Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2003-2006 Silicon Graphics, Inc.  All Rights Reserved.
   7 */
   8
   9#include <linux/types.h>
  10#include <linux/interrupt.h>
  11#include <linux/slab.h>
  12#include <linux/pci.h>
  13#include <asm/sn/sn_sal.h>
  14#include <asm/sn/addrs.h>
  15#include <asm/sn/io.h>
  16#include <asm/sn/pcidev.h>
  17#include <asm/sn/pcibus_provider_defs.h>
  18#include <asm/sn/tioce_provider.h>
  19
  20/*
  21 * 1/26/2006
  22 *
  23 * WAR for SGI PV 944642.  For revA TIOCE, need to use the following recipe
  24 * (taken from the above PV) before and after accessing tioce internal MMR's
  25 * to avoid tioce lockups.
  26 *
  27 * The recipe as taken from the PV:
  28 *
  29 *	if(mmr address < 0x45000) {
  30 *		if(mmr address == 0 or 0x80)
  31 *			mmr wrt or read address 0xc0
  32 *		else if(mmr address == 0x148 or 0x200)
  33 *			mmr wrt or read address 0x28
  34 *		else
  35 *			mmr wrt or read address 0x158
  36 *
  37 *		do desired mmr access (rd or wrt)
  38 *
  39 *		if(mmr address == 0x100)
  40 *			mmr wrt or read address 0x38
  41 *		mmr wrt or read address 0xb050
  42 *	} else
  43 *		do desired mmr access
  44 *
  45 * According to hw, we can use reads instead of writes to the above address
  46 *
  47 * Note this WAR can only to be used for accessing internal MMR's in the
  48 * TIOCE Coretalk Address Range 0x0 - 0x07ff_ffff.  This includes the
  49 * "Local CE Registers and Memories" and "PCI Compatible Config Space" address
  50 * spaces from table 2-1 of the "CE Programmer's Reference Overview" document.
  51 *
  52 * All registers defined in struct tioce will meet that criteria.
  53 */
  54
  55static inline void
  56tioce_mmr_war_pre(struct tioce_kernel *kern, void __iomem *mmr_addr)
  57{
  58	u64 mmr_base;
  59	u64 mmr_offset;
  60
  61	if (kern->ce_common->ce_rev != TIOCE_REV_A)
  62		return;
  63
  64	mmr_base = kern->ce_common->ce_pcibus.bs_base;
  65	mmr_offset = (unsigned long)mmr_addr - mmr_base;
  66
  67	if (mmr_offset < 0x45000) {
  68		u64 mmr_war_offset;
  69
  70		if (mmr_offset == 0 || mmr_offset == 0x80)
  71			mmr_war_offset = 0xc0;
  72		else if (mmr_offset == 0x148 || mmr_offset == 0x200)
  73			mmr_war_offset = 0x28;
  74		else
  75			mmr_war_offset = 0x158;
  76
  77		readq_relaxed((void __iomem *)(mmr_base + mmr_war_offset));
  78	}
  79}
  80
  81static inline void
  82tioce_mmr_war_post(struct tioce_kernel *kern, void __iomem *mmr_addr)
  83{
  84	u64 mmr_base;
  85	u64 mmr_offset;
  86
  87	if (kern->ce_common->ce_rev != TIOCE_REV_A)
  88		return;
  89
  90	mmr_base = kern->ce_common->ce_pcibus.bs_base;
  91	mmr_offset = (unsigned long)mmr_addr - mmr_base;
  92
  93	if (mmr_offset < 0x45000) {
  94		if (mmr_offset == 0x100)
  95			readq_relaxed((void __iomem *)(mmr_base + 0x38));
  96		readq_relaxed((void __iomem *)(mmr_base + 0xb050));
  97	}
  98}
  99
 100/* load mmr contents into a variable */
 101#define tioce_mmr_load(kern, mmrp, varp) do {\
 102	tioce_mmr_war_pre(kern, mmrp); \
 103	*(varp) = readq_relaxed(mmrp); \
 104	tioce_mmr_war_post(kern, mmrp); \
 105} while (0)
 106
 107/* store variable contents into mmr */
 108#define tioce_mmr_store(kern, mmrp, varp) do {\
 109	tioce_mmr_war_pre(kern, mmrp); \
 110	writeq(*varp, mmrp); \
 111	tioce_mmr_war_post(kern, mmrp); \
 112} while (0)
 113
 114/* store immediate value into mmr */
 115#define tioce_mmr_storei(kern, mmrp, val) do {\
 116	tioce_mmr_war_pre(kern, mmrp); \
 117	writeq(val, mmrp); \
 118	tioce_mmr_war_post(kern, mmrp); \
 119} while (0)
 120
 121/* set bits (immediate value) into mmr */
 122#define tioce_mmr_seti(kern, mmrp, bits) do {\
 123	u64 tmp; \
 124	tioce_mmr_load(kern, mmrp, &tmp); \
 125	tmp |= (bits); \
 126	tioce_mmr_store(kern, mmrp, &tmp); \
 127} while (0)
 128
 129/* clear bits (immediate value) into mmr */
 130#define tioce_mmr_clri(kern, mmrp, bits) do { \
 131	u64 tmp; \
 132	tioce_mmr_load(kern, mmrp, &tmp); \
 133	tmp &= ~(bits); \
