Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright (c) 2009 Samsung Electronics Co., Ltd.
   4//      Jaswinder Singh <jassi.brar@samsung.com>
   5
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/delay.h>
  10#include <linux/clk.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/spi/spi.h>
 
  16#include <linux/of.h>
 
  17
  18#include <linux/platform_data/spi-s3c64xx.h>
  19
  20#define MAX_SPI_PORTS		12
 
  21#define S3C64XX_SPI_QUIRK_CS_AUTO	(1 << 1)
  22#define AUTOSUSPEND_TIMEOUT	2000
  23
  24/* Registers and bit-fields */
  25
  26#define S3C64XX_SPI_CH_CFG		0x00
  27#define S3C64XX_SPI_CLK_CFG		0x04
  28#define S3C64XX_SPI_MODE_CFG		0x08
  29#define S3C64XX_SPI_CS_REG		0x0C
  30#define S3C64XX_SPI_INT_EN		0x10
  31#define S3C64XX_SPI_STATUS		0x14
  32#define S3C64XX_SPI_TX_DATA		0x18
  33#define S3C64XX_SPI_RX_DATA		0x1C
  34#define S3C64XX_SPI_PACKET_CNT		0x20
  35#define S3C64XX_SPI_PENDING_CLR		0x24
  36#define S3C64XX_SPI_SWAP_CFG		0x28
  37#define S3C64XX_SPI_FB_CLK		0x2C
  38
  39#define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
  40#define S3C64XX_SPI_CH_SW_RST		(1<<5)
  41#define S3C64XX_SPI_CH_SLAVE		(1<<4)
  42#define S3C64XX_SPI_CPOL_L		(1<<3)
  43#define S3C64XX_SPI_CPHA_B		(1<<2)
  44#define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
  45#define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
  46
  47#define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
  48#define S3C64XX_SPI_CLKSEL_SRCSHFT	9
  49#define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
  50#define S3C64XX_SPI_PSR_MASK		0xff
  51
  52#define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
  53#define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
  54#define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
  55#define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
  56#define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
  57#define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
  58#define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
  59#define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
  60#define S3C64XX_SPI_MODE_RX_RDY_LVL		GENMASK(16, 11)
  61#define S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT	11
  62#define S3C64XX_SPI_MODE_SELF_LOOPBACK		(1<<3)
  63#define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
  64#define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
  65#define S3C64XX_SPI_MODE_4BURST			(1<<0)
  66
  67#define S3C64XX_SPI_CS_NSC_CNT_2		(2<<4)
  68#define S3C64XX_SPI_CS_AUTO			(1<<1)
  69#define S3C64XX_SPI_CS_SIG_INACT		(1<<0)
  70
  71#define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
  72#define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
  73#define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
  74#define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
  75#define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
  76#define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
  77#define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
  78
  79#define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
  80#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR		(1<<4)
  81#define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
  82#define S3C64XX_SPI_ST_TX_UNDERRUN_ERR		(1<<2)
  83#define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
  84#define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
  85
  86#define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
  87#define S3C64XX_SPI_PACKET_CNT_MASK		GENMASK(15, 0)
  88
  89#define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
  90#define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
  91#define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
  92#define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
  93#define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
  94
  95#define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
  96#define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
  97#define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
  98#define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
  99#define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
 100#define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
 101#define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
 102#define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
 103
 104#define S3C64XX_SPI_FBCLK_MSK			(3<<0)
 105
 106#define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
 107#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
 108				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
 109#define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
 110#define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
 111					FIFO_LVL_MASK(i))
 112
 113#define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
 114#define S3C64XX_SPI_TRAILCNT_OFF	19
 115
 116#define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
 117
 118#define S3C64XX_SPI_POLLING_SIZE	32
 119
 120#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
 121#define is_polling(x)	(x->cntrlr_info->polling)
 122
 123#define RXBUSY    (1<<2)
 124#define TXBUSY    (1<<3)
 125
 126struct s3c64xx_spi_dma_data {
 127	struct dma_chan *ch;
 128	dma_cookie_t cookie;
 129	enum dma_transfer_direction direction;
 130};
 131
 132/**
 133 * struct s3c64xx_spi_port_config - SPI Controller hardware info
 134 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
 135 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
 136 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
 137 * @clk_div: Internal clock divider
 138 * @quirks: Bitmask of known quirks
 139 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
 140 * @clk_from_cmu: True, if the controller does not include a clock mux and
 141 *	prescaler unit.
 142 * @clk_ioclk: True if clock is present on this device
 143 * @has_loopback: True if loopback mode can be supported
 144 *
 145 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
 146 * differ in some aspects such as the size of the fifo and spi bus clock
 147 * setup. Such differences are specified to the driver using this structure
 148 * which is provided as driver data to the driver.
 149 */
 150struct s3c64xx_spi_port_config {
 151	int	fifo_lvl_mask[MAX_SPI_PORTS];
 152	int	rx_lvl_offset;
 153	int	tx_st_done;
 154	int	quirks;
 155	int	clk_div;
 156	bool	high_speed;
 157	bool	clk_from_cmu;
 158	bool	clk_ioclk;
 159	bool	has_loopback;
 160};
 161
 162/**
 163 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
 164 * @clk: Pointer to the spi clock.
 165 * @src_clk: Pointer to the clock used to generate SPI signals.
 166 * @ioclk: Pointer to the i/o clock between host and target
 167 * @pdev: Pointer to device's platform device data
 168 * @host: Pointer to the SPI Protocol host.
 169 * @cntrlr_info: Platform specific data for the controller this driver manages.
 
 170 * @lock: Controller specific lock.
 171 * @state: Set of FLAGS to indicate status.
 
 
 172 * @sfr_start: BUS address of SPI controller regs.
 173 * @regs: Pointer to ioremap'ed controller registers.
 
 174 * @xfer_completion: To indicate completion of xfer task.
 175 * @cur_mode: Stores the active configuration of the controller.
 176 * @cur_bpw: Stores the active bits per word settings.
 177 * @cur_speed: Current clock speed
 178 * @rx_dma: Local receive DMA data (e.g. chan and direction)
 179 * @tx_dma: Local transmit DMA data (e.g. chan and direction)
 180 * @port_conf: Local SPI port configuartion data
 181 * @port_id: Port identification number
 182 */
 183struct s3c64xx_spi_driver_data {
 184	void __iomem                    *regs;
 185	struct clk                      *clk;
 186	struct clk                      *src_clk;
 187	struct clk                      *ioclk;
 188	struct platform_device          *pdev;
 189	struct spi_controller           *host;
 190	struct s3c64xx_spi_info         *cntrlr_info;
 
 191	spinlock_t                      lock;
 192	unsigned long                   sfr_start;
 193	struct completion               xfer_completion;
 194	unsigned                        state;
 195	unsigned                        cur_mode, cur_bpw;
 196	unsigned                        cur_speed;
 197	struct s3c64xx_spi_dma_data	rx_dma;
 198	struct s3c64xx_spi_dma_data	tx_dma;
 199	const struct s3c64xx_spi_port_config	*port_conf;
 200	unsigned int			port_id;
 201};
 202
 203static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd)
 204{
 205	void __iomem *regs = sdd->regs;
 206	unsigned long loops;
 207	u32 val;
 208
 209	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
 210
 211	val = readl(regs + S3C64XX_SPI_CH_CFG);
 212	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
 213	writel(val, regs + S3C64XX_SPI_CH_CFG);
 214
 215	val = readl(regs + S3C64XX_SPI_CH_CFG);
 216	val |= S3C64XX_SPI_CH_SW_RST;
 217	val &= ~S3C64XX_SPI_CH_HS_EN;
 218	writel(val, regs + S3C64XX_SPI_CH_CFG);
 219
 220	/* Flush TxFIFO*/
 221	loops = msecs_to_loops(1);
 222	do {
 223		val = readl(regs + S3C64XX_SPI_STATUS);
 224	} while (TX_FIFO_LVL(val, sdd) && loops--);
 225
 226	if (loops == 0)
 227		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
 228
 229	/* Flush RxFIFO*/
 230	loops = msecs_to_loops(1);
 231	do {
 232		val = readl(regs + S3C64XX_SPI_STATUS);
 233		if (RX_FIFO_LVL(val, sdd))
 234			readl(regs + S3C64XX_SPI_RX_DATA);
 235		else
 236			break;
 237	} while (loops--);
 238
 239	if (loops == 0)
 240		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
 241
 242	val = readl(regs + S3C64XX_SPI_CH_CFG);
 243	val &= ~S3C64XX_SPI_CH_SW_RST;
 244	writel(val, regs + S3C64XX_SPI_CH_CFG);
 245
 246	val = readl(regs + S3C64XX_SPI_MODE_CFG);
 247	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
 248	writel(val, regs + S3C64XX_SPI_MODE_CFG);
 249}
 250
 251static void s3c64xx_spi_dmacb(void *data)
 252{
 253	struct s3c64xx_spi_driver_data *sdd;
 254	struct s3c64xx_spi_dma_data *dma = data;
 255	unsigned long flags;
 256
 257	if (dma->direction == DMA_DEV_TO_MEM)
 258		sdd = container_of(data,
 259			struct s3c64xx_spi_driver_data, rx_dma);
 260	else
 261		sdd = container_of(data,
 262			struct s3c64xx_spi_driver_data, tx_dma);
 263
 264	spin_lock_irqsave(&sdd->lock, flags);
 265
 266	if (dma->direction == DMA_DEV_TO_MEM) {
 267		sdd->state &= ~RXBUSY;
 268		if (!(sdd->state & TXBUSY))
 269			complete(&sdd->xfer_completion);
 270	} else {
 271		sdd->state &= ~TXBUSY;
 272		if (!(sdd->state & RXBUSY))
 273			complete(&sdd->xfer_completion);
 274	}
 275
 276	spin_unlock_irqrestore(&sdd->lock, flags);
 277}
 278
 279static int prepare_dma(struct s3c64xx_spi_dma_data *dma,
 280			struct sg_table *sgt)
 281{
 282	struct s3c64xx_spi_driver_data *sdd;
 283	struct dma_slave_config config;
 284	struct dma_async_tx_descriptor *desc;
 285	int ret;
 286
 287	memset(&config, 0, sizeof(config));
 288
 289	if (dma->direction == DMA_DEV_TO_MEM) {
 290		sdd = container_of((void *)dma,
 291			struct s3c64xx_spi_driver_data, rx_dma);
 292		config.direction = dma->direction;
 293		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
 294		config.src_addr_width = sdd->cur_bpw / 8;
 295		config.src_maxburst = 1;
 296		dmaengine_slave_config(dma->ch, &config);
 297	} else {
 298		sdd = container_of((void *)dma,
 299			struct s3c64xx_spi_driver_data, tx_dma);
 300		config.direction = dma->direction;
 301		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
 302		config.dst_addr_width = sdd->cur_bpw / 8;
 303		config.dst_maxburst = 1;
 304		dmaengine_slave_config(dma->ch, &config);
 305	}
 306
 307	desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
 308				       dma->direction, DMA_PREP_INTERRUPT);
 309	if (!desc) {
 310		dev_err(&sdd->pdev->dev, "unable to prepare %s scatterlist",
 311			dma->direction == DMA_DEV_TO_MEM ? "rx" : "tx");
 312		return -ENOMEM;
 313	}
 314
 315	desc->callback = s3c64xx_spi_dmacb;
 316	desc->callback_param = dma;
 317
 318	dma->cookie = dmaengine_submit(desc);
 319	ret = dma_submit_error(dma->cookie);
 320	if (ret) {
 321		dev_err(&sdd->pdev->dev, "DMA submission failed");
 322		return -EIO;
 323	}
 324
 325	dma_async_issue_pending(dma->ch);
 326	return 0;
 327}
 328
 329static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
 330{
 331	struct s3c64xx_spi_driver_data *sdd =
 332					spi_controller_get_devdata(spi->controller);
 333
 334	if (sdd->cntrlr_info->no_cs)
 335		return;
 336
 337	if (enable) {
 338		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
 339			writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
 340		} else {
 341			u32 ssel = readl(sdd->regs + S3C64XX_SPI_CS_REG);
 342
 343			ssel |= (S3C64XX_SPI_CS_AUTO |
 344						S3C64XX_SPI_CS_NSC_CNT_2);
 345			writel(ssel, sdd->regs + S3C64XX_SPI_CS_REG);
 346		}
 347	} else {
 348		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
 349			writel(S3C64XX_SPI_CS_SIG_INACT,
 350			       sdd->regs + S3C64XX_SPI_CS_REG);
 351	}
 352}
 353
 354static int s3c64xx_spi_prepare_transfer(struct spi_controller *spi)
 355{
 356	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
 357
 358	if (is_polling(sdd))
 359		return 0;
 360
 361	/* Requests DMA channels */
 362	sdd->rx_dma.ch = dma_request_chan(&sdd->pdev->dev, "rx");
 363	if (IS_ERR(sdd->rx_dma.ch)) {
 364		dev_err(&sdd->pdev->dev, "Failed to get RX DMA channel\n");
 365		sdd->rx_dma.ch = NULL;
 366		return 0;
 367	}
 368
 369	sdd->tx_dma.ch = dma_request_chan(&sdd->pdev->dev, "tx");
 370	if (IS_ERR(sdd->tx_dma.ch)) {
 371		dev_err(&sdd->pdev->dev, "Failed to get TX DMA channel\n");
 372		dma_release_channel(sdd->rx_dma.ch);
 373		sdd->tx_dma.ch = NULL;
 374		sdd->rx_dma.ch = NULL;
 375		return 0;
 376	}
 377
 378	spi->dma_rx = sdd->rx_dma.ch;
 379	spi->dma_tx = sdd->tx_dma.ch;
 380
 381	return 0;
 382}
 383
 384static int s3c64xx_spi_unprepare_transfer(struct spi_controller *spi)
 385{
 386	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
 387
 388	if (is_polling(sdd))
 389		return 0;
 390
 391	/* Releases DMA channels if they are allocated */
 392	if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
 393		dma_release_channel(sdd->rx_dma.ch);
 394		dma_release_channel(sdd->tx_dma.ch);
 395		sdd->rx_dma.ch = NULL;
 396		sdd->tx_dma.ch = NULL;
 397	}
 398
 399	return 0;
 400}
 401
 402static bool s3c64xx_spi_can_dma(struct spi_controller *host,
 403				struct spi_device *spi,
 404				struct spi_transfer *xfer)
 405{
 406	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
 407
 408	if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
 409		return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
 410	} else {
 411		return false;
 412	}
 413
 
