Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
  9#include "fs.h"
 10#include "messages.h"
 11#include "transaction.h"
 12#include "disk-io.h"
 13#include "print-tree.h"
 14#include "qgroup.h"
 15#include "space-info.h"
 16#include "accessors.h"
 17#include "root-tree.h"
 18#include "orphan.h"
 19
 20/*
 21 * Read a root item from the tree. In case we detect a root item smaller then
 22 * sizeof(root_item), we know it's an old version of the root structure and
 23 * initialize all new fields to zero. The same happens if we detect mismatching
 24 * generation numbers as then we know the root was once mounted with an older
 25 * kernel that was not aware of the root item structure change.
 26 */
 27static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 28				struct btrfs_root_item *item)
 29{
 30	u32 len;
 
 31	int need_reset = 0;
 32
 33	len = btrfs_item_size(eb, slot);
 34	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 35			   min_t(u32, len, sizeof(*item)));
 36	if (len < sizeof(*item))
 37		need_reset = 1;
 38	if (!need_reset && btrfs_root_generation(item)
 39		!= btrfs_root_generation_v2(item)) {
 40		if (btrfs_root_generation_v2(item) != 0) {
 41			btrfs_warn(eb->fs_info,
 42					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 43		}
 44		need_reset = 1;
 45	}
 46	if (need_reset) {
 47		/* Clear all members from generation_v2 onwards. */
 48		memset_startat(item, 0, generation_v2);
 49		generate_random_guid(item->uuid);
 
 
 
 50	}
 51}
 52
 53/*
 54 * Lookup the root by the key.
 55 *
 56 * root: the root of the root tree
 57 * search_key: the key to search
 58 * path: the path we search
 59 * root_item: the root item of the tree we look for
 60 * root_key: the root key of the tree we look for
 61 *
 62 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 63 * of the search key, just lookup the root with the highest offset for a
 64 * given objectid.
 65 *
 66 * If we find something return 0, otherwise > 0, < 0 on error.
 67 */
 68int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 69		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 70		    struct btrfs_key *root_key)
 71{
 72	struct btrfs_key found_key;
 73	struct extent_buffer *l;
 74	int ret;
 75	int slot;
 76
 77	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 78	if (ret < 0)
 79		return ret;
 80
 81	if (search_key->offset != -1ULL) {	/* the search key is exact */
 82		if (ret > 0)
 83			goto out;
 84	} else {
 85		BUG_ON(ret == 0);		/* Logical error */
 86		if (path->slots[0] == 0)
 87			goto out;
 88		path->slots[0]--;
 89		ret = 0;
 90	}
 91
 92	l = path->nodes[0];
 93	slot = path->slots[0];
 94
 95	btrfs_item_key_to_cpu(l, &found_key, slot);
 96	if (found_key.objectid != search_key->objectid ||
 97	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 98		ret = 1;
 99		goto out;
100	}
101
102	if (root_item)
103		btrfs_read_root_item(l, slot, root_item);
104	if (root_key)
105		memcpy(root_key, &found_key, sizeof(found_key));
106out:
107	btrfs_release_path(path);
108	return ret;
109}
110
111void btrfs_set_root_node(struct btrfs_root_item *item,
112			 struct extent_buffer *node)
113{
114	btrfs_set_root_bytenr(item, node->start);
115	btrfs_set_root_level(item, btrfs_header_level(node));
116	btrfs_set_root_generation(item, btrfs_header_generation(node));
117}
118
119/*
120 * copy the data in 'item' into the btree
121 */
122int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
123		      *root, struct btrfs_key *key, struct btrfs_root_item
124		      *item)
125{
126	struct btrfs_fs_info *fs_info = root->fs_info;
127	struct btrfs_path *path;
128	struct extent_buffer *l;
129	int ret;
130	int slot;
131	unsigned long ptr;
132	u32 old_len;
133
134	path = btrfs_alloc_path();
135	if (!path)
136		return -ENOMEM;
137
138	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
139	if (ret < 0)
140		goto out;
141
142	if (ret > 0) {
143		btrfs_crit(fs_info,
144			"unable to find root key (%llu %u %llu) in tree %llu",
145			key->objectid, key->type, key->offset,
146			root->root_key.objectid);
147		ret = -EUCLEAN;
148		btrfs_abort_transaction(trans, ret);
149		goto out;
150	}
151
 
