Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/pagevec.h>
12#include <linux/highmem.h>
13#include <linux/kthread.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/psi.h>
20#include <linux/slab.h>
21#include <linux/sched/mm.h>
22#include <linux/log2.h>
23#include <linux/shrinker.h>
24#include <crypto/hash.h>
25#include "misc.h"
26#include "ctree.h"
27#include "fs.h"
28#include "disk-io.h"
29#include "transaction.h"
30#include "btrfs_inode.h"
31#include "bio.h"
32#include "ordered-data.h"
33#include "compression.h"
34#include "extent_io.h"
35#include "extent_map.h"
36#include "subpage.h"
37#include "zoned.h"
38#include "file-item.h"
39#include "super.h"
40
41static struct bio_set btrfs_compressed_bioset;
42
43static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
44
45const char* btrfs_compress_type2str(enum btrfs_compression_type type)
46{
47 switch (type) {
48 case BTRFS_COMPRESS_ZLIB:
49 case BTRFS_COMPRESS_LZO:
50 case BTRFS_COMPRESS_ZSTD:
51 case BTRFS_COMPRESS_NONE:
52 return btrfs_compress_types[type];
53 default:
54 break;
55 }
56
57 return NULL;
58}
59
60static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
61{
62 return container_of(bbio, struct compressed_bio, bbio);
63}
64
65static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
66 u64 start, blk_opf_t op,
67 btrfs_bio_end_io_t end_io)
68{
69 struct btrfs_bio *bbio;
70
71 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
72 GFP_NOFS, &btrfs_compressed_bioset));
73 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
74 bbio->inode = inode;
75 bbio->file_offset = start;
76 return to_compressed_bio(bbio);
77}
78
79bool btrfs_compress_is_valid_type(const char *str, size_t len)
80{
81 int i;
82
83 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
84 size_t comp_len = strlen(btrfs_compress_types[i]);
85
86 if (len < comp_len)
87 continue;
88
89 if (!strncmp(btrfs_compress_types[i], str, comp_len))
90 return true;
91 }
92 return false;
93}
94
95static int compression_compress_pages(int type, struct list_head *ws,
96 struct address_space *mapping, u64 start, struct page **pages,
97 unsigned long *out_pages, unsigned long *total_in,
98 unsigned long *total_out)
99{
100 switch (type) {
101 case BTRFS_COMPRESS_ZLIB:
102 return zlib_compress_pages(ws, mapping, start, pages,
103 out_pages, total_in, total_out);
104 case BTRFS_COMPRESS_LZO:
105 return lzo_compress_pages(ws, mapping, start, pages,
106 out_pages, total_in, total_out);
107 case BTRFS_COMPRESS_ZSTD:
108 return zstd_compress_pages(ws, mapping, start, pages,
109 out_pages, total_in, total_out);
110 case BTRFS_COMPRESS_NONE:
111 default:
112 /*
113 * This can happen when compression races with remount setting
114 * it to 'no compress', while caller doesn't call
115 * inode_need_compress() to check if we really need to
116 * compress.
117 *
118 * Not a big deal, just need to inform caller that we
119 * haven't allocated any pages yet.
120 */
121 *out_pages = 0;
122 return -E2BIG;
123 }
124}
125
126static int compression_decompress_bio(struct list_head *ws,
127 struct compressed_bio *cb)
128{
129 switch (cb->compress_type) {
130 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
131 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
132 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
133 case BTRFS_COMPRESS_NONE:
134 default:
135 /*
136 * This can't happen, the type is validated several times
137 * before we get here.
138 */
139 BUG();
140 }
141}
142
143static int compression_decompress(int type, struct list_head *ws,
144 const u8 *data_in, struct page *dest_page,
145 unsigned long dest_pgoff, size_t srclen, size_t destlen)
146{
147 switch (type) {
148 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
149 dest_pgoff, srclen, destlen);
150 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
151 dest_pgoff, srclen, destlen);
152 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
153 dest_pgoff, srclen, destlen);
154 case BTRFS_COMPRESS_NONE:
155 default:
156 /*
157 * This can't happen, the type is validated several times
158 * before we get here.
159 */
160 BUG();
161 }
162}
163
164static void btrfs_free_compressed_pages(struct compressed_bio *cb)
165{
166 for (unsigned int i = 0; i < cb->nr_pages; i++)
167 btrfs_free_compr_page(cb->compressed_pages[i]);
168 kfree(cb->compressed_pages);
169}
170
171static int btrfs_decompress_bio(struct compressed_bio *cb);
172
173/*
174 * Global cache of last unused pages for compression/decompression.
175 */
176static struct btrfs_compr_pool {
177 struct shrinker *shrinker;
178 spinlock_t lock;
179 struct list_head list;
180 int count;
181 int thresh;
182} compr_pool;
183
184static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
185{
186 int ret;
187
188 /*
189 * We must not read the values more than once if 'ret' gets expanded in
190 * the return statement so we don't accidentally return a negative
191 * number, even if the first condition finds it positive.
192 */
193 ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
194
195 return ret > 0 ? ret : 0;
196}
197
198static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
199{
200 struct list_head remove;
201 struct list_head *tmp, *next;
202 int freed;
203
204 if (compr_pool.count == 0)
205 return SHRINK_STOP;
206
207 INIT_LIST_HEAD(&remove);
208
209 /* For now, just simply drain the whole list. */
210 spin_lock(&compr_pool.lock);
211 list_splice_init(&compr_pool.list, &remove);
212 freed = compr_pool.count;
213 compr_pool.count = 0;
214 spin_unlock(&compr_pool.lock);
215
216 list_for_each_safe(tmp, next, &remove) {
217 struct page *page = list_entry(tmp, struct page, lru);
218
219 ASSERT(page_ref_count(page) == 1);
220 put_page(page);
221 }
222
223 return freed;
224}
225
226/*
227 * Common wrappers for page allocation from compression wrappers
228 */
229struct page *btrfs_alloc_compr_page(void)
230{
231 struct page *page = NULL;
232
233 spin_lock(&compr_pool.lock);
234 if (compr_pool.count > 0) {
235 page = list_first_entry(&compr_pool.list, struct page, lru);
236 list_del_init(&page->lru);
237 compr_pool.count--;
238 }
239 spin_unlock(&compr_pool.lock);
240
241 if (page)
242 return page;
243
244 return alloc_page(GFP_NOFS);
245}
246
247void btrfs_free_compr_page(struct page *page)
248{
249 bool do_free = false;
250
251 spin_lock(&compr_pool.lock);
252 if (compr_pool.count > compr_pool.thresh) {
253 do_free = true;
254 } else {
255 list_add(&page->lru, &compr_pool.list);
256 compr_pool.count++;
257 }
258 spin_unlock(&compr_pool.lock);
259
260 if (!do_free)
261 return;
262
263 ASSERT(page_ref_count(page) == 1);
264 put_page(page);
265}
266
267static void end_bbio_comprssed_read(struct btrfs_bio *bbio)
268{
269 struct compressed_bio *cb = to_compressed_bio(bbio);
270 blk_status_t status = bbio->bio.bi_status;
271
272 if (!status)
273 status = errno_to_blk_status(btrfs_decompress_bio(cb));
274
275 btrfs_free_compressed_pages(cb);
276 btrfs_bio_end_io(cb->orig_bbio, status);
277 bio_put(&bbio->bio);
278}
279
280/*
281 * Clear the writeback bits on all of the file
282 * pages for a compressed write
283 */
284static noinline void end_compressed_writeback(const struct compressed_bio *cb)
285{
286 struct inode *inode = &cb->bbio.inode->vfs_inode;
287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
288 unsigned long index = cb->start >> PAGE_SHIFT;
289 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
290 struct folio_batch fbatch;
291 const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
292 int i;
293 int ret;
294
295 if (error)
296 mapping_set_error(inode->i_mapping, error);
297
298 folio_batch_init(&fbatch);
299 while (index <= end_index) {
300 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
301 &fbatch);
302
303 if (ret == 0)
304 return;
305
306 for (i = 0; i < ret; i++) {
307 struct folio *folio = fbatch.folios[i];
308
309 btrfs_folio_clamp_clear_writeback(fs_info, folio,
310 cb->start, cb->len);
311 }
312 folio_batch_release(&fbatch);
313 }
314 /* the inode may be gone now */
315}
316
317static void btrfs_finish_compressed_write_work(struct work_struct *work)
318{
319 struct compressed_bio *cb =
320 container_of(work, struct compressed_bio, write_end_work);
321
322 btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
323 cb->bbio.bio.bi_status == BLK_STS_OK);
324
325 if (cb->writeback)
326 end_compressed_writeback(cb);
327 /* Note, our inode could be gone now */
328
329 btrfs_free_compressed_pages(cb);
330 bio_put(&cb->bbio.bio);
331}
332
333/*
334 * Do the cleanup once all the compressed pages hit the disk. This will clear
335 * writeback on the file pages and free the compressed pages.
336 *
337 * This also calls the writeback end hooks for the file pages so that metadata
338 * and checksums can be updated in the file.
339 */
340static void end_bbio_comprssed_write(struct btrfs_bio *bbio)
341{
342 struct compressed_bio *cb = to_compressed_bio(bbio);
343 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
344
345 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
346}
347
348static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
349{
350 struct bio *bio = &cb->bbio.bio;
351 u32 offset = 0;
352
353 while (offset < cb->compressed_len) {
354 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
355
356 /* Maximum compressed extent is smaller than bio size limit. */
357 __bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
358 len, 0);
359 offset += len;
360 }
361}
362
363/*
364 * worker function to build and submit bios for previously compressed pages.
365 * The corresponding pages in the inode should be marked for writeback
366 * and the compressed pages should have a reference on them for dropping
367 * when the IO is complete.
368 *
369 * This also checksums the file bytes and gets things ready for
370 * the end io hooks.
371 */
372void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
373 struct page **compressed_pages,
374 unsigned int nr_pages,
375 blk_opf_t write_flags,
376 bool writeback)
377{
378 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
379 struct btrfs_fs_info *fs_info = inode->root->fs_info;
380 struct compressed_bio *cb;
381
382 ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
383 ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
384
385 cb = alloc_compressed_bio(inode, ordered->file_offset,
386 REQ_OP_WRITE | write_flags,
387 end_bbio_comprssed_write);
388 cb->start = ordered->file_offset;
389 cb->len = ordered->num_bytes;
390 cb->compressed_pages = compressed_pages;
391 cb->compressed_len = ordered->disk_num_bytes;
392 cb->writeback = writeback;
393 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
394 cb->nr_pages = nr_pages;
395 cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
396 cb->bbio.ordered = ordered;
397 btrfs_add_compressed_bio_pages(cb);
398
399 btrfs_submit_bio(&cb->bbio, 0);
400}
401
402/*
403 * Add extra pages in the same compressed file extent so that we don't need to
404 * re-read the same extent again and again.
405 *
406 * NOTE: this won't work well for subpage, as for subpage read, we lock the
407 * full page then submit bio for each compressed/regular extents.
408 *
409 * This means, if we have several sectors in the same page points to the same
410 * on-disk compressed data, we will re-read the same extent many times and
411 * this function can only help for the next page.
