Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * bpf_jit.h: BPF JIT compiler for PPC
  4 *
  5 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  6 * 	     2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
 
 
 
 
 
  7 */
  8#ifndef _BPF_JIT_H
  9#define _BPF_JIT_H
 10
 11#ifndef __ASSEMBLY__
 12
 13#include <asm/types.h>
 14#include <asm/ppc-opcode.h>
 15
 16#ifdef CONFIG_PPC64_ELF_ABI_V1
 17#define FUNCTION_DESCR_SIZE	24
 18#else
 19#define FUNCTION_DESCR_SIZE	0
 20#endif
 21
 22#define CTX_NIA(ctx) ((unsigned long)ctx->idx * 4)
 
 
 
 
 
 
 
 
 23
 24#define PLANT_INSTR(d, idx, instr)					      \
 25	do { if (d) { (d)[idx] = instr; } idx++; } while (0)
 26#define EMIT(instr)		PLANT_INSTR(image, ctx->idx, instr)
 27
 28/* Long jump; (unconditional 'branch') */
 29#define PPC_JMP(dest)							      \
 30	do {								      \
 31		long offset = (long)(dest) - CTX_NIA(ctx);		      \
 32		if ((dest) != 0 && !is_offset_in_branch_range(offset)) {		      \
 33			pr_err_ratelimited("Branch offset 0x%lx (@%u) out of range\n", offset, ctx->idx);			\
 34			return -ERANGE;					      \
 35		}							      \
 36		EMIT(PPC_RAW_BRANCH(offset));				      \
 37	} while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38
 39/* "cond" here covers BO:BI fields. */
 40#define PPC_BCC_SHORT(cond, dest)					      \
 41	do {								      \
 42		long offset = (long)(dest) - CTX_NIA(ctx);		      \
 43		if ((dest) != 0 && !is_offset_in_cond_branch_range(offset)) {		      \
 44			pr_err_ratelimited("Conditional branch offset 0x%lx (@%u) out of range\n", offset, ctx->idx);		\
 45			return -ERANGE;					      \
 46		}							      \
 47		EMIT(PPC_INST_BRANCH_COND | (((cond) & 0x3ff) << 16) | (offset & 0xfffc));					\
 48	} while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49
 
 
 
 
 
 
 
 
 
 
 50/* Sign-extended 32-bit immediate load */
 51#define PPC_LI32(d, i)		do {					      \
 52		if ((int)(uintptr_t)(i) >= -32768 &&			      \
 53				(int)(uintptr_t)(i) < 32768)		      \
 54			EMIT(PPC_RAW_LI(d, i));				      \
 55		else {							      \
 56			EMIT(PPC_RAW_LIS(d, IMM_H(i)));			      \
 57			if (IMM_L(i))					      \
 58				EMIT(PPC_RAW_ORI(d, d, IMM_L(i)));	      \
 59		} } while(0)
 60
 61#ifdef CONFIG_PPC64
 62#define PPC_LI64(d, i)		do {					      \
 63		if ((long)(i) >= -2147483648 &&				      \
 64				(long)(i) < 2147483648)			      \
 65			PPC_LI32(d, i);					      \
 66		else {							      \
 67			if (!((uintptr_t)(i) & 0xffff800000000000ULL))	      \
 68				EMIT(PPC_RAW_LI(d, ((uintptr_t)(i) >> 32) &   \
 69						0xffff));		      \
 70			else {						      \
 71				EMIT(PPC_RAW_LIS(d, ((uintptr_t)(i) >> 48))); \
 72				if ((uintptr_t)(i) & 0x0000ffff00000000ULL)   \
 73					EMIT(PPC_RAW_ORI(d, d,		      \
 74					  ((uintptr_t)(i) >> 32) & 0xffff));  \
 75			}						      \
 76			EMIT(PPC_RAW_SLDI(d, d, 32));			      \
 77			if ((uintptr_t)(i) & 0x00000000ffff0000ULL)	      \
 78				EMIT(PPC_RAW_ORIS(d, d,			      \
 79					 ((uintptr_t)(i) >> 16) & 0xffff));   \
 80			if ((uintptr_t)(i) & 0x000000000000ffffULL)	      \
 81				EMIT(PPC_RAW_ORI(d, d, (uintptr_t)(i) &       \
 82							0xffff));             \
 83		} } while (0)
 
 
 
 
 
 84#endif
 85
 
 
 
 
 
