Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4// Copyright 2020 NXP
   5//
   6// Freescale DSPI driver
   7// This file contains a driver for the Freescale DSPI
 
 
 
 
 
 
 
   8
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/dmaengine.h>
  12#include <linux/dma-mapping.h>
 
 
  13#include <linux/interrupt.h>
 
  14#include <linux/kernel.h>
 
  15#include <linux/module.h>
  16#include <linux/of.h>
  17#include <linux/platform_device.h>
  18#include <linux/pinctrl/consumer.h>
 
 
  19#include <linux/regmap.h>
 
  20#include <linux/spi/spi.h>
  21#include <linux/spi/spi-fsl-dspi.h>
 
 
  22
  23#define DRIVER_NAME			"fsl-dspi"
  24
  25#define SPI_MCR				0x00
  26#define SPI_MCR_HOST			BIT(31)
  27#define SPI_MCR_PCSIS(x)		((x) << 16)
  28#define SPI_MCR_CLR_TXF			BIT(11)
  29#define SPI_MCR_CLR_RXF			BIT(10)
  30#define SPI_MCR_XSPI			BIT(3)
  31#define SPI_MCR_DIS_TXF			BIT(13)
  32#define SPI_MCR_DIS_RXF			BIT(12)
  33#define SPI_MCR_HALT			BIT(0)
  34
  35#define SPI_TCR				0x08
  36#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  37
  38#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  39#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  40#define SPI_CTAR_CPOL			BIT(26)
  41#define SPI_CTAR_CPHA			BIT(25)
  42#define SPI_CTAR_LSBFE			BIT(24)
  43#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  44#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  45#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  46#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  47#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  48#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  49#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  50#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  51#define SPI_CTAR_SCALE_BITS		0xf
  52
  53#define SPI_CTAR0_SLAVE			0x0c
  54
  55#define SPI_SR				0x2c
  56#define SPI_SR_TCFQF			BIT(31)
  57#define SPI_SR_TFUF			BIT(27)
  58#define SPI_SR_TFFF			BIT(25)
  59#define SPI_SR_CMDTCF			BIT(23)
  60#define SPI_SR_SPEF			BIT(21)
  61#define SPI_SR_RFOF			BIT(19)
  62#define SPI_SR_TFIWF			BIT(18)
  63#define SPI_SR_RFDF			BIT(17)
  64#define SPI_SR_CMDFFF			BIT(16)
  65#define SPI_SR_CLEAR			(SPI_SR_TCFQF | \
  66					SPI_SR_TFUF | SPI_SR_TFFF | \
  67					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  68					SPI_SR_RFOF | SPI_SR_TFIWF | \
  69					SPI_SR_RFDF | SPI_SR_CMDFFF)
  70
  71#define SPI_RSER_TFFFE			BIT(25)
  72#define SPI_RSER_TFFFD			BIT(24)
  73#define SPI_RSER_RFDFE			BIT(17)
  74#define SPI_RSER_RFDFD			BIT(16)
  75
  76#define SPI_RSER			0x30
  77#define SPI_RSER_TCFQE			BIT(31)
  78#define SPI_RSER_CMDTCFE		BIT(23)
  79
  80#define SPI_PUSHR			0x34
  81#define SPI_PUSHR_CMD_CONT		BIT(15)
  82#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  83#define SPI_PUSHR_CMD_EOQ		BIT(11)
  84#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  85#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  86
  87#define SPI_PUSHR_SLAVE			0x34
  88
  89#define SPI_POPR			0x38
  90
  91#define SPI_TXFR0			0x3c
  92#define SPI_TXFR1			0x40
  93#define SPI_TXFR2			0x44
  94#define SPI_TXFR3			0x48
  95#define SPI_RXFR0			0x7c
  96#define SPI_RXFR1			0x80
  97#define SPI_RXFR2			0x84
  98#define SPI_RXFR3			0x88
  99
 100#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 101#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 102#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 103
 104#define SPI_SREX			0x13c
 105
 106#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 107#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 108
 109#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 110
 111struct chip_data {
 112	u32			ctar_val;
 