412 */
413static noinline int add_ra_bio_pages(struct inode *inode,
414 u64 compressed_end,
415 struct compressed_bio *cb,
416 int *memstall, unsigned long *pflags)
417{
418 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
419 unsigned long end_index;
420 struct bio *orig_bio = &cb->orig_bbio->bio;
421 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
422 u64 isize = i_size_read(inode);
423 int ret;
424 struct page *page;
425 struct extent_map *em;
426 struct address_space *mapping = inode->i_mapping;
427 struct extent_map_tree *em_tree;
428 struct extent_io_tree *tree;
429 int sectors_missed = 0;
430
431 em_tree = &BTRFS_I(inode)->extent_tree;
432 tree = &BTRFS_I(inode)->io_tree;
433
434 if (isize == 0)
435 return 0;
436
437 /*
438 * For current subpage support, we only support 64K page size,
439 * which means maximum compressed extent size (128K) is just 2x page
440 * size.
441 * This makes readahead less effective, so here disable readahead for
442 * subpage for now, until full compressed write is supported.
443 */
444 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
445 return 0;
446
447 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
448
449 while (cur < compressed_end) {
450 u64 page_end;
451 u64 pg_index = cur >> PAGE_SHIFT;
452 u32 add_size;
453
454 if (pg_index > end_index)
455 break;
456
457 page = xa_load(&mapping->i_pages, pg_index);
458 if (page && !xa_is_value(page)) {
459 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
460 fs_info->sectorsize_bits;
461
462 /* Beyond threshold, no need to continue */
463 if (sectors_missed > 4)
464 break;
465
466 /*
467 * Jump to next page start as we already have page for
468 * current offset.
469 */
470 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
471 continue;
472 }
473
474 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
475 ~__GFP_FS));
476 if (!page)
477 break;
478
479 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
480 put_page(page);
481 /* There is already a page, skip to page end */
482 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
483 continue;
484 }
485
486 if (!*memstall && PageWorkingset(page)) {
487 psi_memstall_enter(pflags);
488 *memstall = 1;
489 }
490
491 ret = set_page_extent_mapped(page);
492 if (ret < 0) {
493 unlock_page(page);
494 put_page(page);
495 break;
496 }
497
498 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
499 lock_extent(tree, cur, page_end, NULL);
500 read_lock(&em_tree->lock);
501 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
502 read_unlock(&em_tree->lock);
503
504 /*
505 * At this point, we have a locked page in the page cache for
506 * these bytes in the file. But, we have to make sure they map
507 * to this compressed extent on disk.
508 */
509 if (!em || cur < em->start ||
510 (cur + fs_info->sectorsize > extent_map_end(em)) ||
511 (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
512 free_extent_map(em);
513 unlock_extent(tree, cur, page_end, NULL);
514 unlock_page(page);
515 put_page(page);
516 break;
517 }
518 free_extent_map(em);
519
520 if (page->index == end_index) {
521 size_t zero_offset = offset_in_page(isize);
522
523 if (zero_offset) {
524 int zeros;
525 zeros = PAGE_SIZE - zero_offset;
526 memzero_page(page, zero_offset, zeros);
527 }
528 }
529
530 add_size = min(em->start + em->len, page_end + 1) - cur;
531 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
532 if (ret != add_size) {
533 unlock_extent(tree, cur, page_end, NULL);
534 unlock_page(page);
535 put_page(page);
536 break;
537 }
538 /*
539 * If it's subpage, we also need to increase its
540 * subpage::readers number, as at endio we will decrease
541 * subpage::readers and to unlock the page.
542 */
543 if (fs_info->sectorsize < PAGE_SIZE)
544 btrfs_subpage_start_reader(fs_info, page_folio(page),
545 cur, add_size);
546 put_page(page);
547 cur += add_size;
548 }
549 return 0;
550}
551
552/*
553 * for a compressed read, the bio we get passed has all the inode pages
554 * in it. We don't actually do IO on those pages but allocate new ones
555 * to hold the compressed pages on disk.
556 *
557 * bio->bi_iter.bi_sector points to the compressed extent on disk
558 * bio->bi_io_vec points to all of the inode pages
559 *
560 * After the compressed pages are read, we copy the bytes into the
561 * bio we were passed and then call the bio end_io calls
562 */
563void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
564{
565 struct btrfs_inode *inode = bbio->inode;
566 struct btrfs_fs_info *fs_info = inode->root->fs_info;
567 struct extent_map_tree *em_tree = &inode->extent_tree;
568 struct compressed_bio *cb;
569 unsigned int compressed_len;
570 u64 file_offset = bbio->file_offset;
571 u64 em_len;
572 u64 em_start;
573 struct extent_map *em;
574 unsigned long pflags;
575 int memstall = 0;
576 blk_status_t ret;
577 int ret2;
578
579 /* we need the actual starting offset of this extent in the file */
580 read_lock(&em_tree->lock);
581 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
582 read_unlock(&em_tree->lock);
583 if (!em) {
584 ret = BLK_STS_IOERR;
585 goto out;
586 }
587
588 ASSERT(extent_map_is_compressed(em));
589 compressed_len = em->block_len;
590
591 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
592 end_bbio_comprssed_read);
593
594 cb->start = em->orig_start;
595 em_len = em->len;
596 em_start = em->start;
597
598 cb->len = bbio->bio.bi_iter.bi_size;
599 cb->compressed_len = compressed_len;
600 cb->compress_type = extent_map_compression(em);
601 cb->orig_bbio = bbio;
602
603 free_extent_map(em);
604
605 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
606 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
607 if (!cb->compressed_pages) {
608 ret = BLK_STS_RESOURCE;
609 goto out_free_bio;
610 }
611
612 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages, 0);
613 if (ret2) {
614 ret = BLK_STS_RESOURCE;
615 goto out_free_compressed_pages;
616 }
617
618 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
619 &pflags);
620
621 /* include any pages we added in add_ra-bio_pages */
622 cb->len = bbio->bio.bi_iter.bi_size;
623 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
624 btrfs_add_compressed_bio_pages(cb);
625
626 if (memstall)
627 psi_memstall_leave(&pflags);
628
629 btrfs_submit_bio(&cb->bbio, 0);
630 return;
631
632out_free_compressed_pages:
633 kfree(cb->compressed_pages);
634out_free_bio:
635 bio_put(&cb->bbio.bio);
636out:
637 btrfs_bio_end_io(bbio, ret);
638}
639
640/*
641 * Heuristic uses systematic sampling to collect data from the input data
642 * range, the logic can be tuned by the following constants:
643 *
644 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
645 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
646 */
647#define SAMPLING_READ_SIZE (16)
648#define SAMPLING_INTERVAL (256)
649
650/*
651 * For statistical analysis of the input data we consider bytes that form a
652 * Galois Field of 256 objects. Each object has an attribute count, ie. how
653 * many times the object appeared in the sample.
654 */
655#define BUCKET_SIZE (256)
656
657/*
658 * The size of the sample is based on a statistical sampling rule of thumb.
659 * The common way is to perform sampling tests as long as the number of
660 * elements in each cell is at least 5.
661 *
662 * Instead of 5, we choose 32 to obtain more accurate results.
663 * If the data contain the maximum number of symbols, which is 256, we obtain a
664 * sample size bound by 8192.
665 *
666 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
667 * from up to 512 locations.
668 */
669#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
670 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
671
672struct bucket_item {
673 u32 count;
674};
675
676struct heuristic_ws {
677 /* Partial copy of input data */
678 u8 *sample;
679 u32 sample_size;
680 /* Buckets store counters for each byte value */
681 struct bucket_item *bucket;
682 /* Sorting buffer */
683 struct bucket_item *bucket_b;
684 struct list_head list;
685};
686
687static struct workspace_manager heuristic_wsm;
688
689static void free_heuristic_ws(struct list_head *ws)
690{
691 struct heuristic_ws *workspace;
692
693 workspace = list_entry(ws, struct heuristic_ws, list);
694
695 kvfree(workspace->sample);
696 kfree(workspace->bucket);
697 kfree(workspace->bucket_b);
698 kfree(workspace);
699}
700
701static struct list_head *alloc_heuristic_ws(unsigned int level)
702{
703 struct heuristic_ws *ws;
704
705 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
706 if (!ws)
707 return ERR_PTR(-ENOMEM);
708
709 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
710 if (!ws->sample)
711 goto fail;
712
713 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
714 if (!ws->bucket)
715 goto fail;
716
717 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
718 if (!ws->bucket_b)
719 goto fail;
720
721 INIT_LIST_HEAD(&ws->list);
722 return &ws->list;
723fail:
724 free_heuristic_ws(&ws->list);
725 return ERR_PTR(-ENOMEM);
726}
727
728const struct btrfs_compress_op btrfs_heuristic_compress = {
729 .workspace_manager = &heuristic_wsm,
730};
731
732static const struct btrfs_compress_op * const btrfs_compress_op[] = {
733 /* The heuristic is represented as compression type 0 */
734 &btrfs_heuristic_compress,
735 &btrfs_zlib_compress,
736 &btrfs_lzo_compress,
737 &btrfs_zstd_compress,
738};
739
740static struct list_head *alloc_workspace(int type, unsigned int level)
741{
742 switch (type) {
743 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
744 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
745 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
746 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
747 default:
748 /*
749 * This can't happen, the type is validated several times
750 * before we get here.
751 */
752 BUG();
753 }
754}
755
756static void free_workspace(int type, struct list_head *ws)
757{
758 switch (type) {
759 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
760 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
761 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
762 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
763 default:
764 /*
765 * This can't happen, the type is validated several times
766 * before we get here.
767 */
768 BUG();
769 }
770}
771
772static void btrfs_init_workspace_manager(int type)
773{
774 struct workspace_manager *wsm;
775 struct list_head *workspace;
776
777 wsm = btrfs_compress_op[type]->workspace_manager;
778 INIT_LIST_HEAD(&wsm->idle_ws);
779 spin_lock_init(&wsm->ws_lock);
780 atomic_set(&wsm->total_ws, 0);
781 init_waitqueue_head(&wsm->ws_wait);
782
783 /*
784 * Preallocate one workspace for each compression type so we can
785 * guarantee forward progress in the worst case
786 */
787 workspace = alloc_workspace(type, 0);
788 if (IS_ERR(workspace)) {
789 pr_warn(
790 "BTRFS: cannot preallocate compression workspace, will try later\n");
791 } else {
792 atomic_set(&wsm->total_ws, 1);
793 wsm->free_ws = 1;
794 list_add(workspace, &wsm->idle_ws);
795 }
796}
797
798static void btrfs_cleanup_workspace_manager(int type)
799{
800 struct workspace_manager *wsman;
801 struct list_head *ws;
802
803 wsman = btrfs_compress_op[type]->workspace_manager;
804 while (!list_empty(&wsman->idle_ws)) {
805 ws = wsman->idle_ws.next;
806 list_del(ws);
807 free_workspace(type, ws);
808 atomic_dec(&wsman->total_ws);
809 }
810}
811
812/*
813 * This finds an available workspace or allocates a new one.
814 * If it's not possible to allocate a new one, waits until there's one.
815 * Preallocation makes a forward progress guarantees and we do not return
816 * errors.