 414}
 415
 416static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
 417				    struct spi_transfer *xfer, int dma_mode)
 
 418{
 419	void __iomem *regs = sdd->regs;
 420	u32 modecfg, chcfg;
 421	int ret = 0;
 422
 423	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
 424	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
 425
 426	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
 427	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
 428
 429	if (dma_mode) {
 430		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
 431	} else {
 432		/* Always shift in data in FIFO, even if xfer is Tx only,
 433		 * this helps setting PCKT_CNT value for generating clocks
 434		 * as exactly needed.
 435		 */
 436		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
 437		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
 438					| S3C64XX_SPI_PACKET_CNT_EN,
 439					regs + S3C64XX_SPI_PACKET_CNT);
 440	}
 441
 442	if (xfer->tx_buf != NULL) {
 443		sdd->state |= TXBUSY;
 444		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
 445		if (dma_mode) {
 446			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
 447			ret = prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
 448		} else {
 449			switch (sdd->cur_bpw) {
 450			case 32:
 451				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
 452					xfer->tx_buf, xfer->len / 4);
 453				break;
 454			case 16:
 455				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
 456					xfer->tx_buf, xfer->len / 2);
 457				break;
 458			default:
 459				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
 460					xfer->tx_buf, xfer->len);
 461				break;
 462			}
 463		}
 464	}
 465
 466	if (xfer->rx_buf != NULL) {
 467		sdd->state |= RXBUSY;
 468
 469		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
 470					&& !(sdd->cur_mode & SPI_CPHA))
 471			chcfg |= S3C64XX_SPI_CH_HS_EN;
 472
 473		if (dma_mode) {
 474			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
 475			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
 476			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
 477					| S3C64XX_SPI_PACKET_CNT_EN,
 478					regs + S3C64XX_SPI_PACKET_CNT);
 479			ret = prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
 480		}
 481	}
 482
 483	if (ret)
 484		return ret;
 485
 486	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
 487	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
 488
 489	return 0;
 490}
 491
 492static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
 493					int timeout_ms)
 494{
 495	void __iomem *regs = sdd->regs;
 496	unsigned long val = 1;
 497	u32 status;
 498
 499	/* max fifo depth available */
 500	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
 501
 502	if (timeout_ms)
 503		val = msecs_to_loops(timeout_ms);
 504
 505	do {
 506		status = readl(regs + S3C64XX_SPI_STATUS);
 507	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
 508
 509	/* return the actual received data length */
 510	return RX_FIFO_LVL(status, sdd);
 511}
 512
 513static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
 514				struct spi_transfer *xfer)
 515{
 516	void __iomem *regs = sdd->regs;
 517	unsigned long val;
 518	u32 status;
 519	int ms;
 520
 521	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
 522	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
 523	ms += 30;               /* some tolerance */
 524	ms = max(ms, 100);      /* minimum timeout */
 525
 526	val = msecs_to_jiffies(ms) + 10;
 527	val = wait_for_completion_timeout(&sdd->xfer_completion, val);
 528
 529	/*
 530	 * If the previous xfer was completed within timeout, then
 531	 * proceed further else return -EIO.
 532	 * DmaTx returns after simply writing data in the FIFO,
 533	 * w/o waiting for real transmission on the bus to finish.
 534	 * DmaRx returns only after Dma read data from FIFO which
 535	 * needs bus transmission to finish, so we don't worry if
 536	 * Xfer involved Rx(with or without Tx).
 537	 */
 538	if (val && !xfer->rx_buf) {
 539		val = msecs_to_loops(10);
 540		status = readl(regs + S3C64XX_SPI_STATUS);
 541		while ((TX_FIFO_LVL(status, sdd)
 542			|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
 543		       && --val) {
 544			cpu_relax();
 545			status = readl(regs + S3C64XX_SPI_STATUS);
 546		}
 547
 548	}
 549
 550	/* If timed out while checking rx/tx status return error */
 551	if (!val)
 552		return -EIO;
 553
 554	return 0;
 555}
 556
 557static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
 558				struct spi_transfer *xfer, bool use_irq)
 559{
 560	void __iomem *regs = sdd->regs;
 561	unsigned long val;
 562	u32 status;
 563	int loops;
 564	u32 cpy_len;
 565	u8 *buf;
 566	int ms;
 567	unsigned long time_us;
 568
 569	/* microsecs to xfer 'len' bytes @ 'cur_speed' */
 570	time_us = (xfer->len * 8 * 1000 * 1000) / sdd->cur_speed;
 571	ms = (time_us / 1000);
 572	ms += 10; /* some tolerance */
 573
 574	/* sleep during signal transfer time */
 575	status = readl(regs + S3C64XX_SPI_STATUS);
 576	if (RX_FIFO_LVL(status, sdd) < xfer->len)
 577		usleep_range(time_us / 2, time_us);
 578
 579	if (use_irq) {
 580		val = msecs_to_jiffies(ms);
 581		if (!wait_for_completion_timeout(&sdd->xfer_completion, val))
 582			return -EIO;
 583	}
 584
 585	val = msecs_to_loops(ms);
 586	do {
 587		status = readl(regs + S3C64XX_SPI_STATUS);
 588	} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
 589
 590	if (!val)
 591		return -EIO;
 592
 593	/* If it was only Tx */
 594	if (!xfer->rx_buf) {
 595		sdd->state &= ~TXBUSY;
 596		return 0;
 597	}
 598
 599	/*
 600	 * If the receive length is bigger than the controller fifo
 601	 * size, calculate the loops and read the fifo as many times.
 602	 * loops = length / max fifo size (calculated by using the
 603	 * fifo mask).
 604	 * For any size less than the fifo size the below code is
 605	 * executed atleast once.
 606	 */
 607	loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
 608	buf = xfer->rx_buf;
 609	do {
 610		/* wait for data to be received in the fifo */
 611		cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
 612						       (loops ? ms : 0));
 613
 614		switch (sdd->cur_bpw) {
 615		case 32:
 616			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
 617				     buf, cpy_len / 4);
 618			break;
 619		case 16:
 620			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
 621				     buf, cpy_len / 2);
 622			break;
 623		default:
 624			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
 625				    buf, cpy_len);
 626			break;
 627		}
 628
 629		buf = buf + cpy_len;
 630	} while (loops--);
 631	sdd->state &= ~RXBUSY;
 632
 633	return 0;
 634}
 635
 636static int s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
 637{
 638	void __iomem *regs = sdd->regs;
 639	int ret;
 640	u32 val;
 641	int div = sdd->port_conf->clk_div;
 642
 643	/* Disable Clock */
 644	if (!sdd->port_conf->clk_from_cmu) {
 645		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 646		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
 647		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 648	}
 649
 650	/* Set Polarity and Phase */
 651	val = readl(regs + S3C64XX_SPI_CH_CFG);
 652	val &= ~(S3C64XX_SPI_CH_SLAVE |
 653			S3C64XX_SPI_CPOL_L |
 654			S3C64XX_SPI_CPHA_B);
 655
 656	if (sdd->cur_mode & SPI_CPOL)
 657		val |= S3C64XX_SPI_CPOL_L;
 658
 659	if (sdd->cur_mode & SPI_CPHA)
 660		val |= S3C64XX_SPI_CPHA_B;
 661
 662	writel(val, regs + S3C64XX_SPI_CH_CFG);
 663
 664	/* Set Channel & DMA Mode */
 665	val = readl(regs + S3C64XX_SPI_MODE_CFG);
 666	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
 667			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
 668
 669	switch (sdd->cur_bpw) {
 670	case 32:
 671		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
 672		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
 673		break;
 674	case 16:
 675		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
 676		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
 677		break;
 678	default:
 679		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
 680		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
 681		break;
 682	}
 683
 684	if ((sdd->cur_mode & SPI_LOOP) && sdd->port_conf->has_loopback)
 685		val |= S3C64XX_SPI_MODE_SELF_LOOPBACK;
 686	else
 687		val &= ~S3C64XX_SPI_MODE_SELF_LOOPBACK;
 688
 689	writel(val, regs + S3C64XX_SPI_MODE_CFG);
 690
 691	if (sdd->port_conf->clk_from_cmu) {
 692		ret = clk_set_rate(sdd->src_clk, sdd->cur_speed * div);
 693		if (ret)
 694			return ret;
 695		sdd->cur_speed = clk_get_rate(sdd->src_clk) / div;
 696	} else {
 697		/* Configure Clock */
 698		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 699		val &= ~S3C64XX_SPI_PSR_MASK;
 700		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / div - 1)
 701				& S3C64XX_SPI_PSR_MASK);
 702		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 703
 704		/* Enable Clock */
 705		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 706		val |= S3C64XX_SPI_ENCLK_ENABLE;
 707		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 708	}
 709
 710	return 0;
 711}
 712
 713#define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
 714
 715static int s3c64xx_spi_prepare_message(struct spi_controller *host,
 716				       struct spi_message *msg)
 717{
 718	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
 719	struct spi_device *spi = msg->spi;
 720	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
 721
 722	/* Configure feedback delay */
 723	if (!cs)
 724		/* No delay if not defined */
 725		writel(0, sdd->regs + S3C64XX_SPI_FB_CLK);
 726	else
 727		writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
 728
 729	return 0;
 730}
 731
 732static size_t s3c64xx_spi_max_transfer_size(struct spi_device *spi)
 733{
 734	struct spi_controller *ctlr = spi->controller;
 735
 736	return ctlr->can_dma ? S3C64XX_SPI_PACKET_CNT_MASK : SIZE_MAX;
 737}
 738
 739static int s3c64xx_spi_transfer_one(struct spi_controller *host,
 740				    struct spi_device *spi,
 741				    struct spi_transfer *xfer)
 742{
 743	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
 744	const unsigned int fifo_len = (FIFO_LVL_MASK(sdd) >> 1) + 1;
 745	const void *tx_buf = NULL;
 746	void *rx_buf = NULL;
 747	int target_len = 0, origin_len = 0;
 748	int use_dma = 0;
 749	bool use_irq = false;
 750	int status;
 751	u32 speed;
 752	u8 bpw;
 753	unsigned long flags;
 754	u32 rdy_lv;
 755	u32 val;
 756
 757	reinit_completion(&sdd->xfer_completion);
 758
 759	/* Only BPW and Speed may change across transfers */
 760	bpw = xfer->bits_per_word;
 761	speed = xfer->speed_hz;
 762
 763	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
 764		sdd->cur_bpw = bpw;
 765		sdd->cur_speed = speed;
 766		sdd->cur_mode = spi->mode;
 767		status = s3c64xx_spi_config(sdd);
 768		if (status)
 769			return status;
 770	}
 771
 772	if (!is_polling(sdd) && (xfer->len > fifo_len) &&
 773	    sdd->rx_dma.ch && sdd->tx_dma.ch) {
 
