Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * Freescale QuadSPI driver.
   5 *
   6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
   7 * Copyright (C) 2018 Bootlin
   8 * Copyright (C) 2018 exceet electronics GmbH
   9 * Copyright (C) 2018 Kontron Electronics GmbH
  10 *
  11 * Transition to SPI MEM interface:
  12 * Authors:
  13 *     Boris Brezillon <bbrezillon@kernel.org>
  14 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  15 *     Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
  16 *     Suresh Gupta <suresh.gupta@nxp.com>
  17 *
  18 * Based on the original fsl-quadspi.c SPI NOR driver:
  19 * Author: Freescale Semiconductor, Inc.
  20 *
  21 */
  22
  23#include <linux/bitops.h>
  24#include <linux/clk.h>
  25#include <linux/completion.h>
  26#include <linux/delay.h>
  27#include <linux/err.h>
  28#include <linux/errno.h>
  29#include <linux/interrupt.h>
  30#include <linux/io.h>
  31#include <linux/iopoll.h>
  32#include <linux/jiffies.h>
  33#include <linux/kernel.h>
  34#include <linux/module.h>
  35#include <linux/mutex.h>
  36#include <linux/of.h>
  37#include <linux/platform_device.h>
  38#include <linux/pm_qos.h>
  39#include <linux/sizes.h>
  40
  41#include <linux/spi/spi.h>
  42#include <linux/spi/spi-mem.h>
  43
  44/*
  45 * The driver only uses one single LUT entry, that is updated on
  46 * each call of exec_op(). Index 0 is preset at boot with a basic
  47 * read operation, so let's use the last entry (15).
  48 */
  49#define	SEQID_LUT			15
  50
  51/* Registers used by the driver */
  52#define QUADSPI_MCR			0x00
  53#define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
  54#define QUADSPI_MCR_MDIS_MASK		BIT(14)
  55#define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
  56#define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
  57#define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
  58#define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
  59#define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
  60#define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)
  61
  62#define QUADSPI_IPCR			0x08
  63#define QUADSPI_IPCR_SEQID(x)		((x) << 24)
  64
  65#define QUADSPI_FLSHCR			0x0c
  66#define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
  67#define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
  68#define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)
  69
  70#define QUADSPI_BUF0CR                  0x10
  71#define QUADSPI_BUF1CR                  0x14
  72#define QUADSPI_BUF2CR                  0x18
  73#define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
  74
  75#define QUADSPI_BUF3CR			0x1c
  76#define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
  77#define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
  78#define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)
  79
  80#define QUADSPI_BFGENCR			0x20
  81#define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)
  82
  83#define QUADSPI_BUF0IND			0x30
  84#define QUADSPI_BUF1IND			0x34
  85#define QUADSPI_BUF2IND			0x38
  86#define QUADSPI_SFAR			0x100
  87
  88#define QUADSPI_SMPR			0x108
  89#define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
  90#define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
  91#define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
  92#define QUADSPI_SMPR_HSENA_MASK		BIT(0)
  93
  94#define QUADSPI_RBCT			0x110
  95#define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
  96#define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)
  97
  98#define QUADSPI_TBDR			0x154
  99
 100#define QUADSPI_SR			0x15c
 101#define QUADSPI_SR_IP_ACC_MASK		BIT(1)
 102#define QUADSPI_SR_AHB_ACC_MASK		BIT(2)
 103
 104#define QUADSPI_FR			0x160
 105#define QUADSPI_FR_TFF_MASK		BIT(0)
 106
 107#define QUADSPI_RSER			0x164
 108#define QUADSPI_RSER_TFIE		BIT(0)
 109
 110#define QUADSPI_SPTRCLR			0x16c
 111#define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
 112#define QUADSPI_SPTRCLR_BFPTRC		BIT(0)
 113
 114#define QUADSPI_SFA1AD			0x180
 115#define QUADSPI_SFA2AD			0x184
 116#define QUADSPI_SFB1AD			0x188
 117#define QUADSPI_SFB2AD			0x18c
 118#define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))
 119
 120#define QUADSPI_LUTKEY			0x300
 121#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
 122
 123#define QUADSPI_LCKCR			0x304
 124#define QUADSPI_LCKER_LOCK		BIT(0)
 125#define QUADSPI_LCKER_UNLOCK		BIT(1)
 126
 127#define QUADSPI_LUT_BASE		0x310
 128#define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
 129#define QUADSPI_LUT_REG(idx) \
 130	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
 131
 132/* Instruction set for the LUT register */
 133#define LUT_STOP		0
 134#define LUT_CMD			1
 135#define LUT_ADDR		2
 136#define LUT_DUMMY		3
 137#define LUT_MODE		4
 138#define LUT_MODE2		5
 139#define LUT_MODE4		6
 140#define LUT_FSL_READ		7
 141#define LUT_FSL_WRITE		8
 142#define LUT_JMP_ON_CS		9
 143#define LUT_ADDR_DDR		10
 144#define LUT_MODE_DDR		11
 145#define LUT_MODE2_DDR		12
 146#define LUT_MODE4_DDR		13
 147#define LUT_FSL_READ_DDR	14
 148#define LUT_FSL_WRITE_DDR	15
 149#define LUT_DATA_LEARN		16
 150
 151/*
 152 * The PAD definitions for LUT register.
