Linux Audio

Check our new training course

Loading...
v6.8
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * Hash: Hash algorithms under the crypto API
  4 * 
  5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
 
  6 */
  7
  8#ifndef _CRYPTO_HASH_H
  9#define _CRYPTO_HASH_H
 10
 11#include <linux/atomic.h>
 12#include <linux/crypto.h>
 13#include <linux/string.h>
 14
 15struct crypto_ahash;
 16
 17/**
 18 * DOC: Message Digest Algorithm Definitions
 19 *
 20 * These data structures define modular message digest algorithm
 21 * implementations, managed via crypto_register_ahash(),
 22 * crypto_register_shash(), crypto_unregister_ahash() and
 23 * crypto_unregister_shash().
 24 */
 25
 26/*
 27 * struct crypto_istat_hash - statistics for has algorithm
 28 * @hash_cnt:		number of hash requests
 29 * @hash_tlen:		total data size hashed
 30 * @err_cnt:		number of error for hash requests
 31 */
 32struct crypto_istat_hash {
 33	atomic64_t hash_cnt;
 34	atomic64_t hash_tlen;
 35	atomic64_t err_cnt;
 36};
 37
 38#ifdef CONFIG_CRYPTO_STATS
 39#define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat;
 40#else
 41#define HASH_ALG_COMMON_STAT
 42#endif
 43
 44/*
 45 * struct hash_alg_common - define properties of message digest
 46 * @stat: Statistics for hash algorithm.
 47 * @digestsize: Size of the result of the transformation. A buffer of this size
 48 *	        must be available to the @final and @finup calls, so they can
 49 *	        store the resulting hash into it. For various predefined sizes,
 50 *	        search include/crypto/ using
 51 *	        git grep _DIGEST_SIZE include/crypto.
 52 * @statesize: Size of the block for partial state of the transformation. A
 53 *	       buffer of this size must be passed to the @export function as it
 54 *	       will save the partial state of the transformation into it. On the
 55 *	       other side, the @import function will load the state from a
 56 *	       buffer of this size as well.
 57 * @base: Start of data structure of cipher algorithm. The common data
 58 *	  structure of crypto_alg contains information common to all ciphers.
 59 *	  The hash_alg_common data structure now adds the hash-specific
 60 *	  information.
 61 */
 62#define HASH_ALG_COMMON {		\
 63	HASH_ALG_COMMON_STAT		\
 64					\
 65	unsigned int digestsize;	\
 66	unsigned int statesize;		\
 67					\
 68	struct crypto_alg base;		\
 69}
 70struct hash_alg_common HASH_ALG_COMMON;
 71
 72struct ahash_request {
 73	struct crypto_async_request base;
 74
 75	unsigned int nbytes;
 76	struct scatterlist *src;
 77	u8 *result;
 78
 79	/* This field may only be used by the ahash API code. */
 80	void *priv;
 81
 82	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 83};
 84
 
 
 
 
 
 85/**
 86 * struct ahash_alg - asynchronous message digest definition
 87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
 88 *	  state of the HASH transformation at the beginning. This shall fill in
 89 *	  the internal structures used during the entire duration of the whole
 90 *	  transformation. No data processing happens at this point. Driver code
 91 *	  implementation must not use req->result.
 92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
 93 *	   function actually pushes blocks of data from upper layers into the
 94 *	   driver, which then passes those to the hardware as seen fit. This
 95 *	   function must not finalize the HASH transformation by calculating the
 96 *	   final message digest as this only adds more data into the
 97 *	   transformation. This function shall not modify the transformation
 98 *	   context, as this function may be called in parallel with the same
 99 *	   transformation object. Data processing can happen synchronously
100 *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
101 *	   req->result.
102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
103 *	   transformation and retrieves the resulting hash from the driver and
104 *	   pushes it back to upper layers. No data processing happens at this
105 *	   point unless hardware requires it to finish the transformation
106 *	   (then the data buffered by the device driver is processed).
107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
108 *	   combination of @update and @final calls issued in sequence. As some
109 *	   hardware cannot do @update and @final separately, this callback was
110 *	   added to allow such hardware to be used at least by IPsec. Data
111 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
112 *	   at this point.
113 * @digest: Combination of @init and @update and @final. This function
114 *	    effectively behaves as the entire chain of operations, @init,
115 *	    @update and @final issued in sequence. Just like @finup, this was
116 *	    added for hardware which cannot do even the @finup, but can only do
117 *	    the whole transformation in one run. Data processing can happen
118 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
119 * @setkey: Set optional key used by the hashing algorithm. Intended to push
120 *	    optional key used by the hashing algorithm from upper layers into
121 *	    the driver. This function can store the key in the transformation
122 *	    context or can outright program it into the hardware. In the former
123 *	    case, one must be careful to program the key into the hardware at
124 *	    appropriate time and one must be careful that .setkey() can be
125 *	    called multiple times during the existence of the transformation
126 *	    object. Not  all hashing algorithms do implement this function as it
127 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
128 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
129 *	    this function. This function must be called before any other of the
130 *	    @init, @update, @final, @finup, @digest is called. No data
131 *	    processing happens at this point.
132 * @export: Export partial state of the transformation. This function dumps the
133 *	    entire state of the ongoing transformation into a provided block of
134 *	    data so it can be @import 'ed back later on. This is useful in case
135 *	    you want to save partial result of the transformation after
136 *	    processing certain amount of data and reload this partial result
137 *	    multiple times later on for multiple re-use. No data processing
138 *	    happens at this point. Driver must not use req->result.
139 * @import: Import partial state of the transformation. This function loads the
140 *	    entire state of the ongoing transformation from a provided block of
141 *	    data so the transformation can continue from this point onward. No
142 *	    data processing happens at this point. Driver must not use
143 *	    req->result.
144 * @init_tfm: Initialize the cryptographic transformation object.
145 *	      This function is called only once at the instantiation
146 *	      time, right after the transformation context was
147 *	      allocated. In case the cryptographic hardware has
148 *	      some special requirements which need to be handled
149 *	      by software, this function shall check for the precise
150 *	      requirement of the transformation and put any software
151 *	      fallbacks in place.
152 * @exit_tfm: Deinitialize the cryptographic transformation object.
153 *	      This is a counterpart to @init_tfm, used to remove
154 *	      various changes set in @init_tfm.
155 * @clone_tfm: Copy transform into new object, may allocate memory.
156 * @halg: see struct hash_alg_common
157 */
158struct ahash_alg {
159	int (*init)(struct ahash_request *req);
160	int (*update)(struct ahash_request *req);
161	int (*final)(struct ahash_request *req);
162	int (*finup)(struct ahash_request *req);
163	int (*digest)(struct ahash_request *req);
164	int (*export)(struct ahash_request *req, void *out);
165	int (*import)(struct ahash_request *req, const void *in);
166	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
167		      unsigned int keylen);
168	int (*init_tfm)(struct crypto_ahash *tfm);
169	void (*exit_tfm)(struct crypto_ahash *tfm);
170	int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
171
172	struct hash_alg_common halg;
173};
174
175struct shash_desc {
176	struct crypto_shash *tfm;
177	void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
178};
179
180#define HASH_MAX_DIGESTSIZE	 64
181
182/*
183 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
184 * containing a 'struct sha3_state'.
185 */
186#define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
187
188#define SHASH_DESC_ON_STACK(shash, ctx)					     \
189	char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
190		__aligned(__alignof__(struct shash_desc));		     \
191	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
192
193/**
194 * struct shash_alg - synchronous message digest definition
195 * @init: see struct ahash_alg
196 * @update: see struct ahash_alg
197 * @final: see struct ahash_alg
198 * @finup: see struct ahash_alg
199 * @digest: see struct ahash_alg
200 * @export: see struct ahash_alg
201 * @import: see struct ahash_alg
202 * @setkey: see struct ahash_alg
203 * @init_tfm: Initialize the cryptographic transformation object.
204 *	      This function is called only once at the instantiation
205 *	      time, right after the transformation context was
206 *	      allocated. In case the cryptographic hardware has
207 *	      some special requirements which need to be handled
208 *	      by software, this function shall check for the precise
209 *	      requirement of the transformation and put any software
210 *	      fallbacks in place.
211 * @exit_tfm: Deinitialize the cryptographic transformation object.
212 *	      This is a counterpart to @init_tfm, used to remove
213 *	      various changes set in @init_tfm.
214 * @clone_tfm: Copy transform into new object, may allocate memory.
215 * @descsize: Size of the operational state for the message digest. This state
216 * 	      size is the memory size that needs to be allocated for
217 *	      shash_desc.__ctx
218 * @halg: see struct hash_alg_common
219 * @HASH_ALG_COMMON: see struct hash_alg_common
220 */
221struct shash_alg {
222	int (*init)(struct shash_desc *desc);
223	int (*update)(struct shash_desc *desc, const u8 *data,
224		      unsigned int len);
225	int (*final)(struct shash_desc *desc, u8 *out);
226	int (*finup)(struct shash_desc *desc, const u8 *data,
227		     unsigned int len, u8 *out);
228	int (*digest)(struct shash_desc *desc, const u8 *data,
229		      unsigned int len, u8 *out);
230	int (*export)(struct shash_desc *desc, void *out);
231	int (*import)(struct shash_desc *desc, const void *in);
232	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
233		      unsigned int keylen);
234	int (*init_tfm)(struct crypto_shash *tfm);
235	void (*exit_tfm)(struct crypto_shash *tfm);
236	int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
237
238	unsigned int descsize;
239
240	union {
241		struct HASH_ALG_COMMON;
242		struct hash_alg_common halg;
243	};
 