 
 
 
 
 
 
152	l = path->nodes[0];
153	slot = path->slots[0];
154	ptr = btrfs_item_ptr_offset(l, slot);
155	old_len = btrfs_item_size(l, slot);
156
157	/*
158	 * If this is the first time we update the root item which originated
159	 * from an older kernel, we need to enlarge the item size to make room
160	 * for the added fields.
161	 */
162	if (old_len < sizeof(*item)) {
163		btrfs_release_path(path);
164		ret = btrfs_search_slot(trans, root, key, path,
165				-1, 1);
166		if (ret < 0) {
167			btrfs_abort_transaction(trans, ret);
168			goto out;
169		}
170
171		ret = btrfs_del_item(trans, root, path);
172		if (ret < 0) {
173			btrfs_abort_transaction(trans, ret);
174			goto out;
175		}
176		btrfs_release_path(path);
177		ret = btrfs_insert_empty_item(trans, root, path,
178				key, sizeof(*item));
179		if (ret < 0) {
180			btrfs_abort_transaction(trans, ret);
181			goto out;
182		}
183		l = path->nodes[0];
184		slot = path->slots[0];
185		ptr = btrfs_item_ptr_offset(l, slot);
186	}
187
188	/*
189	 * Update generation_v2 so at the next mount we know the new root
190	 * fields are valid.
191	 */
192	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
193
194	write_extent_buffer(l, item, ptr, sizeof(*item));
195	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
196out:
197	btrfs_free_path(path);
198	return ret;
199}
200
201int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
202		      const struct btrfs_key *key, struct btrfs_root_item *item)
203{
204	/*
205	 * Make sure generation v1 and v2 match. See update_root for details.
206	 */
207	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
208	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
209}
210
211int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
212{
213	struct btrfs_root *tree_root = fs_info->tree_root;
214	struct extent_buffer *leaf;
215	struct btrfs_path *path;
216	struct btrfs_key key;
 
217	struct btrfs_root *root;
218	int err = 0;
219	int ret;
220
221	path = btrfs_alloc_path();
222	if (!path)
223		return -ENOMEM;
224
225	key.objectid = BTRFS_ORPHAN_OBJECTID;
226	key.type = BTRFS_ORPHAN_ITEM_KEY;
227	key.offset = 0;
228
229	while (1) {
230		u64 root_objectid;
231
 
232		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
233		if (ret < 0) {
234			err = ret;
235			break;
236		}
237
238		leaf = path->nodes[0];
239		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
240			ret = btrfs_next_leaf(tree_root, path);
241			if (ret < 0)
242				err = ret;
243			if (ret != 0)
244				break;
245			leaf = path->nodes[0];
246		}
247
248		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
249		btrfs_release_path(path);
250
251		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
252		    key.type != BTRFS_ORPHAN_ITEM_KEY)
253			break;
254
255		root_objectid = key.offset;
256		key.offset++;
257
258		root = btrfs_get_fs_root(fs_info, root_objectid, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
259		err = PTR_ERR_OR_ZERO(root);
260		if (err && err != -ENOENT) {
261			break;
262		} else if (err == -ENOENT) {
263			struct btrfs_trans_handle *trans;
264
265			btrfs_release_path(path);
266
267			trans = btrfs_join_transaction(tree_root);
268			if (IS_ERR(trans)) {
269				err = PTR_ERR(trans);
270				btrfs_handle_fs_error(fs_info, err,
271					    "Failed to start trans to delete orphan item");
272				break;
273			}
274			err = btrfs_del_orphan_item(trans, tree_root,
275						    root_objectid);
276			btrfs_end_transaction(trans);
277			if (err) {
278				btrfs_handle_fs_error(fs_info, err,
279					    "Failed to delete root orphan item");
280				break;
281			}
282			continue;
283		}
284
285		WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state));
286		if (btrfs_root_refs(&root->root_item) == 0) {
287			struct btrfs_key drop_key;
288
289			btrfs_disk_key_to_cpu(&drop_key, &root->root_item.drop_progress);
290			/*
291			 * If we have a non-zero drop_progress then we know we
292			 * made it partly through deleting this snapshot, and
293			 * thus we need to make sure we block any balance from
294			 * happening until this snapshot is completely dropped.
295			 */
296			if (drop_key.objectid != 0 || drop_key.type != 0 ||
297			    drop_key.offset != 0) {
298				set_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
299				set_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
300			}
301
302			set_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
303			btrfs_add_dead_root(root);
 