 134	tioce_mmr_store(kern, mmrp, &tmp); \
 135} while (0)
 136
 137/**
 138 * Bus address ranges for the 5 flavors of TIOCE DMA
 139 */
 140
 141#define TIOCE_D64_MIN	0x8000000000000000UL
 142#define TIOCE_D64_MAX	0xffffffffffffffffUL
 143#define TIOCE_D64_ADDR(a)	((a) >= TIOCE_D64_MIN)
 144
 145#define TIOCE_D32_MIN	0x0000000080000000UL
 146#define TIOCE_D32_MAX	0x00000000ffffffffUL
 147#define TIOCE_D32_ADDR(a)	((a) >= TIOCE_D32_MIN && (a) <= TIOCE_D32_MAX)
 148
 149#define TIOCE_M32_MIN	0x0000000000000000UL
 150#define TIOCE_M32_MAX	0x000000007fffffffUL
 151#define TIOCE_M32_ADDR(a)	((a) >= TIOCE_M32_MIN && (a) <= TIOCE_M32_MAX)
 152
 153#define TIOCE_M40_MIN	0x0000004000000000UL
 154#define TIOCE_M40_MAX	0x0000007fffffffffUL
 155#define TIOCE_M40_ADDR(a)	((a) >= TIOCE_M40_MIN && (a) <= TIOCE_M40_MAX)
 156
 157#define TIOCE_M40S_MIN	0x0000008000000000UL
 158#define TIOCE_M40S_MAX	0x000000ffffffffffUL
 159#define TIOCE_M40S_ADDR(a)	((a) >= TIOCE_M40S_MIN && (a) <= TIOCE_M40S_MAX)
 160
 161/*
 162 * ATE manipulation macros.
 163 */
 164
 165#define ATE_PAGESHIFT(ps)	(__ffs(ps))
 166#define ATE_PAGEMASK(ps)	((ps)-1)
 167
 168#define ATE_PAGE(x, ps) ((x) >> ATE_PAGESHIFT(ps))
 169#define ATE_NPAGES(start, len, pagesize) \
 170	(ATE_PAGE((start)+(len)-1, pagesize) - ATE_PAGE(start, pagesize) + 1)
 171
 172#define ATE_VALID(ate)	((ate) & (1UL << 63))
 173#define ATE_MAKE(addr, ps, msi) \
 174	(((addr) & ~ATE_PAGEMASK(ps)) | (1UL << 63) | ((msi)?(1UL << 62):0))
 175
 176/*
 177 * Flavors of ate-based mapping supported by tioce_alloc_map()
 178 */
 179
 180#define TIOCE_ATE_M32	1
 181#define TIOCE_ATE_M40	2
 182#define TIOCE_ATE_M40S	3
 183
 184#define KB(x)	((u64)(x) << 10)
 185#define MB(x)	((u64)(x) << 20)
 186#define GB(x)	((u64)(x) << 30)
 187
 188/**
 189 * tioce_dma_d64 - create a DMA mapping using 64-bit direct mode
 190 * @ct_addr: system coretalk address
 191 *
 192 * Map @ct_addr into 64-bit CE bus space.  No device context is necessary
 193 * and no CE mapping are consumed.
 194 *
 195 * Bits 53:0 come from the coretalk address.  The remaining bits are set as
 196 * follows:
 197 *
 198 * 63    - must be 1 to indicate d64 mode to CE hardware
 199 * 62    - barrier bit ... controlled with tioce_dma_barrier()
 200 * 61    - msi bit ... specified through dma_flags
 201 * 60:54 - reserved, MBZ
 202 */
 203static u64
 204tioce_dma_d64(unsigned long ct_addr, int dma_flags)
 205{
 206	u64 bus_addr;
 207
 208	bus_addr = ct_addr | (1UL << 63);
 209	if (dma_flags & SN_DMA_MSI)
 210		bus_addr |= (1UL << 61);
 211
 212	return bus_addr;
 213}
 214
 215/**
 216 * pcidev_to_tioce - return misc ce related pointers given a pci_dev
 217 * @pci_dev: pci device context
 218 * @base: ptr to store struct tioce_mmr * for the CE holding this device
 219 * @kernel: ptr to store struct tioce_kernel * for the CE holding this device
 220 * @port: ptr to store the CE port number that this device is on
 221 *
 222 * Return pointers to various CE-related structures for the CE upstream of
 223 * @pci_dev.
 224 */
 225static inline void
 226pcidev_to_tioce(struct pci_dev *pdev, struct tioce __iomem **base,
 227		struct tioce_kernel **kernel, int *port)
 228{
 229	struct pcidev_info *pcidev_info;
 230	struct tioce_common *ce_common;
 231	struct tioce_kernel *ce_kernel;
 232
 233	pcidev_info = SN_PCIDEV_INFO(pdev);
 234	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 235	ce_kernel = (struct tioce_kernel *)ce_common->ce_kernel_private;
 236
 237	if (base)
 238		*base = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 239	if (kernel)
 240		*kernel = ce_kernel;
 241
 242	/*
 243	 * we use port as a zero-based value internally, even though the
 244	 * documentation is 1-based.
 245	 */
 246	if (port)
 247		*port =
 248		    (pdev->bus->number < ce_kernel->ce_port1_secondary) ? 0 : 1;
 249}
 250
 251/**
 252 * tioce_alloc_map - Given a coretalk address, map it to pcie bus address
 253 * space using one of the various ATE-based address modes.