 
 113};
 114
 115enum dspi_trans_mode {
 116	DSPI_XSPI_MODE,
 
 117	DSPI_DMA_MODE,
 118};
 119
 120struct fsl_dspi_devtype_data {
 121	enum dspi_trans_mode	trans_mode;
 122	u8			max_clock_factor;
 123	int			fifo_size;
 124};
 125
 126enum {
 127	LS1021A,
 128	LS1012A,
 129	LS1028A,
 130	LS1043A,
 131	LS1046A,
 132	LS2080A,
 133	LS2085A,
 134	LX2160A,
 135	MCF5441X,
 136	VF610,
 137};
 138
 139static const struct fsl_dspi_devtype_data devtype_data[] = {
 140	[VF610] = {
 141		.trans_mode		= DSPI_DMA_MODE,
 142		.max_clock_factor	= 2,
 143		.fifo_size		= 4,
 144	},
 145	[LS1021A] = {
 146		/* Has A-011218 DMA erratum */
 147		.trans_mode		= DSPI_XSPI_MODE,
 148		.max_clock_factor	= 8,
 149		.fifo_size		= 4,
 150	},
 151	[LS1012A] = {
 152		/* Has A-011218 DMA erratum */
 153		.trans_mode		= DSPI_XSPI_MODE,
 154		.max_clock_factor	= 8,
 155		.fifo_size		= 16,
 156	},
 157	[LS1028A] = {
 158		.trans_mode		= DSPI_XSPI_MODE,
 159		.max_clock_factor	= 8,
 160		.fifo_size		= 4,
 161	},
 162	[LS1043A] = {
 163		/* Has A-011218 DMA erratum */
 164		.trans_mode		= DSPI_XSPI_MODE,
 165		.max_clock_factor	= 8,
 166		.fifo_size		= 16,
 167	},
 168	[LS1046A] = {
 169		/* Has A-011218 DMA erratum */
 170		.trans_mode		= DSPI_XSPI_MODE,
 171		.max_clock_factor	= 8,
 172		.fifo_size		= 16,
 173	},
 174	[LS2080A] = {
 175		.trans_mode		= DSPI_XSPI_MODE,
 176		.max_clock_factor	= 8,
 177		.fifo_size		= 4,
 178	},
 179	[LS2085A] = {
 180		.trans_mode		= DSPI_XSPI_MODE,
 181		.max_clock_factor	= 8,
 182		.fifo_size		= 4,
 183	},
 184	[LX2160A] = {
 185		.trans_mode		= DSPI_XSPI_MODE,
 186		.max_clock_factor	= 8,
 187		.fifo_size		= 4,
 188	},
 189	[MCF5441X] = {
 190		.trans_mode		= DSPI_DMA_MODE,
 191		.max_clock_factor	= 8,
 192		.fifo_size		= 16,
 193	},
 194};
 195
 196struct fsl_dspi_dma {
 197	u32					*tx_dma_buf;
 198	struct dma_chan				*chan_tx;
 199	dma_addr_t				tx_dma_phys;
 200	struct completion			cmd_tx_complete;
 201	struct dma_async_tx_descriptor		*tx_desc;
 202
 203	u32					*rx_dma_buf;
 204	struct dma_chan				*chan_rx;
 205	dma_addr_t				rx_dma_phys;
 206	struct completion			cmd_rx_complete;
 207	struct dma_async_tx_descriptor		*rx_desc;
 208};
 209
 210struct fsl_dspi {
 211	struct spi_controller			*ctlr;
 212	struct platform_device			*pdev;
 213
 214	struct regmap				*regmap;
 215	struct regmap				*regmap_pushr;
 216	int					irq;
 217	struct clk				*clk;
 218
 219	struct spi_transfer			*cur_transfer;
 220	struct spi_message			*cur_msg;
 221	struct chip_data			*cur_chip;
 222	size_t					progress;
 223	size_t					len;
 224	const void				*tx;
 225	void					*rx;
 226	u16					tx_cmd;
 227	const struct fsl_dspi_devtype_data	*devtype_data;
 228
 229	struct completion			xfer_done;
 230
 231	struct fsl_dspi_dma			*dma;
 232
 233	int					oper_word_size;
 234	int					oper_bits_per_word;
 235
 236	int					words_in_flight;
 237
 238	/*
 239	 * Offsets for CMD and TXDATA within SPI_PUSHR when accessed
 240	 * individually (in XSPI mode)
 241	 */
 242	int					pushr_cmd;
 243	int					pushr_tx;
 244
 245	void (*host_to_dev)(struct fsl_dspi *dspi, u32 *txdata);
 246	void (*dev_to_host)(struct fsl_dspi *dspi, u32 rxdata);
 247};
 248
 249static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 250{
 251	switch (dspi->oper_word_size) {
 252	case 1:
 253		*txdata = *(u8 *)dspi->tx;
 254		break;
 255	case 2:
 256		*txdata = *(u16 *)dspi->tx;
 257		break;
 258	case 4:
 259		*txdata = *(u32 *)dspi->tx;
 260		break;
 261	}
 262	dspi->tx += dspi->oper_word_size;
 263}
 264
 265static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 266{
 267	switch (dspi->oper_word_size) {
 268	case 1:
 269		*(u8 *)dspi->rx = rxdata;
 270		break;
 271	case 2:
 272		*(u16 *)dspi->rx = rxdata;
 273		break;
 274	case 4:
 275		*(u32 *)dspi->rx = rxdata;
 276		break;
 277	}
 278	dspi->rx += dspi->oper_word_size;
 279}
 280
 281static void dspi_8on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 282{
 283	*txdata = cpu_to_be32(*(u32 *)dspi->tx);
 284	dspi->tx += sizeof(u32);
 285}
 286
 287static void dspi_8on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 288{
 289	*(u32 *)dspi->rx = be32_to_cpu(rxdata);
 290	dspi->rx += sizeof(u32);
 291}
 292
 293static void dspi_8on16_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 294{
 295	*txdata = cpu_to_be16(*(u16 *)dspi->tx);
 296	dspi->tx += sizeof(u16);
 297}
 298
 299static void dspi_8on16_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 300{
 301	*(u16 *)dspi->rx = be16_to_cpu(rxdata);
 302	dspi->rx += sizeof(u16);
 303}
 304
 305static void dspi_16on32_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
 306{
 307	u16 hi = *(u16 *)dspi->tx;
 308	u16 lo = *(u16 *)(dspi->tx + 2);
 
 
 
 
 
 
 
 
 309
 310	*txdata = (u32)hi << 16 | lo;
 311	dspi->tx += sizeof(u32);
 312}
 313
 314static void dspi_16on32_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
 315{
 316	u16 hi = rxdata & 0xffff;
 317	u16 lo = rxdata >> 16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	*(u16 *)dspi->rx = lo;
 320	*(u16 *)(dspi->rx + 2) = hi;
 321	dspi->rx += sizeof(u32);
 322}
 323
 324/*
 325 * Pop one word from the TX buffer for pushing into the
 326 * PUSHR register (TX FIFO)
 327 */
 328static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 329{
 330	u32 txdata = 0;
 331
 332	if (dspi->tx)
 333		dspi->host_to_dev(dspi, &txdata);
 334	dspi->len -= dspi->oper_word_size;
 335	return txdata;
 336}
 337
 338/* Prepare one TX FIFO entry (txdata plus cmd) */
 339static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 340{
 341	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 342
 343	if (spi_controller_is_target(dspi->ctlr))
 344		return data;
 345
 346	if (dspi->len > 0)
 347		cmd |= SPI_PUSHR_CMD_CONT;
 348	return cmd << 16 | data;
 349}
 350
 351/* Push one word to the RX buffer from the POPR register (RX FIFO) */
 352static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 353{
 354	if (!dspi->rx)
 355		return;
 356	dspi->dev_to_host(dspi, rxdata);
 357}
 358
 359static void dspi_tx_dma_callback(void *arg)
 360{
 361	struct fsl_dspi *dspi = arg;
 362	struct fsl_dspi_dma *dma = dspi->dma;
 363
 364	complete(&dma->cmd_tx_complete);
 365}
 366
 367static void dspi_rx_dma_callback(void *arg)
 368{
 369	struct fsl_dspi *dspi = arg;
 370	struct fsl_dspi_dma *dma = dspi->dma;
 
 371	int i;
 
 372
 373	if (dspi->rx) {
 374		for (i = 0; i < dspi->words_in_flight; i++)
 375			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 
 
 
 
 
 
 376	}
 377
 378	complete(&dma->cmd_rx_complete);
 379}
 380
 381static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 382{
 383	struct device *dev = &dspi->pdev->dev;
 384	struct fsl_dspi_dma *dma = dspi->dma;
 
 385	int time_left;
 
 386	int i;
 387
 388	for (i = 0; i < dspi->words_in_flight; i++)
 389		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 
 
 
 
 
 390
 391	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 392					dma->tx_dma_phys,
 393					dspi->words_in_flight *
 394					DMA_SLAVE_BUSWIDTH_4_BYTES,
 395					DMA_MEM_TO_DEV,
 396					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 397	if (!dma->tx_desc) {
 398		dev_err(dev, "Not able to get desc for DMA xfer\n");
 399		return -EIO;
 400	}
 401
 402	dma->tx_desc->callback = dspi_tx_dma_callback;
 403	dma->tx_desc->callback_param = dspi;
 404	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 405		dev_err(dev, "DMA submit failed\n");
 406		return -EINVAL;
 407	}
 408
 409	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 410					dma->rx_dma_phys,
 411					dspi->words_in_flight *
 412					DMA_SLAVE_BUSWIDTH_4_BYTES,
 413					DMA_DEV_TO_MEM,
 414					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 415	if (!dma->rx_desc) {
 416		dev_err(dev, "Not able to get desc for DMA xfer\n");
 417		return -EIO;
 418	}
 419
 420	dma->rx_desc->callback = dspi_rx_dma_callback;
 421	dma->rx_desc->callback_param = dspi;
 422	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 423		dev_err(dev, "DMA submit failed\n");
 424		return -EINVAL;
 425	}
 426
 427	reinit_completion(&dspi->dma->cmd_rx_complete);
 428	reinit_completion(&dspi->dma->cmd_tx_complete);
 429
 430	dma_async_issue_pending(dma->chan_rx);
 431	dma_async_issue_pending(dma->chan_tx);
 432
 433	if (spi_controller_is_target(dspi->ctlr)) {
 434		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 435		return 0;
 436	}
 437
 438	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 439						DMA_COMPLETION_TIMEOUT);
 440	if (time_left == 0) {
 441		dev_err(dev, "DMA tx timeout\n");
 442		dmaengine_terminate_all(dma->chan_tx);
 443		dmaengine_terminate_all(dma->chan_rx);
 444		return -ETIMEDOUT;
 445	}
 446
 447	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 448						DMA_COMPLETION_TIMEOUT);
 449	if (time_left == 0) {
 450		dev_err(dev, "DMA rx timeout\n");
 451		dmaengine_terminate_all(dma->chan_tx);
 452		dmaengine_terminate_all(dma->chan_rx);
 453		return -ETIMEDOUT;
 454	}
 455
 456	return 0;
 457}
 458
 459static void dspi_setup_accel(struct fsl_dspi *dspi);
 460
 461static int dspi_dma_xfer(struct fsl_dspi *dspi)
 462{
 463	struct spi_message *message = dspi->cur_msg;
 464	struct device *dev = &dspi->pdev->dev;
 