 
 
 
 
304		}
305		btrfs_put_root(root);
 
 
306	}
307
308	btrfs_free_path(path);
309	return err;
310}
311
312/* drop the root item for 'key' from the tree root */
313int btrfs_del_root(struct btrfs_trans_handle *trans,
314		   const struct btrfs_key *key)
315{
316	struct btrfs_root *root = trans->fs_info->tree_root;
317	struct btrfs_path *path;
318	int ret;
319
320	path = btrfs_alloc_path();
321	if (!path)
322		return -ENOMEM;
323	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
324	if (ret < 0)
325		goto out;
326
327	BUG_ON(ret != 0);
328
329	ret = btrfs_del_item(trans, root, path);
330out:
331	btrfs_free_path(path);
332	return ret;
333}
334
335int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
336		       u64 ref_id, u64 dirid, u64 *sequence,
337		       const struct fscrypt_str *name)
 
 
338{
339	struct btrfs_root *tree_root = trans->fs_info->tree_root;
340	struct btrfs_path *path;
341	struct btrfs_root_ref *ref;
342	struct extent_buffer *leaf;
343	struct btrfs_key key;
344	unsigned long ptr;
 
345	int ret;
346
347	path = btrfs_alloc_path();
348	if (!path)
349		return -ENOMEM;
350
351	key.objectid = root_id;
352	key.type = BTRFS_ROOT_BACKREF_KEY;
353	key.offset = ref_id;
354again:
355	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
356	if (ret < 0) {
357		goto out;
358	} else if (ret == 0) {
359		leaf = path->nodes[0];
360		ref = btrfs_item_ptr(leaf, path->slots[0],
361				     struct btrfs_root_ref);
 
 
 
362		ptr = (unsigned long)(ref + 1);
363		if ((btrfs_root_ref_dirid(leaf, ref) != dirid) ||
364		    (btrfs_root_ref_name_len(leaf, ref) != name->len) ||
365		    memcmp_extent_buffer(leaf, name->name, ptr, name->len)) {
366			ret = -ENOENT;
367			goto out;
368		}
369		*sequence = btrfs_root_ref_sequence(leaf, ref);
370
371		ret = btrfs_del_item(trans, tree_root, path);
372		if (ret)
 
373			goto out;
374	} else {
375		ret = -ENOENT;
376		goto out;
377	}
378
379	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
380		btrfs_release_path(path);
381		key.objectid = ref_id;
382		key.type = BTRFS_ROOT_REF_KEY;
383		key.offset = root_id;
384		goto again;
385	}
386
387out:
388	btrfs_free_path(path);
389	return ret;
390}
391
392/*
393 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
394 * or BTRFS_ROOT_BACKREF_KEY.
395 *
396 * The dirid, sequence, name and name_len refer to the directory entry
397 * that is referencing the root.
398 *
399 * For a forward ref, the root_id is the id of the tree referencing
400 * the root and ref_id is the id of the subvol  or snapshot.
401 *
402 * For a back ref the root_id is the id of the subvol or snapshot and
403 * ref_id is the id of the tree referencing it.
404 *
405 * Will return 0, -ENOMEM, or anything from the CoW path
406 */
407int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
408		       u64 ref_id, u64 dirid, u64 sequence,
409		       const struct fscrypt_str *name)
 