 254 * @ce_kern: tioce context
 255 * @type: map mode to use
 256 * @port: 0-based port that the requesting device is downstream of
 257 * @ct_addr: the coretalk address to map
 258 * @len: number of bytes to map
 259 *
 260 * Given the addressing type, set up various parameters that define the
 261 * ATE pool to use.  Search for a contiguous block of entries to cover the
 262 * length, and if enough resources exist, fill in the ATEs and construct a
 263 * tioce_dmamap struct to track the mapping.
 264 */
 265static u64
 266tioce_alloc_map(struct tioce_kernel *ce_kern, int type, int port,
 267		u64 ct_addr, int len, int dma_flags)
 268{
 269	int i;
 270	int j;
 271	int first;
 272	int last;
 273	int entries;
 274	int nates;
 275	u64 pagesize;
 276	int msi_capable, msi_wanted;
 277	u64 *ate_shadow;
 278	u64 __iomem *ate_reg;
 279	u64 addr;
 280	struct tioce __iomem *ce_mmr;
 281	u64 bus_base;
 282	struct tioce_dmamap *map;
 283
 284	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
 285
 286	switch (type) {
 287	case TIOCE_ATE_M32:
 288		/*
 289		 * The first 64 entries of the ate3240 pool are dedicated to
 290		 * super-page (TIOCE_ATE_M40S) mode.
 291		 */
 292		first = 64;
 293		entries = TIOCE_NUM_M3240_ATES - 64;
 294		ate_shadow = ce_kern->ce_ate3240_shadow;
 295		ate_reg = ce_mmr->ce_ure_ate3240;
 296		pagesize = ce_kern->ce_ate3240_pagesize;
 297		bus_base = TIOCE_M32_MIN;
 298		msi_capable = 1;
 299		break;
 300	case TIOCE_ATE_M40:
 301		first = 0;
 302		entries = TIOCE_NUM_M40_ATES;
 303		ate_shadow = ce_kern->ce_ate40_shadow;
 304		ate_reg = ce_mmr->ce_ure_ate40;
 305		pagesize = MB(64);
 306		bus_base = TIOCE_M40_MIN;
 307		msi_capable = 0;
 308		break;
 309	case TIOCE_ATE_M40S:
 310		/*
 311		 * ate3240 entries 0-31 are dedicated to port1 super-page
 312		 * mappings.  ate3240 entries 32-63 are dedicated to port2.
 313		 */
 314		first = port * 32;
 315		entries = 32;
 316		ate_shadow = ce_kern->ce_ate3240_shadow;
 317		ate_reg = ce_mmr->ce_ure_ate3240;
 318		pagesize = GB(16);
 319		bus_base = TIOCE_M40S_MIN;
 320		msi_capable = 0;
 321		break;
 322	default:
 323		return 0;
 324	}
 325
 326	msi_wanted = dma_flags & SN_DMA_MSI;
 327	if (msi_wanted && !msi_capable)
 328		return 0;
 329
 330	nates = ATE_NPAGES(ct_addr, len, pagesize);
 331	if (nates > entries)
 332		return 0;
 333
 334	last = first + entries - nates;
 335	for (i = first; i <= last; i++) {
 336		if (ATE_VALID(ate_shadow[i]))
 337			continue;
 338
 339		for (j = i; j < i + nates; j++)
 340			if (ATE_VALID(ate_shadow[j]))
 341				break;
 342
 343		if (j >= i + nates)
 344			break;
 345	}
 346
 347	if (i > last)
 348		return 0;
 349
 350	map = kzalloc(sizeof(struct tioce_dmamap), GFP_ATOMIC);
 351	if (!map)
 352		return 0;
 353
 354	addr = ct_addr;
 355	for (j = 0; j < nates; j++) {
 356		u64 ate;
 357
 358		ate = ATE_MAKE(addr, pagesize, msi_wanted);
 359		ate_shadow[i + j] = ate;
 360		tioce_mmr_storei(ce_kern, &ate_reg[i + j], ate);
 361		addr += pagesize;
 362	}
 363
 364	map->refcnt = 1;
 365	map->nbytes = nates * pagesize;
 366	map->ct_start = ct_addr & ~ATE_PAGEMASK(pagesize);
 367	map->pci_start = bus_base + (i * pagesize);
 368	map->ate_hw = &ate_reg[i];
 369	map->ate_shadow = &ate_shadow[i];
 370	map->ate_count = nates;
 371
 372	list_add(&map->ce_dmamap_list, &ce_kern->ce_dmamap_list);
 373
 374	return (map->pci_start + (ct_addr - map->ct_start));
 375}
 376
 377/**
 378 * tioce_dma_d32 - create a DMA mapping using 32-bit direct mode
 379 * @pdev: linux pci_dev representing the function
 380 * @paddr: system physical address
 381 *
 382 * Map @paddr into 32-bit bus space of the CE associated with @pcidev_info.