 153 *
 154 * The pad stands for the number of IO lines [0:3].
 155 * For example, the quad read needs four IO lines,
 156 * so you should use LUT_PAD(4).
 157 */
 158#define LUT_PAD(x) (fls(x) - 1)
 159
 160/*
 161 * Macro for constructing the LUT entries with the following
 162 * register layout:
 163 *
 164 *  ---------------------------------------------------
 165 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 166 *  ---------------------------------------------------
 167 */
 168#define LUT_DEF(idx, ins, pad, opr)					\
 169	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
 170
 171/* Controller needs driver to swap endianness */
 172#define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)
 173
 174/* Controller needs 4x internal clock */
 175#define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)
 176
 177/*
 178 * TKT253890, the controller needs the driver to fill the txfifo with
 179 * 16 bytes at least to trigger a data transfer, even though the extra
 180 * data won't be transferred.
 181 */
 182#define QUADSPI_QUIRK_TKT253890		BIT(2)
 183
 184/* TKT245618, the controller cannot wake up from wait mode */
 185#define QUADSPI_QUIRK_TKT245618		BIT(3)
 186
 187/*
 188 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
 189 * internally. No need to add it when setting SFXXAD and SFAR registers
 190 */
 191#define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)
 192
 193/*
 194 * Controller uses TDH bits in register QUADSPI_FLSHCR.
 195 * They need to be set in accordance with the DDR/SDR mode.
 196 */
 197#define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)
 198
 199struct fsl_qspi_devtype_data {
 200	unsigned int rxfifo;
 201	unsigned int txfifo;
 202	int invalid_mstrid;
 203	unsigned int ahb_buf_size;
 204	unsigned int quirks;
 205	bool little_endian;
 206};
 207
 208static const struct fsl_qspi_devtype_data vybrid_data = {
 209	.rxfifo = SZ_128,
 210	.txfifo = SZ_64,
 211	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
 212	.ahb_buf_size = SZ_1K,
 213	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
 214	.little_endian = true,
 215};
 216
 217static const struct fsl_qspi_devtype_data imx6sx_data = {
 218	.rxfifo = SZ_128,
 219	.txfifo = SZ_512,
 220	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
 221	.ahb_buf_size = SZ_1K,
 222	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
 223	.little_endian = true,
 224};
 225
 226static const struct fsl_qspi_devtype_data imx7d_data = {
 227	.rxfifo = SZ_128,
 228	.txfifo = SZ_512,
 229	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
 230	.ahb_buf_size = SZ_1K,
 231	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
 232		  QUADSPI_QUIRK_USE_TDH_SETTING,
 233	.little_endian = true,
 234};
 235
 236static const struct fsl_qspi_devtype_data imx6ul_data = {
 237	.rxfifo = SZ_128,
 238	.txfifo = SZ_512,
 239	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
 240	.ahb_buf_size = SZ_1K,
 241	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
 242		  QUADSPI_QUIRK_USE_TDH_SETTING,
 243	.little_endian = true,
 244};
 245
 246static const struct fsl_qspi_devtype_data ls1021a_data = {
 247	.rxfifo = SZ_128,
 248	.txfifo = SZ_64,
 249	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
 250	.ahb_buf_size = SZ_1K,
 251	.quirks = 0,
 252	.little_endian = false,
 253};
 254
 255static const struct fsl_qspi_devtype_data ls2080a_data = {
 256	.rxfifo = SZ_128,
 257	.txfifo = SZ_64,
 258	.ahb_buf_size = SZ_1K,
 259	.invalid_mstrid = 0x0,
 260	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
 261	.little_endian = true,
 262};
 263
 264struct fsl_qspi {
 265	void __iomem *iobase;
 266	void __iomem *ahb_addr;
 267	u32 memmap_phy;
 268	struct clk *clk, *clk_en;
 269	struct device *dev;
 270	struct completion c;
 271	const struct fsl_qspi_devtype_data *devtype_data;
 272	struct mutex lock;
 273	struct pm_qos_request pm_qos_req;
 274	int selected;
 275};
 276
 277static inline int needs_swap_endian(struct fsl_qspi *q)
 278{
 279	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
 280}
 281
 282static inline int needs_4x_clock(struct fsl_qspi *q)
 283{
 284	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
 285}
 286
 287static inline int needs_fill_txfifo(struct fsl_qspi *q)
 288{
 289	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
 290}
 291
 292static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
 293{
