Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *
   5 *  This file contains the interface functions for the various time related
   6 *  system calls: time, stime, gettimeofday, settimeofday, adjtime
   7 *
   8 * Modification history:
 
 
 
 
 
   9 *
  10 * 1993-09-02    Philip Gladstone
  11 *      Created file with time related functions from sched/core.c and adjtimex()
  12 * 1993-10-08    Torsten Duwe
  13 *      adjtime interface update and CMOS clock write code
  14 * 1995-08-13    Torsten Duwe
  15 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  16 * 1999-01-16    Ulrich Windl
  17 *	Introduced error checking for many cases in adjtimex().
  18 *	Updated NTP code according to technical memorandum Jan '96
  19 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
  20 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  21 *	(Even though the technical memorandum forbids it)
  22 * 2004-07-14	 Christoph Lameter
  23 *	Added getnstimeofday to allow the posix timer functions to return
  24 *	with nanosecond accuracy
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/timex.h>
  30#include <linux/capability.h>
  31#include <linux/timekeeper_internal.h>
  32#include <linux/errno.h>
  33#include <linux/syscalls.h>
  34#include <linux/security.h>
  35#include <linux/fs.h>
  36#include <linux/math64.h>
  37#include <linux/ptrace.h>
  38
  39#include <linux/uaccess.h>
  40#include <linux/compat.h>
  41#include <asm/unistd.h>
  42
  43#include <generated/timeconst.h>
  44#include "timekeeping.h"
  45
  46/*
  47 * The timezone where the local system is located.  Used as a default by some
  48 * programs who obtain this value by using gettimeofday.
  49 */
  50struct timezone sys_tz;
  51
  52EXPORT_SYMBOL(sys_tz);
  53
  54#ifdef __ARCH_WANT_SYS_TIME
  55
  56/*
  57 * sys_time() can be implemented in user-level using
  58 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  59 * why not move it into the appropriate arch directory (for those
  60 * architectures that need it).
  61 */
  62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
  63{
  64	__kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
  65
  66	if (tloc) {
  67		if (put_user(i,tloc))
  68			return -EFAULT;
  69	}
  70	force_successful_syscall_return();
  71	return i;
  72}
  73
  74/*
  75 * sys_stime() can be implemented in user-level using
  76 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  77 * why not move it into the appropriate arch directory (for those
  78 * architectures that need it).
  79 */
  80
  81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
  82{
  83	struct timespec64 tv;
  84	int err;
  85
  86	if (get_user(tv.tv_sec, tptr))
  87		return -EFAULT;
  88
  89	tv.tv_nsec = 0;
  90
  91	err = security_settime64(&tv, NULL);
  92	if (err)
  93		return err;
  94
  95	do_settimeofday64(&tv);
  96	return 0;
  97}
  98
  99#endif /* __ARCH_WANT_SYS_TIME */
 100
 101#ifdef CONFIG_COMPAT_32BIT_TIME
 102#ifdef __ARCH_WANT_SYS_TIME32
 103
 104/* old_time32_t is a 32 bit "long" and needs to get converted. */
 105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
 106{
 107	old_time32_t i;
 
 108
 109	i = (old_time32_t)ktime_get_real_seconds();
 
 110
 111	if (tloc) {
 112		if (put_user(i,tloc))
 113			return -EFAULT;
 114	}
 115	force_successful_syscall_return();
 116	return i;
 117}
 118
 119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
 120{
 121	struct timespec64 tv;
 122	int err;
 123
 124	if (get_user(tv.tv_sec, tptr))
 125		return -EFAULT;
 126
 127	tv.tv_nsec = 0;
 128
 129	err = security_settime64(&tv, NULL);
 130	if (err)
 131		return err;
 132
 133	do_settimeofday64(&tv);
 134	return 0;
 135}
 136
 137#endif /* __ARCH_WANT_SYS_TIME32 */
 138#endif
 139
 140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
 141		struct timezone __user *, tz)
 142{
 143	if (likely(tv != NULL)) {
 144		struct timespec64 ts;
 145
 146		ktime_get_real_ts64(&ts);
 147		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 148		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 149			return -EFAULT;
 150	}
 151	if (unlikely(tz != NULL)) {
 152		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 153			return -EFAULT;
 154	}
 155	return 0;
 156}
 157
 158/*
 159 * In case for some reason the CMOS clock has not already been running
 160 * in UTC, but in some local time: The first time we set the timezone,
 161 * we will warp the clock so that it is ticking UTC time instead of
 162 * local time. Presumably, if someone is setting the timezone then we
 163 * are running in an environment where the programs understand about
 164 * timezones. This should be done at boot time in the /etc/rc script,
 165 * as soon as possible, so that the clock can be set right. Otherwise,
 166 * various programs will get confused when the clock gets warped.
 167 */
 168
 169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 170{
 171	static int firsttime = 1;
 172	int error = 0;
 173
 174	if (tv && !timespec64_valid_settod(tv))
 175		return -EINVAL;
 176
 177	error = security_settime64(tv, tz);
 178	if (error)
 179		return error;
 180
 181	if (tz) {
 182		/* Verify we're within the +-15 hrs range */
 183		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 184			return -EINVAL;
 185
 186		sys_tz = *tz;
 187		update_vsyscall_tz();
 188		if (firsttime) {
 189			firsttime = 0;
 190			if (!tv)
 191				timekeeping_warp_clock();
 192		}
 193	}
 194	if (tv)
 195		return do_settimeofday64(tv);
 196	return 0;
 197}
 198
 199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
 200		struct timezone __user *, tz)
 201{
 202	struct timespec64 new_ts;
 
 203	struct timezone new_tz;
 204
 205	if (tv) {
 206		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 207		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 208			return -EFAULT;
 209
 210		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 211			return -EINVAL;
 212
 213		new_ts.tv_nsec *= NSEC_PER_USEC;
 
 214	}
 215	if (tz) {
 216		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 217			return -EFAULT;
 218	}
 219
 220	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 221}
 222
 223#ifdef CONFIG_COMPAT
 224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
 225		       struct timezone __user *, tz)
 226{
 227	if (tv) {
 228		struct timespec64 ts;
 229
 230		ktime_get_real_ts64(&ts);
 231		if (put_user(ts.tv_sec, &tv->tv_sec) ||
 232		    put_user(ts.tv_nsec / 1000, &tv->tv_usec))
 233			return -EFAULT;
 234	}
 235	if (tz) {
 236		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 237			return -EFAULT;
 238	}
 239
 240	return 0;
 241}
 242
 243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
 244		       struct timezone __user *, tz)
 245{
 246	struct timespec64 new_ts;
 
