHORT(COND_NE, ctx->idx * 4 + 12);
358				PPC_LI(r_ret, 0);
359				PPC_JMP(exit_addr);
360			}
361			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
362				PPC_LWZ_OFFS(r_A, r_scratch1,
363				     offsetof(struct net_device, ifindex));
364			} else {
365				PPC_LHZ_OFFS(r_A, r_scratch1,
366				     offsetof(struct net_device, type));
367			}
368
369			break;
370		case BPF_ANC | SKF_AD_MARK:
371			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
372			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
373							  mark));
374			break;
375		case BPF_ANC | SKF_AD_RXHASH:
376			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
377			PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
378							  hash));
379			break;
380		case BPF_ANC | SKF_AD_VLAN_TAG:
381		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
382			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
383			BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
384
385			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
386							  vlan_tci));
387			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
388				PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT);
389			} else {
390				PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT);
391				PPC_SRWI(r_A, r_A, 12);
392			}
393			break;
394		case BPF_ANC | SKF_AD_QUEUE:
395			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
396						  queue_mapping) != 2);
397			PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
398							  queue_mapping));
399			break;
400		case BPF_ANC | SKF_AD_PKTTYPE:
401			PPC_LBZ_OFFS(r_A, r_skb, PKT_TYPE_OFFSET());
402			PPC_ANDI(r_A, r_A, PKT_TYPE_MAX);
403			PPC_SRWI(r_A, r_A, 5);
404			break;
405		case BPF_ANC | SKF_AD_CPU:
406			PPC_BPF_LOAD_CPU(r_A);
407			break;
408			/*** Absolute loads from packet header/data ***/
409		case BPF_LD | BPF_W | BPF_ABS:
410			func = CHOOSE_LOAD_FUNC(K, sk_load_word);
411			goto common_load;
412		case BPF_LD | BPF_H | BPF_ABS:
413			func = CHOOSE_LOAD_FUNC(K, sk_load_half);
414			goto common_load;
415		case BPF_LD | BPF_B | BPF_ABS:
416			func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
417		common_load:
418			/* Load from [K]. */
419			ctx->seen |= SEEN_DATAREF;
420			PPC_FUNC_ADDR(r_scratch1, func);
421			PPC_MTLR(r_scratch1);
422			PPC_LI32(r_addr, K);
423			PPC_BLRL();
424			/*
425			 * Helper returns 'lt' condition on error, and an
426			 * appropriate return value in r3
427			 */
428			PPC_BCC(COND_LT, exit_addr);
429			break;
430
431			/*** Indirect loads from packet header/data ***/
432		case BPF_LD | BPF_W | BPF_IND:
433			func = sk_load_word;
434			goto common_load_ind;
435		case BPF_LD | BPF_H | BPF_IND:
436			func = sk_load_half;
437			goto common_load_ind;
438		case BPF_LD | BPF_B | BPF_IND:
439			func = sk_load_byte;
440		common_load_ind:
441			/*
442			 * Load from [X + K].  Negative offsets are tested for
443			 * in the helper functions.
444			 */
445			ctx->seen |= SEEN_DATAREF | SEEN_XREG;