 
 
 774		use_dma = 1;
 775
 776	} else if (xfer->len >= fifo_len) {
 777		tx_buf = xfer->tx_buf;
 778		rx_buf = xfer->rx_buf;
 779		origin_len = xfer->len;
 780		target_len = xfer->len;
 781		xfer->len = fifo_len - 1;
 782	}
 783
 784	do {
 785		/* transfer size is greater than 32, change to IRQ mode */
 786		if (!use_dma && xfer->len > S3C64XX_SPI_POLLING_SIZE)
 787			use_irq = true;
 788
 789		if (use_irq) {
 790			reinit_completion(&sdd->xfer_completion);
 791
 792			rdy_lv = xfer->len;
 793			/* Setup RDY_FIFO trigger Level
 794			 * RDY_LVL =
 795			 * fifo_lvl up to 64 byte -> N bytes
 796			 *               128 byte -> RDY_LVL * 2 bytes
 797			 *               256 byte -> RDY_LVL * 4 bytes
 798			 */
 799			if (fifo_len == 128)
 800				rdy_lv /= 2;
 801			else if (fifo_len == 256)
 802				rdy_lv /= 4;
 803
 804			val = readl(sdd->regs + S3C64XX_SPI_MODE_CFG);
 805			val &= ~S3C64XX_SPI_MODE_RX_RDY_LVL;
 806			val |= (rdy_lv << S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT);
 807			writel(val, sdd->regs + S3C64XX_SPI_MODE_CFG);
 808
 809			/* Enable FIFO_RDY_EN IRQ */
 810			val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
 811			writel((val | S3C64XX_SPI_INT_RX_FIFORDY_EN),
 812					sdd->regs + S3C64XX_SPI_INT_EN);
 813
 814		}
 815
 816		spin_lock_irqsave(&sdd->lock, flags);
 817
 818		/* Pending only which is to be done */
 819		sdd->state &= ~RXBUSY;
 820		sdd->state &= ~TXBUSY;
 821
 822		/* Start the signals */
 823		s3c64xx_spi_set_cs(spi, true);
 824
 825		status = s3c64xx_enable_datapath(sdd, xfer, use_dma);
 826
 827		spin_unlock_irqrestore(&sdd->lock, flags);
 828
 829		if (status) {
 830			dev_err(&spi->dev, "failed to enable data path for transfer: %d\n", status);
 831			break;
 832		}
 833
 834		if (use_dma)
 835			status = s3c64xx_wait_for_dma(sdd, xfer);
 836		else
 837			status = s3c64xx_wait_for_pio(sdd, xfer, use_irq);
 838
 839		if (status) {
 840			dev_err(&spi->dev,
 841				"I/O Error: rx-%d tx-%d rx-%c tx-%c len-%d dma-%d res-(%d)\n",
 842				xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
 843				(sdd->state & RXBUSY) ? 'f' : 'p',
 844				(sdd->state & TXBUSY) ? 'f' : 'p',
 845				xfer->len, use_dma ? 1 : 0, status);
 846
 847			if (use_dma) {
 848				struct dma_tx_state s;
 849
 850				if (xfer->tx_buf && (sdd->state & TXBUSY)) {
 851					dmaengine_pause(sdd->tx_dma.ch);
 852					dmaengine_tx_status(sdd->tx_dma.ch, sdd->tx_dma.cookie, &s);
 853					dmaengine_terminate_all(sdd->tx_dma.ch);
 854					dev_err(&spi->dev, "TX residue: %d\n", s.residue);
 855
 856				}
 857				if (xfer->rx_buf && (sdd->state & RXBUSY)) {
 858					dmaengine_pause(sdd->rx_dma.ch);
 859					dmaengine_tx_status(sdd->rx_dma.ch, sdd->rx_dma.cookie, &s);
 860					dmaengine_terminate_all(sdd->rx_dma.ch);
 861					dev_err(&spi->dev, "RX residue: %d\n", s.residue);
 862				}
 863			}
 864		} else {
 865			s3c64xx_flush_fifo(sdd);
 866		}
 867		if (target_len > 0) {
 868			target_len -= xfer->len;
 869
 870			if (xfer->tx_buf)
 871				xfer->tx_buf += xfer->len;
 872
 873			if (xfer->rx_buf)
 874				xfer->rx_buf += xfer->len;
 
 
 875
 876			if (target_len >= fifo_len)
 877				xfer->len = fifo_len - 1;
 878			else
 879				xfer->len = target_len;
 
 
 
 
 
 
 
 
 
 
 880		}
 881	} while (target_len > 0);
 882
 883	if (origin_len) {
 884		/* Restore original xfer buffers and length */
 885		xfer->tx_buf = tx_buf;
 886		xfer->rx_buf = rx_buf;
 887		xfer->len = origin_len;
 888	}
 889
 890	return status;
 891}
 892
 893static struct s3c64xx_spi_csinfo *s3c64xx_get_target_ctrldata(
 894				struct spi_device *spi)
 895{
 896	struct s3c64xx_spi_csinfo *cs;
 897	struct device_node *target_np, *data_np = NULL;
 898	u32 fb_delay = 0;
 899
 900	target_np = spi->dev.of_node;
 901	if (!target_np) {
 902		dev_err(&spi->dev, "device node not found\n");
 903		return ERR_PTR(-EINVAL);
 904	}
 905
 
 
 
 
 
 
 906	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 907	if (!cs)
 
 908		return ERR_PTR(-ENOMEM);
 909
 910	data_np = of_get_child_by_name(target_np, "controller-data");
 911	if (!data_np) {
 912		dev_info(&spi->dev, "feedback delay set to default (0)\n");
 913		return cs;
 914	}
 915
 916	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
 917	cs->fb_delay = fb_delay;
 918	of_node_put(data_np);
 919	return cs;
 920}
 921
 922/*
 923 * Here we only check the validity of requested configuration
 924 * and save the configuration in a local data-structure.
 925 * The controller is actually configured only just before we
 926 * get a message to transfer.
 927 */
 928static int s3c64xx_spi_setup(struct spi_device *spi)
 929{
 930	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
 931	struct s3c64xx_spi_driver_data *sdd;
 932	int err;
 933	int div;
 934
 935	sdd = spi_controller_get_devdata(spi->controller);
 936	if (spi->dev.of_node) {
 937		cs = s3c64xx_get_target_ctrldata(spi);
 938		spi->controller_data = cs;
 
 
 
 
 
 
 
 939	}
 940
 941	/* NULL is fine, we just avoid using the FB delay (=0) */
 942	if (IS_ERR(cs)) {
 943		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi_get_chipselect(spi, 0));
 944		return -ENODEV;
 945	}
 946
 947	if (!spi_get_ctldata(spi))
 
 
 
 
 
 
 
 
 
 
 
 948		spi_set_ctldata(spi, cs);
 
 949
 950	pm_runtime_get_sync(&sdd->pdev->dev);
 951
 952	div = sdd->port_conf->clk_div;
 953
 954	/* Check if we can provide the requested rate */
 955	if (!sdd->port_conf->clk_from_cmu) {
 956		u32 psr, speed;
 957
 958		/* Max possible */
 959		speed = clk_get_rate(sdd->src_clk) / div / (0 + 1);
 960
 961		if (spi->max_speed_hz > speed)
 962			spi->max_speed_hz = speed;
 963
 964		psr = clk_get_rate(sdd->src_clk) / div / spi->max_speed_hz - 1;
 965		psr &= S3C64XX_SPI_PSR_MASK;
 966		if (psr == S3C64XX_SPI_PSR_MASK)
 967			psr--;
 968
 969		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
 970		if (spi->max_speed_hz < speed) {
 971			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
 972				psr++;
 973			} else {
 974				err = -EINVAL;
 975				goto setup_exit;
 976			}
 977		}
 978
 979		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
 980		if (spi->max_speed_hz >= speed) {
 981			spi->max_speed_hz = speed;
 982		} else {
 983			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
 984				spi->max_speed_hz);
 985			err = -EINVAL;
 986			goto setup_exit;
 987		}
 988	}
 989
 990	pm_runtime_mark_last_busy(&sdd->pdev->dev);
 991	pm_runtime_put_autosuspend(&sdd->pdev->dev);
 992	s3c64xx_spi_set_cs(spi, false);
 993
 994	return 0;
 995
 996setup_exit:
 997	pm_runtime_mark_last_busy(&sdd->pdev->dev);
 998	pm_runtime_put_autosuspend(&sdd->pdev->dev);
 999	/* setup() returns with device de-selected */
1000	s3c64xx_spi_set_cs(spi, false);
1001
 
 
1002	spi_set_ctldata(spi, NULL);
1003
1004	/* This was dynamically allocated on the DT path */
1005	if (spi->dev.of_node)
1006		kfree(cs);
1007
1008	return err;
1009}
1010
1011static void s3c64xx_spi_cleanup(struct spi_device *spi)
1012{
1013	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
1014
1015	/* This was dynamically allocated on the DT path */
1016	if (spi->dev.of_node)
1017		kfree(cs);
 
 
 
 
 
 
 
 
 
 
1018
1019	spi_set_ctldata(spi, NULL);
1020}
1021
1022static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
1023{
1024	struct s3c64xx_spi_driver_data *sdd = data;
1025	struct spi_controller *spi = sdd->host;
1026	unsigned int val, clr = 0;
1027
1028	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
1029
1030	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
1031		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
1032		dev_err(&spi->dev, "RX overrun\n");
1033	}
1034	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
1035		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
1036		dev_err(&spi->dev, "RX underrun\n");
1037	}
1038	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
1039		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
1040		dev_err(&spi->dev, "TX overrun\n");
1041	}
1042	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
1043		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1044		dev_err(&spi->dev, "TX underrun\n");
1045	}
1046
1047	if (val & S3C64XX_SPI_ST_RX_FIFORDY) {
1048		complete(&sdd->xfer_completion);
1049		/* No pending clear irq, turn-off INT_EN_RX_FIFO_RDY */
1050		val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
1051		writel((val & ~S3C64XX_SPI_INT_RX_FIFORDY_EN),
1052				sdd->regs + S3C64XX_SPI_INT_EN);
1053	}
1054
1055	/* Clear the pending irq by setting and then clearing it */
1056	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1057	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1058
1059	return IRQ_HANDLED;
1060}
1061
1062static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd)
1063{
1064	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1065	void __iomem *regs = sdd->regs;
1066	unsigned int val;
1067
1068	sdd->cur_speed = 0;
1069
1070	if (sci->no_cs)
1071		writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
1072	else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
1073		writel(S3C64XX_SPI_CS_SIG_INACT, sdd->regs + S3C64XX_SPI_CS_REG);
1074
1075	/* Disable Interrupts - we use Polling if not DMA mode */
1076	writel(0, regs + S3C64XX_SPI_INT_EN);
1077
1078	if (!sdd->port_conf->clk_from_cmu)
1079		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1080				regs + S3C64XX_SPI_CLK_CFG);
1081	writel(0, regs + S3C64XX_SPI_MODE_CFG);
1082	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1083
1084	/* Clear any irq pending bits, should set and clear the bits */
1085	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1086		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1087		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1088		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1089	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
1090	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
1091
1092	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1093
1094	val = readl(regs + S3C64XX_SPI_MODE_CFG);
1095	val &= ~S3C64XX_SPI_MODE_4BURST;
1096	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1097	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1098	writel(val, regs + S3C64XX_SPI_MODE_CFG);
1099
1100	s3c64xx_flush_fifo(sdd);
1101}
1102
1103#ifdef CONFIG_OF
1104static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1105{
1106	struct s3c64xx_spi_info *sci;
1107	u32 temp;
1108
1109	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1110	if (!sci)
1111		return ERR_PTR(-ENOMEM);
1112
1113	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1114		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1115		sci->src_clk_nr = 0;
1116	} else {
1117		sci->src_clk_nr = temp;
1118	}
1119
1120	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1121		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1122		sci->num_cs = 1;
1123	} else {
1124		sci->num_cs = temp;
1125	}
1126
1127	sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
1128	sci->polling = !of_property_present(dev->of_node, "dmas");
1129
1130	return sci;
1131}
1132#else
1133static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1134{
1135	return dev_get_platdata(dev);
1136}
1137#endif
1138
1139static inline const struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
 