 247	struct timezone new_tz;
 248
 249	if (tv) {
 250		if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
 251		    get_user(new_ts.tv_nsec, &tv->tv_usec))
 252			return -EFAULT;
 253
 254		if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
 255			return -EINVAL;
 256
 257		new_ts.tv_nsec *= NSEC_PER_USEC;
 258	}
 259	if (tz) {
 260		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 261			return -EFAULT;
 262	}
 263
 264	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 265}
 266#endif
 267
 268#ifdef CONFIG_64BIT
 269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
 270{
 271	struct __kernel_timex txc;		/* Local copy of parameter */
 272	int ret;
 273
 274	/* Copy the user data space into the kernel copy
 275	 * structure. But bear in mind that the structures
 276	 * may change
 277	 */
 278	if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
 279		return -EFAULT;
 280	ret = do_adjtimex(&txc);
 281	return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
 282}
 283#endif
 284
 285#ifdef CONFIG_COMPAT_32BIT_TIME
 286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
 287{
 288	struct old_timex32 tx32;
 289
 290	memset(txc, 0, sizeof(struct __kernel_timex));
 291	if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
 292		return -EFAULT;
 293
 294	txc->modes = tx32.modes;
 295	txc->offset = tx32.offset;
 296	txc->freq = tx32.freq;
 297	txc->maxerror = tx32.maxerror;
 298	txc->esterror = tx32.esterror;
 299	txc->status = tx32.status;
 300	txc->constant = tx32.constant;
 301	txc->precision = tx32.precision;
 302	txc->tolerance = tx32.tolerance;
 303	txc->time.tv_sec = tx32.time.tv_sec;
 304	txc->time.tv_usec = tx32.time.tv_usec;
 305	txc->tick = tx32.tick;
 306	txc->ppsfreq = tx32.ppsfreq;
 307	txc->jitter = tx32.jitter;
 308	txc->shift = tx32.shift;
 309	txc->stabil = tx32.stabil;
 310	txc->jitcnt = tx32.jitcnt;
 311	txc->calcnt = tx32.calcnt;
 312	txc->errcnt = tx32.errcnt;
 313	txc->stbcnt = tx32.stbcnt;
 314
 315	return 0;
 316}
 317
 318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
 319{
 320	struct old_timex32 tx32;
 321
 322	memset(&tx32, 0, sizeof(struct old_timex32));
 323	tx32.modes = txc->modes;
 324	tx32.offset = txc->offset;
 325	tx32.freq = txc->freq;
 326	tx32.maxerror = txc->maxerror;
 327	tx32.esterror = txc->esterror;
 328	tx32.status = txc->status;
 329	tx32.constant = txc->constant;
 330	tx32.precision = txc->precision;
 331	tx32.tolerance = txc->tolerance;
 332	tx32.time.tv_sec = txc->time.tv_sec;
 333	tx32.time.tv_usec = txc->time.tv_usec;
 334	tx32.tick = txc->tick;
 335	tx32.ppsfreq = txc->ppsfreq;
 336	tx32.jitter = txc->jitter;
 337	tx32.shift = txc->shift;
 338	tx32.stabil = txc->stabil;
 339	tx32.jitcnt = txc->jitcnt;
 340	tx32.calcnt = txc->calcnt;
 341	tx32.errcnt = txc->errcnt;
 342	tx32.stbcnt = txc->stbcnt;
 343	tx32.tai = txc->tai;
 344	if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
 345		return -EFAULT;
 346	return 0;
 347}
 348
 349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
 350{
 351	struct __kernel_timex txc;
 352	int err, ret;
 353
 354	err = get_old_timex32(&txc, utp);
 355	if (err)
 356		return err;
 357
 358	ret = do_adjtimex(&txc);
 359
 360	err = put_old_timex32(utp, &txc);
 361	if (err)
 362		return err;
 363
 364	return ret;
 365}
 366#endif
 367
 368/**
 369 * jiffies_to_msecs - Convert jiffies to milliseconds
 370 * @j: jiffies value
 371 *
 372 * Avoid unnecessary multiplications/divisions in the
 373 * two most common HZ cases.
 374 *
 375 * Return: milliseconds value
 376 */
 377unsigned int jiffies_to_msecs(const unsigned long j)
 378{
 379#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 380	return (MSEC_PER_SEC / HZ) * j;
 381#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 382	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 383#else
 384# if BITS_PER_LONG == 32
 385	return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
 386	       HZ_TO_MSEC_SHR32;
 387# else
 388	return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 389# endif
 390#endif
 391}
 392EXPORT_SYMBOL(jiffies_to_msecs);
 393
 394/**
 395 * jiffies_to_usecs - Convert jiffies to microseconds
 396 * @j: jiffies value
 397 *
 398 * Return: microseconds value
 399 */
 400unsigned int jiffies_to_usecs(const unsigned long j)
 401{
 402	/*
 403	 * Hz usually doesn't go much further MSEC_PER_SEC.
 404	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 405	 */
 406	BUILD_BUG_ON(HZ > USEC_PER_SEC);
 407
 408#if !(USEC_PER_SEC % HZ)
 409	return (USEC_PER_SEC / HZ) * j;
 410#else
 411# if BITS_PER_LONG == 32
 412	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 413# else
 414	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 415# endif
 416#endif
 417}
 418EXPORT_SYMBOL(jiffies_to_usecs);
 419
 420/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 421 * mktime64 - Converts date to seconds.
 422 * @year0: year to convert
 423 * @mon0: month to convert
 424 * @day: day to convert
 425 * @hour: hour to convert
 426 * @min: minute to convert
 427 * @sec: second to convert
 428 *
 429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 432 *
 433 * [For the Julian calendar (which was used in Russia before 1917,
 434 * Britain & colonies before 1752, anywhere else before 1582,
 435 * and is still in use by some communities) leave out the
 436 * -year/100+year/400 terms, and add 10.]
 437 *
 438 * This algorithm was first published by Gauss (I think).
 439 *
 440 * A leap second can be indicated by calling this function with sec as
 441 * 60 (allowable under ISO 8601).  The leap second is treated the same
 442 * as the following second since they don't exist in UNIX time.
 443 *
 444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 445 * tomorrow - (allowable under ISO 8601) is supported.
 446 *
 447 * Return: seconds since the epoch time for the given input date
 448 */
 449time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 450		const unsigned int day, const unsigned int hour,
 451		const unsigned int min, const unsigned int sec)
 452{
 453	unsigned int mon = mon0, year = year0;
 454
 455	/* 1..12 -> 11,12,1..10 */
 456	if (0 >= (int) (mon -= 2)) {
 457		mon += 12;	/* Puts Feb last since it has leap day */
 458		year -= 1;
 459	}
 460
 461	return ((((time64_t)
 462		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 463		  year*365 - 719499
 464	    )*24 + hour /* now have hours - midnight tomorrow handled here */
 465	  )*60 + min /* now have minutes */
 466	)*60 + sec; /* finally seconds */
 467}
 468EXPORT_SYMBOL(mktime64);
 469
 470struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	struct timespec64 ts = ns_to_timespec64(nsec);
 473	struct __kernel_old_timeval tv;
 474
 475	tv.tv_sec = ts.tv_sec;
 476	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
 477
 478	return tv;
 479}
 480EXPORT_SYMBOL(ns_to_kernel_old_timeval);
 481
 482/**
 483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
 484 *
 485 * @ts:		pointer to timespec variable to be set
 486 * @sec:	seconds to set
 487 * @nsec:	nanoseconds to set
 488 *
 489 * Set seconds and nanoseconds field of a timespec variable and
 490 * normalize to the timespec storage format
 491 *
 492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
 