817 */
818struct list_head *btrfs_get_workspace(int type, unsigned int level)
819{
820 struct workspace_manager *wsm;
821 struct list_head *workspace;
822 int cpus = num_online_cpus();
823 unsigned nofs_flag;
824 struct list_head *idle_ws;
825 spinlock_t *ws_lock;
826 atomic_t *total_ws;
827 wait_queue_head_t *ws_wait;
828 int *free_ws;
829
830 wsm = btrfs_compress_op[type]->workspace_manager;
831 idle_ws = &wsm->idle_ws;
832 ws_lock = &wsm->ws_lock;
833 total_ws = &wsm->total_ws;
834 ws_wait = &wsm->ws_wait;
835 free_ws = &wsm->free_ws;
836
837again:
838 spin_lock(ws_lock);
839 if (!list_empty(idle_ws)) {
840 workspace = idle_ws->next;
841 list_del(workspace);
842 (*free_ws)--;
843 spin_unlock(ws_lock);
844 return workspace;
845
846 }
847 if (atomic_read(total_ws) > cpus) {
848 DEFINE_WAIT(wait);
849
850 spin_unlock(ws_lock);
851 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
852 if (atomic_read(total_ws) > cpus && !*free_ws)
853 schedule();
854 finish_wait(ws_wait, &wait);
855 goto again;
856 }
857 atomic_inc(total_ws);
858 spin_unlock(ws_lock);
859
860 /*
861 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
862 * to turn it off here because we might get called from the restricted
863 * context of btrfs_compress_bio/btrfs_compress_pages
864 */
865 nofs_flag = memalloc_nofs_save();
866 workspace = alloc_workspace(type, level);
867 memalloc_nofs_restore(nofs_flag);
868
869 if (IS_ERR(workspace)) {
870 atomic_dec(total_ws);
871 wake_up(ws_wait);
872
873 /*
874 * Do not return the error but go back to waiting. There's a
875 * workspace preallocated for each type and the compression
876 * time is bounded so we get to a workspace eventually. This
877 * makes our caller's life easier.
878 *
879 * To prevent silent and low-probability deadlocks (when the
880 * initial preallocation fails), check if there are any
881 * workspaces at all.
882 */
883 if (atomic_read(total_ws) == 0) {
884 static DEFINE_RATELIMIT_STATE(_rs,
885 /* once per minute */ 60 * HZ,
886 /* no burst */ 1);
887
888 if (__ratelimit(&_rs)) {
889 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
890 }
891 }
892 goto again;
893 }
894 return workspace;
895}
896
897static struct list_head *get_workspace(int type, int level)
898{
899 switch (type) {
900 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
901 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
902 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
903 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
904 default:
905 /*
906 * This can't happen, the type is validated several times
907 * before we get here.
908 */
909 BUG();
910 }
911}
912
913/*
914 * put a workspace struct back on the list or free it if we have enough
915 * idle ones sitting around
916 */
917void btrfs_put_workspace(int type, struct list_head *ws)
918{
919 struct workspace_manager *wsm;
920 struct list_head *idle_ws;
921 spinlock_t *ws_lock;
922 atomic_t *total_ws;
923 wait_queue_head_t *ws_wait;
924 int *free_ws;
925
926 wsm = btrfs_compress_op[type]->workspace_manager;
927 idle_ws = &wsm->idle_ws;
928 ws_lock = &wsm->ws_lock;
929 total_ws = &wsm->total_ws;
930 ws_wait = &wsm->ws_wait;
931 free_ws = &wsm->free_ws;
932
933 spin_lock(ws_lock);
934 if (*free_ws <= num_online_cpus()) {
935 list_add(ws, idle_ws);
936 (*free_ws)++;
937 spin_unlock(ws_lock);
938 goto wake;
939 }
940 spin_unlock(ws_lock);
941
942 free_workspace(type, ws);
943 atomic_dec(total_ws);
944wake:
945 cond_wake_up(ws_wait);
946}
947
948static void put_workspace(int type, struct list_head *ws)
949{
950 switch (type) {
951 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
952 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
953 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
954 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
955 default:
956 /*
957 * This can't happen, the type is validated several times
958 * before we get here.
959 */
960 BUG();
961 }
962}
963
964/*
965 * Adjust @level according to the limits of the compression algorithm or
966 * fallback to default
967 */
968static unsigned int btrfs_compress_set_level(int type, unsigned level)
969{
970 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
971
972 if (level == 0)
973 level = ops->default_level;
974 else
975 level = min(level, ops->max_level);
976
977 return level;
978}
979
980/*
981 * Given an address space and start and length, compress the bytes into @pages
982 * that are allocated on demand.
983 *
984 * @type_level is encoded algorithm and level, where level 0 means whatever
985 * default the algorithm chooses and is opaque here;
986 * - compression algo are 0-3
987 * - the level are bits 4-7
988 *
989 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
990 * and returns number of actually allocated pages
991 *
992 * @total_in is used to return the number of bytes actually read. It
993 * may be smaller than the input length if we had to exit early because we
994 * ran out of room in the pages array or because we cross the
995 * max_out threshold.
996 *
997 * @total_out is an in/out parameter, must be set to the input length and will
998 * be also used to return the total number of compressed bytes
999 */
1000int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1001 u64 start, struct page **pages,
1002 unsigned long *out_pages,
1003 unsigned long *total_in,
1004 unsigned long *total_out)
1005{
1006 int type = btrfs_compress_type(type_level);
1007 int level = btrfs_compress_level(type_level);
1008 struct list_head *workspace;
1009 int ret;
1010
1011 level = btrfs_compress_set_level(type, level);
1012 workspace = get_workspace(type, level);
1013 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1014 out_pages, total_in, total_out);
1015 put_workspace(type, workspace);
1016 return ret;
1017}
1018
1019static int btrfs_decompress_bio(struct compressed_bio *cb)
1020{
1021 struct list_head *workspace;
1022 int ret;
1023 int type = cb->compress_type;
1024
1025 workspace = get_workspace(type, 0);
1026 ret = compression_decompress_bio(workspace, cb);
1027 put_workspace(type, workspace);
1028
1029 if (!ret)
1030 zero_fill_bio(&cb->orig_bbio->bio);
1031 return ret;
1032}
1033
1034/*
1035 * a less complex decompression routine. Our compressed data fits in a
1036 * single page, and we want to read a single page out of it.
1037 * start_byte tells us the offset into the compressed data we're interested in
1038 */
1039int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1040 unsigned long dest_pgoff, size_t srclen, size_t destlen)
1041{
1042 struct btrfs_fs_info *fs_info = btrfs_sb(dest_page->mapping->host->i_sb);
1043 struct list_head *workspace;
1044 const u32 sectorsize = fs_info->sectorsize;
1045 int ret;
1046
1047 /*
1048 * The full destination page range should not exceed the page size.
1049 * And the @destlen should not exceed sectorsize, as this is only called for
1050 * inline file extents, which should not exceed sectorsize.
1051 */
1052 ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1053
1054 workspace = get_workspace(type, 0);
1055 ret = compression_decompress(type, workspace, data_in, dest_page,
1056 dest_pgoff, srclen, destlen);
1057 put_workspace(type, workspace);
1058
1059 return ret;
1060}
1061
1062int __init btrfs_init_compress(void)
1063{
1064 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1065 offsetof(struct compressed_bio, bbio.bio),
1066 BIOSET_NEED_BVECS))
1067 return -ENOMEM;
1068
1069 compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1070 if (!compr_pool.shrinker)
1071 return -ENOMEM;
1072
1073 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1074 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1075 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1076 zstd_init_workspace_manager();
1077
1078 spin_lock_init(&compr_pool.lock);
1079 INIT_LIST_HEAD(&compr_pool.list);
1080 compr_pool.count = 0;
1081 /* 128K / 4K = 32, for 8 threads is 256 pages. */
1082 compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1083 compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1084 compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1085 compr_pool.shrinker->batch = 32;
1086 compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1087 shrinker_register(compr_pool.shrinker);
1088
1089 return 0;
1090}
1091
1092void __cold btrfs_exit_compress(void)
1093{
1094 /* For now scan drains all pages and does not touch the parameters. */
1095 btrfs_compr_pool_scan(NULL, NULL);
1096 shrinker_free(compr_pool.shrinker);
1097
1098 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1099 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1100 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1101 zstd_cleanup_workspace_manager();
1102 bioset_exit(&btrfs_compressed_bioset);
1103}
1104
1105/*
1106 * Copy decompressed data from working buffer to pages.
1107 *
1108 * @buf: The decompressed data buffer
1109 * @buf_len: The decompressed data length
1110 * @decompressed: Number of bytes that are already decompressed inside the
1111 * compressed extent
1112 * @cb: The compressed extent descriptor
1113 * @orig_bio: The original bio that the caller wants to read for
1114 *
1115 * An easier to understand graph is like below:
1116 *
1117 * |<- orig_bio ->| |<- orig_bio->|
1118 * |<------- full decompressed extent ----->|
1119 * |<----------- @cb range ---->|
1120 * | |<-- @buf_len -->|
1121 * |<--- @decompressed --->|
1122 *
1123 * Note that, @cb can be a subpage of the full decompressed extent, but
1124 * @cb->start always has the same as the orig_file_offset value of the full
1125 * decompressed extent.
1126 *
1127 * When reading compressed extent, we have to read the full compressed extent,
1128 * while @orig_bio may only want part of the range.
1129 * Thus this function will ensure only data covered by @orig_bio will be copied
1130 * to.
1131 *
1132 * Return 0 if we have copied all needed contents for @orig_bio.
1133 * Return >0 if we need continue decompress.
1134 */
1135int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1136 struct compressed_bio *cb, u32 decompressed)
1137{
1138 struct bio *orig_bio = &cb->orig_bbio->bio;
1139 /* Offset inside the full decompressed extent */
1140 u32 cur_offset;
1141
1142 cur_offset = decompressed;
1143 /* The main loop to do the copy */
1144 while (cur_offset < decompressed + buf_len) {
1145 struct bio_vec bvec;
1146 size_t copy_len;
1147 u32 copy_start;
1148 /* Offset inside the full decompressed extent */
1149 u32 bvec_offset;
1150
1151 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1152 /*
1153 * cb->start may underflow, but subtracting that value can still
1154 * give us correct offset inside the full decompressed extent.
1155 */
1156 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1157
1158 /* Haven't reached the bvec range, exit */
1159 if (decompressed + buf_len <= bvec_offset)
1160 return 1;
1161
1162 copy_start = max(cur_offset, bvec_offset);
1163 copy_len = min(bvec_offset + bvec.bv_len,
1164 decompressed + buf_len) - copy_start;
1165 ASSERT(copy_len);
1166
1167 /*
1168 * Extra range check to ensure we didn't go beyond
1169 * @buf + @buf_len.
1170 */
1171 ASSERT(copy_start - decompressed < buf_len);
1172 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1173 buf + copy_start - decompressed, copy_len);
1174 cur_offset += copy_len;
1175
1176 bio_advance(orig_bio, copy_len);
1177 /* Finished the bio */
1178 if (!orig_bio->bi_iter.bi_size)
1179 return 0;
1180 }
1181 return 1;
1182}
1183
1184/*
1185 * Shannon Entropy calculation
1186 *
1187 * Pure byte distribution analysis fails to determine compressibility of data.
1188 * Try calculating entropy to estimate the average minimum number of bits
1189 * needed to encode the sampled data.
1190 *
1191 * For convenience, return the percentage of needed bits, instead of amount of
1192 * bits directly.
1193 *
1194 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1195 * and can be compressible with high probability
1196 *
1197 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1198 *
1199 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1200 */
1201#define ENTROPY_LVL_ACEPTABLE (65)
1202#define ENTROPY_LVL_HIGH (80)
1203
1204/*
1205 * For increasead precision in shannon_entropy calculation,
1206 * let's do pow(n, M) to save more digits after comma:
1207 *
1208 * - maximum int bit length is 64
1209 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1210 * - 13 * 4 = 52 < 64 -> M = 4
1211 *
1212 * So use pow(n, 4).