 294	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
 295}
 296
 297static inline int needs_amba_base_offset(struct fsl_qspi *q)
 298{
 299	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
 300}
 301
 302static inline int needs_tdh_setting(struct fsl_qspi *q)
 303{
 304	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
 305}
 306
 307/*
 308 * An IC bug makes it necessary to rearrange the 32-bit data.
 309 * Later chips, such as IMX6SLX, have fixed this bug.
 310 */
 311static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
 312{
 313	return needs_swap_endian(q) ? __swab32(a) : a;
 314}
 315
 316/*
 317 * R/W functions for big- or little-endian registers:
 318 * The QSPI controller's endianness is independent of
 319 * the CPU core's endianness. So far, although the CPU
 320 * core is little-endian the QSPI controller can use
 321 * big-endian or little-endian.
 322 */
 323static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
 324{
 325	if (q->devtype_data->little_endian)
 326		iowrite32(val, addr);
 327	else
 328		iowrite32be(val, addr);
 329}
 330
 331static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
 332{
 333	if (q->devtype_data->little_endian)
 334		return ioread32(addr);
 335
 336	return ioread32be(addr);
 337}
 338
 339static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
 340{
 341	struct fsl_qspi *q = dev_id;
 342	u32 reg;
 343
 344	/* clear interrupt */
 345	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
 346	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
 347
 348	if (reg & QUADSPI_FR_TFF_MASK)
 349		complete(&q->c);
 350
 351	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
 352	return IRQ_HANDLED;
 353}
 354
 355static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
 356{
 357	switch (width) {
 358	case 1:
 359	case 2:
 360	case 4:
 361		return 0;
 362	}
 363
 364	return -ENOTSUPP;
 365}
 366
 367static bool fsl_qspi_supports_op(struct spi_mem *mem,
 368				 const struct spi_mem_op *op)
 369{
 370	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
 371	int ret;
 372
 373	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
 374
 375	if (op->addr.nbytes)
 376		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
 377
 378	if (op->dummy.nbytes)
 379		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
 380
 381	if (op->data.nbytes)
 382		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
 383
 384	if (ret)
 385		return false;
 386
 387	/*
 388	 * The number of instructions needed for the op, needs
 389	 * to fit into a single LUT entry.
 390	 */
 391	if (op->addr.nbytes +
 392	   (op->dummy.nbytes ? 1:0) +
 393	   (op->data.nbytes ? 1:0) > 6)
 394		return false;
 395
 396	/* Max 64 dummy clock cycles supported */
 397	if (op->dummy.nbytes &&
 398	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 399		return false;
 400
 401	/* Max data length, check controller limits and alignment */
 402	if (op->data.dir == SPI_MEM_DATA_IN &&
 403	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
 404	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
 405	      !IS_ALIGNED(op->data.nbytes, 8))))
 406		return false;
 407
 408	if (op->data.dir == SPI_MEM_DATA_OUT &&
 409	    op->data.nbytes > q->devtype_data->txfifo)
 410		return false;
 411
 412	return spi_mem_default_supports_op(mem, op);
 413}
 414
 415static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
 416				 const struct spi_mem_op *op)
 417{
 418	void __iomem *base = q->iobase;
 419	u32 lutval[4] = {};
 420	int lutidx = 1, i;
 421
 422	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 423			     op->cmd.opcode);
 424
 425	/*
 426	 * For some unknown reason, using LUT_ADDR doesn't work in some
 427	 * cases (at least with only one byte long addresses), so
 428	 * let's use LUT_MODE to write the address bytes one by one
 429	 */
 430	for (i = 0; i < op->addr.nbytes; i++) {
 431		u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
 432
 433		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
 434					      LUT_PAD(op->addr.buswidth),
 435					      addrbyte);
 436		lutidx++;
 437	}
 438
 439	if (op->dummy.nbytes) {
 440		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 441					      LUT_PAD(op->dummy.buswidth),
 442					      op->dummy.nbytes * 8 /
 443					      op->dummy.buswidth);
 444		lutidx++;
 445	}
 446
 447	if (op->data.nbytes) {
 448		lutval[lutidx / 2] |= LUT_DEF(lutidx,
 449					      op->data.dir == SPI_MEM_DATA_IN ?