 493 * For negative values only the tv_sec field is negative !
 494 */
 495void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 496{
 497	while (nsec >= NSEC_PER_SEC) {
 498		/*
 499		 * The following asm() prevents the compiler from
 500		 * optimising this loop into a modulo operation. See
 501		 * also __iter_div_u64_rem() in include/linux/time.h
 502		 */
 503		asm("" : "+rm"(nsec));
 504		nsec -= NSEC_PER_SEC;
 505		++sec;
 506	}
 507	while (nsec < 0) {
 508		asm("" : "+rm"(nsec));
 509		nsec += NSEC_PER_SEC;
 510		--sec;
 511	}
 512	ts->tv_sec = sec;
 513	ts->tv_nsec = nsec;
 514}
 515EXPORT_SYMBOL(set_normalized_timespec64);
 516
 517/**
 518 * ns_to_timespec64 - Convert nanoseconds to timespec64
 519 * @nsec:       the nanoseconds value to be converted
 520 *
 521 * Return: the timespec64 representation of the nsec parameter.
 522 */
 523struct timespec64 ns_to_timespec64(s64 nsec)
 524{
 525	struct timespec64 ts = { 0, 0 };
 526	s32 rem;
 527
 528	if (likely(nsec > 0)) {
 529		ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
 530		ts.tv_nsec = rem;
 531	} else if (nsec < 0) {
 532		/*
 533		 * With negative times, tv_sec points to the earlier
 534		 * second, and tv_nsec counts the nanoseconds since
 535		 * then, so tv_nsec is always a positive number.
 536		 */
 537		ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
 538		ts.tv_nsec = NSEC_PER_SEC - rem - 1;
 539	}
 
 540
 541	return ts;
 542}
 543EXPORT_SYMBOL(ns_to_timespec64);
 544
 545/**
 546 * __msecs_to_jiffies: - convert milliseconds to jiffies
 547 * @m:	time in milliseconds
 548 *
 549 * conversion is done as follows:
 550 *
 551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 552 *
 553 * - 'too large' values [that would result in larger than
 554 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 555 *
 556 * - all other values are converted to jiffies by either multiplying
 557 *   the input value by a factor or dividing it with a factor and
 558 *   handling any 32-bit overflows.
 559 *   for the details see __msecs_to_jiffies()
 560 *
 561 * __msecs_to_jiffies() checks for the passed in value being a constant
 562 * via __builtin_constant_p() allowing gcc to eliminate most of the
 563 * code, __msecs_to_jiffies() is called if the value passed does not
 564 * allow constant folding and the actual conversion must be done at
 565 * runtime.
 566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
 567 * routines found in include/linux/jiffies.h
 568 *
 569 * Return: jiffies value
 570 */
 571unsigned long __msecs_to_jiffies(const unsigned int m)
 572{
 573	/*
 574	 * Negative value, means infinite timeout:
 575	 */
 576	if ((int)m < 0)
 577		return MAX_JIFFY_OFFSET;
 578	return _msecs_to_jiffies(m);
 579}
 580EXPORT_SYMBOL(__msecs_to_jiffies);
 581
 582/**
 583 * __usecs_to_jiffies: - convert microseconds to jiffies
 584 * @u:	time in milliseconds
 585 *
 586 * Return: jiffies value
 587 */
 588unsigned long __usecs_to_jiffies(const unsigned int u)
 589{
 590	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 591		return MAX_JIFFY_OFFSET;
 592	return _usecs_to_jiffies(u);
 593}
 594EXPORT_SYMBOL(__usecs_to_jiffies);
 595
 596/**
 597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
 598 * @value: pointer to &struct timespec64
 599 *
 600 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 601 * that a remainder subtract here would not do the right thing as the
 602 * resolution values don't fall on second boundaries.  I.e. the line:
 603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 604 * Note that due to the small error in the multiplier here, this
 605 * rounding is incorrect for sufficiently large values of tv_nsec, but
 606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 607 * OK.
 608 *
 609 * Rather, we just shift the bits off the right.
 610 *
 611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 612 * value to a scaled second value.
 613 *
 614 * Return: jiffies value
 615 */
 616unsigned long
 617timespec64_to_jiffies(const struct timespec64 *value)
 618{
 619	u64 sec = value->tv_sec;
 620	long nsec = value->tv_nsec + TICK_NSEC - 1;
 621
 622	if (sec >= MAX_SEC_IN_JIFFIES){
 623		sec = MAX_SEC_IN_JIFFIES;
 624		nsec = 0;
 625	}
 626	return ((sec * SEC_CONVERSION) +
 627		(((u64)nsec * NSEC_CONVERSION) >>
 628		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 629
 630}
 
 
 
 
 
 
 
 
 
 
 
 
 631EXPORT_SYMBOL(timespec64_to_jiffies);
 632
 633/**
 634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
 635 * @jiffies: jiffies value
 636 * @value: pointer to &struct timespec64
 637 */
 638void
 639jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 640{
 641	/*
 642	 * Convert jiffies to nanoseconds and separate with
 643	 * one divide.
 644	 */
 645	u32 rem;
 646	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 647				    NSEC_PER_SEC, &rem);
 648	value->tv_nsec = rem;
 649}
 650EXPORT_SYMBOL(jiffies_to_timespec64);
 651
 652/*
 653 * Convert jiffies/jiffies_64 to clock_t and back.
 