 
1140						struct platform_device *pdev)
1141{
1142#ifdef CONFIG_OF
1143	if (pdev->dev.of_node)
1144		return of_device_get_match_data(&pdev->dev);
 
 
 
1145#endif
1146	return (const struct s3c64xx_spi_port_config *)platform_get_device_id(pdev)->driver_data;
 
1147}
1148
1149static int s3c64xx_spi_probe(struct platform_device *pdev)
1150{
1151	struct resource	*mem_res;
1152	struct s3c64xx_spi_driver_data *sdd;
1153	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1154	struct spi_controller *host;
1155	int ret, irq;
1156	char clk_name[16];
1157
1158	if (!sci && pdev->dev.of_node) {
1159		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1160		if (IS_ERR(sci))
1161			return PTR_ERR(sci);
1162	}
1163
1164	if (!sci)
1165		return dev_err_probe(&pdev->dev, -ENODEV,
1166				     "Platform_data missing!\n");
 
 
 
 
 
 
 
1167
1168	irq = platform_get_irq(pdev, 0);
1169	if (irq < 0)
 
1170		return irq;
 
1171
1172	host = devm_spi_alloc_host(&pdev->dev, sizeof(*sdd));
1173	if (!host)
1174		return dev_err_probe(&pdev->dev, -ENOMEM,
1175				     "Unable to allocate SPI Host\n");
 
 
1176
1177	platform_set_drvdata(pdev, host);
1178
1179	sdd = spi_controller_get_devdata(host);
1180	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1181	sdd->host = host;
1182	sdd->cntrlr_info = sci;
1183	sdd->pdev = pdev;
 
1184	if (pdev->dev.of_node) {
1185		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1186		if (ret < 0)
1187			return dev_err_probe(&pdev->dev, ret,
1188					     "Failed to get alias id\n");
 
 
1189		sdd->port_id = ret;
1190	} else {
1191		sdd->port_id = pdev->id;
1192	}
1193
1194	sdd->cur_bpw = 8;
1195
1196	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1197	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1198
1199	host->dev.of_node = pdev->dev.of_node;
1200	host->bus_num = sdd->port_id;
1201	host->setup = s3c64xx_spi_setup;
1202	host->cleanup = s3c64xx_spi_cleanup;
1203	host->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1204	host->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1205	host->prepare_message = s3c64xx_spi_prepare_message;
1206	host->transfer_one = s3c64xx_spi_transfer_one;
1207	host->max_transfer_size = s3c64xx_spi_max_transfer_size;
1208	host->num_chipselect = sci->num_cs;
1209	host->use_gpio_descriptors = true;
1210	host->dma_alignment = 8;
1211	host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1212				   SPI_BPW_MASK(8);
1213	/* the spi->mode bits understood by this driver: */
1214	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1215	if (sdd->port_conf->has_loopback)
1216		host->mode_bits |= SPI_LOOP;
1217	host->auto_runtime_pm = true;
1218	if (!is_polling(sdd))
1219		host->can_dma = s3c64xx_spi_can_dma;
1220
1221	sdd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem_res);
1222	if (IS_ERR(sdd->regs))
1223		return PTR_ERR(sdd->regs);
1224	sdd->sfr_start = mem_res->start;
 
1225
1226	if (sci->cfg_gpio && sci->cfg_gpio())
1227		return dev_err_probe(&pdev->dev, -EBUSY,
1228				     "Unable to config gpio\n");
 
 
1229
1230	/* Setup clocks */
1231	sdd->clk = devm_clk_get_enabled(&pdev->dev, "spi");
1232	if (IS_ERR(sdd->clk))
1233		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->clk),
1234				     "Unable to acquire clock 'spi'\n");
 
 
 
 
 
 
 
 
1235
1236	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1237	sdd->src_clk = devm_clk_get_enabled(&pdev->dev, clk_name);
1238	if (IS_ERR(sdd->src_clk))
1239		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->src_clk),
1240				     "Unable to acquire clock '%s'\n",
1241				     clk_name);
 
 
 
 
 
 
 
 
1242
1243	if (sdd->port_conf->clk_ioclk) {
1244		sdd->ioclk = devm_clk_get_enabled(&pdev->dev, "spi_ioclk");
1245		if (IS_ERR(sdd->ioclk))
1246			return dev_err_probe(&pdev->dev, PTR_ERR(sdd->ioclk),
1247					     "Unable to acquire 'ioclk'\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248	}
1249
1250	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1251	pm_runtime_use_autosuspend(&pdev->dev);
1252	pm_runtime_set_active(&pdev->dev);
1253	pm_runtime_enable(&pdev->dev);
1254	pm_runtime_get_sync(&pdev->dev);
1255
1256	/* Setup Deufult Mode */
1257	s3c64xx_spi_hwinit(sdd);
1258
1259	spin_lock_init(&sdd->lock);
1260	init_completion(&sdd->xfer_completion);
1261
1262	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1263				"spi-s3c64xx", sdd);
1264	if (ret != 0) {
1265		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1266			irq, ret);
1267		goto err_pm_put;
1268	}
1269
1270	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1271	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1272	       sdd->regs + S3C64XX_SPI_INT_EN);
1273
1274	ret = devm_spi_register_controller(&pdev->dev, host);
1275	if (ret != 0) {
1276		dev_err(&pdev->dev, "cannot register SPI host: %d\n", ret);
1277		goto err_pm_put;
1278	}
1279
1280	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Targets attached\n",
1281					sdd->port_id, host->num_chipselect);
1282	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
1283					mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
1284
1285	pm_runtime_mark_last_busy(&pdev->dev);
1286	pm_runtime_put_autosuspend(&pdev->dev);
1287
1288	return 0;
1289
1290err_pm_put:
1291	pm_runtime_put_noidle(&pdev->dev);
1292	pm_runtime_disable(&pdev->dev);
1293	pm_runtime_set_suspended(&pdev->dev);
1294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295	return ret;
1296}
1297
1298static void s3c64xx_spi_remove(struct platform_device *pdev)
1299{
1300	struct spi_controller *host = platform_get_drvdata(pdev);
1301	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1302
1303	pm_runtime_get_sync(&pdev->dev);
1304
1305	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1306
1307	if (!is_polling(sdd)) {
1308		dma_release_channel(sdd->rx_dma.ch);
1309		dma_release_channel(sdd->tx_dma.ch);
1310	}
1311
 
 
 
 
 
 
1312	pm_runtime_put_noidle(&pdev->dev);
1313	pm_runtime_disable(&pdev->dev);
1314	pm_runtime_set_suspended(&pdev->dev);
 
 
1315}
1316
1317#ifdef CONFIG_PM_SLEEP
1318static int s3c64xx_spi_suspend(struct device *dev)
1319{
1320	struct spi_controller *host = dev_get_drvdata(dev);
1321	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1322
1323	int ret = spi_controller_suspend(host);
1324	if (ret)
1325		return ret;
1326
1327	ret = pm_runtime_force_suspend(dev);
1328	if (ret < 0)
1329		return ret;
1330
1331	sdd->cur_speed = 0; /* Output Clock is stopped */
1332
1333	return 0;
1334}
1335
1336static int s3c64xx_spi_resume(struct device *dev)
1337{
1338	struct spi_controller *host = dev_get_drvdata(dev);
1339	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1340	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1341	int ret;
1342
1343	if (sci->cfg_gpio)
1344		sci->cfg_gpio();
1345
1346	ret = pm_runtime_force_resume(dev);
1347	if (ret < 0)
1348		return ret;
1349
1350	return spi_controller_resume(host);
 
 
1351}
1352#endif /* CONFIG_PM_SLEEP */
1353
1354#ifdef CONFIG_PM
1355static int s3c64xx_spi_runtime_suspend(struct device *dev)
1356{
1357	struct spi_controller *host = dev_get_drvdata(dev);
1358	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1359
1360	clk_disable_unprepare(sdd->clk);
1361	clk_disable_unprepare(sdd->src_clk);
1362	clk_disable_unprepare(sdd->ioclk);
1363
1364	return 0;
1365}
1366
1367static int s3c64xx_spi_runtime_resume(struct device *dev)
1368{
1369	struct spi_controller *host = dev_get_drvdata(dev);
1370	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1371	int ret;
1372
1373	if (sdd->port_conf->clk_ioclk) {
1374		ret = clk_prepare_enable(sdd->ioclk);
1375		if (ret != 0)
1376			return ret;
1377	}
1378
1379	ret = clk_prepare_enable(sdd->src_clk);
1380	if (ret != 0)
1381		goto err_disable_ioclk;
1382
1383	ret = clk_prepare_enable(sdd->clk);
1384	if (ret != 0)
1385		goto err_disable_src_clk;
1386
1387	s3c64xx_spi_hwinit(sdd);
1388
1389	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1390	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1391	       sdd->regs + S3C64XX_SPI_INT_EN);
1392
1393	return 0;
1394
1395err_disable_src_clk:
1396	clk_disable_unprepare(sdd->src_clk);
1397err_disable_ioclk:
1398	clk_disable_unprepare(sdd->ioclk);
1399
1400	return ret;
1401}
1402#endif /* CONFIG_PM */
1403
1404static const struct dev_pm_ops s3c64xx_spi_pm = {
1405	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1406	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1407			   s3c64xx_spi_runtime_resume, NULL)
1408};
1409
1410static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1411	.fifo_lvl_mask	= { 0x7f },
1412	.rx_lvl_offset	= 13,
1413	.tx_st_done	= 21,
1414	.clk_div	= 2,
1415	.high_speed	= true,
1416};
1417
1418static const struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1419	.fifo_lvl_mask	= { 0x7f, 0x7F },
1420	.rx_lvl_offset	= 13,
1421	.tx_st_done	= 21,
1422	.clk_div	= 2,
1423};
1424
1425static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1426	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1427	.rx_lvl_offset	= 15,
1428	.tx_st_done	= 25,
1429	.clk_div	= 2,
1430	.high_speed	= true,
1431};
1432
1433static const struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1434	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1435	.rx_lvl_offset	= 15,
1436	.tx_st_done	= 25,
1437	.clk_div	= 2,
1438	.high_speed	= true,
1439	.clk_from_cmu	= true,
1440	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1441};
1442
1443static const struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1444	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1445	.rx_lvl_offset	= 15,
1446	.tx_st_done	= 25,
1447	.clk_div	= 2,
1448	.high_speed	= true,
1449	.clk_from_cmu	= true,
1450	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1451};
1452
1453static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1454	.fifo_lvl_mask	= { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
1455	.rx_lvl_offset	= 15,
1456	.tx_st_done	= 25,
1457	.clk_div	= 2,
1458	.high_speed	= true,
1459	.clk_from_cmu	= true,
1460	.clk_ioclk	= true,
1461	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1462};
1463
1464static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = {
1465	.fifo_lvl_mask	= { 0x1ff, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff, 0x7f,
1466			    0x7f, 0x7f, 0x7f, 0x7f},
1467	.rx_lvl_offset	= 15,
1468	.tx_st_done	= 25,
1469	.clk_div	= 4,
1470	.high_speed	= true,
1471	.clk_from_cmu	= true,
1472	.clk_ioclk	= true,
1473	.has_loopback	= true,
1474	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1475};
1476
1477static const struct s3c64xx_spi_port_config fsd_spi_port_config = {
1478	.fifo_lvl_mask	= { 0x7f, 0x7f, 0x7f, 0x7f, 0x7f},
1479	.rx_lvl_offset	= 15,
1480	.tx_st_done	= 25,
1481	.clk_div	= 2,
1482	.high_speed	= true,
1483	.clk_from_cmu	= true,
1484	.clk_ioclk	= false,
1485	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1486};
1487
1488static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1489	{
1490		.name		= "s3c2443-spi",
1491		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1492	}, {
1493		.name		= "s3c6410-spi",
1494		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1495	},
1496	{ },
1497};
1498
1499static const struct of_device_id s3c64xx_spi_dt_match[] = {
1500	{ .compatible = "samsung,s3c2443-spi",
1501			.data = (void *)&s3c2443_spi_port_config,
1502	},
1503	{ .compatible = "samsung,s3c6410-spi",
1504			.data = (void *)&s3c6410_spi_port_config,
1505	},
1506	{ .compatible = "samsung,s5pv210-spi",
1507			.data = (void *)&s5pv210_spi_port_config,
1508	},
1509	{ .compatible = "samsung,exynos4210-spi",
1510			.data = (void *)&exynos4_spi_port_config,
1511	},
 