 383 */
 384static u64
 385tioce_dma_d32(struct pci_dev *pdev, u64 ct_addr, int dma_flags)
 386{
 387	int dma_ok;
 388	int port;
 389	struct tioce __iomem *ce_mmr;
 390	struct tioce_kernel *ce_kern;
 391	u64 ct_upper;
 392	u64 ct_lower;
 393	dma_addr_t bus_addr;
 394
 395	if (dma_flags & SN_DMA_MSI)
 396		return 0;
 397
 398	ct_upper = ct_addr & ~0x3fffffffUL;
 399	ct_lower = ct_addr & 0x3fffffffUL;
 400
 401	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
 402
 403	if (ce_kern->ce_port[port].dirmap_refcnt == 0) {
 404		u64 tmp;
 405
 406		ce_kern->ce_port[port].dirmap_shadow = ct_upper;
 407		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
 408				 ct_upper);
 409		tmp = ce_mmr->ce_ure_dir_map[port];
 410		dma_ok = 1;
 411	} else
 412		dma_ok = (ce_kern->ce_port[port].dirmap_shadow == ct_upper);
 413
 414	if (dma_ok) {
 415		ce_kern->ce_port[port].dirmap_refcnt++;
 416		bus_addr = TIOCE_D32_MIN + ct_lower;
 417	} else
 418		bus_addr = 0;
 419
 420	return bus_addr;
 421}
 422
 423/**
 424 * tioce_dma_barrier - swizzle a TIOCE bus address to include or exclude
 425 * the barrier bit.
 426 * @bus_addr:  bus address to swizzle
 427 *
 428 * Given a TIOCE bus address, set the appropriate bit to indicate barrier
 429 * attributes.
 430 */
 431static u64
 432tioce_dma_barrier(u64 bus_addr, int on)
 433{
 434	u64 barrier_bit;
 435
 436	/* barrier not supported in M40/M40S mode */
 437	if (TIOCE_M40_ADDR(bus_addr) || TIOCE_M40S_ADDR(bus_addr))
 438		return bus_addr;
 439
 440	if (TIOCE_D64_ADDR(bus_addr))
 441		barrier_bit = (1UL << 62);
 442	else			/* must be m32 or d32 */
 443		barrier_bit = (1UL << 30);
 444
 445	return (on) ? (bus_addr | barrier_bit) : (bus_addr & ~barrier_bit);
 446}
 447
 448/**
 449 * tioce_dma_unmap - release CE mapping resources
 450 * @pdev: linux pci_dev representing the function
 451 * @bus_addr: bus address returned by an earlier tioce_dma_map
 452 * @dir: mapping direction (unused)
 453 *
 454 * Locate mapping resources associated with @bus_addr and release them.
 455 * For mappings created using the direct modes there are no resources
 456 * to release.
 457 */
 458void
 459tioce_dma_unmap(struct pci_dev *pdev, dma_addr_t bus_addr, int dir)
 460{
 461	int i;
 462	int port;
 463	struct tioce_kernel *ce_kern;
 464	struct tioce __iomem *ce_mmr;
 465	unsigned long flags;
 466
 467	bus_addr = tioce_dma_barrier(bus_addr, 0);
 468	pcidev_to_tioce(pdev, &ce_mmr, &ce_kern, &port);
 469
 470	/* nothing to do for D64 */
 471
 472	if (TIOCE_D64_ADDR(bus_addr))
 473		return;
 474
 475	spin_lock_irqsave(&ce_kern->ce_lock, flags);
 476
 477	if (TIOCE_D32_ADDR(bus_addr)) {
 478		if (--ce_kern->ce_port[port].dirmap_refcnt == 0) {
 479			ce_kern->ce_port[port].dirmap_shadow = 0;
 480			tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_dir_map[port],
 481					 0);
 482		}
 483	} else {
 484		struct tioce_dmamap *map;
 485
 486		list_for_each_entry(map, &ce_kern->ce_dmamap_list,
 487				    ce_dmamap_list) {
 488			u64 last;
 489
 490			last = map->pci_start + map->nbytes - 1;
 491			if (bus_addr >= map->pci_start && bus_addr <= last)
 492				break;
 493		}
 494
 495		if (&map->ce_dmamap_list == &ce_kern->ce_dmamap_list) {
 496			printk(KERN_WARNING
 497			       "%s:  %s - no map found for bus_addr 0x%llx\n",
 498			       __func__, pci_name(pdev), bus_addr);
 499		} else if (--map->refcnt == 0) {
 500			for (i = 0; i < map->ate_count; i++) {
 501				map->ate_shadow[i] = 0;
 502				tioce_mmr_storei(ce_kern, &map->ate_hw[i], 0);
 503			}
 504
 505			list_del(&map->ce_dmamap_list);
 506			kfree(map);
 507		}
 508	}
 509
 510	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
 511}
 512
 513/**
 514 * tioce_do_dma_map - map pages for PCI DMA
 515 * @pdev: linux pci_dev representing the function
 516 * @paddr: host physical address to map
 517 * @byte_count: bytes to map
 518 *
 519 * This is the main wrapper for mapping host physical pages to CE PCI space.
 520 * The mapping mode used is based on the device's dma_mask.
 521 */
 522static u64
 523tioce_do_dma_map(struct pci_dev *pdev, u64 paddr, size_t byte_count,
 524		 int barrier, int dma_flags)
 525{
 526	unsigned long flags;
 527	u64 ct_addr;
 528	u64 mapaddr = 0;
 529	struct tioce_kernel *ce_kern;
 530	struct tioce_dmamap *map;
 531	int port;
 532	u64 dma_mask;
 533
 534	dma_mask = (barrier) ? pdev->dev.coherent_dma_mask : pdev->dma_mask;
 535
 536	/* cards must be able to address at least 31 bits */
 537	if (dma_mask < 0x7fffffffUL)
 538		return 0;
 539
 540	if (SN_DMA_ADDRTYPE(dma_flags) == SN_DMA_ADDR_PHYS)
 541		ct_addr = PHYS_TO_TIODMA(paddr);
 542	else
 543		ct_addr = paddr;
 544
 545	/*
 546	 * If the device can generate 64 bit addresses, create a D64 map.