 
 
 
 
 
 
 
 
 
 
 
 
 654 */
 
 
 
 
 
 
 
 655
 656/**
 657 * jiffies_to_clock_t - Convert jiffies to clock_t
 658 * @x: jiffies value
 659 *
 660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
 
 
 
 
 
 
 
 
 
 
 
 661 */
 662clock_t jiffies_to_clock_t(unsigned long x)
 663{
 664#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 665# if HZ < USER_HZ
 666	return x * (USER_HZ / HZ);
 667# else
 668	return x / (HZ / USER_HZ);
 669# endif
 670#else
 671	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 672#endif
 673}
 674EXPORT_SYMBOL(jiffies_to_clock_t);
 675
 676/**
 677 * clock_t_to_jiffies - Convert clock_t to jiffies
 678 * @x: clock_t value
 679 *
 680 * Return: clock_t value converted to jiffies
 681 */
 682unsigned long clock_t_to_jiffies(unsigned long x)
 683{
 684#if (HZ % USER_HZ)==0
 685	if (x >= ~0UL / (HZ / USER_HZ))
 686		return ~0UL;
 687	return x * (HZ / USER_HZ);
 688#else
 689	/* Don't worry about loss of precision here .. */
 690	if (x >= ~0UL / HZ * USER_HZ)
 691		return ~0UL;
 692
 693	/* .. but do try to contain it here */
 694	return div_u64((u64)x * HZ, USER_HZ);
 695#endif
 696}
 697EXPORT_SYMBOL(clock_t_to_jiffies);
 698
 699/**
 700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
 701 * @x: jiffies_64 value
 702 *
 703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 704 */
 705u64 jiffies_64_to_clock_t(u64 x)
 706{
 707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 708# if HZ < USER_HZ
 709	x = div_u64(x * USER_HZ, HZ);
 710# elif HZ > USER_HZ
 711	x = div_u64(x, HZ / USER_HZ);
 712# else
 713	/* Nothing to do */
 714# endif
 715#else
 716	/*
 717	 * There are better ways that don't overflow early,
 718	 * but even this doesn't overflow in hundreds of years
 719	 * in 64 bits, so..
 720	 */
 721	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 722#endif
 723	return x;
 724}
 725EXPORT_SYMBOL(jiffies_64_to_clock_t);
 726
 727/**
 728 * nsec_to_clock_t - Convert nsec value to clock_t
 729 * @x: nsec value
 730 *
 731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
 732 */
 733u64 nsec_to_clock_t(u64 x)
 734{
 735#if (NSEC_PER_SEC % USER_HZ) == 0
 736	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 737#elif (USER_HZ % 512) == 0
 738	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 739#else
 740	/*
 741         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 742         * overflow after 64.99 years.
 743         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 744         */
 745	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 746#endif
 747}
 748
 749/**
 750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
 751 * @j: jiffies64 value
 752 *
 753 * Return: nanoseconds value
 754 */
 755u64 jiffies64_to_nsecs(u64 j)
 756{
 757#if !(NSEC_PER_SEC % HZ)
 758	return (NSEC_PER_SEC / HZ) * j;
 759# else
 760	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 761#endif
 762}
 763EXPORT_SYMBOL(jiffies64_to_nsecs);
 764
 765/**
 766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
 767 * @j: jiffies64 value
 768 *
 769 * Return: milliseconds value
 770 */
 771u64 jiffies64_to_msecs(const u64 j)
 772{
 773#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 774	return (MSEC_PER_SEC / HZ) * j;
 775#else
 776	return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
 777#endif
 778}
 779EXPORT_SYMBOL(jiffies64_to_msecs);
 780
 781/**
 782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 783 *
 784 * @n:	nsecs in u64
 785 *
 786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 788 * for scheduler, not for use in device drivers to calculate timeout value.
 789 *
 790 * note:
 791 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 792 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 793 *
 794 * Return: nsecs converted to jiffies64 value
 795 */
 796u64 nsecs_to_jiffies64(u64 n)
 797{
 798#if (NSEC_PER_SEC % HZ) == 0
 799	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 800	return div_u64(n, NSEC_PER_SEC / HZ);
 801#elif (HZ % 512) == 0
 802	/* overflow after 292 years if HZ = 1024 */
 803	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 804#else
 805	/*
 806	 * Generic case - optimized for cases where HZ is a multiple of 3.
 807	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 808	 */
 809	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 810#endif
 811}
 812EXPORT_SYMBOL(nsecs_to_jiffies64);
 813
 814/**
 815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 816 *
 817 * @n:	nsecs in u64
 818 *
 819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 821 * for scheduler, not for use in device drivers to calculate timeout value.
 822 *
 823 * note:
 824 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 825 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 826 *
 827 * Return: nsecs converted to jiffies value
 828 */
 829unsigned long nsecs_to_jiffies(u64 n)
 830{
 831	return (unsigned long)nsecs_to_jiffies64(n);
 832}
 833EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 834
 835/**
 836 * timespec64_add_safe - Add two timespec64 values and do a safety check
 837 * for overflow.
 838 * @lhs: first (left) timespec64 to add
 839 * @rhs: second (right) timespec64 to add
 840 *
 841 * It's assumed that both values are valid (>= 0).
 842 * And, each timespec64 is in normalized form.
 843 *
 844 * Return: sum of @lhs + @rhs
 845 */
 846struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 847				const struct timespec64 rhs)
 848{
 849	struct timespec64 res;
 850
 851	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 852			lhs.tv_nsec + rhs.tv_nsec);
 853
 854	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 855		res.tv_sec = TIME64_MAX;
 856		res.tv_nsec = 0;
 857	}
 858
 859	return res;
 860}
 861
 862/**
 863 * get_timespec64 - get user's time value into kernel space
 864 * @ts: destination &struct timespec64
 865 * @uts: user's time value as &struct __kernel_timespec
 866 *
 867 * Handles compat or 32-bit modes.
 868 *
 869 * Return: %0 on success or negative errno on error
 870 */
 871int get_timespec64(struct timespec64 *ts,
 872		   const struct __kernel_timespec __user *uts)
 873{
 874	struct __kernel_timespec kts;
 875	int ret;
 876
 877	ret = copy_from_user(&kts, uts, sizeof(kts));
 878	if (ret)
 879		return -EFAULT;
 880
 881	ts->tv_sec = kts.tv_sec;
 882
 883	/* Zero out the padding in compat mode */
 884	if (in_compat_syscall())
 885		kts.tv_nsec &= 0xFFFFFFFFUL;
 886
 887	/* In 32-bit mode, this drops the padding */
 888	ts->tv_nsec = kts.tv_nsec;
 889
 890	return 0;
 891}
 892EXPORT_SYMBOL_GPL(get_timespec64);
 893
 894/**
 895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
 896 * 		    copy the latter to userspace
 897 * @ts: input &struct timespec64
 898 * @uts: user's &struct __kernel_timespec
 899 *
 900 * Return: %0 on success or negative errno on error
 901 */
 902int put_timespec64(const struct timespec64 *ts,
 903		   struct __kernel_timespec __user *uts)
 904{
 905	struct __kernel_timespec kts = {
 906		.tv_sec = ts->tv_sec,
 907		.tv_nsec = ts->tv_nsec
 908	};
 909
 910	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 911}
 912EXPORT_SYMBOL_GPL(put_timespec64);
 913
 914static int __get_old_timespec32(struct timespec64 *ts64,
 915				   const struct old_timespec32 __user *cts)
 916{
 917	struct old_timespec32 ts;
 918	int ret;
 919
 920	ret = copy_from_user(&ts, cts, sizeof(ts));
 921	if (ret)
 922		return -EFAULT;
 923
 924	ts64->tv_sec = ts.tv_sec;
 925	ts64->tv_nsec = ts.tv_nsec;
 926
 927	return 0;
 928}
 929
 930static int __put_old_timespec32(const struct timespec64 *ts64,
 931				   struct old_timespec32 __user *cts)
 932{
 933	struct old_timespec32 ts = {
 934		.tv_sec = ts64->tv_sec,
 935		.tv_nsec = ts64->tv_nsec
 936	};
 937	return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
 938}
 939
 940/**
 941 * get_old_timespec32 - get user's old-format time value into kernel space
 942 * @ts: destination &struct timespec64
 943 * @uts: user's old-format time value (&struct old_timespec32)
 944 *
 945 * Handles X86_X32_ABI compatibility conversion.
 946 *
 947 * Return: %0 on success or negative errno on error
 948 */
 949int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
 950{
 951	if (COMPAT_USE_64BIT_TIME)
 952		return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
 953	else
 954		return __get_old_timespec32(ts, uts);
 955}
 956EXPORT_SYMBOL_GPL(get_old_timespec32);
 957
 958/**
 959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
 960 * 			copy the latter to userspace
 961 * @ts: input &struct timespec64
 962 * @uts: user's &struct old_timespec32
 963 *
 964 * Handles X86_X32_ABI compatibility conversion.
 965 *
 966 * Return: %0 on success or negative errno on error
 967 */
 968int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
 969{
 970	if (COMPAT_USE_64BIT_TIME)
 971		return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
 972	else
 973		return __put_old_timespec32(ts, uts);
 974}
 975EXPORT_SYMBOL_GPL(put_old_timespec32);
 976
 977/**
 978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
 979 * @it: destination &struct itimerspec64
 980 * @uit: user's &struct __kernel_itimerspec
 981 *
 982 * Return: %0 on success or negative errno on error
 983 */
 984int get_itimerspec64(struct itimerspec64 *it,
 985			const struct __kernel_itimerspec __user *uit)
 986{
 987	int ret;
 988
 989	ret = get_timespec64(&it->it_interval, &uit->it_interval);
 990	if (ret)
 991		return ret;
 992
 993	ret = get_timespec64(&it->it_value, &uit->it_value);
 994
 995	return ret;
 996}
 997EXPORT_SYMBOL_GPL(get_itimerspec64);
 998
 999/**
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * 		      and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1004 *
1005 * Return: %0 on success or negative errno on error
1006 */
1007int put_itimerspec64(const struct itimerspec64 *it,
1008			struct __kernel_itimerspec __user *uit)
1009{
1010	int ret;
1011
1012	ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013	if (ret)
1014		return ret;
1015
1016	ret = put_timespec64(&it->it_value, &uit->it_value);
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL_GPL(put_itimerspec64);
1021
1022/**
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1026 *
1027 * Return: %0 on success or negative errno on error
1028 */
1029int get_old_itimerspec32(struct itimerspec64 *its,
1030			const struct old_itimerspec32 __user *uits)
1031{
1032
1033	if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034	    __get_old_timespec32(&its->it_value, &uits->it_value))
1035		return -EFAULT;
1036	return 0;
1037}
1038EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039
1040/**
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 *			  old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1045 *
1046 * Return: %0 on success or negative errno on error
1047 */
1048int put_old_itimerspec32(const struct itimerspec64 *its,
1049			struct old_itimerspec32 __user *uits)
1050{
1051	if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052	    __put_old_timespec32(&its->it_value, &uits->it_value))
1053		return -EFAULT;
1054	return 0;
1055}
1056EXPORT_SYMBOL_GPL(put_old_itimerspec32);
v4.17
 