 
 
1512	{ .compatible = "samsung,exynos7-spi",
1513			.data = (void *)&exynos7_spi_port_config,
1514	},
1515	{ .compatible = "samsung,exynos5433-spi",
1516			.data = (void *)&exynos5433_spi_port_config,
1517	},
1518	{ .compatible = "samsung,exynosautov9-spi",
1519			.data = (void *)&exynosautov9_spi_port_config,
1520	},
1521	{ .compatible = "tesla,fsd-spi",
1522			.data = (void *)&fsd_spi_port_config,
1523	},
1524	{ },
1525};
1526MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1527
1528static struct platform_driver s3c64xx_spi_driver = {
1529	.driver = {
1530		.name	= "s3c64xx-spi",
1531		.pm = &s3c64xx_spi_pm,
1532		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1533	},
1534	.probe = s3c64xx_spi_probe,
1535	.remove_new = s3c64xx_spi_remove,
1536	.id_table = s3c64xx_spi_driver_ids,
1537};
1538MODULE_ALIAS("platform:s3c64xx-spi");
1539
1540module_platform_driver(s3c64xx_spi_driver);
1541
1542MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1543MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1544MODULE_LICENSE("GPL");
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright (c) 2009 Samsung Electronics Co., Ltd.
   4//      Jaswinder Singh <jassi.brar@samsung.com>
   5
   6#include <linux/init.h>
   7#include <linux/module.h>
   8#include <linux/interrupt.h>
   9#include <linux/delay.h>
  10#include <linux/clk.h>
  11#include <linux/dma-mapping.h>
  12#include <linux/dmaengine.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/spi/spi.h>
  16#include <linux/gpio.h>
  17#include <linux/of.h>
  18#include <linux/of_gpio.h>
  19
  20#include <linux/platform_data/spi-s3c64xx.h>
  21
  22#define MAX_SPI_PORTS		6
  23#define S3C64XX_SPI_QUIRK_POLL		(1 << 0)
  24#define S3C64XX_SPI_QUIRK_CS_AUTO	(1 << 1)
  25#define AUTOSUSPEND_TIMEOUT	2000
  26
  27/* Registers and bit-fields */
  28
  29#define S3C64XX_SPI_CH_CFG		0x00
  30#define S3C64XX_SPI_CLK_CFG		0x04
  31#define S3C64XX_SPI_MODE_CFG	0x08
  32#define S3C64XX_SPI_SLAVE_SEL	0x0C
  33#define S3C64XX_SPI_INT_EN		0x10
  34#define S3C64XX_SPI_STATUS		0x14
  35#define S3C64XX_SPI_TX_DATA		0x18
  36#define S3C64XX_SPI_RX_DATA		0x1C
  37#define S3C64XX_SPI_PACKET_CNT	0x20
  38#define S3C64XX_SPI_PENDING_CLR	0x24
  39#define S3C64XX_SPI_SWAP_CFG	0x28
  40#define S3C64XX_SPI_FB_CLK		0x2C
  41
  42#define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
  43#define S3C64XX_SPI_CH_SW_RST		(1<<5)
  44#define S3C64XX_SPI_CH_SLAVE		(1<<4)
  45#define S3C64XX_SPI_CPOL_L		(1<<3)
  46#define S3C64XX_SPI_CPHA_B		(1<<2)
  47#define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
  48#define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
  49
  50#define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
  51#define S3C64XX_SPI_CLKSEL_SRCSHFT	9
  52#define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
  53#define S3C64XX_SPI_PSR_MASK		0xff
  54
  55#define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
  56#define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
  57#define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
  58#define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
  59#define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
  60#define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
  61#define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
  62#define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
 
 
 
  63#define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
  64#define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
  65#define S3C64XX_SPI_MODE_4BURST			(1<<0)
  66
  67#define S3C64XX_SPI_SLAVE_AUTO			(1<<1)
  68#define S3C64XX_SPI_SLAVE_SIG_INACT		(1<<0)
  69#define S3C64XX_SPI_SLAVE_NSC_CNT_2		(2<<4)
  70
  71#define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
  72#define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
  73#define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
  74#define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
  75#define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
  76#define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
  77#define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
  78
  79#define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
  80#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR	(1<<4)
  81#define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
  82#define S3C64XX_SPI_ST_TX_UNDERRUN_ERR	(1<<2)
  83#define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
  84#define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
  85
  86#define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
 
  87
  88#define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
  89#define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
  90#define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
  91#define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
  92#define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
  93
  94#define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
  95#define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
  96#define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
  97#define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
  98#define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
  99#define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
 100#define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
 101#define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
 102
 103#define S3C64XX_SPI_FBCLK_MSK		(3<<0)
 104
 105#define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
 106#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
 107				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
 108#define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
 109#define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
 110					FIFO_LVL_MASK(i))
 111
 112#define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
 113#define S3C64XX_SPI_TRAILCNT_OFF	19
 114
 115#define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
 116
 
 
 117#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
 118#define is_polling(x)	(x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
 119
 120#define RXBUSY    (1<<2)
 121#define TXBUSY    (1<<3)
 122
 123struct s3c64xx_spi_dma_data {
 124	struct dma_chan *ch;
 
 125	enum dma_transfer_direction direction;
 126};
 127
 128/**
 129 * struct s3c64xx_spi_info - SPI Controller hardware info
 130 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
 131 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
 132 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
 
 
 133 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
 134 * @clk_from_cmu: True, if the controller does not include a clock mux and
 135 *	prescaler unit.
 
 
 136 *
 137 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
 138 * differ in some aspects such as the size of the fifo and spi bus clock
 139 * setup. Such differences are specified to the driver using this structure
 140 * which is provided as driver data to the driver.
 141 */
 142struct s3c64xx_spi_port_config {
 143	int	fifo_lvl_mask[MAX_SPI_PORTS];
 144	int	rx_lvl_offset;
 145	int	tx_st_done;
 146	int	quirks;
 
 147	bool	high_speed;
 148	bool	clk_from_cmu;
 149	bool	clk_ioclk;
 
 150};
 151
 152/**
 153 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
 154 * @clk: Pointer to the spi clock.
 155 * @src_clk: Pointer to the clock used to generate SPI signals.
 156 * @ioclk: Pointer to the i/o clock between master and slave
 157 * @master: Pointer to the SPI Protocol master.
 
 158 * @cntrlr_info: Platform specific data for the controller this driver manages.
 159 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
 160 * @lock: Controller specific lock.
 161 * @state: Set of FLAGS to indicate status.
 162 * @rx_dmach: Controller's DMA channel for Rx.
 163 * @tx_dmach: Controller's DMA channel for Tx.
 164 * @sfr_start: BUS address of SPI controller regs.
 165 * @regs: Pointer to ioremap'ed controller registers.
 166 * @irq: interrupt
 167 * @xfer_completion: To indicate completion of xfer task.
 168 * @cur_mode: Stores the active configuration of the controller.
 169 * @cur_bpw: Stores the active bits per word settings.
 170 * @cur_speed: Stores the active xfer clock speed.
 
 
 
 
 171 */
 172struct s3c64xx_spi_driver_data {
 173	void __iomem                    *regs;
 174	struct clk                      *clk;
 175	struct clk                      *src_clk;
 176	struct clk                      *ioclk;
 177	struct platform_device          *pdev;
 178	struct spi_master               *master;
 179	struct s3c64xx_spi_info  *cntrlr_info;
 180	struct spi_device               *tgl_spi;
 181	spinlock_t                      lock;
 182	unsigned long                   sfr_start;
 183	struct completion               xfer_completion;
 184	unsigned                        state;
 185	unsigned                        cur_mode, cur_bpw;
 186	unsigned                        cur_speed;
 187	struct s3c64xx_spi_dma_data	rx_dma;
 188	struct s3c64xx_spi_dma_data	tx_dma;
 189	struct s3c64xx_spi_port_config	*port_conf;
 190	unsigned int			port_id;
 191};
 192
 193static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
 194{
 195	void __iomem *regs = sdd->regs;
 196	unsigned long loops;
 197	u32 val;
 198
 199	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
 200
 201	val = readl(regs + S3C64XX_SPI_CH_CFG);
 202	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
 203	writel(val, regs + S3C64XX_SPI_CH_CFG);
 204
 205	val = readl(regs + S3C64XX_SPI_CH_CFG);
 206	val |= S3C64XX_SPI_CH_SW_RST;
 207	val &= ~S3C64XX_SPI_CH_HS_EN;
 208	writel(val, regs + S3C64XX_SPI_CH_CFG);
 209
 210	/* Flush TxFIFO*/
 211	loops = msecs_to_loops(1);
 212	do {
 213		val = readl(regs + S3C64XX_SPI_STATUS);
 214	} while (TX_FIFO_LVL(val, sdd) && loops--);
 215
 216	if (loops == 0)
 217		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
 218
 219	/* Flush RxFIFO*/
 220	loops = msecs_to_loops(1);
 221	do {
 222		val = readl(regs + S3C64XX_SPI_STATUS);
 223		if (RX_FIFO_LVL(val, sdd))
 224			readl(regs + S3C64XX_SPI_RX_DATA);
 225		else
 226			break;
 227	} while (loops--);
 228
 229	if (loops == 0)
 230		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
 231
 232	val = readl(regs + S3C64XX_SPI_CH_CFG);
 233	val &= ~S3C64XX_SPI_CH_SW_RST;
 234	writel(val, regs + S3C64XX_SPI_CH_CFG);
 235
 236	val = readl(regs + S3C64XX_SPI_MODE_CFG);
 237	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
 238	writel(val, regs + S3C64XX_SPI_MODE_CFG);
 239}
 240
 241static void s3c64xx_spi_dmacb(void *data)
 242{
 243	struct s3c64xx_spi_driver_data *sdd;
 244	struct s3c64xx_spi_dma_data *dma = data;
 245	unsigned long flags;
 246
 247	if (dma->direction == DMA_DEV_TO_MEM)
 248		sdd = container_of(data,
 249			struct s3c64xx_spi_driver_data, rx_dma);
 250	else
 251		sdd = container_of(data,
 252			struct s3c64xx_spi_driver_data, tx_dma);
 253
 254	spin_lock_irqsave(&sdd->lock, flags);
 255
 256	if (dma->direction == DMA_DEV_TO_MEM) {
 257		sdd->state &= ~RXBUSY;
 258		if (!(sdd->state & TXBUSY))
 259			complete(&sdd->xfer_completion);
 260	} else {
 261		sdd->state &= ~TXBUSY;
 262		if (!(sdd->state & RXBUSY))
 263			complete(&sdd->xfer_completion);
 264	}
 265
 266	spin_unlock_irqrestore(&sdd->lock, flags);
 267}
 268
 269static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
 270			struct sg_table *sgt)
 271{
 272	struct s3c64xx_spi_driver_data *sdd;
 273	struct dma_slave_config config;
 274	struct dma_async_tx_descriptor *desc;
 