 
244};
245#undef HASH_ALG_COMMON
246#undef HASH_ALG_COMMON_STAT
247
248struct crypto_ahash {
249	bool using_shash; /* Underlying algorithm is shash, not ahash */
250	unsigned int statesize;
 
 
 
 
 
 
 
 
251	unsigned int reqsize;
252	struct crypto_tfm base;
253};
254
255struct crypto_shash {
256	unsigned int descsize;
257	struct crypto_tfm base;
258};
259
260/**
261 * DOC: Asynchronous Message Digest API
262 *
263 * The asynchronous message digest API is used with the ciphers of type
264 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
265 *
266 * The asynchronous cipher operation discussion provided for the
267 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
268 */
269
270static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
271{
272	return container_of(tfm, struct crypto_ahash, base);
273}
274
275/**
276 * crypto_alloc_ahash() - allocate ahash cipher handle
277 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
278 *	      ahash cipher
279 * @type: specifies the type of the cipher
280 * @mask: specifies the mask for the cipher
281 *
282 * Allocate a cipher handle for an ahash. The returned struct
283 * crypto_ahash is the cipher handle that is required for any subsequent
284 * API invocation for that ahash.
285 *
286 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
287 *	   of an error, PTR_ERR() returns the error code.
288 */
289struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
290					u32 mask);
291
292struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
293
294static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
295{
296	return &tfm->base;
297}
298
299/**
300 * crypto_free_ahash() - zeroize and free the ahash handle
301 * @tfm: cipher handle to be freed
302 *
303 * If @tfm is a NULL or error pointer, this function does nothing.
304 */
305static inline void crypto_free_ahash(struct crypto_ahash *tfm)
306{
307	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
308}
309
310/**
311 * crypto_has_ahash() - Search for the availability of an ahash.
312 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
313 *	      ahash
314 * @type: specifies the type of the ahash
315 * @mask: specifies the mask for the ahash
316 *
317 * Return: true when the ahash is known to the kernel crypto API; false
318 *	   otherwise
319 */
320int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
321
322static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
323{
324	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
325}
326
327static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
328{
329	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
330}
331
 
 
 
 
 
 
332/**
333 * crypto_ahash_blocksize() - obtain block size for cipher
334 * @tfm: cipher handle
335 *
336 * The block size for the message digest cipher referenced with the cipher
337 * handle is returned.
338 *
339 * Return: block size of cipher
340 */
341static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
342{
343	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
344}
345
346static inline struct hash_alg_common *__crypto_hash_alg_common(
347	struct crypto_alg *alg)
348{
349	return container_of(alg, struct hash_alg_common, base);
350}
351
352static inline struct hash_alg_common *crypto_hash_alg_common(
353	struct crypto_ahash *tfm)
354{
355	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
356}
357
358/**
359 * crypto_ahash_digestsize() - obtain message digest size
360 * @tfm: cipher handle
361 *
362 * The size for the message digest created by the message digest cipher
363 * referenced with the cipher handle is returned.
364 *
365 *
366 * Return: message digest size of cipher
367 */
368static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
369{
370	return crypto_hash_alg_common(tfm)->digestsize;
371}
372
373/**
374 * crypto_ahash_statesize() - obtain size of the ahash state
375 * @tfm: cipher handle
376 *
377 * Return the size of the ahash state. With the crypto_ahash_export()
378 * function, the caller can export the state into a buffer whose size is
379 * defined with this function.
380 *
381 * Return: size of the ahash state
382 */
383static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
384{
385	return tfm->statesize;
386}
387
388static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
389{
390	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
391}
392
393static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
394{
395	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
396}
397
398static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
399{
400	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
401}
402
403/**
404 * crypto_ahash_reqtfm() - obtain cipher handle from request
405 * @req: asynchronous request handle that contains the reference to the ahash
406 *	 cipher handle
407 *
408 * Return the ahash cipher handle that is registered with the asynchronous
409 * request handle ahash_request.
410 *
411 * Return: ahash cipher handle
412 */
413static inline struct crypto_ahash *crypto_ahash_reqtfm(
414	struct ahash_request *req)
415{
416	return __crypto_ahash_cast(req->base.tfm);
417}
418
419/**
420 * crypto_ahash_reqsize() - obtain size of the request data structure
421 * @tfm: cipher handle
422 *
423 * Return: size of the request data
424 */
425static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
426{
427	return tfm->reqsize;
428}
429
430static inline void *ahash_request_ctx(struct ahash_request *req)
431{
432	return req->__ctx;
433}
434
435/**
436 * crypto_ahash_setkey - set key for cipher handle
437 * @tfm: cipher handle
438 * @key: buffer holding the key
439 * @keylen: length of the key in bytes
440 *
441 * The caller provided key is set for the ahash cipher. The cipher
442 * handle must point to a keyed hash in order for this function to succeed.
443 *
444 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
445 */
446int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
447			unsigned int keylen);
448
449/**
450 * crypto_ahash_finup() - update and finalize message digest
451 * @req: reference to the ahash_request handle that holds all information
452 *	 needed to perform the cipher operation
453 *
454 * This function is a "short-hand" for the function calls of
455 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
456 * meaning as discussed for those separate functions.
457 *
458 * Return: see crypto_ahash_final()
459 */
460int crypto_ahash_finup(struct ahash_request *req);
461
462/**
463 * crypto_ahash_final() - calculate message digest
464 * @req: reference to the ahash_request handle that holds all information
465 *	 needed to perform the cipher operation
466 *
467 * Finalize the message digest operation and create the message digest
468 * based on all data added to the cipher handle. The message digest is placed
469 * into the output buffer registered with the ahash_request handle.
470 *
471 * Return:
472 * 0		if the message digest was successfully calculated;
473 * -EINPROGRESS	if data is fed into hardware (DMA) or queued for later;
474 * -EBUSY	if queue is full and request should be resubmitted later;
475 * other < 0	if an error occurred
476 */
477int crypto_ahash_final(struct ahash_request *req);
478
479/**
480 * crypto_ahash_digest() - calculate message digest for a buffer
481 * @req: reference to the ahash_request handle that holds all information
482 *	 needed to perform the cipher operation
483 *
484 * This function is a "short-hand" for the function calls of crypto_ahash_init,
485 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
486 * meaning as discussed for those separate three functions.
487 *
488 * Return: see crypto_ahash_final()
489 */
490int crypto_ahash_digest(struct ahash_request *req);
491
492/**
493 * crypto_ahash_export() - extract current message digest state
494 * @req: reference to the ahash_request handle whose state is exported
495 * @out: output buffer of sufficient size that can hold the hash state
496 *
497 * This function exports the hash state of the ahash_request handle into the
498 * caller-allocated output buffer out which must have sufficient size (e.g. by
499 * calling crypto_ahash_statesize()).
500 *
501 * Return: 0 if the export was successful; < 0 if an error occurred
502 */
503int crypto_ahash_export(struct ahash_request *req, void *out);
 
