Loading...
1/*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/io.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/export.h>
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/moduleparam.h>
19#include <linux/swap.h>
20#include <linux/swapops.h>
21#include <linux/kmemleak.h>
22#include <asm/pgalloc.h>
23#include <asm/tlb.h>
24#include <asm/setup.h>
25#include <asm/hugetlb.h>
26#include <asm/pte-walk.h>
27#include <asm/firmware.h>
28
29bool hugetlb_disabled = false;
30
31#define hugepd_none(hpd) (hpd_val(hpd) == 0)
32
33#define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \
34 __builtin_ffs(sizeof(void *)))
35
36pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
37{
38 /*
39 * Only called for hugetlbfs pages, hence can ignore THP and the
40 * irq disabled walk.
41 */
42 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
43}
44
45static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
46 unsigned long address, unsigned int pdshift,
47 unsigned int pshift, spinlock_t *ptl)
48{
49 struct kmem_cache *cachep;
50 pte_t *new;
51 int i;
52 int num_hugepd;
53
54 if (pshift >= pdshift) {
55 cachep = PGT_CACHE(PTE_T_ORDER);
56 num_hugepd = 1 << (pshift - pdshift);
57 } else {
58 cachep = PGT_CACHE(pdshift - pshift);
59 num_hugepd = 1;
60 }
61
62 if (!cachep) {
63 WARN_ONCE(1, "No page table cache created for hugetlb tables");
64 return -ENOMEM;
65 }
66
67 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
68
69 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
70 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
71
72 if (!new)
73 return -ENOMEM;
74
75 /*
76 * Make sure other cpus find the hugepd set only after a
77 * properly initialized page table is visible to them.
78 * For more details look for comment in __pte_alloc().
79 */
80 smp_wmb();
81
82 spin_lock(ptl);
83 /*
84 * We have multiple higher-level entries that point to the same
85 * actual pte location. Fill in each as we go and backtrack on error.
86 * We need all of these so the DTLB pgtable walk code can find the
87 * right higher-level entry without knowing if it's a hugepage or not.
88 */
89 for (i = 0; i < num_hugepd; i++, hpdp++) {
90 if (unlikely(!hugepd_none(*hpdp)))
91 break;
92 hugepd_populate(hpdp, new, pshift);
93 }
94 /* If we bailed from the for loop early, an error occurred, clean up */
95 if (i < num_hugepd) {
96 for (i = i - 1 ; i >= 0; i--, hpdp--)
97 *hpdp = __hugepd(0);
98 kmem_cache_free(cachep, new);
99 } else {
100 kmemleak_ignore(new);
101 }
102 spin_unlock(ptl);
103 return 0;
104}
105
106/*
107 * At this point we do the placement change only for BOOK3S 64. This would
108 * possibly work on other subarchs.
109 */
110pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
111 unsigned long addr, unsigned long sz)
112{
113 pgd_t *pg;
114 p4d_t *p4;
115 pud_t *pu;
116 pmd_t *pm;
117 hugepd_t *hpdp = NULL;
118 unsigned pshift = __ffs(sz);
119 unsigned pdshift = PGDIR_SHIFT;
120 spinlock_t *ptl;
121
122 addr &= ~(sz-1);
123 pg = pgd_offset(mm, addr);
124 p4 = p4d_offset(pg, addr);
125
126#ifdef CONFIG_PPC_BOOK3S_64
127 if (pshift == PGDIR_SHIFT)
128 /* 16GB huge page */
129 return (pte_t *) p4;
130 else if (pshift > PUD_SHIFT) {
131 /*
132 * We need to use hugepd table
133 */
134 ptl = &mm->page_table_lock;
135 hpdp = (hugepd_t *)p4;
136 } else {
137 pdshift = PUD_SHIFT;
138 pu = pud_alloc(mm, p4, addr);
139 if (!pu)
140 return NULL;
141 if (pshift == PUD_SHIFT)
142 return (pte_t *)pu;
143 else if (pshift > PMD_SHIFT) {
144 ptl = pud_lockptr(mm, pu);
145 hpdp = (hugepd_t *)pu;
146 } else {
147 pdshift = PMD_SHIFT;
148 pm = pmd_alloc(mm, pu, addr);
149 if (!pm)
150 return NULL;
151 if (pshift == PMD_SHIFT)
152 /* 16MB hugepage */
153 return (pte_t *)pm;
154 else {
155 ptl = pmd_lockptr(mm, pm);
156 hpdp = (hugepd_t *)pm;
157 }
158 }
159 }
160#else
161 if (pshift >= PGDIR_SHIFT) {
162 ptl = &mm->page_table_lock;
163 hpdp = (hugepd_t *)p4;
164 } else {
165 pdshift = PUD_SHIFT;
166 pu = pud_alloc(mm, p4, addr);
167 if (!pu)
168 return NULL;
169 if (pshift >= PUD_SHIFT) {
170 ptl = pud_lockptr(mm, pu);
171 hpdp = (hugepd_t *)pu;
172 } else {
173 pdshift = PMD_SHIFT;
174 pm = pmd_alloc(mm, pu, addr);
175 if (!pm)
176 return NULL;
177 ptl = pmd_lockptr(mm, pm);
178 hpdp = (hugepd_t *)pm;
179 }
180 }
181#endif
182 if (!hpdp)
183 return NULL;
184
185 if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
186 return pte_alloc_huge(mm, (pmd_t *)hpdp, addr);
187
188 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
189
190 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
191 pdshift, pshift, ptl))
192 return NULL;
193
194 return hugepte_offset(*hpdp, addr, pdshift);
195}
196
197#ifdef CONFIG_PPC_BOOK3S_64
198/*
199 * Tracks gpages after the device tree is scanned and before the
200 * huge_boot_pages list is ready on pseries.