 547	 */
 548	if (dma_mask == ~0UL) {
 549		mapaddr = tioce_dma_d64(ct_addr, dma_flags);
 550		if (mapaddr)
 551			goto dma_map_done;
 552	}
 553
 554	pcidev_to_tioce(pdev, NULL, &ce_kern, &port);
 555
 556	spin_lock_irqsave(&ce_kern->ce_lock, flags);
 557
 558	/*
 559	 * D64 didn't work ... See if we have an existing map that covers
 560	 * this address range.  Must account for devices dma_mask here since
 561	 * an existing map might have been done in a mode using more pci
 562	 * address bits than this device can support.
 563	 */
 564	list_for_each_entry(map, &ce_kern->ce_dmamap_list, ce_dmamap_list) {
 565		u64 last;
 566
 567		last = map->ct_start + map->nbytes - 1;
 568		if (ct_addr >= map->ct_start &&
 569		    ct_addr + byte_count - 1 <= last &&
 570		    map->pci_start <= dma_mask) {
 571			map->refcnt++;
 572			mapaddr = map->pci_start + (ct_addr - map->ct_start);
 573			break;
 574		}
 575	}
 576
 577	/*
 578	 * If we don't have a map yet, and the card can generate 40
 579	 * bit addresses, try the M40/M40S modes.  Note these modes do not
 580	 * support a barrier bit, so if we need a consistent map these
 581	 * won't work.
 582	 */
 583	if (!mapaddr && !barrier && dma_mask >= 0xffffffffffUL) {
 584		/*
 585		 * We have two options for 40-bit mappings:  16GB "super" ATEs
 586		 * and 64MB "regular" ATEs.  We'll try both if needed for a
 587		 * given mapping but which one we try first depends on the
 588		 * size.  For requests >64MB, prefer to use a super page with
 589		 * regular as the fallback. Otherwise, try in the reverse order.
 590		 */
 591
 592		if (byte_count > MB(64)) {
 593			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
 594						  port, ct_addr, byte_count,
 595						  dma_flags);
 596			if (!mapaddr)
 597				mapaddr =
 598				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
 599						    ct_addr, byte_count,
 600						    dma_flags);
 601		} else {
 602			mapaddr = tioce_alloc_map(ce_kern, TIOCE_ATE_M40, -1,
 603						  ct_addr, byte_count,
 604						  dma_flags);
 605			if (!mapaddr)
 606				mapaddr =
 607				    tioce_alloc_map(ce_kern, TIOCE_ATE_M40S,
 608						    port, ct_addr, byte_count,
 609						    dma_flags);
 610		}
 611	}
 612
 613	/*
 614	 * 32-bit direct is the next mode to try
 615	 */
 616	if (!mapaddr && dma_mask >= 0xffffffffUL)
 617		mapaddr = tioce_dma_d32(pdev, ct_addr, dma_flags);
 618
 619	/*
 620	 * Last resort, try 32-bit ATE-based map.
 621	 */
 622	if (!mapaddr)
 623		mapaddr =
 624		    tioce_alloc_map(ce_kern, TIOCE_ATE_M32, -1, ct_addr,
 625				    byte_count, dma_flags);
 626
 627	spin_unlock_irqrestore(&ce_kern->ce_lock, flags);
 628
 629dma_map_done:
 630	if (mapaddr && barrier)
 631		mapaddr = tioce_dma_barrier(mapaddr, 1);
 632
 633	return mapaddr;
 634}
 635
 636/**
 637 * tioce_dma - standard pci dma map interface
 638 * @pdev: pci device requesting the map
 639 * @paddr: system physical address to map into pci space
 640 * @byte_count: # bytes to map
 641 *
 642 * Simply call tioce_do_dma_map() to create a map with the barrier bit clear
 643 * in the address.
 644 */
 645static u64
 646tioce_dma(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
 647{
 648	return tioce_do_dma_map(pdev, paddr, byte_count, 0, dma_flags);
 649}
 650
 651/**
 652 * tioce_dma_consistent - consistent pci dma map interface
 653 * @pdev: pci device requesting the map
 654 * @paddr: system physical address to map into pci space
 655 * @byte_count: # bytes to map
 656 *
 657 * Simply call tioce_do_dma_map() to create a map with the barrier bit set
 658 * in the address.
 659 */
 660static u64
 661tioce_dma_consistent(struct pci_dev *pdev, unsigned long  paddr, size_t byte_count, int dma_flags)
 662{
 663	return tioce_do_dma_map(pdev, paddr, byte_count, 1, dma_flags);
 664}
 665
 666/**
 667 * tioce_error_intr_handler - SGI TIO CE error interrupt handler
 668 * @irq: unused
 669 * @arg: pointer to tioce_common struct for the given CE
 670 *
 671 * Handle a CE error interrupt.  Simply a wrapper around a SAL call which
 672 * defers processing to the SGI prom.