 450					      LUT_FSL_READ : LUT_FSL_WRITE,
 451					      LUT_PAD(op->data.buswidth),
 452					      0);
 453		lutidx++;
 454	}
 455
 456	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 457
 458	/* unlock LUT */
 459	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 460	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
 461
 462	/* fill LUT */
 463	for (i = 0; i < ARRAY_SIZE(lutval); i++)
 464		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
 465
 466	/* lock LUT */
 467	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 468	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
 469}
 470
 471static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
 472{
 473	int ret;
 474
 475	ret = clk_prepare_enable(q->clk_en);
 476	if (ret)
 477		return ret;
 478
 479	ret = clk_prepare_enable(q->clk);
 480	if (ret) {
 481		clk_disable_unprepare(q->clk_en);
 482		return ret;
 483	}
 484
 485	if (needs_wakeup_wait_mode(q))
 486		cpu_latency_qos_add_request(&q->pm_qos_req, 0);
 487
 488	return 0;
 489}
 490
 491static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
 492{
 493	if (needs_wakeup_wait_mode(q))
 494		cpu_latency_qos_remove_request(&q->pm_qos_req);
 495
 496	clk_disable_unprepare(q->clk);
 497	clk_disable_unprepare(q->clk_en);
 498}
 499
 500/*
 501 * If we have changed the content of the flash by writing or erasing, or if we
 502 * read from flash with a different offset into the page buffer, we need to
 503 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
 504 * data. The spec tells us reset the AHB domain and Serial Flash domain at
 505 * the same time.
 506 */
 507static void fsl_qspi_invalidate(struct fsl_qspi *q)
 508{
 509	u32 reg;
 510
 511	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
 512	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
 513	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 514
 515	/*
 516	 * The minimum delay : 1 AHB + 2 SFCK clocks.
 517	 * Delay 1 us is enough.
 518	 */
 519	udelay(1);
 520
 521	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
 522	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 523}
 524
 525static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
 526{
 527	unsigned long rate = spi->max_speed_hz;
 528	int ret;
 529
 530	if (q->selected == spi_get_chipselect(spi, 0))
 531		return;
 532
 533	if (needs_4x_clock(q))
 534		rate *= 4;
 535
 536	fsl_qspi_clk_disable_unprep(q);
 537
 538	ret = clk_set_rate(q->clk, rate);
 539	if (ret)
 540		return;
 541
 542	ret = fsl_qspi_clk_prep_enable(q);
 543	if (ret)
 544		return;
 545
 546	q->selected = spi_get_chipselect(spi, 0);
 547
 548	fsl_qspi_invalidate(q);
 549}
 550
 551static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
 552{
 553	memcpy_fromio(op->data.buf.in,
 554		      q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
 555		      op->data.nbytes);
 556}
 557
 558static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
 559				 const struct spi_mem_op *op)
 560{
 561	void __iomem *base = q->iobase;
 562	int i;
 563	u32 val;
 564
 565	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
 566		memcpy(&val, op->data.buf.out + i, 4);
 567		val = fsl_qspi_endian_xchg(q, val);
 568		qspi_writel(q, val, base + QUADSPI_TBDR);
 569	}
 570
 571	if (i < op->data.nbytes) {
 572		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
 573		val = fsl_qspi_endian_xchg(q, val);
 574		qspi_writel(q, val, base + QUADSPI_TBDR);
 575	}
 576
 577	if (needs_fill_txfifo(q)) {
 578		for (i = op->data.nbytes; i < 16; i += 4)
 579			qspi_writel(q, 0, base + QUADSPI_TBDR);
 580	}
 581}
 582
 583static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
 584			  const struct spi_mem_op *op)
 585{
 586	void __iomem *base = q->iobase;
 587	int i;
 588	u8 *buf = op->data.buf.in;
 589	u32 val;
 590
 591	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
 592		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
 593		val = fsl_qspi_endian_xchg(q, val);
 594		memcpy(buf + i, &val, 4);
 595	}
 596
 597	if (i < op->data.nbytes) {
 598		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
 599		val = fsl_qspi_endian_xchg(q, val);
 600		memcpy(buf + i, &val, op->data.nbytes - i);
 601	}
 602}
 603
 604static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
 605{
 606	void __iomem *base = q->iobase;
 607	int err = 0;
 608
 609	init_completion(&q->c);
 610
 611	/*
 612	 * Always start the sequence at the same index since we update
 613	 * the LUT at each exec_op() call. And also specify the DATA
 614	 * length, since it's has not been specified in the LUT.