201 */
202#define MAX_NUMBER_GPAGES 1024
203__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
204__initdata static unsigned nr_gpages;
205
206/*
207 * Build list of addresses of gigantic pages. This function is used in early
208 * boot before the buddy allocator is setup.
209 */
210void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
211{
212 if (!addr)
213 return;
214 while (number_of_pages > 0) {
215 gpage_freearray[nr_gpages] = addr;
216 nr_gpages++;
217 number_of_pages--;
218 addr += page_size;
219 }
220}
221
222static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
223{
224 struct huge_bootmem_page *m;
225 if (nr_gpages == 0)
226 return 0;
227 m = phys_to_virt(gpage_freearray[--nr_gpages]);
228 gpage_freearray[nr_gpages] = 0;
229 list_add(&m->list, &huge_boot_pages);
230 m->hstate = hstate;
231 return 1;
232}
233
234bool __init hugetlb_node_alloc_supported(void)
235{
236 return false;
237}
238#endif
239
240
241int __init alloc_bootmem_huge_page(struct hstate *h, int nid)
242{
243
244#ifdef CONFIG_PPC_BOOK3S_64
245 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
246 return pseries_alloc_bootmem_huge_page(h);
247#endif
248 return __alloc_bootmem_huge_page(h, nid);
249}
250
251#ifndef CONFIG_PPC_BOOK3S_64
252#define HUGEPD_FREELIST_SIZE \
253 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
254
255struct hugepd_freelist {
256 struct rcu_head rcu;
257 unsigned int index;
258 void *ptes[];
259};
260
261static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
262
263static void hugepd_free_rcu_callback(struct rcu_head *head)
264{
265 struct hugepd_freelist *batch =
266 container_of(head, struct hugepd_freelist, rcu);
267 unsigned int i;
268
269 for (i = 0; i < batch->index; i++)
270 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
271
272 free_page((unsigned long)batch);
273}
274
275static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
276{
277 struct hugepd_freelist **batchp;
278
279 batchp = &get_cpu_var(hugepd_freelist_cur);
280
281 if (atomic_read(&tlb->mm->mm_users) < 2 ||
282 mm_is_thread_local(tlb->mm)) {
283 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
284 put_cpu_var(hugepd_freelist_cur);
285 return;
286 }
287
288 if (*batchp == NULL) {
289 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
290 (*batchp)->index = 0;
291 }
292
293 (*batchp)->ptes[(*batchp)->index++] = hugepte;
294 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
295 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
296 *batchp = NULL;
297 }
298 put_cpu_var(hugepd_freelist_cur);
299}
300#else
301static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
302#endif
303
304/* Return true when the entry to be freed maps more than the area being freed */
305static bool range_is_outside_limits(unsigned long start, unsigned long end,
306 unsigned long floor, unsigned long ceiling,
307 unsigned long mask)
308{
309 if ((start & mask) < floor)
310 return true;
311 if (ceiling) {
312 ceiling &= mask;
313 if (!ceiling)
314 return true;
315 }
316 return end - 1 > ceiling - 1;
317}
318
319static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
320 unsigned long start, unsigned long end,
321 unsigned long floor, unsigned long ceiling)
322{
323 pte_t *hugepte = hugepd_page(*hpdp);
324 int i;
325
326 unsigned long pdmask = ~((1UL << pdshift) - 1);
327 unsigned int num_hugepd = 1;
328 unsigned int shift = hugepd_shift(*hpdp);
329
330 /* Note: On fsl the hpdp may be the first of several */
331 if (shift > pdshift)
332 num_hugepd = 1 << (shift - pdshift);
333
334 if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
335 return;
336
337 for (i = 0; i < num_hugepd; i++, hpdp++)
338 *hpdp = __hugepd(0);
339
340 if (shift >= pdshift)
341 hugepd_free(tlb, hugepte);
342 else
343 pgtable_free_tlb(tlb, hugepte,
344 get_hugepd_cache_index(pdshift - shift));
345}
346
347static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
348 unsigned long addr, unsigned long end,
349 unsigned long floor, unsigned long ceiling)
350{
351 pgtable_t token = pmd_pgtable(*pmd);
352
353 if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
354 return;
355
356 pmd_clear(pmd);
357 pte_free_tlb(tlb, token, addr);
358 mm_dec_nr_ptes(tlb->mm);
359}
360
361static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
362 unsigned long addr, unsigned long end,
363 unsigned long floor, unsigned long ceiling)
364{
365 pmd_t *pmd;
366 unsigned long next;
367 unsigned long start;
368
369 start = addr;
370 do {
371 unsigned long more;
372
373 pmd = pmd_offset(pud, addr);
374 next = pmd_addr_end(addr, end);
375 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
376 if (pmd_none_or_clear_bad(pmd))
377 continue;
378
379 /*
380 * if it is not hugepd pointer, we should already find
381 * it cleared.