 86/*
 87 * The fly in the ointment of code size changing from pass to pass is
 88 * avoided by padding the short branch case with a NOP.	 If code size differs
 89 * with different branch reaches we will have the issue of code moving from
 90 * one pass to the next and will need a few passes to converge on a stable
 91 * state.
 92 */
 93#define PPC_BCC(cond, dest)	do {					      \
 94		if (is_offset_in_cond_branch_range((long)(dest) - CTX_NIA(ctx))) {	\
 95			PPC_BCC_SHORT(cond, dest);			      \
 96			EMIT(PPC_RAW_NOP());				      \
 97		} else {						      \
 98			/* Flip the 'T or F' bit to invert comparison */      \
 99			PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, CTX_NIA(ctx) + 2*4);  \
100			PPC_JMP(dest);					      \
101		} } while(0)
102
103/* To create a branch condition, select a bit of cr0... */
104#define CR0_LT		0
105#define CR0_GT		1
106#define CR0_EQ		2
107/* ...and modify BO[3] */
108#define COND_CMP_TRUE	0x100
109#define COND_CMP_FALSE	0x000
110/* Together, they make all required comparisons: */
111#define COND_GT		(CR0_GT | COND_CMP_TRUE)
112#define COND_GE		(CR0_LT | COND_CMP_FALSE)
113#define COND_EQ		(CR0_EQ | COND_CMP_TRUE)
114#define COND_NE		(CR0_EQ | COND_CMP_FALSE)
115#define COND_LT		(CR0_LT | COND_CMP_TRUE)
116#define COND_LE		(CR0_GT | COND_CMP_FALSE)
117
118#define SEEN_FUNC	0x20000000 /* might call external helpers */
119#define SEEN_TAILCALL	0x40000000 /* uses tail calls */
120
121struct codegen_context {
122	/*
123	 * This is used to track register usage as well
124	 * as calls to external helpers.
125	 * - register usage is tracked with corresponding
126	 *   bits (r3-r31)
127	 * - rest of the bits can be used to track other
128	 *   things -- for now, we use bits 0 to 2
129	 *   encoded in SEEN_* macros above
130	 */
131	unsigned int seen;
132	unsigned int idx;
133	unsigned int stack_size;
134	int b2p[MAX_BPF_JIT_REG + 2];
135	unsigned int exentry_idx;
136	unsigned int alt_exit_addr;
137};
138
139#define bpf_to_ppc(r)	(ctx->b2p[r])
140
141#ifdef CONFIG_PPC32
142#define BPF_FIXUP_LEN	3 /* Three instructions => 12 bytes */
143#else
144#define BPF_FIXUP_LEN	2 /* Two instructions => 8 bytes */
145#endif
146
147static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
148{
149	return ctx->seen & (1 << (31 - i));
150}
151
152static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
153{
154	ctx->seen |= 1 << (31 - i);
155}
156
157static inline void bpf_clear_seen_register(struct codegen_context *ctx, int i)
158{
159	ctx->seen &= ~(1 << (31 - i));
160}
161
162void bpf_jit_init_reg_mapping(struct codegen_context *ctx);
163int bpf_jit_emit_func_call_rel(u32 *image, u32 *fimage, struct codegen_context *ctx, u64 func);
164int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, u32 *fimage, struct codegen_context *ctx,
165		       u32 *addrs, int pass, bool extra_pass);
166void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx);
167void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx);
168void bpf_jit_realloc_regs(struct codegen_context *ctx);
169int bpf_jit_emit_exit_insn(u32 *image, struct codegen_context *ctx, int tmp_reg, long exit_addr);
170
171int bpf_add_extable_entry(struct bpf_prog *fp, u32 *image, u32 *fimage, int pass,
172			  struct codegen_context *ctx, int insn_idx,
173			  int jmp_off, int dst_reg);
174
175#endif
176
177#endif
v4.17
 
  1/*
  2 * bpf_jit.h: BPF JIT compiler for PPC
  3 *
  4 * Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
  5 * 	     2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12#ifndef _BPF_JIT_H
 13#define _BPF_JIT_H
 14
 15#ifndef __ASSEMBLY__
 16
 17#include <asm/types.h>
 