410{
411	struct btrfs_root *tree_root = trans->fs_info->tree_root;
412	struct btrfs_key key;
413	int ret;
414	struct btrfs_path *path;
415	struct btrfs_root_ref *ref;
416	struct extent_buffer *leaf;
417	unsigned long ptr;
418
419	path = btrfs_alloc_path();
420	if (!path)
421		return -ENOMEM;
422
423	key.objectid = root_id;
424	key.type = BTRFS_ROOT_BACKREF_KEY;
425	key.offset = ref_id;
426again:
427	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
428				      sizeof(*ref) + name->len);
429	if (ret) {
430		btrfs_abort_transaction(trans, ret);
431		btrfs_free_path(path);
432		return ret;
433	}
434
435	leaf = path->nodes[0];
436	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
437	btrfs_set_root_ref_dirid(leaf, ref, dirid);
438	btrfs_set_root_ref_sequence(leaf, ref, sequence);
439	btrfs_set_root_ref_name_len(leaf, ref, name->len);
440	ptr = (unsigned long)(ref + 1);
441	write_extent_buffer(leaf, name->name, ptr, name->len);
442	btrfs_mark_buffer_dirty(trans, leaf);
443
444	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
445		btrfs_release_path(path);
446		key.objectid = ref_id;
447		key.type = BTRFS_ROOT_REF_KEY;
448		key.offset = root_id;
449		goto again;
450	}
451
452	btrfs_free_path(path);
453	return 0;
454}
455
456/*
457 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
458 * for subvolumes. To work around this problem, we steal a bit from
459 * root_item->inode_item->flags, and use it to indicate if those fields
460 * have been properly initialized.
461 */
462void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
463{
464	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
465
466	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
467		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
468		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
469		btrfs_set_root_flags(root_item, 0);
470		btrfs_set_root_limit(root_item, 0);
471	}
472}
473
474void btrfs_update_root_times(struct btrfs_trans_handle *trans,
475			     struct btrfs_root *root)
476{
477	struct btrfs_root_item *item = &root->root_item;
478	struct timespec64 ct;
479
480	ktime_get_real_ts64(&ct);
481	spin_lock(&root->root_item_lock);
482	btrfs_set_root_ctransid(item, trans->transid);
483	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
484	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
485	spin_unlock(&root->root_item_lock);
486}
487
488/*
489 * Reserve space for subvolume operation.
490 *
491 * root: the root of the parent directory
492 * rsv: block reservation
493 * items: the number of items that we need do reservation
494 * use_global_rsv: allow fallback to the global block reservation
495 *
496 * This function is used to reserve the space for snapshot/subvolume
497 * creation and deletion. Those operations are different with the
498 * common file/directory operations, they change two fs/file trees
499 * and root tree, the number of items that the qgroup reserves is
500 * different with the free space reservation. So we can not use
501 * the space reservation mechanism in start_transaction().
502 */
503int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
504				     struct btrfs_block_rsv *rsv, int items,
505				     bool use_global_rsv)
506{
507	u64 qgroup_num_bytes = 0;
508	u64 num_bytes;
509	int ret;
510	struct btrfs_fs_info *fs_info = root->fs_info;
511	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
512
513	if (btrfs_qgroup_enabled(fs_info)) {
514		/* One for parent inode, two for dir entries */
515		qgroup_num_bytes = 3 * fs_info->nodesize;
516		ret = btrfs_qgroup_reserve_meta_prealloc(root,
517							 qgroup_num_bytes, true,
518							 false);
519		if (ret)
520			return ret;
521	}
522
523	num_bytes = btrfs_calc_insert_metadata_size(fs_info, items);
524	rsv->space_info = btrfs_find_space_info(fs_info,
525					    BTRFS_BLOCK_GROUP_METADATA);
526	ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes,
527				  BTRFS_RESERVE_FLUSH_ALL);
528
529	if (ret == -ENOSPC && use_global_rsv)
530		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
531
532	if (ret && qgroup_num_bytes)
533		btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
534
535	if (!ret) {
536		spin_lock(&rsv->lock);
537		rsv->qgroup_rsv_reserved += qgroup_num_bytes;
538		spin_unlock(&rsv->lock);
539	}
540	return ret;
541}
542
543void btrfs_subvolume_release_metadata(struct btrfs_root *root,
544				      struct btrfs_block_rsv *rsv)
545{
546	struct btrfs_fs_info *fs_info = root->fs_info;
547	u64 qgroup_to_release;
548
549	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, &qgroup_to_release);
550	btrfs_qgroup_convert_reserved_meta(root, qgroup_to_release);
551}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/uuid.h>
  8#include "ctree.h"
 