382 */
383 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
384
385 hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
386
387 continue;
388 }
389 /*
390 * Increment next by the size of the huge mapping since
391 * there may be more than one entry at this level for a
392 * single hugepage, but all of them point to
393 * the same kmem cache that holds the hugepte.
394 */
395 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pmd));
396 if (more > next)
397 next = more;
398
399 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
400 addr, next, floor, ceiling);
401 } while (addr = next, addr != end);
402
403 if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
404 return;
405
406 pmd = pmd_offset(pud, start & PUD_MASK);
407 pud_clear(pud);
408 pmd_free_tlb(tlb, pmd, start & PUD_MASK);
409 mm_dec_nr_pmds(tlb->mm);
410}
411
412static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
415{
416 pud_t *pud;
417 unsigned long next;
418 unsigned long start;
419
420 start = addr;
421 do {
422 pud = pud_offset(p4d, addr);
423 next = pud_addr_end(addr, end);
424 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
425 if (pud_none_or_clear_bad(pud))
426 continue;
427 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
428 ceiling);
429 } else {
430 unsigned long more;
431 /*
432 * Increment next by the size of the huge mapping since
433 * there may be more than one entry at this level for a
434 * single hugepage, but all of them point to
435 * the same kmem cache that holds the hugepte.
436 */
437 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pud));
438 if (more > next)
439 next = more;
440
441 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
442 addr, next, floor, ceiling);
443 }
444 } while (addr = next, addr != end);
445
446 if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
447 return;
448
449 pud = pud_offset(p4d, start & PGDIR_MASK);
450 p4d_clear(p4d);
451 pud_free_tlb(tlb, pud, start & PGDIR_MASK);
452 mm_dec_nr_puds(tlb->mm);
453}
454
455/*
456 * This function frees user-level page tables of a process.
457 */
458void hugetlb_free_pgd_range(struct mmu_gather *tlb,
459 unsigned long addr, unsigned long end,
460 unsigned long floor, unsigned long ceiling)
461{
462 pgd_t *pgd;
463 p4d_t *p4d;
464 unsigned long next;
465
466 /*
467 * Because there are a number of different possible pagetable
468 * layouts for hugepage ranges, we limit knowledge of how
469 * things should be laid out to the allocation path
470 * (huge_pte_alloc(), above). Everything else works out the
471 * structure as it goes from information in the hugepd
472 * pointers. That means that we can't here use the
473 * optimization used in the normal page free_pgd_range(), of
474 * checking whether we're actually covering a large enough
475 * range to have to do anything at the top level of the walk
476 * instead of at the bottom.
477 *
478 * To make sense of this, you should probably go read the big
479 * block comment at the top of the normal free_pgd_range(),
480 * too.
481 */
482
483 do {
484 next = pgd_addr_end(addr, end);
485 pgd = pgd_offset(tlb->mm, addr);
486 p4d = p4d_offset(pgd, addr);
487 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
488 if (p4d_none_or_clear_bad(p4d))
489 continue;
490 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
491 } else {
492 unsigned long more;
493 /*
494 * Increment next by the size of the huge mapping since
495 * there may be more than one entry at the pgd level
496 * for a single hugepage, but all of them point to the
497 * same kmem cache that holds the hugepte.
498 */
499 more = addr + (1UL << hugepd_shift(*(hugepd_t *)pgd));
500 if (more > next)
501 next = more;
502
503 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
504 addr, next, floor, ceiling);
505 }
506 } while (addr = next, addr != end);
507}
508
509bool __init arch_hugetlb_valid_size(unsigned long size)
510{
511 int shift = __ffs(size);
512 int mmu_psize;
513
514 /* Check that it is a page size supported by the hardware and
515 * that it fits within pagetable and slice limits. */
516 if (size <= PAGE_SIZE || !is_power_of_2(size))
517 return false;
518
519 mmu_psize = check_and_get_huge_psize(shift);
520 if (mmu_psize < 0)
521 return false;
522
523 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
524
525 return true;
526}
527
528static int __init add_huge_page_size(unsigned long long size)
529{
530 int shift = __ffs(size);
531
532 if (!arch_hugetlb_valid_size((unsigned long)size))
533 return -EINVAL;
534
535 hugetlb_add_hstate(shift - PAGE_SHIFT);
536 return 0;
537}
538
539static int __init hugetlbpage_init(void)
540{
541 bool configured = false;
542 int psize;
543
544 if (hugetlb_disabled) {
545 pr_info("HugeTLB support is disabled!\n");
546 return 0;
547 }
548
549 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
550 !mmu_has_feature(MMU_FTR_16M_PAGE))
551 return -ENODEV;
552
553 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
554 unsigned shift;
555 unsigned pdshift;
556
557 if (!mmu_psize_defs[psize].shift)
558 continue;
559
560 shift = mmu_psize_to_shift(psize);
561
562#ifdef CONFIG_PPC_BOOK3S_64
563 if (shift > PGDIR_SHIFT)
564 continue;
565 else if (shift > PUD_SHIFT)
566 pdshift = PGDIR_SHIFT;
567 else if (shift > PMD_SHIFT)
568 pdshift = PUD_SHIFT;
569 else
570 pdshift = PMD_SHIFT;
571#else
572 if (shift < PUD_SHIFT)
573 pdshift = PMD_SHIFT;
574 else if (shift < PGDIR_SHIFT)
575 pdshift = PUD_SHIFT;
576 else
577 pdshift = PGDIR_SHIFT;
578#endif
579
580 if (add_huge_page_size(1ULL << shift) < 0)
581 continue;
582 /*
583 * if we have pdshift and shift value same, we don't
584 * use pgt cache for hugepd.