 18
 19#ifdef PPC64_ELF_ABI_v1
 20#define FUNCTION_DESCR_SIZE	24
 21#else
 22#define FUNCTION_DESCR_SIZE	0
 23#endif
 24
 25/*
 26 * 16-bit immediate helper macros: HA() is for use with sign-extending instrs
 27 * (e.g. LD, ADDI).  If the bottom 16 bits is "-ve", add another bit into the
 28 * top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
 29 */
 30#define IMM_H(i)		((uintptr_t)(i)>>16)
 31#define IMM_HA(i)		(((uintptr_t)(i)>>16) +			      \
 32					(((uintptr_t)(i) & 0x8000) >> 15))
 33#define IMM_L(i)		((uintptr_t)(i) & 0xffff)
 34
 35#define PLANT_INSTR(d, idx, instr)					      \
 36	do { if (d) { (d)[idx] = instr; } idx++; } while (0)
 37#define EMIT(instr)		PLANT_INSTR(image, ctx->idx, instr)
 38
 39#define PPC_NOP()		EMIT(PPC_INST_NOP)
 40#define PPC_BLR()		EMIT(PPC_INST_BLR)
 41#define PPC_BLRL()		EMIT(PPC_INST_BLRL)
 42#define PPC_MTLR(r)		EMIT(PPC_INST_MTLR | ___PPC_RT(r))
 43#define PPC_BCTR()		EMIT(PPC_INST_BCTR)
 44#define PPC_MTCTR(r)		EMIT(PPC_INST_MTCTR | ___PPC_RT(r))
 45#define PPC_ADDI(d, a, i)	EMIT(PPC_INST_ADDI | ___PPC_RT(d) |	      \
 46				     ___PPC_RA(a) | IMM_L(i))
 47#define PPC_MR(d, a)		PPC_OR(d, a, a)
 48#define PPC_LI(r, i)		PPC_ADDI(r, 0, i)
 49#define PPC_ADDIS(d, a, i)	EMIT(PPC_INST_ADDIS |			      \
 50				     ___PPC_RT(d) | ___PPC_RA(a) | IMM_L(i))
 51#define PPC_LIS(r, i)		PPC_ADDIS(r, 0, i)
 52#define PPC_STD(r, base, i)	EMIT(PPC_INST_STD | ___PPC_RS(r) |	      \
 53				     ___PPC_RA(base) | ((i) & 0xfffc))
 54#define PPC_STDU(r, base, i)	EMIT(PPC_INST_STDU | ___PPC_RS(r) |	      \
 55				     ___PPC_RA(base) | ((i) & 0xfffc))
 56#define PPC_STW(r, base, i)	EMIT(PPC_INST_STW | ___PPC_RS(r) |	      \
 57				     ___PPC_RA(base) | IMM_L(i))
 58#define PPC_STWU(r, base, i)	EMIT(PPC_INST_STWU | ___PPC_RS(r) |	      \
 59				     ___PPC_RA(base) | IMM_L(i))
 60#define PPC_STH(r, base, i)	EMIT(PPC_INST_STH | ___PPC_RS(r) |	      \
 61				     ___PPC_RA(base) | IMM_L(i))
 62#define PPC_STB(r, base, i)	EMIT(PPC_INST_STB | ___PPC_RS(r) |	      \
 63				     ___PPC_RA(base) | IMM_L(i))
 64
 65#define PPC_LBZ(r, base, i)	EMIT(PPC_INST_LBZ | ___PPC_RT(r) |	      \
 66				     ___PPC_RA(base) | IMM_L(i))
 67#define PPC_LD(r, base, i)	EMIT(PPC_INST_LD | ___PPC_RT(r) |	      \
 68				     ___PPC_RA(base) | IMM_L(i))
 69#define PPC_LWZ(r, base, i)	EMIT(PPC_INST_LWZ | ___PPC_RT(r) |	      \
 70				     ___PPC_RA(base) | IMM_L(i))
 71#define PPC_LHZ(r, base, i)	EMIT(PPC_INST_LHZ | ___PPC_RT(r) |	      \
 72				     ___PPC_RA(base) | IMM_L(i))
 73#define PPC_LHBRX(r, base, b)	EMIT(PPC_INST_LHBRX | ___PPC_RT(r) |	      \
 74				     ___PPC_RA(base) | ___PPC_RB(b))
 75#define PPC_LDBRX(r, base, b)	EMIT(PPC_INST_LDBRX | ___PPC_RT(r) |	      \
 76				     ___PPC_RA(base) | ___PPC_RB(b))
 77
 78#define PPC_BPF_LDARX(t, a, b, eh) EMIT(PPC_INST_LDARX | ___PPC_RT(t) |	      \
 79					___PPC_RA(a) | ___PPC_RB(b) |	      \
 80					__PPC_EH(eh))
 81#define PPC_BPF_LWARX(t, a, b, eh) EMIT(PPC_INST_LWARX | ___PPC_RT(t) |	      \
 82					___PPC_RA(a) | ___PPC_RB(b) |	      \