 615	 */
 616	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
 617		    base + QUADSPI_IPCR);
 618
 619	/* Wait for the interrupt. */
 620	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
 621		err = -ETIMEDOUT;
 622
 623	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 624		fsl_qspi_read_rxfifo(q, op);
 625
 626	return err;
 627}
 628
 629static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
 630				    u32 mask, u32 delay_us, u32 timeout_us)
 631{
 632	u32 reg;
 633
 634	if (!q->devtype_data->little_endian)
 635		mask = (u32)cpu_to_be32(mask);
 636
 637	return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
 638				  timeout_us);
 639}
 640
 641static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 642{
 643	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
 644	void __iomem *base = q->iobase;
 645	u32 addr_offset = 0;
 646	int err = 0;
 647	int invalid_mstrid = q->devtype_data->invalid_mstrid;
 648
 649	mutex_lock(&q->lock);
 650
 651	/* wait for the controller being ready */
 652	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
 653				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
 654
 655	fsl_qspi_select_mem(q, mem->spi);
 656
 657	if (needs_amba_base_offset(q))
 658		addr_offset = q->memmap_phy;
 659
 660	qspi_writel(q,
 661		    q->selected * q->devtype_data->ahb_buf_size + addr_offset,
 662		    base + QUADSPI_SFAR);
 663
 664	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
 665		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
 666		    base + QUADSPI_MCR);
 667
 668	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
 669		    base + QUADSPI_SPTRCLR);
 670
 671	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
 672	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
 673	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
 674
 675	fsl_qspi_prepare_lut(q, op);
 676
 677	/*
 678	 * If we have large chunks of data, we read them through the AHB bus
 679	 * by accessing the mapped memory. In all other cases we use
 680	 * IP commands to access the flash.
 681	 */
 682	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
 683	    op->data.dir == SPI_MEM_DATA_IN) {
 684		fsl_qspi_read_ahb(q, op);
 685	} else {
 686		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
 687			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
 688
 689		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 690			fsl_qspi_fill_txfifo(q, op);
 691
 692		err = fsl_qspi_do_op(q, op);
 693	}
 694
 695	/* Invalidate the data in the AHB buffer. */
 696	fsl_qspi_invalidate(q);
 697
 698	mutex_unlock(&q->lock);
 699
 700	return err;
 701}
 702
 703static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 704{
 705	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
 706
 707	if (op->data.dir == SPI_MEM_DATA_OUT) {
 708		if (op->data.nbytes > q->devtype_data->txfifo)
 709			op->data.nbytes = q->devtype_data->txfifo;
 710	} else {
 711		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
 712			op->data.nbytes = q->devtype_data->ahb_buf_size;
 713		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
 714			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 715	}
 716
 717	return 0;
 718}
 719
 720static int fsl_qspi_default_setup(struct fsl_qspi *q)
 721{
 722	void __iomem *base = q->iobase;
 723	u32 reg, addr_offset = 0;
 724	int ret;
 725
 726	/* disable and unprepare clock to avoid glitch pass to controller */
 727	fsl_qspi_clk_disable_unprep(q);
 728
 729	/* the default frequency, we will change it later if necessary. */
 730	ret = clk_set_rate(q->clk, 66000000);
 731	if (ret)
 732		return ret;
 733
 734	ret = fsl_qspi_clk_prep_enable(q);
 735	if (ret)
 736		return ret;
 737
 738	/* Reset the module */
 739	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
 740		    base + QUADSPI_MCR);
 741	udelay(1);
 742
 743	/* Disable the module */
 744	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
 745		    base + QUADSPI_MCR);
 746
 747	/*
 748	 * Previous boot stages (BootROM, bootloader) might have used DDR
 749	 * mode and did not clear the TDH bits. As we currently use SDR mode
 750	 * only, clear the TDH bits if necessary.