 
 
 465	int ret = 0;
 466
 467	/*
 468	 * dspi->len gets decremented by dspi_pop_tx_pushr in
 469	 * dspi_next_xfer_dma_submit
 470	 */
 471	while (dspi->len) {
 472		/* Figure out operational bits-per-word for this chunk */
 473		dspi_setup_accel(dspi);
 474
 475		dspi->words_in_flight = dspi->len / dspi->oper_word_size;
 476		if (dspi->words_in_flight > dspi->devtype_data->fifo_size)
 477			dspi->words_in_flight = dspi->devtype_data->fifo_size;
 478
 479		message->actual_length += dspi->words_in_flight *
 480					  dspi->oper_word_size;
 481
 482		ret = dspi_next_xfer_dma_submit(dspi);
 483		if (ret) {
 484			dev_err(dev, "DMA transfer failed\n");
 485			break;
 
 
 
 
 
 486		}
 487	}
 488
 
 489	return ret;
 490}
 491
 492static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 493{
 494	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 495	struct device *dev = &dspi->pdev->dev;
 496	struct dma_slave_config cfg;
 497	struct fsl_dspi_dma *dma;
 
 
 498	int ret;
 499
 500	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 501	if (!dma)
 502		return -ENOMEM;
 503
 504	dma->chan_rx = dma_request_chan(dev, "rx");
 505	if (IS_ERR(dma->chan_rx)) {
 506		return dev_err_probe(dev, PTR_ERR(dma->chan_rx),
 507			"rx dma channel not available\n");
 
 508	}
 509
 510	dma->chan_tx = dma_request_chan(dev, "tx");
 511	if (IS_ERR(dma->chan_tx)) {
 512		ret = PTR_ERR(dma->chan_tx);
 513		dev_err_probe(dev, ret, "tx dma channel not available\n");
 514		goto err_tx_channel;
 515	}
 516
 517	dma->tx_dma_buf = dma_alloc_coherent(dma->chan_tx->device->dev,
 518					     dma_bufsize, &dma->tx_dma_phys,
 519					     GFP_KERNEL);
 520	if (!dma->tx_dma_buf) {
 521		ret = -ENOMEM;
 522		goto err_tx_dma_buf;
 523	}
 524
 525	dma->rx_dma_buf = dma_alloc_coherent(dma->chan_rx->device->dev,
 526					     dma_bufsize, &dma->rx_dma_phys,
 527					     GFP_KERNEL);
 528	if (!dma->rx_dma_buf) {
 529		ret = -ENOMEM;
 530		goto err_rx_dma_buf;
 531	}
 532
 533	memset(&cfg, 0, sizeof(cfg));
 534	cfg.src_addr = phy_addr + SPI_POPR;
 535	cfg.dst_addr = phy_addr + SPI_PUSHR;
 536	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 537	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 538	cfg.src_maxburst = 1;
 539	cfg.dst_maxburst = 1;
 540
 541	cfg.direction = DMA_DEV_TO_MEM;
 542	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 543	if (ret) {
 544		dev_err(dev, "can't configure rx dma channel\n");
 545		ret = -EINVAL;
 546		goto err_slave_config;
 547	}
 548
 549	cfg.direction = DMA_MEM_TO_DEV;
 550	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 551	if (ret) {
 552		dev_err(dev, "can't configure tx dma channel\n");
 553		ret = -EINVAL;
 554		goto err_slave_config;
 555	}
 556
 557	dspi->dma = dma;
 558	init_completion(&dma->cmd_tx_complete);
 559	init_completion(&dma->cmd_rx_complete);
 560
 561	return 0;
 562
 563err_slave_config:
 564	dma_free_coherent(dma->chan_rx->device->dev,
 565			  dma_bufsize, dma->rx_dma_buf, dma->rx_dma_phys);
 566err_rx_dma_buf:
 567	dma_free_coherent(dma->chan_tx->device->dev,
 568			  dma_bufsize, dma->tx_dma_buf, dma->tx_dma_phys);
 569err_tx_dma_buf:
 570	dma_release_channel(dma->chan_tx);
 571err_tx_channel:
 572	dma_release_channel(dma->chan_rx);
 573
 574	devm_kfree(dev, dma);
 575	dspi->dma = NULL;
 576
 577	return ret;
 578}
 579
 580static void dspi_release_dma(struct fsl_dspi *dspi)
 581{
 582	int dma_bufsize = dspi->devtype_data->fifo_size * 2;
 583	struct fsl_dspi_dma *dma = dspi->dma;
 
 584
 585	if (!dma)
 586		return;
 587
 588	if (dma->chan_tx) {
 589		dma_free_coherent(dma->chan_tx->device->dev, dma_bufsize,
 590				  dma->tx_dma_buf, dma->tx_dma_phys);
 591		dma_release_channel(dma->chan_tx);
 592	}
 593
 594	if (dma->chan_rx) {
 595		dma_free_coherent(dma->chan_rx->device->dev, dma_bufsize,
 596				  dma->rx_dma_buf, dma->rx_dma_phys);
 597		dma_release_channel(dma->chan_rx);
 
 598	}
 599}
 600
 601static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 602			   unsigned long clkrate)
 603{
 604	/* Valid baud rate pre-scaler values */
 605	int pbr_tbl[4] = {2, 3, 5, 7};
 606	int brs[16] = {	2,	4,	6,	8,
 607			16,	32,	64,	128,
 608			256,	512,	1024,	2048,
 609			4096,	8192,	16384,	32768 };
 610	int scale_needed, scale, minscale = INT_MAX;
 611	int i, j;
 612
 613	scale_needed = clkrate / speed_hz;
 614	if (clkrate % speed_hz)
 615		scale_needed++;
 616
 617	for (i = 0; i < ARRAY_SIZE(brs); i++)
 618		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 619			scale = brs[i] * pbr_tbl[j];
 620			if (scale >= scale_needed) {
 621				if (scale < minscale) {
 622					minscale = scale;
 623					*br = i;
 624					*pbr = j;
 625				}
 626				break;
 627			}
 628		}
 629
 630	if (minscale == INT_MAX) {
 631		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 632			speed_hz, clkrate);
 633		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 634		*br =  ARRAY_SIZE(brs) - 1;
 635	}
 636}
 637
 638static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 639			   unsigned long clkrate)
 640{
 641	int scale_needed, scale, minscale = INT_MAX;
 642	int pscale_tbl[4] = {1, 3, 5, 7};
 643	u32 remainder;
 644	int i, j;
 