 83					__PPC_EH(eh))
 84#define PPC_BPF_STWCX(s, a, b)	EMIT(PPC_INST_STWCX | ___PPC_RS(s) |	      \
 85					___PPC_RA(a) | ___PPC_RB(b))
 86#define PPC_BPF_STDCX(s, a, b)	EMIT(PPC_INST_STDCX | ___PPC_RS(s) |	      \
 87					___PPC_RA(a) | ___PPC_RB(b))
 88
 89#ifdef CONFIG_PPC64
 90#define PPC_BPF_LL(r, base, i) do { PPC_LD(r, base, i); } while(0)
 91#define PPC_BPF_STL(r, base, i) do { PPC_STD(r, base, i); } while(0)
 92#define PPC_BPF_STLU(r, base, i) do { PPC_STDU(r, base, i); } while(0)
 93#else
 94#define PPC_BPF_LL(r, base, i) do { PPC_LWZ(r, base, i); } while(0)
 95#define PPC_BPF_STL(r, base, i) do { PPC_STW(r, base, i); } while(0)
 96#define PPC_BPF_STLU(r, base, i) do { PPC_STWU(r, base, i); } while(0)
 97#endif
 98
 99#define PPC_CMPWI(a, i)		EMIT(PPC_INST_CMPWI | ___PPC_RA(a) | IMM_L(i))
100#define PPC_CMPDI(a, i)		EMIT(PPC_INST_CMPDI | ___PPC_RA(a) | IMM_L(i))
101#define PPC_CMPW(a, b)		EMIT(PPC_INST_CMPW | ___PPC_RA(a) |	      \
102					___PPC_RB(b))
103#define PPC_CMPD(a, b)		EMIT(PPC_INST_CMPD | ___PPC_RA(a) |	      \
104					___PPC_RB(b))
105#define PPC_CMPLWI(a, i)	EMIT(PPC_INST_CMPLWI | ___PPC_RA(a) | IMM_L(i))
106#define PPC_CMPLDI(a, i)	EMIT(PPC_INST_CMPLDI | ___PPC_RA(a) | IMM_L(i))
107#define PPC_CMPLW(a, b)		EMIT(PPC_INST_CMPLW | ___PPC_RA(a) |	      \
108					___PPC_RB(b))
109#define PPC_CMPLD(a, b)		EMIT(PPC_INST_CMPLD | ___PPC_RA(a) |	      \
110					___PPC_RB(b))
111
112#define PPC_SUB(d, a, b)	EMIT(PPC_INST_SUB | ___PPC_RT(d) |	      \
113				     ___PPC_RB(a) | ___PPC_RA(b))
114#define PPC_ADD(d, a, b)	EMIT(PPC_INST_ADD | ___PPC_RT(d) |	      \
115				     ___PPC_RA(a) | ___PPC_RB(b))
116#define PPC_MULD(d, a, b)	EMIT(PPC_INST_MULLD | ___PPC_RT(d) |	      \
117				     ___PPC_RA(a) | ___PPC_RB(b))
118#define PPC_MULW(d, a, b)	EMIT(PPC_INST_MULLW | ___PPC_RT(d) |	      \
119				     ___PPC_RA(a) | ___PPC_RB(b))
120#define PPC_MULHWU(d, a, b)	EMIT(PPC_INST_MULHWU | ___PPC_RT(d) |	      \
121				     ___PPC_RA(a) | ___PPC_RB(b))
122#define PPC_MULI(d, a, i)	EMIT(PPC_INST_MULLI | ___PPC_RT(d) |	      \
123				     ___PPC_RA(a) | IMM_L(i))
124#define PPC_DIVWU(d, a, b)	EMIT(PPC_INST_DIVWU | ___PPC_RT(d) |	      \
125				     ___PPC_RA(a) | ___PPC_RB(b))
126#define PPC_DIVD(d, a, b)	EMIT(PPC_INST_DIVD | ___PPC_RT(d) |	      \
127				     ___PPC_RA(a) | ___PPC_RB(b))
128#define PPC_AND(d, a, b)	EMIT(PPC_INST_AND | ___PPC_RA(d) |	      \
129				     ___PPC_RS(a) | ___PPC_RB(b))
130#define PPC_ANDI(d, a, i)	EMIT(PPC_INST_ANDI | ___PPC_RA(d) |	      \
131				     ___PPC_RS(a) | IMM_L(i))
132#define PPC_AND_DOT(d, a, b)	EMIT(PPC_INST_ANDDOT | ___PPC_RA(d) |	      \
133				     ___PPC_RS(a) | ___PPC_RB(b))
134#define PPC_OR(d, a, b)		EMIT(PPC_INST_OR | ___PPC_RA(d) |	      \
135				     ___PPC_RS(a) | ___PPC_RB(b))
136#define PPC_MR(d, a)		PPC_OR(d, a, a)
137#define PPC_ORI(d, a, i)	EMIT(PPC_INST_ORI | ___PPC_RA(d) |	      \
138				     ___PPC_RS(a) | IMM_L(i))
139#define PPC_ORIS(d, a, i)	EMIT(PPC_INST_ORIS | ___PPC_RA(d) |	      \