585 */
586 if (pdshift > shift) {
587 if (!IS_ENABLED(CONFIG_PPC_8xx))
588 pgtable_cache_add(pdshift - shift);
589 } else if (IS_ENABLED(CONFIG_PPC_E500) ||
590 IS_ENABLED(CONFIG_PPC_8xx)) {
591 pgtable_cache_add(PTE_T_ORDER);
592 }
593
594 configured = true;
595 }
596
597 if (!configured)
598 pr_info("Failed to initialize. Disabling HugeTLB");
599
600 return 0;
601}
602
603arch_initcall(hugetlbpage_init);
604
605void __init gigantic_hugetlb_cma_reserve(void)
606{
607 unsigned long order = 0;
608
609 if (radix_enabled())
610 order = PUD_SHIFT - PAGE_SHIFT;
611 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
612 /*
613 * For pseries we do use ibm,expected#pages for reserving 16G pages.
614 */
615 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
616
617 if (order) {
618 VM_WARN_ON(order <= MAX_PAGE_ORDER);
619 hugetlb_cma_reserve(order);
620 }
621}
1/*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/io.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/export.h>
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
19#include <linux/moduleparam.h>
20#include <linux/swap.h>
21#include <linux/swapops.h>
22#include <asm/pgtable.h>
23#include <asm/pgalloc.h>
24#include <asm/tlb.h>
25#include <asm/setup.h>
26#include <asm/hugetlb.h>
27#include <asm/pte-walk.h>
28
29
30#ifdef CONFIG_HUGETLB_PAGE
31
32#define PAGE_SHIFT_64K 16
33#define PAGE_SHIFT_512K 19
34#define PAGE_SHIFT_8M 23
35#define PAGE_SHIFT_16M 24
36#define PAGE_SHIFT_16G 34
37
38unsigned int HPAGE_SHIFT;
39EXPORT_SYMBOL(HPAGE_SHIFT);
40
41#define hugepd_none(hpd) (hpd_val(hpd) == 0)
42
43pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
44{
45 /*
46 * Only called for hugetlbfs pages, hence can ignore THP and the
47 * irq disabled walk.
48 */
49 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
50}
51
52static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
53 unsigned long address, unsigned pdshift, unsigned pshift)
54{
55 struct kmem_cache *cachep;
56 pte_t *new;
57 int i;
58 int num_hugepd;
59
60 if (pshift >= pdshift) {
61 cachep = hugepte_cache;
62 num_hugepd = 1 << (pshift - pdshift);
63 } else {
64 cachep = PGT_CACHE(pdshift - pshift);
65 num_hugepd = 1;
66 }
67
68 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
69
70 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
71 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
72
73 if (! new)
74 return -ENOMEM;
75
76 /*
77 * Make sure other cpus find the hugepd set only after a
78 * properly initialized page table is visible to them.
79 * For more details look for comment in __pte_alloc().
80 */
81 smp_wmb();
82
83 spin_lock(&mm->page_table_lock);
84
85 /*
86 * We have multiple higher-level entries that point to the same
87 * actual pte location. Fill in each as we go and backtrack on error.
88 * We need all of these so the DTLB pgtable walk code can find the
89 * right higher-level entry without knowing if it's a hugepage or not.
90 */
91 for (i = 0; i < num_hugepd; i++, hpdp++) {
92 if (unlikely(!hugepd_none(*hpdp)))
93 break;
94 else {
95#ifdef CONFIG_PPC_BOOK3S_64
96 *hpdp = __hugepd(__pa(new) |
97 (shift_to_mmu_psize(pshift) << 2));
98#elif defined(CONFIG_PPC_8xx)
99 *hpdp = __hugepd(__pa(new) | _PMD_USER |
100 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
101 _PMD_PAGE_512K) | _PMD_PRESENT);
102#else
103 /* We use the old format for PPC_FSL_BOOK3E */
104 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
105#endif
106 }
107 }
108 /* If we bailed from the for loop early, an error occurred, clean up */
109 if (i < num_hugepd) {
110 for (i = i - 1 ; i >= 0; i--, hpdp--)
111 *hpdp = __hugepd(0);
112 kmem_cache_free(cachep, new);
113 }
114 spin_unlock(&mm->page_table_lock);
115 return 0;
116}
117
118/*
119 * These macros define how to determine which level of the page table holds
120 * the hpdp.
121 */
122#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
123#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
124#define HUGEPD_PUD_SHIFT PUD_SHIFT
125#endif
126
127/*
128 * At this point we do the placement change only for BOOK3S 64. This would
129 * possibly work on other subarchs.