1213 */
1214static inline u32 ilog2_w(u64 n)
1215{
1216 return ilog2(n * n * n * n);
1217}
1218
1219static u32 shannon_entropy(struct heuristic_ws *ws)
1220{
1221 const u32 entropy_max = 8 * ilog2_w(2);
1222 u32 entropy_sum = 0;
1223 u32 p, p_base, sz_base;
1224 u32 i;
1225
1226 sz_base = ilog2_w(ws->sample_size);
1227 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1228 p = ws->bucket[i].count;
1229 p_base = ilog2_w(p);
1230 entropy_sum += p * (sz_base - p_base);
1231 }
1232
1233 entropy_sum /= ws->sample_size;
1234 return entropy_sum * 100 / entropy_max;
1235}
1236
1237#define RADIX_BASE 4U
1238#define COUNTERS_SIZE (1U << RADIX_BASE)
1239
1240static u8 get4bits(u64 num, int shift) {
1241 u8 low4bits;
1242
1243 num >>= shift;
1244 /* Reverse order */
1245 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1246 return low4bits;
1247}
1248
1249/*
1250 * Use 4 bits as radix base
1251 * Use 16 u32 counters for calculating new position in buf array
1252 *
1253 * @array - array that will be sorted
1254 * @array_buf - buffer array to store sorting results
1255 * must be equal in size to @array
1256 * @num - array size
1257 */
1258static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1259 int num)
1260{
1261 u64 max_num;
1262 u64 buf_num;
1263 u32 counters[COUNTERS_SIZE];
1264 u32 new_addr;
1265 u32 addr;
1266 int bitlen;
1267 int shift;
1268 int i;
1269
1270 /*
1271 * Try avoid useless loop iterations for small numbers stored in big
1272 * counters. Example: 48 33 4 ... in 64bit array
1273 */
1274 max_num = array[0].count;
1275 for (i = 1; i < num; i++) {
1276 buf_num = array[i].count;
1277 if (buf_num > max_num)
1278 max_num = buf_num;
1279 }
1280
1281 buf_num = ilog2(max_num);
1282 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1283
1284 shift = 0;
1285 while (shift < bitlen) {
1286 memset(counters, 0, sizeof(counters));
1287
1288 for (i = 0; i < num; i++) {
1289 buf_num = array[i].count;
1290 addr = get4bits(buf_num, shift);
1291 counters[addr]++;
1292 }
1293
1294 for (i = 1; i < COUNTERS_SIZE; i++)
1295 counters[i] += counters[i - 1];
1296
1297 for (i = num - 1; i >= 0; i--) {
1298 buf_num = array[i].count;
1299 addr = get4bits(buf_num, shift);
1300 counters[addr]--;
1301 new_addr = counters[addr];
1302 array_buf[new_addr] = array[i];
1303 }
1304
1305 shift += RADIX_BASE;
1306
1307 /*
1308 * Normal radix expects to move data from a temporary array, to
1309 * the main one. But that requires some CPU time. Avoid that
1310 * by doing another sort iteration to original array instead of
1311 * memcpy()
1312 */
1313 memset(counters, 0, sizeof(counters));
1314
1315 for (i = 0; i < num; i ++) {
1316 buf_num = array_buf[i].count;
1317 addr = get4bits(buf_num, shift);
1318 counters[addr]++;
1319 }
1320
1321 for (i = 1; i < COUNTERS_SIZE; i++)
1322 counters[i] += counters[i - 1];
1323
1324 for (i = num - 1; i >= 0; i--) {
1325 buf_num = array_buf[i].count;
1326 addr = get4bits(buf_num, shift);
1327 counters[addr]--;
1328 new_addr = counters[addr];
1329 array[new_addr] = array_buf[i];
1330 }
1331
1332 shift += RADIX_BASE;
1333 }
1334}
1335
1336/*
1337 * Size of the core byte set - how many bytes cover 90% of the sample
1338 *
1339 * There are several types of structured binary data that use nearly all byte
1340 * values. The distribution can be uniform and counts in all buckets will be
1341 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1342 *
1343 * Other possibility is normal (Gaussian) distribution, where the data could
1344 * be potentially compressible, but we have to take a few more steps to decide
1345 * how much.
1346 *
1347 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1348 * compression algo can easy fix that
1349 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1350 * probability is not compressible
1351 */
1352#define BYTE_CORE_SET_LOW (64)
1353#define BYTE_CORE_SET_HIGH (200)
1354
1355static int byte_core_set_size(struct heuristic_ws *ws)
1356{
1357 u32 i;
1358 u32 coreset_sum = 0;
1359 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1360 struct bucket_item *bucket = ws->bucket;
1361
1362 /* Sort in reverse order */
1363 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1364
1365 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1366 coreset_sum += bucket[i].count;
1367
1368 if (coreset_sum > core_set_threshold)
1369 return i;
1370
1371 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1372 coreset_sum += bucket[i].count;
1373 if (coreset_sum > core_set_threshold)
1374 break;
1375 }
1376
1377 return i;
1378}
1379
1380/*
1381 * Count byte values in buckets.
1382 * This heuristic can detect textual data (configs, xml, json, html, etc).
1383 * Because in most text-like data byte set is restricted to limited number of
1384 * possible characters, and that restriction in most cases makes data easy to
1385 * compress.
1386 *
1387 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1388 * less - compressible
1389 * more - need additional analysis
1390 */
1391#define BYTE_SET_THRESHOLD (64)
1392
1393static u32 byte_set_size(const struct heuristic_ws *ws)
1394{
1395 u32 i;
1396 u32 byte_set_size = 0;
1397
1398 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1399 if (ws->bucket[i].count > 0)
1400 byte_set_size++;
1401 }
1402
1403 /*
1404 * Continue collecting count of byte values in buckets. If the byte
1405 * set size is bigger then the threshold, it's pointless to continue,
1406 * the detection technique would fail for this type of data.
1407 */
1408 for (; i < BUCKET_SIZE; i++) {
1409 if (ws->bucket[i].count > 0) {
1410 byte_set_size++;
1411 if (byte_set_size > BYTE_SET_THRESHOLD)
1412 return byte_set_size;
1413 }
1414 }
1415
1416 return byte_set_size;
1417}
1418
1419static bool sample_repeated_patterns(struct heuristic_ws *ws)
1420{
1421 const u32 half_of_sample = ws->sample_size / 2;
1422 const u8 *data = ws->sample;
1423
1424 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1425}
1426
1427static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1428 struct heuristic_ws *ws)
1429{
1430 struct page *page;
1431 u64 index, index_end;
1432 u32 i, curr_sample_pos;
1433 u8 *in_data;
1434
1435 /*
1436 * Compression handles the input data by chunks of 128KiB
1437 * (defined by BTRFS_MAX_UNCOMPRESSED)
1438 *
1439 * We do the same for the heuristic and loop over the whole range.
1440 *
1441 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1442 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1443 */
1444 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1445 end = start + BTRFS_MAX_UNCOMPRESSED;
1446
1447 index = start >> PAGE_SHIFT;
1448 index_end = end >> PAGE_SHIFT;
1449
1450 /* Don't miss unaligned end */
1451 if (!PAGE_ALIGNED(end))
1452 index_end++;
1453
1454 curr_sample_pos = 0;
1455 while (index < index_end) {
1456 page = find_get_page(inode->i_mapping, index);
1457 in_data = kmap_local_page(page);
1458 /* Handle case where the start is not aligned to PAGE_SIZE */
1459 i = start % PAGE_SIZE;
1460 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1461 /* Don't sample any garbage from the last page */
1462 if (start > end - SAMPLING_READ_SIZE)
1463 break;
1464 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1465 SAMPLING_READ_SIZE);
1466 i += SAMPLING_INTERVAL;
1467 start += SAMPLING_INTERVAL;
1468 curr_sample_pos += SAMPLING_READ_SIZE;
1469 }
1470 kunmap_local(in_data);
1471 put_page(page);
1472
1473 index++;
1474 }
1475
1476 ws->sample_size = curr_sample_pos;
1477}
1478
1479/*
1480 * Compression heuristic.
1481 *
1482 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1483 * quickly (compared to direct compression) detect data characteristics
1484 * (compressible/incompressible) to avoid wasting CPU time on incompressible
1485 * data.
1486 *
1487 * The following types of analysis can be performed:
1488 * - detect mostly zero data
1489 * - detect data with low "byte set" size (text, etc)
1490 * - detect data with low/high "core byte" set
1491 *
1492 * Return non-zero if the compression should be done, 0 otherwise.
1493 */
1494int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1495{
1496 struct list_head *ws_list = get_workspace(0, 0);
1497 struct heuristic_ws *ws;
1498 u32 i;
1499 u8 byte;
1500 int ret = 0;
1501
1502 ws = list_entry(ws_list, struct heuristic_ws, list);
1503
1504 heuristic_collect_sample(inode, start, end, ws);
1505
1506 if (sample_repeated_patterns(ws)) {
1507 ret = 1;
1508 goto out;
1509 }
1510
1511 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1512
1513 for (i = 0; i < ws->sample_size; i++) {
1514 byte = ws->sample[i];
1515 ws->bucket[byte].count++;
1516 }
1517
1518 i = byte_set_size(ws);
1519 if (i < BYTE_SET_THRESHOLD) {
1520 ret = 2;
1521 goto out;
1522 }
1523
1524 i = byte_core_set_size(ws);
1525 if (i <= BYTE_CORE_SET_LOW) {
1526 ret = 3;
1527 goto out;
1528 }
1529
1530 if (i >= BYTE_CORE_SET_HIGH) {
1531 ret = 0;
1532 goto out;
1533 }
1534
1535 i = shannon_entropy(ws);
1536 if (i <= ENTROPY_LVL_ACEPTABLE) {
1537 ret = 4;
1538 goto out;
1539 }
1540
1541 /*
1542 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1543 * needed to give green light to compression.
1544 *
1545 * For now just assume that compression at that level is not worth the
1546 * resources because:
1547 *
1548 * 1. it is possible to defrag the data later
1549 *
1550 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1551 * values, every bucket has counter at level ~54. The heuristic would
1552 * be confused. This can happen when data have some internal repeated
1553 * patterns like "abbacbbc...". This can be detected by analyzing
1554 * pairs of bytes, which is too costly.