140				     ___PPC_RS(a) | IMM_L(i))
141#define PPC_XOR(d, a, b)	EMIT(PPC_INST_XOR | ___PPC_RA(d) |	      \
142				     ___PPC_RS(a) | ___PPC_RB(b))
143#define PPC_XORI(d, a, i)	EMIT(PPC_INST_XORI | ___PPC_RA(d) |	      \
144				     ___PPC_RS(a) | IMM_L(i))
145#define PPC_XORIS(d, a, i)	EMIT(PPC_INST_XORIS | ___PPC_RA(d) |	      \
146				     ___PPC_RS(a) | IMM_L(i))
147#define PPC_EXTSW(d, a)		EMIT(PPC_INST_EXTSW | ___PPC_RA(d) |	      \
148				     ___PPC_RS(a))
149#define PPC_SLW(d, a, s)	EMIT(PPC_INST_SLW | ___PPC_RA(d) |	      \
150				     ___PPC_RS(a) | ___PPC_RB(s))
151#define PPC_SLD(d, a, s)	EMIT(PPC_INST_SLD | ___PPC_RA(d) |	      \
152				     ___PPC_RS(a) | ___PPC_RB(s))
153#define PPC_SRW(d, a, s)	EMIT(PPC_INST_SRW | ___PPC_RA(d) |	      \
154				     ___PPC_RS(a) | ___PPC_RB(s))
155#define PPC_SRD(d, a, s)	EMIT(PPC_INST_SRD | ___PPC_RA(d) |	      \
156				     ___PPC_RS(a) | ___PPC_RB(s))
157#define PPC_SRAD(d, a, s)	EMIT(PPC_INST_SRAD | ___PPC_RA(d) |	      \
158				     ___PPC_RS(a) | ___PPC_RB(s))
159#define PPC_SRADI(d, a, i)	EMIT(PPC_INST_SRADI | ___PPC_RA(d) |	      \
160				     ___PPC_RS(a) | __PPC_SH64(i))
161#define PPC_RLWINM(d, a, i, mb, me)	EMIT(PPC_INST_RLWINM | ___PPC_RA(d) | \
162					___PPC_RS(a) | __PPC_SH(i) |	      \
163					__PPC_MB(mb) | __PPC_ME(me))
164#define PPC_RLWIMI(d, a, i, mb, me)	EMIT(PPC_INST_RLWIMI | ___PPC_RA(d) | \
165					___PPC_RS(a) | __PPC_SH(i) |	      \
166					__PPC_MB(mb) | __PPC_ME(me))
167#define PPC_RLDICL(d, a, i, mb)		EMIT(PPC_INST_RLDICL | ___PPC_RA(d) | \
168					___PPC_RS(a) | __PPC_SH64(i) |	      \
169					__PPC_MB64(mb))
170#define PPC_RLDICR(d, a, i, me)		EMIT(PPC_INST_RLDICR | ___PPC_RA(d) | \
171					___PPC_RS(a) | __PPC_SH64(i) |	      \
172					__PPC_ME64(me))
173
174/* slwi = rlwinm Rx, Ry, n, 0, 31-n */
175#define PPC_SLWI(d, a, i)	PPC_RLWINM(d, a, i, 0, 31-(i))
176/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
177#define PPC_SRWI(d, a, i)	PPC_RLWINM(d, a, 32-(i), i, 31)
178/* sldi = rldicr Rx, Ry, n, 63-n */
179#define PPC_SLDI(d, a, i)	PPC_RLDICR(d, a, i, 63-(i))
180/* sldi = rldicl Rx, Ry, 64-n, n */
181#define PPC_SRDI(d, a, i)	PPC_RLDICL(d, a, 64-(i), i)
182
183#define PPC_NEG(d, a)		EMIT(PPC_INST_NEG | ___PPC_RT(d) | ___PPC_RA(a))
184
185/* Long jump; (unconditional 'branch') */
186#define PPC_JMP(dest)		EMIT(PPC_INST_BRANCH |			      \
187				     (((dest) - (ctx->idx * 4)) & 0x03fffffc))
188/* "cond" here covers BO:BI fields. */
189#define PPC_BCC_SHORT(cond, dest)	EMIT(PPC_INST_BRANCH_COND |	      \
190					     (((cond) & 0x3ff) << 16) |	      \
191					     (((dest) - (ctx->idx * 4)) &     \
192					      0xfffc))
193/* Sign-extended 32-bit immediate load */
194#define PPC_LI32(d, i)		do {					      \
195		if ((int)(uintptr_t)(i) >= -32768 &&			      \
196				(int)(uintptr_t)(i) < 32768)		      \
197			PPC_LI(d, i);					      \
198		else {							      \
199			PPC_LIS(d, IMM_H(i));				      \
200			if (IMM_L(i))					      \
201				PPC_ORI(d, d, IMM_L(i));		      \
202		} } while(0)
203
 
