Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * PowerPC Memory Protection Keys management
  4 *
  5 * Copyright 2017, Ram Pai, IBM Corporation.
  6 */
  7
  8#include <asm/mman.h>
  9#include <asm/setup.h>
 10#include <linux/pkeys.h>
 11#include <linux/of_device.h>
 12
 13DEFINE_STATIC_KEY_TRUE(pkey_disabled);
 14bool pkey_execute_disable_supported;
 15int  pkeys_total;		/* Total pkeys as per device tree */
 16bool pkeys_devtree_defined;	/* pkey property exported by device tree */
 17u32  initial_allocation_mask;	/* Bits set for reserved keys */
 18u64  pkey_amr_uamor_mask;	/* Bits in AMR/UMOR not to be touched */
 19u64  pkey_iamr_mask;		/* Bits in AMR not to be touched */
 20
 21#define AMR_BITS_PER_PKEY 2
 22#define AMR_RD_BIT 0x1UL
 23#define AMR_WR_BIT 0x2UL
 24#define IAMR_EX_BIT 0x1UL
 25#define PKEY_REG_BITS (sizeof(u64)*8)
 26#define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY))
 27
 28static void scan_pkey_feature(void)
 29{
 30	u32 vals[2];
 31	struct device_node *cpu;
 32
 33	cpu = of_find_node_by_type(NULL, "cpu");
 34	if (!cpu)
 35		return;
 36
 37	if (of_property_read_u32_array(cpu,
 38			"ibm,processor-storage-keys", vals, 2))
 39		return;
 40
 41	/*
 42	 * Since any pkey can be used for data or execute, we will just treat
 43	 * all keys as equal and track them as one entity.
 44	 */
 45	pkeys_total = be32_to_cpu(vals[0]);
 46	pkeys_devtree_defined = true;
 47}
 48
 49static inline bool pkey_mmu_enabled(void)
 50{
 51	if (firmware_has_feature(FW_FEATURE_LPAR))
 52		return pkeys_total;
 53	else
 54		return cpu_has_feature(CPU_FTR_PKEY);
 55}
 56
 57int pkey_initialize(void)
 58{
 59	int os_reserved, i;
 60
 61	/*
 62	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral
 63	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE.
 64	 * Ensure that the bits a distinct.
 65	 */
 66	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE &
 67		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
 68
 69	/*
 70	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous
 71	 * in the vmaflag. Make sure that is really the case.
 72	 */
 73	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) +
 74		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)
 75				!= (sizeof(u64) * BITS_PER_BYTE));
 76
 77	/* scan the device tree for pkey feature */
 78	scan_pkey_feature();
 79
 80	/*
 81	 * Let's assume 32 pkeys on P8 bare metal, if its not defined by device
 82	 * tree. We make this exception since skiboot forgot to expose this
 83	 * property on power8.
 84	 */
 85	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) &&
 86			cpu_has_feature(CPU_FTRS_POWER8))
 87		pkeys_total = 32;
 88
 89	/*
 90	 * Adjust the upper limit, based on the number of bits supported by
 91	 * arch-neutral code.
 92	 */
 93	pkeys_total = min_t(int, pkeys_total,
 94			(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT));
 95
 96	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total)
 97		static_branch_enable(&pkey_disabled);
 98	else
 99		static_branch_disable(&pkey_disabled);
100
101	if (static_branch_likely(&pkey_disabled))
102		return 0;
103
104	/*
105	 * The device tree cannot be relied to indicate support for
106	 * execute_disable support. Instead we use a PVR check.
107	 */
108	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p))
109		pkey_execute_disable_supported = false;
110	else
111		pkey_execute_disable_supported = true;
112
113#ifdef CONFIG_PPC_4K_PAGES
114	/*
115	 * The OS can manage only 8 pkeys due to its inability to represent them
116	 * in the Linux 4K PTE.
117	 */
118	os_reserved = pkeys_total - 8;
119#else
120	os_reserved = 0;
121#endif
122	initial_allocation_mask = ~0x0;
123	pkey_amr_uamor_mask = ~0x0ul;
124	pkey_iamr_mask = ~0x0ul;
125	/*
126	 * key 0, 1 are reserved.
127	 * key 0 is the default key, which allows read/write/execute.
128	 * key 1 is recommended not to be used. PowerISA(3.0) page 1015,
129	 * programming note.