 673 */
 674static irqreturn_t
 675tioce_error_intr_handler(int irq, void *arg)
 676{
 677	struct tioce_common *soft = arg;
 678	struct ia64_sal_retval ret_stuff;
 679	ret_stuff.status = 0;
 680	ret_stuff.v0 = 0;
 681
 682	SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_ERROR_INTERRUPT,
 683			soft->ce_pcibus.bs_persist_segment,
 684			soft->ce_pcibus.bs_persist_busnum, 0, 0, 0, 0, 0);
 685
 686	if (ret_stuff.v0)
 687		panic("tioce_error_intr_handler:  Fatal TIOCE error");
 688
 689	return IRQ_HANDLED;
 690}
 691
 692/**
 693 * tioce_reserve_m32 - reserve M32 ATEs for the indicated address range
 694 * @tioce_kernel: TIOCE context to reserve ATEs for
 695 * @base: starting bus address to reserve
 696 * @limit: last bus address to reserve
 697 *
 698 * If base/limit falls within the range of bus space mapped through the
 699 * M32 space, reserve the resources corresponding to the range.
 700 */
 701static void
 702tioce_reserve_m32(struct tioce_kernel *ce_kern, u64 base, u64 limit)
 703{
 704	int ate_index, last_ate, ps;
 705	struct tioce __iomem *ce_mmr;
 706
 707	ce_mmr = (struct tioce __iomem *)ce_kern->ce_common->ce_pcibus.bs_base;
 708	ps = ce_kern->ce_ate3240_pagesize;
 709	ate_index = ATE_PAGE(base, ps);
 710	last_ate = ate_index + ATE_NPAGES(base, limit-base+1, ps) - 1;
 711
 712	if (ate_index < 64)
 713		ate_index = 64;
 714
 715	if (last_ate >= TIOCE_NUM_M3240_ATES)
 716		last_ate = TIOCE_NUM_M3240_ATES - 1;
 717
 718	while (ate_index <= last_ate) {
 719		u64 ate;
 720
 721		ate = ATE_MAKE(0xdeadbeef, ps, 0);
 722		ce_kern->ce_ate3240_shadow[ate_index] = ate;
 723		tioce_mmr_storei(ce_kern, &ce_mmr->ce_ure_ate3240[ate_index],
 724				 ate);
 725		ate_index++;
 726	}
 727}
 728
 729/**
 730 * tioce_kern_init - init kernel structures related to a given TIOCE
 731 * @tioce_common: ptr to a cached tioce_common struct that originated in prom
 732 */
 733static struct tioce_kernel *
 734tioce_kern_init(struct tioce_common *tioce_common)
 735{
 736	int i;
 737	int ps;
 738	int dev;
 739	u32 tmp;
 740	unsigned int seg, bus;
 741	struct tioce __iomem *tioce_mmr;
 742	struct tioce_kernel *tioce_kern;
 743
 744	tioce_kern = kzalloc(sizeof(struct tioce_kernel), GFP_KERNEL);
 745	if (!tioce_kern) {
 746		return NULL;
 747	}
 748
 749	tioce_kern->ce_common = tioce_common;
 750	spin_lock_init(&tioce_kern->ce_lock);
 751	INIT_LIST_HEAD(&tioce_kern->ce_dmamap_list);
 752	tioce_common->ce_kernel_private = (u64) tioce_kern;
 753
 754	/*
 755	 * Determine the secondary bus number of the port2 logical PPB.
 756	 * This is used to decide whether a given pci device resides on
 757	 * port1 or port2.  Note:  We don't have enough plumbing set up
 758	 * here to use pci_read_config_xxx() so use raw_pci_read().
 759	 */
 760
 761	seg = tioce_common->ce_pcibus.bs_persist_segment;
 762	bus = tioce_common->ce_pcibus.bs_persist_busnum;
 763
 764	raw_pci_read(seg, bus, PCI_DEVFN(2, 0), PCI_SECONDARY_BUS, 1,&tmp);
 765	tioce_kern->ce_port1_secondary = (u8) tmp;
 766
 767	/*
 768	 * Set PMU pagesize to the largest size available, and zero out
 769	 * the ATEs.
 770	 */
 771
 772	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
 773	tioce_mmr_clri(tioce_kern, &tioce_mmr->ce_ure_page_map,
 774		       CE_URE_PAGESIZE_MASK);
 775	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_ure_page_map,
 776		       CE_URE_256K_PAGESIZE);
 777	ps = tioce_kern->ce_ate3240_pagesize = KB(256);
 778
 779	for (i = 0; i < TIOCE_NUM_M40_ATES; i++) {
 780		tioce_kern->ce_ate40_shadow[i] = 0;
 781		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate40[i], 0);
 782	}
 783
 784	for (i = 0; i < TIOCE_NUM_M3240_ATES; i++) {
 785		tioce_kern->ce_ate3240_shadow[i] = 0;
 786		tioce_mmr_storei(tioce_kern, &tioce_mmr->ce_ure_ate3240[i], 0);
 787	}
 788
 789	/*
 790	 * Reserve ATEs corresponding to reserved address ranges.  These
 791	 * include:
 792	 *
 793	 *	Memory space covered by each PPB mem base/limit register
 794	 * 	Memory space covered by each PPB prefetch base/limit register
 795	 *
 796	 * These bus ranges are for pio (downstream) traffic only, and so
 797	 * cannot be used for DMA.