 
  9#include "transaction.h"
 10#include "disk-io.h"
 11#include "print-tree.h"
 
 
 
 
 
 12
 13/*
 14 * Read a root item from the tree. In case we detect a root item smaller then
 15 * sizeof(root_item), we know it's an old version of the root structure and
 16 * initialize all new fields to zero. The same happens if we detect mismatching
 17 * generation numbers as then we know the root was once mounted with an older
 18 * kernel that was not aware of the root item structure change.
 19 */
 20static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
 21				struct btrfs_root_item *item)
 22{
 23	uuid_le uuid;
 24	int len;
 25	int need_reset = 0;
 26
 27	len = btrfs_item_size_nr(eb, slot);
 28	read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
 29			min_t(int, len, (int)sizeof(*item)));
 30	if (len < sizeof(*item))
 31		need_reset = 1;
 32	if (!need_reset && btrfs_root_generation(item)
 33		!= btrfs_root_generation_v2(item)) {
 34		if (btrfs_root_generation_v2(item) != 0) {
 35			btrfs_warn(eb->fs_info,
 36					"mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
 37		}
 38		need_reset = 1;
 39	}
 40	if (need_reset) {
 41		memset(&item->generation_v2, 0,
 42			sizeof(*item) - offsetof(struct btrfs_root_item,
 43					generation_v2));
 44
 45		uuid_le_gen(&uuid);
 46		memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
 47	}
 48}
 49
 50/*
 51 * btrfs_find_root - lookup the root by the key.
 
 52 * root: the root of the root tree
 53 * search_key: the key to search
 54 * path: the path we search
 55 * root_item: the root item of the tree we look for
 56 * root_key: the root key of the tree we look for
 57 *
 58 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
 59 * of the search key, just lookup the root with the highest offset for a
 60 * given objectid.
 61 *
 62 * If we find something return 0, otherwise > 0, < 0 on error.
 63 */
 64int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
 65		    struct btrfs_path *path, struct btrfs_root_item *root_item,
 66		    struct btrfs_key *root_key)
 67{
 68	struct btrfs_key found_key;
 69	struct extent_buffer *l;
 70	int ret;
 71	int slot;
 72
 73	ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
 74	if (ret < 0)
 75		return ret;
 76
 77	if (search_key->offset != -1ULL) {	/* the search key is exact */
 78		if (ret > 0)
 79			goto out;
 80	} else {
 81		BUG_ON(ret == 0);		/* Logical error */
 82		if (path->slots[0] == 0)
 83			goto out;
 84		path->slots[0]--;
 85		ret = 0;
 86	}
 87
 88	l = path->nodes[0];
 89	slot = path->slots[0];
 90
 91	btrfs_item_key_to_cpu(l, &found_key, slot);
 92	if (found_key.objectid != search_key->objectid ||
 93	    found_key.type != BTRFS_ROOT_ITEM_KEY) {
 94		ret = 1;
 95		goto out;
 96	}
 97
 98	if (root_item)
 99		btrfs_read_root_item(l, slot, root_item);
100	if (root_key)
101		memcpy(root_key, &found_key, sizeof(found_key));
102out:
103	btrfs_release_path(path);
104	return ret;
105}
106
107void btrfs_set_root_node(struct btrfs_root_item *item,
108			 struct extent_buffer *node)
109{
110	btrfs_set_root_bytenr(item, node->start);
111	btrfs_set_root_level(item, btrfs_header_level(node));
112	btrfs_set_root_generation(item, btrfs_header_generation(node));
113}
114
115/*
116 * copy the data in 'item' into the btree
117 */
118int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
119		      *root, struct btrfs_key *key, struct btrfs_root_item
120		      *item)
121{
122	struct btrfs_fs_info *fs_info = root->fs_info;
123	struct btrfs_path *path;
124	struct extent_buffer *l;
125	int ret;
126	int slot;
127	unsigned long ptr;
128	u32 old_len;
129
130	path = btrfs_alloc_path();
131	if (!path)
132		return -ENOMEM;
133
134	ret = btrfs_search_slot(trans, root, key, path, 0, 1);
135	if (ret < 0) {
 
