Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
 
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
 
  14#include "xfs_mount.h"
  15#include "xfs_defer.h"
  16#include "xfs_inode.h"
 
 
  17#include "xfs_dir2.h"
 
  18#include "xfs_attr.h"
  19#include "xfs_trans_space.h"
  20#include "xfs_trans.h"
  21#include "xfs_buf_item.h"
  22#include "xfs_inode_item.h"
  23#include "xfs_iunlink_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
 
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38#include "xfs_ag.h"
  39#include "xfs_log_priv.h"
  40#include "xfs_health.h"
  41
  42struct kmem_cache *xfs_inode_cache;
 
 
 
 
  43
 
  44STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  45STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
  46	struct xfs_inode *);
  47
  48/*
  49 * helper function to extract extent size hint from inode
  50 */
  51xfs_extlen_t
  52xfs_get_extsz_hint(
  53	struct xfs_inode	*ip)
  54{
  55	/*
  56	 * No point in aligning allocations if we need to COW to actually
  57	 * write to them.
  58	 */
  59	if (xfs_is_always_cow_inode(ip))
  60		return 0;
  61	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
  62		return ip->i_extsize;
  63	if (XFS_IS_REALTIME_INODE(ip))
  64		return ip->i_mount->m_sb.sb_rextsize;
  65	return 0;
  66}
  67
  68/*
  69 * Helper function to extract CoW extent size hint from inode.
  70 * Between the extent size hint and the CoW extent size hint, we
  71 * return the greater of the two.  If the value is zero (automatic),
  72 * use the default size.
  73 */
  74xfs_extlen_t
  75xfs_get_cowextsz_hint(
  76	struct xfs_inode	*ip)
  77{
  78	xfs_extlen_t		a, b;
  79
  80	a = 0;
  81	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
  82		a = ip->i_cowextsize;
  83	b = xfs_get_extsz_hint(ip);
  84
  85	a = max(a, b);
  86	if (a == 0)
  87		return XFS_DEFAULT_COWEXTSZ_HINT;
  88	return a;
  89}
  90
  91/*
  92 * These two are wrapper routines around the xfs_ilock() routine used to
  93 * centralize some grungy code.  They are used in places that wish to lock the
  94 * inode solely for reading the extents.  The reason these places can't just
  95 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  96 * bringing in of the extents from disk for a file in b-tree format.  If the
  97 * inode is in b-tree format, then we need to lock the inode exclusively until
  98 * the extents are read in.  Locking it exclusively all the time would limit
  99 * our parallelism unnecessarily, though.  What we do instead is check to see
 100 * if the extents have been read in yet, and only lock the inode exclusively
 101 * if they have not.
 102 *
 103 * The functions return a value which should be given to the corresponding
 104 * xfs_iunlock() call.
 105 */
 106uint
 107xfs_ilock_data_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (xfs_need_iread_extents(&ip->i_df))
 
 113		lock_mode = XFS_ILOCK_EXCL;
 114	xfs_ilock(ip, lock_mode);
 115	return lock_mode;
 116}
 117
 118uint
 119xfs_ilock_attr_map_shared(
 120	struct xfs_inode	*ip)
 121{
 122	uint			lock_mode = XFS_ILOCK_SHARED;
 123
 124	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
 
 125		lock_mode = XFS_ILOCK_EXCL;
 126	xfs_ilock(ip, lock_mode);
 127	return lock_mode;
 128}
 129
 130/*
 131 * You can't set both SHARED and EXCL for the same lock,
 132 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
 133 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
 134 * to set in lock_flags.
 135 */
 136static inline void
 137xfs_lock_flags_assert(
 138	uint		lock_flags)
 139{
 140	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 141		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 142	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 143		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 144	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 145		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 146	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 147	ASSERT(lock_flags != 0);
 148}
 149
 150/*
 151 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 152 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
 153 * various combinations of the locks to be obtained.
 154 *
 155 * The 3 locks should always be ordered so that the IO lock is obtained first,
 156 * the mmap lock second and the ilock last in order to prevent deadlock.
 157 *
 158 * Basic locking order:
 159 *
 160 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
 161 *
 162 * mmap_lock locking order:
 163 *
 164 * i_rwsem -> page lock -> mmap_lock
 165 * mmap_lock -> invalidate_lock -> page_lock
 166 *
 167 * The difference in mmap_lock locking order mean that we cannot hold the
 168 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
 169 * can fault in pages during copy in/out (for buffered IO) or require the
 170 * mmap_lock in get_user_pages() to map the user pages into the kernel address
 171 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
 172 * fault because page faults already hold the mmap_lock.
 173 *
 174 * Hence to serialise fully against both syscall and mmap based IO, we need to
 175 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
 176 * both taken in places where we need to invalidate the page cache in a race
 177 * free manner (e.g. truncate, hole punch and other extent manipulation
 178 * functions).
 179 */
 180void
 181xfs_ilock(
 182	xfs_inode_t		*ip,
 183	uint			lock_flags)
 184{
 185	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 186
 187	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 188
 189	if (lock_flags & XFS_IOLOCK_EXCL) {
 190		down_write_nested(&VFS_I(ip)->i_rwsem,
 191				  XFS_IOLOCK_DEP(lock_flags));
 192	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 193		down_read_nested(&VFS_I(ip)->i_rwsem,
 194				 XFS_IOLOCK_DEP(lock_flags));
 195	}
 196
 197	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 199				  XFS_MMAPLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
 202				 XFS_MMAPLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_ILOCK_EXCL)
 206		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_ILOCK_SHARED)
 208		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 209}
 210
 211/*
 212 * This is just like xfs_ilock(), except that the caller
 213 * is guaranteed not to sleep.  It returns 1 if it gets
 214 * the requested locks and 0 otherwise.  If the IO lock is
 215 * obtained but the inode lock cannot be, then the IO lock
 216 * is dropped before returning.
 217 *
 218 * ip -- the inode being locked
 219 * lock_flags -- this parameter indicates the inode's locks to be
 220 *       to be locked.  See the comment for xfs_ilock() for a list
 221 *	 of valid values.
 222 */
 223int
 224xfs_ilock_nowait(
 225	xfs_inode_t		*ip,
 226	uint			lock_flags)
 227{
 228	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 229
 230	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 231
 232	if (lock_flags & XFS_IOLOCK_EXCL) {
 233		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 234			goto out;
 235	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 236		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 237			goto out;
 238	}
 239
 240	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 241		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 242			goto out_undo_iolock;
 243	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 244		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
 245			goto out_undo_iolock;
 246	}
 247
 248	if (lock_flags & XFS_ILOCK_EXCL) {
 249		if (!mrtryupdate(&ip->i_lock))
 250			goto out_undo_mmaplock;
 251	} else if (lock_flags & XFS_ILOCK_SHARED) {
 252		if (!mrtryaccess(&ip->i_lock))
 253			goto out_undo_mmaplock;
 254	}
 255	return 1;
 256
 257out_undo_mmaplock:
 258	if (lock_flags & XFS_MMAPLOCK_EXCL)
 259		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 260	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 261		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 262out_undo_iolock:
 263	if (lock_flags & XFS_IOLOCK_EXCL)
 264		up_write(&VFS_I(ip)->i_rwsem);
 265	else if (lock_flags & XFS_IOLOCK_SHARED)
 266		up_read(&VFS_I(ip)->i_rwsem);
 267out:
 268	return 0;
 269}
 270
 271/*
 272 * xfs_iunlock() is used to drop the inode locks acquired with
 273 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 274 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 275 * that we know which locks to drop.
 276 *
 277 * ip -- the inode being unlocked
 278 * lock_flags -- this parameter indicates the inode's locks to be
 279 *       to be unlocked.  See the comment for xfs_ilock() for a list
 280 *	 of valid values for this parameter.
 281 *
 282 */
 283void
 284xfs_iunlock(
 285	xfs_inode_t		*ip,
 286	uint			lock_flags)
 287{
 288	xfs_lock_flags_assert(lock_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290	if (lock_flags & XFS_IOLOCK_EXCL)
 291		up_write(&VFS_I(ip)->i_rwsem);
 292	else if (lock_flags & XFS_IOLOCK_SHARED)
 293		up_read(&VFS_I(ip)->i_rwsem);
 294
 295	if (lock_flags & XFS_MMAPLOCK_EXCL)
 296		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 297	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 298		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
 299
 300	if (lock_flags & XFS_ILOCK_EXCL)
 301		mrunlock_excl(&ip->i_lock);
 302	else if (lock_flags & XFS_ILOCK_SHARED)
 303		mrunlock_shared(&ip->i_lock);
 304
 305	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 306}
 307
 308/*
 309 * give up write locks.  the i/o lock cannot be held nested
 310 * if it is being demoted.
 311 */
 312void
 313xfs_ilock_demote(
 314	xfs_inode_t		*ip,
 315	uint			lock_flags)
 316{
 317	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 318	ASSERT((lock_flags &
 319		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 320
 321	if (lock_flags & XFS_ILOCK_EXCL)
 322		mrdemote(&ip->i_lock);
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
 325	if (lock_flags & XFS_IOLOCK_EXCL)
 326		downgrade_write(&VFS_I(ip)->i_rwsem);
 327
 328	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 329}
 330
 331#if defined(DEBUG) || defined(XFS_WARN)
 332static inline bool
 333__xfs_rwsem_islocked(
 334	struct rw_semaphore	*rwsem,
 335	bool			shared)
 336{
 337	if (!debug_locks)
 338		return rwsem_is_locked(rwsem);
 339
 340	if (!shared)
 341		return lockdep_is_held_type(rwsem, 0);
 342
 343	/*
 344	 * We are checking that the lock is held at least in shared
 345	 * mode but don't care that it might be held exclusively
 346	 * (i.e. shared | excl). Hence we check if the lock is held
 347	 * in any mode rather than an explicit shared mode.
 348	 */
 349	return lockdep_is_held_type(rwsem, -1);
 350}
 351
 352bool
 353xfs_isilocked(
 354	struct xfs_inode	*ip,
 355	uint			lock_flags)
 356{
 357	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 358		if (!(lock_flags & XFS_ILOCK_SHARED))
 359			return !!ip->i_lock.mr_writer;
 360		return rwsem_is_locked(&ip->i_lock.mr_lock);
 361	}
 362
 363	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 364		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
 365				(lock_flags & XFS_MMAPLOCK_SHARED));
 
 366	}
 367
 368	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
 369		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
 370				(lock_flags & XFS_IOLOCK_SHARED));
 
 
 371	}
 372
 373	ASSERT(0);
 374	return false;
 375}
 376#endif
 377
 378/*
 379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 382 * errors and warnings.
 383 */
 384#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 385static bool
 386xfs_lockdep_subclass_ok(
 387	int subclass)
 388{
 389	return subclass < MAX_LOCKDEP_SUBCLASSES;
 390}
 391#else
 392#define xfs_lockdep_subclass_ok(subclass)	(true)
 393#endif
 394
 395/*
 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 397 * value. This can be called for any type of inode lock combination, including
 398 * parent locking. Care must be taken to ensure we don't overrun the subclass
 399 * storage fields in the class mask we build.
 400 */
 401static inline uint
 402xfs_lock_inumorder(
 403	uint	lock_mode,
 404	uint	subclass)
 405{
 406	uint	class = 0;
 407
 408	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 409			      XFS_ILOCK_RTSUM)));
 410	ASSERT(xfs_lockdep_subclass_ok(subclass));
 411
 412	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 413		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 414		class += subclass << XFS_IOLOCK_SHIFT;
 415	}
 416
 417	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 418		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 419		class += subclass << XFS_MMAPLOCK_SHIFT;
 420	}
 421
 422	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 423		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 424		class += subclass << XFS_ILOCK_SHIFT;
 425	}
 426
 427	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 428}
 429
 430/*
 431 * The following routine will lock n inodes in exclusive mode.  We assume the
 432 * caller calls us with the inodes in i_ino order.
 433 *
 434 * We need to detect deadlock where an inode that we lock is in the AIL and we
 435 * start waiting for another inode that is locked by a thread in a long running
 436 * transaction (such as truncate). This can result in deadlock since the long
 437 * running trans might need to wait for the inode we just locked in order to
 438 * push the tail and free space in the log.
 439 *
 440 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 441 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 442 * lock more than one at a time, lockdep will report false positives saying we
 443 * have violated locking orders.
 444 */
 445static void
 446xfs_lock_inodes(
 447	struct xfs_inode	**ips,
 448	int			inodes,
 449	uint			lock_mode)
 450{
 451	int			attempts = 0;
 452	uint			i;
 453	int			j;
 454	bool			try_lock;
 455	struct xfs_log_item	*lp;
 456
 457	/*
 458	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 459	 * support an arbitrary depth of locking here, but absolute limits on
 460	 * inodes depend on the type of locking and the limits placed by
 461	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 462	 * the asserts.
 463	 */
 464	ASSERT(ips && inodes >= 2 && inodes <= 5);
 465	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 466			    XFS_ILOCK_EXCL));
 467	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 468			      XFS_ILOCK_SHARED)));
 469	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 470		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 471	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 472		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 473
 474	if (lock_mode & XFS_IOLOCK_EXCL) {
 475		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 476	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 477		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 478
 479again:
 480	try_lock = false;
 481	i = 0;
 
 482	for (; i < inodes; i++) {
 483		ASSERT(ips[i]);
 484
 485		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 486			continue;
 487
 488		/*
 489		 * If try_lock is not set yet, make sure all locked inodes are
 490		 * not in the AIL.  If any are, set try_lock to be used later.
 491		 */
 492		if (!try_lock) {
 493			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 494				lp = &ips[j]->i_itemp->ili_item;
 495				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 496					try_lock = true;
 497			}
 498		}
 499
 500		/*
 501		 * If any of the previous locks we have locked is in the AIL,
 502		 * we must TRY to get the second and subsequent locks. If
 503		 * we can't get any, we must release all we have
 504		 * and try again.
 505		 */
 506		if (!try_lock) {
 507			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 508			continue;
 509		}
 510
 511		/* try_lock means we have an inode locked that is in the AIL. */
 512		ASSERT(i != 0);
 513		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 514			continue;
 515
 516		/*
 517		 * Unlock all previous guys and try again.  xfs_iunlock will try
 518		 * to push the tail if the inode is in the AIL.
 519		 */
 520		attempts++;
 521		for (j = i - 1; j >= 0; j--) {
 522			/*
 523			 * Check to see if we've already unlocked this one.  Not
 524			 * the first one going back, and the inode ptr is the
 525			 * same.
 526			 */
 527			if (j != (i - 1) && ips[j] == ips[j + 1])
 528				continue;
 529
 530			xfs_iunlock(ips[j], lock_mode);
 531		}
 532
 533		if ((attempts % 5) == 0) {
 534			delay(1); /* Don't just spin the CPU */
 535		}
 
 
 536		goto again;
 537	}
 538}
 539
 540/*
 541 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
 542 * mmaplock must be double-locked separately since we use i_rwsem and
 543 * invalidate_lock for that. We now support taking one lock EXCL and the
 544 * other SHARED.
 
 
 545 */
 546void
 547xfs_lock_two_inodes(
 548	struct xfs_inode	*ip0,
 549	uint			ip0_mode,
 550	struct xfs_inode	*ip1,
 551	uint			ip1_mode)
 552{
 
 
 553	int			attempts = 0;
 554	struct xfs_log_item	*lp;
 555
 556	ASSERT(hweight32(ip0_mode) == 1);
 557	ASSERT(hweight32(ip1_mode) == 1);
 558	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 
 
 
 
 
 
 
 562	ASSERT(ip0->i_ino != ip1->i_ino);
 563
 564	if (ip0->i_ino > ip1->i_ino) {
 565		swap(ip0, ip1);
 566		swap(ip0_mode, ip1_mode);
 
 
 
 
 567	}
 568
 569 again:
 570	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 571
 572	/*
 573	 * If the first lock we have locked is in the AIL, we must TRY to get
 574	 * the second lock. If we can't get it, we must release the first one
 575	 * and try again.
 576	 */
 577	lp = &ip0->i_itemp->ili_item;
 578	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 579		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 580			xfs_iunlock(ip0, ip0_mode);
 581			if ((++attempts % 5) == 0)
 582				delay(1); /* Don't just spin the CPU */
 583			goto again;
 584		}
 585	} else {
 586		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 587	}
 588}
 589
 590uint
 591xfs_ip2xflags(
 592	struct xfs_inode	*ip)
 593{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594	uint			flags = 0;
 595
 596	if (ip->i_diflags & XFS_DIFLAG_ANY) {
 597		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
 598			flags |= FS_XFLAG_REALTIME;
 599		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
 600			flags |= FS_XFLAG_PREALLOC;
 601		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
 602			flags |= FS_XFLAG_IMMUTABLE;
 603		if (ip->i_diflags & XFS_DIFLAG_APPEND)
 604			flags |= FS_XFLAG_APPEND;
 605		if (ip->i_diflags & XFS_DIFLAG_SYNC)
 606			flags |= FS_XFLAG_SYNC;
 607		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
 608			flags |= FS_XFLAG_NOATIME;
 609		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
 610			flags |= FS_XFLAG_NODUMP;
 611		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
 612			flags |= FS_XFLAG_RTINHERIT;
 613		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 614			flags |= FS_XFLAG_PROJINHERIT;
 615		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
 616			flags |= FS_XFLAG_NOSYMLINKS;
 617		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
 618			flags |= FS_XFLAG_EXTSIZE;
 619		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
 620			flags |= FS_XFLAG_EXTSZINHERIT;
 621		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
 622			flags |= FS_XFLAG_NODEFRAG;
 623		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
 624			flags |= FS_XFLAG_FILESTREAM;
 625	}
 626
 627	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
 628		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
 629			flags |= FS_XFLAG_DAX;
 630		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
 631			flags |= FS_XFLAG_COWEXTSIZE;
 632	}
 633
 634	if (xfs_inode_has_attr_fork(ip))
 635		flags |= FS_XFLAG_HASATTR;
 
 636	return flags;
 637}
 638
 
 
 
 
 
 
 
 
 
 639/*
 640 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 641 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 642 * ci_name->name will point to a the actual name (caller must free) or
 643 * will be set to NULL if an exact match is found.
 644 */
 645int
 646xfs_lookup(
 647	struct xfs_inode	*dp,
 648	const struct xfs_name	*name,
 649	struct xfs_inode	**ipp,
 650	struct xfs_name		*ci_name)
 651{
 652	xfs_ino_t		inum;
 653	int			error;
 654
 655	trace_xfs_lookup(dp, name);
 656
 657	if (xfs_is_shutdown(dp->i_mount))
 658		return -EIO;
 659	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 660		return -EIO;
 661
 662	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 663	if (error)
 664		goto out_unlock;
 665
 666	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 667	if (error)
 668		goto out_free_name;
 669
 670	return 0;
 671
 672out_free_name:
 673	if (ci_name)
 674		kmem_free(ci_name->name);
 675out_unlock:
 676	*ipp = NULL;
 677	return error;
 678}
 679
 680/* Propagate di_flags from a parent inode to a child inode. */
 681static void
 682xfs_inode_inherit_flags(
 683	struct xfs_inode	*ip,
 684	const struct xfs_inode	*pip)
 685{
 686	unsigned int		di_flags = 0;
 687	xfs_failaddr_t		failaddr;
 688	umode_t			mode = VFS_I(ip)->i_mode;
 689
 690	if (S_ISDIR(mode)) {
 691		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
 692			di_flags |= XFS_DIFLAG_RTINHERIT;
 693		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 694			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 695			ip->i_extsize = pip->i_extsize;
 696		}
 697		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
 698			di_flags |= XFS_DIFLAG_PROJINHERIT;
 699	} else if (S_ISREG(mode)) {
 700		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
 701		    xfs_has_realtime(ip->i_mount))
 702			di_flags |= XFS_DIFLAG_REALTIME;
 703		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
 704			di_flags |= XFS_DIFLAG_EXTSIZE;
 705			ip->i_extsize = pip->i_extsize;
 706		}
 707	}
 708	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
 709	    xfs_inherit_noatime)
 710		di_flags |= XFS_DIFLAG_NOATIME;
 711	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
 712	    xfs_inherit_nodump)
 713		di_flags |= XFS_DIFLAG_NODUMP;
 714	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
 715	    xfs_inherit_sync)
 716		di_flags |= XFS_DIFLAG_SYNC;
 717	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
 718	    xfs_inherit_nosymlinks)
 719		di_flags |= XFS_DIFLAG_NOSYMLINKS;
 720	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
 721	    xfs_inherit_nodefrag)
 722		di_flags |= XFS_DIFLAG_NODEFRAG;
 723	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
 724		di_flags |= XFS_DIFLAG_FILESTREAM;
 725
 726	ip->i_diflags |= di_flags;
 727
 728	/*
 729	 * Inode verifiers on older kernels only check that the extent size
 730	 * hint is an integer multiple of the rt extent size on realtime files.
 731	 * They did not check the hint alignment on a directory with both
 732	 * rtinherit and extszinherit flags set.  If the misaligned hint is
 733	 * propagated from a directory into a new realtime file, new file
 734	 * allocations will fail due to math errors in the rt allocator and/or
 735	 * trip the verifiers.  Validate the hint settings in the new file so
 736	 * that we don't let broken hints propagate.
 737	 */
 738	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
 739			VFS_I(ip)->i_mode, ip->i_diflags);
 740	if (failaddr) {
 741		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
 742				   XFS_DIFLAG_EXTSZINHERIT);
 743		ip->i_extsize = 0;
 744	}
 745}
 746
 747/* Propagate di_flags2 from a parent inode to a child inode. */
 748static void
 749xfs_inode_inherit_flags2(
 750	struct xfs_inode	*ip,
 751	const struct xfs_inode	*pip)
 752{
 753	xfs_failaddr_t		failaddr;
 754
 755	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
 756		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
 757		ip->i_cowextsize = pip->i_cowextsize;
 758	}
 759	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
 760		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
 761
 762	/* Don't let invalid cowextsize hints propagate. */
 763	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
 764			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
 765	if (failaddr) {
 766		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
 767		ip->i_cowextsize = 0;
 768	}
 769}
 770
 771/*
 772 * Initialise a newly allocated inode and return the in-core inode to the
 773 * caller locked exclusively.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774 */
 775int
 776xfs_init_new_inode(
 777	struct mnt_idmap	*idmap,
 778	struct xfs_trans	*tp,
 779	struct xfs_inode	*pip,
 780	xfs_ino_t		ino,
 781	umode_t			mode,
 782	xfs_nlink_t		nlink,
 783	dev_t			rdev,
 784	prid_t			prid,
 785	bool			init_xattrs,
 786	struct xfs_inode	**ipp)
 787{
 788	struct inode		*dir = pip ? VFS_I(pip) : NULL;
 789	struct xfs_mount	*mp = tp->t_mountp;
 790	struct xfs_inode	*ip;
 791	unsigned int		flags;
 792	int			error;
 793	struct timespec64	tv;
 794	struct inode		*inode;
 795
 796	/*
 797	 * Protect against obviously corrupt allocation btree records. Later
 798	 * xfs_iget checks will catch re-allocation of other active in-memory
 799	 * and on-disk inodes. If we don't catch reallocating the parent inode
 800	 * here we will deadlock in xfs_iget() so we have to do these checks
 801	 * first.
 802	 */
 803	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 804		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 805		return -EFSCORRUPTED;
 
 
 
 
 806	}
 
 807
 808	/*
 809	 * Get the in-core inode with the lock held exclusively to prevent
 810	 * others from looking at until we're done.
 
 811	 */
 812	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 
 813	if (error)
 814		return error;
 815
 816	ASSERT(ip != NULL);
 817	inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 
 
 818	set_nlink(inode, nlink);
 
 
 819	inode->i_rdev = rdev;
 820	ip->i_projid = prid;
 821
 822	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
 823		inode_fsuid_set(inode, idmap);
 824		inode->i_gid = dir->i_gid;
 825		inode->i_mode = mode;
 826	} else {
 827		inode_init_owner(idmap, inode, dir, mode);
 828	}
 829
 830	/*
 831	 * If the group ID of the new file does not match the effective group
 832	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 833	 * (and only if the irix_sgid_inherit compatibility variable is set).
 834	 */
 835	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
 836	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
 
 837		inode->i_mode &= ~S_ISGID;
 838
 839	ip->i_disk_size = 0;
 840	ip->i_df.if_nextents = 0;
 841	ASSERT(ip->i_nblocks == 0);
 842
 843	tv = inode_set_ctime_current(inode);
 844	inode_set_mtime_to_ts(inode, tv);
 845	inode_set_atime_to_ts(inode, tv);
 846
 847	ip->i_extsize = 0;
 848	ip->i_diflags = 0;
 
 
 
 849
 850	if (xfs_has_v3inodes(mp)) {
 851		inode_set_iversion(inode, 1);
 852		ip->i_cowextsize = 0;
 853		ip->i_crtime = tv;
 
 
 854	}
 855
 
 856	flags = XFS_ILOG_CORE;
 857	switch (mode & S_IFMT) {
 858	case S_IFIFO:
 859	case S_IFCHR:
 860	case S_IFBLK:
 861	case S_IFSOCK:
 862		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 863		flags |= XFS_ILOG_DEV;
 864		break;
 865	case S_IFREG:
 866	case S_IFDIR:
 867		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
 868			xfs_inode_inherit_flags(ip, pip);
 869		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
 870			xfs_inode_inherit_flags2(ip, pip);
 871		fallthrough;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872	case S_IFLNK:
 873		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 874		ip->i_df.if_bytes = 0;
 875		ip->i_df.if_data = NULL;
 
 876		break;
 877	default:
 878		ASSERT(0);
 879	}
 880
 881	/*
 882	 * If we need to create attributes immediately after allocating the
 883	 * inode, initialise an empty attribute fork right now. We use the
 884	 * default fork offset for attributes here as we don't know exactly what
 885	 * size or how many attributes we might be adding. We can do this
 886	 * safely here because we know the data fork is completely empty and
 887	 * this saves us from needing to run a separate transaction to set the
 888	 * fork offset in the immediate future.
 889	 */
 890	if (init_xattrs && xfs_has_attr(mp)) {
 891		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
 892		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
 893	}
 894
 895	/*
 896	 * Log the new values stuffed into the inode.
 897	 */
 898	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 899	xfs_trans_log_inode(tp, ip, flags);
 900
 901	/* now that we have an i_mode we can setup the inode structure */
 902	xfs_setup_inode(ip);
 903
 904	*ipp = ip;
 905	return 0;
 906}
 907
 908/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909 * Decrement the link count on an inode & log the change.  If this causes the
 910 * link count to go to zero, move the inode to AGI unlinked list so that it can
 911 * be freed when the last active reference goes away via xfs_inactive().
 912 */
 913static int			/* error */
 914xfs_droplink(
 915	xfs_trans_t *tp,
 916	xfs_inode_t *ip)
 917{
 918	if (VFS_I(ip)->i_nlink == 0) {
 919		xfs_alert(ip->i_mount,
 920			  "%s: Attempt to drop inode (%llu) with nlink zero.",
 921			  __func__, ip->i_ino);
 922		return -EFSCORRUPTED;
 923	}
 924
 925	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 926
 927	drop_nlink(VFS_I(ip));
 928	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 929
 930	if (VFS_I(ip)->i_nlink)
 931		return 0;
 932
 933	return xfs_iunlink(tp, ip);
 934}
 935
 936/*
 937 * Increment the link count on an inode & log the change.
 938 */
 939static void
 940xfs_bumplink(
 941	xfs_trans_t *tp,
 942	xfs_inode_t *ip)
 943{
 944	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
 945
 
 946	inc_nlink(VFS_I(ip));
 947	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 948}
 949
 950int
 951xfs_create(
 952	struct mnt_idmap	*idmap,
 953	xfs_inode_t		*dp,
 954	struct xfs_name		*name,
 955	umode_t			mode,
 956	dev_t			rdev,
 957	bool			init_xattrs,
 958	xfs_inode_t		**ipp)
 959{
 960	int			is_dir = S_ISDIR(mode);
 961	struct xfs_mount	*mp = dp->i_mount;
 962	struct xfs_inode	*ip = NULL;
 963	struct xfs_trans	*tp = NULL;
 964	int			error;
 