1555 */
1556 if (i < ENTROPY_LVL_HIGH) {
1557 ret = 5;
1558 goto out;
1559 } else {
1560 ret = 0;
1561 goto out;
1562 }
1563
1564out:
1565 put_workspace(0, ws_list);
1566 return ret;
1567}
1568
1569/*
1570 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1571 * level, unrecognized string will set the default level
1572 */
1573unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1574{
1575 unsigned int level = 0;
1576 int ret;
1577
1578 if (!type)
1579 return 0;
1580
1581 if (str[0] == ':') {
1582 ret = kstrtouint(str + 1, 10, &level);
1583 if (ret)
1584 level = 0;
1585 }
1586
1587 level = btrfs_compress_set_level(type, level);
1588
1589 return level;
1590}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
20#include <linux/bit_spinlock.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/log2.h>
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "btrfs_inode.h"
28#include "volumes.h"
29#include "ordered-data.h"
30#include "compression.h"
31#include "extent_io.h"
32#include "extent_map.h"
33
34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35
36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37{
38 switch (type) {
39 case BTRFS_COMPRESS_ZLIB:
40 case BTRFS_COMPRESS_LZO:
41 case BTRFS_COMPRESS_ZSTD:
42 case BTRFS_COMPRESS_NONE:
43 return btrfs_compress_types[type];
44 }
45
46 return NULL;
47}
48
49static int btrfs_decompress_bio(struct compressed_bio *cb);
50
51static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
52 unsigned long disk_size)
53{
54 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
55
56 return sizeof(struct compressed_bio) +
57 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
58}
59
60static int check_compressed_csum(struct btrfs_inode *inode,
61 struct compressed_bio *cb,
62 u64 disk_start)
63{
64 int ret;
65 struct page *page;
66 unsigned long i;
67 char *kaddr;
68 u32 csum;
69 u32 *cb_sum = &cb->sums;
70
71 if (inode->flags & BTRFS_INODE_NODATASUM)
72 return 0;
73
74 for (i = 0; i < cb->nr_pages; i++) {
75 page = cb->compressed_pages[i];
76 csum = ~(u32)0;
77
78 kaddr = kmap_atomic(page);
79 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
80 btrfs_csum_final(csum, (u8 *)&csum);
81 kunmap_atomic(kaddr);
82
83 if (csum != *cb_sum) {
84 btrfs_print_data_csum_error(inode, disk_start, csum,
85 *cb_sum, cb->mirror_num);
86 ret = -EIO;
87 goto fail;
88 }
89 cb_sum++;
90
91 }
92 ret = 0;
93fail:
94 return ret;
95}
96
97/* when we finish reading compressed pages from the disk, we
98 * decompress them and then run the bio end_io routines on the
99 * decompressed pages (in the inode address space).
100 *
101 * This allows the checksumming and other IO error handling routines
102 * to work normally
103 *
104 * The compressed pages are freed here, and it must be run
105 * in process context
106 */
107static void end_compressed_bio_read(struct bio *bio)
108{
109 struct compressed_bio *cb = bio->bi_private;
110 struct inode *inode;
111 struct page *page;
112 unsigned long index;
113 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
114 int ret = 0;
115
116 if (bio->bi_status)
117 cb->errors = 1;
118
119 /* if there are more bios still pending for this compressed
120 * extent, just exit
121 */
122 if (!refcount_dec_and_test(&cb->pending_bios))
123 goto out;
124
125 /*
126 * Record the correct mirror_num in cb->orig_bio so that
127 * read-repair can work properly.
128 */
129 ASSERT(btrfs_io_bio(cb->orig_bio));
130 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
131 cb->mirror_num = mirror;
132
133 /*
134 * Some IO in this cb have failed, just skip checksum as there
135 * is no way it could be correct.
136 */
137 if (cb->errors == 1)
138 goto csum_failed;
139
140 inode = cb->inode;
141 ret = check_compressed_csum(BTRFS_I(inode), cb,
142 (u64)bio->bi_iter.bi_sector << 9);
143 if (ret)
144 goto csum_failed;
145
146 /* ok, we're the last bio for this extent, lets start
147 * the decompression.
148 */
149 ret = btrfs_decompress_bio(cb);
150
151csum_failed:
152 if (ret)
153 cb->errors = 1;
154
155 /* release the compressed pages */
156 index = 0;
157 for (index = 0; index < cb->nr_pages; index++) {
158 page = cb->compressed_pages[index];
159 page->mapping = NULL;
160 put_page(page);
161 }
162
163 /* do io completion on the original bio */
164 if (cb->errors) {
165 bio_io_error(cb->orig_bio);
166 } else {
167 int i;
168 struct bio_vec *bvec;
169
170 /*
171 * we have verified the checksum already, set page
172 * checked so the end_io handlers know about it
173 */
174 ASSERT(!bio_flagged(bio, BIO_CLONED));
175 bio_for_each_segment_all(bvec, cb->orig_bio, i)
176 SetPageChecked(bvec->bv_page);
177
178 bio_endio(cb->orig_bio);
179 }
180
181 /* finally free the cb struct */
182 kfree(cb->compressed_pages);
183 kfree(cb);
184out:
185 bio_put(bio);
186}
187
188/*
189 * Clear the writeback bits on all of the file
190 * pages for a compressed write
191 */
192static noinline void end_compressed_writeback(struct inode *inode,
193 const struct compressed_bio *cb)
194{
195 unsigned long index = cb->start >> PAGE_SHIFT;
196 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
197 struct page *pages[16];
198 unsigned long nr_pages = end_index - index + 1;
199 int i;
200 int ret;
201
202 if (cb->errors)
203 mapping_set_error(inode->i_mapping, -EIO);
204
205 while (nr_pages > 0) {
206 ret = find_get_pages_contig(inode->i_mapping, index,
207 min_t(unsigned long,
208 nr_pages, ARRAY_SIZE(pages)), pages);
209 if (ret == 0) {
210 nr_pages -= 1;
211 index += 1;
212 continue;
213 }
214 for (i = 0; i < ret; i++) {
215 if (cb->errors)
216 SetPageError(pages[i]);
217 end_page_writeback(pages[i]);
218 put_page(pages[i]);
219 }
220 nr_pages -= ret;
221 index += ret;
222 }
223 /* the inode may be gone now */
224}
225
226/*
227 * do the cleanup once all the compressed pages hit the disk.
228 * This will clear writeback on the file pages and free the compressed
229 * pages.
230 *
231 * This also calls the writeback end hooks for the file pages so that
232 * metadata and checksums can be updated in the file.
233 */
234static void end_compressed_bio_write(struct bio *bio)
235{
236 struct extent_io_tree *tree;
237 struct compressed_bio *cb = bio->bi_private;
238 struct inode *inode;
239 struct page *page;
240 unsigned long index;
241
242 if (bio->bi_status)
243 cb->errors = 1;
244
245 /* if there are more bios still pending for this compressed
246 * extent, just exit
247 */
248 if (!refcount_dec_and_test(&cb->pending_bios))
249 goto out;
250
251 /* ok, we're the last bio for this extent, step one is to
252 * call back into the FS and do all the end_io operations
253 */
254 inode = cb->inode;
255 tree = &BTRFS_I(inode)->io_tree;
256 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
257 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
258 cb->start,
259 cb->start + cb->len - 1,
260 NULL,
261 bio->bi_status ?
262 BLK_STS_OK : BLK_STS_NOTSUPP);
263 cb->compressed_pages[0]->mapping = NULL;
264
265 end_compressed_writeback(inode, cb);
266 /* note, our inode could be gone now */
267
268 /*
269 * release the compressed pages, these came from alloc_page and
270 * are not attached to the inode at all
271 */
272 index = 0;
273 for (index = 0; index < cb->nr_pages; index++) {
274 page = cb->compressed_pages[index];
275 page->mapping = NULL;
276 put_page(page);
277 }
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282out:
283 bio_put(bio);
284}
285
286/*
287 * worker function to build and submit bios for previously compressed pages.
288 * The corresponding pages in the inode should be marked for writeback
289 * and the compressed pages should have a reference on them for dropping
290 * when the IO is complete.
291 *
292 * This also checksums the file bytes and gets things ready for
293 * the end io hooks.
294 */
295blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
296 unsigned long len, u64 disk_start,
297 unsigned long compressed_len,
298 struct page **compressed_pages,
299 unsigned long nr_pages,
300 unsigned int write_flags)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct bio *bio = NULL;
304 struct compressed_bio *cb;
305 unsigned long bytes_left;
306 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
307 int pg_index = 0;
308 struct page *page;
309 u64 first_byte = disk_start;
310 struct block_device *bdev;
311 blk_status_t ret;
312 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
313
314 WARN_ON(start & ((u64)PAGE_SIZE - 1));
315 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
316 if (!cb)
317 return BLK_STS_RESOURCE;
318 refcount_set(&cb->pending_bios, 0);
319 cb->errors = 0;
320 cb->inode = inode;
321 cb->start = start;
322 cb->len = len;
323 cb->mirror_num = 0;
324 cb->compressed_pages = compressed_pages;
325 cb->compressed_len = compressed_len;
326 cb->orig_bio = NULL;
327 cb->nr_pages = nr_pages;
328
329 bdev = fs_info->fs_devices->latest_bdev;
330
331 bio = btrfs_bio_alloc(bdev, first_byte);
332 bio->bi_opf = REQ_OP_WRITE | write_flags;
333 bio->bi_private = cb;
334 bio->bi_end_io = end_compressed_bio_write;
335 refcount_set(&cb->pending_bios, 1);
336
337 /* create and submit bios for the compressed pages */
338 bytes_left = compressed_len;
339 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
340 int submit = 0;
341
342 page = compressed_pages[pg_index];
343 page->mapping = inode->i_mapping;
344 if (bio->bi_iter.bi_size)
345 submit = io_tree->ops->merge_bio_hook(page, 0,
346 PAGE_SIZE,
347 bio, 0);
348
349 page->mapping = NULL;
350 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
351 PAGE_SIZE) {
352 /*
353 * inc the count before we submit the bio so
354 * we know the end IO handler won't happen before
355 * we inc the count. Otherwise, the cb might get
356 * freed before we're done setting it up
357 */
358 refcount_inc(&cb->pending_bios);
359 ret = btrfs_bio_wq_end_io(fs_info, bio,
360 BTRFS_WQ_ENDIO_DATA);
361 BUG_ON(ret); /* -ENOMEM */
362
363 if (!skip_sum) {
364 ret = btrfs_csum_one_bio(inode, bio, start, 1);
365 BUG_ON(ret); /* -ENOMEM */
366 }
367
368 ret = btrfs_map_bio(fs_info, bio, 0, 1);
369 if (ret) {
370 bio->bi_status = ret;
371 bio_endio(bio);
372 }
373
374 bio = btrfs_bio_alloc(bdev, first_byte);
375 bio->bi_opf = REQ_OP_WRITE | write_flags;
376 bio->bi_private = cb;
377 bio->bi_end_io = end_compressed_bio_write;
378 bio_add_page(bio, page, PAGE_SIZE, 0);
379 }
380 if (bytes_left < PAGE_SIZE) {
381 btrfs_info(fs_info,
382 "bytes left %lu compress len %lu nr %lu",
383 bytes_left, cb->compressed_len, cb->nr_pages);
384 }
385 bytes_left -= PAGE_SIZE;
386 first_byte += PAGE_SIZE;
387 cond_resched();
388 }
389
390 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
391 BUG_ON(ret); /* -ENOMEM */
392
393 if (!skip_sum) {
394 ret = btrfs_csum_one_bio(inode, bio, start, 1);
395 BUG_ON(ret); /* -ENOMEM */
396 }
397
398 ret = btrfs_map_bio(fs_info, bio, 0, 1);
399 if (ret) {
400 bio->bi_status = ret;
401 bio_endio(bio);
402 }
403
404 return 0;
405}
406
407static u64 bio_end_offset(struct bio *bio)
408{
409 struct bio_vec *last = bio_last_bvec_all(bio);
410
411 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
412}
413
414static noinline int add_ra_bio_pages(struct inode *inode,
415 u64 compressed_end,
416 struct compressed_bio *cb)
417{
418 unsigned long end_index;
419 unsigned long pg_index;
420 u64 last_offset;
421 u64 isize = i_size_read(inode);
422 int ret;
423 struct page *page;
424 unsigned long nr_pages = 0;
425 struct extent_map *em;
426 struct address_space *mapping = inode->i_mapping;
427 struct extent_map_tree *em_tree;
428 struct extent_io_tree *tree;
429 u64 end;
430 int misses = 0;
431
432 last_offset = bio_end_offset(cb->orig_bio);
433 em_tree = &BTRFS_I(inode)->extent_tree;
434 tree = &BTRFS_I(inode)->io_tree;
435
436 if (isize == 0)
437 return 0;
438
439 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
440
441 while (last_offset < compressed_end) {
442 pg_index = last_offset >> PAGE_SHIFT;
443
444 if (pg_index > end_index)
445 break;
446
447 rcu_read_lock();
448 page = radix_tree_lookup(&mapping->i_pages, pg_index);
449 rcu_read_unlock();
450 if (page && !radix_tree_exceptional_entry(page)) {
451 misses++;
452 if (misses > 4)
453 break;
454 goto next;
455 }
456
457 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
458 ~__GFP_FS));
459 if (!page)
460 break;
461
462 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
463 put_page(page);
464 goto next;
465 }
466
467 end = last_offset + PAGE_SIZE - 1;
468 /*
469 * at this point, we have a locked page in the page cache
470 * for these bytes in the file. But, we have to make
471 * sure they map to this compressed extent on disk.