 751	 */
 752	if (needs_tdh_setting(q))
 753		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
 754			    ~QUADSPI_FLSHCR_TDH_MASK,
 755			    base + QUADSPI_FLSHCR);
 756
 757	reg = qspi_readl(q, base + QUADSPI_SMPR);
 758	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
 759			| QUADSPI_SMPR_FSPHS_MASK
 760			| QUADSPI_SMPR_HSENA_MASK
 761			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
 762
 763	/* We only use the buffer3 for AHB read */
 764	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
 765	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
 766	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
 767
 768	qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
 769		    q->iobase + QUADSPI_BFGENCR);
 770	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
 771	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
 772		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
 773		    base + QUADSPI_BUF3CR);
 774
 775	if (needs_amba_base_offset(q))
 776		addr_offset = q->memmap_phy;
 777
 778	/*
 779	 * In HW there can be a maximum of four chips on two buses with
 780	 * two chip selects on each bus. We use four chip selects in SW
 781	 * to differentiate between the four chips.
 782	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
 783	 * SFB2AD accordingly.
 784	 */
 785	qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
 786		    base + QUADSPI_SFA1AD);
 787	qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
 788		    base + QUADSPI_SFA2AD);
 789	qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
 790		    base + QUADSPI_SFB1AD);
 791	qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
 792		    base + QUADSPI_SFB2AD);
 793
 794	q->selected = -1;
 795
 796	/* Enable the module */
 797	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
 798		    base + QUADSPI_MCR);
 799
 800	/* clear all interrupt status */
 801	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
 802
 803	/* enable the interrupt */
 804	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
 805
 806	return 0;
 807}
 808
 809static const char *fsl_qspi_get_name(struct spi_mem *mem)
 810{
 811	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
 812	struct device *dev = &mem->spi->dev;
 813	const char *name;
 814
 815	/*
 816	 * In order to keep mtdparts compatible with the old MTD driver at
 817	 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
 818	 * platform_device of the controller.
 819	 */
 820	if (of_get_available_child_count(q->dev->of_node) == 1)
 821		return dev_name(q->dev);
 822
 823	name = devm_kasprintf(dev, GFP_KERNEL,
 824			      "%s-%d", dev_name(q->dev),
 825			      spi_get_chipselect(mem->spi, 0));
 826
 827	if (!name) {
 828		dev_err(dev, "failed to get memory for custom flash name\n");
 829		return ERR_PTR(-ENOMEM);
 830	}
 831
 832	return name;
 833}
 834
 835static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
 836	.adjust_op_size = fsl_qspi_adjust_op_size,
 837	.supports_op = fsl_qspi_supports_op,
 838	.exec_op = fsl_qspi_exec_op,
 839	.get_name = fsl_qspi_get_name,
 840};
 841
 842static int fsl_qspi_probe(struct platform_device *pdev)
 843{
 844	struct spi_controller *ctlr;
 845	struct device *dev = &pdev->dev;
 846	struct device_node *np = dev->of_node;
 847	struct resource *res;
 848	struct fsl_qspi *q;
 849	int ret;
 850
 851	ctlr = spi_alloc_host(&pdev->dev, sizeof(*q));
 852	if (!ctlr)
 853		return -ENOMEM;
 854
 855	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
 856			  SPI_TX_DUAL | SPI_TX_QUAD;
 857
 858	q = spi_controller_get_devdata(ctlr);
 859	q->dev = dev;
 860	q->devtype_data = of_device_get_match_data(dev);
 861	if (!q->devtype_data) {
 862		ret = -ENODEV;
 863		goto err_put_ctrl;
 864	}
 865
 866	platform_set_drvdata(pdev, q);
 867
 868	/* find the resources */
 869	q->iobase = devm_platform_ioremap_resource_byname(pdev, "QuadSPI");