 
 965	bool                    unlock_dp_on_error = false;
 966	prid_t			prid;
 967	struct xfs_dquot	*udqp = NULL;
 968	struct xfs_dquot	*gdqp = NULL;
 969	struct xfs_dquot	*pdqp = NULL;
 970	struct xfs_trans_res	*tres;
 971	uint			resblks;
 972	xfs_ino_t		ino;
 973
 974	trace_xfs_create(dp, name);
 975
 976	if (xfs_is_shutdown(mp))
 977		return -EIO;
 978	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
 979		return -EIO;
 980
 981	prid = xfs_get_initial_prid(dp);
 982
 983	/*
 984	 * Make sure that we have allocated dquot(s) on disk.
 985	 */
 986	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
 987			mapped_fsgid(idmap, &init_user_ns), prid,
 988			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
 989			&udqp, &gdqp, &pdqp);
 990	if (error)
 991		return error;
 992
 993	if (is_dir) {
 994		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
 995		tres = &M_RES(mp)->tr_mkdir;
 996	} else {
 997		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
 998		tres = &M_RES(mp)->tr_create;
 999	}
1000
1001	/*
1002	 * Initially assume that the file does not exist and
1003	 * reserve the resources for that case.  If that is not
1004	 * the case we'll drop the one we have and get a more
1005	 * appropriate transaction later.
1006	 */
1007	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1008			&tp);
1009	if (error == -ENOSPC) {
1010		/* flush outstanding delalloc blocks and retry */
1011		xfs_flush_inodes(mp);
1012		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1013				resblks, &tp);
1014	}
1015	if (error)
1016		goto out_release_dquots;
1017
1018	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1019	unlock_dp_on_error = true;
1020
 
 
 
 
 
 
 
 
 
 
1021	/*
1022	 * A newly created regular or special file just has one directory
1023	 * entry pointing to them, but a directory also the "." entry
1024	 * pointing to itself.
1025	 */
1026	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1027	if (!error)
1028		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1029				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1030	if (error)
1031		goto out_trans_cancel;
1032
1033	/*
1034	 * Now we join the directory inode to the transaction.  We do not do it
1035	 * earlier because xfs_dialloc might commit the previous transaction
1036	 * (and release all the locks).  An error from here on will result in
1037	 * the transaction cancel unlocking dp so don't do it explicitly in the
1038	 * error path.
1039	 */
1040	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1041	unlock_dp_on_error = false;
1042
1043	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1044					resblks - XFS_IALLOC_SPACE_RES(mp));
 
1045	if (error) {
1046		ASSERT(error != -ENOSPC);
1047		goto out_trans_cancel;
1048	}
1049	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1050	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1051
1052	if (is_dir) {
1053		error = xfs_dir_init(tp, ip, dp);
1054		if (error)
1055			goto out_trans_cancel;
1056
1057		xfs_bumplink(tp, dp);
 
 
1058	}
1059
1060	/*
1061	 * If this is a synchronous mount, make sure that the
1062	 * create transaction goes to disk before returning to
1063	 * the user.
1064	 */
1065	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1066		xfs_trans_set_sync(tp);
1067
1068	/*
1069	 * Attach the dquot(s) to the inodes and modify them incore.
1070	 * These ids of the inode couldn't have changed since the new
1071	 * inode has been locked ever since it was created.
1072	 */
1073	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1074
 
 
 
 
1075	error = xfs_trans_commit(tp);
1076	if (error)
1077		goto out_release_inode;
1078
1079	xfs_qm_dqrele(udqp);
1080	xfs_qm_dqrele(gdqp);
1081	xfs_qm_dqrele(pdqp);
1082
1083	*ipp = ip;
1084	return 0;
1085
 
 
1086 out_trans_cancel:
1087	xfs_trans_cancel(tp);
1088 out_release_inode:
1089	/*
1090	 * Wait until after the current transaction is aborted to finish the
1091	 * setup of the inode and release the inode.  This prevents recursive
1092	 * transactions and deadlocks from xfs_inactive.
1093	 */
1094	if (ip) {
1095		xfs_finish_inode_setup(ip);
1096		xfs_irele(ip);
1097	}
1098 out_release_dquots:
1099	xfs_qm_dqrele(udqp);
1100	xfs_qm_dqrele(gdqp);
1101	xfs_qm_dqrele(pdqp);
1102
1103	if (unlock_dp_on_error)
1104		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1105	return error;
1106}
1107
1108int
1109xfs_create_tmpfile(
1110	struct mnt_idmap	*idmap,
1111	struct xfs_inode	*dp,
1112	umode_t			mode,
1113	struct xfs_inode	**ipp)
1114{
1115	struct xfs_mount	*mp = dp->i_mount;
1116	struct xfs_inode	*ip = NULL;
1117	struct xfs_trans	*tp = NULL;
1118	int			error;
1119	prid_t                  prid;
1120	struct xfs_dquot	*udqp = NULL;
1121	struct xfs_dquot	*gdqp = NULL;
1122	struct xfs_dquot	*pdqp = NULL;
1123	struct xfs_trans_res	*tres;
1124	uint			resblks;
1125	xfs_ino_t		ino;
1126
1127	if (xfs_is_shutdown(mp))
1128		return -EIO;
1129
1130	prid = xfs_get_initial_prid(dp);
1131
1132	/*
1133	 * Make sure that we have allocated dquot(s) on disk.
1134	 */
1135	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1136			mapped_fsgid(idmap, &init_user_ns), prid,
1137			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1138			&udqp, &gdqp, &pdqp);
1139	if (error)
1140		return error;
1141
1142	resblks = XFS_IALLOC_SPACE_RES(mp);
1143	tres = &M_RES(mp)->tr_create_tmpfile;
1144
1145	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1146			&tp);
 
 
 
 
1147	if (error)
1148		goto out_release_dquots;
1149
1150	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1151	if (!error)
1152		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1153				0, 0, prid, false, &ip);
1154	if (error)
1155		goto out_trans_cancel;
1156
1157	if (xfs_has_wsync(mp))
1158		xfs_trans_set_sync(tp);
1159
1160	/*
1161	 * Attach the dquot(s) to the inodes and modify them incore.
1162	 * These ids of the inode couldn't have changed since the new
1163	 * inode has been locked ever since it was created.
1164	 */
1165	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1166
1167	error = xfs_iunlink(tp, ip);
1168	if (error)
1169		goto out_trans_cancel;
1170
1171	error = xfs_trans_commit(tp);
1172	if (error)
1173		goto out_release_inode;
1174
1175	xfs_qm_dqrele(udqp);
1176	xfs_qm_dqrele(gdqp);
1177	xfs_qm_dqrele(pdqp);
1178
1179	*ipp = ip;
1180	return 0;
1181
1182 out_trans_cancel:
1183	xfs_trans_cancel(tp);
1184 out_release_inode:
1185	/*
1186	 * Wait until after the current transaction is aborted to finish the
1187	 * setup of the inode and release the inode.  This prevents recursive
1188	 * transactions and deadlocks from xfs_inactive.
1189	 */
1190	if (ip) {
1191		xfs_finish_inode_setup(ip);
1192		xfs_irele(ip);
1193	}
1194 out_release_dquots:
1195	xfs_qm_dqrele(udqp);
1196	xfs_qm_dqrele(gdqp);
1197	xfs_qm_dqrele(pdqp);
1198
1199	return error;
1200}
1201
1202int
1203xfs_link(
1204	xfs_inode_t		*tdp,
1205	xfs_inode_t		*sip,
1206	struct xfs_name		*target_name)
1207{
1208	xfs_mount_t		*mp = tdp->i_mount;
1209	xfs_trans_t		*tp;
1210	int			error, nospace_error = 0;
 
 
1211	int			resblks;
1212
1213	trace_xfs_link(tdp, target_name);
1214
1215	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1216
1217	if (xfs_is_shutdown(mp))
1218		return -EIO;
1219	if (xfs_ifork_zapped(tdp, XFS_DATA_FORK))
1220		return -EIO;
1221
1222	error = xfs_qm_dqattach(sip);
1223	if (error)
1224		goto std_return;
1225
1226	error = xfs_qm_dqattach(tdp);
1227	if (error)
1228		goto std_return;
1229
1230	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1231	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1232			&tp, &nospace_error);
 
 
 
1233	if (error)
1234		goto std_return;
1235
 
 
 
 
 
1236	/*
1237	 * If we are using project inheritance, we only allow hard link
1238	 * creation in our tree when the project IDs are the same; else
1239	 * the tree quota mechanism could be circumvented.
1240	 */
1241	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1242		     tdp->i_projid != sip->i_projid)) {
1243		error = -EXDEV;
1244		goto error_return;
1245	}
1246
1247	if (!resblks) {
1248		error = xfs_dir_canenter(tp, tdp, target_name);
1249		if (error)
1250			goto error_return;
1251	}
1252
 
 
1253	/*
1254	 * Handle initial link state of O_TMPFILE inode
1255	 */
1256	if (VFS_I(sip)->i_nlink == 0) {
1257		struct xfs_perag	*pag;
1258
1259		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1260		error = xfs_iunlink_remove(tp, pag, sip);
1261		xfs_perag_put(pag);
1262		if (error)
1263			goto error_return;
1264	}
1265
1266	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1267				   resblks);
1268	if (error)
1269		goto error_return;
1270	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1271	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1272
1273	xfs_bumplink(tp, sip);
 
 
1274
1275	/*
1276	 * If this is a synchronous mount, make sure that the
1277	 * link transaction goes to disk before returning to
1278	 * the user.
1279	 */
1280	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1281		xfs_trans_set_sync(tp);
1282
 
 
 
 
 
 
1283	return xfs_trans_commit(tp);
1284
1285 error_return:
1286	xfs_trans_cancel(tp);
1287 std_return:
1288	if (error == -ENOSPC && nospace_error)
1289		error = nospace_error;
1290	return error;
1291}
1292
1293/* Clear the reflink flag and the cowblocks tag if possible. */
1294static void
1295xfs_itruncate_clear_reflink_flags(
1296	struct xfs_inode	*ip)
1297{
1298	struct xfs_ifork	*dfork;
1299	struct xfs_ifork	*cfork;
1300
1301	if (!xfs_is_reflink_inode(ip))
1302		return;
1303	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1304	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1305	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1306		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1307	if (cfork->if_bytes == 0)
1308		xfs_inode_clear_cowblocks_tag(ip);
1309}
1310
1311/*
1312 * Free up the underlying blocks past new_size.  The new size must be smaller
1313 * than the current size.  This routine can be used both for the attribute and
1314 * data fork, and does not modify the inode size, which is left to the caller.
1315 *
1316 * The transaction passed to this routine must have made a permanent log
1317 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1318 * given transaction and start new ones, so make sure everything involved in
1319 * the transaction is tidy before calling here.  Some transaction will be
1320 * returned to the caller to be committed.  The incoming transaction must
1321 * already include the inode, and both inode locks must be held exclusively.
1322 * The inode must also be "held" within the transaction.  On return the inode
1323 * will be "held" within the returned transaction.  This routine does NOT
1324 * require any disk space to be reserved for it within the transaction.
1325 *
1326 * If we get an error, we must return with the inode locked and linked into the
1327 * current transaction. This keeps things simple for the higher level code,
1328 * because it always knows that the inode is locked and held in the transaction
1329 * that returns to it whether errors occur or not.  We don't mark the inode
1330 * dirty on error so that transactions can be easily aborted if possible.
1331 */
1332int
1333xfs_itruncate_extents_flags(
1334	struct xfs_trans	**tpp,
1335	struct xfs_inode	*ip,
1336	int			whichfork,
1337	xfs_fsize_t		new_size,
1338	int			flags)
1339{
1340	struct xfs_mount	*mp = ip->i_mount;
1341	struct xfs_trans	*tp = *tpp;
 
 
1342	xfs_fileoff_t		first_unmap_block;
 
 
1343	int			error = 0;
 
1344
1345	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348	ASSERT(new_size <= XFS_ISIZE(ip));
1349	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350	ASSERT(ip->i_itemp != NULL);
1351	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353
1354	trace_xfs_itruncate_extents_start(ip, new_size);
1355
1356	flags |= xfs_bmapi_aflag(whichfork);
1357
1358	/*
1359	 * Since it is possible for space to become allocated beyond
1360	 * the end of the file (in a crash where the space is allocated
1361	 * but the inode size is not yet updated), simply remove any
1362	 * blocks which show up between the new EOF and the maximum
1363	 * possible file size.
1364	 *
1365	 * We have to free all the blocks to the bmbt maximum offset, even if
1366	 * the page cache can't scale that far.
1367	 */
1368	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371		return 0;
1372	}
1373
1374	error = xfs_bunmapi_range(&tp, ip, flags, first_unmap_block,
1375			XFS_MAX_FILEOFF);
1376	if (error)
1377		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378
1379	if (whichfork == XFS_DATA_FORK) {
1380		/* Remove all pending CoW reservations. */
1381		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1382				first_unmap_block, XFS_MAX_FILEOFF, true);
1383		if (error)
1384			goto out;
1385
1386		xfs_itruncate_clear_reflink_flags(ip);
1387	}
1388
1389	/*
1390	 * Always re-log the inode so that our permanent transaction can keep
1391	 * on rolling it forward in the log.
1392	 */
1393	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1394
1395	trace_xfs_itruncate_extents_end(ip, new_size);
1396
1397out:
1398	*tpp = tp;
1399	return error;
 
 
 
 
 
 
 
 
1400}
1401
1402int
1403xfs_release(
1404	xfs_inode_t	*ip)
1405{
1406	xfs_mount_t	*mp = ip->i_mount;
1407	int		error = 0;
1408
1409	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1410		return 0;
1411
1412	/* If this is a read-only mount, don't do this (would generate I/O) */
1413	if (xfs_is_readonly(mp))
1414		return 0;
1415
1416	if (!xfs_is_shutdown(mp)) {
1417		int truncated;
1418
1419		/*
1420		 * If we previously truncated this file and removed old data
1421		 * in the process, we want to initiate "early" writeout on
1422		 * the last close.  This is an attempt to combat the notorious
1423		 * NULL files problem which is particularly noticeable from a
1424		 * truncate down, buffered (re-)write (delalloc), followed by
1425		 * a crash.  What we are effectively doing here is
1426		 * significantly reducing the time window where we'd otherwise
1427		 * be exposed to that problem.
1428		 */
1429		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1430		if (truncated) {
1431			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1432			if (ip->i_delayed_blks > 0) {
1433				error = filemap_flush(VFS_I(ip)->i_mapping);
1434				if (error)
1435					return error;
1436			}
1437		}
1438	}
1439
1440	if (VFS_I(ip)->i_nlink == 0)
1441		return 0;
1442
1443	/*
1444	 * If we can't get the iolock just skip truncating the blocks past EOF
1445	 * because we could deadlock with the mmap_lock otherwise. We'll get
1446	 * another chance to drop them once the last reference to the inode is
1447	 * dropped, so we'll never leak blocks permanently.
1448	 */
1449	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1450		return 0;
1451
1452	if (xfs_can_free_eofblocks(ip, false)) {
 
1453		/*
1454		 * Check if the inode is being opened, written and closed
1455		 * frequently and we have delayed allocation blocks outstanding
1456		 * (e.g. streaming writes from the NFS server), truncating the
1457		 * blocks past EOF will cause fragmentation to occur.
1458		 *
1459		 * In this case don't do the truncation, but we have to be
1460		 * careful how we detect this case. Blocks beyond EOF show up as
1461		 * i_delayed_blks even when the inode is clean, so we need to
1462		 * truncate them away first before checking for a dirty release.
1463		 * Hence on the first dirty close we will still remove the
1464		 * speculative allocation, but after that we will leave it in
1465		 * place.
1466		 */
1467		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1468			goto out_unlock;
1469
1470		error = xfs_free_eofblocks(ip);
1471		if (error)
1472			goto out_unlock;
 
 
 
 
 
 
 
 
 
1473
1474		/* delalloc blocks after truncation means it really is dirty */
1475		if (ip->i_delayed_blks)
1476			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1477	}
1478
1479out_unlock:
1480	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1481	return error;
1482}
1483
1484/*
1485 * xfs_inactive_truncate
1486 *
1487 * Called to perform a truncate when an inode becomes unlinked.
1488 */
1489STATIC int
1490xfs_inactive_truncate(
1491	struct xfs_inode *ip)
1492{
1493	struct xfs_mount	*mp = ip->i_mount;
1494	struct xfs_trans	*tp;
1495	int			error;
1496
1497	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1498	if (error) {
1499		ASSERT(xfs_is_shutdown(mp));
1500		return error;
1501	}
 
1502	xfs_ilock(ip, XFS_ILOCK_EXCL);
1503	xfs_trans_ijoin(tp, ip, 0);
1504
1505	/*
1506	 * Log the inode size first to prevent stale data exposure in the event
1507	 * of a system crash before the truncate completes. See the related
1508	 * comment in xfs_vn_setattr_size() for details.
1509	 */
1510	ip->i_disk_size = 0;
1511	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1512
1513	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1514	if (error)
1515		goto error_trans_cancel;
1516
1517	ASSERT(ip->i_df.if_nextents == 0);
1518
1519	error = xfs_trans_commit(tp);
1520	if (error)
1521		goto error_unlock;
1522
1523	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1524	return 0;
1525
1526error_trans_cancel:
1527	xfs_trans_cancel(tp);
1528error_unlock:
1529	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1530	return error;
1531}
1532
1533/*
1534 * xfs_inactive_ifree()
1535 *
1536 * Perform the inode free when an inode is unlinked.
1537 */
1538STATIC int
1539xfs_inactive_ifree(
1540	struct xfs_inode *ip)
1541{
 
 
1542	struct xfs_mount	*mp = ip->i_mount;
1543	struct xfs_trans	*tp;
1544	int			error;
1545
1546	/*
1547	 * We try to use a per-AG reservation for any block needed by the finobt
1548	 * tree, but as the finobt feature predates the per-AG reservation
1549	 * support a degraded file system might not have enough space for the
1550	 * reservation at mount time.  In that case try to dip into the reserved
1551	 * pool and pray.
1552	 *
1553	 * Send a warning if the reservation does happen to fail, as the inode
1554	 * now remains allocated and sits on the unlinked list until the fs is
1555	 * repaired.
1556	 */
1557	if (unlikely(mp->m_finobt_nores)) {
1558		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1559				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1560				&tp);
1561	} else {
1562		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1563	}
1564	if (error) {
1565		if (error == -ENOSPC) {
1566			xfs_warn_ratelimited(mp,
1567			"Failed to remove inode(s) from unlinked list. "
1568			"Please free space, unmount and run xfs_repair.");
1569		} else {
1570			ASSERT(xfs_is_shutdown(mp));
1571		}
1572		return error;
1573	}
1574
1575	/*
1576	 * We do not hold the inode locked across the entire rolling transaction
1577	 * here. We only need to hold it for the first transaction that
1578	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1579	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1580	 * here breaks the relationship between cluster buffer invalidation and
1581	 * stale inode invalidation on cluster buffer item journal commit
1582	 * completion, and can result in leaving dirty stale inodes hanging
1583	 * around in memory.
1584	 *
1585	 * We have no need for serialising this inode operation against other
1586	 * operations - we freed the inode and hence reallocation is required
1587	 * and that will serialise on reallocating the space the deferops need
1588	 * to free. Hence we can unlock the inode on the first commit of
1589	 * the transaction rather than roll it right through the deferops. This
1590	 * avoids relogging the XFS_ISTALE inode.
1591	 *
1592	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1593	 * by asserting that the inode is still locked when it returns.
1594	 */
1595	xfs_ilock(ip, XFS_ILOCK_EXCL);
1596	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1597
1598	error = xfs_ifree(tp, ip);
1599	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1600	if (error) {
1601		/*
1602		 * If we fail to free the inode, shut down.  The cancel
1603		 * might do that, we need to make sure.  Otherwise the
1604		 * inode might be lost for a long time or forever.
1605		 */
1606		if (!xfs_is_shutdown(mp)) {
1607			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1608				__func__, error);
1609			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1610		}
1611		xfs_trans_cancel(tp);
 
1612		return error;
1613	}
1614
1615	/*
1616	 * Credit the quota account(s). The inode is gone.
1617	 */
1618	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1619
1620	return xfs_trans_commit(tp);
1621}
1622
1623/*
1624 * Returns true if we need to update the on-disk metadata before we can free
1625 * the memory used by this inode.  Updates include freeing post-eof
1626 * preallocations; freeing COW staging extents; and marking the inode free in
1627 * the inobt if it is on the unlinked list.
1628 */
1629bool
1630xfs_inode_needs_inactive(
1631	struct xfs_inode	*ip)
1632{
1633	struct xfs_mount	*mp = ip->i_mount;
1634	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1635
1636	/*
1637	 * If the inode is already free, then there can be nothing
1638	 * to clean up here.
1639	 */
1640	if (VFS_I(ip)->i_mode == 0)
1641		return false;
1642
1643	/*
1644	 * If this is a read-only mount, don't do this (would generate I/O)
1645	 * unless we're in log recovery and cleaning the iunlinked list.
1646	 */
1647	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1648		return false;
1649
1650	/* If the log isn't running, push inodes straight to reclaim. */
1651	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1652		return false;
1653
1654	/* Metadata inodes require explicit resource cleanup. */
1655	if (xfs_is_metadata_inode(ip))
1656		return false;
1657
1658	/* Want to clean out the cow blocks if there are any. */
1659	if (cow_ifp && cow_ifp->if_bytes > 0)
1660		return true;
1661
1662	/* Unlinked files must be freed. */
1663	if (VFS_I(ip)->i_nlink == 0)
1664		return true;
1665
1666	/*
1667	 * This file isn't being freed, so check if there are post-eof blocks
1668	 * to free.  @force is true because we are evicting an inode from the
1669	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1670	 * free space accounting.
1671	 *
1672	 * Note: don't bother with iolock here since lockdep complains about
1673	 * acquiring it in reclaim context. We have the only reference to the
1674	 * inode at this point anyways.
1675	 */
1676	return xfs_can_free_eofblocks(ip, true);
1677}
1678
1679/*
1680 * xfs_inactive
1681 *
1682 * This is called when the vnode reference count for the vnode
1683 * goes to zero.  If the file has been unlinked, then it must
1684 * now be truncated.  Also, we clear all of the read-ahead state
1685 * kept for the inode here since the file is now closed.
1686 */
1687int
1688xfs_inactive(
1689	xfs_inode_t	*ip)
1690{
1691	struct xfs_mount	*mp;
1692	int			error = 0;
 
1693	int			truncate = 0;
1694
1695	/*
1696	 * If the inode is already free, then there can be nothing
1697	 * to clean up here.
1698	 */
1699	if (VFS_I(ip)->i_mode == 0) {
 
1700		ASSERT(ip->i_df.if_broot_bytes == 0);
1701		goto out;
1702	}
1703
1704	mp = ip->i_mount;
1705	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1706
1707	/*
1708	 * If this is a read-only mount, don't do this (would generate I/O)
1709	 * unless we're in log recovery and cleaning the iunlinked list.
1710	 */
1711	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1712		goto out;
1713
1714	/* Metadata inodes require explicit resource cleanup. */
1715	if (xfs_is_metadata_inode(ip))
1716		goto out;
1717
1718	/* Try to clean out the cow blocks if there are any. */
1719	if (xfs_inode_has_cow_data(ip))
1720		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1721
1722	if (VFS_I(ip)->i_nlink != 0) {
1723		/*
1724		 * force is true because we are evicting an inode from the
1725		 * cache. Post-eof blocks must be freed, lest we end up with
1726		 * broken free space accounting.
1727		 *
1728		 * Note: don't bother with iolock here since lockdep complains
1729		 * about acquiring it in reclaim context. We have the only
1730		 * reference to the inode at this point anyways.
1731		 */
1732		if (xfs_can_free_eofblocks(ip, true))
1733			error = xfs_free_eofblocks(ip);
1734
1735		goto out;
1736	}
1737
1738	if (S_ISREG(VFS_I(ip)->i_mode) &&
1739	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1740	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1741		truncate = 1;
1742
1743	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1744		/*
1745		 * If this inode is being inactivated during a quotacheck and
1746		 * has not yet been scanned by quotacheck, we /must/ remove
1747		 * the dquots from the inode before inactivation changes the
1748		 * block and inode counts.  Most probably this is a result of
1749		 * reloading the incore iunlinked list to purge unrecovered
1750		 * unlinked inodes.
1751		 */
1752		xfs_qm_dqdetach(ip);
1753	} else {
1754		error = xfs_qm_dqattach(ip);
1755		if (error)
1756			goto out;
1757	}
1758
1759	if (S_ISLNK(VFS_I(ip)->i_mode))
1760		error = xfs_inactive_symlink(ip);
1761	else if (truncate)
1762		error = xfs_inactive_truncate(ip);
1763	if (error)
1764		goto out;
1765
1766	/*
1767	 * If there are attributes associated with the file then blow them away
1768	 * now.  The code calls a routine that recursively deconstructs the
1769	 * attribute fork. If also blows away the in-core attribute fork.
1770	 */
1771	if (xfs_inode_has_attr_fork(ip)) {
1772		error = xfs_attr_inactive(ip);
1773		if (error)
1774			goto out;
1775	}
1776
1777	ASSERT(ip->i_forkoff == 0);
 
 
1778
1779	/*
1780	 * Free the inode.
1781	 */
1782	error = xfs_inactive_ifree(ip);
 
 
1783
1784out:
1785	/*
1786	 * We're done making metadata updates for this inode, so we can release
1787	 * the attached dquots.
1788	 */
1789	xfs_qm_dqdetach(ip);
1790	return error;
1791}
1792
1793/*
1794 * In-Core Unlinked List Lookups
1795 * =============================
 
 
 