130	 */
131	for (i = 2; i < (pkeys_total - os_reserved); i++) {
132		initial_allocation_mask &= ~(0x1 << i);
133		pkey_amr_uamor_mask &= ~(0x3ul << pkeyshift(i));
134		pkey_iamr_mask &= ~(0x1ul << pkeyshift(i));
135	}
136	return 0;
137}
138
139arch_initcall(pkey_initialize);
140
141void pkey_mm_init(struct mm_struct *mm)
142{
143	if (static_branch_likely(&pkey_disabled))
144		return;
145	mm_pkey_allocation_map(mm) = initial_allocation_mask;
146	/* -1 means unallocated or invalid */
147	mm->context.execute_only_pkey = -1;
148}
149
150static inline u64 read_amr(void)
151{
152	return mfspr(SPRN_AMR);
153}
154
155static inline void write_amr(u64 value)
156{
157	mtspr(SPRN_AMR, value);
158}
159
160static inline u64 read_iamr(void)
161{
162	if (!likely(pkey_execute_disable_supported))
163		return 0x0UL;
164
165	return mfspr(SPRN_IAMR);
166}
167
168static inline void write_iamr(u64 value)
169{
170	if (!likely(pkey_execute_disable_supported))
171		return;
172
173	mtspr(SPRN_IAMR, value);
174}
175
176static inline u64 read_uamor(void)
177{
178	return mfspr(SPRN_UAMOR);
179}
180
181static inline void write_uamor(u64 value)
182{
183	mtspr(SPRN_UAMOR, value);
184}
185
186static bool is_pkey_enabled(int pkey)
187{
188	u64 uamor = read_uamor();
189	u64 pkey_bits = 0x3ul << pkeyshift(pkey);
190	u64 uamor_pkey_bits = (uamor & pkey_bits);
191
192	/*
193	 * Both the bits in UAMOR corresponding to the key should be set or
194	 * reset.
195	 */
196	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits));
197	return !!(uamor_pkey_bits);
198}
199
200static inline void init_amr(int pkey, u8 init_bits)
201{
202	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey));
203	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey));
204
205	write_amr(old_amr | new_amr_bits);
206}
207
208static inline void init_iamr(int pkey, u8 init_bits)
209{
210	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey));
211	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey));
212
213	write_iamr(old_iamr | new_iamr_bits);
214}
215
216static void pkey_status_change(int pkey, bool enable)
217{
218	u64 old_uamor;
219
220	/* Reset the AMR and IAMR bits for this key */
221	init_amr(pkey, 0x0);
222	init_iamr(pkey, 0x0);
223
224	/* Enable/disable key */
225	old_uamor = read_uamor();
226	if (enable)
227		old_uamor |= (0x3ul << pkeyshift(pkey));
228	else
229		old_uamor &= ~(0x3ul << pkeyshift(pkey));
230	write_uamor(old_uamor);
231}
232
233void __arch_activate_pkey(int pkey)
234{
235	pkey_status_change(pkey, true);
236}
237
238void __arch_deactivate_pkey(int pkey)
239{
240	pkey_status_change(pkey, false);
241}
242
243/*
244 * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that
245 * specified in @init_val.
246 */
247int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
248				unsigned long init_val)
249{
250	u64 new_amr_bits = 0x0ul;
251	u64 new_iamr_bits = 0x0ul;
252
253	if (!is_pkey_enabled(pkey))
254		return -EINVAL;
255
256	if (init_val & PKEY_DISABLE_EXECUTE) {
257		if (!pkey_execute_disable_supported)
258			return -EINVAL;
259		new_iamr_bits |= IAMR_EX_BIT;
260	}
261	init_iamr(pkey, new_iamr_bits);
262
263	/* Set the bits we need in AMR: */
264	if (init_val & PKEY_DISABLE_ACCESS)
265		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT;
266	else if (init_val & PKEY_DISABLE_WRITE)
267		new_amr_bits |= AMR_WR_BIT;
268
269	init_amr(pkey, new_amr_bits);
270	return 0;
271}
272
273void thread_pkey_regs_save(struct thread_struct *thread)
274{
275	if (static_branch_likely(&pkey_disabled))
276		return;
277
278	/*
279	 * TODO: Skip saving registers if @thread hasn't used any keys yet.
280	 */
281	thread->amr = read_amr();
282	thread->iamr = read_iamr();
283	thread->uamor = read_uamor();
284}
285
286void thread_pkey_regs_restore(struct thread_struct *new_thread,
287			      struct thread_struct *old_thread)
288{
289	if (static_branch_likely(&pkey_disabled))
290		return;
291
292	/*
293	 * TODO: Just set UAMOR to zero if @new_thread hasn't used any keys yet.