130 */
131pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
132{
133 pgd_t *pg;
134 pud_t *pu;
135 pmd_t *pm;
136 hugepd_t *hpdp = NULL;
137 unsigned pshift = __ffs(sz);
138 unsigned pdshift = PGDIR_SHIFT;
139
140 addr &= ~(sz-1);
141 pg = pgd_offset(mm, addr);
142
143#ifdef CONFIG_PPC_BOOK3S_64
144 if (pshift == PGDIR_SHIFT)
145 /* 16GB huge page */
146 return (pte_t *) pg;
147 else if (pshift > PUD_SHIFT)
148 /*
149 * We need to use hugepd table
150 */
151 hpdp = (hugepd_t *)pg;
152 else {
153 pdshift = PUD_SHIFT;
154 pu = pud_alloc(mm, pg, addr);
155 if (pshift == PUD_SHIFT)
156 return (pte_t *)pu;
157 else if (pshift > PMD_SHIFT)
158 hpdp = (hugepd_t *)pu;
159 else {
160 pdshift = PMD_SHIFT;
161 pm = pmd_alloc(mm, pu, addr);
162 if (pshift == PMD_SHIFT)
163 /* 16MB hugepage */
164 return (pte_t *)pm;
165 else
166 hpdp = (hugepd_t *)pm;
167 }
168 }
169#else
170 if (pshift >= HUGEPD_PGD_SHIFT) {
171 hpdp = (hugepd_t *)pg;
172 } else {
173 pdshift = PUD_SHIFT;
174 pu = pud_alloc(mm, pg, addr);
175 if (pshift >= HUGEPD_PUD_SHIFT) {
176 hpdp = (hugepd_t *)pu;
177 } else {
178 pdshift = PMD_SHIFT;
179 pm = pmd_alloc(mm, pu, addr);
180 hpdp = (hugepd_t *)pm;
181 }
182 }
183#endif
184 if (!hpdp)
185 return NULL;
186
187 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
188
189 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
190 return NULL;
191
192 return hugepte_offset(*hpdp, addr, pdshift);
193}
194
195#ifdef CONFIG_PPC_BOOK3S_64
196/*
197 * Tracks gpages after the device tree is scanned and before the
198 * huge_boot_pages list is ready on pseries.
199 */
200#define MAX_NUMBER_GPAGES 1024
201__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202__initdata static unsigned nr_gpages;
203
204/*
205 * Build list of addresses of gigantic pages. This function is used in early
206 * boot before the buddy allocator is setup.
207 */
208void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209{
210 if (!addr)
211 return;
212 while (number_of_pages > 0) {
213 gpage_freearray[nr_gpages] = addr;
214 nr_gpages++;
215 number_of_pages--;
216 addr += page_size;
217 }
218}
219
220int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221{
222 struct huge_bootmem_page *m;
223 if (nr_gpages == 0)
224 return 0;
225 m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 gpage_freearray[nr_gpages] = 0;
227 list_add(&m->list, &huge_boot_pages);
228 m->hstate = hstate;
229 return 1;
230}
231#endif
232
233
234int __init alloc_bootmem_huge_page(struct hstate *h)
235{
236
237#ifdef CONFIG_PPC_BOOK3S_64
238 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 return pseries_alloc_bootmem_huge_page(h);
240#endif
241 return __alloc_bootmem_huge_page(h);
242}
243
244#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
245#define HUGEPD_FREELIST_SIZE \
246 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247
248struct hugepd_freelist {
249 struct rcu_head rcu;
250 unsigned int index;
251 void *ptes[0];
252};
253
254static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255
256static void hugepd_free_rcu_callback(struct rcu_head *head)
257{
258 struct hugepd_freelist *batch =
259 container_of(head, struct hugepd_freelist, rcu);
260 unsigned int i;
261
262 for (i = 0; i < batch->index; i++)
263 kmem_cache_free(hugepte_cache, batch->ptes[i]);
264
265 free_page((unsigned long)batch);
266}
267
268static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269{
270 struct hugepd_freelist **batchp;
271
272 batchp = &get_cpu_var(hugepd_freelist_cur);
273
274 if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 mm_is_thread_local(tlb->mm)) {
276 kmem_cache_free(hugepte_cache, hugepte);
277 put_cpu_var(hugepd_freelist_cur);
278 return;
279 }
280
281 if (*batchp == NULL) {
282 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 (*batchp)->index = 0;
284 }
285
286 (*batchp)->ptes[(*batchp)->index++] = hugepte;
287 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 *batchp = NULL;
290 }
291 put_cpu_var(hugepd_freelist_cur);
292}
293#else
294static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295#endif
296
297static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298 unsigned long start, unsigned long end,
299 unsigned long floor, unsigned long ceiling)
300{
301 pte_t *hugepte = hugepd_page(*hpdp);
302 int i;
303
304 unsigned long pdmask = ~((1UL << pdshift) - 1);
305 unsigned int num_hugepd = 1;
306 unsigned int shift = hugepd_shift(*hpdp);
307
308 /* Note: On fsl the hpdp may be the first of several */
309 if (shift > pdshift)
310 num_hugepd = 1 << (shift - pdshift);
311
312 start &= pdmask;
313 if (start < floor)
314 return;
315 if (ceiling) {
316 ceiling &= pdmask;
317 if (! ceiling)
318 return;
319 }
320 if (end - 1 > ceiling - 1)
321 return;
322
323 for (i = 0; i < num_hugepd; i++, hpdp++)
324 *hpdp = __hugepd(0);
325
326 if (shift >= pdshift)
327 hugepd_free(tlb, hugepte);
328 else
329 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
330}
331
332static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
333 unsigned long addr, unsigned long end,
334 unsigned long floor, unsigned long ceiling)
335{
336 pmd_t *pmd;
337 unsigned long next;
338 unsigned long start;
339
340 start = addr;
341 do {
342 unsigned long more;
343
344 pmd = pmd_offset(pud, addr);
345 next = pmd_addr_end(addr, end);
346 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
347 /*
348 * if it is not hugepd pointer, we should already find
349 * it cleared.