1796 *
1797 * Every inode is supposed to be reachable from some other piece of metadata
1798 * with the exception of the root directory.  Inodes with a connection to a
1799 * file descriptor but not linked from anywhere in the on-disk directory tree
1800 * are collectively known as unlinked inodes, though the filesystem itself
1801 * maintains links to these inodes so that on-disk metadata are consistent.
1802 *
1803 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1804 * header contains a number of buckets that point to an inode, and each inode
1805 * record has a pointer to the next inode in the hash chain.  This
1806 * singly-linked list causes scaling problems in the iunlink remove function
1807 * because we must walk that list to find the inode that points to the inode
1808 * being removed from the unlinked hash bucket list.
1809 *
1810 * Hence we keep an in-memory double linked list to link each inode on an
1811 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1812 * based lists would require having 64 list heads in the perag, one for each
1813 * list. This is expensive in terms of memory (think millions of AGs) and cache
1814 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1815 * must be referenced at the VFS level to keep them on the list and hence we
1816 * have an existence guarantee for inodes on the unlinked list.
1817 *
1818 * Given we have an existence guarantee, we can use lockless inode cache lookups
1819 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1820 * for the double linked unlinked list, and we don't need any extra locking to
1821 * keep the list safe as all manipulations are done under the AGI buffer lock.
1822 * Keeping the list up to date does not require memory allocation, just finding
1823 * the XFS inode and updating the next/prev unlinked list aginos.
1824 */
1825
1826/*
1827 * Find an inode on the unlinked list. This does not take references to the
1828 * inode as we have existence guarantees by holding the AGI buffer lock and that
1829 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1830 * don't find the inode in cache, then let the caller handle the situation.
1831 */
1832static struct xfs_inode *
1833xfs_iunlink_lookup(
1834	struct xfs_perag	*pag,
1835	xfs_agino_t		agino)
1836{
1837	struct xfs_inode	*ip;
1838
1839	rcu_read_lock();
1840	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1841	if (!ip) {
1842		/* Caller can handle inode not being in memory. */
1843		rcu_read_unlock();
1844		return NULL;
1845	}
1846
1847	/*
1848	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1849	 * let the caller handle the failure.
1850	 */
1851	if (WARN_ON_ONCE(!ip->i_ino)) {
1852		rcu_read_unlock();
1853		return NULL;
1854	}
1855	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1856	rcu_read_unlock();
1857	return ip;
1858}
1859
1860/*
1861 * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1862 * is not in cache.
1863 */
1864static int
1865xfs_iunlink_update_backref(
1866	struct xfs_perag	*pag,
1867	xfs_agino_t		prev_agino,
1868	xfs_agino_t		next_agino)
1869{
1870	struct xfs_inode	*ip;
1871
1872	/* No update necessary if we are at the end of the list. */
1873	if (next_agino == NULLAGINO)
1874		return 0;
1875
1876	ip = xfs_iunlink_lookup(pag, next_agino);
1877	if (!ip)
1878		return -ENOLINK;
1879
1880	ip->i_prev_unlinked = prev_agino;
1881	return 0;
1882}
1883
1884/*
1885 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1886 * is responsible for validating the old value.
1887 */
1888STATIC int
1889xfs_iunlink_update_bucket(
1890	struct xfs_trans	*tp,
1891	struct xfs_perag	*pag,
1892	struct xfs_buf		*agibp,
1893	unsigned int		bucket_index,
1894	xfs_agino_t		new_agino)
1895{
1896	struct xfs_agi		*agi = agibp->b_addr;
1897	xfs_agino_t		old_value;
1898	int			offset;
1899
1900	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1901
1902	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1903	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1904			old_value, new_agino);
1905
1906	/*
1907	 * We should never find the head of the list already set to the value
1908	 * passed in because either we're adding or removing ourselves from the
1909	 * head of the list.
1910	 */
1911	if (old_value == new_agino) {
1912		xfs_buf_mark_corrupt(agibp);
1913		return -EFSCORRUPTED;
1914	}
1915
1916	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1917	offset = offsetof(struct xfs_agi, agi_unlinked) +
1918			(sizeof(xfs_agino_t) * bucket_index);
1919	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1920	return 0;
1921}
1922
1923/*
1924 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1925 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1926 * to the unlinked list.
1927 */
1928STATIC int
1929xfs_iunlink_reload_next(
1930	struct xfs_trans	*tp,
1931	struct xfs_buf		*agibp,
1932	xfs_agino_t		prev_agino,
1933	xfs_agino_t		next_agino)
1934{
1935	struct xfs_perag	*pag = agibp->b_pag;
1936	struct xfs_mount	*mp = pag->pag_mount;
1937	struct xfs_inode	*next_ip = NULL;
1938	xfs_ino_t		ino;
1939	int			error;
1940
1941	ASSERT(next_agino != NULLAGINO);
1942
1943#ifdef DEBUG
1944	rcu_read_lock();
1945	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1946	ASSERT(next_ip == NULL);
1947	rcu_read_unlock();
1948#endif
1949
1950	xfs_info_ratelimited(mp,
1951 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1952			next_agino, pag->pag_agno);
1953
1954	/*
1955	 * Use an untrusted lookup just to be cautious in case the AGI has been
1956	 * corrupted and now points at a free inode.  That shouldn't happen,
1957	 * but we'd rather shut down now since we're already running in a weird
1958	 * situation.
1959	 */
1960	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1961	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1962	if (error)
1963		return error;
1964
1965	/* If this is not an unlinked inode, something is very wrong. */
1966	if (VFS_I(next_ip)->i_nlink != 0) {
1967		error = -EFSCORRUPTED;
1968		goto rele;
1969	}
1970
1971	next_ip->i_prev_unlinked = prev_agino;
1972	trace_xfs_iunlink_reload_next(next_ip);
1973rele:
1974	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1975	if (xfs_is_quotacheck_running(mp) && next_ip)
1976		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1977	xfs_irele(next_ip);
1978	return error;
1979}
1980
1981static int
1982xfs_iunlink_insert_inode(
1983	struct xfs_trans	*tp,
1984	struct xfs_perag	*pag,
1985	struct xfs_buf		*agibp,
1986	struct xfs_inode	*ip)
1987{
1988	struct xfs_mount	*mp = tp->t_mountp;
1989	struct xfs_agi		*agi = agibp->b_addr;
1990	xfs_agino_t		next_agino;
1991	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1992	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1993	int			error;
1994
1995	/*
1996	 * Get the index into the agi hash table for the list this inode will
1997	 * go on.  Make sure the pointer isn't garbage and that this inode
1998	 * isn't already on the list.
1999	 */
2000	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2001	if (next_agino == agino ||
2002	    !xfs_verify_agino_or_null(pag, next_agino)) {
2003		xfs_buf_mark_corrupt(agibp);
2004		return -EFSCORRUPTED;
2005	}
2006
2007	/*
2008	 * Update the prev pointer in the next inode to point back to this
2009	 * inode.
2010	 */
2011	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2012	if (error == -ENOLINK)
2013		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2014	if (error)
2015		return error;
2016
2017	if (next_agino != NULLAGINO) {
2018		/*
2019		 * There is already another inode in the bucket, so point this
2020		 * inode to the current head of the list.
 
 
2021		 */
2022		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
 
2023		if (error)
2024			return error;
2025		ip->i_next_unlinked = next_agino;
2026	}
2027
2028	/* Point the head of the list to point to this inode. */
2029	ip->i_prev_unlinked = NULLAGINO;
2030	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2031}
2032
2033/*
2034 * This is called when the inode's link count has gone to 0 or we are creating
2035 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2036 *
2037 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2038 * list when the inode is freed.
2039 */
2040STATIC int
2041xfs_iunlink(
2042	struct xfs_trans	*tp,
2043	struct xfs_inode	*ip)
2044{
2045	struct xfs_mount	*mp = tp->t_mountp;
2046	struct xfs_perag	*pag;
2047	struct xfs_buf		*agibp;
2048	int			error;
2049
2050	ASSERT(VFS_I(ip)->i_nlink == 0);
2051	ASSERT(VFS_I(ip)->i_mode != 0);
2052	trace_xfs_iunlink(ip);
2053
2054	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2055
2056	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2057	error = xfs_read_agi(pag, tp, &agibp);
2058	if (error)
2059		goto out;
2060
2061	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2062out:
2063	xfs_perag_put(pag);
2064	return error;
2065}
2066
2067static int
2068xfs_iunlink_remove_inode(
2069	struct xfs_trans	*tp,
2070	struct xfs_perag	*pag,
2071	struct xfs_buf		*agibp,
2072	struct xfs_inode	*ip)
2073{
2074	struct xfs_mount	*mp = tp->t_mountp;
2075	struct xfs_agi		*agi = agibp->b_addr;
2076	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077	xfs_agino_t		head_agino;
2078	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2079	int			error;
2080
2081	trace_xfs_iunlink_remove(ip);
2082
2083	/*
2084	 * Get the index into the agi hash table for the list this inode will
2085	 * go on.  Make sure the head pointer isn't garbage.
2086	 */
2087	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2088	if (!xfs_verify_agino(pag, head_agino)) {
2089		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2090				agi, sizeof(*agi));
2091		return -EFSCORRUPTED;
2092	}
2093
2094	/*
2095	 * Set our inode's next_unlinked pointer to NULL and then return
2096	 * the old pointer value so that we can update whatever was previous
2097	 * to us in the list to point to whatever was next in the list.
2098	 */
2099	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2100	if (error)
2101		return error;
2102
2103	/*
2104	 * Update the prev pointer in the next inode to point back to previous
2105	 * inode in the chain.
2106	 */
2107	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2108			ip->i_next_unlinked);
2109	if (error == -ENOLINK)
2110		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2111				ip->i_next_unlinked);
2112	if (error)
2113		return error;
2114
2115	if (head_agino != agino) {
2116		struct xfs_inode	*prev_ip;
2117
2118		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2119		if (!prev_ip)
2120			return -EFSCORRUPTED;
2121
2122		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2123				ip->i_next_unlinked);
2124		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2125	} else {
2126		/* Point the head of the list to the next unlinked inode. */
2127		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2128				ip->i_next_unlinked);
2129	}
2130
2131	ip->i_next_unlinked = NULLAGINO;
2132	ip->i_prev_unlinked = 0;
2133	return error;
2134}
2135
2136/*
2137 * Pull the on-disk inode from the AGI unlinked list.
2138 */
2139STATIC int
2140xfs_iunlink_remove(
2141	struct xfs_trans	*tp,
2142	struct xfs_perag	*pag,
2143	struct xfs_inode	*ip)
2144{
2145	struct xfs_buf		*agibp;
2146	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
2147
2148	trace_xfs_iunlink_remove(ip);
 
2149
2150	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2151	error = xfs_read_agi(pag, tp, &agibp);
 
 
 
2152	if (error)
2153		return error;
2154
2155	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2156}
2157
2158/*
2159 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2160 * mark it stale. We should only find clean inodes in this lookup that aren't
2161 * already stale.
2162 */
2163static void
2164xfs_ifree_mark_inode_stale(
2165	struct xfs_perag	*pag,
2166	struct xfs_inode	*free_ip,
2167	xfs_ino_t		inum)
2168{
2169	struct xfs_mount	*mp = pag->pag_mount;
2170	struct xfs_inode_log_item *iip;
2171	struct xfs_inode	*ip;
2172
2173retry:
2174	rcu_read_lock();
2175	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2176
2177	/* Inode not in memory, nothing to do */
2178	if (!ip) {
2179		rcu_read_unlock();
2180		return;
2181	}
2182
2183	/*
2184	 * because this is an RCU protected lookup, we could find a recently
2185	 * freed or even reallocated inode during the lookup. We need to check
2186	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2187	 * valid, the wrong inode or stale.
2188	 */
2189	spin_lock(&ip->i_flags_lock);
2190	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2191		goto out_iflags_unlock;
2192
2193	/*
2194	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2195	 * other inodes that we did not find in the list attached to the buffer
2196	 * and are not already marked stale. If we can't lock it, back off and
2197	 * retry.
2198	 */
2199	if (ip != free_ip) {
2200		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2201			spin_unlock(&ip->i_flags_lock);
2202			rcu_read_unlock();
2203			delay(1);
2204			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2205		}
2206	}
2207	ip->i_flags |= XFS_ISTALE;
2208
2209	/*
2210	 * If the inode is flushing, it is already attached to the buffer.  All
2211	 * we needed to do here is mark the inode stale so buffer IO completion
2212	 * will remove it from the AIL.
2213	 */
2214	iip = ip->i_itemp;
2215	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2216		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2217		ASSERT(iip->ili_last_fields);
2218		goto out_iunlock;
2219	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2220
2221	/*
2222	 * Inodes not attached to the buffer can be released immediately.
2223	 * Everything else has to go through xfs_iflush_abort() on journal
2224	 * commit as the flock synchronises removal of the inode from the
2225	 * cluster buffer against inode reclaim.
2226	 */
2227	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2228		goto out_iunlock;
2229
2230	__xfs_iflags_set(ip, XFS_IFLUSHING);
2231	spin_unlock(&ip->i_flags_lock);
2232	rcu_read_unlock();
 
 
2233
2234	/* we have a dirty inode in memory that has not yet been flushed. */
2235	spin_lock(&iip->ili_lock);
2236	iip->ili_last_fields = iip->ili_fields;
2237	iip->ili_fields = 0;
2238	iip->ili_fsync_fields = 0;
2239	spin_unlock(&iip->ili_lock);
2240	ASSERT(iip->ili_last_fields);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241
2242	if (ip != free_ip)
2243		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2244	return;
2245
2246out_iunlock:
2247	if (ip != free_ip)
2248		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2249out_iflags_unlock:
2250	spin_unlock(&ip->i_flags_lock);
2251	rcu_read_unlock();
2252}
2253
2254/*
2255 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2256 * inodes that are in memory - they all must be marked stale and attached to
2257 * the cluster buffer.
2258 */
2259static int
2260xfs_ifree_cluster(
2261	struct xfs_trans	*tp,
2262	struct xfs_perag	*pag,
2263	struct xfs_inode	*free_ip,
2264	struct xfs_icluster	*xic)
2265{
2266	struct xfs_mount	*mp = free_ip->i_mount;
2267	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2268	struct xfs_buf		*bp;
2269	xfs_daddr_t		blkno;
2270	xfs_ino_t		inum = xic->first_ino;
2271	int			nbufs;
2272	int			i, j;
2273	int			ioffset;
2274	int			error;
 
 
 
 
 
 
2275
2276	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
 
 
2277
2278	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2279		/*
2280		 * The allocation bitmap tells us which inodes of the chunk were
2281		 * physically allocated. Skip the cluster if an inode falls into
2282		 * a sparse region.
2283		 */
2284		ioffset = inum - xic->first_ino;
2285		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2286			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2287			continue;
2288		}
2289
2290		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2291					 XFS_INO_TO_AGBNO(mp, inum));
2292
2293		/*
2294		 * We obtain and lock the backing buffer first in the process
2295		 * here to ensure dirty inodes attached to the buffer remain in
2296		 * the flushing state while we mark them stale.
2297		 *
2298		 * If we scan the in-memory inodes first, then buffer IO can
2299		 * complete before we get a lock on it, and hence we may fail
2300		 * to mark all the active inodes on the buffer stale.
2301		 */
2302		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2303				mp->m_bsize * igeo->blocks_per_cluster,
2304				XBF_UNMAPPED, &bp);
2305		if (error)
2306			return error;
 
2307
2308		/*
2309		 * This buffer may not have been correctly initialised as we
2310		 * didn't read it from disk. That's not important because we are
2311		 * only using to mark the buffer as stale in the log, and to
2312		 * attach stale cached inodes on it. That means it will never be
2313		 * dispatched for IO. If it is, we want to know about it, and we
2314		 * want it to fail. We can acheive this by adding a write
2315		 * verifier to the buffer.
2316		 */
2317		bp->b_ops = &xfs_inode_buf_ops;
2318
2319		/*
2320		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2321		 * too. This requires lookups, and will skip inodes that we've
2322		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2323		 */
2324		for (i = 0; i < igeo->inodes_per_cluster; i++)
2325			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2326
2327		xfs_trans_stale_inode_buf(tp, bp);
2328		xfs_trans_binval(tp, bp);
2329	}
 
 
2330	return 0;
2331}
2332
2333/*
2334 * This is called to return an inode to the inode free list.  The inode should
2335 * already be truncated to 0 length and have no pages associated with it.  This
2336 * routine also assumes that the inode is already a part of the transaction.
2337 *
2338 * The on-disk copy of the inode will have been added to the list of unlinked
2339 * inodes in the AGI. We need to remove the inode from that list atomically with
2340 * respect to freeing it here.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341 */
2342int
2343xfs_ifree(
2344	struct xfs_trans	*tp,
2345	struct xfs_inode	*ip)
 
2346{
2347	struct xfs_mount	*mp = ip->i_mount;
2348	struct xfs_perag	*pag;
2349	struct xfs_icluster	xic = { 0 };
2350	struct xfs_inode_log_item *iip = ip->i_itemp;
2351	int			error;
 
2352
2353	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2354	ASSERT(VFS_I(ip)->i_nlink == 0);
2355	ASSERT(ip->i_df.if_nextents == 0);
2356	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2357	ASSERT(ip->i_nblocks == 0);
2358
2359	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2360
2361	/*
2362	 * Free the inode first so that we guarantee that the AGI lock is going
2363	 * to be taken before we remove the inode from the unlinked list. This
2364	 * makes the AGI lock -> unlinked list modification order the same as
2365	 * used in O_TMPFILE creation.
2366	 */
2367	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2368	if (error)
2369		goto out;
2370
2371	error = xfs_iunlink_remove(tp, pag, ip);
2372	if (error)
2373		goto out;
2374
2375	/*
2376	 * Free any local-format data sitting around before we reset the
2377	 * data fork to extents format.  Note that the attr fork data has
2378	 * already been freed by xfs_attr_inactive.
2379	 */
2380	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2381		kmem_free(ip->i_df.if_data);
2382		ip->i_df.if_data = NULL;
2383		ip->i_df.if_bytes = 0;
2384	}
2385
2386	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2387	ip->i_diflags = 0;
2388	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2389	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2390	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2391	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2392		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2393
2394	/* Don't attempt to replay owner changes for a deleted inode */
2395	spin_lock(&iip->ili_lock);
2396	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2397	spin_unlock(&iip->ili_lock);
2398
2399	/*
2400	 * Bump the generation count so no one will be confused
2401	 * by reincarnations of this inode.
2402	 */
2403	VFS_I(ip)->i_generation++;
2404	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2405
2406	if (xic.deleted)
2407		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2408out:
2409	xfs_perag_put(pag);
2410	return error;
2411}
2412
2413/*
2414 * This is called to unpin an inode.  The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2417 */
2418static void
2419xfs_iunpin(
2420	struct xfs_inode	*ip)
2421{
2422	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423
2424	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425
2426	/* Give the log a push to start the unpinning I/O */
2427	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2428
2429}
2430
2431static void
2432__xfs_iunpin_wait(
2433	struct xfs_inode	*ip)
2434{
2435	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437
2438	xfs_iunpin(ip);
2439
2440	do {
2441		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2442		if (xfs_ipincount(ip))
2443			io_schedule();
2444	} while (xfs_ipincount(ip));
2445	finish_wait(wq, &wait.wq_entry);
2446}
2447
2448void
2449xfs_iunpin_wait(
2450	struct xfs_inode	*ip)
2451{
2452	if (xfs_ipincount(ip))
2453		__xfs_iunpin_wait(ip);
2454}
2455
2456/*
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2461 * locking an AGI.
2462 *
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2469 *
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2475 * directory entry.
2476 *
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2482 */
2483int
2484xfs_remove(
2485	xfs_inode_t             *dp,
2486	struct xfs_name		*name,
2487	xfs_inode_t		*ip)
2488{
2489	xfs_mount_t		*mp = dp->i_mount;
2490	xfs_trans_t             *tp = NULL;
2491	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492	int			dontcare;
2493	int                     error = 0;
 
 
2494	uint			resblks;
2495
2496	trace_xfs_remove(dp, name);
2497
2498	if (xfs_is_shutdown(mp))
2499		return -EIO;
2500	if (xfs_ifork_zapped(dp, XFS_DATA_FORK))
2501		return -EIO;
2502
2503	error = xfs_qm_dqattach(dp);
2504	if (error)
2505		goto std_return;
2506
2507	error = xfs_qm_dqattach(ip);
2508	if (error)
2509		goto std_return;
2510
2511	/*
2512	 * We try to get the real space reservation first, allowing for
2513	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2514	 * can't get the space reservation then we use 0 instead, and avoid the
2515	 * bmap btree insert(s) in the directory code by, if the bmap insert
2516	 * tries to happen, instead trimming the LAST block from the directory.
2517	 *
2518	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2519	 * the directory code can handle a reservationless update and we don't
2520	 * want to prevent a user from trying to free space by deleting things.
2521	 */
2522	resblks = XFS_REMOVE_SPACE_RES(mp);
2523	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2524			&tp, &dontcare);
 
 
 
 
2525	if (error) {
2526		ASSERT(error != -ENOSPC);
2527		goto std_return;
2528	}
2529
 
 
 
 
 
2530	/*
2531	 * If we're removing a directory perform some additional validation.
2532	 */
2533	if (is_dir) {
2534		ASSERT(VFS_I(ip)->i_nlink >= 2);
2535		if (VFS_I(ip)->i_nlink != 2) {
2536			error = -ENOTEMPTY;
2537			goto out_trans_cancel;
2538		}
2539		if (!xfs_dir_isempty(ip)) {
2540			error = -ENOTEMPTY;
2541			goto out_trans_cancel;
2542		}
2543
2544		/* Drop the link from ip's "..".  */
2545		error = xfs_droplink(tp, dp);
2546		if (error)
2547			goto out_trans_cancel;
2548
2549		/* Drop the "." link from ip to self.  */
2550		error = xfs_droplink(tp, ip);
2551		if (error)
2552			goto out_trans_cancel;
2553
2554		/*
2555		 * Point the unlinked child directory's ".." entry to the root
2556		 * directory to eliminate back-references to inodes that may
2557		 * get freed before the child directory is closed.  If the fs
2558		 * gets shrunk, this can lead to dirent inode validation errors.
2559		 */
2560		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2561			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2562					tp->t_mountp->m_sb.sb_rootino, 0);
2563			if (error)
2564				goto out_trans_cancel;
2565		}
2566	} else {
2567		/*
2568		 * When removing a non-directory we need to log the parent
2569		 * inode here.  For a directory this is done implicitly
2570		 * by the xfs_droplink call for the ".." entry.
2571		 */
2572		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2573	}
2574	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2575
2576	/* Drop the link from dp to ip. */
2577	error = xfs_droplink(tp, ip);
2578	if (error)
2579		goto out_trans_cancel;
2580
2581	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
 
 
2582	if (error) {
2583		ASSERT(error != -ENOENT);
2584		goto out_trans_cancel;
2585	}
2586
2587	/*
2588	 * If this is a synchronous mount, make sure that the
2589	 * remove transaction goes to disk before returning to
2590	 * the user.
2591	 */
2592	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2593		xfs_trans_set_sync(tp);
2594
 
 
 
 
2595	error = xfs_trans_commit(tp);
2596	if (error)
2597		goto std_return;
2598
2599	if (is_dir && xfs_inode_is_filestream(ip))
2600		xfs_filestream_deassociate(ip);
2601
2602	return 0;
2603
 
 
2604 out_trans_cancel:
2605	xfs_trans_cancel(tp);
2606 std_return:
2607	return error;
2608}
2609
2610/*
2611 * Enter all inodes for a rename transaction into a sorted array.
2612 */
2613#define __XFS_SORT_INODES	5
2614STATIC void
2615xfs_sort_for_rename(
2616	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2617	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2618	struct xfs_inode	*ip1,	/* in: inode of old entry */
2619	struct xfs_inode	*ip2,	/* in: inode of new entry */
2620	struct xfs_inode	*wip,	/* in: whiteout inode */
2621	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2622	int			*num_inodes)  /* in/out: inodes in array */
2623{
2624	int			i, j;
2625
2626	ASSERT(*num_inodes == __XFS_SORT_INODES);
2627	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2628
2629	/*
2630	 * i_tab contains a list of pointers to inodes.  We initialize
2631	 * the table here & we'll sort it.  We will then use it to
2632	 * order the acquisition of the inode locks.
2633	 *
2634	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2635	 */
2636	i = 0;
2637	i_tab[i++] = dp1;
2638	i_tab[i++] = dp2;
2639	i_tab[i++] = ip1;
2640	if (ip2)
2641		i_tab[i++] = ip2;
2642	if (wip)
2643		i_tab[i++] = wip;
2644	*num_inodes = i;
2645
2646	/*
2647	 * Sort the elements via bubble sort.  (Remember, there are at
2648	 * most 5 elements to sort, so this is adequate.)
2649	 */
2650	for (i = 0; i < *num_inodes; i++) {
2651		for (j = 1; j < *num_inodes; j++) {
2652			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2653				struct xfs_inode *temp = i_tab[j];
2654				i_tab[j] = i_tab[j-1];
2655				i_tab[j-1] = temp;
2656			}
2657		}
2658	}
2659}
2660
2661static int
2662xfs_finish_rename(
2663	struct xfs_trans	*tp)
 
2664{
 
 
2665	/*
2666	 * If this is a synchronous mount, make sure that the rename transaction
2667	 * goes to disk before returning to the user.
2668	 */
2669	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2670		xfs_trans_set_sync(tp);
2671
 
 
 
 
 
 
 
2672	return xfs_trans_commit(tp);
2673}
2674
2675/*
2676 * xfs_cross_rename()
2677 *
2678 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2679 */
2680STATIC int
2681xfs_cross_rename(
2682	struct xfs_trans	*tp,
2683	struct xfs_inode	*dp1,
2684	struct xfs_name		*name1,
2685	struct xfs_inode	*ip1,
2686	struct xfs_inode	*dp2,
2687	struct xfs_name		*name2,
2688	struct xfs_inode	*ip2,
 
 
2689	int			spaceres)
2690{
2691	int		error = 0;
2692	int		ip1_flags = 0;
2693	int		ip2_flags = 0;
2694	int		dp2_flags = 0;
2695
2696	/* Swap inode number for dirent in first parent */
2697	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
 
 
2698	if (error)
2699		goto out_trans_abort;
2700
2701	/* Swap inode number for dirent in second parent */
2702	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
 
 
2703	if (error)
2704		goto out_trans_abort;
2705
2706	/*
2707	 * If we're renaming one or more directories across different parents,
2708	 * update the respective ".." entries (and link counts) to match the new
2709	 * parents.
2710	 */
2711	if (dp1 != dp2) {
2712		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2713
2714		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2715			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2716						dp1->i_ino, spaceres);
 
2717			if (error)
2718				goto out_trans_abort;
2719
2720			/* transfer ip2 ".." reference to dp1 */
2721			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2722				error = xfs_droplink(tp, dp2);
2723				if (error)
2724					goto out_trans_abort;
2725				xfs_bumplink(tp, dp1);
 
 
2726			}
2727
2728			/*
2729			 * Although ip1 isn't changed here, userspace needs
2730			 * to be warned about the change, so that applications
2731			 * relying on it (like backup ones), will properly
2732			 * notify the change
2733			 */
2734			ip1_flags |= XFS_ICHGTIME_CHG;
2735			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2736		}
2737
2738		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2739			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2740						dp2->i_ino, spaceres);
 
2741			if (error)
2742				goto out_trans_abort;
2743
2744			/* transfer ip1 ".." reference to dp2 */
2745			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2746				error = xfs_droplink(tp, dp1);
2747				if (error)
2748					goto out_trans_abort;
2749				xfs_bumplink(tp, dp2);
 
 
2750			}
2751
2752			/*
2753			 * Although ip2 isn't changed here, userspace needs
2754			 * to be warned about the change, so that applications
2755			 * relying on it (like backup ones), will properly
2756			 * notify the change
2757			 */
2758			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2759			ip2_flags |= XFS_ICHGTIME_CHG;
2760		}
2761	}
2762
2763	if (ip1_flags) {
2764		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2765		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2766	}
2767	if (ip2_flags) {
2768		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2769		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2770	}
2771	if (dp2_flags) {
2772		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2773		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2774	}
2775	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2776	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2777	return xfs_finish_rename(tp);
2778
2779out_trans_abort:
 
2780	xfs_trans_cancel(tp);
2781	return error;
2782}
2783
2784/*
2785 * xfs_rename_alloc_whiteout()
2786 *
2787 * Return a referenced, unlinked, unlocked inode that can be used as a
2788 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2789 * crash between allocating the inode and linking it into the rename transaction
2790 * recovery will free the inode and we won't leak it.
2791 */
2792static int
2793xfs_rename_alloc_whiteout(
2794	struct mnt_idmap	*idmap,
2795	struct xfs_name		*src_name,
2796	struct xfs_inode	*dp,
2797	struct xfs_inode	**wip)
2798{
2799	struct xfs_inode	*tmpfile;
2800	struct qstr		name;
2801	int			error;
2802
2803	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2804				   &tmpfile);
2805	if (error)
2806		return error;
2807
2808	name.name = src_name->name;
2809	name.len = src_name->len;
2810	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2811	if (error) {
2812		xfs_finish_inode_setup(tmpfile);
2813		xfs_irele(tmpfile);
2814		return error;
2815	}
2816
2817	/*
2818	 * Prepare the tmpfile inode as if it were created through the VFS.
2819	 * Complete the inode setup and flag it as linkable.  nlink is already
2820	 * zero, so we can skip the drop_nlink.
 
