Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_IA64_UACCESS_H
  3#define _ASM_IA64_UACCESS_H
  4
  5/*
  6 * This file defines various macros to transfer memory areas across
  7 * the user/kernel boundary.  This needs to be done carefully because
  8 * this code is executed in kernel mode and uses user-specified
  9 * addresses.  Thus, we need to be careful not to let the user to
 10 * trick us into accessing kernel memory that would normally be
 11 * inaccessible.  This code is also fairly performance sensitive,
 12 * so we want to spend as little time doing safety checks as
 13 * possible.
 14 *
 15 * To make matters a bit more interesting, these macros sometimes also
 16 * called from within the kernel itself, in which case the address
 17 * validity check must be skipped.  The get_fs() macro tells us what
 18 * to do: if get_fs()==USER_DS, checking is performed, if
 19 * get_fs()==KERNEL_DS, checking is bypassed.
 20 *
 21 * Note that even if the memory area specified by the user is in a
 22 * valid address range, it is still possible that we'll get a page
 23 * fault while accessing it.  This is handled by filling out an
 24 * exception handler fixup entry for each instruction that has the
 25 * potential to fault.  When such a fault occurs, the page fault
 26 * handler checks to see whether the faulting instruction has a fixup
 27 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
 28 * then resumes execution at the continuation point.
 29 *
 30 * Based on <asm-alpha/uaccess.h>.
 31 *
 32 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
 33 *	David Mosberger-Tang <davidm@hpl.hp.com>
 34 */
 35
 36#include <linux/compiler.h>
 37#include <linux/page-flags.h>
 38#include <linux/mm.h>
 39
 40#include <asm/intrinsics.h>
 41#include <asm/pgtable.h>
 42#include <asm/io.h>
 43#include <asm/extable.h>
 44
 45/*
 46 * For historical reasons, the following macros are grossly misnamed:
 47 */
 48#define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
 49#define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
 50
 51#define get_ds()  (KERNEL_DS)
 52#define get_fs()  (current_thread_info()->addr_limit)
 53#define set_fs(x) (current_thread_info()->addr_limit = (x))
 54
 55#define segment_eq(a, b)	((a).seg == (b).seg)
 56
 57/*
 58 * When accessing user memory, we need to make sure the entire area really is in
 59 * user-level space.  In order to do this efficiently, we make sure that the page at
 60 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
 61 * point inside the virtually mapped linear page table.
 62 */
 63static inline int __access_ok(const void __user *p, unsigned long size)
 64{
 65	unsigned long addr = (unsigned long)p;
 66	unsigned long seg = get_fs().seg;
 67	return likely(addr <= seg) &&
 68	 (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
 69}
 70#define access_ok(type, addr, size)	__access_ok((addr), (size))
 71
 72/*
 73 * These are the main single-value transfer routines.  They automatically
 74 * use the right size if we just have the right pointer type.
 75 *
 76 * Careful to not
 77 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 78 * (b) require any knowledge of processes at this stage
 79 */
 80#define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 81#define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)))
 82
 83/*
 84 * The "__xxx" versions do not do address space checking, useful when
 85 * doing multiple accesses to the same area (the programmer has to do the
 86 * checks by hand with "access_ok()")
 87 */
 88#define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 89#define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 90
 91#ifdef ASM_SUPPORTED
 92  struct __large_struct { unsigned long buf[100]; };
 93# define __m(x) (*(struct __large_struct __user *)(x))
 94
 95/* We need to declare the __ex_table section before we can use it in .xdata.  */
 96asm (".section \"__ex_table\", \"a\"\n\t.previous");
 97
 98# define __get_user_size(val, addr, n, err)							\
 99do {												\
100	register long __gu_r8 asm ("r8") = 0;							\
101	register long __gu_r9 asm ("r9");							\
102	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
103	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
104	     "[1:]"										\
105	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
106	(err) = __gu_r8;									\
107	(val) = __gu_r9;									\
108} while (0)
109
110/*
111 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
112 * is because they do not write to any memory gcc knows about, so there are no aliasing
113 * issues.
114 */
115# define __put_user_size(val, addr, n, err)							\
116do {												\
117	register long __pu_r8 asm ("r8") = 0;							\
118	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
119		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
120		      "[1:]"									\
121		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
122	(err) = __pu_r8;									\
123} while (0)
124
125#else /* !ASM_SUPPORTED */
126# define RELOC_TYPE	2	/* ip-rel */
127# define __get_user_size(val, addr, n, err)				\
128do {									\
129	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
130	(err) = ia64_getreg(_IA64_REG_R8);				\
131	(val) = ia64_getreg(_IA64_REG_R9);				\
132} while (0)
133# define __put_user_size(val, addr, n, err)				\
134do {									\
135	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
136		  (__force unsigned long) (val));			\
137	(err) = ia64_getreg(_IA64_REG_R8);				\
138} while (0)
139#endif /* !ASM_SUPPORTED */
140
141extern void __get_user_unknown (void);
142
143/*
144 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
145 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
146 * using r8/r9.