446			PPC_FUNC_ADDR(r_scratch1, func);
447			PPC_MTLR(r_scratch1);
448			PPC_ADDI(r_addr, r_X, IMM_L(K));
449			if (K >= 32768)
450				PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
451			PPC_BLRL();
452			/* If error, cr0.LT set */
453			PPC_BCC(COND_LT, exit_addr);
454			break;
455
456		case BPF_LDX | BPF_B | BPF_MSH:
457			func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
458			goto common_load;
459			break;
460
461			/*** Jump and branches ***/
462		case BPF_JMP | BPF_JA:
463			if (K != 0)
464				PPC_JMP(addrs[i + 1 + K]);
465			break;
466
467		case BPF_JMP | BPF_JGT | BPF_K:
468		case BPF_JMP | BPF_JGT | BPF_X:
469			true_cond = COND_GT;
470			goto cond_branch;
471		case BPF_JMP | BPF_JGE | BPF_K:
472		case BPF_JMP | BPF_JGE | BPF_X:
473			true_cond = COND_GE;
474			goto cond_branch;
475		case BPF_JMP | BPF_JEQ | BPF_K:
476		case BPF_JMP | BPF_JEQ | BPF_X:
477			true_cond = COND_EQ;
478			goto cond_branch;
479		case BPF_JMP | BPF_JSET | BPF_K:
480		case BPF_JMP | BPF_JSET | BPF_X:
481			true_cond = COND_NE;
482			/* Fall through */
483		cond_branch:
484			/* same targets, can avoid doing the test :) */
485			if (filter[i].jt == filter[i].jf) {
486				if (filter[i].jt > 0)
487					PPC_JMP(addrs[i + 1 + filter[i].jt]);
488				break;
489			}
490
491			switch (code) {
492			case BPF_JMP | BPF_JGT | BPF_X:
493			case BPF_JMP | BPF_JGE | BPF_X:
494			case BPF_JMP | BPF_JEQ | BPF_X:
495				ctx->seen |= SEEN_XREG;
496				PPC_CMPLW(r_A, r_X);
497				break;
498			case BPF_JMP | BPF_JSET | BPF_X:
499				ctx->seen |= SEEN_XREG;
500				PPC_AND_DOT(r_scratch1, r_A, r_X);
501				break;
502			case BPF_JMP | BPF_JEQ | BPF_K:
503			case BPF_JMP | BPF_JGT | BPF_K:
504			case BPF_JMP | BPF_JGE | BPF_K:
505				if (K < 32768)
506					PPC_CMPLWI(r_A, K);
507				else {
508					PPC_LI32(r_scratch1, K);
509					PPC_CMPLW(r_A, r_scratch1);
510				}
511				break;
512			case BPF_JMP | BPF_JSET | BPF_K:
513				if (K < 32768)
514					/* PPC_ANDI is /only/ dot-form */
515					PPC_ANDI(r_scratch1, r_A, K);
516				else {
517					PPC_LI32(r_scratch1, K);
518					PPC_AND_DOT(r_scratch1, r_A,
519						    r_scratch1);
520				}
521				break;
522			}
523			/* Sometimes branches are constructed "backward", with
524			 * the false path being the branch and true path being
525			 * a fallthrough to the next instruction.
526			 */
527			if (filter[i].jt == 0)
528				/* Swap the sense of the branch */
529				PPC_BCC(true_cond ^ COND_CMP_TRUE,
530					addrs[i + 1 + filter[i].jf]);
531			else {
532				PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
533				if (filter[i].jf != 0)
534					PPC_JMP(addrs[i + 1 + filter[i].jf]);
535			}
536			break;
537		default:
538			/* The filter contains something cruel & unusual.
539			 * We don't handle it, but also there shouldn't be
540			 * anything missing from our list.
541			 */
542			if (printk_ratelimit())
543				pr_err("BPF filter opcode %04x (@%d) unsupported\n",
544				       filter[i].code, i);
545			return -ENOTSUPP;
546		}
547
 