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
 
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <linux/uaccess.h>
 42#include <linux/compat.h>
 43#include <asm/unistd.h>
 44
 45#include <generated/timeconst.h>
 46#include "timekeeping.h"
 47
 48/*
 49 * The timezone where the local system is located.  Used as a default by some
 50 * programs who obtain this value by using gettimeofday.
 51 */
 52struct timezone sys_tz;
 53
 54EXPORT_SYMBOL(sys_tz);
 55
 56#ifdef __ARCH_WANT_SYS_TIME
 57
 58/*
 59 * sys_time() can be implemented in user-level using
 60 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 61 * why not move it into the appropriate arch directory (for those
 62 * architectures that need it).
 63 */
 64SYSCALL_DEFINE1(time, time_t __user *, tloc)
 65{
 66	time_t i = get_seconds();
 67
 68	if (tloc) {
 69		if (put_user(i,tloc))
 70			return -EFAULT;
 71	}
 72	force_successful_syscall_return();
 73	return i;
 74}
 75
 76/*
 77 * sys_stime() can be implemented in user-level using
 78 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 79 * why not move it into the appropriate arch directory (for those
 80 * architectures that need it).
 81 */
 82
 83SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 84{
 85	struct timespec64 tv;
 86	int err;
 87
 88	if (get_user(tv.tv_sec, tptr))
 89		return -EFAULT;
 90
 91	tv.tv_nsec = 0;
 92
 93	err = security_settime64(&tv, NULL);
 94	if (err)
 95		return err;
 96
 97	do_settimeofday64(&tv);
 98	return 0;
 99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
103#ifdef CONFIG_COMPAT
104#ifdef __ARCH_WANT_COMPAT_SYS_TIME
105
106/* compat_time_t is a 32 bit "long" and needs to get converted. */
107COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108{
109	struct timeval tv;
110	compat_time_t i;
111
112	do_gettimeofday(&tv);
113	i = tv.tv_sec;
114
115	if (tloc) {
116		if (put_user(i,tloc))
117			return -EFAULT;
118	}
119	force_successful_syscall_return();
120	return i;
121}
122
123COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124{
125	struct timespec64 tv;
126	int err;
127
128	if (get_user(tv.tv_sec, tptr))
129		return -EFAULT;
130
131	tv.tv_nsec = 0;
132
133	err = security_settime64(&tv, NULL);
134	if (err)
135		return err;
136
137	do_settimeofday64(&tv);
138	return 0;
139}
140
141#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142#endif
143
144SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145		struct timezone __user *, tz)
146{
147	if (likely(tv != NULL)) {
148		struct timeval ktv;
149		do_gettimeofday(&ktv);
150		if (copy_to_user(tv, &ktv, sizeof(ktv)))
 