 
 
504
505/**
506 * crypto_ahash_import() - import message digest state
507 * @req: reference to ahash_request handle the state is imported into
508 * @in: buffer holding the state
509 *
510 * This function imports the hash state into the ahash_request handle from the
511 * input buffer. That buffer should have been generated with the
512 * crypto_ahash_export function.
513 *
514 * Return: 0 if the import was successful; < 0 if an error occurred
515 */
516int crypto_ahash_import(struct ahash_request *req, const void *in);
 
 
 
 
 
 
 
 
517
518/**
519 * crypto_ahash_init() - (re)initialize message digest handle
520 * @req: ahash_request handle that already is initialized with all necessary
521 *	 data using the ahash_request_* API functions
522 *
523 * The call (re-)initializes the message digest referenced by the ahash_request
524 * handle. Any potentially existing state created by previous operations is
525 * discarded.
526 *
527 * Return: see crypto_ahash_final()
528 */
529int crypto_ahash_init(struct ahash_request *req);
 
 
 
 
 
 
 
 
530
531/**
532 * crypto_ahash_update() - add data to message digest for processing
533 * @req: ahash_request handle that was previously initialized with the
534 *	 crypto_ahash_init call.
535 *
536 * Updates the message digest state of the &ahash_request handle. The input data
537 * is pointed to by the scatter/gather list registered in the &ahash_request
538 * handle
539 *
540 * Return: see crypto_ahash_final()
541 */
542int crypto_ahash_update(struct ahash_request *req);
 
 
 
543
544/**
545 * DOC: Asynchronous Hash Request Handle
546 *
547 * The &ahash_request data structure contains all pointers to data
548 * required for the asynchronous cipher operation. This includes the cipher
549 * handle (which can be used by multiple &ahash_request instances), pointer
550 * to plaintext and the message digest output buffer, asynchronous callback
551 * function, etc. It acts as a handle to the ahash_request_* API calls in a
552 * similar way as ahash handle to the crypto_ahash_* API calls.
553 */
554
555/**
556 * ahash_request_set_tfm() - update cipher handle reference in request
557 * @req: request handle to be modified
558 * @tfm: cipher handle that shall be added to the request handle
559 *
560 * Allow the caller to replace the existing ahash handle in the request
561 * data structure with a different one.
562 */
563static inline void ahash_request_set_tfm(struct ahash_request *req,
564					 struct crypto_ahash *tfm)
565{
566	req->base.tfm = crypto_ahash_tfm(tfm);
567}
568
569/**
570 * ahash_request_alloc() - allocate request data structure
571 * @tfm: cipher handle to be registered with the request
572 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
573 *
574 * Allocate the request data structure that must be used with the ahash
575 * message digest API calls. During
576 * the allocation, the provided ahash handle
577 * is registered in the request data structure.
578 *
579 * Return: allocated request handle in case of success, or NULL if out of memory
580 */
581static inline struct ahash_request *ahash_request_alloc(
582	struct crypto_ahash *tfm, gfp_t gfp)
583{
584	struct ahash_request *req;
585
586	req = kmalloc(sizeof(struct ahash_request) +
587		      crypto_ahash_reqsize(tfm), gfp);
588
589	if (likely(req))
590		ahash_request_set_tfm(req, tfm);
591
592	return req;
593}
594
595/**
596 * ahash_request_free() - zeroize and free the request data structure
597 * @req: request data structure cipher handle to be freed
598 */
599static inline void ahash_request_free(struct ahash_request *req)
600{
601	kfree_sensitive(req);
602}
603
604static inline void ahash_request_zero(struct ahash_request *req)
605{
606	memzero_explicit(req, sizeof(*req) +
607			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
608}
609
610static inline struct ahash_request *ahash_request_cast(
611	struct crypto_async_request *req)
612{
613	return container_of(req, struct ahash_request, base);
614}
615
616/**
617 * ahash_request_set_callback() - set asynchronous callback function
618 * @req: request handle
619 * @flags: specify zero or an ORing of the flags
620 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
621 *	   increase the wait queue beyond the initial maximum size;
622 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
623 * @compl: callback function pointer to be registered with the request handle
624 * @data: The data pointer refers to memory that is not used by the kernel
625 *	  crypto API, but provided to the callback function for it to use. Here,
626 *	  the caller can provide a reference to memory the callback function can
627 *	  operate on. As the callback function is invoked asynchronously to the
628 *	  related functionality, it may need to access data structures of the
629 *	  related functionality which can be referenced using this pointer. The
630 *	  callback function can access the memory via the "data" field in the
631 *	  &crypto_async_request data structure provided to the callback function.
632 *
633 * This function allows setting the callback function that is triggered once
634 * the cipher operation completes.
635 *
636 * The callback function is registered with the &ahash_request handle and
637 * must comply with the following template::
638 *
639 *	void callback_function(struct crypto_async_request *req, int error)
640 */
641static inline void ahash_request_set_callback(struct ahash_request *req,
642					      u32 flags,
643					      crypto_completion_t compl,
644					      void *data)
645{
646	req->base.complete = compl;
647	req->base.data = data;
648	req->base.flags = flags;
649}
650
651/**
652 * ahash_request_set_crypt() - set data buffers
653 * @req: ahash_request handle to be updated
654 * @src: source scatter/gather list
655 * @result: buffer that is filled with the message digest -- the caller must
656 *	    ensure that the buffer has sufficient space by, for example, calling
657 *	    crypto_ahash_digestsize()
658 * @nbytes: number of bytes to process from the source scatter/gather list
659 *
660 * By using this call, the caller references the source scatter/gather list.
661 * The source scatter/gather list points to the data the message digest is to
662 * be calculated for.
663 */
664static inline void ahash_request_set_crypt(struct ahash_request *req,
665					   struct scatterlist *src, u8 *result,
666					   unsigned int nbytes)
667{
668	req->src = src;
669	req->nbytes = nbytes;
670	req->result = result;
671}
672
673/**
674 * DOC: Synchronous Message Digest API
675 *
676 * The synchronous message digest API is used with the ciphers of type
677 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
678 *
679 * The message digest API is able to maintain state information for the
680 * caller.
681 *
682 * The synchronous message digest API can store user-related context in its
683 * shash_desc request data structure.
684 */
685
686/**
687 * crypto_alloc_shash() - allocate message digest handle
688 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
689 *	      message digest cipher
690 * @type: specifies the type of the cipher
691 * @mask: specifies the mask for the cipher
692 *
693 * Allocate a cipher handle for a message digest. The returned &struct
694 * crypto_shash is the cipher handle that is required for any subsequent
695 * API invocation for that message digest.
696 *
697 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
698 *	   of an error, PTR_ERR() returns the error code.
699 */
700struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
701					u32 mask);
702
703struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
704
705int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
706
707static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
708{
709	return &tfm->base;
710}
711
712/**
713 * crypto_free_shash() - zeroize and free the message digest handle
714 * @tfm: cipher handle to be freed
715 *
716 * If @tfm is a NULL or error pointer, this function does nothing.
717 */
718static inline void crypto_free_shash(struct crypto_shash *tfm)
719{
720	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
721}
722
723static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
724{
725	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
726}
727
728static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
729{
730	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
731}
732
 