 275
 276	memset(&config, 0, sizeof(config));
 277
 278	if (dma->direction == DMA_DEV_TO_MEM) {
 279		sdd = container_of((void *)dma,
 280			struct s3c64xx_spi_driver_data, rx_dma);
 281		config.direction = dma->direction;
 282		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
 283		config.src_addr_width = sdd->cur_bpw / 8;
 284		config.src_maxburst = 1;
 285		dmaengine_slave_config(dma->ch, &config);
 286	} else {
 287		sdd = container_of((void *)dma,
 288			struct s3c64xx_spi_driver_data, tx_dma);
 289		config.direction = dma->direction;
 290		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
 291		config.dst_addr_width = sdd->cur_bpw / 8;
 292		config.dst_maxburst = 1;
 293		dmaengine_slave_config(dma->ch, &config);
 294	}
 295
 296	desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
 297				       dma->direction, DMA_PREP_INTERRUPT);
 
 
 
 
 
 298
 299	desc->callback = s3c64xx_spi_dmacb;
 300	desc->callback_param = dma;
 301
 302	dmaengine_submit(desc);
 
 
 
 
 
 
 303	dma_async_issue_pending(dma->ch);
 
 304}
 305
 306static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
 307{
 308	struct s3c64xx_spi_driver_data *sdd =
 309					spi_master_get_devdata(spi->master);
 310
 311	if (sdd->cntrlr_info->no_cs)
 312		return;
 313
 314	if (enable) {
 315		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
 316			writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 317		} else {
 318			u32 ssel = readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 319
 320			ssel |= (S3C64XX_SPI_SLAVE_AUTO |
 321						S3C64XX_SPI_SLAVE_NSC_CNT_2);
 322			writel(ssel, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 323		}
 324	} else {
 325		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
 326			writel(S3C64XX_SPI_SLAVE_SIG_INACT,
 327			       sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 328	}
 329}
 330
 331static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
 332{
 333	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
 334
 335	if (is_polling(sdd))
 336		return 0;
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338	spi->dma_rx = sdd->rx_dma.ch;
 339	spi->dma_tx = sdd->tx_dma.ch;
 340
 341	return 0;
 342}
 343
 344static bool s3c64xx_spi_can_dma(struct spi_master *master,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345				struct spi_device *spi,
 346				struct spi_transfer *xfer)
 347{
 348	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
 
 
 
 
 
 
 349
 350	return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
 351}
 352
 353static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
 354				struct spi_device *spi,
 355				struct spi_transfer *xfer, int dma_mode)
 356{
 357	void __iomem *regs = sdd->regs;
 358	u32 modecfg, chcfg;
 
 359
 360	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
 361	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
 362
 363	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
 364	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
 365
 366	if (dma_mode) {
 367		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
 368	} else {
 369		/* Always shift in data in FIFO, even if xfer is Tx only,
 370		 * this helps setting PCKT_CNT value for generating clocks
 371		 * as exactly needed.
 372		 */
 373		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
 374		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
 375					| S3C64XX_SPI_PACKET_CNT_EN,
 376					regs + S3C64XX_SPI_PACKET_CNT);
 377	}
 378
 379	if (xfer->tx_buf != NULL) {
 380		sdd->state |= TXBUSY;
 381		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
 382		if (dma_mode) {
 383			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
 384			prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
 385		} else {
 386			switch (sdd->cur_bpw) {
 387			case 32:
 388				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
 389					xfer->tx_buf, xfer->len / 4);
 390				break;
 391			case 16:
 392				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
 393					xfer->tx_buf, xfer->len / 2);
 394				break;
 395			default:
 396				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
 397					xfer->tx_buf, xfer->len);
 398				break;
 399			}
 400		}
 401	}
 402
 403	if (xfer->rx_buf != NULL) {
 404		sdd->state |= RXBUSY;
 405
 406		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
 407					&& !(sdd->cur_mode & SPI_CPHA))
 408			chcfg |= S3C64XX_SPI_CH_HS_EN;
 409
 410		if (dma_mode) {
 411			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
 412			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
 413			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
 414					| S3C64XX_SPI_PACKET_CNT_EN,
 415					regs + S3C64XX_SPI_PACKET_CNT);
 416			prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
 417		}
 418	}
 419
 
 
 
 420	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
 421	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
 
 
 422}
 423
 424static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
 425					int timeout_ms)
 426{
 427	void __iomem *regs = sdd->regs;
 428	unsigned long val = 1;
 429	u32 status;
 430
 431	/* max fifo depth available */
 432	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
 433
 434	if (timeout_ms)
 435		val = msecs_to_loops(timeout_ms);
 436
 437	do {
 438		status = readl(regs + S3C64XX_SPI_STATUS);
 439	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
 440
 441	/* return the actual received data length */
 442	return RX_FIFO_LVL(status, sdd);
 443}
 444
 445static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
 446			struct spi_transfer *xfer)
 447{
 448	void __iomem *regs = sdd->regs;
 449	unsigned long val;
 450	u32 status;
 451	int ms;
 452
 453	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
 454	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
 455	ms += 10; /* some tolerance */
 
 456
 457	val = msecs_to_jiffies(ms) + 10;
 458	val = wait_for_completion_timeout(&sdd->xfer_completion, val);
 459
 460	/*
 461	 * If the previous xfer was completed within timeout, then
 462	 * proceed further else return -EIO.
 463	 * DmaTx returns after simply writing data in the FIFO,
 464	 * w/o waiting for real transmission on the bus to finish.
 465	 * DmaRx returns only after Dma read data from FIFO which
 466	 * needs bus transmission to finish, so we don't worry if
 467	 * Xfer involved Rx(with or without Tx).
 468	 */
 469	if (val && !xfer->rx_buf) {
 470		val = msecs_to_loops(10);
 471		status = readl(regs + S3C64XX_SPI_STATUS);
 472		while ((TX_FIFO_LVL(status, sdd)
 473			|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
 474		       && --val) {
 475			cpu_relax();
 476			status = readl(regs + S3C64XX_SPI_STATUS);
 477		}
 478
 479	}
 480
 481	/* If timed out while checking rx/tx status return error */
 482	if (!val)
 483		return -EIO;
 484
 485	return 0;
 486}
 487
 488static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
 489			struct spi_transfer *xfer)
 490{
 491	void __iomem *regs = sdd->regs;
 492	unsigned long val;
 493	u32 status;
 494	int loops;
 495	u32 cpy_len;
 496	u8 *buf;
 497	int ms;
 
 498
 499	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
 500	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
 
 501	ms += 10; /* some tolerance */
 502
 
 
 
 
 
 
 
 
 
 
 
 503	val = msecs_to_loops(ms);
 504	do {
 505		status = readl(regs + S3C64XX_SPI_STATUS);
 506	} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
 507
 
 
 508
 509	/* If it was only Tx */
 510	if (!xfer->rx_buf) {
 511		sdd->state &= ~TXBUSY;
 512		return 0;
 513	}
 514
 515	/*
 516	 * If the receive length is bigger than the controller fifo
 517	 * size, calculate the loops and read the fifo as many times.
 518	 * loops = length / max fifo size (calculated by using the
 519	 * fifo mask).
 520	 * For any size less than the fifo size the below code is
 521	 * executed atleast once.
 522	 */
 523	loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
 524	buf = xfer->rx_buf;
 525	do {
 526		/* wait for data to be received in the fifo */
 527		cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
 528						       (loops ? ms : 0));
 529
 530		switch (sdd->cur_bpw) {
 531		case 32:
 532			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
 533				     buf, cpy_len / 4);
 534			break;
 535		case 16:
 536			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
 537				     buf, cpy_len / 2);
 538			break;
 539		default:
 540			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
 541				    buf, cpy_len);
 542			break;
 543		}
 544
 545		buf = buf + cpy_len;
 546	} while (loops--);
 547	sdd->state &= ~RXBUSY;
 548
 549	return 0;
 550}
 551
 552static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
 553{
 554	void __iomem *regs = sdd->regs;
 
 555	u32 val;
 
 556
 557	/* Disable Clock */
 558	if (!sdd->port_conf->clk_from_cmu) {
 559		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 560		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
 561		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 562	}
 563
 564	/* Set Polarity and Phase */
 565	val = readl(regs + S3C64XX_SPI_CH_CFG);
 566	val &= ~(S3C64XX_SPI_CH_SLAVE |
 567			S3C64XX_SPI_CPOL_L |
 568			S3C64XX_SPI_CPHA_B);
 569
 570	if (sdd->cur_mode & SPI_CPOL)
 571		val |= S3C64XX_SPI_CPOL_L;
 572
 573	if (sdd->cur_mode & SPI_CPHA)
 574		val |= S3C64XX_SPI_CPHA_B;
 575
 576	writel(val, regs + S3C64XX_SPI_CH_CFG);
 577
 578	/* Set Channel & DMA Mode */
 579	val = readl(regs + S3C64XX_SPI_MODE_CFG);
 580	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
 581			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
 582
 583	switch (sdd->cur_bpw) {
 584	case 32:
 585		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
 586		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
 587		break;
 588	case 16:
 589		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
 590		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
 591		break;
 592	default:
 593		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
 594		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
 595		break;
 596	}
 597
 
 
 
 
 
 598	writel(val, regs + S3C64XX_SPI_MODE_CFG);
 599
 600	if (sdd->port_conf->clk_from_cmu) {
 601		/* The src_clk clock is divided internally by 2 */
 602		clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
 
 
 603	} else {
 604		/* Configure Clock */
 605		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 606		val &= ~S3C64XX_SPI_PSR_MASK;
 607		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
 608				& S3C64XX_SPI_PSR_MASK);
 609		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 610
 611		/* Enable Clock */
 612		val = readl(regs + S3C64XX_SPI_CLK_CFG);
 613		val |= S3C64XX_SPI_ENCLK_ENABLE;
 614		writel(val, regs + S3C64XX_SPI_CLK_CFG);
 615	}
 
 
 616}
 617
 618#define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
 619
 620static int s3c64xx_spi_prepare_message(struct spi_master *master,
 621				       struct spi_message *msg)
 622{
 623	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
 624	struct spi_device *spi = msg->spi;
 625	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
 626
 627	/* Configure feedback delay */
 628	writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
 
 
 
 
 629
 630	return 0;
 631}
 632
 633static int s3c64xx_spi_transfer_one(struct spi_master *master,
 
 
 
 
 
 
 
 634				    struct spi_device *spi,
 635				    struct spi_transfer *xfer)
 636{
 637	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
 
 
 
 
 
 
 638	int status;
 639	u32 speed;
 640	u8 bpw;
 641	unsigned long flags;
 642	int use_dma;
 
 643
 644	reinit_completion(&sdd->xfer_completion);
 645
 646	/* Only BPW and Speed may change across transfers */
 647	bpw = xfer->bits_per_word;
 648	speed = xfer->speed_hz;
 649
 650	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
 651		sdd->cur_bpw = bpw;
 652		sdd->cur_speed = speed;
 653		sdd->cur_mode = spi->mode;
 654		s3c64xx_spi_config(sdd);
 