 645
 646	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 647				   &remainder);
 648	if (remainder)
 649		scale_needed++;
 650
 651	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 652		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 653			scale = pscale_tbl[i] * (2 << j);
 654			if (scale >= scale_needed) {
 655				if (scale < minscale) {
 656					minscale = scale;
 657					*psc = i;
 658					*sc = j;
 659				}
 660				break;
 661			}
 662		}
 663
 664	if (minscale == INT_MAX) {
 665		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 666			delay_ns, clkrate);
 667		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 668		*sc = SPI_CTAR_SCALE_BITS;
 669	}
 670}
 671
 672static void dspi_pushr_cmd_write(struct fsl_dspi *dspi, u16 cmd)
 673{
 674	/*
 675	 * The only time when the PCS doesn't need continuation after this word
 676	 * is when it's last. We need to look ahead, because we actually call
 677	 * dspi_pop_tx (the function that decrements dspi->len) _after_
 678	 * dspi_pushr_cmd_write with XSPI mode. As for how much in advance? One
 679	 * word is enough. If there's more to transmit than that,
 680	 * dspi_xspi_write will know to split the FIFO writes in 2, and
 681	 * generate a new PUSHR command with the final word that will have PCS
 682	 * deasserted (not continued) here.
 683	 */
 684	if (dspi->len > dspi->oper_word_size)
 685		cmd |= SPI_PUSHR_CMD_CONT;
 686	regmap_write(dspi->regmap_pushr, dspi->pushr_cmd, cmd);
 687}
 688
 689static void dspi_pushr_txdata_write(struct fsl_dspi *dspi, u16 txdata)
 690{
 691	regmap_write(dspi->regmap_pushr, dspi->pushr_tx, txdata);
 692}
 693
 694static void dspi_xspi_fifo_write(struct fsl_dspi *dspi, int num_words)
 695{
 696	int num_bytes = num_words * dspi->oper_word_size;
 697	u16 tx_cmd = dspi->tx_cmd;
 698
 699	/*
 700	 * If the PCS needs to de-assert (i.e. we're at the end of the buffer
 701	 * and cs_change does not want the PCS to stay on), then we need a new
 702	 * PUSHR command, since this one (for the body of the buffer)
 703	 * necessarily has the CONT bit set.
 704	 * So send one word less during this go, to force a split and a command
 705	 * with a single word next time, when CONT will be unset.
 706	 */
 707	if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT) && num_bytes == dspi->len)
 708		tx_cmd |= SPI_PUSHR_CMD_EOQ;
 709
 710	/* Update CTARE */
 711	regmap_write(dspi->regmap, SPI_CTARE(0),
 712		     SPI_FRAME_EBITS(dspi->oper_bits_per_word) |
 713		     SPI_CTARE_DTCP(num_words));
 714
 715	/*
 716	 * Write the CMD FIFO entry first, and then the two
 717	 * corresponding TX FIFO entries (or one...).
 718	 */
 719	dspi_pushr_cmd_write(dspi, tx_cmd);
 720
 721	/* Fill TX FIFO with as many transfers as possible */
 722	while (num_words--) {
 723		u32 data = dspi_pop_tx(dspi);
 724
 725		dspi_pushr_txdata_write(dspi, data & 0xFFFF);
 726		if (dspi->oper_bits_per_word > 16)
 727			dspi_pushr_txdata_write(dspi, data >> 16);
 728	}
 729}
 730
 731static u32 dspi_popr_read(struct fsl_dspi *dspi)
 732{
 733	u32 rxdata = 0;
 
 734
 735	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 736	return rxdata;
 737}
 738
 739static void dspi_fifo_read(struct fsl_dspi *dspi)
 740{
 741	int num_fifo_entries = dspi->words_in_flight;
 742
 743	/* Read one FIFO entry and push to rx buffer */
 744	while (num_fifo_entries--)
 745		dspi_push_rx(dspi, dspi_popr_read(dspi));
 746}
 747
 748static void dspi_setup_accel(struct fsl_dspi *dspi)
 749{
 750	struct spi_transfer *xfer = dspi->cur_transfer;
 751	bool odd = !!(dspi->len & 1);
 
 752
 753	/* No accel for frames not multiple of 8 bits at the moment */
 754	if (xfer->bits_per_word % 8)
 755		goto no_accel;
 756
 757	if (!odd && dspi->len <= dspi->devtype_data->fifo_size * 2) {
 758		dspi->oper_bits_per_word = 16;
 759	} else if (odd && dspi->len <= dspi->devtype_data->fifo_size) {
 760		dspi->oper_bits_per_word = 8;
 761	} else {
 762		/* Start off with maximum supported by hardware */
 763		if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
 764			dspi->oper_bits_per_word = 32;
 765		else
 766			dspi->oper_bits_per_word = 16;
 767
 768		/*
 769		 * And go down only if the buffer can't be sent with
 770		 * words this big
 
 771		 */
 772		do {
 773			if (dspi->len >= DIV_ROUND_UP(dspi->oper_bits_per_word, 8))
 774				break;
 775
 776			dspi->oper_bits_per_word /= 2;
 777		} while (dspi->oper_bits_per_word > 8);
 778	}
 779
 780	if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 32) {
 781		dspi->dev_to_host = dspi_8on32_dev_to_host;
 782		dspi->host_to_dev = dspi_8on32_host_to_dev;
 783	} else if (xfer->bits_per_word == 8 && dspi->oper_bits_per_word == 16) {
 784		dspi->dev_to_host = dspi_8on16_dev_to_host;
 785		dspi->host_to_dev = dspi_8on16_host_to_dev;
 786	} else if (xfer->bits_per_word == 16 && dspi->oper_bits_per_word == 32) {
 787		dspi->dev_to_host = dspi_16on32_dev_to_host;
 788		dspi->host_to_dev = dspi_16on32_host_to_dev;
 789	} else {
 790no_accel:
 791		dspi->dev_to_host = dspi_native_dev_to_host;
 792		dspi->host_to_dev = dspi_native_host_to_dev;
 793		dspi->oper_bits_per_word = xfer->bits_per_word;
 794	}
 795
 796	dspi->oper_word_size = DIV_ROUND_UP(dspi->oper_bits_per_word, 8);
 797
 798	/*
 799	 * Update CTAR here (code is common for XSPI and DMA modes).
 800	 * We will update CTARE in the portion specific to XSPI, when we
 801	 * also know the preload value (DTCP).
 802	 */
 803	regmap_write(dspi->regmap, SPI_CTAR(0),
 804		     dspi->cur_chip->ctar_val |
 805		     SPI_FRAME_BITS(dspi->oper_bits_per_word));
 806}
 807
 808static void dspi_fifo_write(struct fsl_dspi *dspi)
 809{
 810	int num_fifo_entries = dspi->devtype_data->fifo_size;
 811	struct spi_transfer *xfer = dspi->cur_transfer;
 812	struct spi_message *msg = dspi->cur_msg;
 813	int num_words, num_bytes;
 814
 815	dspi_setup_accel(dspi);
 816
 817	/* In XSPI mode each 32-bit word occupies 2 TX FIFO entries */
 818	if (dspi->oper_word_size == 4)
 819		num_fifo_entries /= 2;
 820
 821	/*
 822	 * Integer division intentionally trims off odd (or non-multiple of 4)
 823	 * numbers of bytes at the end of the buffer, which will be sent next
 824	 * time using a smaller oper_word_size.
 825	 */
 826	num_words = dspi->len / dspi->oper_word_size;
 827	if (num_words > num_fifo_entries)
 828		num_words = num_fifo_entries;
 829
 830	/* Update total number of bytes that were transferred */
 831	num_bytes = num_words * dspi->oper_word_size;
 832	msg->actual_length += num_bytes;
 833	dspi->progress += num_bytes / DIV_ROUND_UP(xfer->bits_per_word, 8);
 834
 835	/*
 836	 * Update shared variable for use in the next interrupt (both in
 837	 * dspi_fifo_read and in dspi_fifo_write).
 838	 */
 839	dspi->words_in_flight = num_words;
 