2821	 */
 
2822	xfs_setup_iops(tmpfile);
2823	xfs_finish_inode_setup(tmpfile);
2824	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2825
2826	*wip = tmpfile;
2827	return 0;
2828}
2829
2830/*
2831 * xfs_rename
2832 */
2833int
2834xfs_rename(
2835	struct mnt_idmap	*idmap,
2836	struct xfs_inode	*src_dp,
2837	struct xfs_name		*src_name,
2838	struct xfs_inode	*src_ip,
2839	struct xfs_inode	*target_dp,
2840	struct xfs_name		*target_name,
2841	struct xfs_inode	*target_ip,
2842	unsigned int		flags)
2843{
2844	struct xfs_mount	*mp = src_dp->i_mount;
2845	struct xfs_trans	*tp;
 
 
2846	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2847	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2848	int			i;
2849	int			num_inodes = __XFS_SORT_INODES;
2850	bool			new_parent = (src_dp != target_dp);
2851	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2852	int			spaceres;
2853	bool			retried = false;
2854	int			error, nospace_error = 0;
2855
2856	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2857
2858	if ((flags & RENAME_EXCHANGE) && !target_ip)
2859		return -EINVAL;
2860
2861	/*
2862	 * If we are doing a whiteout operation, allocate the whiteout inode
2863	 * we will be placing at the target and ensure the type is set
2864	 * appropriately.
2865	 */
2866	if (flags & RENAME_WHITEOUT) {
2867		error = xfs_rename_alloc_whiteout(idmap, src_name,
2868						  target_dp, &wip);
2869		if (error)
2870			return error;
2871
2872		/* setup target dirent info as whiteout */
2873		src_name->type = XFS_DIR3_FT_CHRDEV;
2874	}
2875
2876	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2877				inodes, &num_inodes);
2878
2879retry:
2880	nospace_error = 0;
2881	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2882	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2883	if (error == -ENOSPC) {
2884		nospace_error = error;
2885		spaceres = 0;
2886		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2887				&tp);
2888	}
2889	if (error)
2890		goto out_release_wip;
2891
2892	/*
2893	 * Attach the dquots to the inodes
2894	 */
2895	error = xfs_qm_vop_rename_dqattach(inodes);
2896	if (error)
2897		goto out_trans_cancel;
2898
2899	/*
2900	 * Lock all the participating inodes. Depending upon whether
2901	 * the target_name exists in the target directory, and
2902	 * whether the target directory is the same as the source
2903	 * directory, we can lock from 2 to 5 inodes.
2904	 */
2905	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2906
2907	/*
2908	 * Join all the inodes to the transaction. From this point on,
2909	 * we can rely on either trans_commit or trans_cancel to unlock
2910	 * them.
2911	 */
2912	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2913	if (new_parent)
2914		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2915	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2916	if (target_ip)
2917		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2918	if (wip)
2919		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2920
2921	/*
2922	 * If we are using project inheritance, we only allow renames
2923	 * into our tree when the project IDs are the same; else the
2924	 * tree quota mechanism would be circumvented.
2925	 */
2926	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2927		     target_dp->i_projid != src_ip->i_projid)) {
2928		error = -EXDEV;
2929		goto out_trans_cancel;
2930	}
2931
 
 
2932	/* RENAME_EXCHANGE is unique from here on. */
2933	if (flags & RENAME_EXCHANGE)
2934		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2935					target_dp, target_name, target_ip,
2936					spaceres);
2937
2938	/*
2939	 * Try to reserve quota to handle an expansion of the target directory.
2940	 * We'll allow the rename to continue in reservationless mode if we hit
2941	 * a space usage constraint.  If we trigger reservationless mode, save
2942	 * the errno if there isn't any free space in the target directory.
2943	 */
2944	if (spaceres != 0) {
2945		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2946				0, false);
2947		if (error == -EDQUOT || error == -ENOSPC) {
2948			if (!retried) {
2949				xfs_trans_cancel(tp);
2950				xfs_blockgc_free_quota(target_dp, 0);
2951				retried = true;
2952				goto retry;
2953			}
2954
2955			nospace_error = error;
2956			spaceres = 0;
2957			error = 0;
2958		}
2959		if (error)
2960			goto out_trans_cancel;
2961	}
2962
2963	/*
2964	 * Check for expected errors before we dirty the transaction
2965	 * so we can return an error without a transaction abort.
2966	 */
2967	if (target_ip == NULL) {
2968		/*
2969		 * If there's no space reservation, check the entry will
2970		 * fit before actually inserting it.
2971		 */
2972		if (!spaceres) {
2973			error = xfs_dir_canenter(tp, target_dp, target_name);
2974			if (error)
2975				goto out_trans_cancel;
2976		}
2977	} else {
2978		/*
2979		 * If target exists and it's a directory, check that whether
2980		 * it can be destroyed.
2981		 */
2982		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2983		    (!xfs_dir_isempty(target_ip) ||
2984		     (VFS_I(target_ip)->i_nlink > 2))) {
2985			error = -EEXIST;
2986			goto out_trans_cancel;
2987		}
2988	}
2989
2990	/*
2991	 * Lock the AGI buffers we need to handle bumping the nlink of the
2992	 * whiteout inode off the unlinked list and to handle dropping the
2993	 * nlink of the target inode.  Per locking order rules, do this in
2994	 * increasing AG order and before directory block allocation tries to
2995	 * grab AGFs because we grab AGIs before AGFs.
2996	 *
2997	 * The (vfs) caller must ensure that if src is a directory then
2998	 * target_ip is either null or an empty directory.
2999	 */
3000	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3001		if (inodes[i] == wip ||
3002		    (inodes[i] == target_ip &&
3003		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3004			struct xfs_perag	*pag;
3005			struct xfs_buf		*bp;
3006
3007			pag = xfs_perag_get(mp,
3008					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3009			error = xfs_read_agi(pag, tp, &bp);
3010			xfs_perag_put(pag);
3011			if (error)
3012				goto out_trans_cancel;
3013		}
3014	}
3015
3016	/*
3017	 * Directory entry creation below may acquire the AGF. Remove
3018	 * the whiteout from the unlinked list first to preserve correct
3019	 * AGI/AGF locking order. This dirties the transaction so failures
3020	 * after this point will abort and log recovery will clean up the
3021	 * mess.
3022	 *
3023	 * For whiteouts, we need to bump the link count on the whiteout
3024	 * inode. After this point, we have a real link, clear the tmpfile
3025	 * state flag from the inode so it doesn't accidentally get misused
3026	 * in future.
3027	 */
3028	if (wip) {
3029		struct xfs_perag	*pag;
3030
3031		ASSERT(VFS_I(wip)->i_nlink == 0);
3032
3033		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3034		error = xfs_iunlink_remove(tp, pag, wip);
3035		xfs_perag_put(pag);
3036		if (error)
3037			goto out_trans_cancel;
3038
3039		xfs_bumplink(tp, wip);
3040		VFS_I(wip)->i_state &= ~I_LINKABLE;
3041	}
3042
3043	/*
3044	 * Set up the target.
3045	 */
3046	if (target_ip == NULL) {
3047		/*
3048		 * If target does not exist and the rename crosses
3049		 * directories, adjust the target directory link count
3050		 * to account for the ".." reference from the new entry.
3051		 */
3052		error = xfs_dir_createname(tp, target_dp, target_name,
3053					   src_ip->i_ino, spaceres);
 
3054		if (error)
3055			goto out_trans_cancel;
3056
3057		xfs_trans_ichgtime(tp, target_dp,
3058					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3059
3060		if (new_parent && src_is_directory) {
3061			xfs_bumplink(tp, target_dp);
 
 
3062		}
3063	} else { /* target_ip != NULL */
3064		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065		 * Link the source inode under the target name.
3066		 * If the source inode is a directory and we are moving
3067		 * it across directories, its ".." entry will be
3068		 * inconsistent until we replace that down below.
3069		 *
3070		 * In case there is already an entry with the same
3071		 * name at the destination directory, remove it first.
3072		 */
3073		error = xfs_dir_replace(tp, target_dp, target_name,
3074					src_ip->i_ino, spaceres);
 
3075		if (error)
3076			goto out_trans_cancel;
3077
3078		xfs_trans_ichgtime(tp, target_dp,
3079					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3080
3081		/*
3082		 * Decrement the link count on the target since the target
3083		 * dir no longer points to it.
3084		 */
3085		error = xfs_droplink(tp, target_ip);
3086		if (error)
3087			goto out_trans_cancel;
3088
3089		if (src_is_directory) {
3090			/*
3091			 * Drop the link from the old "." entry.
3092			 */
3093			error = xfs_droplink(tp, target_ip);
3094			if (error)
3095				goto out_trans_cancel;
3096		}
3097	} /* target_ip != NULL */
3098
3099	/*
3100	 * Remove the source.
3101	 */
3102	if (new_parent && src_is_directory) {
3103		/*
3104		 * Rewrite the ".." entry to point to the new
3105		 * directory.
3106		 */
3107		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3108					target_dp->i_ino, spaceres);
 
3109		ASSERT(error != -EEXIST);
3110		if (error)
3111			goto out_trans_cancel;
3112	}
3113
3114	/*
3115	 * We always want to hit the ctime on the source inode.
3116	 *
3117	 * This isn't strictly required by the standards since the source
3118	 * inode isn't really being changed, but old unix file systems did
3119	 * it and some incremental backup programs won't work without it.
3120	 */
3121	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3122	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3123
3124	/*
3125	 * Adjust the link count on src_dp.  This is necessary when
3126	 * renaming a directory, either within one parent when
3127	 * the target existed, or across two parent directories.
3128	 */
3129	if (src_is_directory && (new_parent || target_ip != NULL)) {
3130
3131		/*
3132		 * Decrement link count on src_directory since the
3133		 * entry that's moved no longer points to it.
3134		 */
3135		error = xfs_droplink(tp, src_dp);
3136		if (error)
3137			goto out_trans_cancel;
3138	}
3139
3140	/*
3141	 * For whiteouts, we only need to update the source dirent with the
3142	 * inode number of the whiteout inode rather than removing it
3143	 * altogether.
3144	 */
3145	if (wip)
3146		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3147					spaceres);
3148	else
3149		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3150					   spaceres);
3151
3152	if (error)
3153		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154
3155	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3156	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3157	if (new_parent)
3158		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3159
3160	error = xfs_finish_rename(tp);
3161	if (wip)
3162		xfs_irele(wip);
3163	return error;
3164
 
 
3165out_trans_cancel:
3166	xfs_trans_cancel(tp);
3167out_release_wip:
3168	if (wip)
3169		xfs_irele(wip);
3170	if (error == -ENOSPC && nospace_error)
3171		error = nospace_error;
3172	return error;
3173}
3174
3175static int
3176xfs_iflush(
3177	struct xfs_inode	*ip,
3178	struct xfs_buf		*bp)
3179{
3180	struct xfs_inode_log_item *iip = ip->i_itemp;
3181	struct xfs_dinode	*dip;
3182	struct xfs_mount	*mp = ip->i_mount;
3183	int			error;
3184
3185	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3186	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3187	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3188	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3189	ASSERT(iip->ili_item.li_buf == bp);
3190
3191	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3192
3193	/*
3194	 * We don't flush the inode if any of the following checks fail, but we
3195	 * do still update the log item and attach to the backing buffer as if
3196	 * the flush happened. This is a formality to facilitate predictable
3197	 * error handling as the caller will shutdown and fail the buffer.
3198	 */
3199	error = -EFSCORRUPTED;
3200	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3201			       mp, XFS_ERRTAG_IFLUSH_1)) {
3202		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3203			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3204			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3205		goto flush_out;
3206	}
3207	if (S_ISREG(VFS_I(ip)->i_mode)) {
3208		if (XFS_TEST_ERROR(
3209		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3210		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3211		    mp, XFS_ERRTAG_IFLUSH_3)) {
3212			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3213				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3214				__func__, ip->i_ino, ip);
3215			goto flush_out;
3216		}
3217	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3218		if (XFS_TEST_ERROR(
3219		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3220		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3221		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3222		    mp, XFS_ERRTAG_IFLUSH_4)) {
3223			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3224				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3225				__func__, ip->i_ino, ip);
3226			goto flush_out;
3227		}
3228	}
3229	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3230				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3231		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3232			"%s: detected corrupt incore inode %llu, "
3233			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3234			__func__, ip->i_ino,
3235			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3236			ip->i_nblocks, ip);
3237		goto flush_out;
3238	}
3239	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3240				mp, XFS_ERRTAG_IFLUSH_6)) {
3241		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3242			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3243			__func__, ip->i_ino, ip->i_forkoff, ip);
3244		goto flush_out;
3245	}
3246
3247	/*
3248	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3249	 * count for correct sequencing.  We bump the flush iteration count so
3250	 * we can detect flushes which postdate a log record during recovery.
3251	 * This is redundant as we now log every change and hence this can't
3252	 * happen but we need to still do it to ensure backwards compatibility
3253	 * with old kernels that predate logging all inode changes.
3254	 */
3255	if (!xfs_has_v3inodes(mp))
3256		ip->i_flushiter++;
3257
3258	/*
3259	 * If there are inline format data / attr forks attached to this inode,
3260	 * make sure they are not corrupt.
3261	 */
3262	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3263	    xfs_ifork_verify_local_data(ip))
3264		goto flush_out;
3265	if (xfs_inode_has_attr_fork(ip) &&
3266	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3267	    xfs_ifork_verify_local_attr(ip))
3268		goto flush_out;
3269
3270	/*
3271	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3272	 * copy out the core of the inode, because if the inode is dirty at all
3273	 * the core must be.
3274	 */
3275	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3276
3277	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3278	if (!xfs_has_v3inodes(mp)) {
3279		if (ip->i_flushiter == DI_MAX_FLUSH)
3280			ip->i_flushiter = 0;
3281	}
3282
3283	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3284	if (xfs_inode_has_attr_fork(ip))
3285		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3286
3287	/*
3288	 * We've recorded everything logged in the inode, so we'd like to clear
3289	 * the ili_fields bits so we don't log and flush things unnecessarily.
3290	 * However, we can't stop logging all this information until the data
3291	 * we've copied into the disk buffer is written to disk.  If we did we
3292	 * might overwrite the copy of the inode in the log with all the data
3293	 * after re-logging only part of it, and in the face of a crash we
3294	 * wouldn't have all the data we need to recover.
3295	 *
3296	 * What we do is move the bits to the ili_last_fields field.  When
3297	 * logging the inode, these bits are moved back to the ili_fields field.
3298	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3299	 * we know that the information those bits represent is permanently on
3300	 * disk.  As long as the flush completes before the inode is logged
3301	 * again, then both ili_fields and ili_last_fields will be cleared.
3302	 */
3303	error = 0;
3304flush_out:
3305	spin_lock(&iip->ili_lock);
3306	iip->ili_last_fields = iip->ili_fields;
3307	iip->ili_fields = 0;
3308	iip->ili_fsync_fields = 0;
3309	spin_unlock(&iip->ili_lock);
3310
3311	/*
3312	 * Store the current LSN of the inode so that we can tell whether the
3313	 * item has moved in the AIL from xfs_buf_inode_iodone().
3314	 */
3315	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3316				&iip->ili_item.li_lsn);
3317
3318	/* generate the checksum. */
3319	xfs_dinode_calc_crc(mp, dip);
3320	return error;
3321}
3322
3323/*
3324 * Non-blocking flush of dirty inode metadata into the backing buffer.
3325 *
3326 * The caller must have a reference to the inode and hold the cluster buffer
3327 * locked. The function will walk across all the inodes on the cluster buffer it
3328 * can find and lock without blocking, and flush them to the cluster buffer.
3329 *
3330 * On successful flushing of at least one inode, the caller must write out the
3331 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3332 * the caller needs to release the buffer. On failure, the filesystem will be
3333 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3334 * will be returned.
3335 */
3336int
3337xfs_iflush_cluster(
3338	struct xfs_buf		*bp)
3339{
3340	struct xfs_mount	*mp = bp->b_mount;
3341	struct xfs_log_item	*lip, *n;
3342	struct xfs_inode	*ip;
3343	struct xfs_inode_log_item *iip;
3344	int			clcount = 0;
3345	int			error = 0;
3346
3347	/*
3348	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3349	 * will remove itself from the list.
3350	 */
3351	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3352		iip = (struct xfs_inode_log_item *)lip;
3353		ip = iip->ili_inode;
 
 
 
 
 
 
3354
3355		/*
3356		 * Quick and dirty check to avoid locks if possible.
3357		 */
3358		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3359			continue;
3360		if (xfs_ipincount(ip))
 
 
 
 
3361			continue;
 
3362
3363		/*
3364		 * The inode is still attached to the buffer, which means it is
3365		 * dirty but reclaim might try to grab it. Check carefully for
3366		 * that, and grab the ilock while still holding the i_flags_lock
3367		 * to guarantee reclaim will not be able to reclaim this inode
3368		 * once we drop the i_flags_lock.
3369		 */
3370		spin_lock(&ip->i_flags_lock);
3371		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3372		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3373			spin_unlock(&ip->i_flags_lock);
3374			continue;
3375		}
 
3376
3377		/*
3378		 * ILOCK will pin the inode against reclaim and prevent
3379		 * concurrent transactions modifying the inode while we are
3380		 * flushing the inode. If we get the lock, set the flushing
3381		 * state before we drop the i_flags_lock.
3382		 */
3383		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3384			spin_unlock(&ip->i_flags_lock);
3385			continue;
3386		}
3387		__xfs_iflags_set(ip, XFS_IFLUSHING);
3388		spin_unlock(&ip->i_flags_lock);
3389
3390		/*
3391		 * Abort flushing this inode if we are shut down because the
3392		 * inode may not currently be in the AIL. This can occur when
3393		 * log I/O failure unpins the inode without inserting into the
3394		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3395		 * that otherwise looks like it should be flushed.
3396		 */
3397		if (xlog_is_shutdown(mp->m_log)) {
3398			xfs_iunpin_wait(ip);
3399			xfs_iflush_abort(ip);
3400			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3401			error = -EIO;
3402			continue;
3403		}
3404
3405		/* don't block waiting on a log force to unpin dirty inodes */
3406		if (xfs_ipincount(ip)) {
3407			xfs_iflags_clear(ip, XFS_IFLUSHING);
3408			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3409			continue;
3410		}
3411
3412		if (!xfs_inode_clean(ip))
3413			error = xfs_iflush(ip, bp);
3414		else
3415			xfs_iflags_clear(ip, XFS_IFLUSHING);
3416		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3417		if (error)
3418			break;
3419		clcount++;
3420	}
3421
3422	if (error) {
3423		/*
3424		 * Shutdown first so we kill the log before we release this
3425		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3426		 * of the log, failing it before the _log_ is shut down can
3427		 * result in the log tail being moved forward in the journal
3428		 * on disk because log writes can still be taking place. Hence
3429		 * unpinning the tail will allow the ICREATE intent to be
3430		 * removed from the log an recovery will fail with uninitialised
3431		 * inode cluster buffers.
3432		 */
3433		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3434		bp->b_flags |= XBF_ASYNC;
3435		xfs_buf_ioend_fail(bp);
3436		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437	}
3438
3439	if (!clcount)
3440		return -EAGAIN;
 
 
3441
3442	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3443	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
 
 
 
3444	return 0;
3445
3446}
3447
3448/* Release an inode. */
3449void
3450xfs_irele(
3451	struct xfs_inode	*ip)
3452{
3453	trace_xfs_irele(ip, _RET_IP_);
3454	iput(VFS_I(ip));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3455}
3456
3457/*
3458 * Ensure all commited transactions touching the inode are written to the log.
 
 
 
 
 
 
3459 */
3460int
3461xfs_log_force_inode(
3462	struct xfs_inode	*ip)
 
3463{
3464	xfs_csn_t		seq = 0;
 
 
 
3465
3466	xfs_ilock(ip, XFS_ILOCK_SHARED);
3467	if (xfs_ipincount(ip))
3468		seq = ip->i_itemp->ili_commit_seq;
3469	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3470
3471	if (!seq)
3472		return 0;
3473	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3474}
3475
3476/*
3477 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3478 * abide vfs locking order (lowest pointer value goes first) and breaking the
3479 * layout leases before proceeding.  The loop is needed because we cannot call
3480 * the blocking break_layout() with the iolocks held, and therefore have to
3481 * back out both locks.
3482 */
3483static int
3484xfs_iolock_two_inodes_and_break_layout(
3485	struct inode		*src,
3486	struct inode		*dest)
3487{
3488	int			error;
3489
3490	if (src > dest)
3491		swap(src, dest);
3492
3493retry:
3494	/* Wait to break both inodes' layouts before we start locking. */
3495	error = break_layout(src, true);
3496	if (error)
3497		return error;
3498	if (src != dest) {
3499		error = break_layout(dest, true);
3500		if (error)
3501			return error;
 
 
3502	}
3503
3504	/* Lock one inode and make sure nobody got in and leased it. */
3505	inode_lock(src);
3506	error = break_layout(src, false);
3507	if (error) {
3508		inode_unlock(src);
3509		if (error == -EWOULDBLOCK)
3510			goto retry;
3511		return error;
 
 
 
3512	}
3513
3514	if (src == dest)
3515		return 0;
3516
3517	/* Lock the other inode and make sure nobody got in and leased it. */
3518	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3519	error = break_layout(dest, false);
3520	if (error) {
3521		inode_unlock(src);
3522		inode_unlock(dest);
3523		if (error == -EWOULDBLOCK)
3524			goto retry;
 
 
3525		return error;
3526	}
 
 
3527
3528	return 0;
3529}
3530
3531static int
3532xfs_mmaplock_two_inodes_and_break_dax_layout(
3533	struct xfs_inode	*ip1,
3534	struct xfs_inode	*ip2)
3535{
3536	int			error;
3537	bool			retry;
3538	struct page		*page;
3539
3540	if (ip1->i_ino > ip2->i_ino)
3541		swap(ip1, ip2);
3542
3543again:
3544	retry = false;
3545	/* Lock the first inode */
3546	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3547	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3548	if (error || retry) {
3549		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3550		if (error == 0 && retry)
3551			goto again;
3552		return error;
3553	}
3554
3555	if (ip1 == ip2)
3556		return 0;
 
 
 
 
3557
3558	/* Nested lock the second inode */
3559	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3560	/*
3561	 * We cannot use xfs_break_dax_layouts() directly here because it may
3562	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3563	 * for this nested lock case.
3564	 */
3565	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3566	if (page && page_ref_count(page) != 1) {
3567		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3568		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3569		goto again;
3570	}
3571
 
3572	return 0;
3573}
3574
3575/*
3576 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3577 * mmap activity.
3578 */
3579int
3580xfs_ilock2_io_mmap(
3581	struct xfs_inode	*ip1,
3582	struct xfs_inode	*ip2)
3583{
3584	int			ret;
3585
3586	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3587	if (ret)
3588		return ret;
3589
3590	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3591		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3592		if (ret) {
3593			inode_unlock(VFS_I(ip2));
3594			if (ip1 != ip2)
3595				inode_unlock(VFS_I(ip1));
3596			return ret;
3597		}
3598	} else
3599		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3600					    VFS_I(ip2)->i_mapping);
3601
3602	return 0;
3603}
3604
3605/* Unlock both inodes to allow IO and mmap activity. */
3606void
3607xfs_iunlock2_io_mmap(
3608	struct xfs_inode	*ip1,
3609	struct xfs_inode	*ip2)
3610{
3611	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3612		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3613		if (ip1 != ip2)
3614			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3615	} else
3616		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3617					      VFS_I(ip2)->i_mapping);
3618
3619	inode_unlock(VFS_I(ip2));
3620	if (ip1 != ip2)
3621		inode_unlock(VFS_I(ip1));
3622}
3623
3624/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3625void
3626xfs_iunlock2_remapping(
3627	struct xfs_inode	*ip1,
3628	struct xfs_inode	*ip2)
3629{
3630	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3631
3632	if (ip1 != ip2)
3633		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3634	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3635
3636	if (ip1 != ip2)
3637		inode_unlock_shared(VFS_I(ip1));
3638	inode_unlock(VFS_I(ip2));
3639}
3640
3641/*
3642 * Reload the incore inode list for this inode.  Caller should ensure that
3643 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3644 * preventing other threads from executing.
3645 */
3646int
3647xfs_inode_reload_unlinked_bucket(
3648	struct xfs_trans	*tp,
3649	struct xfs_inode	*ip)
3650{
3651	struct xfs_mount	*mp = tp->t_mountp;
3652	struct xfs_buf		*agibp;
3653	struct xfs_agi		*agi;
3654	struct xfs_perag	*pag;
3655	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3656	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3657	xfs_agino_t		prev_agino, next_agino;
3658	unsigned int		bucket;
3659	bool			foundit = false;
3660	int			error;
3661
3662	/* Grab the first inode in the list */
3663	pag = xfs_perag_get(mp, agno);
3664	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3665	xfs_perag_put(pag);
3666	if (error)
3667		return error;
3668
3669	/*
3670	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3671	 * incore unlinked list pointers for this inode.  Check once more to
3672	 * see if we raced with anyone else to reload the unlinked list.
3673	 */
3674	if (!xfs_inode_unlinked_incomplete(ip)) {
3675		foundit = true;
3676		goto out_agibp;
3677	}
3678
3679	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3680	agi = agibp->b_addr;
 
 
 
 
 
 
 
 
3681
3682	trace_xfs_inode_reload_unlinked_bucket(ip);
 
 
 
 
 
 
 
3683
3684	xfs_info_ratelimited(mp,
3685 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3686			agino, agno);
 
 
 
3687
3688	prev_agino = NULLAGINO;
3689	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3690	while (next_agino != NULLAGINO) {
3691		struct xfs_inode	*next_ip = NULL;
3692
3693		/* Found this caller's inode, set its backlink. */
3694		if (next_agino == agino) {
3695			next_ip = ip;
3696			next_ip->i_prev_unlinked = prev_agino;
3697			foundit = true;
3698			goto next_inode;
 
 
 
 
 
 
 
 
 
 
3699		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3700
3701		/* Try in-memory lookup first. */
3702		next_ip = xfs_iunlink_lookup(pag, next_agino);
3703		if (next_ip)
3704			goto next_inode;
3705
3706		/* Inode not in memory, try reloading it. */
3707		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3708				next_agino);
3709		if (error)
3710			break;
 
 
 
 
 
3711
3712		/* Grab the reloaded inode. */
3713		next_ip = xfs_iunlink_lookup(pag, next_agino);
3714		if (!next_ip) {
3715			/* No incore inode at all?  We reloaded it... */
3716			ASSERT(next_ip != NULL);
3717			error = -EFSCORRUPTED;
3718			break;
3719		}
3720
3721next_inode:
3722		prev_agino = next_agino;
3723		next_agino = next_ip->i_next_unlinked;
3724	}
3725
3726out_agibp:
3727	xfs_trans_brelse(tp, agibp);
3728	/* Should have found this inode somewhere in the iunlinked bucket. */
3729	if (!error && !foundit)
3730		error = -EFSCORRUPTED;
3731	return error;
3732}
3733
3734/* Decide if this inode is missing its unlinked list and reload it. */
3735int
3736xfs_inode_reload_unlinked(
3737	struct xfs_inode	*ip)
3738{
3739	struct xfs_trans	*tp;
3740	int			error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3741
3742	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3743	if (error)
3744		return error;
3745
3746	xfs_ilock(ip, XFS_ILOCK_SHARED);
3747	if (xfs_inode_unlinked_incomplete(ip))
3748		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3749	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3750	xfs_trans_cancel(tp);
 