294	 */
295	if (old_thread->amr != new_thread->amr)
296		write_amr(new_thread->amr);
297	if (old_thread->iamr != new_thread->iamr)
298		write_iamr(new_thread->iamr);
299	if (old_thread->uamor != new_thread->uamor)
300		write_uamor(new_thread->uamor);
301}
302
303void thread_pkey_regs_init(struct thread_struct *thread)
304{
305	if (static_branch_likely(&pkey_disabled))
306		return;
307
308	thread->amr = read_amr() & pkey_amr_uamor_mask;
309	thread->iamr = read_iamr() & pkey_iamr_mask;
310	thread->uamor = read_uamor() & pkey_amr_uamor_mask;
311}
312
313static inline bool pkey_allows_readwrite(int pkey)
314{
315	int pkey_shift = pkeyshift(pkey);
316
317	if (!is_pkey_enabled(pkey))
318		return true;
319
320	return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift));
321}
322
323int __execute_only_pkey(struct mm_struct *mm)
324{
325	bool need_to_set_mm_pkey = false;
326	int execute_only_pkey = mm->context.execute_only_pkey;
327	int ret;
328
329	/* Do we need to assign a pkey for mm's execute-only maps? */
330	if (execute_only_pkey == -1) {
331		/* Go allocate one to use, which might fail */
332		execute_only_pkey = mm_pkey_alloc(mm);
333		if (execute_only_pkey < 0)
334			return -1;
335		need_to_set_mm_pkey = true;
336	}
337
338	/*
339	 * We do not want to go through the relatively costly dance to set AMR
340	 * if we do not need to. Check it first and assume that if the
341	 * execute-only pkey is readwrite-disabled than we do not have to set it
342	 * ourselves.
343	 */
344	if (!need_to_set_mm_pkey && !pkey_allows_readwrite(execute_only_pkey))
345		return execute_only_pkey;
346
347	/*
348	 * Set up AMR so that it denies access for everything other than
349	 * execution.
350	 */
351	ret = __arch_set_user_pkey_access(current, execute_only_pkey,
352					  PKEY_DISABLE_ACCESS |
353					  PKEY_DISABLE_WRITE);
354	/*
355	 * If the AMR-set operation failed somehow, just return 0 and
356	 * effectively disable execute-only support.
357	 */
358	if (ret) {
359		mm_pkey_free(mm, execute_only_pkey);
360		return -1;
361	}
362
363	/* We got one, store it and use it from here on out */
364	if (need_to_set_mm_pkey)
365		mm->context.execute_only_pkey = execute_only_pkey;
366	return execute_only_pkey;
367}
368
369static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma)
370{
371	/* Do this check first since the vm_flags should be hot */
372	if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC)
373		return false;
374
375	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey);
376}
377
378/*
379 * This should only be called for *plain* mprotect calls.
380 */
381int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot,
382				  int pkey)
383{
384	/*
385	 * If the currently associated pkey is execute-only, but the requested
386	 * protection requires read or write, move it back to the default pkey.
387	 */
388	if (vma_is_pkey_exec_only(vma) && (prot & (PROT_READ | PROT_WRITE)))
389		return 0;
390
391	/*
392	 * The requested protection is execute-only. Hence let's use an
393	 * execute-only pkey.
394	 */
395	if (prot == PROT_EXEC) {
396		pkey = execute_only_pkey(vma->vm_mm);
397		if (pkey > 0)
398			return pkey;
399	}
400
401	/* Nothing to override. */
402	return vma_pkey(vma);
403}
404
405static bool pkey_access_permitted(int pkey, bool write, bool execute)
406{
407	int pkey_shift;
408	u64 amr;
409
410	if (!pkey)
411		return true;
412
413	if (!is_pkey_enabled(pkey))
414		return true;
415
416	pkey_shift = pkeyshift(pkey);
417	if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift)))
418		return true;
419
420	amr = read_amr(); /* Delay reading amr until absolutely needed */
421	return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) ||
422		(write &&  !(amr & (AMR_WR_BIT << pkey_shift))));
423}
424
425bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
426{
427	if (static_branch_likely(&pkey_disabled))
428		return true;
429
430	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute);
431}
432
433/*
434 * We only want to enforce protection keys on the current thread because we
435 * effectively have no access to AMR/IAMR for other threads or any way to tell
436 * which AMR/IAMR in a threaded process we could use.
437 *
438 * So do not enforce things if the VMA is not from the current mm, or if we are
439 * in a kernel thread.
440 */
441static inline bool vma_is_foreign(struct vm_area_struct *vma)
442{
443	if (!current->mm)
444		return true;
445
446	/* if it is not our ->mm, it has to be foreign */
447	if (current->mm != vma->vm_mm)
448		return true;
449
450	return false;
451}
452
453bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write,
454			       bool execute, bool foreign)
455{
456	if (static_branch_likely(&pkey_disabled))
457		return true;
458	/*
459	 * Do not enforce our key-permissions on a foreign vma.
460	 */
461	if (foreign || vma_is_foreign(vma))
462		return true;
463
464	return pkey_access_permitted(vma_pkey(vma), write, execute);
465}