 
 
 
 
 
733/**
734 * crypto_shash_blocksize() - obtain block size for cipher
735 * @tfm: cipher handle
736 *
737 * The block size for the message digest cipher referenced with the cipher
738 * handle is returned.
739 *
740 * Return: block size of cipher
741 */
742static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
743{
744	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
745}
746
747static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
748{
749	return container_of(alg, struct shash_alg, base);
750}
751
752static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
753{
754	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
755}
756
757/**
758 * crypto_shash_digestsize() - obtain message digest size
759 * @tfm: cipher handle
760 *
761 * The size for the message digest created by the message digest cipher
762 * referenced with the cipher handle is returned.
763 *
764 * Return: digest size of cipher
765 */
766static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
767{
768	return crypto_shash_alg(tfm)->digestsize;
769}
770
771static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
772{
773	return crypto_shash_alg(tfm)->statesize;
774}
775
776static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
777{
778	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
779}
780
781static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
782{
783	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
784}
785
786static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
787{
788	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
789}
790
791/**
792 * crypto_shash_descsize() - obtain the operational state size
793 * @tfm: cipher handle
794 *
795 * The size of the operational state the cipher needs during operation is
796 * returned for the hash referenced with the cipher handle. This size is
797 * required to calculate the memory requirements to allow the caller allocating
798 * sufficient memory for operational state.
799 *
800 * The operational state is defined with struct shash_desc where the size of
801 * that data structure is to be calculated as
802 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
803 *
804 * Return: size of the operational state
805 */
806static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
807{
808	return tfm->descsize;
809}
810
811static inline void *shash_desc_ctx(struct shash_desc *desc)
812{
813	return desc->__ctx;
814}
815
816/**
817 * crypto_shash_setkey() - set key for message digest
818 * @tfm: cipher handle
819 * @key: buffer holding the key
820 * @keylen: length of the key in bytes
821 *
822 * The caller provided key is set for the keyed message digest cipher. The
823 * cipher handle must point to a keyed message digest cipher in order for this
824 * function to succeed.
825 *
826 * Context: Any context.
827 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
828 */
829int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
830			unsigned int keylen);
831
832/**
833 * crypto_shash_digest() - calculate message digest for buffer
834 * @desc: see crypto_shash_final()
835 * @data: see crypto_shash_update()
836 * @len: see crypto_shash_update()
837 * @out: see crypto_shash_final()
838 *
839 * This function is a "short-hand" for the function calls of crypto_shash_init,
840 * crypto_shash_update and crypto_shash_final. The parameters have the same
841 * meaning as discussed for those separate three functions.
842 *
843 * Context: Any context.
844 * Return: 0 if the message digest creation was successful; < 0 if an error
845 *	   occurred
846 */
847int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
848			unsigned int len, u8 *out);
849
850/**
851 * crypto_shash_tfm_digest() - calculate message digest for buffer
852 * @tfm: hash transformation object
853 * @data: see crypto_shash_update()
854 * @len: see crypto_shash_update()
855 * @out: see crypto_shash_final()
856 *
857 * This is a simplified version of crypto_shash_digest() for users who don't
858 * want to allocate their own hash descriptor (shash_desc).  Instead,
859 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
860 * directly, and it allocates a hash descriptor on the stack internally.
861 * Note that this stack allocation may be fairly large.
862 *
863 * Context: Any context.
864 * Return: 0 on success; < 0 if an error occurred.
865 */
866int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
867			    unsigned int len, u8 *out);
868
869/**
870 * crypto_shash_export() - extract operational state for message digest
871 * @desc: reference to the operational state handle whose state is exported
872 * @out: output buffer of sufficient size that can hold the hash state
873 *
874 * This function exports the hash state of the operational state handle into the
875 * caller-allocated output buffer out which must have sufficient size (e.g. by
876 * calling crypto_shash_descsize).
877 *
878 * Context: Any context.
879 * Return: 0 if the export creation was successful; < 0 if an error occurred
880 */
881int crypto_shash_export(struct shash_desc *desc, void *out);
 
 
 
882
883/**
884 * crypto_shash_import() - import operational state
885 * @desc: reference to the operational state handle the state imported into
886 * @in: buffer holding the state
887 *
888 * This function imports the hash state into the operational state handle from
889 * the input buffer. That buffer should have been generated with the
890 * crypto_ahash_export function.
891 *
892 * Context: Any context.
893 * Return: 0 if the import was successful; < 0 if an error occurred
894 */
895int crypto_shash_import(struct shash_desc *desc, const void *in);
 
 
 
 
 
 
 
 
896
897/**
898 * crypto_shash_init() - (re)initialize message digest
899 * @desc: operational state handle that is already filled
900 *
901 * The call (re-)initializes the message digest referenced by the
902 * operational state handle. Any potentially existing state created by
903 * previous operations is discarded.
904 *
905 * Context: Any context.
906 * Return: 0 if the message digest initialization was successful; < 0 if an
907 *	   error occurred
908 */
909static inline int crypto_shash_init(struct shash_desc *desc)
910{
911	struct crypto_shash *tfm = desc->tfm;
912
913	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
914		return -ENOKEY;
915
916	return crypto_shash_alg(tfm)->init(desc);
917}
918
919/**
920 * crypto_shash_update() - add data to message digest for processing
921 * @desc: operational state handle that is already initialized
922 * @data: input data to be added to the message digest
923 * @len: length of the input data
924 *
925 * Updates the message digest state of the operational state handle.
926 *
927 * Context: Any context.
928 * Return: 0 if the message digest update was successful; < 0 if an error
929 *	   occurred
930 */
931int crypto_shash_update(struct shash_desc *desc, const u8 *data,
932			unsigned int len);
933
934/**
935 * crypto_shash_final() - calculate message digest
936 * @desc: operational state handle that is already filled with data
937 * @out: output buffer filled with the message digest
938 *
939 * Finalize the message digest operation and create the message digest
940 * based on all data added to the cipher handle. The message digest is placed
941 * into the output buffer. The caller must ensure that the output buffer is
942 * large enough by using crypto_shash_digestsize.
943 *
944 * Context: Any context.
945 * Return: 0 if the message digest creation was successful; < 0 if an error
946 *	   occurred
947 */
948int crypto_shash_final(struct shash_desc *desc, u8 *out);
949
950/**
951 * crypto_shash_finup() - calculate message digest of buffer
952 * @desc: see crypto_shash_final()
953 * @data: see crypto_shash_update()
954 * @len: see crypto_shash_update()
955 * @out: see crypto_shash_final()
956 *
957 * This function is a "short-hand" for the function calls of
958 * crypto_shash_update and crypto_shash_final. The parameters have the same
959 * meaning as discussed for those separate functions.
960 *
961 * Context: Any context.
962 * Return: 0 if the message digest creation was successful; < 0 if an error
963 *	   occurred
964 */
965int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
966		       unsigned int len, u8 *out);
967
968static inline void shash_desc_zero(struct shash_desc *desc)
969{
970	memzero_explicit(desc,
971			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
972}
973
974#endif	/* _CRYPTO_HASH_H */
v4.17
 