 
3751
3752	return error;
3753}
3754
3755/* Has this inode fork been zapped by repair? */
3756bool
3757xfs_ifork_zapped(
3758	const struct xfs_inode	*ip,
3759	int			whichfork)
3760{
3761	unsigned int		datamask = 0;
3762
3763	switch (whichfork) {
3764	case XFS_DATA_FORK:
3765		switch (ip->i_vnode.i_mode & S_IFMT) {
3766		case S_IFDIR:
3767			datamask = XFS_SICK_INO_DIR_ZAPPED;
3768			break;
3769		case S_IFLNK:
3770			datamask = XFS_SICK_INO_SYMLINK_ZAPPED;
3771			break;
3772		}
3773		return ip->i_sick & (XFS_SICK_INO_BMBTD_ZAPPED | datamask);
3774	case XFS_ATTR_FORK:
3775		return ip->i_sick & XFS_SICK_INO_BMBTA_ZAPPED;
3776	default:
3777		return false;
3778	}
3779}
v4.17
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19#include <linux/iversion.h>
  20
  21#include "xfs.h"
  22#include "xfs_fs.h"
  23#include "xfs_shared.h"
  24#include "xfs_format.h"
  25#include "xfs_log_format.h"
  26#include "xfs_trans_resv.h"
  27#include "xfs_sb.h"
  28#include "xfs_mount.h"
  29#include "xfs_defer.h"
  30#include "xfs_inode.h"
  31#include "xfs_da_format.h"
  32#include "xfs_da_btree.h"
  33#include "xfs_dir2.h"
  34#include "xfs_attr_sf.h"
  35#include "xfs_attr.h"
  36#include "xfs_trans_space.h"
  37#include "xfs_trans.h"
  38#include "xfs_buf_item.h"
  39#include "xfs_inode_item.h"
 
  40#include "xfs_ialloc.h"
  41#include "xfs_bmap.h"
  42#include "xfs_bmap_util.h"
  43#include "xfs_errortag.h"
  44#include "xfs_error.h"
  45#include "xfs_quota.h"
  46#include "xfs_filestream.h"
  47#include "xfs_cksum.h"
  48#include "xfs_trace.h"
  49#include "xfs_icache.h"
  50#include "xfs_symlink.h"
  51#include "xfs_trans_priv.h"
  52#include "xfs_log.h"
  53#include "xfs_bmap_btree.h"
  54#include "xfs_reflink.h"
  55#include "xfs_dir2_priv.h"
  56
  57kmem_zone_t *xfs_inode_zone;
  58
  59/*
  60 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  61 * freed from a file in a single transaction.
  62 */
  63#define	XFS_ITRUNC_MAX_EXTENTS	2
  64
  65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
 
  68
  69/*
  70 * helper function to extract extent size hint from inode
  71 */
  72xfs_extlen_t
  73xfs_get_extsz_hint(
  74	struct xfs_inode	*ip)
  75{
  76	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  77		return ip->i_d.di_extsize;
 
 
 
 
 
 
  78	if (XFS_IS_REALTIME_INODE(ip))
  79		return ip->i_mount->m_sb.sb_rextsize;
  80	return 0;
  81}
  82
  83/*
  84 * Helper function to extract CoW extent size hint from inode.
  85 * Between the extent size hint and the CoW extent size hint, we
  86 * return the greater of the two.  If the value is zero (automatic),
  87 * use the default size.
  88 */
  89xfs_extlen_t
  90xfs_get_cowextsz_hint(
  91	struct xfs_inode	*ip)
  92{
  93	xfs_extlen_t		a, b;
  94
  95	a = 0;
  96	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  97		a = ip->i_d.di_cowextsize;
  98	b = xfs_get_extsz_hint(ip);
  99
 100	a = max(a, b);
 101	if (a == 0)
 102		return XFS_DEFAULT_COWEXTSZ_HINT;
 103	return a;
 104}
 105
 106/*
 107 * These two are wrapper routines around the xfs_ilock() routine used to
 108 * centralize some grungy code.  They are used in places that wish to lock the
 109 * inode solely for reading the extents.  The reason these places can't just
 110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
 111 * bringing in of the extents from disk for a file in b-tree format.  If the
 112 * inode is in b-tree format, then we need to lock the inode exclusively until
 113 * the extents are read in.  Locking it exclusively all the time would limit
 114 * our parallelism unnecessarily, though.  What we do instead is check to see
 115 * if the extents have been read in yet, and only lock the inode exclusively
 116 * if they have not.
 117 *
 118 * The functions return a value which should be given to the corresponding
 119 * xfs_iunlock() call.
 120 */
 121uint
 122xfs_ilock_data_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 128	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 129		lock_mode = XFS_ILOCK_EXCL;
 130	xfs_ilock(ip, lock_mode);
 131	return lock_mode;
 132}
 133
 134uint
 135xfs_ilock_attr_map_shared(
 136	struct xfs_inode	*ip)
 137{
 138	uint			lock_mode = XFS_ILOCK_SHARED;
 139
 140	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 141	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 142		lock_mode = XFS_ILOCK_EXCL;
 143	xfs_ilock(ip, lock_mode);
 144	return lock_mode;
 145}
 146
 147/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 149 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 150 * various combinations of the locks to be obtained.
 151 *
 152 * The 3 locks should always be ordered so that the IO lock is obtained first,
 153 * the mmap lock second and the ilock last in order to prevent deadlock.
 154 *
 155 * Basic locking order:
 156 *
 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 158 *
 159 * mmap_sem locking order:
 160 *
 161 * i_rwsem -> page lock -> mmap_sem
 162 * mmap_sem -> i_mmap_lock -> page_lock
 163 *
 164 * The difference in mmap_sem locking order mean that we cannot hold the
 165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 167 * in get_user_pages() to map the user pages into the kernel address space for
 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 169 * page faults already hold the mmap_sem.
 170 *
 171 * Hence to serialise fully against both syscall and mmap based IO, we need to
 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 173 * taken in places where we need to invalidate the page cache in a race
 174 * free manner (e.g. truncate, hole punch and other extent manipulation
 175 * functions).
 176 */
 177void
 178xfs_ilock(
 179	xfs_inode_t		*ip,
 180	uint			lock_flags)
 181{
 182	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 183
 184	/*
 185	 * You can't set both SHARED and EXCL for the same lock,
 186	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 187	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 188	 */
 189	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 190	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 191	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 192	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 193	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 194	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 195	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 196
 197	if (lock_flags & XFS_IOLOCK_EXCL) {
 198		down_write_nested(&VFS_I(ip)->i_rwsem,
 199				  XFS_IOLOCK_DEP(lock_flags));
 200	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 201		down_read_nested(&VFS_I(ip)->i_rwsem,
 202				 XFS_IOLOCK_DEP(lock_flags));
 203	}
 204
 205	if (lock_flags & XFS_MMAPLOCK_EXCL)
 206		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 207	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 208		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 
 
 
 209
 210	if (lock_flags & XFS_ILOCK_EXCL)
 211		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 212	else if (lock_flags & XFS_ILOCK_SHARED)
 213		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 214}
 215
 216/*
 217 * This is just like xfs_ilock(), except that the caller
 218 * is guaranteed not to sleep.  It returns 1 if it gets
 219 * the requested locks and 0 otherwise.  If the IO lock is
 220 * obtained but the inode lock cannot be, then the IO lock
 221 * is dropped before returning.
 222 *
 223 * ip -- the inode being locked
 224 * lock_flags -- this parameter indicates the inode's locks to be
 225 *       to be locked.  See the comment for xfs_ilock() for a list
 226 *	 of valid values.
 227 */
 228int
 229xfs_ilock_nowait(
 230	xfs_inode_t		*ip,
 231	uint			lock_flags)
 232{
 233	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 234
 235	/*
 236	 * You can't set both SHARED and EXCL for the same lock,
 237	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 238	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 239	 */
 240	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 241	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 242	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 243	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 244	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 245	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 246	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 247
 248	if (lock_flags & XFS_IOLOCK_EXCL) {
 249		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 250			goto out;
 251	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 252		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 253			goto out;
 254	}
 255
 256	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 257		if (!mrtryupdate(&ip->i_mmaplock))
 258			goto out_undo_iolock;
 259	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 260		if (!mrtryaccess(&ip->i_mmaplock))
 261			goto out_undo_iolock;
 262	}
 263
 264	if (lock_flags & XFS_ILOCK_EXCL) {
 265		if (!mrtryupdate(&ip->i_lock))
 266			goto out_undo_mmaplock;
 267	} else if (lock_flags & XFS_ILOCK_SHARED) {
 268		if (!mrtryaccess(&ip->i_lock))
 269			goto out_undo_mmaplock;
 270	}
 271	return 1;
 272
 273out_undo_mmaplock:
 274	if (lock_flags & XFS_MMAPLOCK_EXCL)
 275		mrunlock_excl(&ip->i_mmaplock);
 276	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 277		mrunlock_shared(&ip->i_mmaplock);
 278out_undo_iolock:
 279	if (lock_flags & XFS_IOLOCK_EXCL)
 280		up_write(&VFS_I(ip)->i_rwsem);
 281	else if (lock_flags & XFS_IOLOCK_SHARED)
 282		up_read(&VFS_I(ip)->i_rwsem);
 283out:
 284	return 0;
 285}
 286
 287/*
 288 * xfs_iunlock() is used to drop the inode locks acquired with
 289 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 291 * that we know which locks to drop.
 292 *
 293 * ip -- the inode being unlocked
 294 * lock_flags -- this parameter indicates the inode's locks to be
 295 *       to be unlocked.  See the comment for xfs_ilock() for a list
 296 *	 of valid values for this parameter.
 297 *
 298 */
 299void
 300xfs_iunlock(
 301	xfs_inode_t		*ip,
 302	uint			lock_flags)
 303{
 304	/*
 305	 * You can't set both SHARED and EXCL for the same lock,
 306	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 307	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 308	 */
 309	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 310	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 311	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 312	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 313	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 314	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 316	ASSERT(lock_flags != 0);
 317
 318	if (lock_flags & XFS_IOLOCK_EXCL)
 319		up_write(&VFS_I(ip)->i_rwsem);
 320	else if (lock_flags & XFS_IOLOCK_SHARED)
 321		up_read(&VFS_I(ip)->i_rwsem);
 322
 323	if (lock_flags & XFS_MMAPLOCK_EXCL)
 324		mrunlock_excl(&ip->i_mmaplock);
 325	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 326		mrunlock_shared(&ip->i_mmaplock);
 327
 328	if (lock_flags & XFS_ILOCK_EXCL)
 329		mrunlock_excl(&ip->i_lock);
 330	else if (lock_flags & XFS_ILOCK_SHARED)
 331		mrunlock_shared(&ip->i_lock);
 332
 333	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 334}
 335
 336/*
 337 * give up write locks.  the i/o lock cannot be held nested
 338 * if it is being demoted.
 339 */
 340void
 341xfs_ilock_demote(
 342	xfs_inode_t		*ip,
 343	uint			lock_flags)
 344{
 345	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 346	ASSERT((lock_flags &
 347		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 348
 349	if (lock_flags & XFS_ILOCK_EXCL)
 350		mrdemote(&ip->i_lock);
 351	if (lock_flags & XFS_MMAPLOCK_EXCL)
 352		mrdemote(&ip->i_mmaplock);
 353	if (lock_flags & XFS_IOLOCK_EXCL)
 354		downgrade_write(&VFS_I(ip)->i_rwsem);
 355
 356	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 357}
 358
 359#if defined(DEBUG) || defined(XFS_WARN)
 360int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361xfs_isilocked(
 362	xfs_inode_t		*ip,
 363	uint			lock_flags)
 364{
 365	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 366		if (!(lock_flags & XFS_ILOCK_SHARED))
 367			return !!ip->i_lock.mr_writer;
 368		return rwsem_is_locked(&ip->i_lock.mr_lock);
 369	}
 370
 371	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 372		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 373			return !!ip->i_mmaplock.mr_writer;
 374		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 375	}
 376
 377	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 378		if (!(lock_flags & XFS_IOLOCK_SHARED))
 379			return !debug_locks ||
 380				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 381		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 382	}
 383
 384	ASSERT(0);
 385	return 0;
 386}
 387#endif
 388
 389/*
 390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 393 * errors and warnings.
 394 */
 395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 396static bool
 397xfs_lockdep_subclass_ok(
 398	int subclass)
 399{
 400	return subclass < MAX_LOCKDEP_SUBCLASSES;
 401}
 402#else
 403#define xfs_lockdep_subclass_ok(subclass)	(true)
 404#endif
 405
 406/*
 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 408 * value. This can be called for any type of inode lock combination, including
 409 * parent locking. Care must be taken to ensure we don't overrun the subclass
 410 * storage fields in the class mask we build.
 411 */
 412static inline int
 413xfs_lock_inumorder(int lock_mode, int subclass)
 
 
 414{
 415	int	class = 0;
 416
 417	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 418			      XFS_ILOCK_RTSUM)));
 419	ASSERT(xfs_lockdep_subclass_ok(subclass));
 420
 421	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 422		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 423		class += subclass << XFS_IOLOCK_SHIFT;
 424	}
 425
 426	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 427		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 428		class += subclass << XFS_MMAPLOCK_SHIFT;
 429	}
 430
 431	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 432		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 433		class += subclass << XFS_ILOCK_SHIFT;
 434	}
 435
 436	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 437}
 438
 439/*
 440 * The following routine will lock n inodes in exclusive mode.  We assume the
 441 * caller calls us with the inodes in i_ino order.
 442 *
 443 * We need to detect deadlock where an inode that we lock is in the AIL and we
 444 * start waiting for another inode that is locked by a thread in a long running
 445 * transaction (such as truncate). This can result in deadlock since the long
 446 * running trans might need to wait for the inode we just locked in order to
 447 * push the tail and free space in the log.
 448 *
 449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 451 * lock more than one at a time, lockdep will report false positives saying we
 452 * have violated locking orders.
 453 */
 454static void
 455xfs_lock_inodes(
 456	xfs_inode_t	**ips,
 457	int		inodes,
 458	uint		lock_mode)
 459{
 460	int		attempts = 0, i, j, try_lock;
 461	xfs_log_item_t	*lp;
 
 
 
 462
 463	/*
 464	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 465	 * support an arbitrary depth of locking here, but absolute limits on
 466	 * inodes depend on the the type of locking and the limits placed by
 467	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 468	 * the asserts.
 469	 */
 470	ASSERT(ips && inodes >= 2 && inodes <= 5);
 471	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 472			    XFS_ILOCK_EXCL));
 473	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 474			      XFS_ILOCK_SHARED)));
 475	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 476		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 477	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 478		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 479
 480	if (lock_mode & XFS_IOLOCK_EXCL) {
 481		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 482	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 483		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 484
 485	try_lock = 0;
 
 486	i = 0;
 487again:
 488	for (; i < inodes; i++) {
 489		ASSERT(ips[i]);
 490
 491		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 492			continue;
 493
 494		/*
 495		 * If try_lock is not set yet, make sure all locked inodes are
 496		 * not in the AIL.  If any are, set try_lock to be used later.
 497		 */
 498		if (!try_lock) {
 499			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 500				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 501				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 502					try_lock++;
 503			}
 504		}
 505
 506		/*
 507		 * If any of the previous locks we have locked is in the AIL,
 508		 * we must TRY to get the second and subsequent locks. If
 509		 * we can't get any, we must release all we have
 510		 * and try again.
 511		 */
 512		if (!try_lock) {
 513			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 514			continue;
 515		}
 516
 517		/* try_lock means we have an inode locked that is in the AIL. */
 518		ASSERT(i != 0);
 519		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 520			continue;
 521
 522		/*
 523		 * Unlock all previous guys and try again.  xfs_iunlock will try
 524		 * to push the tail if the inode is in the AIL.
 525		 */
 526		attempts++;
 527		for (j = i - 1; j >= 0; j--) {
 528			/*
 529			 * Check to see if we've already unlocked this one.  Not
 530			 * the first one going back, and the inode ptr is the
 531			 * same.
 532			 */
 533			if (j != (i - 1) && ips[j] == ips[j + 1])
 534				continue;
 535
 536			xfs_iunlock(ips[j], lock_mode);
 537		}
 538
 539		if ((attempts % 5) == 0) {
 540			delay(1); /* Don't just spin the CPU */
 541		}
 542		i = 0;
 543		try_lock = 0;
 544		goto again;
 545	}
 546}
 547
 548/*
 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 551 * more than one at a time, lockdep will report false positives saying we have
 552 * violated locking orders.  The iolock must be double-locked separately since
 553 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 554 * SHARED.
 555 */
 556void
 557xfs_lock_two_inodes(
 558	struct xfs_inode	*ip0,
 559	uint			ip0_mode,
 560	struct xfs_inode	*ip1,
 561	uint			ip1_mode)
 562{
 563	struct xfs_inode	*temp;
 564	uint			mode_temp;
 565	int			attempts = 0;
 566	xfs_log_item_t		*lp;
 567
 568	ASSERT(hweight32(ip0_mode) == 1);
 569	ASSERT(hweight32(ip1_mode) == 1);
 570	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 571	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 572	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 573	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 574	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 575	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 576	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 577	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 578	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 579	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 580
 581	ASSERT(ip0->i_ino != ip1->i_ino);
 582
 583	if (ip0->i_ino > ip1->i_ino) {
 584		temp = ip0;
 585		ip0 = ip1;
 586		ip1 = temp;
 587		mode_temp = ip0_mode;
 588		ip0_mode = ip1_mode;
 589		ip1_mode = mode_temp;
 590	}
 591
 592 again:
 593	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 594
 595	/*
 596	 * If the first lock we have locked is in the AIL, we must TRY to get
 597	 * the second lock. If we can't get it, we must release the first one
 598	 * and try again.
 599	 */
 600	lp = (xfs_log_item_t *)ip0->i_itemp;
 601	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 602		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 603			xfs_iunlock(ip0, ip0_mode);
 604			if ((++attempts % 5) == 0)
 605				delay(1); /* Don't just spin the CPU */
 606			goto again;
 607		}
 608	} else {
 609		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 610	}
 611}
 612
 613void
 614__xfs_iflock(
 615	struct xfs_inode	*ip)
 616{
 617	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 618	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 619
 620	do {
 621		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 622		if (xfs_isiflocked(ip))
 623			io_schedule();
 624	} while (!xfs_iflock_nowait(ip));
 625
 626	finish_wait(wq, &wait.wq_entry);
 627}
 628
 629STATIC uint
 630_xfs_dic2xflags(
 631	uint16_t		di_flags,
 632	uint64_t		di_flags2,
 633	bool			has_attr)
 634{
 635	uint			flags = 0;
 636
 637	if (di_flags & XFS_DIFLAG_ANY) {
 638		if (di_flags & XFS_DIFLAG_REALTIME)
 639			flags |= FS_XFLAG_REALTIME;
 640		if (di_flags & XFS_DIFLAG_PREALLOC)
 641			flags |= FS_XFLAG_PREALLOC;
 642		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 643			flags |= FS_XFLAG_IMMUTABLE;
 644		if (di_flags & XFS_DIFLAG_APPEND)
 645			flags |= FS_XFLAG_APPEND;
 646		if (di_flags & XFS_DIFLAG_SYNC)
 647			flags |= FS_XFLAG_SYNC;
 648		if (di_flags & XFS_DIFLAG_NOATIME)
 649			flags |= FS_XFLAG_NOATIME;
 650		if (di_flags & XFS_DIFLAG_NODUMP)
 651			flags |= FS_XFLAG_NODUMP;
 652		if (di_flags & XFS_DIFLAG_RTINHERIT)
 653			flags |= FS_XFLAG_RTINHERIT;
 654		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 655			flags |= FS_XFLAG_PROJINHERIT;
 656		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 657			flags |= FS_XFLAG_NOSYMLINKS;
 658		if (di_flags & XFS_DIFLAG_EXTSIZE)
 659			flags |= FS_XFLAG_EXTSIZE;
 660		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 661			flags |= FS_XFLAG_EXTSZINHERIT;
 662		if (di_flags & XFS_DIFLAG_NODEFRAG)
 663			flags |= FS_XFLAG_NODEFRAG;
 664		if (di_flags & XFS_DIFLAG_FILESTREAM)
 665			flags |= FS_XFLAG_FILESTREAM;
 666	}
 667
 668	if (di_flags2 & XFS_DIFLAG2_ANY) {
 669		if (di_flags2 & XFS_DIFLAG2_DAX)
 670			flags |= FS_XFLAG_DAX;
 671		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 672			flags |= FS_XFLAG_COWEXTSIZE;
 673	}
 674
 675	if (has_attr)
 676		flags |= FS_XFLAG_HASATTR;
 677
 678	return flags;
 679}
 680
 681uint
 682xfs_ip2xflags(
 683	struct xfs_inode	*ip)
 684{
 685	struct xfs_icdinode	*dic = &ip->i_d;
 686
 687	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 688}
 689
 690/*
 691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 693 * ci_name->name will point to a the actual name (caller must free) or
 694 * will be set to NULL if an exact match is found.
 695 */
 696int
 697xfs_lookup(
 698	xfs_inode_t		*dp,
 699	struct xfs_name		*name,
 700	xfs_inode_t		**ipp,
 701	struct xfs_name		*ci_name)
 702{
 703	xfs_ino_t		inum;
 704	int			error;
 705
 706	trace_xfs_lookup(dp, name);
 707
 708	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 
 
 709		return -EIO;
 710
 711	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 712	if (error)
 713		goto out_unlock;
 714
 715	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 716	if (error)
 717		goto out_free_name;
 718
 719	return 0;
 720
 721out_free_name:
 722	if (ci_name)
 723		kmem_free(ci_name->name);
 724out_unlock:
 725	*ipp = NULL;
 726	return error;
 727}
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729/*
 730 * Allocate an inode on disk and return a copy of its in-core version.
 731 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 732 * appropriately within the inode.  The uid and gid for the inode are
 733 * set according to the contents of the given cred structure.
 734 *
 735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 736 * has a free inode available, call xfs_iget() to obtain the in-core
 737 * version of the allocated inode.  Finally, fill in the inode and
 738 * log its initial contents.  In this case, ialloc_context would be
 739 * set to NULL.
 740 *
 741 * If xfs_dialloc() does not have an available inode, it will replenish
 742 * its supply by doing an allocation. Since we can only do one
 743 * allocation within a transaction without deadlocks, we must commit
 744 * the current transaction before returning the inode itself.
 745 * In this case, therefore, we will set ialloc_context and return.
 746 * The caller should then commit the current transaction, start a new
 747 * transaction, and call xfs_ialloc() again to actually get the inode.
 748 *
 749 * To ensure that some other process does not grab the inode that
 750 * was allocated during the first call to xfs_ialloc(), this routine
 751 * also returns the [locked] bp pointing to the head of the freelist
 752 * as ialloc_context.  The caller should hold this buffer across
 753 * the commit and pass it back into this routine on the second call.
 754 *
 755 * If we are allocating quota inodes, we do not have a parent inode
 756 * to attach to or associate with (i.e. pip == NULL) because they
 757 * are not linked into the directory structure - they are attached
 758 * directly to the superblock - and so have no parent.
 759 */
 760static int
 761xfs_ialloc(
 762	xfs_trans_t	*tp,
 763	xfs_inode_t	*pip,
 764	umode_t		mode,
 765	xfs_nlink_t	nlink,
 766	dev_t		rdev,
 767	prid_t		prid,
 768	xfs_buf_t	**ialloc_context,
 769	xfs_inode_t	**ipp)
 770{
 771	struct xfs_mount *mp = tp->t_mountp;
 772	xfs_ino_t	ino;
 773	xfs_inode_t	*ip;
 774	uint		flags;
 775	int		error;
 776	struct timespec	tv;
 777	struct inode	*inode;
 
 
 778
 779	/*
 780	 * Call the space management code to pick
 781	 * the on-disk inode to be allocated.
 
 
 
 782	 */
 783	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 784			    ialloc_context, &ino);
 785	if (error)
 786		return error;
 787	if (*ialloc_context || ino == NULLFSINO) {
 788		*ipp = NULL;
 789		return 0;
 790	}
 791	ASSERT(*ialloc_context == NULL);
 792
 793	/*
 794	 * Get the in-core inode with the lock held exclusively.
 795	 * This is because we're setting fields here we need
 796	 * to prevent others from looking at until we're done.
 797	 */
 798	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799			 XFS_ILOCK_EXCL, &ip);
 800	if (error)
 801		return error;
 
 802	ASSERT(ip != NULL);
 803	inode = VFS_I(ip);
 804
 805	/*
 806	 * We always convert v1 inodes to v2 now - we only support filesystems
 807	 * with >= v2 inode capability, so there is no reason for ever leaving
 808	 * an inode in v1 format.
 809	 */
 810	if (ip->i_d.di_version == 1)
 811		ip->i_d.di_version = 2;
 812
 813	inode->i_mode = mode;
 814	set_nlink(inode, nlink);
 815	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 816	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 817	inode->i_rdev = rdev;
 818	xfs_set_projid(ip, prid);
 819
 820	if (pip && XFS_INHERIT_GID(pip)) {
 821		ip->i_d.di_gid = pip->i_d.di_gid;
 822		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 823			inode->i_mode |= S_ISGID;
 
 
 824	}
 825
 826	/*
 827	 * If the group ID of the new file does not match the effective group
 828	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 829	 * (and only if the irix_sgid_inherit compatibility variable is set).
 830	 */
 831	if ((irix_sgid_inherit) &&
 832	    (inode->i_mode & S_ISGID) &&
 833	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 834		inode->i_mode &= ~S_ISGID;
 835
 836	ip->i_d.di_size = 0;
 837	ip->i_d.di_nextents = 0;
 838	ASSERT(ip->i_d.di_nblocks == 0);
 839
 840	tv = current_time(inode);
 841	inode->i_mtime = tv;
 842	inode->i_atime = tv;
 843	inode->i_ctime = tv;
 844
 845	ip->i_d.di_extsize = 0;
 846	ip->i_d.di_dmevmask = 0;
 847	ip->i_d.di_dmstate = 0;
 848	ip->i_d.di_flags = 0;
 849
 850	if (ip->i_d.di_version == 3) {
 851		inode_set_iversion(inode, 1);
 852		ip->i_d.di_flags2 = 0;
 853		ip->i_d.di_cowextsize = 0;
 854		ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
 855		ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
 856	}
 857
 858
 859	flags = XFS_ILOG_CORE;
 860	switch (mode & S_IFMT) {
 861	case S_IFIFO:
 862	case S_IFCHR:
 863	case S_IFBLK:
 864	case S_IFSOCK:
 865		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 866		ip->i_df.if_flags = 0;
 867		flags |= XFS_ILOG_DEV;
 868		break;
 869	case S_IFREG:
 870	case S_IFDIR:
 871		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 872			uint		di_flags = 0;
 873
 874			if (S_ISDIR(mode)) {
 875				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 876					di_flags |= XFS_DIFLAG_RTINHERIT;
 877				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 878					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 879					ip->i_d.di_extsize = pip->i_d.di_extsize;
 880				}
 881				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 882					di_flags |= XFS_DIFLAG_PROJINHERIT;
 883			} else if (S_ISREG(mode)) {
 884				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 885					di_flags |= XFS_DIFLAG_REALTIME;
 886				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 887					di_flags |= XFS_DIFLAG_EXTSIZE;
 888					ip->i_d.di_extsize = pip->i_d.di_extsize;
 889				}
 890			}
 891			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 892			    xfs_inherit_noatime)
 893				di_flags |= XFS_DIFLAG_NOATIME;
 894			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 895			    xfs_inherit_nodump)
 896				di_flags |= XFS_DIFLAG_NODUMP;
 897			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 898			    xfs_inherit_sync)
 899				di_flags |= XFS_DIFLAG_SYNC;
 900			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 901			    xfs_inherit_nosymlinks)
 902				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 903			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 904			    xfs_inherit_nodefrag)
 905				di_flags |= XFS_DIFLAG_NODEFRAG;
 906			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 907				di_flags |= XFS_DIFLAG_FILESTREAM;
 908
 909			ip->i_d.di_flags |= di_flags;
 910		}
 911		if (pip &&
 912		    (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
 913		    pip->i_d.di_version == 3 &&
 914		    ip->i_d.di_version == 3) {
 915			uint64_t	di_flags2 = 0;
 916
 917			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 918				di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 919				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 920			}
 921			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 922				di_flags2 |= XFS_DIFLAG2_DAX;
 923
 924			ip->i_d.di_flags2 |= di_flags2;
 925		}
 926		/* FALLTHROUGH */
 927	case S_IFLNK:
 928		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 929		ip->i_df.if_flags = XFS_IFEXTENTS;
 930		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 931		ip->i_df.if_u1.if_root = NULL;
 932		break;
 933	default:
 934		ASSERT(0);
 935	}
 