 
151			return -EFAULT;
152	}
153	if (unlikely(tz != NULL)) {
154		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155			return -EFAULT;
156	}
157	return 0;
158}
159
160/*
161 * In case for some reason the CMOS clock has not already been running
162 * in UTC, but in some local time: The first time we set the timezone,
163 * we will warp the clock so that it is ticking UTC time instead of
164 * local time. Presumably, if someone is setting the timezone then we
165 * are running in an environment where the programs understand about
166 * timezones. This should be done at boot time in the /etc/rc script,
167 * as soon as possible, so that the clock can be set right. Otherwise,
168 * various programs will get confused when the clock gets warped.
169 */
170
171int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
172{
173	static int firsttime = 1;
174	int error = 0;
175
176	if (tv && !timespec64_valid(tv))
177		return -EINVAL;
178
179	error = security_settime64(tv, tz);
180	if (error)
181		return error;
182
183	if (tz) {
184		/* Verify we're witin the +-15 hrs range */
185		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
186			return -EINVAL;
187
188		sys_tz = *tz;
189		update_vsyscall_tz();
190		if (firsttime) {
191			firsttime = 0;
192			if (!tv)
193				timekeeping_warp_clock();
194		}
195	}
196	if (tv)
197		return do_settimeofday64(tv);
198	return 0;
199}
200
201SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
202		struct timezone __user *, tz)
203{
204	struct timespec64 new_ts;
205	struct timeval user_tv;
206	struct timezone new_tz;
207
208	if (tv) {
209		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 
210			return -EFAULT;
211
212		if (!timeval_valid(&user_tv))
213			return -EINVAL;
214
215		new_ts.tv_sec = user_tv.tv_sec;
216		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
217	}
218	if (tz) {
219		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
220			return -EFAULT;
221	}
222
223	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
224}
225
226#ifdef CONFIG_COMPAT
227COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
228		       struct timezone __user *, tz)
229{
230	if (tv) {
231		struct timeval ktv;
232
233		do_gettimeofday(&ktv);
234		if (compat_put_timeval(&ktv, tv))
 
235			return -EFAULT;
236	}
237	if (tz) {
238		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
239			return -EFAULT;
240	}
241
242	return 0;
243}
244
245COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
246		       struct timezone __user *, tz)
247{
248	struct timespec64 new_ts;
249	struct timeval user_tv;
250	struct timezone new_tz;
251
252	if (tv) {
253		if (compat_get_timeval(&user_tv, tv))
 
254			return -EFAULT;
255		new_ts.tv_sec = user_tv.tv_sec;
256		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 
 
 
257	}
258	if (tz) {
259		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
260			return -EFAULT;
261	}
262
263	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
264}
265#endif
266
267SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 
268{
269	struct timex txc;		/* Local copy of parameter */
270	int ret;
271
272	/* Copy the user data space into the kernel copy
273	 * structure. But bear in mind that the structures
274	 * may change
275	 */
276	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
277		return -EFAULT;
278	ret = do_adjtimex(&txc);
279	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280}
281
282#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
284COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
285{
286	struct timex txc;
287	int err, ret;
288
289	err = compat_get_timex(&txc, utp);
290	if (err)
291		return err;
292
293	ret = do_adjtimex(&txc);
294
295	err = compat_put_timex(utp, &txc);
296	if (err)
297		return err;
298
299	return ret;
300}
301#endif
302
303/*
304 * Convert jiffies to milliseconds and back.
 
305 *
306 * Avoid unnecessary multiplications/divisions in the
307 * two most common HZ cases:
 
 
308 */
309unsigned int jiffies_to_msecs(const unsigned long j)
310{
311#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
312	return (MSEC_PER_SEC / HZ) * j;
313#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
314	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
315#else
316# if BITS_PER_LONG == 32
317	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 
318# else
319	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
320# endif
321#endif
322}
323EXPORT_SYMBOL(jiffies_to_msecs);
324
 
 
 
 
 
 
325unsigned int jiffies_to_usecs(const unsigned long j)
326{
327	/*
328	 * Hz usually doesn't go much further MSEC_PER_SEC.
329	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330	 */
331	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333#if !(USEC_PER_SEC % HZ)
334	return (USEC_PER_SEC / HZ) * j;
335#else
336# if BITS_PER_LONG == 32
337	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338# else
339	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340# endif
341#endif
342}
343EXPORT_SYMBOL(jiffies_to_usecs);
344
345/**
346 * timespec_trunc - Truncate timespec to a granularity
347 * @t: Timespec
348 * @gran: Granularity in ns.
349 *
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352 */
353struct timespec timespec_trunc(struct timespec t, unsigned gran)
354{
355	/* Avoid division in the common cases 1 ns and 1 s. */
356	if (gran == 1) {
357		/* nothing */
358	} else if (gran == NSEC_PER_SEC) {
359		t.tv_nsec = 0;
360	} else if (gran > 1 && gran < NSEC_PER_SEC) {
361		t.tv_nsec -= t.tv_nsec % gran;
362	} else {
363		WARN(1, "illegal file time granularity: %u", gran);
364	}
365	return t;
366}
367EXPORT_SYMBOL(timespec_trunc);
368
369/*
370 * mktime64 - Converts date to seconds.
 
 
 
 
 
 
 
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 *
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
379 *
380 * This algorithm was first published by Gauss (I think).
381 *
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601).  The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
385 *
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
 