 798	 */
 799
 800	for (dev = 1; dev <= 2; dev++) {
 801		u64 base, limit;
 802
 803		/* mem base/limit */
 804
 805		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 806				  PCI_MEMORY_BASE, 2, &tmp);
 807		base = (u64)tmp << 16;
 808
 809		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 810				  PCI_MEMORY_LIMIT, 2, &tmp);
 811		limit = (u64)tmp << 16;
 812		limit |= 0xfffffUL;
 813
 814		if (base < limit)
 815			tioce_reserve_m32(tioce_kern, base, limit);
 816
 817		/*
 818		 * prefetch mem base/limit.  The tioce ppb's have 64-bit
 819		 * decoders, so read the upper portions w/o checking the
 820		 * attributes.
 821		 */
 822
 823		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 824				  PCI_PREF_MEMORY_BASE, 2, &tmp);
 825		base = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
 826
 827		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 828				  PCI_PREF_BASE_UPPER32, 4, &tmp);
 829		base |= (u64)tmp << 32;
 830
 831		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 832				  PCI_PREF_MEMORY_LIMIT, 2, &tmp);
 833
 834		limit = ((u64)tmp & PCI_PREF_RANGE_MASK) << 16;
 835		limit |= 0xfffffUL;
 836
 837		raw_pci_read(seg, bus, PCI_DEVFN(dev, 0),
 838				  PCI_PREF_LIMIT_UPPER32, 4, &tmp);
 839		limit |= (u64)tmp << 32;
 840
 841		if ((base < limit) && TIOCE_M32_ADDR(base))
 842			tioce_reserve_m32(tioce_kern, base, limit);
 843	}
 844
 845	return tioce_kern;
 846}
 847
 848/**
 849 * tioce_force_interrupt - implement altix force_interrupt() backend for CE
 850 * @sn_irq_info: sn asic irq that we need an interrupt generated for
 851 *
 852 * Given an sn_irq_info struct, set the proper bit in ce_adm_force_int to
 853 * force a secondary interrupt to be generated.  This is to work around an
 854 * asic issue where there is a small window of opportunity for a legacy device
 855 * interrupt to be lost.
 856 */
 857static void
 858tioce_force_interrupt(struct sn_irq_info *sn_irq_info)
 859{
 860	struct pcidev_info *pcidev_info;
 861	struct tioce_common *ce_common;
 862	struct tioce_kernel *ce_kern;
 863	struct tioce __iomem *ce_mmr;
 864	u64 force_int_val;
 865
 866	if (!sn_irq_info->irq_bridge)
 867		return;
 868
 869	if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_TIOCE)
 870		return;
 871
 872	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
 873	if (!pcidev_info)
 874		return;
 875
 876	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 877	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 878	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
 879
 880	/*
 881	 * TIOCE Rev A workaround (PV 945826), force an interrupt by writing
 882	 * the TIO_INTx register directly (1/26/2006)
 883	 */
 884	if (ce_common->ce_rev == TIOCE_REV_A) {
 885		u64 int_bit_mask = (1ULL << sn_irq_info->irq_int_bit);
 886		u64 status;
 887
 888		tioce_mmr_load(ce_kern, &ce_mmr->ce_adm_int_status, &status);
 889		if (status & int_bit_mask) {
 890			u64 force_irq = (1 << 8) | sn_irq_info->irq_irq;
 891			u64 ctalk = sn_irq_info->irq_xtalkaddr;
 892			u64 nasid, offset;
 893
 894			nasid = (ctalk & CTALK_NASID_MASK) >> CTALK_NASID_SHFT;
 895			offset = (ctalk & CTALK_NODE_OFFSET);
 896			HUB_S(TIO_IOSPACE_ADDR(nasid, offset), force_irq);
 897		}
 898
 899		return;
 900	}
 901
 902	/*
 903	 * irq_int_bit is originally set up by prom, and holds the interrupt
 904	 * bit shift (not mask) as defined by the bit definitions in the
 905	 * ce_adm_int mmr.  These shifts are not the same for the
 906	 * ce_adm_force_int register, so do an explicit mapping here to make
 907	 * things clearer.
 908	 */
 909
 910	switch (sn_irq_info->irq_int_bit) {
 911	case CE_ADM_INT_PCIE_PORT1_DEV_A_SHFT:
 912		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_A_SHFT;
 913		break;
 914	case CE_ADM_INT_PCIE_PORT1_DEV_B_SHFT:
 915		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_B_SHFT;
 916		break;
 917	case CE_ADM_INT_PCIE_PORT1_DEV_C_SHFT:
 918		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_C_SHFT;
 919		break;
 920	case CE_ADM_INT_PCIE_PORT1_DEV_D_SHFT:
 921		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT1_DEV_D_SHFT;
 922		break;
 923	case CE_ADM_INT_PCIE_PORT2_DEV_A_SHFT:
 924		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_A_SHFT;
 925		break;
 926	case CE_ADM_INT_PCIE_PORT2_DEV_B_SHFT:
 927		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_B_SHFT;
 928		break;
 929	case CE_ADM_INT_PCIE_PORT2_DEV_C_SHFT:
 930		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_C_SHFT;
 931		break;
 932	case CE_ADM_INT_PCIE_PORT2_DEV_D_SHFT:
 933		force_int_val = 1UL << CE_ADM_FORCE_INT_PCIE_PORT2_DEV_D_SHFT;
 934		break;
 935	default:
 936		return;
 937	}
 938	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_force_int, force_int_val);
 939}
 940
 941/**
 942 * tioce_target_interrupt - implement set_irq_affinity for tioce resident
 943 * functions.  Note:  only applies to line interrupts, not MSI's.