472 */
473 set_page_extent_mapped(page);
474 lock_extent(tree, last_offset, end);
475 read_lock(&em_tree->lock);
476 em = lookup_extent_mapping(em_tree, last_offset,
477 PAGE_SIZE);
478 read_unlock(&em_tree->lock);
479
480 if (!em || last_offset < em->start ||
481 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
482 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
483 free_extent_map(em);
484 unlock_extent(tree, last_offset, end);
485 unlock_page(page);
486 put_page(page);
487 break;
488 }
489 free_extent_map(em);
490
491 if (page->index == end_index) {
492 char *userpage;
493 size_t zero_offset = isize & (PAGE_SIZE - 1);
494
495 if (zero_offset) {
496 int zeros;
497 zeros = PAGE_SIZE - zero_offset;
498 userpage = kmap_atomic(page);
499 memset(userpage + zero_offset, 0, zeros);
500 flush_dcache_page(page);
501 kunmap_atomic(userpage);
502 }
503 }
504
505 ret = bio_add_page(cb->orig_bio, page,
506 PAGE_SIZE, 0);
507
508 if (ret == PAGE_SIZE) {
509 nr_pages++;
510 put_page(page);
511 } else {
512 unlock_extent(tree, last_offset, end);
513 unlock_page(page);
514 put_page(page);
515 break;
516 }
517next:
518 last_offset += PAGE_SIZE;
519 }
520 return 0;
521}
522
523/*
524 * for a compressed read, the bio we get passed has all the inode pages
525 * in it. We don't actually do IO on those pages but allocate new ones
526 * to hold the compressed pages on disk.
527 *
528 * bio->bi_iter.bi_sector points to the compressed extent on disk
529 * bio->bi_io_vec points to all of the inode pages
530 *
531 * After the compressed pages are read, we copy the bytes into the
532 * bio we were passed and then call the bio end_io calls
533 */
534blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
535 int mirror_num, unsigned long bio_flags)
536{
537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
538 struct extent_io_tree *tree;
539 struct extent_map_tree *em_tree;
540 struct compressed_bio *cb;
541 unsigned long compressed_len;
542 unsigned long nr_pages;
543 unsigned long pg_index;
544 struct page *page;
545 struct block_device *bdev;
546 struct bio *comp_bio;
547 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
548 u64 em_len;
549 u64 em_start;
550 struct extent_map *em;
551 blk_status_t ret = BLK_STS_RESOURCE;
552 int faili = 0;
553 u32 *sums;
554
555 tree = &BTRFS_I(inode)->io_tree;
556 em_tree = &BTRFS_I(inode)->extent_tree;
557
558 /* we need the actual starting offset of this extent in the file */
559 read_lock(&em_tree->lock);
560 em = lookup_extent_mapping(em_tree,
561 page_offset(bio_first_page_all(bio)),
562 PAGE_SIZE);
563 read_unlock(&em_tree->lock);
564 if (!em)
565 return BLK_STS_IOERR;
566
567 compressed_len = em->block_len;
568 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
569 if (!cb)
570 goto out;
571
572 refcount_set(&cb->pending_bios, 0);
573 cb->errors = 0;
574 cb->inode = inode;
575 cb->mirror_num = mirror_num;
576 sums = &cb->sums;
577
578 cb->start = em->orig_start;
579 em_len = em->len;
580 em_start = em->start;
581
582 free_extent_map(em);
583 em = NULL;
584
585 cb->len = bio->bi_iter.bi_size;
586 cb->compressed_len = compressed_len;
587 cb->compress_type = extent_compress_type(bio_flags);
588 cb->orig_bio = bio;
589
590 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
591 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
592 GFP_NOFS);
593 if (!cb->compressed_pages)
594 goto fail1;
595
596 bdev = fs_info->fs_devices->latest_bdev;
597
598 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
599 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
600 __GFP_HIGHMEM);
601 if (!cb->compressed_pages[pg_index]) {
602 faili = pg_index - 1;
603 ret = BLK_STS_RESOURCE;
604 goto fail2;
605 }
606 }
607 faili = nr_pages - 1;
608 cb->nr_pages = nr_pages;
609
610 add_ra_bio_pages(inode, em_start + em_len, cb);
611
612 /* include any pages we added in add_ra-bio_pages */
613 cb->len = bio->bi_iter.bi_size;
614
615 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
616 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
617 comp_bio->bi_private = cb;
618 comp_bio->bi_end_io = end_compressed_bio_read;
619 refcount_set(&cb->pending_bios, 1);
620
621 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
622 int submit = 0;
623
624 page = cb->compressed_pages[pg_index];
625 page->mapping = inode->i_mapping;
626 page->index = em_start >> PAGE_SHIFT;
627
628 if (comp_bio->bi_iter.bi_size)
629 submit = tree->ops->merge_bio_hook(page, 0,
630 PAGE_SIZE,
631 comp_bio, 0);
632
633 page->mapping = NULL;
634 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
635 PAGE_SIZE) {
636 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
637 BTRFS_WQ_ENDIO_DATA);
638 BUG_ON(ret); /* -ENOMEM */
639
640 /*
641 * inc the count before we submit the bio so
642 * we know the end IO handler won't happen before
643 * we inc the count. Otherwise, the cb might get
644 * freed before we're done setting it up
645 */
646 refcount_inc(&cb->pending_bios);
647
648 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
649 ret = btrfs_lookup_bio_sums(inode, comp_bio,
650 sums);
651 BUG_ON(ret); /* -ENOMEM */
652 }
653 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
654 fs_info->sectorsize);
655
656 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
657 if (ret) {
658 comp_bio->bi_status = ret;
659 bio_endio(comp_bio);
660 }
661
662 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
663 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
664 comp_bio->bi_private = cb;
665 comp_bio->bi_end_io = end_compressed_bio_read;
666
667 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
668 }
669 cur_disk_byte += PAGE_SIZE;
670 }
671
672 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
673 BUG_ON(ret); /* -ENOMEM */
674
675 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
677 BUG_ON(ret); /* -ENOMEM */
678 }
679
680 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
681 if (ret) {
682 comp_bio->bi_status = ret;
683 bio_endio(comp_bio);
684 }
685
686 return 0;
687
688fail2:
689 while (faili >= 0) {
690 __free_page(cb->compressed_pages[faili]);
691 faili--;
692 }
693
694 kfree(cb->compressed_pages);
695fail1:
696 kfree(cb);
697out:
698 free_extent_map(em);
699 return ret;
700}
701
702/*
703 * Heuristic uses systematic sampling to collect data from the input data
704 * range, the logic can be tuned by the following constants:
705 *
706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
707 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
708 */
709#define SAMPLING_READ_SIZE (16)
710#define SAMPLING_INTERVAL (256)
711
712/*
713 * For statistical analysis of the input data we consider bytes that form a
714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
715 * many times the object appeared in the sample.
716 */
717#define BUCKET_SIZE (256)
718
719/*
720 * The size of the sample is based on a statistical sampling rule of thumb.
721 * The common way is to perform sampling tests as long as the number of
722 * elements in each cell is at least 5.
723 *
724 * Instead of 5, we choose 32 to obtain more accurate results.
725 * If the data contain the maximum number of symbols, which is 256, we obtain a
726 * sample size bound by 8192.
727 *
728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
729 * from up to 512 locations.
730 */
731#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
732 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
733
734struct bucket_item {
735 u32 count;
736};
737
738struct heuristic_ws {
739 /* Partial copy of input data */
740 u8 *sample;
741 u32 sample_size;
742 /* Buckets store counters for each byte value */
743 struct bucket_item *bucket;
744 /* Sorting buffer */
745 struct bucket_item *bucket_b;
746 struct list_head list;
747};
748
749static void free_heuristic_ws(struct list_head *ws)
750{
751 struct heuristic_ws *workspace;
752
753 workspace = list_entry(ws, struct heuristic_ws, list);
754
755 kvfree(workspace->sample);
756 kfree(workspace->bucket);
757 kfree(workspace->bucket_b);
758 kfree(workspace);
759}
760
761static struct list_head *alloc_heuristic_ws(void)
762{
763 struct heuristic_ws *ws;
764
765 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
766 if (!ws)
767 return ERR_PTR(-ENOMEM);
768
769 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
770 if (!ws->sample)
771 goto fail;
772
773 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
774 if (!ws->bucket)
775 goto fail;
776
777 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
778 if (!ws->bucket_b)
779 goto fail;
780
781 INIT_LIST_HEAD(&ws->list);
782 return &ws->list;
783fail:
784 free_heuristic_ws(&ws->list);
785 return ERR_PTR(-ENOMEM);
786}
787
788struct workspaces_list {
789 struct list_head idle_ws;
790 spinlock_t ws_lock;
791 /* Number of free workspaces */
792 int free_ws;
793 /* Total number of allocated workspaces */
794 atomic_t total_ws;
795 /* Waiters for a free workspace */
796 wait_queue_head_t ws_wait;
797};
798
799static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
800
801static struct workspaces_list btrfs_heuristic_ws;
802
803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
804 &btrfs_zlib_compress,
805 &btrfs_lzo_compress,
806 &btrfs_zstd_compress,
807};
808
809void __init btrfs_init_compress(void)
810{
811 struct list_head *workspace;
812 int i;
813
814 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
815 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
816 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
817 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
818
819 workspace = alloc_heuristic_ws();
820 if (IS_ERR(workspace)) {
821 pr_warn(
822 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
823 } else {
824 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
825 btrfs_heuristic_ws.free_ws = 1;
826 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
827 }
828
829 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
830 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
831 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
832 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
833 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
834
835 /*
836 * Preallocate one workspace for each compression type so
837 * we can guarantee forward progress in the worst case
838 */
839 workspace = btrfs_compress_op[i]->alloc_workspace();
840 if (IS_ERR(workspace)) {
841 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
842 } else {
843 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
844 btrfs_comp_ws[i].free_ws = 1;
845 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
846 }
847 }
848}
849
850/*
851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
854 * errors.