 936	/*
 937	 * Attribute fork settings for new inode.
 938	 */
 939	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 940	ip->i_d.di_anextents = 0;
 
 
 
 
 
 
 
 
 941
 942	/*
 943	 * Log the new values stuffed into the inode.
 944	 */
 945	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 946	xfs_trans_log_inode(tp, ip, flags);
 947
 948	/* now that we have an i_mode we can setup the inode structure */
 949	xfs_setup_inode(ip);
 950
 951	*ipp = ip;
 952	return 0;
 953}
 954
 955/*
 956 * Allocates a new inode from disk and return a pointer to the
 957 * incore copy. This routine will internally commit the current
 958 * transaction and allocate a new one if the Space Manager needed
 959 * to do an allocation to replenish the inode free-list.
 960 *
 961 * This routine is designed to be called from xfs_create and
 962 * xfs_create_dir.
 963 *
 964 */
 965int
 966xfs_dir_ialloc(
 967	xfs_trans_t	**tpp,		/* input: current transaction;
 968					   output: may be a new transaction. */
 969	xfs_inode_t	*dp,		/* directory within whose allocate
 970					   the inode. */
 971	umode_t		mode,
 972	xfs_nlink_t	nlink,
 973	dev_t		rdev,
 974	prid_t		prid,		/* project id */
 975	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 976					   locked. */
 977{
 978	xfs_trans_t	*tp;
 979	xfs_inode_t	*ip;
 980	xfs_buf_t	*ialloc_context = NULL;
 981	int		code;
 982	void		*dqinfo;
 983	uint		tflags;
 984
 985	tp = *tpp;
 986	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 987
 988	/*
 989	 * xfs_ialloc will return a pointer to an incore inode if
 990	 * the Space Manager has an available inode on the free
 991	 * list. Otherwise, it will do an allocation and replenish
 992	 * the freelist.  Since we can only do one allocation per
 993	 * transaction without deadlocks, we will need to commit the
 994	 * current transaction and start a new one.  We will then
 995	 * need to call xfs_ialloc again to get the inode.
 996	 *
 997	 * If xfs_ialloc did an allocation to replenish the freelist,
 998	 * it returns the bp containing the head of the freelist as
 999	 * ialloc_context. We will hold a lock on it across the
1000	 * transaction commit so that no other process can steal
1001	 * the inode(s) that we've just allocated.
1002	 */
1003	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004			&ip);
1005
1006	/*
1007	 * Return an error if we were unable to allocate a new inode.
1008	 * This should only happen if we run out of space on disk or
1009	 * encounter a disk error.
1010	 */
1011	if (code) {
1012		*ipp = NULL;
1013		return code;
1014	}
1015	if (!ialloc_context && !ip) {
1016		*ipp = NULL;
1017		return -ENOSPC;
1018	}
1019
1020	/*
1021	 * If the AGI buffer is non-NULL, then we were unable to get an
1022	 * inode in one operation.  We need to commit the current
1023	 * transaction and call xfs_ialloc() again.  It is guaranteed
1024	 * to succeed the second time.
1025	 */
1026	if (ialloc_context) {
1027		/*
1028		 * Normally, xfs_trans_commit releases all the locks.
1029		 * We call bhold to hang on to the ialloc_context across
1030		 * the commit.  Holding this buffer prevents any other
1031		 * processes from doing any allocations in this
1032		 * allocation group.
1033		 */
1034		xfs_trans_bhold(tp, ialloc_context);
1035
1036		/*
1037		 * We want the quota changes to be associated with the next
1038		 * transaction, NOT this one. So, detach the dqinfo from this
1039		 * and attach it to the next transaction.
1040		 */
1041		dqinfo = NULL;
1042		tflags = 0;
1043		if (tp->t_dqinfo) {
1044			dqinfo = (void *)tp->t_dqinfo;
1045			tp->t_dqinfo = NULL;
1046			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048		}
1049
1050		code = xfs_trans_roll(&tp);
1051
1052		/*
1053		 * Re-attach the quota info that we detached from prev trx.
1054		 */
1055		if (dqinfo) {
1056			tp->t_dqinfo = dqinfo;
1057			tp->t_flags |= tflags;
1058		}
1059
1060		if (code) {
1061			xfs_buf_relse(ialloc_context);
1062			*tpp = tp;
1063			*ipp = NULL;
1064			return code;
1065		}
1066		xfs_trans_bjoin(tp, ialloc_context);
1067
1068		/*
1069		 * Call ialloc again. Since we've locked out all
1070		 * other allocations in this allocation group,
1071		 * this call should always succeed.
1072		 */
1073		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074				  &ialloc_context, &ip);
1075
1076		/*
1077		 * If we get an error at this point, return to the caller
1078		 * so that the current transaction can be aborted.
1079		 */
1080		if (code) {
1081			*tpp = tp;
1082			*ipp = NULL;
1083			return code;
1084		}
1085		ASSERT(!ialloc_context && ip);
1086
1087	}
1088
1089	*ipp = ip;
1090	*tpp = tp;
1091
1092	return 0;
1093}
1094
1095/*
1096 * Decrement the link count on an inode & log the change.  If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100static int			/* error */
1101xfs_droplink(
1102	xfs_trans_t *tp,
1103	xfs_inode_t *ip)
1104{
 
 
 
 
 
 
 
1105	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107	drop_nlink(VFS_I(ip));
1108	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110	if (VFS_I(ip)->i_nlink)
1111		return 0;
1112
1113	return xfs_iunlink(tp, ip);
1114}
1115
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
1119static int
1120xfs_bumplink(
1121	xfs_trans_t *tp,
1122	xfs_inode_t *ip)
1123{
1124	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126	ASSERT(ip->i_d.di_version > 1);
1127	inc_nlink(VFS_I(ip));
1128	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129	return 0;
1130}
1131
1132int
1133xfs_create(
 
1134	xfs_inode_t		*dp,
1135	struct xfs_name		*name,
1136	umode_t			mode,
1137	dev_t			rdev,
 
1138	xfs_inode_t		**ipp)
1139{
1140	int			is_dir = S_ISDIR(mode);
1141	struct xfs_mount	*mp = dp->i_mount;
1142	struct xfs_inode	*ip = NULL;
1143	struct xfs_trans	*tp = NULL;
1144	int			error;
1145	struct xfs_defer_ops	dfops;
1146	xfs_fsblock_t		first_block;
1147	bool                    unlock_dp_on_error = false;
1148	prid_t			prid;
1149	struct xfs_dquot	*udqp = NULL;
1150	struct xfs_dquot	*gdqp = NULL;
1151	struct xfs_dquot	*pdqp = NULL;
1152	struct xfs_trans_res	*tres;
1153	uint			resblks;
 
1154
1155	trace_xfs_create(dp, name);
1156
1157	if (XFS_FORCED_SHUTDOWN(mp))
 
 
1158		return -EIO;
1159
1160	prid = xfs_get_initial_prid(dp);
1161
1162	/*
1163	 * Make sure that we have allocated dquot(s) on disk.
1164	 */
1165	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166					xfs_kgid_to_gid(current_fsgid()), prid,
1167					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168					&udqp, &gdqp, &pdqp);
1169	if (error)
1170		return error;
1171
1172	if (is_dir) {
1173		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174		tres = &M_RES(mp)->tr_mkdir;
1175	} else {
1176		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177		tres = &M_RES(mp)->tr_create;
1178	}
1179
1180	/*
1181	 * Initially assume that the file does not exist and
1182	 * reserve the resources for that case.  If that is not
1183	 * the case we'll drop the one we have and get a more
1184	 * appropriate transaction later.
1185	 */
1186	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1187	if (error == -ENOSPC) {
1188		/* flush outstanding delalloc blocks and retry */
1189		xfs_flush_inodes(mp);
1190		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
1191	}
1192	if (error)
1193		goto out_release_inode;
1194
1195	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1196	unlock_dp_on_error = true;
1197
1198	xfs_defer_init(&dfops, &first_block);
1199
1200	/*
1201	 * Reserve disk quota and the inode.
1202	 */
1203	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204						pdqp, resblks, 1, 0);
1205	if (error)
1206		goto out_trans_cancel;
1207
1208	/*
1209	 * A newly created regular or special file just has one directory
1210	 * entry pointing to them, but a directory also the "." entry
1211	 * pointing to itself.
1212	 */
1213	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
 
 
1214	if (error)
1215		goto out_trans_cancel;
1216
1217	/*
1218	 * Now we join the directory inode to the transaction.  We do not do it
1219	 * earlier because xfs_dir_ialloc might commit the previous transaction
1220	 * (and release all the locks).  An error from here on will result in
1221	 * the transaction cancel unlocking dp so don't do it explicitly in the
1222	 * error path.
1223	 */
1224	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1225	unlock_dp_on_error = false;
1226
1227	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1228					&first_block, &dfops, resblks ?
1229					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230	if (error) {
1231		ASSERT(error != -ENOSPC);
1232		goto out_trans_cancel;
1233	}
1234	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237	if (is_dir) {
1238		error = xfs_dir_init(tp, ip, dp);
1239		if (error)
1240			goto out_bmap_cancel;
1241
1242		error = xfs_bumplink(tp, dp);
1243		if (error)
1244			goto out_bmap_cancel;
1245	}
1246
1247	/*
1248	 * If this is a synchronous mount, make sure that the
1249	 * create transaction goes to disk before returning to
1250	 * the user.
1251	 */
1252	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253		xfs_trans_set_sync(tp);
1254
1255	/*
1256	 * Attach the dquot(s) to the inodes and modify them incore.
1257	 * These ids of the inode couldn't have changed since the new
1258	 * inode has been locked ever since it was created.
1259	 */
1260	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
1262	error = xfs_defer_finish(&tp, &dfops);
1263	if (error)
1264		goto out_bmap_cancel;
1265
1266	error = xfs_trans_commit(tp);
1267	if (error)
1268		goto out_release_inode;
1269
1270	xfs_qm_dqrele(udqp);
1271	xfs_qm_dqrele(gdqp);
1272	xfs_qm_dqrele(pdqp);
1273
1274	*ipp = ip;
1275	return 0;
1276
1277 out_bmap_cancel:
1278	xfs_defer_cancel(&dfops);
1279 out_trans_cancel:
1280	xfs_trans_cancel(tp);
1281 out_release_inode:
1282	/*
1283	 * Wait until after the current transaction is aborted to finish the
1284	 * setup of the inode and release the inode.  This prevents recursive
1285	 * transactions and deadlocks from xfs_inactive.
1286	 */
1287	if (ip) {
1288		xfs_finish_inode_setup(ip);
1289		IRELE(ip);
1290	}
1291
1292	xfs_qm_dqrele(udqp);
1293	xfs_qm_dqrele(gdqp);
1294	xfs_qm_dqrele(pdqp);
1295
1296	if (unlock_dp_on_error)
1297		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1298	return error;
1299}
1300
1301int
1302xfs_create_tmpfile(
 
1303	struct xfs_inode	*dp,
1304	umode_t			mode,
1305	struct xfs_inode	**ipp)
1306{
1307	struct xfs_mount	*mp = dp->i_mount;
1308	struct xfs_inode	*ip = NULL;
1309	struct xfs_trans	*tp = NULL;
1310	int			error;
1311	prid_t                  prid;
1312	struct xfs_dquot	*udqp = NULL;
1313	struct xfs_dquot	*gdqp = NULL;
1314	struct xfs_dquot	*pdqp = NULL;
1315	struct xfs_trans_res	*tres;
1316	uint			resblks;
 
1317
1318	if (XFS_FORCED_SHUTDOWN(mp))
1319		return -EIO;
1320
1321	prid = xfs_get_initial_prid(dp);
1322
1323	/*
1324	 * Make sure that we have allocated dquot(s) on disk.
1325	 */
1326	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1327				xfs_kgid_to_gid(current_fsgid()), prid,
1328				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1329				&udqp, &gdqp, &pdqp);
1330	if (error)
1331		return error;
1332
1333	resblks = XFS_IALLOC_SPACE_RES(mp);
1334	tres = &M_RES(mp)->tr_create_tmpfile;
1335
1336	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1337	if (error)
1338		goto out_release_inode;
1339
1340	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1341						pdqp, resblks, 1, 0);
1342	if (error)
1343		goto out_trans_cancel;
1344
1345	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
 
 
 
1346	if (error)
1347		goto out_trans_cancel;
1348
1349	if (mp->m_flags & XFS_MOUNT_WSYNC)
1350		xfs_trans_set_sync(tp);
1351
1352	/*
1353	 * Attach the dquot(s) to the inodes and modify them incore.
1354	 * These ids of the inode couldn't have changed since the new
1355	 * inode has been locked ever since it was created.
1356	 */
1357	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1358
1359	error = xfs_iunlink(tp, ip);
1360	if (error)
1361		goto out_trans_cancel;
1362
1363	error = xfs_trans_commit(tp);
1364	if (error)
1365		goto out_release_inode;
1366
1367	xfs_qm_dqrele(udqp);
1368	xfs_qm_dqrele(gdqp);
1369	xfs_qm_dqrele(pdqp);
1370
1371	*ipp = ip;
1372	return 0;
1373
1374 out_trans_cancel:
1375	xfs_trans_cancel(tp);
1376 out_release_inode:
1377	/*
1378	 * Wait until after the current transaction is aborted to finish the
1379	 * setup of the inode and release the inode.  This prevents recursive
1380	 * transactions and deadlocks from xfs_inactive.
1381	 */
1382	if (ip) {
1383		xfs_finish_inode_setup(ip);
1384		IRELE(ip);
1385	}
1386
1387	xfs_qm_dqrele(udqp);
1388	xfs_qm_dqrele(gdqp);
1389	xfs_qm_dqrele(pdqp);
1390
1391	return error;
1392}
1393
1394int
1395xfs_link(
1396	xfs_inode_t		*tdp,
1397	xfs_inode_t		*sip,
1398	struct xfs_name		*target_name)
1399{
1400	xfs_mount_t		*mp = tdp->i_mount;
1401	xfs_trans_t		*tp;
1402	int			error;
1403	struct xfs_defer_ops	dfops;
1404	xfs_fsblock_t           first_block;
1405	int			resblks;
1406
1407	trace_xfs_link(tdp, target_name);
1408
1409	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1410
1411	if (XFS_FORCED_SHUTDOWN(mp))
 
 
1412		return -EIO;
1413
1414	error = xfs_qm_dqattach(sip, 0);
1415	if (error)
1416		goto std_return;
1417
1418	error = xfs_qm_dqattach(tdp, 0);
1419	if (error)
1420		goto std_return;
1421
1422	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1423	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1424	if (error == -ENOSPC) {
1425		resblks = 0;
1426		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1427	}
1428	if (error)
1429		goto std_return;
1430
1431	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1432
1433	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1434	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1435
1436	/*
1437	 * If we are using project inheritance, we only allow hard link
1438	 * creation in our tree when the project IDs are the same; else
1439	 * the tree quota mechanism could be circumvented.
1440	 */
1441	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1442		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1443		error = -EXDEV;
1444		goto error_return;
1445	}
1446
1447	if (!resblks) {
1448		error = xfs_dir_canenter(tp, tdp, target_name);
1449		if (error)
1450			goto error_return;
1451	}
1452
1453	xfs_defer_init(&dfops, &first_block);
1454
1455	/*
1456	 * Handle initial link state of O_TMPFILE inode
1457	 */
1458	if (VFS_I(sip)->i_nlink == 0) {
1459		error = xfs_iunlink_remove(tp, sip);
 
 
 
 
1460		if (error)
1461			goto error_return;
1462	}
1463
1464	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1465					&first_block, &dfops, resblks);
1466	if (error)
1467		goto error_return;
1468	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1469	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1470
1471	error = xfs_bumplink(tp, sip);
1472	if (error)
1473		goto error_return;
1474
1475	/*
1476	 * If this is a synchronous mount, make sure that the
1477	 * link transaction goes to disk before returning to
1478	 * the user.
1479	 */
1480	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1481		xfs_trans_set_sync(tp);
1482
1483	error = xfs_defer_finish(&tp, &dfops);
1484	if (error) {
1485		xfs_defer_cancel(&dfops);
1486		goto error_return;
1487	}
1488
1489	return xfs_trans_commit(tp);
1490
1491 error_return:
1492	xfs_trans_cancel(tp);
1493 std_return:
 
 
1494	return error;
1495}
1496
1497/* Clear the reflink flag and the cowblocks tag if possible. */
1498static void
1499xfs_itruncate_clear_reflink_flags(
1500	struct xfs_inode	*ip)
1501{
1502	struct xfs_ifork	*dfork;
1503	struct xfs_ifork	*cfork;
1504
1505	if (!xfs_is_reflink_inode(ip))
1506		return;
1507	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1508	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1509	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1510		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1511	if (cfork->if_bytes == 0)
1512		xfs_inode_clear_cowblocks_tag(ip);
1513}
1514
1515/*
1516 * Free up the underlying blocks past new_size.  The new size must be smaller
1517 * than the current size.  This routine can be used both for the attribute and
1518 * data fork, and does not modify the inode size, which is left to the caller.
1519 *
1520 * The transaction passed to this routine must have made a permanent log
1521 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1522 * given transaction and start new ones, so make sure everything involved in
1523 * the transaction is tidy before calling here.  Some transaction will be
1524 * returned to the caller to be committed.  The incoming transaction must
1525 * already include the inode, and both inode locks must be held exclusively.
1526 * The inode must also be "held" within the transaction.  On return the inode
1527 * will be "held" within the returned transaction.  This routine does NOT
1528 * require any disk space to be reserved for it within the transaction.
1529 *
1530 * If we get an error, we must return with the inode locked and linked into the
1531 * current transaction. This keeps things simple for the higher level code,
1532 * because it always knows that the inode is locked and held in the transaction
1533 * that returns to it whether errors occur or not.  We don't mark the inode
1534 * dirty on error so that transactions can be easily aborted if possible.
1535 */
1536int
1537xfs_itruncate_extents(
1538	struct xfs_trans	**tpp,
1539	struct xfs_inode	*ip,
1540	int			whichfork,
1541	xfs_fsize_t		new_size)
 
1542{
1543	struct xfs_mount	*mp = ip->i_mount;
1544	struct xfs_trans	*tp = *tpp;
1545	struct xfs_defer_ops	dfops;
1546	xfs_fsblock_t		first_block;
1547	xfs_fileoff_t		first_unmap_block;
1548	xfs_fileoff_t		last_block;
1549	xfs_filblks_t		unmap_len;
1550	int			error = 0;
1551	int			done = 0;
1552
1553	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1554	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1555	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1556	ASSERT(new_size <= XFS_ISIZE(ip));
1557	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1558	ASSERT(ip->i_itemp != NULL);
1559	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1560	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1561
1562	trace_xfs_itruncate_extents_start(ip, new_size);
1563
 
 
1564	/*
1565	 * Since it is possible for space to become allocated beyond
1566	 * the end of the file (in a crash where the space is allocated
1567	 * but the inode size is not yet updated), simply remove any
1568	 * blocks which show up between the new EOF and the maximum
1569	 * possible file size.  If the first block to be removed is
1570	 * beyond the maximum file size (ie it is the same as last_block),
1571	 * then there is nothing to do.
 
1572	 */
1573	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1574	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1575	if (first_unmap_block == last_block)
1576		return 0;
 
1577
1578	ASSERT(first_unmap_block < last_block);
1579	unmap_len = last_block - first_unmap_block + 1;
1580	while (!done) {
1581		xfs_defer_init(&dfops, &first_block);
1582		error = xfs_bunmapi(tp, ip,
1583				    first_unmap_block, unmap_len,
1584				    xfs_bmapi_aflag(whichfork),
1585				    XFS_ITRUNC_MAX_EXTENTS,
1586				    &first_block, &dfops,
1587				    &done);
1588		if (error)
1589			goto out_bmap_cancel;
1590
1591		/*
1592		 * Duplicate the transaction that has the permanent
1593		 * reservation and commit the old transaction.
1594		 */
1595		xfs_defer_ijoin(&dfops, ip);
1596		error = xfs_defer_finish(&tp, &dfops);
1597		if (error)
1598			goto out_bmap_cancel;
1599
1600		error = xfs_trans_roll_inode(&tp, ip);
1601		if (error)
1602			goto out;
1603	}
1604
1605	if (whichfork == XFS_DATA_FORK) {
1606		/* Remove all pending CoW reservations. */
1607		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1608				first_unmap_block, last_block, true);
1609		if (error)
1610			goto out;
1611
1612		xfs_itruncate_clear_reflink_flags(ip);
1613	}
1614
1615	/*
1616	 * Always re-log the inode so that our permanent transaction can keep
1617	 * on rolling it forward in the log.
1618	 */
1619	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1620
1621	trace_xfs_itruncate_extents_end(ip, new_size);
1622
1623out:
1624	*tpp = tp;
1625	return error;
1626out_bmap_cancel:
1627	/*
1628	 * If the bunmapi call encounters an error, return to the caller where
1629	 * the transaction can be properly aborted.  We just need to make sure
1630	 * we're not holding any resources that we were not when we came in.
1631	 */
1632	xfs_defer_cancel(&dfops);
1633	goto out;
1634}
1635
1636int
1637xfs_release(
1638	xfs_inode_t	*ip)
1639{
1640	xfs_mount_t	*mp = ip->i_mount;
1641	int		error;
1642
1643	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1644		return 0;
1645
1646	/* If this is a read-only mount, don't do this (would generate I/O) */
1647	if (mp->m_flags & XFS_MOUNT_RDONLY)
1648		return 0;
1649
1650	if (!XFS_FORCED_SHUTDOWN(mp)) {
1651		int truncated;
1652
1653		/*
1654		 * If we previously truncated this file and removed old data
1655		 * in the process, we want to initiate "early" writeout on
1656		 * the last close.  This is an attempt to combat the notorious
1657		 * NULL files problem which is particularly noticeable from a
1658		 * truncate down, buffered (re-)write (delalloc), followed by
1659		 * a crash.  What we are effectively doing here is
1660		 * significantly reducing the time window where we'd otherwise
1661		 * be exposed to that problem.
1662		 */
1663		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664		if (truncated) {
1665			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1666			if (ip->i_delayed_blks > 0) {
1667				error = filemap_flush(VFS_I(ip)->i_mapping);
1668				if (error)
1669					return error;
1670			}
1671		}
1672	}
1673
1674	if (VFS_I(ip)->i_nlink == 0)
1675		return 0;
1676
 
 
 
 
 
 
 
 
 
1677	if (xfs_can_free_eofblocks(ip, false)) {
1678
1679		/*
1680		 * Check if the inode is being opened, written and closed
1681		 * frequently and we have delayed allocation blocks outstanding
1682		 * (e.g. streaming writes from the NFS server), truncating the
1683		 * blocks past EOF will cause fragmentation to occur.
1684		 *
1685		 * In this case don't do the truncation, but we have to be
1686		 * careful how we detect this case. Blocks beyond EOF show up as
1687		 * i_delayed_blks even when the inode is clean, so we need to
1688		 * truncate them away first before checking for a dirty release.
1689		 * Hence on the first dirty close we will still remove the
1690		 * speculative allocation, but after that we will leave it in
1691		 * place.
1692		 */
1693		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694			return 0;
1695		/*
1696		 * If we can't get the iolock just skip truncating the blocks
1697		 * past EOF because we could deadlock with the mmap_sem
1698		 * otherwise. We'll get another chance to drop them once the
1699		 * last reference to the inode is dropped, so we'll never leak
1700		 * blocks permanently.
1701		 */
1702		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703			error = xfs_free_eofblocks(ip);
1704			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705			if (error)
1706				return error;
1707		}
1708
1709		/* delalloc blocks after truncation means it really is dirty */
1710		if (ip->i_delayed_blks)
1711			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712	}
1713	return 0;
 
 
 
1714}
1715
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723	struct xfs_inode *ip)
1724{
1725	struct xfs_mount	*mp = ip->i_mount;
1726	struct xfs_trans	*tp;
1727	int			error;
1728
1729	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1730	if (error) {
1731		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1732		return error;
1733	}
1734
1735	xfs_ilock(ip, XFS_ILOCK_EXCL);
1736	xfs_trans_ijoin(tp, ip, 0);
1737
1738	/*
1739	 * Log the inode size first to prevent stale data exposure in the event
1740	 * of a system crash before the truncate completes. See the related
1741	 * comment in xfs_vn_setattr_size() for details.
1742	 */
1743	ip->i_d.di_size = 0;
1744	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747	if (error)
1748		goto error_trans_cancel;
1749
1750	ASSERT(ip->i_d.di_nextents == 0);
1751
1752	error = xfs_trans_commit(tp);
1753	if (error)
1754		goto error_unlock;
1755
1756	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757	return 0;
1758
1759error_trans_cancel:
1760	xfs_trans_cancel(tp);
1761error_unlock:
1762	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763	return error;
1764}
1765
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773	struct xfs_inode *ip)
1774{
1775	struct xfs_defer_ops	dfops;
1776	xfs_fsblock_t		first_block;
1777	struct xfs_mount	*mp = ip->i_mount;
1778	struct xfs_trans	*tp;
1779	int			error;
1780
1781	/*
1782	 * We try to use a per-AG reservation for any block needed by the finobt
1783	 * tree, but as the finobt feature predates the per-AG reservation
1784	 * support a degraded file system might not have enough space for the
1785	 * reservation at mount time.  In that case try to dip into the reserved
1786	 * pool and pray.
1787	 *
1788	 * Send a warning if the reservation does happen to fail, as the inode
1789	 * now remains allocated and sits on the unlinked list until the fs is
1790	 * repaired.
1791	 */
1792	if (unlikely(mp->m_inotbt_nores)) {
1793		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795				&tp);
1796	} else {
1797		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798	}
1799	if (error) {
1800		if (error == -ENOSPC) {
1801			xfs_warn_ratelimited(mp,
1802			"Failed to remove inode(s) from unlinked list. "
1803			"Please free space, unmount and run xfs_repair.");
1804		} else {
1805			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806		}
1807		return error;
1808	}
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810	xfs_ilock(ip, XFS_ILOCK_EXCL);
1811	xfs_trans_ijoin(tp, ip, 0);
1812
1813	xfs_defer_init(&dfops, &first_block);
1814	error = xfs_ifree(tp, ip, &dfops);
1815	if (error) {
1816		/*
1817		 * If we fail to free the inode, shut down.  The cancel
1818		 * might do that, we need to make sure.  Otherwise the
1819		 * inode might be lost for a long time or forever.
1820		 */
1821		if (!XFS_FORCED_SHUTDOWN(mp)) {
1822			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823				__func__, error);
1824			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825		}
1826		xfs_trans_cancel(tp);
1827		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828		return error;
1829	}
1830
1831	/*
1832	 * Credit the quota account(s). The inode is gone.
1833	 */
1834	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836	/*
1837	 * Just ignore errors at this point.  There is nothing we can do except
1838	 * to try to keep going. Make sure it's not a silent error.
1839	 */
1840	error = xfs_defer_finish(&tp, &dfops);
1841	if (error) {
1842		xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1843			__func__, error);
1844		xfs_defer_cancel(&dfops);
1845	}
1846	error = xfs_trans_commit(tp);
1847	if (error)
1848		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849			__func__, error);
 
 
 
 
 
 
 
 
1850
1851	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852	return 0;
 
 
 
 
 
 
 
 
 
1853}
1854
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero.  If the file has been unlinked, then it must
1860 * now be truncated.  Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
1863void
1864xfs_inactive(
1865	xfs_inode_t	*ip)
1866{
1867	struct xfs_mount	*mp;
1868	struct xfs_ifork	*cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1869	int			error;
1870	int			truncate = 0;
1871
1872	/*
1873	 * If the inode is already free, then there can be nothing
1874	 * to clean up here.
1875	 */
1876	if (VFS_I(ip)->i_mode == 0) {
1877		ASSERT(ip->i_df.if_real_bytes == 0);
1878		ASSERT(ip->i_df.if_broot_bytes == 0);
1879		return;
1880	}
1881
1882	mp = ip->i_mount;
1883	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1884
1885	/* If this is a read-only mount, don't do this (would generate I/O) */
1886	if (mp->m_flags & XFS_MOUNT_RDONLY)
1887		return;
 
 
 
 
 
 
 
1888
1889	/* Try to clean out the cow blocks if there are any. */
1890	if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
1893	if (VFS_I(ip)->i_nlink != 0) {
1894		/*
1895		 * force is true because we are evicting an inode from the
1896		 * cache. Post-eof blocks must be freed, lest we end up with
1897		 * broken free space accounting.
1898		 *
1899		 * Note: don't bother with iolock here since lockdep complains
1900		 * about acquiring it in reclaim context. We have the only
1901		 * reference to the inode at this point anyways.
1902		 */
1903		if (xfs_can_free_eofblocks(ip, true))
1904			xfs_free_eofblocks(ip);
1905
1906		return;
1907	}
1908
1909	if (S_ISREG(VFS_I(ip)->i_mode) &&
1910	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912		truncate = 1;
1913
1914	error = xfs_qm_dqattach(ip, 0);
1915	if (error)
1916		return;
 
 
 
 
 
 
 
 
 
 
 
 
1917
1918	if (S_ISLNK(VFS_I(ip)->i_mode))
1919		error = xfs_inactive_symlink(ip);
1920	else if (truncate)
1921		error = xfs_inactive_truncate(ip);
1922	if (error)
1923		return;
1924
1925	/*
1926	 * If there are attributes associated with the file then blow them away
1927	 * now.  The code calls a routine that recursively deconstructs the
1928	 * attribute fork. If also blows away the in-core attribute fork.
1929	 */
1930	if (XFS_IFORK_Q(ip)) {
1931		error = xfs_attr_inactive(ip);
1932		if (error)
1933			return;
1934	}
1935
1936	ASSERT(!ip->i_afp);
1937	ASSERT(ip->i_d.di_anextents == 0);
1938	ASSERT(ip->i_d.di_forkoff == 0);
1939
1940	/*
1941	 * Free the inode.
1942	 */
1943	error = xfs_inactive_ifree(ip);
1944	if (error)
1945		return;
1946
 
1947	/*
1948	 * Release the dquots held by inode, if any.
 