147 */
148#define __do_get_user(check, x, ptr, size)						\
149({											\
150	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
151	__typeof__ (size) __gu_size = (size);						\
152	long __gu_err = -EFAULT;							\
153	unsigned long __gu_val = 0;							\
154	if (!check || __access_ok(__gu_ptr, size))					\
155		switch (__gu_size) {							\
156		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
157		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
158		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
159		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
160		      default: __get_user_unknown(); break;				\
161		}									\
162	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
163	__gu_err;									\
164})
165
166#define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size)
167#define __get_user_check(x, ptr, size)	__do_get_user(1, x, ptr, size)
168
169extern void __put_user_unknown (void);
170
171/*
172 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
173 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
174 */
175#define __do_put_user(check, x, ptr, size)						\
176({											\
177	__typeof__ (x) __pu_x = (x);							\
178	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
179	__typeof__ (size) __pu_size = (size);						\
180	long __pu_err = -EFAULT;							\
181											\
182	if (!check || __access_ok(__pu_ptr, __pu_size))					\
183		switch (__pu_size) {							\
184		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
185		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
186		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
187		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
188		      default: __put_user_unknown(); break;				\
189		}									\
190	__pu_err;									\
191})
192
193#define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size)
194#define __put_user_check(x, ptr, size)	__do_put_user(1, x, ptr, size)
195
196/*
197 * Complex access routines
198 */
199extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
200					       unsigned long count);
201
202static inline unsigned long
203raw_copy_to_user(void __user *to, const void *from, unsigned long count)
204{
205	return __copy_user(to, (__force void __user *) from, count);
206}
207
208static inline unsigned long
209raw_copy_from_user(void *to, const void __user *from, unsigned long count)
210{
211	return __copy_user((__force void __user *) to, from, count);
212}
213
214#define INLINE_COPY_FROM_USER
215#define INLINE_COPY_TO_USER
216
217extern unsigned long __do_clear_user (void __user *, unsigned long);
218
219#define __clear_user(to, n)		__do_clear_user(to, n)
220
221#define clear_user(to, n)					\
222({								\
223	unsigned long __cu_len = (n);				\
224	if (__access_ok(to, __cu_len))				\
225		__cu_len = __do_clear_user(to, __cu_len);	\
226	__cu_len;						\
227})
228
229
230/*
231 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
232 * strlen.
233 */
234extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
235
236#define strncpy_from_user(to, from, n)					\
237({									\
238	const char __user * __sfu_from = (from);			\
239	long __sfu_ret = -EFAULT;					\
240	if (__access_ok(__sfu_from, 0))					\
241		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
242	__sfu_ret;							\
243})
244
245/*
246 * Returns: 0 if exception before NUL or reaching the supplied limit
247 * (N), a value greater than N if the limit would be exceeded, else
248 * strlen.
249 */
250extern unsigned long __strnlen_user (const char __user *, long);
251
252#define strnlen_user(str, len)					\
253({								\
254	const char __user *__su_str = (str);			\
255	unsigned long __su_ret = 0;				\
256	if (__access_ok(__su_str, 0))				\
257		__su_ret = __strnlen_user(__su_str, len);	\
258	__su_ret;						\
259})
260
261#define ARCH_HAS_TRANSLATE_MEM_PTR	1
262static __inline__ void *
263xlate_dev_mem_ptr(phys_addr_t p)
264{
265	struct page *page;
266	void *ptr;
267
268	page = pfn_to_page(p >> PAGE_SHIFT);
269	if (PageUncached(page))
270		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
271	else
272		ptr = __va(p);
273
274	return ptr;
275}
276
277/*
278 * Convert a virtual cached kernel memory pointer to an uncached pointer
279 */
280static __inline__ void *
281xlate_dev_kmem_ptr(void *p)
282{
283	struct page *page;
284	void *ptr;
285
286	page = virt_to_page((unsigned long)p);
287	if (PageUncached(page))
288		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
289	else
290		ptr = p;
291
292	return ptr;
293}
294
295#endif /* _ASM_IA64_UACCESS_H */