855 */
856static struct list_head *__find_workspace(int type, bool heuristic)
857{
858 struct list_head *workspace;
859 int cpus = num_online_cpus();
860 int idx = type - 1;
861 unsigned nofs_flag;
862 struct list_head *idle_ws;
863 spinlock_t *ws_lock;
864 atomic_t *total_ws;
865 wait_queue_head_t *ws_wait;
866 int *free_ws;
867
868 if (heuristic) {
869 idle_ws = &btrfs_heuristic_ws.idle_ws;
870 ws_lock = &btrfs_heuristic_ws.ws_lock;
871 total_ws = &btrfs_heuristic_ws.total_ws;
872 ws_wait = &btrfs_heuristic_ws.ws_wait;
873 free_ws = &btrfs_heuristic_ws.free_ws;
874 } else {
875 idle_ws = &btrfs_comp_ws[idx].idle_ws;
876 ws_lock = &btrfs_comp_ws[idx].ws_lock;
877 total_ws = &btrfs_comp_ws[idx].total_ws;
878 ws_wait = &btrfs_comp_ws[idx].ws_wait;
879 free_ws = &btrfs_comp_ws[idx].free_ws;
880 }
881
882again:
883 spin_lock(ws_lock);
884 if (!list_empty(idle_ws)) {
885 workspace = idle_ws->next;
886 list_del(workspace);
887 (*free_ws)--;
888 spin_unlock(ws_lock);
889 return workspace;
890
891 }
892 if (atomic_read(total_ws) > cpus) {
893 DEFINE_WAIT(wait);
894
895 spin_unlock(ws_lock);
896 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
897 if (atomic_read(total_ws) > cpus && !*free_ws)
898 schedule();
899 finish_wait(ws_wait, &wait);
900 goto again;
901 }
902 atomic_inc(total_ws);
903 spin_unlock(ws_lock);
904
905 /*
906 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
907 * to turn it off here because we might get called from the restricted
908 * context of btrfs_compress_bio/btrfs_compress_pages
909 */
910 nofs_flag = memalloc_nofs_save();
911 if (heuristic)
912 workspace = alloc_heuristic_ws();
913 else
914 workspace = btrfs_compress_op[idx]->alloc_workspace();
915 memalloc_nofs_restore(nofs_flag);
916
917 if (IS_ERR(workspace)) {
918 atomic_dec(total_ws);
919 wake_up(ws_wait);
920
921 /*
922 * Do not return the error but go back to waiting. There's a
923 * workspace preallocated for each type and the compression
924 * time is bounded so we get to a workspace eventually. This
925 * makes our caller's life easier.
926 *
927 * To prevent silent and low-probability deadlocks (when the
928 * initial preallocation fails), check if there are any
929 * workspaces at all.
930 */
931 if (atomic_read(total_ws) == 0) {
932 static DEFINE_RATELIMIT_STATE(_rs,
933 /* once per minute */ 60 * HZ,
934 /* no burst */ 1);
935
936 if (__ratelimit(&_rs)) {
937 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
938 }
939 }
940 goto again;
941 }
942 return workspace;
943}
944
945static struct list_head *find_workspace(int type)
946{
947 return __find_workspace(type, false);
948}
949
950/*
951 * put a workspace struct back on the list or free it if we have enough
952 * idle ones sitting around
953 */
954static void __free_workspace(int type, struct list_head *workspace,
955 bool heuristic)
956{
957 int idx = type - 1;
958 struct list_head *idle_ws;
959 spinlock_t *ws_lock;
960 atomic_t *total_ws;
961 wait_queue_head_t *ws_wait;
962 int *free_ws;
963
964 if (heuristic) {
965 idle_ws = &btrfs_heuristic_ws.idle_ws;
966 ws_lock = &btrfs_heuristic_ws.ws_lock;
967 total_ws = &btrfs_heuristic_ws.total_ws;
968 ws_wait = &btrfs_heuristic_ws.ws_wait;
969 free_ws = &btrfs_heuristic_ws.free_ws;
970 } else {
971 idle_ws = &btrfs_comp_ws[idx].idle_ws;
972 ws_lock = &btrfs_comp_ws[idx].ws_lock;
973 total_ws = &btrfs_comp_ws[idx].total_ws;
974 ws_wait = &btrfs_comp_ws[idx].ws_wait;
975 free_ws = &btrfs_comp_ws[idx].free_ws;
976 }
977
978 spin_lock(ws_lock);
979 if (*free_ws <= num_online_cpus()) {
980 list_add(workspace, idle_ws);
981 (*free_ws)++;
982 spin_unlock(ws_lock);
983 goto wake;
984 }
985 spin_unlock(ws_lock);
986
987 if (heuristic)
988 free_heuristic_ws(workspace);
989 else
990 btrfs_compress_op[idx]->free_workspace(workspace);
991 atomic_dec(total_ws);
992wake:
993 /*
994 * Make sure counter is updated before we wake up waiters.
995 */
996 smp_mb();
997 if (waitqueue_active(ws_wait))
998 wake_up(ws_wait);
999}
1000
1001static void free_workspace(int type, struct list_head *ws)
1002{
1003 return __free_workspace(type, ws, false);
1004}
1005
1006/*
1007 * cleanup function for module exit
1008 */
1009static void free_workspaces(void)
1010{
1011 struct list_head *workspace;
1012 int i;
1013
1014 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015 workspace = btrfs_heuristic_ws.idle_ws.next;
1016 list_del(workspace);
1017 free_heuristic_ws(workspace);
1018 atomic_dec(&btrfs_heuristic_ws.total_ws);
1019 }
1020
1021 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1022 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023 workspace = btrfs_comp_ws[i].idle_ws.next;
1024 list_del(workspace);
1025 btrfs_compress_op[i]->free_workspace(workspace);
1026 atomic_dec(&btrfs_comp_ws[i].total_ws);
1027 }
1028 }
1029}
1030
1031/*
1032 * Given an address space and start and length, compress the bytes into @pages
1033 * that are allocated on demand.
1034 *
1035 * @type_level is encoded algorithm and level, where level 0 means whatever
1036 * default the algorithm chooses and is opaque here;
1037 * - compression algo are 0-3
1038 * - the level are bits 4-7
1039 *
1040 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041 * and returns number of actually allocated pages
1042 *
1043 * @total_in is used to return the number of bytes actually read. It
1044 * may be smaller than the input length if we had to exit early because we
1045 * ran out of room in the pages array or because we cross the
1046 * max_out threshold.
1047 *
1048 * @total_out is an in/out parameter, must be set to the input length and will
1049 * be also used to return the total number of compressed bytes
1050 *
1051 * @max_out tells us the max number of bytes that we're allowed to
1052 * stuff into pages
1053 */
1054int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1055 u64 start, struct page **pages,
1056 unsigned long *out_pages,
1057 unsigned long *total_in,
1058 unsigned long *total_out)
1059{
1060 struct list_head *workspace;
1061 int ret;
1062 int type = type_level & 0xF;
1063
1064 workspace = find_workspace(type);
1065
1066 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1067 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1068 start, pages,
1069 out_pages,
1070 total_in, total_out);
1071 free_workspace(type, workspace);
1072 return ret;
1073}
1074
1075/*
1076 * pages_in is an array of pages with compressed data.
1077 *
1078 * disk_start is the starting logical offset of this array in the file
1079 *
1080 * orig_bio contains the pages from the file that we want to decompress into
1081 *
1082 * srclen is the number of bytes in pages_in
1083 *
1084 * The basic idea is that we have a bio that was created by readpages.
1085 * The pages in the bio are for the uncompressed data, and they may not
1086 * be contiguous. They all correspond to the range of bytes covered by
1087 * the compressed extent.
1088 */
1089static int btrfs_decompress_bio(struct compressed_bio *cb)
1090{
1091 struct list_head *workspace;
1092 int ret;
1093 int type = cb->compress_type;
1094
1095 workspace = find_workspace(type);
1096 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1097 free_workspace(type, workspace);
1098
1099 return ret;
1100}
1101
1102/*
1103 * a less complex decompression routine. Our compressed data fits in a
1104 * single page, and we want to read a single page out of it.
1105 * start_byte tells us the offset into the compressed data we're interested in
1106 */
1107int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108 unsigned long start_byte, size_t srclen, size_t destlen)
1109{
1110 struct list_head *workspace;
1111 int ret;
1112
1113 workspace = find_workspace(type);
1114
1115 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116 dest_page, start_byte,
1117 srclen, destlen);
1118
1119 free_workspace(type, workspace);
1120 return ret;
1121}
1122
1123void __cold btrfs_exit_compress(void)
1124{
1125 free_workspaces();
1126}
1127
1128/*
1129 * Copy uncompressed data from working buffer to pages.
1130 *
1131 * buf_start is the byte offset we're of the start of our workspace buffer.
1132 *
1133 * total_out is the last byte of the buffer
1134 */
1135int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1136 unsigned long total_out, u64 disk_start,
1137 struct bio *bio)
1138{
1139 unsigned long buf_offset;
1140 unsigned long current_buf_start;
1141 unsigned long start_byte;
1142 unsigned long prev_start_byte;
1143 unsigned long working_bytes = total_out - buf_start;
1144 unsigned long bytes;
1145 char *kaddr;
1146 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1147
1148 /*
1149 * start byte is the first byte of the page we're currently
1150 * copying into relative to the start of the compressed data.
1151 */
1152 start_byte = page_offset(bvec.bv_page) - disk_start;
1153
1154 /* we haven't yet hit data corresponding to this page */
1155 if (total_out <= start_byte)
1156 return 1;
1157
1158 /*
1159 * the start of the data we care about is offset into
1160 * the middle of our working buffer
1161 */
1162 if (total_out > start_byte && buf_start < start_byte) {
1163 buf_offset = start_byte - buf_start;
1164 working_bytes -= buf_offset;
1165 } else {
1166 buf_offset = 0;
1167 }
1168 current_buf_start = buf_start;
1169
1170 /* copy bytes from the working buffer into the pages */
1171 while (working_bytes > 0) {
1172 bytes = min_t(unsigned long, bvec.bv_len,
1173 PAGE_SIZE - buf_offset);
1174 bytes = min(bytes, working_bytes);
1175
1176 kaddr = kmap_atomic(bvec.bv_page);
1177 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1178 kunmap_atomic(kaddr);
1179 flush_dcache_page(bvec.bv_page);
1180
1181 buf_offset += bytes;
1182 working_bytes -= bytes;
1183 current_buf_start += bytes;
1184
1185 /* check if we need to pick another page */
1186 bio_advance(bio, bytes);
1187 if (!bio->bi_iter.bi_size)
1188 return 0;
1189 bvec = bio_iter_iovec(bio, bio->bi_iter);
1190 prev_start_byte = start_byte;
1191 start_byte = page_offset(bvec.bv_page) - disk_start;
1192
1193 /*
1194 * We need to make sure we're only adjusting
1195 * our offset into compression working buffer when
1196 * we're switching pages. Otherwise we can incorrectly
1197 * keep copying when we were actually done.
1198 */
1199 if (start_byte != prev_start_byte) {
1200 /*
1201 * make sure our new page is covered by this
1202 * working buffer
1203 */
1204 if (total_out <= start_byte)
1205 return 1;
1206
1207 /*
1208 * the next page in the biovec might not be adjacent
1209 * to the last page, but it might still be found
1210 * inside this working buffer. bump our offset pointer
1211 */
1212 if (total_out > start_byte &&
1213 current_buf_start < start_byte) {
1214 buf_offset = start_byte - buf_start;
1215 working_bytes = total_out - start_byte;
1216 current_buf_start = buf_start + buf_offset;
1217 }
1218 }
1219 }
1220
1221 return 1;
1222}
1223
1224/*
1225 * Shannon Entropy calculation
1226 *
1227 * Pure byte distribution analysis fails to determine compressiability of data.