 
 655	}
 656
 657	/* Polling method for xfers not bigger than FIFO capacity */
 658	use_dma = 0;
 659	if (!is_polling(sdd) &&
 660	    (sdd->rx_dma.ch && sdd->tx_dma.ch &&
 661	     (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
 662		use_dma = 1;
 663
 664	spin_lock_irqsave(&sdd->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666	/* Pending only which is to be done */
 667	sdd->state &= ~RXBUSY;
 668	sdd->state &= ~TXBUSY;
 
 669
 670	enable_datapath(sdd, spi, xfer, use_dma);
 
 
 
 671
 672	/* Start the signals */
 673	s3c64xx_spi_set_cs(spi, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 674
 675	spin_unlock_irqrestore(&sdd->lock, flags);
 
 676
 677	if (use_dma)
 678		status = wait_for_dma(sdd, xfer);
 679	else
 680		status = wait_for_pio(sdd, xfer);
 681
 682	if (status) {
 683		dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
 684			xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
 685			(sdd->state & RXBUSY) ? 'f' : 'p',
 686			(sdd->state & TXBUSY) ? 'f' : 'p',
 687			xfer->len);
 688
 689		if (use_dma) {
 690			if (xfer->tx_buf != NULL
 691			    && (sdd->state & TXBUSY))
 692				dmaengine_terminate_all(sdd->tx_dma.ch);
 693			if (xfer->rx_buf != NULL
 694			    && (sdd->state & RXBUSY))
 695				dmaengine_terminate_all(sdd->rx_dma.ch);
 696		}
 697	} else {
 698		flush_fifo(sdd);
 
 
 
 
 
 699	}
 700
 701	return status;
 702}
 703
 704static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
 705				struct spi_device *spi)
 706{
 707	struct s3c64xx_spi_csinfo *cs;
 708	struct device_node *slave_np, *data_np = NULL;
 709	u32 fb_delay = 0;
 710
 711	slave_np = spi->dev.of_node;
 712	if (!slave_np) {
 713		dev_err(&spi->dev, "device node not found\n");
 714		return ERR_PTR(-EINVAL);
 715	}
 716
 717	data_np = of_get_child_by_name(slave_np, "controller-data");
 718	if (!data_np) {
 719		dev_err(&spi->dev, "child node 'controller-data' not found\n");
 720		return ERR_PTR(-EINVAL);
 721	}
 722
 723	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
 724	if (!cs) {
 725		of_node_put(data_np);
 726		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 727	}
 728
 729	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
 730	cs->fb_delay = fb_delay;
 731	of_node_put(data_np);
 732	return cs;
 733}
 734
 735/*
 736 * Here we only check the validity of requested configuration
 737 * and save the configuration in a local data-structure.
 738 * The controller is actually configured only just before we
 739 * get a message to transfer.
 740 */
 741static int s3c64xx_spi_setup(struct spi_device *spi)
 742{
 743	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
 744	struct s3c64xx_spi_driver_data *sdd;
 745	int err;
 
 746
 747	sdd = spi_master_get_devdata(spi->master);
 748	if (spi->dev.of_node) {
 749		cs = s3c64xx_get_slave_ctrldata(spi);
 750		spi->controller_data = cs;
 751	} else if (cs) {
 752		/* On non-DT platforms the SPI core will set spi->cs_gpio
 753		 * to -ENOENT. The GPIO pin used to drive the chip select
 754		 * is defined by using platform data so spi->cs_gpio value
 755		 * has to be override to have the proper GPIO pin number.
 756		 */
 757		spi->cs_gpio = cs->line;
 758	}
 759
 760	if (IS_ERR_OR_NULL(cs)) {
 761		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
 
 762		return -ENODEV;
 763	}
 764
 765	if (!spi_get_ctldata(spi)) {
 766		if (gpio_is_valid(spi->cs_gpio)) {
 767			err = gpio_request_one(spi->cs_gpio, GPIOF_OUT_INIT_HIGH,
 768					       dev_name(&spi->dev));
 769			if (err) {
 770				dev_err(&spi->dev,
 771					"Failed to get /CS gpio [%d]: %d\n",
 772					spi->cs_gpio, err);
 773				goto err_gpio_req;
 774			}
 775		}
 776
 777		spi_set_ctldata(spi, cs);
 778	}
 779
 780	pm_runtime_get_sync(&sdd->pdev->dev);
 781
 
 
 782	/* Check if we can provide the requested rate */
 783	if (!sdd->port_conf->clk_from_cmu) {
 784		u32 psr, speed;
 785
 786		/* Max possible */
 787		speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
 788
 789		if (spi->max_speed_hz > speed)
 790			spi->max_speed_hz = speed;
 791
 792		psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
 793		psr &= S3C64XX_SPI_PSR_MASK;
 794		if (psr == S3C64XX_SPI_PSR_MASK)
 795			psr--;
 796
 797		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
 798		if (spi->max_speed_hz < speed) {
 799			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
 800				psr++;
 801			} else {
 802				err = -EINVAL;
 803				goto setup_exit;
 804			}
 805		}
 806
 807		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
 808		if (spi->max_speed_hz >= speed) {
 809			spi->max_speed_hz = speed;
 810		} else {
 811			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
 812				spi->max_speed_hz);
 813			err = -EINVAL;
 814			goto setup_exit;
 815		}
 816	}
 817
 818	pm_runtime_mark_last_busy(&sdd->pdev->dev);
 819	pm_runtime_put_autosuspend(&sdd->pdev->dev);
 820	s3c64xx_spi_set_cs(spi, false);
 821
 822	return 0;
 823
 824setup_exit:
 825	pm_runtime_mark_last_busy(&sdd->pdev->dev);
 826	pm_runtime_put_autosuspend(&sdd->pdev->dev);
 827	/* setup() returns with device de-selected */
 828	s3c64xx_spi_set_cs(spi, false);
 829
 830	if (gpio_is_valid(spi->cs_gpio))
 831		gpio_free(spi->cs_gpio);
 832	spi_set_ctldata(spi, NULL);
 833
 834err_gpio_req:
 835	if (spi->dev.of_node)
 836		kfree(cs);
 837
 838	return err;
 839}
 840
 841static void s3c64xx_spi_cleanup(struct spi_device *spi)
 842{
 843	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
 844
 845	if (gpio_is_valid(spi->cs_gpio)) {
 846		gpio_free(spi->cs_gpio);
 847		if (spi->dev.of_node)
 848			kfree(cs);
 849		else {
 850			/* On non-DT platforms, the SPI core sets
 851			 * spi->cs_gpio to -ENOENT and .setup()
 852			 * overrides it with the GPIO pin value
 853			 * passed using platform data.
 854			 */
 855			spi->cs_gpio = -ENOENT;
 856		}
 857	}
 858
 859	spi_set_ctldata(spi, NULL);
 860}
 861
 862static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
 863{
 864	struct s3c64xx_spi_driver_data *sdd = data;
 865	struct spi_master *spi = sdd->master;
 866	unsigned int val, clr = 0;
 867
 868	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
 869
 870	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
 871		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
 872		dev_err(&spi->dev, "RX overrun\n");
 873	}
 874	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
 875		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
 876		dev_err(&spi->dev, "RX underrun\n");
 877	}
 878	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
 879		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
 880		dev_err(&spi->dev, "TX overrun\n");
 881	}
 882	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
 883		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
 884		dev_err(&spi->dev, "TX underrun\n");
 885	}
 886
 
 
 
 
 
 
 
 
 887	/* Clear the pending irq by setting and then clearing it */
 888	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
 889	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
 890
 891	return IRQ_HANDLED;
 892}
 893
 894static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
 895{
 896	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
 897	void __iomem *regs = sdd->regs;
 898	unsigned int val;
 899
 900	sdd->cur_speed = 0;
 901
 902	if (sci->no_cs)
 903		writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 904	else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
 905		writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
 906
 907	/* Disable Interrupts - we use Polling if not DMA mode */
 908	writel(0, regs + S3C64XX_SPI_INT_EN);
 909
 910	if (!sdd->port_conf->clk_from_cmu)
 911		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
 912				regs + S3C64XX_SPI_CLK_CFG);
 913	writel(0, regs + S3C64XX_SPI_MODE_CFG);
 914	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
 915
 916	/* Clear any irq pending bits, should set and clear the bits */
 917	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
 918		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
 919		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
 920		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
 921	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
 922	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
 923
 924	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
 925
 926	val = readl(regs + S3C64XX_SPI_MODE_CFG);
 927	val &= ~S3C64XX_SPI_MODE_4BURST;
 928	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
 929	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
 930	writel(val, regs + S3C64XX_SPI_MODE_CFG);
 931
 932	flush_fifo(sdd);
 933}
 934
 935#ifdef CONFIG_OF
 936static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
 937{
 938	struct s3c64xx_spi_info *sci;
 939	u32 temp;
 940
 941	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
 942	if (!sci)
 943		return ERR_PTR(-ENOMEM);
 944
 945	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
 946		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
 947		sci->src_clk_nr = 0;
 948	} else {
 949		sci->src_clk_nr = temp;
 950	}
 951
 952	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
 953		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
 954		sci->num_cs = 1;
 955	} else {
 956		sci->num_cs = temp;
 957	}
 958
 959	sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
 
 960
 961	return sci;
 962}
 963#else
 964static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
 965{
 966	return dev_get_platdata(dev);
 967}
 968#endif
 969
 970static const struct of_device_id s3c64xx_spi_dt_match[];
 971
 972static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
 973						struct platform_device *pdev)
 974{
 975#ifdef CONFIG_OF
 976	if (pdev->dev.of_node) {
 977		const struct of_device_id *match;
 978		match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
 979		return (struct s3c64xx_spi_port_config *)match->data;
 980	}
 981#endif
 982	return (struct s3c64xx_spi_port_config *)
 983			 platform_get_device_id(pdev)->driver_data;
 984}
 985
 986static int s3c64xx_spi_probe(struct platform_device *pdev)
 987{
 988	struct resource	*mem_res;
 989	struct s3c64xx_spi_driver_data *sdd;
 990	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
 991	struct spi_master *master;
 992	int ret, irq;
 993	char clk_name[16];
 994
 995	if (!sci && pdev->dev.of_node) {
 996		sci = s3c64xx_spi_parse_dt(&pdev->dev);
 997		if (IS_ERR(sci))
 998			return PTR_ERR(sci);
 999	}
1000
1001	if (!sci) {
1002		dev_err(&pdev->dev, "platform_data missing!\n");
1003		return -ENODEV;
1004	}
1005
1006	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1007	if (mem_res == NULL) {
1008		dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1009		return -ENXIO;
1010	}
1011
1012	irq = platform_get_irq(pdev, 0);
1013	if (irq < 0) {
1014		dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1015		return irq;
1016	}
1017
1018	master = spi_alloc_master(&pdev->dev,
1019				sizeof(struct s3c64xx_spi_driver_data));
1020	if (master == NULL) {
1021		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1022		return -ENOMEM;
1023	}
1024
1025	platform_set_drvdata(pdev, master);
1026
1027	sdd = spi_master_get_devdata(master);
1028	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1029	sdd->master = master;
1030	sdd->cntrlr_info = sci;
1031	sdd->pdev = pdev;
1032	sdd->sfr_start = mem_res->start;
1033	if (pdev->dev.of_node) {
1034		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1035		if (ret < 0) {
1036			dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1037				ret);
1038			goto err_deref_master;
1039		}
1040		sdd->port_id = ret;
1041	} else {
1042		sdd->port_id = pdev->id;
1043	}
1044
1045	sdd->cur_bpw = 8;
1046
1047	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1048	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1049
1050	master->dev.of_node = pdev->dev.of_node;
1051	master->bus_num = sdd->port_id;
1052	master->setup = s3c64xx_spi_setup;
1053	master->cleanup = s3c64xx_spi_cleanup;
1054	master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1055	master->prepare_message = s3c64xx_spi_prepare_message;
1056	master->transfer_one = s3c64xx_spi_transfer_one;
1057	master->num_chipselect = sci->num_cs;
1058	master->dma_alignment = 8;
1059	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1060					SPI_BPW_MASK(8);
 