  1/*
  2 * Hash: Hash algorithms under the crypto API
  3 * 
  4 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option) 
  9 * any later version.
 10 *
 11 */
 12
 13#ifndef _CRYPTO_HASH_H
 14#define _CRYPTO_HASH_H
 15
 
 16#include <linux/crypto.h>
 17#include <linux/string.h>
 18
 19struct crypto_ahash;
 20
 21/**
 22 * DOC: Message Digest Algorithm Definitions
 23 *
 24 * These data structures define modular message digest algorithm
 25 * implementations, managed via crypto_register_ahash(),
 26 * crypto_register_shash(), crypto_unregister_ahash() and
 27 * crypto_unregister_shash().
 28 */
 29
 30/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 31 * struct hash_alg_common - define properties of message digest
 
 32 * @digestsize: Size of the result of the transformation. A buffer of this size
 33 *	        must be available to the @final and @finup calls, so they can
 34 *	        store the resulting hash into it. For various predefined sizes,
 35 *	        search include/crypto/ using
 36 *	        git grep _DIGEST_SIZE include/crypto.
 37 * @statesize: Size of the block for partial state of the transformation. A
 38 *	       buffer of this size must be passed to the @export function as it
 39 *	       will save the partial state of the transformation into it. On the
 40 *	       other side, the @import function will load the state from a
 41 *	       buffer of this size as well.
 42 * @base: Start of data structure of cipher algorithm. The common data
 43 *	  structure of crypto_alg contains information common to all ciphers.
 44 *	  The hash_alg_common data structure now adds the hash-specific
 45 *	  information.
 46 */
 47struct hash_alg_common {
 48	unsigned int digestsize;
 49	unsigned int statesize;
 50
 51	struct crypto_alg base;
 52};
 
 
 
 53
 54struct ahash_request {
 55	struct crypto_async_request base;
 56
 57	unsigned int nbytes;
 58	struct scatterlist *src;
 59	u8 *result;
 60
 61	/* This field may only be used by the ahash API code. */
 62	void *priv;
 63
 64	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 65};
 66
 67#define AHASH_REQUEST_ON_STACK(name, ahash) \
 68	char __##name##_desc[sizeof(struct ahash_request) + \
 69		crypto_ahash_reqsize(ahash)] CRYPTO_MINALIGN_ATTR; \
 70	struct ahash_request *name = (void *)__##name##_desc
 71
 72/**
 73 * struct ahash_alg - asynchronous message digest definition
 74 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
 75 *	  state of the HASH transformation at the beginning. This shall fill in
 76 *	  the internal structures used during the entire duration of the whole
 77 *	  transformation. No data processing happens at this point. Driver code
 78 *	  implementation must not use req->result.
 79 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
 80 *	   function actually pushes blocks of data from upper layers into the
 81 *	   driver, which then passes those to the hardware as seen fit. This
 82 *	   function must not finalize the HASH transformation by calculating the
 83 *	   final message digest as this only adds more data into the
 84 *	   transformation. This function shall not modify the transformation
 85 *	   context, as this function may be called in parallel with the same
 86 *	   transformation object. Data processing can happen synchronously
 87 *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
 88 *	   req->result.
 89 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
 90 *	   transformation and retrieves the resulting hash from the driver and
 91 *	   pushes it back to upper layers. No data processing happens at this
 92 *	   point unless hardware requires it to finish the transformation
 93 *	   (then the data buffered by the device driver is processed).
 94 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
 95 *	   combination of @update and @final calls issued in sequence. As some
 96 *	   hardware cannot do @update and @final separately, this callback was
 97 *	   added to allow such hardware to be used at least by IPsec. Data
 98 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
 99 *	   at this point.
100 * @digest: Combination of @init and @update and @final. This function
101 *	    effectively behaves as the entire chain of operations, @init,
102 *	    @update and @final issued in sequence. Just like @finup, this was
103 *	    added for hardware which cannot do even the @finup, but can only do
104 *	    the whole transformation in one run. Data processing can happen
105 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
106 * @setkey: Set optional key used by the hashing algorithm. Intended to push
107 *	    optional key used by the hashing algorithm from upper layers into
108 *	    the driver. This function can store the key in the transformation
109 *	    context or can outright program it into the hardware. In the former
110 *	    case, one must be careful to program the key into the hardware at
111 *	    appropriate time and one must be careful that .setkey() can be
112 *	    called multiple times during the existence of the transformation
113 *	    object. Not  all hashing algorithms do implement this function as it
114 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
115 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
116 *	    this function. This function must be called before any other of the
117 *	    @init, @update, @final, @finup, @digest is called. No data
118 *	    processing happens at this point.
119 * @export: Export partial state of the transformation. This function dumps the
120 *	    entire state of the ongoing transformation into a provided block of
121 *	    data so it can be @import 'ed back later on. This is useful in case
122 *	    you want to save partial result of the transformation after
123 *	    processing certain amount of data and reload this partial result
124 *	    multiple times later on for multiple re-use. No data processing
125 *	    happens at this point. Driver must not use req->result.
126 * @import: Import partial state of the transformation. This function loads the
127 *	    entire state of the ongoing transformation from a provided block of
128 *	    data so the transformation can continue from this point onward. No
129 *	    data processing happens at this point. Driver must not use
130 *	    req->result.
 
 
 
 
 
 
 
 
 
 
 
 
131 * @halg: see struct hash_alg_common
132 */
133struct ahash_alg {
134	int (*init)(struct ahash_request *req);
135	int (*update)(struct ahash_request *req);
136	int (*final)(struct ahash_request *req);
137	int (*finup)(struct ahash_request *req);
138	int (*digest)(struct ahash_request *req);
139	int (*export)(struct ahash_request *req, void *out);
140	int (*import)(struct ahash_request *req, const void *in);
141	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
142		      unsigned int keylen);
 
 
 
143
144	struct hash_alg_common halg;
145};
146
147struct shash_desc {
148	struct crypto_shash *tfm;
149	u32 flags;
 
 
 
150
151	void *__ctx[] CRYPTO_MINALIGN_ATTR;
152};
 
 
 
153
154#define SHASH_DESC_ON_STACK(shash, ctx)				  \
155	char __##shash##_desc[sizeof(struct shash_desc) +	  \
156		crypto_shash_descsize(ctx)] CRYPTO_MINALIGN_ATTR; \
157	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
158
159/**
160 * struct shash_alg - synchronous message digest definition
161 * @init: see struct ahash_alg
162 * @update: see struct ahash_alg
163 * @final: see struct ahash_alg
164 * @finup: see struct ahash_alg
165 * @digest: see struct ahash_alg
166 * @export: see struct ahash_alg
167 * @import: see struct ahash_alg
168 * @setkey: see struct ahash_alg
169 * @digestsize: see struct ahash_alg
170 * @statesize: see struct ahash_alg
 