 
 840
 841	spi_take_timestamp_pre(dspi->ctlr, xfer, dspi->progress, !dspi->irq);
 842
 843	dspi_xspi_fifo_write(dspi, num_words);
 844	/*
 845	 * Everything after this point is in a potential race with the next
 846	 * interrupt, so we must never use dspi->words_in_flight again since it
 847	 * might already be modified by the next dspi_fifo_write.
 848	 */
 849
 850	spi_take_timestamp_post(dspi->ctlr, dspi->cur_transfer,
 851				dspi->progress, !dspi->irq);
 852}
 853
 854static int dspi_rxtx(struct fsl_dspi *dspi)
 855{
 856	dspi_fifo_read(dspi);
 
 857
 858	if (!dspi->len)
 859		/* Success! */
 860		return 0;
 
 861
 862	dspi_fifo_write(dspi);
 
 
 863
 864	return -EINPROGRESS;
 865}
 866
 867static int dspi_poll(struct fsl_dspi *dspi)
 868{
 869	int tries = 1000;
 870	u32 spi_sr;
 871
 872	do {
 873		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 874		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 875
 876		if (spi_sr & SPI_SR_CMDTCF)
 877			break;
 878	} while (--tries);
 879
 880	if (!tries)
 881		return -ETIMEDOUT;
 882
 883	return dspi_rxtx(dspi);
 884}
 
 
 
 
 885
 886static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 887{
 888	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 889	u32 spi_sr;
 890
 891	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 892	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 893
 894	if (!(spi_sr & SPI_SR_CMDTCF))
 895		return IRQ_NONE;
 896
 897	if (dspi_rxtx(dspi) == 0)
 898		complete(&dspi->xfer_done);
 899
 900	return IRQ_HANDLED;
 901}
 902
 903static void dspi_assert_cs(struct spi_device *spi, bool *cs)
 904{
 905	if (!spi_get_csgpiod(spi, 0) || *cs)
 906		return;
 907
 908	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
 909	*cs = true;
 910}
 911
 912static void dspi_deassert_cs(struct spi_device *spi, bool *cs)
 913{
 914	if (!spi_get_csgpiod(spi, 0) || !*cs)
 915		return;
 916
 917	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
 918	*cs = false;
 919}
 920
 921static int dspi_transfer_one_message(struct spi_controller *ctlr,
 922				     struct spi_message *message)
 923{
 924	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 925	struct spi_device *spi = message->spi;
 926	struct spi_transfer *transfer;
 927	bool cs = false;
 928	int status = 0;
 
 
 
 
 
 929
 930	message->actual_length = 0;
 931
 932	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 933		dspi->cur_transfer = transfer;
 934		dspi->cur_msg = message;
 935		dspi->cur_chip = spi_get_ctldata(spi);
 936
 937		dspi_assert_cs(spi, &cs);
 938
 939		/* Prepare command word for CMD FIFO */
 940		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0);
 941		if (!spi_get_csgpiod(spi, 0))
 942			dspi->tx_cmd |= SPI_PUSHR_CMD_PCS(spi_get_chipselect(spi, 0));
 943
 944		if (list_is_last(&dspi->cur_transfer->transfer_list,
 945				 &dspi->cur_msg->transfers)) {
 946			/* Leave PCS activated after last transfer when
 947			 * cs_change is set.
 948			 */
 949			if (transfer->cs_change)
 950				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 951		} else {
 952			/* Keep PCS active between transfers in same message
 953			 * when cs_change is not set, and de-activate PCS
 954			 * between transfers in the same message when
 955			 * cs_change is set.
 956			 */
 957			if (!transfer->cs_change)
 958				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 959		}
 960
 961		dspi->tx = transfer->tx_buf;
 962		dspi->rx = transfer->rx_buf;
 
 963		dspi->len = transfer->len;
 964		dspi->progress = 0;
 965
 966		regmap_update_bits(dspi->regmap, SPI_MCR,
 967				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 968				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 969
 970		spi_take_timestamp_pre(dspi->ctlr, dspi->cur_transfer,
 971				       dspi->progress, !dspi->irq);
 972
 973		if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974			status = dspi_dma_xfer(dspi);
 975		} else {
 976			dspi_fifo_write(dspi);
 977
 978			if (dspi->irq) {
 979				wait_for_completion(&dspi->xfer_done);
 980				reinit_completion(&dspi->xfer_done);
 981			} else {
 982				do {
 983					status = dspi_poll(dspi);
 984				} while (status == -EINPROGRESS);
 985			}
 986		}
 987		if (status)
 988			break;
 
 
 
 
 
 
 989
 990		spi_transfer_delay_exec(transfer);
 
 
 
 
 
 
 991
 992		if (!(dspi->tx_cmd & SPI_PUSHR_CMD_CONT))
 993			dspi_deassert_cs(spi, &cs);
 994	}
 995
 
 996	message->status = status;
 997	spi_finalize_current_message(ctlr);
 998
 999	return status;
1000}
1001
1002static int dspi_setup(struct spi_device *spi)
1003{
1004	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
1005	u32 period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->max_speed_hz);
1006	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
1007	u32 quarter_period_ns = DIV_ROUND_UP(period_ns, 4);
1008	u32 cs_sck_delay = 0, sck_cs_delay = 0;
1009	struct fsl_dspi_platform_data *pdata;
1010	unsigned char pasc = 0, asc = 0;
1011	struct chip_data *chip;
 
 
 
 
 
1012	unsigned long clkrate;
1013	bool cs = true;
 
 
 
 
 