1949	 */
1950	xfs_qm_dqdetach(ip);
 
1951}
1952
1953/*
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1961 * list when the inode is freed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962 */
1963STATIC int
1964xfs_iunlink(
1965	struct xfs_trans *tp,
1966	struct xfs_inode *ip)
 
 
 
1967{
1968	xfs_mount_t	*mp = tp->t_mountp;
1969	xfs_agi_t	*agi;
1970	xfs_dinode_t	*dip;
1971	xfs_buf_t	*agibp;
1972	xfs_buf_t	*ibp;
1973	xfs_agino_t	agino;
1974	short		bucket_index;
1975	int		offset;
1976	int		error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977
1978	ASSERT(VFS_I(ip)->i_mode != 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
1980	/*
1981	 * Get the agi buffer first.  It ensures lock ordering
1982	 * on the list.
 
 
1983	 */
1984	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
 
1985	if (error)
1986		return error;
1987	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1988
1989	/*
1990	 * Get the index into the agi hash table for the
1991	 * list this inode will go on.
 
1992	 */
1993	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994	ASSERT(agino != 0);
1995	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996	ASSERT(agi->agi_unlinked[bucket_index]);
1997	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 
1998
1999	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
 
 
 
 
 
 
 
 
 
 
2000		/*
2001		 * There is already another inode in the bucket we need
2002		 * to add ourselves to.  Add us at the front of the list.
2003		 * Here we put the head pointer into our next pointer,
2004		 * and then we fall through to point the head at us.
2005		 */
2006		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007				       0, 0);
2008		if (error)
2009			return error;
 
 
2010
2011		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2012		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2013		offset = ip->i_imap.im_boffset +
2014			offsetof(xfs_dinode_t, di_next_unlinked);
2015
2016		/* need to recalc the inode CRC if appropriate */
2017		xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2018
2019		xfs_trans_inode_buf(tp, ibp);
2020		xfs_trans_log_buf(tp, ibp, offset,
2021				  (offset + sizeof(xfs_agino_t) - 1));
2022		xfs_inobp_check(mp, ibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023	}
2024
2025	/*
2026	 * Point the bucket head pointer at the inode being inserted.
 
 
 
 
 
 
 
 
 
 
2027	 */
2028	ASSERT(agino != 0);
2029	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2030	offset = offsetof(xfs_agi_t, agi_unlinked) +
2031		(sizeof(xfs_agino_t) * bucket_index);
2032	xfs_trans_log_buf(tp, agibp, offset,
2033			  (offset + sizeof(xfs_agino_t) - 1));
2034	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042	xfs_trans_t	*tp,
2043	xfs_inode_t	*ip)
 
2044{
2045	xfs_ino_t	next_ino;
2046	xfs_mount_t	*mp;
2047	xfs_agi_t	*agi;
2048	xfs_dinode_t	*dip;
2049	xfs_buf_t	*agibp;
2050	xfs_buf_t	*ibp;
2051	xfs_agnumber_t	agno;
2052	xfs_agino_t	agino;
2053	xfs_agino_t	next_agino;
2054	xfs_buf_t	*last_ibp;
2055	xfs_dinode_t	*last_dip = NULL;
2056	short		bucket_index;
2057	int		offset, last_offset = 0;
2058	int		error;
2059
2060	mp = tp->t_mountp;
2061	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2062
2063	/*
2064	 * Get the agi buffer first.  It ensures lock ordering
2065	 * on the list.
2066	 */
2067	error = xfs_read_agi(mp, tp, agno, &agibp);
2068	if (error)
2069		return error;
2070
2071	agi = XFS_BUF_TO_AGI(agibp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	/*
2074	 * Get the index into the agi hash table for the
2075	 * list this inode will go on.
 
 
 
 
 
 
 
 
 
 
 
 
2076	 */
2077	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078	ASSERT(agino != 0);
2079	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2080	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2081	ASSERT(agi->agi_unlinked[bucket_index]);
2082
2083	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2084		/*
2085		 * We're at the head of the list.  Get the inode's on-disk
2086		 * buffer to see if there is anyone after us on the list.
2087		 * Only modify our next pointer if it is not already NULLAGINO.
2088		 * This saves us the overhead of dealing with the buffer when
2089		 * there is no need to change it.
2090		 */
2091		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092				       0, 0);
2093		if (error) {
2094			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2095				__func__, error);
2096			return error;
2097		}
2098		next_agino = be32_to_cpu(dip->di_next_unlinked);
2099		ASSERT(next_agino != 0);
2100		if (next_agino != NULLAGINO) {
2101			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2102			offset = ip->i_imap.im_boffset +
2103				offsetof(xfs_dinode_t, di_next_unlinked);
2104
2105			/* need to recalc the inode CRC if appropriate */
2106			xfs_dinode_calc_crc(mp, dip);
2107
2108			xfs_trans_inode_buf(tp, ibp);
2109			xfs_trans_log_buf(tp, ibp, offset,
2110					  (offset + sizeof(xfs_agino_t) - 1));
2111			xfs_inobp_check(mp, ibp);
2112		} else {
2113			xfs_trans_brelse(tp, ibp);
2114		}
2115		/*
2116		 * Point the bucket head pointer at the next inode.
2117		 */
2118		ASSERT(next_agino != 0);
2119		ASSERT(next_agino != agino);
2120		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2121		offset = offsetof(xfs_agi_t, agi_unlinked) +
2122			(sizeof(xfs_agino_t) * bucket_index);
2123		xfs_trans_log_buf(tp, agibp, offset,
2124				  (offset + sizeof(xfs_agino_t) - 1));
2125	} else {
2126		/*
2127		 * We need to search the list for the inode being freed.
2128		 */
2129		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2130		last_ibp = NULL;
2131		while (next_agino != agino) {
2132			struct xfs_imap	imap;
2133
2134			if (last_ibp)
2135				xfs_trans_brelse(tp, last_ibp);
2136
2137			imap.im_blkno = 0;
2138			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2139
2140			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2141			if (error) {
2142				xfs_warn(mp,
2143	"%s: xfs_imap returned error %d.",
2144					 __func__, error);
2145				return error;
2146			}
2147
2148			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2149					       &last_ibp, 0, 0);
2150			if (error) {
2151				xfs_warn(mp,
2152	"%s: xfs_imap_to_bp returned error %d.",
2153					__func__, error);
2154				return error;
2155			}
2156
2157			last_offset = imap.im_boffset;
2158			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2159			ASSERT(next_agino != NULLAGINO);
2160			ASSERT(next_agino != 0);
2161		}
2162
2163		/*
2164		 * Now last_ibp points to the buffer previous to us on the
2165		 * unlinked list.  Pull us from the list.
2166		 */
2167		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2168				       0, 0);
2169		if (error) {
2170			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2171				__func__, error);
2172			return error;
2173		}
2174		next_agino = be32_to_cpu(dip->di_next_unlinked);
2175		ASSERT(next_agino != 0);
2176		ASSERT(next_agino != agino);
2177		if (next_agino != NULLAGINO) {
2178			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2179			offset = ip->i_imap.im_boffset +
2180				offsetof(xfs_dinode_t, di_next_unlinked);
2181
2182			/* need to recalc the inode CRC if appropriate */
2183			xfs_dinode_calc_crc(mp, dip);
2184
2185			xfs_trans_inode_buf(tp, ibp);
2186			xfs_trans_log_buf(tp, ibp, offset,
2187					  (offset + sizeof(xfs_agino_t) - 1));
2188			xfs_inobp_check(mp, ibp);
2189		} else {
2190			xfs_trans_brelse(tp, ibp);
2191		}
2192		/*
2193		 * Point the previous inode on the list to the next inode.
2194		 */
2195		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2196		ASSERT(next_agino != 0);
2197		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2198
2199		/* need to recalc the inode CRC if appropriate */
2200		xfs_dinode_calc_crc(mp, last_dip);
 
2201
2202		xfs_trans_inode_buf(tp, last_ibp);
2203		xfs_trans_log_buf(tp, last_ibp, offset,
2204				  (offset + sizeof(xfs_agino_t) - 1));
2205		xfs_inobp_check(mp, last_ibp);
2206	}
2207	return 0;
2208}
2209
2210/*
2211 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2212 * inodes that are in memory - they all must be marked stale and attached to
2213 * the cluster buffer.
2214 */
2215STATIC int
2216xfs_ifree_cluster(
2217	xfs_inode_t		*free_ip,
2218	xfs_trans_t		*tp,
 
2219	struct xfs_icluster	*xic)
2220{
2221	xfs_mount_t		*mp = free_ip->i_mount;
2222	int			blks_per_cluster;
2223	int			inodes_per_cluster;
 
 
2224	int			nbufs;
2225	int			i, j;
2226	int			ioffset;
2227	xfs_daddr_t		blkno;
2228	xfs_buf_t		*bp;
2229	xfs_inode_t		*ip;
2230	xfs_inode_log_item_t	*iip;
2231	struct xfs_log_item	*lip;
2232	struct xfs_perag	*pag;
2233	xfs_ino_t		inum;
2234
2235	inum = xic->first_ino;
2236	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2237	blks_per_cluster = xfs_icluster_size_fsb(mp);
2238	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2239	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2240
2241	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2242		/*
2243		 * The allocation bitmap tells us which inodes of the chunk were
2244		 * physically allocated. Skip the cluster if an inode falls into
2245		 * a sparse region.
2246		 */
2247		ioffset = inum - xic->first_ino;
2248		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2249			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2250			continue;
2251		}
2252
2253		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2254					 XFS_INO_TO_AGBNO(mp, inum));
2255
2256		/*
2257		 * We obtain and lock the backing buffer first in the process
2258		 * here, as we have to ensure that any dirty inode that we
2259		 * can't get the flush lock on is attached to the buffer.
 
2260		 * If we scan the in-memory inodes first, then buffer IO can
2261		 * complete before we get a lock on it, and hence we may fail
2262		 * to mark all the active inodes on the buffer stale.
2263		 */
2264		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2265					mp->m_bsize * blks_per_cluster,
2266					XBF_UNMAPPED);
2267
2268		if (!bp)
2269			return -ENOMEM;
2270
2271		/*
2272		 * This buffer may not have been correctly initialised as we
2273		 * didn't read it from disk. That's not important because we are
2274		 * only using to mark the buffer as stale in the log, and to
2275		 * attach stale cached inodes on it. That means it will never be
2276		 * dispatched for IO. If it is, we want to know about it, and we
2277		 * want it to fail. We can acheive this by adding a write
2278		 * verifier to the buffer.
2279		 */
2280		 bp->b_ops = &xfs_inode_buf_ops;
2281
2282		/*
2283		 * Walk the inodes already attached to the buffer and mark them
2284		 * stale. These will all have the flush locks held, so an
2285		 * in-memory inode walk can't lock them. By marking them all
2286		 * stale first, we will not attempt to lock them in the loop
2287		 * below as the XFS_ISTALE flag will be set.
2288		 */
2289		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2290			if (lip->li_type == XFS_LI_INODE) {
2291				iip = (xfs_inode_log_item_t *)lip;
2292				ASSERT(iip->ili_logged == 1);
2293				lip->li_cb = xfs_istale_done;
2294				xfs_trans_ail_copy_lsn(mp->m_ail,
2295							&iip->ili_flush_lsn,
2296							&iip->ili_item.li_lsn);
2297				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2298			}
2299		}
2300
2301
2302		/*
2303		 * For each inode in memory attempt to add it to the inode
2304		 * buffer and set it up for being staled on buffer IO
2305		 * completion.  This is safe as we've locked out tail pushing
2306		 * and flushing by locking the buffer.
2307		 *
2308		 * We have already marked every inode that was part of a
2309		 * transaction stale above, which means there is no point in
2310		 * even trying to lock them.
2311		 */
2312		for (i = 0; i < inodes_per_cluster; i++) {
2313retry:
2314			rcu_read_lock();
2315			ip = radix_tree_lookup(&pag->pag_ici_root,
2316					XFS_INO_TO_AGINO(mp, (inum + i)));
2317
2318			/* Inode not in memory, nothing to do */
2319			if (!ip) {
2320				rcu_read_unlock();
2321				continue;
2322			}
2323
2324			/*
2325			 * because this is an RCU protected lookup, we could
2326			 * find a recently freed or even reallocated inode
2327			 * during the lookup. We need to check under the
2328			 * i_flags_lock for a valid inode here. Skip it if it
2329			 * is not valid, the wrong inode or stale.
2330			 */
2331			spin_lock(&ip->i_flags_lock);
2332			if (ip->i_ino != inum + i ||
2333			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2334				spin_unlock(&ip->i_flags_lock);
2335				rcu_read_unlock();
2336				continue;
2337			}
2338			spin_unlock(&ip->i_flags_lock);
2339
2340			/*
2341			 * Don't try to lock/unlock the current inode, but we
2342			 * _cannot_ skip the other inodes that we did not find
2343			 * in the list attached to the buffer and are not
2344			 * already marked stale. If we can't lock it, back off
2345			 * and retry.
2346			 */
2347			if (ip != free_ip) {
2348				if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2349					rcu_read_unlock();
2350					delay(1);
2351					goto retry;
2352				}
2353
2354				/*
2355				 * Check the inode number again in case we're
2356				 * racing with freeing in xfs_reclaim_inode().
2357				 * See the comments in that function for more
2358				 * information as to why the initial check is
2359				 * not sufficient.
2360				 */
2361				if (ip->i_ino != inum + i) {
2362					xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363					rcu_read_unlock();
2364					continue;
2365				}
2366			}
2367			rcu_read_unlock();
2368
2369			xfs_iflock(ip);
2370			xfs_iflags_set(ip, XFS_ISTALE);
2371
2372			/*
2373			 * we don't need to attach clean inodes or those only
2374			 * with unlogged changes (which we throw away, anyway).
2375			 */
2376			iip = ip->i_itemp;
2377			if (!iip || xfs_inode_clean(ip)) {
2378				ASSERT(ip != free_ip);
2379				xfs_ifunlock(ip);
2380				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381				continue;
2382			}
2383
2384			iip->ili_last_fields = iip->ili_fields;
2385			iip->ili_fields = 0;
2386			iip->ili_fsync_fields = 0;
2387			iip->ili_logged = 1;
2388			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2389						&iip->ili_item.li_lsn);
2390
2391			xfs_buf_attach_iodone(bp, xfs_istale_done,
2392						  &iip->ili_item);
2393
2394			if (ip != free_ip)
2395				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396		}
2397
2398		xfs_trans_stale_inode_buf(tp, bp);
2399		xfs_trans_binval(tp, bp);
2400	}
2401
2402	xfs_perag_put(pag);
2403	return 0;
2404}
2405
2406/*
2407 * Free any local-format buffers sitting around before we reset to
2408 * extents format.
2409 */
2410static inline void
2411xfs_ifree_local_data(
2412	struct xfs_inode	*ip,
2413	int			whichfork)
2414{
2415	struct xfs_ifork	*ifp;
2416
2417	if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2418		return;
2419
2420	ifp = XFS_IFORK_PTR(ip, whichfork);
2421	xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2422}
2423
2424/*
2425 * This is called to return an inode to the inode free list.
2426 * The inode should already be truncated to 0 length and have
2427 * no pages associated with it.  This routine also assumes that
2428 * the inode is already a part of the transaction.
2429 *
2430 * The on-disk copy of the inode will have been added to the list
2431 * of unlinked inodes in the AGI. We need to remove the inode from
2432 * that list atomically with respect to freeing it here.
2433 */
2434int
2435xfs_ifree(
2436	xfs_trans_t	*tp,
2437	xfs_inode_t	*ip,
2438	struct xfs_defer_ops	*dfops)
2439{
 
 
 
 
2440	int			error;
2441	struct xfs_icluster	xic = { 0 };
2442
2443	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2444	ASSERT(VFS_I(ip)->i_nlink == 0);
2445	ASSERT(ip->i_d.di_nextents == 0);
2446	ASSERT(ip->i_d.di_anextents == 0);
2447	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2448	ASSERT(ip->i_d.di_nblocks == 0);
 
2449
2450	/*
2451	 * Pull the on-disk inode from the AGI unlinked list.
 
 
 
2452	 */
2453	error = xfs_iunlink_remove(tp, ip);
2454	if (error)
2455		return error;
2456
2457	error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2458	if (error)
2459		return error;
2460
2461	xfs_ifree_local_data(ip, XFS_DATA_FORK);
2462	xfs_ifree_local_data(ip, XFS_ATTR_FORK);
 
 
 
 
 
 
 
 
2463
2464	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2465	ip->i_d.di_flags = 0;
2466	ip->i_d.di_flags2 = 0;
2467	ip->i_d.di_dmevmask = 0;
2468	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2469	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2470	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2471
2472	/* Don't attempt to replay owner changes for a deleted inode */
2473	ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
 
 
2474
2475	/*
2476	 * Bump the generation count so no one will be confused
2477	 * by reincarnations of this inode.
2478	 */
2479	VFS_I(ip)->i_generation++;
2480	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2481
2482	if (xic.deleted)
2483		error = xfs_ifree_cluster(ip, tp, &xic);
2484
 
2485	return error;
2486}
2487
2488/*
2489 * This is called to unpin an inode.  The caller must have the inode locked
2490 * in at least shared mode so that the buffer cannot be subsequently pinned
2491 * once someone is waiting for it to be unpinned.
2492 */
2493static void
2494xfs_iunpin(
2495	struct xfs_inode	*ip)
2496{
2497	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2498
2499	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2500
2501	/* Give the log a push to start the unpinning I/O */
2502	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2503
2504}
2505
2506static void
2507__xfs_iunpin_wait(
2508	struct xfs_inode	*ip)
2509{
2510	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2511	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2512
2513	xfs_iunpin(ip);
2514
2515	do {
2516		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2517		if (xfs_ipincount(ip))
2518			io_schedule();
2519	} while (xfs_ipincount(ip));
2520	finish_wait(wq, &wait.wq_entry);
2521}
2522
2523void
2524xfs_iunpin_wait(
2525	struct xfs_inode	*ip)
2526{
2527	if (xfs_ipincount(ip))
2528		__xfs_iunpin_wait(ip);
2529}
2530
2531/*
2532 * Removing an inode from the namespace involves removing the directory entry
2533 * and dropping the link count on the inode. Removing the directory entry can
2534 * result in locking an AGF (directory blocks were freed) and removing a link
2535 * count can result in placing the inode on an unlinked list which results in
2536 * locking an AGI.
2537 *
2538 * The big problem here is that we have an ordering constraint on AGF and AGI
2539 * locking - inode allocation locks the AGI, then can allocate a new extent for
2540 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2541 * removes the inode from the unlinked list, requiring that we lock the AGI
2542 * first, and then freeing the inode can result in an inode chunk being freed
2543 * and hence freeing disk space requiring that we lock an AGF.
2544 *
2545 * Hence the ordering that is imposed by other parts of the code is AGI before
2546 * AGF. This means we cannot remove the directory entry before we drop the inode
2547 * reference count and put it on the unlinked list as this results in a lock
2548 * order of AGF then AGI, and this can deadlock against inode allocation and
2549 * freeing. Therefore we must drop the link counts before we remove the
2550 * directory entry.
2551 *
2552 * This is still safe from a transactional point of view - it is not until we
2553 * get to xfs_defer_finish() that we have the possibility of multiple
2554 * transactions in this operation. Hence as long as we remove the directory
2555 * entry and drop the link count in the first transaction of the remove
2556 * operation, there are no transactional constraints on the ordering here.
2557 */
2558int
2559xfs_remove(
2560	xfs_inode_t             *dp,
2561	struct xfs_name		*name,
2562	xfs_inode_t		*ip)
2563{
2564	xfs_mount_t		*mp = dp->i_mount;
2565	xfs_trans_t             *tp = NULL;
2566	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
 
2567	int                     error = 0;
2568	struct xfs_defer_ops	dfops;
2569	xfs_fsblock_t           first_block;
2570	uint			resblks;
2571
2572	trace_xfs_remove(dp, name);
2573
2574	if (XFS_FORCED_SHUTDOWN(mp))
 
 
2575		return -EIO;
2576
2577	error = xfs_qm_dqattach(dp, 0);
2578	if (error)
2579		goto std_return;
2580
2581	error = xfs_qm_dqattach(ip, 0);
2582	if (error)
2583		goto std_return;
2584
2585	/*
2586	 * We try to get the real space reservation first,
2587	 * allowing for directory btree deletion(s) implying
2588	 * possible bmap insert(s).  If we can't get the space
2589	 * reservation then we use 0 instead, and avoid the bmap
2590	 * btree insert(s) in the directory code by, if the bmap
2591	 * insert tries to happen, instead trimming the LAST
2592	 * block from the directory.
 
 
2593	 */
2594	resblks = XFS_REMOVE_SPACE_RES(mp);
2595	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2596	if (error == -ENOSPC) {
2597		resblks = 0;
2598		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2599				&tp);
2600	}
2601	if (error) {
2602		ASSERT(error != -ENOSPC);
2603		goto std_return;
2604	}
2605
2606	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2607
2608	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2609	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2610
2611	/*
2612	 * If we're removing a directory perform some additional validation.
2613	 */
2614	if (is_dir) {
2615		ASSERT(VFS_I(ip)->i_nlink >= 2);
2616		if (VFS_I(ip)->i_nlink != 2) {
2617			error = -ENOTEMPTY;
2618			goto out_trans_cancel;
2619		}
2620		if (!xfs_dir_isempty(ip)) {
2621			error = -ENOTEMPTY;
2622			goto out_trans_cancel;
2623		}
2624
2625		/* Drop the link from ip's "..".  */
2626		error = xfs_droplink(tp, dp);
2627		if (error)
2628			goto out_trans_cancel;
2629
2630		/* Drop the "." link from ip to self.  */
2631		error = xfs_droplink(tp, ip);
2632		if (error)
2633			goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
2634	} else {
2635		/*
2636		 * When removing a non-directory we need to log the parent
2637		 * inode here.  For a directory this is done implicitly
2638		 * by the xfs_droplink call for the ".." entry.
2639		 */
2640		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2641	}
2642	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2643
2644	/* Drop the link from dp to ip. */
2645	error = xfs_droplink(tp, ip);
2646	if (error)
2647		goto out_trans_cancel;
2648
2649	xfs_defer_init(&dfops, &first_block);
2650	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2651					&first_block, &dfops, resblks);
2652	if (error) {
2653		ASSERT(error != -ENOENT);
2654		goto out_bmap_cancel;
2655	}
2656
2657	/*
2658	 * If this is a synchronous mount, make sure that the
2659	 * remove transaction goes to disk before returning to
2660	 * the user.
2661	 */
2662	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2663		xfs_trans_set_sync(tp);
2664
2665	error = xfs_defer_finish(&tp, &dfops);
2666	if (error)
2667		goto out_bmap_cancel;
2668
2669	error = xfs_trans_commit(tp);
2670	if (error)
2671		goto std_return;
2672
2673	if (is_dir && xfs_inode_is_filestream(ip))
2674		xfs_filestream_deassociate(ip);
2675
2676	return 0;
2677
2678 out_bmap_cancel:
2679	xfs_defer_cancel(&dfops);
2680 out_trans_cancel:
2681	xfs_trans_cancel(tp);
2682 std_return:
2683	return error;
2684}
2685
2686/*
2687 * Enter all inodes for a rename transaction into a sorted array.
2688 */
2689#define __XFS_SORT_INODES	5
2690STATIC void
2691xfs_sort_for_rename(
2692	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2693	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2694	struct xfs_inode	*ip1,	/* in: inode of old entry */
2695	struct xfs_inode	*ip2,	/* in: inode of new entry */
2696	struct xfs_inode	*wip,	/* in: whiteout inode */
2697	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2698	int			*num_inodes)  /* in/out: inodes in array */
2699{
2700	int			i, j;
2701
2702	ASSERT(*num_inodes == __XFS_SORT_INODES);
2703	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2704
2705	/*
2706	 * i_tab contains a list of pointers to inodes.  We initialize
2707	 * the table here & we'll sort it.  We will then use it to
2708	 * order the acquisition of the inode locks.
2709	 *
2710	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2711	 */
2712	i = 0;
2713	i_tab[i++] = dp1;
2714	i_tab[i++] = dp2;
2715	i_tab[i++] = ip1;
2716	if (ip2)
2717		i_tab[i++] = ip2;
2718	if (wip)
2719		i_tab[i++] = wip;
2720	*num_inodes = i;
2721
2722	/*
2723	 * Sort the elements via bubble sort.  (Remember, there are at
2724	 * most 5 elements to sort, so this is adequate.)
2725	 */
2726	for (i = 0; i < *num_inodes; i++) {
2727		for (j = 1; j < *num_inodes; j++) {
2728			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2729				struct xfs_inode *temp = i_tab[j];
2730				i_tab[j] = i_tab[j-1];
2731				i_tab[j-1] = temp;
2732			}
2733		}
2734	}
2735}
2736
2737static int
2738xfs_finish_rename(
2739	struct xfs_trans	*tp,
2740	struct xfs_defer_ops	*dfops)
2741{
2742	int			error;
2743
2744	/*
2745	 * If this is a synchronous mount, make sure that the rename transaction
2746	 * goes to disk before returning to the user.
2747	 */
2748	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2749		xfs_trans_set_sync(tp);
2750
2751	error = xfs_defer_finish(&tp, dfops);
2752	if (error) {
2753		xfs_defer_cancel(dfops);
2754		xfs_trans_cancel(tp);
2755		return error;
2756	}
2757
2758	return xfs_trans_commit(tp);
2759}
2760
2761/*
2762 * xfs_cross_rename()
2763 *
2764 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2765 */
2766STATIC int
2767xfs_cross_rename(
2768	struct xfs_trans	*tp,
2769	struct xfs_inode	*dp1,
2770	struct xfs_name		*name1,
2771	struct xfs_inode	*ip1,
2772	struct xfs_inode	*dp2,
2773	struct xfs_name		*name2,
2774	struct xfs_inode	*ip2,
2775	struct xfs_defer_ops	*dfops,
2776	xfs_fsblock_t		*first_block,
2777	int			spaceres)
2778{
2779	int		error = 0;
2780	int		ip1_flags = 0;
2781	int		ip2_flags = 0;
2782	int		dp2_flags = 0;
2783
2784	/* Swap inode number for dirent in first parent */
2785	error = xfs_dir_replace(tp, dp1, name1,
2786				ip2->i_ino,
2787				first_block, dfops, spaceres);
2788	if (error)
2789		goto out_trans_abort;
2790
2791	/* Swap inode number for dirent in second parent */
2792	error = xfs_dir_replace(tp, dp2, name2,
2793				ip1->i_ino,
2794				first_block, dfops, spaceres);
2795	if (error)
2796		goto out_trans_abort;
2797
2798	/*
2799	 * If we're renaming one or more directories across different parents,
2800	 * update the respective ".." entries (and link counts) to match the new
2801	 * parents.
2802	 */
2803	if (dp1 != dp2) {
2804		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
2806		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2807			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2808						dp1->i_ino, first_block,
2809						dfops, spaceres);
2810			if (error)
2811				goto out_trans_abort;
2812
2813			/* transfer ip2 ".." reference to dp1 */
2814			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2815				error = xfs_droplink(tp, dp2);
2816				if (error)
2817					goto out_trans_abort;
2818				error = xfs_bumplink(tp, dp1);
2819				if (error)
2820					goto out_trans_abort;
2821			}
2822
2823			/*
2824			 * Although ip1 isn't changed here, userspace needs
2825			 * to be warned about the change, so that applications
2826			 * relying on it (like backup ones), will properly
2827			 * notify the change
2828			 */
2829			ip1_flags |= XFS_ICHGTIME_CHG;
2830			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2831		}
2832
2833		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2834			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2835						dp2->i_ino, first_block,
2836						dfops, spaceres);
2837			if (error)
2838				goto out_trans_abort;
2839
2840			/* transfer ip1 ".." reference to dp2 */
2841			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2842				error = xfs_droplink(tp, dp1);
2843				if (error)
2844					goto out_trans_abort;
2845				error = xfs_bumplink(tp, dp2);
2846				if (error)
2847					goto out_trans_abort;
2848			}
2849
2850			/*
2851			 * Although ip2 isn't changed here, userspace needs
2852			 * to be warned about the change, so that applications
2853			 * relying on it (like backup ones), will properly
2854			 * notify the change
2855			 */
2856			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2857			ip2_flags |= XFS_ICHGTIME_CHG;
2858		}
2859	}
2860
2861	if (ip1_flags) {
2862		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2863		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2864	}
2865	if (ip2_flags) {
2866		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2867		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2868	}
2869	if (dp2_flags) {
2870		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2871		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2872	}
2873	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2874	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2875	return xfs_finish_rename(tp, dfops);
2876
2877out_trans_abort:
2878	xfs_defer_cancel(dfops);
2879	xfs_trans_cancel(tp);
2880	return error;
2881}
2882
2883/*
2884 * xfs_rename_alloc_whiteout()
2885 *
2886 * Return a referenced, unlinked, unlocked inode that that can be used as a
2887 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2888 * crash between allocating the inode and linking it into the rename transaction
2889 * recovery will free the inode and we won't leak it.
2890 */
2891static int
2892xfs_rename_alloc_whiteout(
 