 
 
 
 
 
 
 
 
 
171 * @descsize: Size of the operational state for the message digest. This state
172 * 	      size is the memory size that needs to be allocated for
173 *	      shash_desc.__ctx
174 * @base: internally used
 
175 */
176struct shash_alg {
177	int (*init)(struct shash_desc *desc);
178	int (*update)(struct shash_desc *desc, const u8 *data,
179		      unsigned int len);
180	int (*final)(struct shash_desc *desc, u8 *out);
181	int (*finup)(struct shash_desc *desc, const u8 *data,
182		     unsigned int len, u8 *out);
183	int (*digest)(struct shash_desc *desc, const u8 *data,
184		      unsigned int len, u8 *out);
185	int (*export)(struct shash_desc *desc, void *out);
186	int (*import)(struct shash_desc *desc, const void *in);
187	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
188		      unsigned int keylen);
 
 
 
189
190	unsigned int descsize;
191
192	/* These fields must match hash_alg_common. */
193	unsigned int digestsize
194		__attribute__ ((aligned(__alignof__(struct hash_alg_common))));
195	unsigned int statesize;
196
197	struct crypto_alg base;
198};
 
 
199
200struct crypto_ahash {
201	int (*init)(struct ahash_request *req);
202	int (*update)(struct ahash_request *req);
203	int (*final)(struct ahash_request *req);
204	int (*finup)(struct ahash_request *req);
205	int (*digest)(struct ahash_request *req);
206	int (*export)(struct ahash_request *req, void *out);
207	int (*import)(struct ahash_request *req, const void *in);
208	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
209		      unsigned int keylen);
210
211	unsigned int reqsize;
212	struct crypto_tfm base;
213};
214
215struct crypto_shash {
216	unsigned int descsize;
217	struct crypto_tfm base;
218};
219
220/**
221 * DOC: Asynchronous Message Digest API
222 *
223 * The asynchronous message digest API is used with the ciphers of type
224 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
225 *
226 * The asynchronous cipher operation discussion provided for the
227 * CRYPTO_ALG_TYPE_ABLKCIPHER API applies here as well.
228 */
229
230static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
231{
232	return container_of(tfm, struct crypto_ahash, base);
233}
234
235/**
236 * crypto_alloc_ahash() - allocate ahash cipher handle
237 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
238 *	      ahash cipher
239 * @type: specifies the type of the cipher
240 * @mask: specifies the mask for the cipher
241 *
242 * Allocate a cipher handle for an ahash. The returned struct
243 * crypto_ahash is the cipher handle that is required for any subsequent
244 * API invocation for that ahash.
245 *
246 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
247 *	   of an error, PTR_ERR() returns the error code.
248 */
249struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
250					u32 mask);
251
 
 
252static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
253{
254	return &tfm->base;
255}
256
257/**
258 * crypto_free_ahash() - zeroize and free the ahash handle
259 * @tfm: cipher handle to be freed
 