 
 
1061	/* the spi->mode bits understood by this driver: */
1062	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1063	master->auto_runtime_pm = true;
 
 
1064	if (!is_polling(sdd))
1065		master->can_dma = s3c64xx_spi_can_dma;
1066
1067	sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1068	if (IS_ERR(sdd->regs)) {
1069		ret = PTR_ERR(sdd->regs);
1070		goto err_deref_master;
1071	}
1072
1073	if (sci->cfg_gpio && sci->cfg_gpio()) {
1074		dev_err(&pdev->dev, "Unable to config gpio\n");
1075		ret = -EBUSY;
1076		goto err_deref_master;
1077	}
1078
1079	/* Setup clocks */
1080	sdd->clk = devm_clk_get(&pdev->dev, "spi");
1081	if (IS_ERR(sdd->clk)) {
1082		dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1083		ret = PTR_ERR(sdd->clk);
1084		goto err_deref_master;
1085	}
1086
1087	ret = clk_prepare_enable(sdd->clk);
1088	if (ret) {
1089		dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1090		goto err_deref_master;
1091	}
1092
1093	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1094	sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1095	if (IS_ERR(sdd->src_clk)) {
1096		dev_err(&pdev->dev,
1097			"Unable to acquire clock '%s'\n", clk_name);
1098		ret = PTR_ERR(sdd->src_clk);
1099		goto err_disable_clk;
1100	}
1101
1102	ret = clk_prepare_enable(sdd->src_clk);
1103	if (ret) {
1104		dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1105		goto err_disable_clk;
1106	}
1107
1108	if (sdd->port_conf->clk_ioclk) {
1109		sdd->ioclk = devm_clk_get(&pdev->dev, "spi_ioclk");
1110		if (IS_ERR(sdd->ioclk)) {
1111			dev_err(&pdev->dev, "Unable to acquire 'ioclk'\n");
1112			ret = PTR_ERR(sdd->ioclk);
1113			goto err_disable_src_clk;
1114		}
1115
1116		ret = clk_prepare_enable(sdd->ioclk);
1117		if (ret) {
1118			dev_err(&pdev->dev, "Couldn't enable clock 'ioclk'\n");
1119			goto err_disable_src_clk;
1120		}
1121	}
1122
1123	if (!is_polling(sdd)) {
1124		/* Acquire DMA channels */
1125		sdd->rx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
1126								  "rx");
1127		if (IS_ERR(sdd->rx_dma.ch)) {
1128			dev_err(&pdev->dev, "Failed to get RX DMA channel\n");
1129			ret = PTR_ERR(sdd->rx_dma.ch);
1130			goto err_disable_io_clk;
1131		}
1132		sdd->tx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
1133								  "tx");
1134		if (IS_ERR(sdd->tx_dma.ch)) {
1135			dev_err(&pdev->dev, "Failed to get TX DMA channel\n");
1136			ret = PTR_ERR(sdd->tx_dma.ch);
1137			goto err_release_rx_dma;
1138		}
1139	}
1140
1141	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1142	pm_runtime_use_autosuspend(&pdev->dev);
1143	pm_runtime_set_active(&pdev->dev);
1144	pm_runtime_enable(&pdev->dev);
1145	pm_runtime_get_sync(&pdev->dev);
1146
1147	/* Setup Deufult Mode */
1148	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1149
1150	spin_lock_init(&sdd->lock);
1151	init_completion(&sdd->xfer_completion);
1152
1153	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1154				"spi-s3c64xx", sdd);
1155	if (ret != 0) {
1156		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1157			irq, ret);
1158		goto err_pm_put;
1159	}
1160
1161	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1162	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1163	       sdd->regs + S3C64XX_SPI_INT_EN);
1164
1165	ret = devm_spi_register_master(&pdev->dev, master);
1166	if (ret != 0) {
1167		dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1168		goto err_pm_put;
1169	}
1170
1171	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1172					sdd->port_id, master->num_chipselect);
1173	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
1174					mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1);
1175
1176	pm_runtime_mark_last_busy(&pdev->dev);
1177	pm_runtime_put_autosuspend(&pdev->dev);
1178
1179	return 0;
1180
1181err_pm_put:
1182	pm_runtime_put_noidle(&pdev->dev);
1183	pm_runtime_disable(&pdev->dev);
1184	pm_runtime_set_suspended(&pdev->dev);
1185
1186	if (!is_polling(sdd))
1187		dma_release_channel(sdd->tx_dma.ch);
1188err_release_rx_dma:
1189	if (!is_polling(sdd))
1190		dma_release_channel(sdd->rx_dma.ch);
1191err_disable_io_clk:
1192	clk_disable_unprepare(sdd->ioclk);
1193err_disable_src_clk:
1194	clk_disable_unprepare(sdd->src_clk);
1195err_disable_clk:
1196	clk_disable_unprepare(sdd->clk);
1197err_deref_master:
1198	spi_master_put(master);
1199
1200	return ret;
1201}
1202
1203static int s3c64xx_spi_remove(struct platform_device *pdev)
1204{
1205	struct spi_master *master = platform_get_drvdata(pdev);
1206	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1207
1208	pm_runtime_get_sync(&pdev->dev);
1209
1210	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1211
1212	if (!is_polling(sdd)) {
1213		dma_release_channel(sdd->rx_dma.ch);
1214		dma_release_channel(sdd->tx_dma.ch);
1215	}
1216
1217	clk_disable_unprepare(sdd->ioclk);
1218
1219	clk_disable_unprepare(sdd->src_clk);
1220
1221	clk_disable_unprepare(sdd->clk);
1222
1223	pm_runtime_put_noidle(&pdev->dev);
1224	pm_runtime_disable(&pdev->dev);
1225	pm_runtime_set_suspended(&pdev->dev);
1226
1227	return 0;
1228}
1229
1230#ifdef CONFIG_PM_SLEEP
1231static int s3c64xx_spi_suspend(struct device *dev)
1232{
1233	struct spi_master *master = dev_get_drvdata(dev);
1234	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1235
1236	int ret = spi_master_suspend(master);
1237	if (ret)
1238		return ret;
1239
1240	ret = pm_runtime_force_suspend(dev);
1241	if (ret < 0)
1242		return ret;
1243
1244	sdd->cur_speed = 0; /* Output Clock is stopped */
1245
1246	return 0;
1247}
1248
1249static int s3c64xx_spi_resume(struct device *dev)
1250{
1251	struct spi_master *master = dev_get_drvdata(dev);
1252	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1253	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1254	int ret;
1255
1256	if (sci->cfg_gpio)
1257		sci->cfg_gpio();
1258
1259	ret = pm_runtime_force_resume(dev);
1260	if (ret < 0)
1261		return ret;
1262
1263	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1264
1265	return spi_master_resume(master);
1266}
1267#endif /* CONFIG_PM_SLEEP */
1268
1269#ifdef CONFIG_PM
1270static int s3c64xx_spi_runtime_suspend(struct device *dev)
1271{
1272	struct spi_master *master = dev_get_drvdata(dev);
1273	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1274
1275	clk_disable_unprepare(sdd->clk);
1276	clk_disable_unprepare(sdd->src_clk);
1277	clk_disable_unprepare(sdd->ioclk);
1278
1279	return 0;
1280}
1281
1282static int s3c64xx_spi_runtime_resume(struct device *dev)
1283{
1284	struct spi_master *master = dev_get_drvdata(dev);
1285	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1286	int ret;
1287
1288	if (sdd->port_conf->clk_ioclk) {
1289		ret = clk_prepare_enable(sdd->ioclk);
1290		if (ret != 0)
1291			return ret;
1292	}
1293
1294	ret = clk_prepare_enable(sdd->src_clk);
1295	if (ret != 0)
1296		goto err_disable_ioclk;
1297
1298	ret = clk_prepare_enable(sdd->clk);
1299	if (ret != 0)
1300		goto err_disable_src_clk;
1301
 
 
 
 
 
 
1302	return 0;
1303
1304err_disable_src_clk:
1305	clk_disable_unprepare(sdd->src_clk);
1306err_disable_ioclk:
1307	clk_disable_unprepare(sdd->ioclk);
1308
1309	return ret;
1310}
1311#endif /* CONFIG_PM */
1312
1313static const struct dev_pm_ops s3c64xx_spi_pm = {
1314	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1315	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1316			   s3c64xx_spi_runtime_resume, NULL)
1317};
1318
1319static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1320	.fifo_lvl_mask	= { 0x7f },
1321	.rx_lvl_offset	= 13,
1322	.tx_st_done	= 21,
 
1323	.high_speed	= true,
1324};
1325
1326static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1327	.fifo_lvl_mask	= { 0x7f, 0x7F },
1328	.rx_lvl_offset	= 13,
1329	.tx_st_done	= 21,
 
1330};
1331
1332static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1333	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1334	.rx_lvl_offset	= 15,
1335	.tx_st_done	= 25,
 
1336	.high_speed	= true,
1337};
1338
1339static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1340	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1341	.rx_lvl_offset	= 15,
1342	.tx_st_done	= 25,
 
1343	.high_speed	= true,
1344	.clk_from_cmu	= true,
 
1345};
1346
1347static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1348	.fifo_lvl_mask	= { 0x1ff },
1349	.rx_lvl_offset	= 15,
1350	.tx_st_done	= 25,
 
1351	.high_speed	= true,
1352	.clk_from_cmu	= true,
1353	.quirks		= S3C64XX_SPI_QUIRK_POLL,
1354};
1355
1356static struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1357	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1358	.rx_lvl_offset	= 15,
1359	.tx_st_done	= 25,
 
1360	.high_speed	= true,
1361	.clk_from_cmu	= true,
 
1362	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1363};
1364
1365static struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1366	.fifo_lvl_mask	= { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
 
1367	.rx_lvl_offset	= 15,
1368	.tx_st_done	= 25,
 
1369	.high_speed	= true,
1370	.clk_from_cmu	= true,
1371	.clk_ioclk	= true,
 
 
 
 
 
 
 
 
 
 
 
 
1372	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1373};
1374
1375static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1376	{
1377		.name		= "s3c2443-spi",
1378		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1379	}, {
1380		.name		= "s3c6410-spi",
1381		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1382	},
1383	{ },
1384};
1385
1386static const struct of_device_id s3c64xx_spi_dt_match[] = {
1387	{ .compatible = "samsung,s3c2443-spi",
1388			.data = (void *)&s3c2443_spi_port_config,
1389	},
1390	{ .compatible = "samsung,s3c6410-spi",
1391			.data = (void *)&s3c6410_spi_port_config,
1392	},
1393	{ .compatible = "samsung,s5pv210-spi",
1394			.data = (void *)&s5pv210_spi_port_config,
1395	},
1396	{ .compatible = "samsung,exynos4210-spi",
1397			.data = (void *)&exynos4_spi_port_config,
1398	},
1399	{ .compatible = "samsung,exynos5440-spi",
1400			.data = (void *)&exynos5440_spi_port_config,
1401	},
1402	{ .compatible = "samsung,exynos7-spi",
1403			.data = (void *)&exynos7_spi_port_config,
1404	},
1405	{ .compatible = "samsung,exynos5433-spi",
1406			.data = (void *)&exynos5433_spi_port_config,
1407	},
 
 
 
 
 
 
1408	{ },
1409};
1410MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1411
1412static struct platform_driver s3c64xx_spi_driver = {
1413	.driver = {
1414		.name	= "s3c64xx-spi",
1415		.pm = &s3c64xx_spi_pm,
1416		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1417	},
1418	.probe = s3c64xx_spi_probe,
1419	.remove = s3c64xx_spi_remove,
1420	.id_table = s3c64xx_spi_driver_ids,
1421};
1422MODULE_ALIAS("platform:s3c64xx-spi");
1423
1424module_platform_driver(s3c64xx_spi_driver);
1425
1426MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1427MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1428MODULE_LICENSE("GPL");