350 */
351 WARN_ON(!pmd_none_or_clear_bad(pmd));
352 continue;
353 }
354 /*
355 * Increment next by the size of the huge mapping since
356 * there may be more than one entry at this level for a
357 * single hugepage, but all of them point to
358 * the same kmem cache that holds the hugepte.
359 */
360 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
361 if (more > next)
362 next = more;
363
364 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
365 addr, next, floor, ceiling);
366 } while (addr = next, addr != end);
367
368 start &= PUD_MASK;
369 if (start < floor)
370 return;
371 if (ceiling) {
372 ceiling &= PUD_MASK;
373 if (!ceiling)
374 return;
375 }
376 if (end - 1 > ceiling - 1)
377 return;
378
379 pmd = pmd_offset(pud, start);
380 pud_clear(pud);
381 pmd_free_tlb(tlb, pmd, start);
382 mm_dec_nr_pmds(tlb->mm);
383}
384
385static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
386 unsigned long addr, unsigned long end,
387 unsigned long floor, unsigned long ceiling)
388{
389 pud_t *pud;
390 unsigned long next;
391 unsigned long start;
392
393 start = addr;
394 do {
395 pud = pud_offset(pgd, addr);
396 next = pud_addr_end(addr, end);
397 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
398 if (pud_none_or_clear_bad(pud))
399 continue;
400 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
401 ceiling);
402 } else {
403 unsigned long more;
404 /*
405 * Increment next by the size of the huge mapping since
406 * there may be more than one entry at this level for a
407 * single hugepage, but all of them point to
408 * the same kmem cache that holds the hugepte.
409 */
410 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
411 if (more > next)
412 next = more;
413
414 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
415 addr, next, floor, ceiling);
416 }
417 } while (addr = next, addr != end);
418
419 start &= PGDIR_MASK;
420 if (start < floor)
421 return;
422 if (ceiling) {
423 ceiling &= PGDIR_MASK;
424 if (!ceiling)
425 return;
426 }
427 if (end - 1 > ceiling - 1)
428 return;
429
430 pud = pud_offset(pgd, start);
431 pgd_clear(pgd);
432 pud_free_tlb(tlb, pud, start);
433 mm_dec_nr_puds(tlb->mm);
434}
435
436/*
437 * This function frees user-level page tables of a process.
438 */
439void hugetlb_free_pgd_range(struct mmu_gather *tlb,
440 unsigned long addr, unsigned long end,
441 unsigned long floor, unsigned long ceiling)
442{
443 pgd_t *pgd;
444 unsigned long next;
445
446 /*
447 * Because there are a number of different possible pagetable
448 * layouts for hugepage ranges, we limit knowledge of how
449 * things should be laid out to the allocation path
450 * (huge_pte_alloc(), above). Everything else works out the
451 * structure as it goes from information in the hugepd
452 * pointers. That means that we can't here use the
453 * optimization used in the normal page free_pgd_range(), of
454 * checking whether we're actually covering a large enough
455 * range to have to do anything at the top level of the walk
456 * instead of at the bottom.
457 *
458 * To make sense of this, you should probably go read the big
459 * block comment at the top of the normal free_pgd_range(),
460 * too.
461 */
462
463 do {
464 next = pgd_addr_end(addr, end);
465 pgd = pgd_offset(tlb->mm, addr);
466 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
467 if (pgd_none_or_clear_bad(pgd))
468 continue;
469 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
470 } else {
471 unsigned long more;
472 /*
473 * Increment next by the size of the huge mapping since
474 * there may be more than one entry at the pgd level
475 * for a single hugepage, but all of them point to the
476 * same kmem cache that holds the hugepte.