 
260 */
261static inline void crypto_free_ahash(struct crypto_ahash *tfm)
262{
263	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
264}
265
266/**
267 * crypto_has_ahash() - Search for the availability of an ahash.
268 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
269 *	      ahash
270 * @type: specifies the type of the ahash
271 * @mask: specifies the mask for the ahash
272 *
273 * Return: true when the ahash is known to the kernel crypto API; false
274 *	   otherwise
275 */
276int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
277
278static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
279{
280	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
281}
282
283static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
284{
285	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
286}
287
288static inline unsigned int crypto_ahash_alignmask(
289	struct crypto_ahash *tfm)
290{
291	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
292}
293
294/**
295 * crypto_ahash_blocksize() - obtain block size for cipher
296 * @tfm: cipher handle
297 *
298 * The block size for the message digest cipher referenced with the cipher
299 * handle is returned.
300 *
301 * Return: block size of cipher
302 */
303static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
304{
305	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
306}
307
308static inline struct hash_alg_common *__crypto_hash_alg_common(
309	struct crypto_alg *alg)
310{
311	return container_of(alg, struct hash_alg_common, base);
312}
313
314static inline struct hash_alg_common *crypto_hash_alg_common(
315	struct crypto_ahash *tfm)
316{
317	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
318}
319
320/**
321 * crypto_ahash_digestsize() - obtain message digest size
322 * @tfm: cipher handle
323 *
324 * The size for the message digest created by the message digest cipher
325 * referenced with the cipher handle is returned.
326 *
327 *
328 * Return: message digest size of cipher
329 */
330static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
331{
332	return crypto_hash_alg_common(tfm)->digestsize;
333}
334
335/**
336 * crypto_ahash_statesize() - obtain size of the ahash state
337 * @tfm: cipher handle
338 *
339 * Return the size of the ahash state. With the crypto_ahash_export()
340 * function, the caller can export the state into a buffer whose size is
341 * defined with this function.
342 *
343 * Return: size of the ahash state
344 */
345static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
346{
347	return crypto_hash_alg_common(tfm)->statesize;
348}
349
350static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
351{
352	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
353}
354
355static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
356{
357	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
358}
359
360static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
361{
362	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
363}
364
365/**
366 * crypto_ahash_reqtfm() - obtain cipher handle from request
367 * @req: asynchronous request handle that contains the reference to the ahash
368 *	 cipher handle
369 *
370 * Return the ahash cipher handle that is registered with the asynchronous
371 * request handle ahash_request.
372 *
373 * Return: ahash cipher handle
374 */
375static inline struct crypto_ahash *crypto_ahash_reqtfm(
376	struct ahash_request *req)
377{
378	return __crypto_ahash_cast(req->base.tfm);
379}
380
381/**
382 * crypto_ahash_reqsize() - obtain size of the request data structure
383 * @tfm: cipher handle
384 *
385 * Return: size of the request data
386 */
387static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
388{
389	return tfm->reqsize;
390}
391
392static inline void *ahash_request_ctx(struct ahash_request *req)
393{
394	return req->__ctx;
395}
396
397/**
398 * crypto_ahash_setkey - set key for cipher handle
399 * @tfm: cipher handle
400 * @key: buffer holding the key
401 * @keylen: length of the key in bytes
402 *
403 * The caller provided key is set for the ahash cipher. The cipher
404 * handle must point to a keyed hash in order for this function to succeed.
405 *
406 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
407 */
408int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
409			unsigned int keylen);
410
411/**
412 * crypto_ahash_finup() - update and finalize message digest
413 * @req: reference to the ahash_request handle that holds all information
414 *	 needed to perform the cipher operation
415 *
416 * This function is a "short-hand" for the function calls of
417 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
418 * meaning as discussed for those separate functions.
419 *
420 * Return: see crypto_ahash_final()
421 */
422int crypto_ahash_finup(struct ahash_request *req);
423
424/**
425 * crypto_ahash_final() - calculate message digest
426 * @req: reference to the ahash_request handle that holds all information
427 *	 needed to perform the cipher operation
428 *
429 * Finalize the message digest operation and create the message digest
430 * based on all data added to the cipher handle. The message digest is placed
431 * into the output buffer registered with the ahash_request handle.
432 *
433 * Return:
434 * 0		if the message digest was successfully calculated;
435 * -EINPROGRESS	if data is feeded into hardware (DMA) or queued for later;
436 * -EBUSY	if queue is full and request should be resubmitted later;
437 * other < 0	if an error occurred
438 */
439int crypto_ahash_final(struct ahash_request *req);
440
441/**
442 * crypto_ahash_digest() - calculate message digest for a buffer
443 * @req: reference to the ahash_request handle that holds all information
444 *	 needed to perform the cipher operation
445 *
446 * This function is a "short-hand" for the function calls of crypto_ahash_init,
447 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
448 * meaning as discussed for those separate three functions.
449 *
450 * Return: see crypto_ahash_final()
451 */
452int crypto_ahash_digest(struct ahash_request *req);
453
454/**
455 * crypto_ahash_export() - extract current message digest state
456 * @req: reference to the ahash_request handle whose state is exported
457 * @out: output buffer of sufficient size that can hold the hash state
458 *
459 * This function exports the hash state of the ahash_request handle into the
460 * caller-allocated output buffer out which must have sufficient size (e.g. by
461 * calling crypto_ahash_statesize()).
462 *
463 * Return: 0 if the export was successful; < 0 if an error occurred
464 */
465static inline int crypto_ahash_export(struct ahash_request *req, void *out)
466{
467	return crypto_ahash_reqtfm(req)->export(req, out);
468}
469
470/**
471 * crypto_ahash_import() - import message digest state
472 * @req: reference to ahash_request handle the state is imported into
473 * @in: buffer holding the state
474 *
475 * This function imports the hash state into the ahash_request handle from the
476 * input buffer. That buffer should have been generated with the
477 * crypto_ahash_export function.
478 *
479 * Return: 0 if the import was successful; < 0 if an error occurred
480 */
481static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
482{
483	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
484
485	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
486		return -ENOKEY;
487
488	return tfm->import(req, in);
489}
490
491/**
492 * crypto_ahash_init() - (re)initialize message digest handle
493 * @req: ahash_request handle that already is initialized with all necessary
494 *	 data using the ahash_request_* API functions
495 *
496 * The call (re-)initializes the message digest referenced by the ahash_request
497 * handle. Any potentially existing state created by previous operations is
498 * discarded.
499 *
500 * Return: see crypto_ahash_final()
501 */
502static inline int crypto_ahash_init(struct ahash_request *req)
503{
504	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
505
506	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
507		return -ENOKEY;
508
509	return tfm->init(req);
510}
511
512/**
513 * crypto_ahash_update() - add data to message digest for processing
514 * @req: ahash_request handle that was previously initialized with the
515 *	 crypto_ahash_init call.
516 *
517 * Updates the message digest state of the &ahash_request handle. The input data
518 * is pointed to by the scatter/gather list registered in the &ahash_request
519 * handle
520 *
521 * Return: see crypto_ahash_final()
522 */
523static inline int crypto_ahash_update(struct ahash_request *req)
524{
525	return crypto_ahash_reqtfm(req)->update(req);
526}
527
528/**
529 * DOC: Asynchronous Hash Request Handle
530 *
531 * The &ahash_request data structure contains all pointers to data
532 * required for the asynchronous cipher operation. This includes the cipher
533 * handle (which can be used by multiple &ahash_request instances), pointer
534 * to plaintext and the message digest output buffer, asynchronous callback
535 * function, etc. It acts as a handle to the ahash_request_* API calls in a
536 * similar way as ahash handle to the crypto_ahash_* API calls.
537 */
538
539/**
540 * ahash_request_set_tfm() - update cipher handle reference in request
541 * @req: request handle to be modified
542 * @tfm: cipher handle that shall be added to the request handle
543 *
544 * Allow the caller to replace the existing ahash handle in the request
545 * data structure with a different one.
546 */
547static inline void ahash_request_set_tfm(struct ahash_request *req,
548					 struct crypto_ahash *tfm)
549{
550	req->base.tfm = crypto_ahash_tfm(tfm);
551}
552
553/**
554 * ahash_request_alloc() - allocate request data structure
555 * @tfm: cipher handle to be registered with the request
556 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
557 *
558 * Allocate the request data structure that must be used with the ahash
559 * message digest API calls. During
560 * the allocation, the provided ahash handle
561 * is registered in the request data structure.
562 *
563 * Return: allocated request handle in case of success, or NULL if out of memory
564 */
565static inline struct ahash_request *ahash_request_alloc(
566	struct crypto_ahash *tfm, gfp_t gfp)
567{
568	struct ahash_request *req;
569
570	req = kmalloc(sizeof(struct ahash_request) +
571		      crypto_ahash_reqsize(tfm), gfp);
572
573	if (likely(req))
574		ahash_request_set_tfm(req, tfm);
575
576	return req;
577}
578
579/**
580 * ahash_request_free() - zeroize and free the request data structure
581 * @req: request data structure cipher handle to be freed
582 */
583static inline void ahash_request_free(struct ahash_request *req)
584{
585	kzfree(req);
586}
587
588static inline void ahash_request_zero(struct ahash_request *req)
589{
590	memzero_explicit(req, sizeof(*req) +
591			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
592}
593
594static inline struct ahash_request *ahash_request_cast(
595	struct crypto_async_request *req)
596{
597	return container_of(req, struct ahash_request, base);
598}
599
600/**
601 * ahash_request_set_callback() - set asynchronous callback function
602 * @req: request handle
603 * @flags: specify zero or an ORing of the flags
604 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
605 *	   increase the wait queue beyond the initial maximum size;
606 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
607 * @compl: callback function pointer to be registered with the request handle
608 * @data: The data pointer refers to memory that is not used by the kernel
609 *	  crypto API, but provided to the callback function for it to use. Here,
610 *	  the caller can provide a reference to memory the callback function can
611 *	  operate on. As the callback function is invoked asynchronously to the
612 *	  related functionality, it may need to access data structures of the
613 *	  related functionality which can be referenced using this pointer. The
614 *	  callback function can access the memory via the "data" field in the
615 *	  &crypto_async_request data structure provided to the callback function.
616 *
617 * This function allows setting the callback function that is triggered once
618 * the cipher operation completes.
619 *
620 * The callback function is registered with the &ahash_request handle and
621 * must comply with the following template::
622 *
623 *	void callback_function(struct crypto_async_request *req, int error)
624 */
625static inline void ahash_request_set_callback(struct ahash_request *req,
626					      u32 flags,
627					      crypto_completion_t compl,
628					      void *data)
629{
630	req->base.complete = compl;
631	req->base.data = data;
632	req->base.flags = flags;
633}
634
635/**
636 * ahash_request_set_crypt() - set data buffers
637 * @req: ahash_request handle to be updated
638 * @src: source scatter/gather list
639 * @result: buffer that is filled with the message digest -- the caller must
640 *	    ensure that the buffer has sufficient space by, for example, calling
641 *	    crypto_ahash_digestsize()
642 * @nbytes: number of bytes to process from the source scatter/gather list
643 *
644 * By using this call, the caller references the source scatter/gather list.
645 * The source scatter/gather list points to the data the message digest is to
646 * be calculated for.
647 */
648static inline void ahash_request_set_crypt(struct ahash_request *req,
649					   struct scatterlist *src, u8 *result,
650					   unsigned int nbytes)
651{
652	req->src = src;
653	req->nbytes = nbytes;
654	req->result = result;
655}
656
657/**
658 * DOC: Synchronous Message Digest API
659 *
660 * The synchronous message digest API is used with the ciphers of type
661 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
662 *
663 * The message digest API is able to maintain state information for the
664 * caller.
665 *
666 * The synchronous message digest API can store user-related context in in its
667 * shash_desc request data structure.
668 */
669
670/**
671 * crypto_alloc_shash() - allocate message digest handle
672 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
673 *	      message digest cipher
674 * @type: specifies the type of the cipher
675 * @mask: specifies the mask for the cipher
676 *
677 * Allocate a cipher handle for a message digest. The returned &struct
678 * crypto_shash is the cipher handle that is required for any subsequent
679 * API invocation for that message digest.
680 *
681 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
682 *	   of an error, PTR_ERR() returns the error code.
683 */
684struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
685					u32 mask);
686
 