 
388 */
389time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390		const unsigned int day, const unsigned int hour,
391		const unsigned int min, const unsigned int sec)
392{
393	unsigned int mon = mon0, year = year0;
394
395	/* 1..12 -> 11,12,1..10 */
396	if (0 >= (int) (mon -= 2)) {
397		mon += 12;	/* Puts Feb last since it has leap day */
398		year -= 1;
399	}
400
401	return ((((time64_t)
402		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403		  year*365 - 719499
404	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405	  )*60 + min /* now have minutes */
406	)*60 + sec; /* finally seconds */
407}
408EXPORT_SYMBOL(mktime64);
409
410#if __BITS_PER_LONG == 32
411/**
412 * set_normalized_timespec - set timespec sec and nsec parts and normalize
413 *
414 * @ts:		pointer to timespec variable to be set
415 * @sec:	seconds to set
416 * @nsec:	nanoseconds to set
417 *
418 * Set seconds and nanoseconds field of a timespec variable and
419 * normalize to the timespec storage format
420 *
421 * Note: The tv_nsec part is always in the range of
422 *	0 <= tv_nsec < NSEC_PER_SEC
423 * For negative values only the tv_sec field is negative !
424 */
425void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
426{
427	while (nsec >= NSEC_PER_SEC) {
428		/*
429		 * The following asm() prevents the compiler from
430		 * optimising this loop into a modulo operation. See
431		 * also __iter_div_u64_rem() in include/linux/time.h
432		 */
433		asm("" : "+rm"(nsec));
434		nsec -= NSEC_PER_SEC;
435		++sec;
436	}
437	while (nsec < 0) {
438		asm("" : "+rm"(nsec));
439		nsec += NSEC_PER_SEC;
440		--sec;
441	}
442	ts->tv_sec = sec;
443	ts->tv_nsec = nsec;
444}
445EXPORT_SYMBOL(set_normalized_timespec);
446
447/**
448 * ns_to_timespec - Convert nanoseconds to timespec
449 * @nsec:       the nanoseconds value to be converted
450 *
451 * Returns the timespec representation of the nsec parameter.
452 */
453struct timespec ns_to_timespec(const s64 nsec)
454{
455	struct timespec ts;
456	s32 rem;
457
458	if (!nsec)
459		return (struct timespec) {0, 0};
460
461	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
462	if (unlikely(rem < 0)) {
463		ts.tv_sec--;
464		rem += NSEC_PER_SEC;
465	}
466	ts.tv_nsec = rem;
467
468	return ts;
469}
470EXPORT_SYMBOL(ns_to_timespec);
471#endif
472
473/**
474 * ns_to_timeval - Convert nanoseconds to timeval
475 * @nsec:       the nanoseconds value to be converted
476 *
477 * Returns the timeval representation of the nsec parameter.
478 */
479struct timeval ns_to_timeval(const s64 nsec)
480{
481	struct timespec ts = ns_to_timespec(nsec);
482	struct timeval tv;
483
484	tv.tv_sec = ts.tv_sec;
485	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486
487	return tv;
488}
489EXPORT_SYMBOL(ns_to_timeval);
490
491struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492{
493	struct timespec64 ts = ns_to_timespec64(nsec);
494	struct __kernel_old_timeval tv;
495
496	tv.tv_sec = ts.tv_sec;
497	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498
499	return tv;
500}
501EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502
503/**
504 * set_normalized_timespec - set timespec sec and nsec parts and normalize
505 *
506 * @ts:		pointer to timespec variable to be set
507 * @sec:	seconds to set
508 * @nsec:	nanoseconds to set
509 *
510 * Set seconds and nanoseconds field of a timespec variable and
511 * normalize to the timespec storage format
512 *
513 * Note: The tv_nsec part is always in the range of
514 *	0 <= tv_nsec < NSEC_PER_SEC
515 * For negative values only the tv_sec field is negative !
516 */
517void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518{
519	while (nsec >= NSEC_PER_SEC) {
520		/*
521		 * The following asm() prevents the compiler from
522		 * optimising this loop into a modulo operation. See
523		 * also __iter_div_u64_rem() in include/linux/time.h
524		 */
525		asm("" : "+rm"(nsec));
526		nsec -= NSEC_PER_SEC;
527		++sec;
528	}
529	while (nsec < 0) {
530		asm("" : "+rm"(nsec));
531		nsec += NSEC_PER_SEC;
532		--sec;
533	}
534	ts->tv_sec = sec;
535	ts->tv_nsec = nsec;
536}
537EXPORT_SYMBOL(set_normalized_timespec64);
538
539/**
540 * ns_to_timespec64 - Convert nanoseconds to timespec64
541 * @nsec:       the nanoseconds value to be converted
542 *
543 * Returns the timespec64 representation of the nsec parameter.
544 */
545struct timespec64 ns_to_timespec64(const s64 nsec)
546{
547	struct timespec64 ts;
548	s32 rem;
549
550	if (!nsec)
551		return (struct timespec64) {0, 0};
552
553	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554	if (unlikely(rem < 0)) {
555		ts.tv_sec--;
556		rem += NSEC_PER_SEC;
 
 
 
 
557	}
558	ts.tv_nsec = rem;
559
560	return ts;
561}
562EXPORT_SYMBOL(ns_to_timespec64);
563
564/**
565 * msecs_to_jiffies: - convert milliseconds to jiffies
566 * @m:	time in milliseconds
567 *
568 * conversion is done as follows:
569 *
570 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571 *
572 * - 'too large' values [that would result in larger than
573 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574 *
575 * - all other values are converted to jiffies by either multiplying
576 *   the input value by a factor or dividing it with a factor and
577 *   handling any 32-bit overflows.
578 *   for the details see __msecs_to_jiffies()
579 *
580 * msecs_to_jiffies() checks for the passed in value being a constant
581 * via __builtin_constant_p() allowing gcc to eliminate most of the
582 * code, __msecs_to_jiffies() is called if the value passed does not
583 * allow constant folding and the actual conversion must be done at
584 * runtime.
585 * the _msecs_to_jiffies helpers are the HZ dependent conversion
586 * routines found in include/linux/jiffies.h
 
 
587 */
588unsigned long __msecs_to_jiffies(const unsigned int m)
589{
590	/*
591	 * Negative value, means infinite timeout:
592	 */
593	if ((int)m < 0)
594		return MAX_JIFFY_OFFSET;
595	return _msecs_to_jiffies(m);
596}
597EXPORT_SYMBOL(__msecs_to_jiffies);
598
 
 
 
 
 
 
599unsigned long __usecs_to_jiffies(const unsigned int u)
600{
601	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602		return MAX_JIFFY_OFFSET;
603	return _usecs_to_jiffies(u);
604}
605EXPORT_SYMBOL(__usecs_to_jiffies);
606
607/*
 
 
 
608 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
609 * that a remainder subtract here would not do the right thing as the
610 * resolution values don't fall on second boundries.  I.e. the line:
611 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612 * Note that due to the small error in the multiplier here, this
613 * rounding is incorrect for sufficiently large values of tv_nsec, but
614 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615 * OK.
616 *
617 * Rather, we just shift the bits off the right.
618 *
619 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620 * value to a scaled second value.
 
 
621 */
622static unsigned long
623__timespec64_to_jiffies(u64 sec, long nsec)
624{
625	nsec = nsec + TICK_NSEC - 1;
 
626
627	if (sec >= MAX_SEC_IN_JIFFIES){
628		sec = MAX_SEC_IN_JIFFIES;
629		nsec = 0;
630	}
631	return ((sec * SEC_CONVERSION) +
632		(((u64)nsec * NSEC_CONVERSION) >>
633		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634
635}
636
637static unsigned long
638__timespec_to_jiffies(unsigned long sec, long nsec)
639{
640	return __timespec64_to_jiffies((u64)sec, nsec);
641}
642
643unsigned long
644timespec64_to_jiffies(const struct timespec64 *value)
645{
646	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647}
648EXPORT_SYMBOL(timespec64_to_jiffies);
649
 
 
 
 
 