 
 
 
548	}
549	/* Set end-of-body-code address for exit. */
550	addrs[i] = ctx->idx * 4;
551
552	return 0;
553}
554
555void bpf_jit_compile(struct bpf_prog *fp)
556{
557	unsigned int proglen;
558	unsigned int alloclen;
559	u32 *image = NULL;
560	u32 *code_base;
561	unsigned int *addrs;
562	struct codegen_context cgctx;
563	int pass;
564	int flen = fp->len;
565
566	if (!bpf_jit_enable)
567		return;
568
569	addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
570	if (addrs == NULL)
571		return;
572
573	/*
574	 * There are multiple assembly passes as the generated code will change
575	 * size as it settles down, figuring out the max branch offsets/exit
576	 * paths required.
577	 *
578	 * The range of standard conditional branches is +/- 32Kbytes.	Since
579	 * BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
580	 * finish with 8 bytes/instruction.  Not feasible, so long jumps are
581	 * used, distinct from short branches.
582	 *
583	 * Current:
584	 *
585	 * For now, both branch types assemble to 2 words (short branches padded
586	 * with a NOP); this is less efficient, but assembly will always complete
587	 * after exactly 3 passes:
588	 *
589	 * First pass: No code buffer; Program is "faux-generated" -- no code
590	 * emitted but maximum size of output determined (and addrs[] filled
591	 * in).	 Also, we note whether we use M[], whether we use skb data, etc.
592	 * All generation choices assumed to be 'worst-case', e.g. branches all
593	 * far (2 instructions), return path code reduction not available, etc.
594	 *
595	 * Second pass: Code buffer allocated with size determined previously.
596	 * Prologue generated to support features we have seen used.  Exit paths
597	 * determined and addrs[] is filled in again, as code may be slightly
598	 * smaller as a result.
599	 *
600	 * Third pass: Code generated 'for real', and branch destinations
601	 * determined from now-accurate addrs[] map.
602	 *
603	 * Ideal:
604	 *
605	 * If we optimise this, near branches will be shorter.	On the
606	 * first assembly pass, we should err on the side of caution and
607	 * generate the biggest code.  On subsequent passes, branches will be
608	 * generated short or long and code size will reduce.  With smaller
609	 * code, more branches may fall into the short category, and code will
610	 * reduce more.
611	 *
612	 * Finally, if we see one pass generate code the same size as the
613	 * previous pass we have converged and should now generate code for
614	 * real.  Allocating at the end will also save the memory that would
615	 * otherwise be wasted by the (small) current code shrinkage.
616	 * Preferably, we should do a small number of passes (e.g. 5) and if we
617	 * haven't converged by then, get impatient and force code to generate
618	 * as-is, even if the odd branch would be left long.  The chances of a
619	 * long jump are tiny with all but the most enormous of BPF filter
620	 * inputs, so we should usually converge on the third pass.
621	 */
 
 
 
 
 
 
 
622
623	cgctx.idx = 0;
624	cgctx.seen = 0;
625	cgctx.pc_ret0 = -1;
626	/* Scouting faux-generate pass 0 */
627	if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
628		/* We hit something illegal or unsupported. */
629		goto out;
630
631	/*
632	 * Pretend to build prologue, given the features we've seen.  This will
633	 * update ctgtx.idx as it pretends to output instructions, then we can
634	 * calculate total size from idx.
635	 */
636	bpf_jit_build_prologue(fp, 0, &cgctx);
637	bpf_jit_build_epilogue(0, &cgctx);
 
 
 
 
638
639	proglen = cgctx.idx * 4;
640	alloclen = proglen + FUNCTION_DESCR_SIZE;
641	image = module_alloc(alloclen);
642	if (!image)
643		goto out;
 
 
 
 
644
645	code_base = image + (FUNCTION_DESCR_SIZE/4);
 
 
 
 
 
646
647	/* Code generation passes 1-2 */
648	for (pass = 1; pass < 3; pass++) {
649		/* Now build the prologue, body code & epilogue for real. */
650		cgctx.idx = 0;
651		bpf_jit_build_prologue(fp, code_base, &cgctx);
652		bpf_jit_build_body(fp, code_base, &cgctx, addrs);
 
 
 
 
 
 
 
653		bpf_jit_build_epilogue(code_base, &cgctx);
654
655		if (bpf_jit_enable > 1)
656			pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
657				proglen - (cgctx.idx * 4), cgctx.seen);
658	}
659
660	if (bpf_jit_enable > 1)
661		/* Note that we output the base address of the code_base
 
662		 * rather than image, since opcodes are in code_base.
663		 */
664		bpf_jit_dump(flen, proglen, pass, code_base);
665
666	bpf_flush_icache(code_base, code_base + (proglen/4));
667
668#ifdef CONFIG_PPC64
669	/* Function descriptor nastiness: Address + TOC */
670	((u64 *)image)[0] = (u64)code_base;
671	((u64 *)image)[1] = local_paca->kernel_toc;
672#endif
673
674	fp->bpf_func = (void *)image;
675	fp->jited = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
676
677out:
678	kfree(addrs);
679	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680}
681
682void bpf_jit_free(struct bpf_prog *fp)
683{
684	if (fp->jited)
685		module_memfree(fp->bpf_func);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686
687	bpf_prog_unlock_free(fp);
688}