1228 * Try calculating entropy to estimate the average minimum number of bits
1229 * needed to encode the sampled data.
1230 *
1231 * For convenience, return the percentage of needed bits, instead of amount of
1232 * bits directly.
1233 *
1234 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235 * and can be compressible with high probability
1236 *
1237 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238 *
1239 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240 */
1241#define ENTROPY_LVL_ACEPTABLE (65)
1242#define ENTROPY_LVL_HIGH (80)
1243
1244/*
1245 * For increasead precision in shannon_entropy calculation,
1246 * let's do pow(n, M) to save more digits after comma:
1247 *
1248 * - maximum int bit length is 64
1249 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1250 * - 13 * 4 = 52 < 64 -> M = 4
1251 *
1252 * So use pow(n, 4).
1253 */
1254static inline u32 ilog2_w(u64 n)
1255{
1256 return ilog2(n * n * n * n);
1257}
1258
1259static u32 shannon_entropy(struct heuristic_ws *ws)
1260{
1261 const u32 entropy_max = 8 * ilog2_w(2);
1262 u32 entropy_sum = 0;
1263 u32 p, p_base, sz_base;
1264 u32 i;
1265
1266 sz_base = ilog2_w(ws->sample_size);
1267 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268 p = ws->bucket[i].count;
1269 p_base = ilog2_w(p);
1270 entropy_sum += p * (sz_base - p_base);
1271 }
1272
1273 entropy_sum /= ws->sample_size;
1274 return entropy_sum * 100 / entropy_max;
1275}
1276
1277#define RADIX_BASE 4U
1278#define COUNTERS_SIZE (1U << RADIX_BASE)
1279
1280static u8 get4bits(u64 num, int shift) {
1281 u8 low4bits;
1282
1283 num >>= shift;
1284 /* Reverse order */
1285 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286 return low4bits;
1287}
1288
1289/*
1290 * Use 4 bits as radix base
1291 * Use 16 u32 counters for calculating new possition in buf array
1292 *
1293 * @array - array that will be sorted
1294 * @array_buf - buffer array to store sorting results
1295 * must be equal in size to @array
1296 * @num - array size
1297 */
1298static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1299 int num)
1300{
1301 u64 max_num;
1302 u64 buf_num;
1303 u32 counters[COUNTERS_SIZE];
1304 u32 new_addr;
1305 u32 addr;
1306 int bitlen;
1307 int shift;
1308 int i;
1309
1310 /*
1311 * Try avoid useless loop iterations for small numbers stored in big
1312 * counters. Example: 48 33 4 ... in 64bit array
1313 */
1314 max_num = array[0].count;
1315 for (i = 1; i < num; i++) {
1316 buf_num = array[i].count;
1317 if (buf_num > max_num)
1318 max_num = buf_num;
1319 }
1320
1321 buf_num = ilog2(max_num);
1322 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323
1324 shift = 0;
1325 while (shift < bitlen) {
1326 memset(counters, 0, sizeof(counters));
1327
1328 for (i = 0; i < num; i++) {
1329 buf_num = array[i].count;
1330 addr = get4bits(buf_num, shift);
1331 counters[addr]++;
1332 }
1333
1334 for (i = 1; i < COUNTERS_SIZE; i++)
1335 counters[i] += counters[i - 1];
1336
1337 for (i = num - 1; i >= 0; i--) {
1338 buf_num = array[i].count;
1339 addr = get4bits(buf_num, shift);
1340 counters[addr]--;
1341 new_addr = counters[addr];
1342 array_buf[new_addr] = array[i];
1343 }
1344
1345 shift += RADIX_BASE;
1346
1347 /*
1348 * Normal radix expects to move data from a temporary array, to
1349 * the main one. But that requires some CPU time. Avoid that
1350 * by doing another sort iteration to original array instead of
1351 * memcpy()
1352 */
1353 memset(counters, 0, sizeof(counters));
1354
1355 for (i = 0; i < num; i ++) {
1356 buf_num = array_buf[i].count;
1357 addr = get4bits(buf_num, shift);
1358 counters[addr]++;
1359 }
1360
1361 for (i = 1; i < COUNTERS_SIZE; i++)
1362 counters[i] += counters[i - 1];
1363
1364 for (i = num - 1; i >= 0; i--) {
1365 buf_num = array_buf[i].count;
1366 addr = get4bits(buf_num, shift);
1367 counters[addr]--;
1368 new_addr = counters[addr];
1369 array[new_addr] = array_buf[i];
1370 }
1371
1372 shift += RADIX_BASE;
1373 }
1374}
1375
1376/*
1377 * Size of the core byte set - how many bytes cover 90% of the sample
1378 *
1379 * There are several types of structured binary data that use nearly all byte
1380 * values. The distribution can be uniform and counts in all buckets will be
1381 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382 *
1383 * Other possibility is normal (Gaussian) distribution, where the data could
1384 * be potentially compressible, but we have to take a few more steps to decide
1385 * how much.
1386 *
1387 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1388 * compression algo can easy fix that
1389 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390 * probability is not compressible
1391 */
1392#define BYTE_CORE_SET_LOW (64)
1393#define BYTE_CORE_SET_HIGH (200)
1394
1395static int byte_core_set_size(struct heuristic_ws *ws)
1396{
1397 u32 i;
1398 u32 coreset_sum = 0;
1399 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400 struct bucket_item *bucket = ws->bucket;
1401
1402 /* Sort in reverse order */
1403 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1404
1405 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406 coreset_sum += bucket[i].count;
1407
1408 if (coreset_sum > core_set_threshold)
1409 return i;
1410
1411 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412 coreset_sum += bucket[i].count;
1413 if (coreset_sum > core_set_threshold)
1414 break;
1415 }
1416
1417 return i;
1418}
1419
1420/*
1421 * Count byte values in buckets.
1422 * This heuristic can detect textual data (configs, xml, json, html, etc).
1423 * Because in most text-like data byte set is restricted to limited number of
1424 * possible characters, and that restriction in most cases makes data easy to
1425 * compress.
1426 *
1427 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428 * less - compressible
1429 * more - need additional analysis
1430 */
1431#define BYTE_SET_THRESHOLD (64)
1432
1433static u32 byte_set_size(const struct heuristic_ws *ws)
1434{
1435 u32 i;
1436 u32 byte_set_size = 0;
1437
1438 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439 if (ws->bucket[i].count > 0)
1440 byte_set_size++;
1441 }
1442
1443 /*
1444 * Continue collecting count of byte values in buckets. If the byte
1445 * set size is bigger then the threshold, it's pointless to continue,
1446 * the detection technique would fail for this type of data.
1447 */
1448 for (; i < BUCKET_SIZE; i++) {
1449 if (ws->bucket[i].count > 0) {
1450 byte_set_size++;
1451 if (byte_set_size > BYTE_SET_THRESHOLD)
1452 return byte_set_size;
1453 }
1454 }
1455
1456 return byte_set_size;
1457}
1458
1459static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460{
1461 const u32 half_of_sample = ws->sample_size / 2;
1462 const u8 *data = ws->sample;
1463
1464 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465}
1466
1467static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468 struct heuristic_ws *ws)
1469{
1470 struct page *page;
1471 u64 index, index_end;
1472 u32 i, curr_sample_pos;
1473 u8 *in_data;
1474
1475 /*
1476 * Compression handles the input data by chunks of 128KiB
1477 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478 *
1479 * We do the same for the heuristic and loop over the whole range.
1480 *
1481 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483 */
1484 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485 end = start + BTRFS_MAX_UNCOMPRESSED;
1486
1487 index = start >> PAGE_SHIFT;
1488 index_end = end >> PAGE_SHIFT;
1489
1490 /* Don't miss unaligned end */
1491 if (!IS_ALIGNED(end, PAGE_SIZE))
1492 index_end++;
1493
1494 curr_sample_pos = 0;
1495 while (index < index_end) {
1496 page = find_get_page(inode->i_mapping, index);
1497 in_data = kmap(page);
1498 /* Handle case where the start is not aligned to PAGE_SIZE */
1499 i = start % PAGE_SIZE;
1500 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501 /* Don't sample any garbage from the last page */
1502 if (start > end - SAMPLING_READ_SIZE)
1503 break;
1504 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505 SAMPLING_READ_SIZE);
1506 i += SAMPLING_INTERVAL;
1507 start += SAMPLING_INTERVAL;
1508 curr_sample_pos += SAMPLING_READ_SIZE;
1509 }
1510 kunmap(page);
1511 put_page(page);
1512
1513 index++;
1514 }
1515
1516 ws->sample_size = curr_sample_pos;
1517}
1518
1519/*
1520 * Compression heuristic.
1521 *
1522 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523 * quickly (compared to direct compression) detect data characteristics
1524 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525 * data.
1526 *
1527 * The following types of analysis can be performed:
1528 * - detect mostly zero data
1529 * - detect data with low "byte set" size (text, etc)
1530 * - detect data with low/high "core byte" set
1531 *
1532 * Return non-zero if the compression should be done, 0 otherwise.
1533 */
1534int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535{
1536 struct list_head *ws_list = __find_workspace(0, true);
1537 struct heuristic_ws *ws;
1538 u32 i;
1539 u8 byte;
1540 int ret = 0;
1541
1542 ws = list_entry(ws_list, struct heuristic_ws, list);
1543
1544 heuristic_collect_sample(inode, start, end, ws);
1545
1546 if (sample_repeated_patterns(ws)) {
1547 ret = 1;
1548 goto out;
1549 }
1550
1551 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552
1553 for (i = 0; i < ws->sample_size; i++) {
1554 byte = ws->sample[i];
1555 ws->bucket[byte].count++;
1556 }
1557
1558 i = byte_set_size(ws);
1559 if (i < BYTE_SET_THRESHOLD) {
1560 ret = 2;
1561 goto out;
1562 }
1563
1564 i = byte_core_set_size(ws);
1565 if (i <= BYTE_CORE_SET_LOW) {
1566 ret = 3;
1567 goto out;
1568 }
1569
1570 if (i >= BYTE_CORE_SET_HIGH) {
1571 ret = 0;
1572 goto out;
1573 }
1574
1575 i = shannon_entropy(ws);
1576 if (i <= ENTROPY_LVL_ACEPTABLE) {
1577 ret = 4;
1578 goto out;
1579 }
1580
1581 /*
1582 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583 * needed to give green light to compression.
1584 *
1585 * For now just assume that compression at that level is not worth the
1586 * resources because:
1587 *
1588 * 1. it is possible to defrag the data later
1589 *
1590 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591 * values, every bucket has counter at level ~54. The heuristic would
1592 * be confused. This can happen when data have some internal repeated
1593 * patterns like "abbacbbc...". This can be detected by analyzing
1594 * pairs of bytes, which is too costly.
1595 */
1596 if (i < ENTROPY_LVL_HIGH) {
1597 ret = 5;
1598 goto out;
1599 } else {
1600 ret = 0;
1601 goto out;
1602 }
1603
1604out:
1605 __free_workspace(0, ws_list, true);
1606 return ret;
1607}
1608
1609unsigned int btrfs_compress_str2level(const char *str)
1610{
1611 if (strncmp(str, "zlib", 4) != 0)
1612 return 0;
1613
1614 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616 return str[5] - '0';
1617
1618 return BTRFS_ZLIB_DEFAULT_LEVEL;
1619}