 870	if (IS_ERR(q->iobase)) {
 871		ret = PTR_ERR(q->iobase);
 872		goto err_put_ctrl;
 873	}
 874
 875	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
 876					"QuadSPI-memory");
 877	if (!res) {
 878		ret = -EINVAL;
 879		goto err_put_ctrl;
 880	}
 881	q->memmap_phy = res->start;
 882	/* Since there are 4 cs, map size required is 4 times ahb_buf_size */
 883	q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
 884				   (q->devtype_data->ahb_buf_size * 4));
 885	if (!q->ahb_addr) {
 886		ret = -ENOMEM;
 887		goto err_put_ctrl;
 888	}
 889
 890	/* find the clocks */
 891	q->clk_en = devm_clk_get(dev, "qspi_en");
 892	if (IS_ERR(q->clk_en)) {
 893		ret = PTR_ERR(q->clk_en);
 894		goto err_put_ctrl;
 895	}
 896
 897	q->clk = devm_clk_get(dev, "qspi");
 898	if (IS_ERR(q->clk)) {
 899		ret = PTR_ERR(q->clk);
 900		goto err_put_ctrl;
 901	}
 902
 903	ret = fsl_qspi_clk_prep_enable(q);
 904	if (ret) {
 905		dev_err(dev, "can not enable the clock\n");
 906		goto err_put_ctrl;
 907	}
 908
 909	/* find the irq */
 910	ret = platform_get_irq(pdev, 0);
 911	if (ret < 0)
 912		goto err_disable_clk;
 913
 914	ret = devm_request_irq(dev, ret,
 915			fsl_qspi_irq_handler, 0, pdev->name, q);
 916	if (ret) {
 917		dev_err(dev, "failed to request irq: %d\n", ret);
 918		goto err_disable_clk;
 919	}
 920
 921	mutex_init(&q->lock);
 922
 923	ctlr->bus_num = -1;
 924	ctlr->num_chipselect = 4;
 925	ctlr->mem_ops = &fsl_qspi_mem_ops;
 926
 927	fsl_qspi_default_setup(q);
 928
 929	ctlr->dev.of_node = np;
 930
 931	ret = devm_spi_register_controller(dev, ctlr);
 932	if (ret)
 933		goto err_destroy_mutex;
 934
 935	return 0;
 936
 937err_destroy_mutex:
 938	mutex_destroy(&q->lock);
 939
 940err_disable_clk:
 941	fsl_qspi_clk_disable_unprep(q);
 942
 943err_put_ctrl:
 944	spi_controller_put(ctlr);
 945
 946	dev_err(dev, "Freescale QuadSPI probe failed\n");
 947	return ret;
 948}
 949
 950static void fsl_qspi_remove(struct platform_device *pdev)
 951{
 952	struct fsl_qspi *q = platform_get_drvdata(pdev);
 953
 954	/* disable the hardware */
 955	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
 956	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
 957
 958	fsl_qspi_clk_disable_unprep(q);
 959
 960	mutex_destroy(&q->lock);
 961}
 962
 963static int fsl_qspi_suspend(struct device *dev)
 964{
 965	return 0;
 966}
 967
 968static int fsl_qspi_resume(struct device *dev)
 969{
 970	struct fsl_qspi *q = dev_get_drvdata(dev);
 971
 972	fsl_qspi_default_setup(q);
 973
 974	return 0;
 975}
 976
 977static const struct of_device_id fsl_qspi_dt_ids[] = {
 978	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
 979	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
 980	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
 981	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
 982	{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
 983	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
 984	{ /* sentinel */ }
 985};
 986MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
 987
 988static const struct dev_pm_ops fsl_qspi_pm_ops = {
 989	.suspend	= fsl_qspi_suspend,
 990	.resume		= fsl_qspi_resume,
 991};
 992
 993static struct platform_driver fsl_qspi_driver = {
 994	.driver = {
 995		.name	= "fsl-quadspi",
 996		.of_match_table = fsl_qspi_dt_ids,
 997		.pm =   &fsl_qspi_pm_ops,
 998	},
 999	.probe          = fsl_qspi_probe,
1000	.remove_new	= fsl_qspi_remove,
1001};
1002module_platform_driver(fsl_qspi_driver);
1003
1004MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1005MODULE_AUTHOR("Freescale Semiconductor Inc.");
1006MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1007MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1008MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
1009MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
1010MODULE_LICENSE("GPL v2");