 
1014
1015	/* Only alloc on first setup */
1016	chip = spi_get_ctldata(spi);
1017	if (chip == NULL) {
1018		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1019		if (!chip)
1020			return -ENOMEM;
1021	}
1022
1023	pdata = dev_get_platdata(&dspi->pdev->dev);
1024
1025	if (!pdata) {
1026		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
1027				     &cs_sck_delay);
1028
1029		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
1030				     &sck_cs_delay);
1031	} else {
1032		cs_sck_delay = pdata->cs_sck_delay;
1033		sck_cs_delay = pdata->sck_cs_delay;
1034	}
1035
1036	/* Since tCSC and tASC apply to continuous transfers too, avoid SCK
1037	 * glitches of half a cycle by never allowing tCSC + tASC to go below
1038	 * half a SCK period.
1039	 */
1040	if (cs_sck_delay < quarter_period_ns)
1041		cs_sck_delay = quarter_period_ns;
1042	if (sck_cs_delay < quarter_period_ns)
1043		sck_cs_delay = quarter_period_ns;
1044
1045	dev_dbg(&spi->dev,
1046		"DSPI controller timing params: CS-to-SCK delay %u ns, SCK-to-CS delay %u ns\n",
1047		cs_sck_delay, sck_cs_delay);
1048
1049	clkrate = clk_get_rate(dspi->clk);
1050	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
1051
1052	/* Set PCS to SCK delay scale values */
1053	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
1054
1055	/* Set After SCK delay scale values */
1056	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
1057
1058	chip->ctar_val = 0;
1059	if (spi->mode & SPI_CPOL)
1060		chip->ctar_val |= SPI_CTAR_CPOL;
1061	if (spi->mode & SPI_CPHA)
1062		chip->ctar_val |= SPI_CTAR_CPHA;
1063
1064	if (!spi_controller_is_target(dspi->ctlr)) {
1065		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
1066				  SPI_CTAR_CSSCK(cssck) |
1067				  SPI_CTAR_PASC(pasc) |
1068				  SPI_CTAR_ASC(asc) |
1069				  SPI_CTAR_PBR(pbr) |
1070				  SPI_CTAR_BR(br);
1071
1072		if (spi->mode & SPI_LSB_FIRST)
1073			chip->ctar_val |= SPI_CTAR_LSBFE;
1074	}
1075
1076	gpiod_direction_output(spi_get_csgpiod(spi, 0), false);
1077	dspi_deassert_cs(spi, &cs);
1078
1079	spi_set_ctldata(spi, chip);
1080
1081	return 0;
1082}
1083
1084static void dspi_cleanup(struct spi_device *spi)
1085{
1086	struct chip_data *chip = spi_get_ctldata(spi);
1087
1088	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
1089		spi->controller->bus_num, spi_get_chipselect(spi, 0));
1090
1091	kfree(chip);
1092}
1093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094static const struct of_device_id fsl_dspi_dt_ids[] = {
1095	{
1096		.compatible = "fsl,vf610-dspi",
1097		.data = &devtype_data[VF610],
1098	}, {
1099		.compatible = "fsl,ls1021a-v1.0-dspi",
1100		.data = &devtype_data[LS1021A],
1101	}, {
1102		.compatible = "fsl,ls1012a-dspi",
1103		.data = &devtype_data[LS1012A],
1104	}, {
1105		.compatible = "fsl,ls1028a-dspi",
1106		.data = &devtype_data[LS1028A],
1107	}, {
1108		.compatible = "fsl,ls1043a-dspi",
1109		.data = &devtype_data[LS1043A],
1110	}, {
1111		.compatible = "fsl,ls1046a-dspi",
1112		.data = &devtype_data[LS1046A],
1113	}, {
1114		.compatible = "fsl,ls2080a-dspi",
1115		.data = &devtype_data[LS2080A],
1116	}, {
1117		.compatible = "fsl,ls2085a-dspi",
1118		.data = &devtype_data[LS2085A],
1119	}, {
1120		.compatible = "fsl,lx2160a-dspi",
1121		.data = &devtype_data[LX2160A],
1122	},
1123	{ /* sentinel */ }
1124};
1125MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
1126
1127#ifdef CONFIG_PM_SLEEP
1128static int dspi_suspend(struct device *dev)
1129{
1130	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 
1131
1132	if (dspi->irq)
1133		disable_irq(dspi->irq);
1134	spi_controller_suspend(dspi->ctlr);
1135	clk_disable_unprepare(dspi->clk);
1136
1137	pinctrl_pm_select_sleep_state(dev);
1138
1139	return 0;
1140}
1141
1142static int dspi_resume(struct device *dev)
1143{
1144	struct fsl_dspi *dspi = dev_get_drvdata(dev);
 
1145	int ret;
1146
1147	pinctrl_pm_select_default_state(dev);
1148
1149	ret = clk_prepare_enable(dspi->clk);
1150	if (ret)
1151		return ret;
1152	spi_controller_resume(dspi->ctlr);
1153	if (dspi->irq)
1154		enable_irq(dspi->irq);
1155
1156	return 0;
1157}
1158#endif /* CONFIG_PM_SLEEP */
1159
1160static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
1161
1162static const struct regmap_range dspi_volatile_ranges[] = {
1163	regmap_reg_range(SPI_MCR, SPI_TCR),
1164	regmap_reg_range(SPI_SR, SPI_SR),
1165	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1166};
1167
1168static const struct regmap_access_table dspi_volatile_table = {
1169	.yes_ranges	= dspi_volatile_ranges,
1170	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
1171};
1172
1173static const struct regmap_config dspi_regmap_config = {
1174	.reg_bits	= 32,
1175	.val_bits	= 32,
1176	.reg_stride	= 4,
1177	.max_register	= 0x88,
1178	.volatile_table	= &dspi_volatile_table,
1179};
1180
1181static const struct regmap_range dspi_xspi_volatile_ranges[] = {
1182	regmap_reg_range(SPI_MCR, SPI_TCR),
1183	regmap_reg_range(SPI_SR, SPI_SR),
1184	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
1185	regmap_reg_range(SPI_SREX, SPI_SREX),
1186};
1187
1188static const struct regmap_access_table dspi_xspi_volatile_table = {
1189	.yes_ranges	= dspi_xspi_volatile_ranges,
1190	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
1191};
1192
1193static const struct regmap_config dspi_xspi_regmap_config[] = {
1194	{
1195		.reg_bits	= 32,
1196		.val_bits	= 32,
1197		.reg_stride	= 4,
1198		.max_register	= 0x13c,
1199		.volatile_table	= &dspi_xspi_volatile_table,
1200	},
1201	{
1202		.name		= "pushr",
1203		.reg_bits	= 16,
1204		.val_bits	= 16,
1205		.reg_stride	= 2,
1206		.max_register	= 0x2,
1207	},
1208};
1209
1210static int dspi_init(struct fsl_dspi *dspi)
1211{
1212	unsigned int mcr;
1213
1214	/* Set idle states for all chip select signals to high */
1215	mcr = SPI_MCR_PCSIS(GENMASK(dspi->ctlr->max_native_cs - 1, 0));
1216
1217	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1218		mcr |= SPI_MCR_XSPI;
1219	if (!spi_controller_is_target(dspi->ctlr))
1220		mcr |= SPI_MCR_HOST;
1221
1222	regmap_write(dspi->regmap, SPI_MCR, mcr);
1223	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1224
1225	switch (dspi->devtype_data->trans_mode) {
1226	case DSPI_XSPI_MODE:
1227		regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_CMDTCFE);
1228		break;
1229	case DSPI_DMA_MODE:
1230		regmap_write(dspi->regmap, SPI_RSER,
1231			     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
1232			     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
1233		break;
1234	default:
1235		dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
1236			dspi->devtype_data->trans_mode);
1237		return -EINVAL;
1238	}
1239
1240	return 0;
1241}
1242
1243static int dspi_target_abort(struct spi_controller *host)
1244{
1245	struct fsl_dspi *dspi = spi_controller_get_devdata(host);
1246
1247	/*
1248	 * Terminate all pending DMA transactions for the SPI working
1249	 * in TARGET mode.
1250	 */
1251	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1252		dmaengine_terminate_sync(dspi->dma->chan_rx);
1253		dmaengine_terminate_sync(dspi->dma->chan_tx);
1254	}
1255
1256	/* Clear the internal DSPI RX and TX FIFO buffers */
1257	regmap_update_bits(dspi->regmap, SPI_MCR,
1258			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
1259			   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
1260
1261	return 0;
1262}
1263
1264static int dspi_probe(struct platform_device *pdev)
1265{
1266	struct device_node *np = pdev->dev.of_node;
1267	const struct regmap_config *regmap_config;
1268	struct fsl_dspi_platform_data *pdata;
1269	struct spi_controller *ctlr;
1270	int ret, cs_num, bus_num = -1;
1271	struct fsl_dspi *dspi;
1272	struct resource *res;
1273	void __iomem *base;
1274	bool big_endian;
1275
1276	dspi = devm_kzalloc(&pdev->dev, sizeof(*dspi), GFP_KERNEL);
1277	if (!dspi)
1278		return -ENOMEM;
1279
1280	ctlr = spi_alloc_host(&pdev->dev, 0);
1281	if (!ctlr)
1282		return -ENOMEM;
1283
1284	spi_controller_set_devdata(ctlr, dspi);
1285	platform_set_drvdata(pdev, dspi);
1286
1287	dspi->pdev = pdev;
1288	dspi->ctlr = ctlr;
1289
1290	ctlr->setup = dspi_setup;
1291	ctlr->transfer_one_message = dspi_transfer_one_message;
1292	ctlr->dev.of_node = pdev->dev.of_node;
1293
1294	ctlr->cleanup = dspi_cleanup;
1295	ctlr->target_abort = dspi_target_abort;
1296	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1297	ctlr->use_gpio_descriptors = true;
 