 
 
 
687static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
688{
689	return &tfm->base;
690}
691
692/**
693 * crypto_free_shash() - zeroize and free the message digest handle
694 * @tfm: cipher handle to be freed
 
 
695 */
696static inline void crypto_free_shash(struct crypto_shash *tfm)
697{
698	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
699}
700
701static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
702{
703	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
704}
705
706static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
707{
708	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
709}
710
711static inline unsigned int crypto_shash_alignmask(
712	struct crypto_shash *tfm)
713{
714	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
715}
716
717/**
718 * crypto_shash_blocksize() - obtain block size for cipher
719 * @tfm: cipher handle
720 *
721 * The block size for the message digest cipher referenced with the cipher
722 * handle is returned.
723 *
724 * Return: block size of cipher
725 */
726static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
727{
728	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
729}
730
731static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
732{
733	return container_of(alg, struct shash_alg, base);
734}
735
736static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
737{
738	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
739}
740
741/**
742 * crypto_shash_digestsize() - obtain message digest size
743 * @tfm: cipher handle
744 *
745 * The size for the message digest created by the message digest cipher
746 * referenced with the cipher handle is returned.
747 *
748 * Return: digest size of cipher
749 */
750static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
751{
752	return crypto_shash_alg(tfm)->digestsize;
753}
754
755static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
756{
757	return crypto_shash_alg(tfm)->statesize;
758}
759
760static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
761{
762	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
763}
764
765static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
766{
767	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
768}
769
770static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
771{
772	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
773}
774
775/**
776 * crypto_shash_descsize() - obtain the operational state size
777 * @tfm: cipher handle
778 *
779 * The size of the operational state the cipher needs during operation is
780 * returned for the hash referenced with the cipher handle. This size is
781 * required to calculate the memory requirements to allow the caller allocating
782 * sufficient memory for operational state.
783 *
784 * The operational state is defined with struct shash_desc where the size of
785 * that data structure is to be calculated as
786 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
787 *
788 * Return: size of the operational state
789 */
790static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
791{
792	return tfm->descsize;
793}
794
795static inline void *shash_desc_ctx(struct shash_desc *desc)
796{
797	return desc->__ctx;
798}
799
800/**
801 * crypto_shash_setkey() - set key for message digest
802 * @tfm: cipher handle
803 * @key: buffer holding the key
804 * @keylen: length of the key in bytes
805 *
806 * The caller provided key is set for the keyed message digest cipher. The
807 * cipher handle must point to a keyed message digest cipher in order for this
808 * function to succeed.
809 *
 
810 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
811 */
812int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
813			unsigned int keylen);
814
815/**
816 * crypto_shash_digest() - calculate message digest for buffer
817 * @desc: see crypto_shash_final()
818 * @data: see crypto_shash_update()
819 * @len: see crypto_shash_update()
820 * @out: see crypto_shash_final()
821 *
822 * This function is a "short-hand" for the function calls of crypto_shash_init,
823 * crypto_shash_update and crypto_shash_final. The parameters have the same
824 * meaning as discussed for those separate three functions.
825 *
 
826 * Return: 0 if the message digest creation was successful; < 0 if an error
827 *	   occurred
828 */
829int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
830			unsigned int len, u8 *out);
831
832/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833 * crypto_shash_export() - extract operational state for message digest
834 * @desc: reference to the operational state handle whose state is exported
835 * @out: output buffer of sufficient size that can hold the hash state
836 *
837 * This function exports the hash state of the operational state handle into the
838 * caller-allocated output buffer out which must have sufficient size (e.g. by
839 * calling crypto_shash_descsize).
840 *
 
841 * Return: 0 if the export creation was successful; < 0 if an error occurred
842 */
843static inline int crypto_shash_export(struct shash_desc *desc, void *out)
844{
845	return crypto_shash_alg(desc->tfm)->export(desc, out);
846}
847
848/**
849 * crypto_shash_import() - import operational state
850 * @desc: reference to the operational state handle the state imported into
851 * @in: buffer holding the state
852 *
853 * This function imports the hash state into the operational state handle from
854 * the input buffer. That buffer should have been generated with the
855 * crypto_ahash_export function.
856 *
 
857 * Return: 0 if the import was successful; < 0 if an error occurred
858 */
859static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
860{
861	struct crypto_shash *tfm = desc->tfm;
862
863	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
864		return -ENOKEY;
865
866	return crypto_shash_alg(tfm)->import(desc, in);
867}
868
869/**
870 * crypto_shash_init() - (re)initialize message digest
871 * @desc: operational state handle that is already filled
872 *
873 * The call (re-)initializes the message digest referenced by the
874 * operational state handle. Any potentially existing state created by
875 * previous operations is discarded.
876 *
 
877 * Return: 0 if the message digest initialization was successful; < 0 if an
878 *	   error occurred
879 */
880static inline int crypto_shash_init(struct shash_desc *desc)
881{
882	struct crypto_shash *tfm = desc->tfm;
883
884	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
885		return -ENOKEY;
886
887	return crypto_shash_alg(tfm)->init(desc);
888}
889
890/**
891 * crypto_shash_update() - add data to message digest for processing
892 * @desc: operational state handle that is already initialized
893 * @data: input data to be added to the message digest
894 * @len: length of the input data
895 *
896 * Updates the message digest state of the operational state handle.
897 *
 
898 * Return: 0 if the message digest update was successful; < 0 if an error
899 *	   occurred
900 */
901int crypto_shash_update(struct shash_desc *desc, const u8 *data,
902			unsigned int len);
903
904/**
905 * crypto_shash_final() - calculate message digest
906 * @desc: operational state handle that is already filled with data
907 * @out: output buffer filled with the message digest
908 *
909 * Finalize the message digest operation and create the message digest
910 * based on all data added to the cipher handle. The message digest is placed
911 * into the output buffer. The caller must ensure that the output buffer is
912 * large enough by using crypto_shash_digestsize.
913 *
 
914 * Return: 0 if the message digest creation was successful; < 0 if an error
915 *	   occurred
916 */
917int crypto_shash_final(struct shash_desc *desc, u8 *out);
918
919/**
920 * crypto_shash_finup() - calculate message digest of buffer
921 * @desc: see crypto_shash_final()
922 * @data: see crypto_shash_update()
923 * @len: see crypto_shash_update()
924 * @out: see crypto_shash_final()
925 *
926 * This function is a "short-hand" for the function calls of
927 * crypto_shash_update and crypto_shash_final. The parameters have the same
928 * meaning as discussed for those separate functions.
929 *
 
930 * Return: 0 if the message digest creation was successful; < 0 if an error
931 *	   occurred
932 */
933int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
934		       unsigned int len, u8 *out);
935
936static inline void shash_desc_zero(struct shash_desc *desc)
937{
938	memzero_explicit(desc,
939			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
940}
941
942#endif	/* _CRYPTO_HASH_H */