 944 *
 945 * @sn_irq_info: SN IRQ context
 946 *
 947 * Given an sn_irq_info, set the associated CE device's interrupt destination
 948 * register.  Since the interrupt destination registers are on a per-ce-slot
 949 * basis, this will retarget line interrupts for all functions downstream of
 950 * the slot.
 951 */
 952static void
 953tioce_target_interrupt(struct sn_irq_info *sn_irq_info)
 954{
 955	struct pcidev_info *pcidev_info;
 956	struct tioce_common *ce_common;
 957	struct tioce_kernel *ce_kern;
 958	struct tioce __iomem *ce_mmr;
 959	int bit;
 960	u64 vector;
 961
 962	pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
 963	if (!pcidev_info)
 964		return;
 965
 966	ce_common = (struct tioce_common *)pcidev_info->pdi_pcibus_info;
 967	ce_mmr = (struct tioce __iomem *)ce_common->ce_pcibus.bs_base;
 968	ce_kern = (struct tioce_kernel *)ce_common->ce_kernel_private;
 969
 970	bit = sn_irq_info->irq_int_bit;
 971
 972	tioce_mmr_seti(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
 973	vector = (u64)sn_irq_info->irq_irq << INTR_VECTOR_SHFT;
 974	vector |= sn_irq_info->irq_xtalkaddr;
 975	tioce_mmr_storei(ce_kern, &ce_mmr->ce_adm_int_dest[bit], vector);
 976	tioce_mmr_clri(ce_kern, &ce_mmr->ce_adm_int_mask, (1UL << bit));
 977
 978	tioce_force_interrupt(sn_irq_info);
 979}
 980
 981/**
 982 * tioce_bus_fixup - perform final PCI fixup for a TIO CE bus
 983 * @prom_bussoft: Common prom/kernel struct representing the bus
 984 *
 985 * Replicates the tioce_common pointed to by @prom_bussoft in kernel
 986 * space.  Allocates and initializes a kernel-only area for a given CE,
 987 * and sets up an irq for handling CE error interrupts.
 988 *
 989 * On successful setup, returns the kernel version of tioce_common back to
 990 * the caller.
 991 */
 992static void *
 993tioce_bus_fixup(struct pcibus_bussoft *prom_bussoft, struct pci_controller *controller)
 994{
 995	struct tioce_common *tioce_common;
 996	struct tioce_kernel *tioce_kern;
 997	struct tioce __iomem *tioce_mmr;
 998
 999	/*
1000	 * Allocate kernel bus soft and copy from prom.
1001	 */
1002
1003	tioce_common = kzalloc(sizeof(struct tioce_common), GFP_KERNEL);
1004	if (!tioce_common)
1005		return NULL;
1006
1007	memcpy(tioce_common, prom_bussoft, sizeof(struct tioce_common));
1008	tioce_common->ce_pcibus.bs_base = (unsigned long)
1009		ioremap(REGION_OFFSET(tioce_common->ce_pcibus.bs_base),
1010			sizeof(struct tioce_common));
1011
1012	tioce_kern = tioce_kern_init(tioce_common);
1013	if (tioce_kern == NULL) {
1014		kfree(tioce_common);
1015		return NULL;
1016	}
1017
1018	/*
1019	 * Clear out any transient errors before registering the error
1020	 * interrupt handler.
1021	 */
1022
1023	tioce_mmr = (struct tioce __iomem *)tioce_common->ce_pcibus.bs_base;
1024	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_int_status_alias, ~0ULL);
1025	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_adm_error_summary_alias,
1026		       ~0ULL);
1027	tioce_mmr_seti(tioce_kern, &tioce_mmr->ce_dre_comp_err_addr, 0ULL);
1028
1029	if (request_irq(SGI_PCIASIC_ERROR,
1030			tioce_error_intr_handler,
1031			IRQF_SHARED, "TIOCE error", (void *)tioce_common))
1032		printk(KERN_WARNING
1033		       "%s:  Unable to get irq %d.  "
1034		       "Error interrupts won't be routed for "
1035		       "TIOCE bus %04x:%02x\n",
1036		       __func__, SGI_PCIASIC_ERROR,
1037		       tioce_common->ce_pcibus.bs_persist_segment,
1038		       tioce_common->ce_pcibus.bs_persist_busnum);
1039
1040	irq_set_handler(SGI_PCIASIC_ERROR, handle_level_irq);
1041	sn_set_err_irq_affinity(SGI_PCIASIC_ERROR);
1042	return tioce_common;
1043}
1044
1045static struct sn_pcibus_provider tioce_pci_interfaces = {
1046	.dma_map = tioce_dma,
1047	.dma_map_consistent = tioce_dma_consistent,
1048	.dma_unmap = tioce_dma_unmap,
1049	.bus_fixup = tioce_bus_fixup,
1050	.force_interrupt = tioce_force_interrupt,
1051	.target_interrupt = tioce_target_interrupt
1052};
1053
1054/**
1055 * tioce_init_provider - init SN PCI provider ops for TIO CE
1056 */
1057int
1058tioce_init_provider(void)
1059{
1060	sn_pci_provider[PCIIO_ASIC_TYPE_TIOCE] = &tioce_pci_interfaces;
1061	return 0;
1062}