1298
1299	pdata = dev_get_platdata(&pdev->dev);
1300	if (pdata) {
1301		ctlr->num_chipselect = ctlr->max_native_cs = pdata->cs_num;
1302		ctlr->bus_num = pdata->bus_num;
1303
1304		/* Only Coldfire uses platform data */
1305		dspi->devtype_data = &devtype_data[MCF5441X];
1306		big_endian = true;
1307	} else {
1308
1309		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1310		if (ret < 0) {
1311			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1312			goto out_ctlr_put;
1313		}
1314		ctlr->num_chipselect = ctlr->max_native_cs = cs_num;
1315
1316		of_property_read_u32(np, "bus-num", &bus_num);
1317		ctlr->bus_num = bus_num;
1318
1319		if (of_property_read_bool(np, "spi-slave"))
1320			ctlr->target = true;
 
1321
1322		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1323		if (!dspi->devtype_data) {
1324			dev_err(&pdev->dev, "can't get devtype_data\n");
1325			ret = -EFAULT;
1326			goto out_ctlr_put;
1327		}
1328
1329		big_endian = of_device_is_big_endian(np);
1330	}
1331	if (big_endian) {
1332		dspi->pushr_cmd = 0;
1333		dspi->pushr_tx = 2;
1334	} else {
1335		dspi->pushr_cmd = 2;
1336		dspi->pushr_tx = 0;
1337	}
1338
1339	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1340		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1341	else
1342		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1343
1344	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
1345	if (IS_ERR(base)) {
1346		ret = PTR_ERR(base);
1347		goto out_ctlr_put;
1348	}
1349
1350	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE)
1351		regmap_config = &dspi_xspi_regmap_config[0];
1352	else
1353		regmap_config = &dspi_regmap_config;
1354	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1355	if (IS_ERR(dspi->regmap)) {
1356		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1357				PTR_ERR(dspi->regmap));
1358		ret = PTR_ERR(dspi->regmap);
1359		goto out_ctlr_put;
1360	}
1361
1362	if (dspi->devtype_data->trans_mode == DSPI_XSPI_MODE) {
1363		dspi->regmap_pushr = devm_regmap_init_mmio(
1364			&pdev->dev, base + SPI_PUSHR,
1365			&dspi_xspi_regmap_config[1]);
1366		if (IS_ERR(dspi->regmap_pushr)) {
1367			dev_err(&pdev->dev,
1368				"failed to init pushr regmap: %ld\n",
1369				PTR_ERR(dspi->regmap_pushr));
1370			ret = PTR_ERR(dspi->regmap_pushr);
1371			goto out_ctlr_put;
1372		}
1373	}
1374
1375	dspi->clk = devm_clk_get_enabled(&pdev->dev, "dspi");
1376	if (IS_ERR(dspi->clk)) {
1377		ret = PTR_ERR(dspi->clk);
1378		dev_err(&pdev->dev, "unable to get clock\n");
1379		goto out_ctlr_put;
1380	}
1381
1382	ret = dspi_init(dspi);
1383	if (ret)
1384		goto out_ctlr_put;
1385
1386	dspi->irq = platform_get_irq(pdev, 0);
1387	if (dspi->irq <= 0) {
1388		dev_info(&pdev->dev,
1389			 "can't get platform irq, using poll mode\n");
1390		dspi->irq = 0;
1391		goto poll_mode;
1392	}
1393
1394	init_completion(&dspi->xfer_done);
1395
1396	ret = request_threaded_irq(dspi->irq, dspi_interrupt, NULL,
1397				   IRQF_SHARED, pdev->name, dspi);
1398	if (ret < 0) {
1399		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1400		goto out_ctlr_put;
1401	}
1402
1403poll_mode:
 
 
 
 
 
 
 
 
1404
1405	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1406		ret = dspi_request_dma(dspi, res->start);
1407		if (ret < 0) {
1408			dev_err(&pdev->dev, "can't get dma channels\n");
1409			goto out_free_irq;
1410		}
1411	}
1412
1413	ctlr->max_speed_hz =
1414		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1415
1416	if (dspi->devtype_data->trans_mode != DSPI_DMA_MODE)
1417		ctlr->ptp_sts_supported = true;
1418
1419	ret = spi_register_controller(ctlr);
1420	if (ret != 0) {
1421		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1422		goto out_release_dma;
1423	}
1424
1425	return ret;
1426
1427out_release_dma:
1428	dspi_release_dma(dspi);
1429out_free_irq:
1430	if (dspi->irq)
1431		free_irq(dspi->irq, dspi);
1432out_ctlr_put:
1433	spi_controller_put(ctlr);
1434
1435	return ret;
1436}
1437
1438static void dspi_remove(struct platform_device *pdev)
1439{
1440	struct fsl_dspi *dspi = platform_get_drvdata(pdev);
 