 
 
 
 
 
 
 
136		btrfs_abort_transaction(trans, ret);
137		goto out;
138	}
139
140	if (ret != 0) {
141		btrfs_print_leaf(path->nodes[0]);
142		btrfs_crit(fs_info, "unable to update root key %llu %u %llu",
143			   key->objectid, key->type, key->offset);
144		BUG_ON(1);
145	}
146
147	l = path->nodes[0];
148	slot = path->slots[0];
149	ptr = btrfs_item_ptr_offset(l, slot);
150	old_len = btrfs_item_size_nr(l, slot);
151
152	/*
153	 * If this is the first time we update the root item which originated
154	 * from an older kernel, we need to enlarge the item size to make room
155	 * for the added fields.
156	 */
157	if (old_len < sizeof(*item)) {
158		btrfs_release_path(path);
159		ret = btrfs_search_slot(trans, root, key, path,
160				-1, 1);
161		if (ret < 0) {
162			btrfs_abort_transaction(trans, ret);
163			goto out;
164		}
165
166		ret = btrfs_del_item(trans, root, path);
167		if (ret < 0) {
168			btrfs_abort_transaction(trans, ret);
169			goto out;
170		}
171		btrfs_release_path(path);
172		ret = btrfs_insert_empty_item(trans, root, path,
173				key, sizeof(*item));
174		if (ret < 0) {
175			btrfs_abort_transaction(trans, ret);
176			goto out;
177		}
178		l = path->nodes[0];
179		slot = path->slots[0];
180		ptr = btrfs_item_ptr_offset(l, slot);
181	}
182
183	/*
184	 * Update generation_v2 so at the next mount we know the new root
185	 * fields are valid.
186	 */
187	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
188
189	write_extent_buffer(l, item, ptr, sizeof(*item));
190	btrfs_mark_buffer_dirty(path->nodes[0]);
191out:
192	btrfs_free_path(path);
193	return ret;
194}
195
196int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
197		      const struct btrfs_key *key, struct btrfs_root_item *item)
198{
199	/*
200	 * Make sure generation v1 and v2 match. See update_root for details.
201	 */
202	btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
203	return btrfs_insert_item(trans, root, key, item, sizeof(*item));
204}
205
206int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info)
207{
208	struct btrfs_root *tree_root = fs_info->tree_root;
209	struct extent_buffer *leaf;
210	struct btrfs_path *path;
211	struct btrfs_key key;
212	struct btrfs_key root_key;
213	struct btrfs_root *root;
214	int err = 0;
215	int ret;
216
217	path = btrfs_alloc_path();
218	if (!path)
219		return -ENOMEM;
220
221	key.objectid = BTRFS_ORPHAN_OBJECTID;
222	key.type = BTRFS_ORPHAN_ITEM_KEY;
223	key.offset = 0;
224
225	root_key.type = BTRFS_ROOT_ITEM_KEY;
226	root_key.offset = (u64)-1;
227
228	while (1) {
229		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
230		if (ret < 0) {
231			err = ret;
232			break;
233		}
234
235		leaf = path->nodes[0];
236		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
237			ret = btrfs_next_leaf(tree_root, path);
238			if (ret < 0)
239				err = ret;
240			if (ret != 0)
241				break;
242			leaf = path->nodes[0];
243		}
244
245		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
246		btrfs_release_path(path);
247
248		if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
249		    key.type != BTRFS_ORPHAN_ITEM_KEY)
250			break;
251
252		root_key.objectid = key.offset;
253		key.offset++;
254
255		/*
256		 * The root might have been inserted already, as before we look
257		 * for orphan roots, log replay might have happened, which
258		 * triggers a transaction commit and qgroup accounting, which
259		 * in turn reads and inserts fs roots while doing backref
260		 * walking.
261		 */
262		root = btrfs_lookup_fs_root(fs_info, root_key.objectid);
263		if (root) {
264			WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
265					  &root->state));
266			if (btrfs_root_refs(&root->root_item) == 0)
267				btrfs_add_dead_root(root);
268			continue;
269		}
270
271		root = btrfs_read_fs_root(tree_root, &root_key);
272		err = PTR_ERR_OR_ZERO(root);
273		if (err && err != -ENOENT) {
274			break;
275		} else if (err == -ENOENT) {
276			struct btrfs_trans_handle *trans;
277
278			btrfs_release_path(path);
279
280			trans = btrfs_join_transaction(tree_root);
281			if (IS_ERR(trans)) {
282				err = PTR_ERR(trans);
283				btrfs_handle_fs_error(fs_info, err,
284					    "Failed to start trans to delete orphan item");
285				break;
286			}
287			err = btrfs_del_orphan_item(trans, tree_root,
288						    root_key.objectid);
289			btrfs_end_transaction(trans);
290			if (err) {
291				btrfs_handle_fs_error(fs_info, err,
292					    "Failed to delete root orphan item");
293				break;
294			}
295			continue;
296		}
297
298		err = btrfs_init_fs_root(root);
299		if (err) {
300			btrfs_free_fs_root(root);
301			break;
302		}
 