477 */
478 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
479 if (more > next)
480 next = more;
481
482 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
483 addr, next, floor, ceiling);
484 }
485 } while (addr = next, addr != end);
486}
487
488struct page *follow_huge_pd(struct vm_area_struct *vma,
489 unsigned long address, hugepd_t hpd,
490 int flags, int pdshift)
491{
492 pte_t *ptep;
493 spinlock_t *ptl;
494 struct page *page = NULL;
495 unsigned long mask;
496 int shift = hugepd_shift(hpd);
497 struct mm_struct *mm = vma->vm_mm;
498
499retry:
500 ptl = &mm->page_table_lock;
501 spin_lock(ptl);
502
503 ptep = hugepte_offset(hpd, address, pdshift);
504 if (pte_present(*ptep)) {
505 mask = (1UL << shift) - 1;
506 page = pte_page(*ptep);
507 page += ((address & mask) >> PAGE_SHIFT);
508 if (flags & FOLL_GET)
509 get_page(page);
510 } else {
511 if (is_hugetlb_entry_migration(*ptep)) {
512 spin_unlock(ptl);
513 __migration_entry_wait(mm, ptep, ptl);
514 goto retry;
515 }
516 }
517 spin_unlock(ptl);
518 return page;
519}
520
521static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
522 unsigned long sz)
523{
524 unsigned long __boundary = (addr + sz) & ~(sz-1);
525 return (__boundary - 1 < end - 1) ? __boundary : end;
526}
527
528int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
529 unsigned long end, int write, struct page **pages, int *nr)
530{
531 pte_t *ptep;
532 unsigned long sz = 1UL << hugepd_shift(hugepd);
533 unsigned long next;
534
535 ptep = hugepte_offset(hugepd, addr, pdshift);
536 do {
537 next = hugepte_addr_end(addr, end, sz);
538 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
539 return 0;
540 } while (ptep++, addr = next, addr != end);
541
542 return 1;
543}
544
545#ifdef CONFIG_PPC_MM_SLICES
546unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
547 unsigned long len, unsigned long pgoff,
548 unsigned long flags)
549{
550 struct hstate *hstate = hstate_file(file);
551 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
552
553#ifdef CONFIG_PPC_RADIX_MMU
554 if (radix_enabled())
555 return radix__hugetlb_get_unmapped_area(file, addr, len,
556 pgoff, flags);
557#endif
558 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
559}
560#endif
561
562unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
563{
564#ifdef CONFIG_PPC_MM_SLICES
565 /* With radix we don't use slice, so derive it from vma*/
566 if (!radix_enabled()) {
567 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
568
569 return 1UL << mmu_psize_to_shift(psize);
570 }
571#endif
572 return vma_kernel_pagesize(vma);
573}
574
575static inline bool is_power_of_4(unsigned long x)
576{
577 if (is_power_of_2(x))
578 return (__ilog2(x) % 2) ? false : true;
579 return false;
580}
581
582static int __init add_huge_page_size(unsigned long long size)
583{
584 int shift = __ffs(size);
585 int mmu_psize;
586
587 /* Check that it is a page size supported by the hardware and
588 * that it fits within pagetable and slice limits. */
589 if (size <= PAGE_SIZE)
590 return -EINVAL;
591#if defined(CONFIG_PPC_FSL_BOOK3E)
592 if (!is_power_of_4(size))
593 return -EINVAL;
594#elif !defined(CONFIG_PPC_8xx)
595 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
596 return -EINVAL;
597#endif
598
599 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
600 return -EINVAL;
601
602#ifdef CONFIG_PPC_BOOK3S_64
603 /*
604 * We need to make sure that for different page sizes reported by
605 * firmware we only add hugetlb support for page sizes that can be
606 * supported by linux page table layout.
607 * For now we have
608 * Radix: 2M
609 * Hash: 16M and 16G
610 */
611 if (radix_enabled()) {
612 if (mmu_psize != MMU_PAGE_2M) {
613 if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
614 (mmu_psize != MMU_PAGE_1G))
615 return -EINVAL;
616 }
617 } else {
618 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
619 return -EINVAL;
620 }
621#endif
622
623 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
624
625 /* Return if huge page size has already been setup */
626 if (size_to_hstate(size))
627 return 0;
628
629 hugetlb_add_hstate(shift - PAGE_SHIFT);
630
631 return 0;
632}
633
634static int __init hugepage_setup_sz(char *str)
635{
636 unsigned long long size;
637
638 size = memparse(str, &str);
639
640 if (add_huge_page_size(size) != 0) {
641 hugetlb_bad_size();
642 pr_err("Invalid huge page size specified(%llu)\n", size);
643 }
644
645 return 1;
646}
647__setup("hugepagesz=", hugepage_setup_sz);
648
649struct kmem_cache *hugepte_cache;
650static int __init hugetlbpage_init(void)
651{
652 int psize;
653
654#if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
655 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
656 return -ENODEV;
657#endif
658 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
659 unsigned shift;
660 unsigned pdshift;
661
662 if (!mmu_psize_defs[psize].shift)
663 continue;
664
665 shift = mmu_psize_to_shift(psize);
666
667#ifdef CONFIG_PPC_BOOK3S_64
668 if (shift > PGDIR_SHIFT)
669 continue;
670 else if (shift > PUD_SHIFT)
671 pdshift = PGDIR_SHIFT;
672 else if (shift > PMD_SHIFT)
673 pdshift = PUD_SHIFT;
674 else
675 pdshift = PMD_SHIFT;
676#else
677 if (shift < HUGEPD_PUD_SHIFT)
678 pdshift = PMD_SHIFT;
679 else if (shift < HUGEPD_PGD_SHIFT)
680 pdshift = PUD_SHIFT;
681 else
682 pdshift = PGDIR_SHIFT;
683#endif
684
685 if (add_huge_page_size(1ULL << shift) < 0)
686 continue;
687 /*
688 * if we have pdshift and shift value same, we don't
689 * use pgt cache for hugepd.