204#define PPC_LI64(d, i)		do {					      \
205		if ((long)(i) >= -2147483648 &&				      \
206				(long)(i) < 2147483648)			      \
207			PPC_LI32(d, i);					      \
208		else {							      \
209			if (!((uintptr_t)(i) & 0xffff800000000000ULL))	      \
210				PPC_LI(d, ((uintptr_t)(i) >> 32) & 0xffff);   \
 
211			else {						      \
212				PPC_LIS(d, ((uintptr_t)(i) >> 48));	      \
213				if ((uintptr_t)(i) & 0x0000ffff00000000ULL)   \
214					PPC_ORI(d, d,			      \
215					  ((uintptr_t)(i) >> 32) & 0xffff);   \
216			}						      \
217			PPC_SLDI(d, d, 32);				      \
218			if ((uintptr_t)(i) & 0x00000000ffff0000ULL)	      \
219				PPC_ORIS(d, d,				      \
220					 ((uintptr_t)(i) >> 16) & 0xffff);    \
221			if ((uintptr_t)(i) & 0x000000000000ffffULL)	      \
222				PPC_ORI(d, d, (uintptr_t)(i) & 0xffff);	      \
 
223		} } while (0)
224
225#ifdef CONFIG_PPC64
226#define PPC_FUNC_ADDR(d,i) do { PPC_LI64(d, i); } while(0)
227#else
228#define PPC_FUNC_ADDR(d,i) do { PPC_LI32(d, i); } while(0)
229#endif
230
231static inline bool is_nearbranch(int offset)
232{
233	return (offset < 32768) && (offset >= -32768);
234}
235
236/*
237 * The fly in the ointment of code size changing from pass to pass is
238 * avoided by padding the short branch case with a NOP.	 If code size differs
239 * with different branch reaches we will have the issue of code moving from
240 * one pass to the next and will need a few passes to converge on a stable
241 * state.
242 */
243#define PPC_BCC(cond, dest)	do {					      \
244		if (is_nearbranch((dest) - (ctx->idx * 4))) {		      \
245			PPC_BCC_SHORT(cond, dest);			      \
246			PPC_NOP();					      \
247		} else {						      \
248			/* Flip the 'T or F' bit to invert comparison */      \
249			PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4);  \
250			PPC_JMP(dest);					      \
251		} } while(0)
252
253/* To create a branch condition, select a bit of cr0... */
254#define CR0_LT		0
255#define CR0_GT		1
256#define CR0_EQ		2
257/* ...and modify BO[3] */
258#define COND_CMP_TRUE	0x100
259#define COND_CMP_FALSE	0x000
260/* Together, they make all required comparisons: */
261#define COND_GT		(CR0_GT | COND_CMP_TRUE)
262#define COND_GE		(CR0_LT | COND_CMP_FALSE)
263#define COND_EQ		(CR0_EQ | COND_CMP_TRUE)
264#define COND_NE		(CR0_EQ | COND_CMP_FALSE)
265#define COND_LT		(CR0_LT | COND_CMP_TRUE)
266#define COND_LE		(CR0_GT | COND_CMP_FALSE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
268#endif
269
270#endif