 
 
 
 
 
 
 
 
 
 
303
304		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
305
306		err = btrfs_insert_fs_root(fs_info, root);
307		if (err) {
308			BUG_ON(err == -EEXIST);
309			btrfs_free_fs_root(root);
310			break;
311		}
312
313		if (btrfs_root_refs(&root->root_item) == 0)
314			btrfs_add_dead_root(root);
315	}
316
317	btrfs_free_path(path);
318	return err;
319}
320
321/* drop the root item for 'key' from the tree root */
322int btrfs_del_root(struct btrfs_trans_handle *trans,
323		   struct btrfs_fs_info *fs_info, const struct btrfs_key *key)
324{
325	struct btrfs_root *root = fs_info->tree_root;
326	struct btrfs_path *path;
327	int ret;
328
329	path = btrfs_alloc_path();
330	if (!path)
331		return -ENOMEM;
332	ret = btrfs_search_slot(trans, root, key, path, -1, 1);
333	if (ret < 0)
334		goto out;
335
336	BUG_ON(ret != 0);
337
338	ret = btrfs_del_item(trans, root, path);
339out:
340	btrfs_free_path(path);
341	return ret;
342}
343
344int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
345		       struct btrfs_fs_info *fs_info,
346		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
347		       const char *name, int name_len)
348
349{
350	struct btrfs_root *tree_root = fs_info->tree_root;
351	struct btrfs_path *path;
352	struct btrfs_root_ref *ref;
353	struct extent_buffer *leaf;
354	struct btrfs_key key;
355	unsigned long ptr;
356	int err = 0;
357	int ret;
358
359	path = btrfs_alloc_path();
360	if (!path)
361		return -ENOMEM;
362
363	key.objectid = root_id;
364	key.type = BTRFS_ROOT_BACKREF_KEY;
365	key.offset = ref_id;
366again:
367	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
368	BUG_ON(ret < 0);
369	if (ret == 0) {
 