690 */
691 if (pdshift > shift)
692 pgtable_cache_add(pdshift - shift, NULL);
693#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
694 else if (!hugepte_cache) {
695 /*
696 * Create a kmem cache for hugeptes. The bottom bits in
697 * the pte have size information encoded in them, so
698 * align them to allow this
699 */
700 hugepte_cache = kmem_cache_create("hugepte-cache",
701 sizeof(pte_t),
702 HUGEPD_SHIFT_MASK + 1,
703 0, NULL);
704 if (hugepte_cache == NULL)
705 panic("%s: Unable to create kmem cache "
706 "for hugeptes\n", __func__);
707
708 }
709#endif
710 }
711
712#if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
713 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
714 if (mmu_psize_defs[MMU_PAGE_4M].shift)
715 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
716 else if (mmu_psize_defs[MMU_PAGE_512K].shift)
717 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
718#else
719 /* Set default large page size. Currently, we pick 16M or 1M
720 * depending on what is available
721 */
722 if (mmu_psize_defs[MMU_PAGE_16M].shift)
723 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
724 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
725 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
726 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
727 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
728#endif
729 return 0;
730}
731
732arch_initcall(hugetlbpage_init);
733
734void flush_dcache_icache_hugepage(struct page *page)
735{
736 int i;
737 void *start;
738
739 BUG_ON(!PageCompound(page));
740
741 for (i = 0; i < (1UL << compound_order(page)); i++) {
742 if (!PageHighMem(page)) {
743 __flush_dcache_icache(page_address(page+i));
744 } else {
745 start = kmap_atomic(page+i);
746 __flush_dcache_icache(start);
747 kunmap_atomic(start);
748 }
749 }
750}
751
752#endif /* CONFIG_HUGETLB_PAGE */
753
754/*
755 * We have 4 cases for pgds and pmds:
756 * (1) invalid (all zeroes)
757 * (2) pointer to next table, as normal; bottom 6 bits == 0
758 * (3) leaf pte for huge page _PAGE_PTE set
759 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
760 *
761 * So long as we atomically load page table pointers we are safe against teardown,
762 * we can follow the address down to the the page and take a ref on it.
763 * This function need to be called with interrupts disabled. We use this variant
764 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
765 */
766pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
767 bool *is_thp, unsigned *hpage_shift)
768{
769 pgd_t pgd, *pgdp;
770 pud_t pud, *pudp;
771 pmd_t pmd, *pmdp;
772 pte_t *ret_pte;
773 hugepd_t *hpdp = NULL;
774 unsigned pdshift = PGDIR_SHIFT;
775
776 if (hpage_shift)
777 *hpage_shift = 0;
778
779 if (is_thp)
780 *is_thp = false;
781
782 pgdp = pgdir + pgd_index(ea);
783 pgd = READ_ONCE(*pgdp);
784 /*
785 * Always operate on the local stack value. This make sure the
786 * value don't get updated by a parallel THP split/collapse,
787 * page fault or a page unmap. The return pte_t * is still not
788 * stable. So should be checked there for above conditions.
789 */
790 if (pgd_none(pgd))
791 return NULL;
792 else if (pgd_huge(pgd)) {
793 ret_pte = (pte_t *) pgdp;
794 goto out;
795 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
796 hpdp = (hugepd_t *)&pgd;
797 else {
798 /*
799 * Even if we end up with an unmap, the pgtable will not
800 * be freed, because we do an rcu free and here we are
801 * irq disabled
802 */
803 pdshift = PUD_SHIFT;
804 pudp = pud_offset(&pgd, ea);
805 pud = READ_ONCE(*pudp);
806
807 if (pud_none(pud))
808 return NULL;
809 else if (pud_huge(pud)) {
810 ret_pte = (pte_t *) pudp;
811 goto out;
812 } else if (is_hugepd(__hugepd(pud_val(pud))))
813 hpdp = (hugepd_t *)&pud;
814 else {
815 pdshift = PMD_SHIFT;
816 pmdp = pmd_offset(&pud, ea);
817 pmd = READ_ONCE(*pmdp);
818 /*
819 * A hugepage collapse is captured by pmd_none, because
820 * it mark the pmd none and do a hpte invalidate.
821 */
822 if (pmd_none(pmd))
823 return NULL;
824
825 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
826 if (is_thp)
827 *is_thp = true;
828 ret_pte = (pte_t *) pmdp;
829 goto out;
830 }
831
832 if (pmd_huge(pmd)) {
833 ret_pte = (pte_t *) pmdp;
834 goto out;
835 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
836 hpdp = (hugepd_t *)&pmd;
837 else
838 return pte_offset_kernel(&pmd, ea);
839 }
840 }
841 if (!hpdp)
842 return NULL;
843
844 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
845 pdshift = hugepd_shift(*hpdp);
846out:
847 if (hpage_shift)
848 *hpage_shift = pdshift;
849 return ret_pte;
850}
851EXPORT_SYMBOL_GPL(__find_linux_pte);
852
853int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
854 unsigned long end, int write, struct page **pages, int *nr)
855{
856 unsigned long pte_end;
857 struct page *head, *page;
858 pte_t pte;
859 int refs;
860
861 pte_end = (addr + sz) & ~(sz-1);
862 if (pte_end < end)
863 end = pte_end;
864
865 pte = READ_ONCE(*ptep);
866
867 if (!pte_access_permitted(pte, write))
868 return 0;
869
870 /* hugepages are never "special" */
871 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
872
873 refs = 0;
874 head = pte_page(pte);
875
876 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
877 do {
878 VM_BUG_ON(compound_head(page) != head);
879 pages[*nr] = page;
880 (*nr)++;
881 page++;
882 refs++;
883 } while (addr += PAGE_SIZE, addr != end);
884
885 if (!page_cache_add_speculative(head, refs)) {
886 *nr -= refs;
887 return 0;
888 }
889
890 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
891 /* Could be optimized better */
892 *nr -= refs;
893 while (refs--)
894 put_page(head);
895 return 0;
896 }
897
898 return 1;
899}