650void
651jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652{
653	/*
654	 * Convert jiffies to nanoseconds and separate with
655	 * one divide.
656	 */
657	u32 rem;
658	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659				    NSEC_PER_SEC, &rem);
660	value->tv_nsec = rem;
661}
662EXPORT_SYMBOL(jiffies_to_timespec64);
663
664/*
665 * We could use a similar algorithm to timespec_to_jiffies (with a
666 * different multiplier for usec instead of nsec). But this has a
667 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668 * usec value, since it's not necessarily integral.
669 *
670 * We could instead round in the intermediate scaled representation
671 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672 * perilous: the scaling introduces a small positive error, which
673 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674 * units to the intermediate before shifting) leads to accidental
675 * overflow and overestimates.
676 *
677 * At the cost of one additional multiplication by a constant, just
678 * use the timespec implementation.
679 */
680unsigned long
681timeval_to_jiffies(const struct timeval *value)
682{
683	return __timespec_to_jiffies(value->tv_sec,
684				     value->tv_usec * NSEC_PER_USEC);
685}
686EXPORT_SYMBOL(timeval_to_jiffies);
687
688void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689{
690	/*
691	 * Convert jiffies to nanoseconds and separate with
692	 * one divide.
693	 */
694	u32 rem;
695
696	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697				    NSEC_PER_SEC, &rem);
698	value->tv_usec = rem / NSEC_PER_USEC;
699}
700EXPORT_SYMBOL(jiffies_to_timeval);
701
702/*
703 * Convert jiffies/jiffies_64 to clock_t and back.
704 */
705clock_t jiffies_to_clock_t(unsigned long x)
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708# if HZ < USER_HZ
709	return x * (USER_HZ / HZ);
710# else
711	return x / (HZ / USER_HZ);
712# endif
713#else
714	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715#endif
716}
717EXPORT_SYMBOL(jiffies_to_clock_t);
718
 
 
 
 
 
 
719unsigned long clock_t_to_jiffies(unsigned long x)
720{
721#if (HZ % USER_HZ)==0
722	if (x >= ~0UL / (HZ / USER_HZ))
723		return ~0UL;
724	return x * (HZ / USER_HZ);
725#else
726	/* Don't worry about loss of precision here .. */
727	if (x >= ~0UL / HZ * USER_HZ)
728		return ~0UL;
729
730	/* .. but do try to contain it here */
731	return div_u64((u64)x * HZ, USER_HZ);
732#endif
733}
734EXPORT_SYMBOL(clock_t_to_jiffies);
735
 
 
 
 
 
 
736u64 jiffies_64_to_clock_t(u64 x)
737{
738#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739# if HZ < USER_HZ
740	x = div_u64(x * USER_HZ, HZ);
741# elif HZ > USER_HZ
742	x = div_u64(x, HZ / USER_HZ);
743# else
744	/* Nothing to do */
745# endif
746#else
747	/*
748	 * There are better ways that don't overflow early,
749	 * but even this doesn't overflow in hundreds of years
750	 * in 64 bits, so..
751	 */
752	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753#endif
754	return x;
755}
756EXPORT_SYMBOL(jiffies_64_to_clock_t);
757
 
 
 
 
 
 
758u64 nsec_to_clock_t(u64 x)
759{
760#if (NSEC_PER_SEC % USER_HZ) == 0
761	return div_u64(x, NSEC_PER_SEC / USER_HZ);
762#elif (USER_HZ % 512) == 0
763	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764#else
765	/*
766         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767         * overflow after 64.99 years.
768         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769         */
770	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771#endif
772}
773
 
 
 
 
 
 
774u64 jiffies64_to_nsecs(u64 j)
775{
776#if !(NSEC_PER_SEC % HZ)
777	return (NSEC_PER_SEC / HZ) * j;
778# else
779	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780#endif
781}
782EXPORT_SYMBOL(jiffies64_to_nsecs);
783
784/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
785 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786 *
787 * @n:	nsecs in u64
788 *
789 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791 * for scheduler, not for use in device drivers to calculate timeout value.
792 *
793 * note:
794 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
796 */
797u64 nsecs_to_jiffies64(u64 n)
798{
799#if (NSEC_PER_SEC % HZ) == 0
800	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801	return div_u64(n, NSEC_PER_SEC / HZ);
802#elif (HZ % 512) == 0
803	/* overflow after 292 years if HZ = 1024 */
804	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805#else
806	/*
807	 * Generic case - optimized for cases where HZ is a multiple of 3.
808	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809	 */
810	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811#endif
812}
813EXPORT_SYMBOL(nsecs_to_jiffies64);
814
815/**
816 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817 *
818 * @n:	nsecs in u64
819 *
820 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822 * for scheduler, not for use in device drivers to calculate timeout value.
823 *
824 * note:
825 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 
 
827 */
828unsigned long nsecs_to_jiffies(u64 n)
829{
830	return (unsigned long)nsecs_to_jiffies64(n);
831}
832EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833
834/*
835 * Add two timespec64 values and do a safety check for overflow.
 
 
 
 
836 * It's assumed that both values are valid (>= 0).
837 * And, each timespec64 is in normalized form.
 
 
838 */
839struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840				const struct timespec64 rhs)
841{
842	struct timespec64 res;
843
844	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845			lhs.tv_nsec + rhs.tv_nsec);
846
847	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848		res.tv_sec = TIME64_MAX;
849		res.tv_nsec = 0;
850	}
851
852	return res;
853}
854
 
 
 
 
 
 
 
 
 
855int get_timespec64(struct timespec64 *ts,
856		   const struct timespec __user *uts)
857{
858	struct timespec kts;
859	int ret;
860
861	ret = copy_from_user(&kts, uts, sizeof(kts));
862	if (ret)
863		return -EFAULT;
864
865	ts->tv_sec = kts.tv_sec;
 
 
 
 
 
 
866	ts->tv_nsec = kts.tv_nsec;
867
868	return 0;
869}
870EXPORT_SYMBOL_GPL(get_timespec64);
871
 
 
 
 
 
 
 
 
872int put_timespec64(const struct timespec64 *ts,
873		   struct timespec __user *uts)
874{
875	struct timespec kts = {
876		.tv_sec = ts->tv_sec,
877		.tv_nsec = ts->tv_nsec
878	};
 
879	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
880}
881EXPORT_SYMBOL_GPL(put_timespec64);
882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
883int get_itimerspec64(struct itimerspec64 *it,
884			const struct itimerspec __user *uit)
885{
886	int ret;
887
888	ret = get_timespec64(&it->it_interval, &uit->it_interval);
889	if (ret)
890		return ret;
891
892	ret = get_timespec64(&it->it_value, &uit->it_value);
893
894	return ret;
895}
896EXPORT_SYMBOL_GPL(get_itimerspec64);
897
 
 
 
 
 
 
 
 
898int put_itimerspec64(const struct itimerspec64 *it,
899			struct itimerspec __user *uit)
900{
901	int ret;
902
903	ret = put_timespec64(&it->it_interval, &uit->it_interval);
904	if (ret)
905		return ret;
906
907	ret = put_timespec64(&it->it_value, &uit->it_value);
908
909	return ret;
910}
911EXPORT_SYMBOL_GPL(put_itimerspec64);