370		leaf = path->nodes[0];
371		ref = btrfs_item_ptr(leaf, path->slots[0],
372				     struct btrfs_root_ref);
373
374		WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
375		WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
376		ptr = (unsigned long)(ref + 1);
377		WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
 
 
 
 
 
378		*sequence = btrfs_root_ref_sequence(leaf, ref);
379
380		ret = btrfs_del_item(trans, tree_root, path);
381		if (ret) {
382			err = ret;
383			goto out;
384		}
385	} else
386		err = -ENOENT;
 
387
388	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
389		btrfs_release_path(path);
390		key.objectid = ref_id;
391		key.type = BTRFS_ROOT_REF_KEY;
392		key.offset = root_id;
393		goto again;
394	}
395
396out:
397	btrfs_free_path(path);
398	return err;
399}
400
401/*
402 * add a btrfs_root_ref item.  type is either BTRFS_ROOT_REF_KEY
403 * or BTRFS_ROOT_BACKREF_KEY.
404 *
405 * The dirid, sequence, name and name_len refer to the directory entry
406 * that is referencing the root.
407 *
408 * For a forward ref, the root_id is the id of the tree referencing
409 * the root and ref_id is the id of the subvol  or snapshot.
410 *
411 * For a back ref the root_id is the id of the subvol or snapshot and
412 * ref_id is the id of the tree referencing it.
413 *
414 * Will return 0, -ENOMEM, or anything from the CoW path
415 */
416int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
417		       struct btrfs_fs_info *fs_info,
418		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
419		       const char *name, int name_len)
420{
421	struct btrfs_root *tree_root = fs_info->tree_root;
422	struct btrfs_key key;
423	int ret;
424	struct btrfs_path *path;
425	struct btrfs_root_ref *ref;
426	struct extent_buffer *leaf;
427	unsigned long ptr;
428
429	path = btrfs_alloc_path();
430	if (!path)
431		return -ENOMEM;
432
433	key.objectid = root_id;
434	key.type = BTRFS_ROOT_BACKREF_KEY;
435	key.offset = ref_id;
436again:
437	ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
438				      sizeof(*ref) + name_len);
439	if (ret) {
440		btrfs_abort_transaction(trans, ret);
441		btrfs_free_path(path);
442		return ret;
443	}
444
445	leaf = path->nodes[0];
446	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
447	btrfs_set_root_ref_dirid(leaf, ref, dirid);
448	btrfs_set_root_ref_sequence(leaf, ref, sequence);
449	btrfs_set_root_ref_name_len(leaf, ref, name_len);
450	ptr = (unsigned long)(ref + 1);
451	write_extent_buffer(leaf, name, ptr, name_len);
452	btrfs_mark_buffer_dirty(leaf);
453
454	if (key.type == BTRFS_ROOT_BACKREF_KEY) {
455		btrfs_release_path(path);
456		key.objectid = ref_id;
457		key.type = BTRFS_ROOT_REF_KEY;
458		key.offset = root_id;
459		goto again;
460	}
461
462	btrfs_free_path(path);
463	return 0;
464}
465
466/*
467 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
468 * for subvolumes. To work around this problem, we steal a bit from
469 * root_item->inode_item->flags, and use it to indicate if those fields
470 * have been properly initialized.
471 */
472void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
473{
474	u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
475
476	if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
477		inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
478		btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
479		btrfs_set_root_flags(root_item, 0);
480		btrfs_set_root_limit(root_item, 0);
481	}
482}
483
484void btrfs_update_root_times(struct btrfs_trans_handle *trans,
485			     struct btrfs_root *root)
486{
487	struct btrfs_root_item *item = &root->root_item;
488	struct timespec ct;
489
490	ktime_get_real_ts(&ct);
491	spin_lock(&root->root_item_lock);
492	btrfs_set_root_ctransid(item, trans->transid);
493	btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
494	btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
495	spin_unlock(&root->root_item_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496}