 
2893	struct xfs_inode	*dp,
2894	struct xfs_inode	**wip)
2895{
2896	struct xfs_inode	*tmpfile;
 
2897	int			error;
2898
2899	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
 
2900	if (error)
2901		return error;
2902
 
 
 
 
 
 
 
 
 
2903	/*
2904	 * Prepare the tmpfile inode as if it were created through the VFS.
2905	 * Otherwise, the link increment paths will complain about nlink 0->1.
2906	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2907	 * and flag it as linkable.
2908	 */
2909	drop_nlink(VFS_I(tmpfile));
2910	xfs_setup_iops(tmpfile);
2911	xfs_finish_inode_setup(tmpfile);
2912	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2913
2914	*wip = tmpfile;
2915	return 0;
2916}
2917
2918/*
2919 * xfs_rename
2920 */
2921int
2922xfs_rename(
 
2923	struct xfs_inode	*src_dp,
2924	struct xfs_name		*src_name,
2925	struct xfs_inode	*src_ip,
2926	struct xfs_inode	*target_dp,
2927	struct xfs_name		*target_name,
2928	struct xfs_inode	*target_ip,
2929	unsigned int		flags)
2930{
2931	struct xfs_mount	*mp = src_dp->i_mount;
2932	struct xfs_trans	*tp;
2933	struct xfs_defer_ops	dfops;
2934	xfs_fsblock_t		first_block;
2935	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2936	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
2937	int			num_inodes = __XFS_SORT_INODES;
2938	bool			new_parent = (src_dp != target_dp);
2939	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2940	int			spaceres;
2941	int			error;
 
2942
2943	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2944
2945	if ((flags & RENAME_EXCHANGE) && !target_ip)
2946		return -EINVAL;
2947
2948	/*
2949	 * If we are doing a whiteout operation, allocate the whiteout inode
2950	 * we will be placing at the target and ensure the type is set
2951	 * appropriately.
2952	 */
2953	if (flags & RENAME_WHITEOUT) {
2954		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2955		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2956		if (error)
2957			return error;
2958
2959		/* setup target dirent info as whiteout */
2960		src_name->type = XFS_DIR3_FT_CHRDEV;
2961	}
2962
2963	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2964				inodes, &num_inodes);
2965
 
 
2966	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2967	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2968	if (error == -ENOSPC) {
 
2969		spaceres = 0;
2970		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2971				&tp);
2972	}
2973	if (error)
2974		goto out_release_wip;
2975
2976	/*
2977	 * Attach the dquots to the inodes
2978	 */
2979	error = xfs_qm_vop_rename_dqattach(inodes);
2980	if (error)
2981		goto out_trans_cancel;
2982
2983	/*
2984	 * Lock all the participating inodes. Depending upon whether
2985	 * the target_name exists in the target directory, and
2986	 * whether the target directory is the same as the source
2987	 * directory, we can lock from 2 to 4 inodes.
2988	 */
2989	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2990
2991	/*
2992	 * Join all the inodes to the transaction. From this point on,
2993	 * we can rely on either trans_commit or trans_cancel to unlock
2994	 * them.
2995	 */
2996	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2997	if (new_parent)
2998		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2999	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3000	if (target_ip)
3001		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3002	if (wip)
3003		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3004
3005	/*
3006	 * If we are using project inheritance, we only allow renames
3007	 * into our tree when the project IDs are the same; else the
3008	 * tree quota mechanism would be circumvented.
3009	 */
3010	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3011		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3012		error = -EXDEV;
3013		goto out_trans_cancel;
3014	}
3015
3016	xfs_defer_init(&dfops, &first_block);
3017
3018	/* RENAME_EXCHANGE is unique from here on. */
3019	if (flags & RENAME_EXCHANGE)
3020		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3021					target_dp, target_name, target_ip,
3022					&dfops, &first_block, spaceres);
3023
3024	/*
3025	 * Set up the target.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3026	 */
3027	if (target_ip == NULL) {
3028		/*
3029		 * If there's no space reservation, check the entry will
3030		 * fit before actually inserting it.
3031		 */
3032		if (!spaceres) {
3033			error = xfs_dir_canenter(tp, target_dp, target_name);
3034			if (error)
3035				goto out_trans_cancel;
3036		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037		/*
3038		 * If target does not exist and the rename crosses
3039		 * directories, adjust the target directory link count
3040		 * to account for the ".." reference from the new entry.
3041		 */
3042		error = xfs_dir_createname(tp, target_dp, target_name,
3043						src_ip->i_ino, &first_block,
3044						&dfops, spaceres);
3045		if (error)
3046			goto out_bmap_cancel;
3047
3048		xfs_trans_ichgtime(tp, target_dp,
3049					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3050
3051		if (new_parent && src_is_directory) {
3052			error = xfs_bumplink(tp, target_dp);
3053			if (error)
3054				goto out_bmap_cancel;
3055		}
3056	} else { /* target_ip != NULL */
3057		/*
3058		 * If target exists and it's a directory, check that both
3059		 * target and source are directories and that target can be
3060		 * destroyed, or that neither is a directory.
3061		 */
3062		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3063			/*
3064			 * Make sure target dir is empty.
3065			 */
3066			if (!(xfs_dir_isempty(target_ip)) ||
3067			    (VFS_I(target_ip)->i_nlink > 2)) {
3068				error = -EEXIST;
3069				goto out_trans_cancel;
3070			}
3071		}
3072
3073		/*
3074		 * Link the source inode under the target name.
3075		 * If the source inode is a directory and we are moving
3076		 * it across directories, its ".." entry will be
3077		 * inconsistent until we replace that down below.
3078		 *
3079		 * In case there is already an entry with the same
3080		 * name at the destination directory, remove it first.
3081		 */
3082		error = xfs_dir_replace(tp, target_dp, target_name,
3083					src_ip->i_ino,
3084					&first_block, &dfops, spaceres);
3085		if (error)
3086			goto out_bmap_cancel;
3087
3088		xfs_trans_ichgtime(tp, target_dp,
3089					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3090
3091		/*
3092		 * Decrement the link count on the target since the target
3093		 * dir no longer points to it.
3094		 */
3095		error = xfs_droplink(tp, target_ip);
3096		if (error)
3097			goto out_bmap_cancel;
3098
3099		if (src_is_directory) {
3100			/*
3101			 * Drop the link from the old "." entry.
3102			 */
3103			error = xfs_droplink(tp, target_ip);
3104			if (error)
3105				goto out_bmap_cancel;
3106		}
3107	} /* target_ip != NULL */
3108
3109	/*
3110	 * Remove the source.
3111	 */
3112	if (new_parent && src_is_directory) {
3113		/*
3114		 * Rewrite the ".." entry to point to the new
3115		 * directory.
3116		 */
3117		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3118					target_dp->i_ino,
3119					&first_block, &dfops, spaceres);
3120		ASSERT(error != -EEXIST);
3121		if (error)
3122			goto out_bmap_cancel;
3123	}
3124
3125	/*
3126	 * We always want to hit the ctime on the source inode.
3127	 *
3128	 * This isn't strictly required by the standards since the source
3129	 * inode isn't really being changed, but old unix file systems did
3130	 * it and some incremental backup programs won't work without it.
3131	 */
3132	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3133	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3134
3135	/*
3136	 * Adjust the link count on src_dp.  This is necessary when
3137	 * renaming a directory, either within one parent when
3138	 * the target existed, or across two parent directories.
3139	 */
3140	if (src_is_directory && (new_parent || target_ip != NULL)) {
3141
3142		/*
3143		 * Decrement link count on src_directory since the
3144		 * entry that's moved no longer points to it.
3145		 */
3146		error = xfs_droplink(tp, src_dp);
3147		if (error)
3148			goto out_bmap_cancel;
3149	}
3150
3151	/*
3152	 * For whiteouts, we only need to update the source dirent with the
3153	 * inode number of the whiteout inode rather than removing it
3154	 * altogether.
3155	 */
3156	if (wip) {
3157		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3158					&first_block, &dfops, spaceres);
3159	} else
3160		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3161					   &first_block, &dfops, spaceres);
 
3162	if (error)
3163		goto out_bmap_cancel;
3164
3165	/*
3166	 * For whiteouts, we need to bump the link count on the whiteout inode.
3167	 * This means that failures all the way up to this point leave the inode
3168	 * on the unlinked list and so cleanup is a simple matter of dropping
3169	 * the remaining reference to it. If we fail here after bumping the link
3170	 * count, we're shutting down the filesystem so we'll never see the
3171	 * intermediate state on disk.
3172	 */
3173	if (wip) {
3174		ASSERT(VFS_I(wip)->i_nlink == 0);
3175		error = xfs_bumplink(tp, wip);
3176		if (error)
3177			goto out_bmap_cancel;
3178		error = xfs_iunlink_remove(tp, wip);
3179		if (error)
3180			goto out_bmap_cancel;
3181		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3182
3183		/*
3184		 * Now we have a real link, clear the "I'm a tmpfile" state
3185		 * flag from the inode so it doesn't accidentally get misused in
3186		 * future.
3187		 */
3188		VFS_I(wip)->i_state &= ~I_LINKABLE;
3189	}
3190
3191	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3192	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3193	if (new_parent)
3194		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3195
3196	error = xfs_finish_rename(tp, &dfops);
3197	if (wip)
3198		IRELE(wip);
3199	return error;
3200
3201out_bmap_cancel:
3202	xfs_defer_cancel(&dfops);
3203out_trans_cancel:
3204	xfs_trans_cancel(tp);
3205out_release_wip:
3206	if (wip)
3207		IRELE(wip);
 
 
3208	return error;
3209}
3210
3211STATIC int
3212xfs_iflush_cluster(
3213	struct xfs_inode	*ip,
3214	struct xfs_buf		*bp)
3215{
 
 
3216	struct xfs_mount	*mp = ip->i_mount;
3217	struct xfs_perag	*pag;
3218	unsigned long		first_index, mask;
3219	unsigned long		inodes_per_cluster;
3220	int			cilist_size;
3221	struct xfs_inode	**cilist;
3222	struct xfs_inode	*cip;
3223	int			nr_found;
3224	int			clcount = 0;
3225	int			bufwasdelwri;
3226	int			i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227
3228	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 
 
 
3229
3230	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3231	cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3232	cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3233	if (!cilist)
3234		goto out_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235
3236	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3237	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3238	rcu_read_lock();
3239	/* really need a gang lookup range call here */
3240	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3241					first_index, inodes_per_cluster);
3242	if (nr_found == 0)
3243		goto out_free;
3244
3245	for (i = 0; i < nr_found; i++) {
3246		cip = cilist[i];
3247		if (cip == ip)
3248			continue;
3249
3250		/*
3251		 * because this is an RCU protected lookup, we could find a
3252		 * recently freed or even reallocated inode during the lookup.
3253		 * We need to check under the i_flags_lock for a valid inode
3254		 * here. Skip it if it is not valid or the wrong inode.
3255		 */
3256		spin_lock(&cip->i_flags_lock);
3257		if (!cip->i_ino ||
3258		    __xfs_iflags_test(cip, XFS_ISTALE)) {
3259			spin_unlock(&cip->i_flags_lock);
3260			continue;
3261		}
3262
3263		/*
3264		 * Once we fall off the end of the cluster, no point checking
3265		 * any more inodes in the list because they will also all be
3266		 * outside the cluster.
3267		 */
3268		if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3269			spin_unlock(&cip->i_flags_lock);
3270			break;
 
 
 
 
3271		}
3272		spin_unlock(&cip->i_flags_lock);
3273
3274		/*
3275		 * Do an un-protected check to see if the inode is dirty and
3276		 * is a candidate for flushing.  These checks will be repeated
3277		 * later after the appropriate locks are acquired.
 
3278		 */
3279		if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
 
3280			continue;
 
 
 
3281
3282		/*
3283		 * Try to get locks.  If any are unavailable or it is pinned,
3284		 * then this inode cannot be flushed and is skipped.
3285		 */
3286
3287		if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3288			continue;
3289		if (!xfs_iflock_nowait(cip)) {
3290			xfs_iunlock(cip, XFS_ILOCK_SHARED);
 
 
 
3291			continue;
3292		}
3293		if (xfs_ipincount(cip)) {
3294			xfs_ifunlock(cip);
3295			xfs_iunlock(cip, XFS_ILOCK_SHARED);
 
 
3296			continue;
3297		}
3298
 
 
 
 
 
 
 
 
 
3299
 
3300		/*
3301		 * Check the inode number again, just to be certain we are not
3302		 * racing with freeing in xfs_reclaim_inode(). See the comments
3303		 * in that function for more information as to why the initial
3304		 * check is not sufficient.
3305		 */
3306		if (!cip->i_ino) {
3307			xfs_ifunlock(cip);
3308			xfs_iunlock(cip, XFS_ILOCK_SHARED);
3309			continue;
3310		}
3311
3312		/*
3313		 * arriving here means that this inode can be flushed.  First
3314		 * re-check that it's dirty before flushing.
3315		 */
3316		if (!xfs_inode_clean(cip)) {
3317			int	error;
3318			error = xfs_iflush_int(cip, bp);
3319			if (error) {
3320				xfs_iunlock(cip, XFS_ILOCK_SHARED);
3321				goto cluster_corrupt_out;
3322			}
3323			clcount++;
3324		} else {
3325			xfs_ifunlock(cip);
3326		}
3327		xfs_iunlock(cip, XFS_ILOCK_SHARED);
3328	}
3329
3330	if (clcount) {
3331		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3332		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3333	}
3334
3335out_free:
3336	rcu_read_unlock();
3337	kmem_free(cilist);
3338out_put:
3339	xfs_perag_put(pag);
3340	return 0;
3341
 
3342
3343cluster_corrupt_out:
3344	/*
3345	 * Corruption detected in the clustering loop.  Invalidate the
3346	 * inode buffer and shut down the filesystem.
3347	 */
3348	rcu_read_unlock();
3349	/*
3350	 * Clean up the buffer.  If it was delwri, just release it --
3351	 * brelse can handle it with no problems.  If not, shut down the
3352	 * filesystem before releasing the buffer.
3353	 */
3354	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3355	if (bufwasdelwri)
3356		xfs_buf_relse(bp);
3357
3358	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3359
3360	if (!bufwasdelwri) {
3361		/*
3362		 * Just like incore_relse: if we have b_iodone functions,
3363		 * mark the buffer as an error and call them.  Otherwise
3364		 * mark it as stale and brelse.
3365		 */
3366		if (bp->b_iodone) {
3367			bp->b_flags &= ~XBF_DONE;
3368			xfs_buf_stale(bp);
3369			xfs_buf_ioerror(bp, -EIO);
3370			xfs_buf_ioend(bp);
3371		} else {
3372			xfs_buf_stale(bp);
3373			xfs_buf_relse(bp);
3374		}
3375	}
3376
3377	/*
3378	 * Unlocks the flush lock
3379	 */
3380	xfs_iflush_abort(cip, false);
3381	kmem_free(cilist);
3382	xfs_perag_put(pag);
3383	return -EFSCORRUPTED;
3384}
3385
3386/*
3387 * Flush dirty inode metadata into the backing buffer.
3388 *
3389 * The caller must have the inode lock and the inode flush lock held.  The
3390 * inode lock will still be held upon return to the caller, and the inode
3391 * flush lock will be released after the inode has reached the disk.
3392 *
3393 * The caller must write out the buffer returned in *bpp and release it.
3394 */
3395int
3396xfs_iflush(
3397	struct xfs_inode	*ip,
3398	struct xfs_buf		**bpp)
3399{
3400	struct xfs_mount	*mp = ip->i_mount;
3401	struct xfs_buf		*bp = NULL;
3402	struct xfs_dinode	*dip;
3403	int			error;
3404
3405	XFS_STATS_INC(mp, xs_iflush_count);
 
 
 
3406
3407	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3408	ASSERT(xfs_isiflocked(ip));
3409	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3410	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3411
3412	*bpp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414	xfs_iunpin_wait(ip);
 
3415
3416	/*
3417	 * For stale inodes we cannot rely on the backing buffer remaining
3418	 * stale in cache for the remaining life of the stale inode and so
3419	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3420	 * inodes below. We have to check this after ensuring the inode is
3421	 * unpinned so that it is safe to reclaim the stale inode after the
3422	 * flush call.
3423	 */
3424	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3425		xfs_ifunlock(ip);
3426		return 0;
3427	}
3428
3429	/*
3430	 * This may have been unpinned because the filesystem is shutting
3431	 * down forcibly. If that's the case we must not write this inode
3432	 * to disk, because the log record didn't make it to disk.
3433	 *
3434	 * We also have to remove the log item from the AIL in this case,
3435	 * as we wait for an empty AIL as part of the unmount process.
3436	 */
3437	if (XFS_FORCED_SHUTDOWN(mp)) {
3438		error = -EIO;
3439		goto abort_out;
3440	}
3441
3442	/*
3443	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3444	 * operation here, so we may get  an EAGAIN error. In that case, we
3445	 * simply want to return with the inode still dirty.
3446	 *
3447	 * If we get any other error, we effectively have a corruption situation
3448	 * and we cannot flush the inode, so we treat it the same as failing
3449	 * xfs_iflush_int().
3450	 */
3451	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3452			       0);
3453	if (error == -EAGAIN) {
3454		xfs_ifunlock(ip);
3455		return error;
3456	}
3457	if (error)
3458		goto corrupt_out;
3459
3460	/*
3461	 * First flush out the inode that xfs_iflush was called with.
3462	 */
3463	error = xfs_iflush_int(ip, bp);
3464	if (error)
3465		goto corrupt_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3466
3467	/*
3468	 * If the buffer is pinned then push on the log now so we won't
3469	 * get stuck waiting in the write for too long.
3470	 */
3471	if (xfs_buf_ispinned(bp))
3472		xfs_log_force(mp, 0);
3473
 
 
3474	/*
3475	 * inode clustering:
3476	 * see if other inodes can be gathered into this write
3477	 */
3478	error = xfs_iflush_cluster(ip, bp);
3479	if (error)
3480		goto cluster_corrupt_out;
 
 
 
 
3481
3482	*bpp = bp;
3483	return 0;
 
3484
3485corrupt_out:
3486	if (bp)
3487		xfs_buf_relse(bp);
3488	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3489cluster_corrupt_out:
3490	error = -EFSCORRUPTED;
3491abort_out:
3492	/*
3493	 * Unlocks the flush lock
3494	 */
3495	xfs_iflush_abort(ip, false);
3496	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3497}
3498
3499/*
3500 * If there are inline format data / attr forks attached to this inode,
3501 * make sure they're not corrupt.
 
3502 */
3503bool
3504xfs_inode_verify_forks(
 
3505	struct xfs_inode	*ip)
3506{
3507	struct xfs_ifork	*ifp;
3508	xfs_failaddr_t		fa;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3509
3510	fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3511	if (fa) {
3512		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3513		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3514				ifp->if_u1.if_data, ifp->if_bytes, fa);
3515		return false;
 
 
3516	}
3517
3518	fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3519	if (fa) {
3520		ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3521		xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3522				ifp ? ifp->if_u1.if_data : NULL,
3523				ifp ? ifp->if_bytes : 0, fa);
3524		return false;
3525	}
3526	return true;
3527}
3528
3529STATIC int
3530xfs_iflush_int(
3531	struct xfs_inode	*ip,
3532	struct xfs_buf		*bp)
3533{
3534	struct xfs_inode_log_item *iip = ip->i_itemp;
3535	struct xfs_dinode	*dip;
3536	struct xfs_mount	*mp = ip->i_mount;
3537
3538	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3539	ASSERT(xfs_isiflocked(ip));
3540	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3541	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3542	ASSERT(iip != NULL && iip->ili_fields != 0);
3543	ASSERT(ip->i_d.di_version > 1);
3544
3545	/* set *dip = inode's place in the buffer */
3546	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
3547
3548	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3549			       mp, XFS_ERRTAG_IFLUSH_1)) {
3550		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3551			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3552			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3553		goto corrupt_out;
3554	}
3555	if (S_ISREG(VFS_I(ip)->i_mode)) {
3556		if (XFS_TEST_ERROR(
3557		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3558		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3559		    mp, XFS_ERRTAG_IFLUSH_3)) {
3560			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3561				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3562				__func__, ip->i_ino, ip);
3563			goto corrupt_out;
3564		}
3565	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3566		if (XFS_TEST_ERROR(
3567		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3568		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3569		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3570		    mp, XFS_ERRTAG_IFLUSH_4)) {
3571			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3572				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3573				__func__, ip->i_ino, ip);
3574			goto corrupt_out;
3575		}
3576	}
3577	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3578				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3579		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3580			"%s: detected corrupt incore inode %Lu, "
3581			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3582			__func__, ip->i_ino,
3583			ip->i_d.di_nextents + ip->i_d.di_anextents,
3584			ip->i_d.di_nblocks, ip);
3585		goto corrupt_out;
3586	}
3587	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3588				mp, XFS_ERRTAG_IFLUSH_6)) {
3589		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3590			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3591			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3592		goto corrupt_out;
3593	}
3594
3595	/*
3596	 * Inode item log recovery for v2 inodes are dependent on the
3597	 * di_flushiter count for correct sequencing. We bump the flush
3598	 * iteration count so we can detect flushes which postdate a log record
3599	 * during recovery. This is redundant as we now log every change and
3600	 * hence this can't happen but we need to still do it to ensure
3601	 * backwards compatibility with old kernels that predate logging all
3602	 * inode changes.
3603	 */
3604	if (ip->i_d.di_version < 3)
3605		ip->i_d.di_flushiter++;
3606
3607	/* Check the inline fork data before we write out. */
3608	if (!xfs_inode_verify_forks(ip))
3609		goto corrupt_out;
3610
3611	/*
3612	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3613	 * copy out the core of the inode, because if the inode is dirty at all
3614	 * the core must be.
3615	 */
3616	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
 
 
3617
3618	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3619	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3620		ip->i_d.di_flushiter = 0;
 
3621
3622	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3623	if (XFS_IFORK_Q(ip))
3624		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3625	xfs_inobp_check(mp, bp);
 
 
 
3626
3627	/*
3628	 * We've recorded everything logged in the inode, so we'd like to clear
3629	 * the ili_fields bits so we don't log and flush things unnecessarily.
3630	 * However, we can't stop logging all this information until the data
3631	 * we've copied into the disk buffer is written to disk.  If we did we
3632	 * might overwrite the copy of the inode in the log with all the data
3633	 * after re-logging only part of it, and in the face of a crash we
3634	 * wouldn't have all the data we need to recover.
3635	 *
3636	 * What we do is move the bits to the ili_last_fields field.  When
3637	 * logging the inode, these bits are moved back to the ili_fields field.
3638	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3639	 * know that the information those bits represent is permanently on
3640	 * disk.  As long as the flush completes before the inode is logged
3641	 * again, then both ili_fields and ili_last_fields will be cleared.
3642	 *
3643	 * We can play with the ili_fields bits here, because the inode lock
3644	 * must be held exclusively in order to set bits there and the flush
3645	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3646	 * done routine can tell whether or not to look in the AIL.  Also, store
3647	 * the current LSN of the inode so that we can tell whether the item has
3648	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3649	 * need the AIL lock, because it is a 64 bit value that cannot be read
3650	 * atomically.
3651	 */
3652	iip->ili_last_fields = iip->ili_fields;
3653	iip->ili_fields = 0;
3654	iip->ili_fsync_fields = 0;
3655	iip->ili_logged = 1;
3656
3657	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3658				&iip->ili_item.li_lsn);
 
3659
3660	/*
3661	 * Attach the function xfs_iflush_done to the inode's
3662	 * buffer.  This will remove the inode from the AIL
3663	 * and unlock the inode's flush lock when the inode is
3664	 * completely written to disk.
3665	 */
3666	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3667
3668	/* generate the checksum. */
3669	xfs_dinode_calc_crc(mp, dip);
3670
3671	ASSERT(!list_empty(&bp->b_li_list));
3672	ASSERT(bp->b_iodone != NULL);
3673	return 0;
 
 
 
 
3674
3675corrupt_out:
3676	return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677}