1441
1442	/* Disconnect from the SPI framework */
1443	spi_unregister_controller(dspi->ctlr);
1444
1445	/* Disable RX and TX */
1446	regmap_update_bits(dspi->regmap, SPI_MCR,
1447			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
1448			   SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
1449
1450	/* Stop Running */
1451	regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
1452
1453	dspi_release_dma(dspi);
1454	if (dspi->irq)
1455		free_irq(dspi->irq, dspi);
1456}
1457
1458static void dspi_shutdown(struct platform_device *pdev)
1459{
1460	dspi_remove(pdev);
1461}
1462
1463static struct platform_driver fsl_dspi_driver = {
1464	.driver.name		= DRIVER_NAME,
1465	.driver.of_match_table	= fsl_dspi_dt_ids,
1466	.driver.owner		= THIS_MODULE,
1467	.driver.pm		= &dspi_pm,
1468	.probe			= dspi_probe,
1469	.remove_new		= dspi_remove,
1470	.shutdown		= dspi_shutdown,
1471};
1472module_platform_driver(fsl_dspi_driver);
1473
1474MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1475MODULE_LICENSE("GPL");
1476MODULE_ALIAS("platform:" DRIVER_NAME);
v4.17
   1/*
   2 * drivers/spi/spi-fsl-dspi.c
   3 *
   4 * Copyright 2013 Freescale Semiconductor, Inc.
   5 *
   6 * Freescale DSPI driver
   7 * This file contains a driver for the Freescale DSPI
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/dmaengine.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/err.h>
  21#include <linux/errno.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/math64.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/pinctrl/consumer.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/regmap.h>
  33#include <linux/sched.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-fsl-dspi.h>
  36#include <linux/spi/spi_bitbang.h>
  37#include <linux/time.h>
  38
  39#define DRIVER_NAME "fsl-dspi"
  40
  41#define TRAN_STATE_RX_VOID		0x01
  42#define TRAN_STATE_TX_VOID		0x02
  43#define TRAN_STATE_WORD_ODD_NUM	0x04
  44
  45#define DSPI_FIFO_SIZE			4
  46#define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
  47
  48#define SPI_MCR		0x00
  49#define SPI_MCR_MASTER		(1 << 31)
  50#define SPI_MCR_PCSIS		(0x3F << 16)
  51#define SPI_MCR_CLR_TXF	(1 << 11)
  52#define SPI_MCR_CLR_RXF	(1 << 10)
  53
  54#define SPI_TCR			0x08
  55#define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
  56
  57#define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
  58#define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
  59#define SPI_CTAR_CPOL(x)	((x) << 26)
  60#define SPI_CTAR_CPHA(x)	((x) << 25)
  61#define SPI_CTAR_LSBFE(x)	((x) << 24)
  62#define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
  63#define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
  64#define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
  65#define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
  66#define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
  67#define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
  68#define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
  69#define SPI_CTAR_BR(x)		((x) & 0x0000000f)
  70#define SPI_CTAR_SCALE_BITS	0xf
  71
  72#define SPI_CTAR0_SLAVE	0x0c
  73
  74#define SPI_SR			0x2c
  75#define SPI_SR_EOQF		0x10000000
  76#define SPI_SR_TCFQF		0x80000000
  77#define SPI_SR_CLEAR		0xdaad0000
  78
  79#define SPI_RSER_TFFFE		BIT(25)
  80#define SPI_RSER_TFFFD		BIT(24)
  81#define SPI_RSER_RFDFE		BIT(17)
  82#define SPI_RSER_RFDFD		BIT(16)
  83
  84#define SPI_RSER		0x30
  85#define SPI_RSER_EOQFE		0x10000000
  86#define SPI_RSER_TCFQE		0x80000000
  87
  88#define SPI_PUSHR		0x34
  89#define SPI_PUSHR_CONT		(1 << 31)
  90#define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
  91#define SPI_PUSHR_EOQ		(1 << 27)
  92#define SPI_PUSHR_CTCNT	(1 << 26)
  93#define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
  94#define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
  95
  96#define SPI_PUSHR_SLAVE	0x34
  97
  98#define SPI_POPR		0x38
  99#define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
 100
 101#define SPI_TXFR0		0x3c
 102#define SPI_TXFR1		0x40
 103#define SPI_TXFR2		0x44
 104#define SPI_TXFR3		0x48
 105#define SPI_RXFR0		0x7c
 106#define SPI_RXFR1		0x80
 107#define SPI_RXFR2		0x84
 108#define SPI_RXFR3		0x88
 109
 110#define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
 111#define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
 112#define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
 113#define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
 114
 115#define SPI_CS_INIT		0x01
 116#define SPI_CS_ASSERT		0x02
 117#define SPI_CS_DROP		0x04
 
 118
 119#define SPI_TCR_TCNT_MAX	0x10000
 120
 121#define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)
 
 
 
 122
 123struct chip_data {
 124	u32 mcr_val;
 125	u32 ctar_val;
 126	u16 void_write_data;
 127};
 128
 129enum dspi_trans_mode {
 130	DSPI_EOQ_MODE = 0,
 131	DSPI_TCFQ_MODE,
 132	DSPI_DMA_MODE,
 133};
 134
 135struct fsl_dspi_devtype_data {
 136	enum dspi_trans_mode trans_mode;
 137	u8 max_clock_factor;
 
 138};
 139
 140static const struct fsl_dspi_devtype_data vf610_data = {
 141	.trans_mode = DSPI_DMA_MODE,
 142	.max_clock_factor = 2,
 
 
 
 
 
 
 
 
 143};
 144
 145static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
 146	.trans_mode = DSPI_TCFQ_MODE,
 147	.max_clock_factor = 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148};
 149
 150static const struct fsl_dspi_devtype_data ls2085a_data = {
 151	.trans_mode = DSPI_TCFQ_MODE,
 152	.max_clock_factor = 8,
 
 
 
 
 
 
 
 
 
 153};
 154
 155static const struct fsl_dspi_devtype_data coldfire_data = {
 156	.trans_mode = DSPI_EOQ_MODE,
 157	.max_clock_factor = 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158};
 159
 160struct fsl_dspi_dma {
 161	/* Length of transfer in words of DSPI_FIFO_SIZE */
 162	u32 curr_xfer_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 163
 164	u32 *tx_dma_buf;
 165	struct dma_chan *chan_tx;
 166	dma_addr_t tx_dma_phys;
 167	struct completion cmd_tx_complete;
 168	struct dma_async_tx_descriptor *tx_desc;
 169
 170	u32 *rx_dma_buf;
 171	struct dma_chan *chan_rx;
 172	dma_addr_t rx_dma_phys;
 173	struct completion cmd_rx_complete;
 174	struct dma_async_tx_descriptor *rx_desc;
 175};
 176
 177struct fsl_dspi {
 178	struct spi_master	*master;
 179	struct platform_device	*pdev;
 180
 181	struct regmap		*regmap;
 182	int			irq;
 183	struct clk		*clk;
 184
 185	struct spi_transfer	*cur_transfer;
 186	struct spi_message	*cur_msg;
 187	struct chip_data	*cur_chip;
 188	size_t			len;
 189	void			*tx;
 190	void			*tx_end;
 191	void			*rx;
 192	void			*rx_end;
 193	char			dataflags;
 194	u8			cs;
 195	u16			void_write_data;
 196	u32			cs_change;
 197	const struct fsl_dspi_devtype_data *devtype_data;
 198
 199	wait_queue_head_t	waitq;
 200	u32			waitflags;
 
 
 201
 202	u32			spi_tcnt;
 203	struct fsl_dspi_dma	*dma;
 204};
 
 
 
 
 205
 206static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
 
 
 
 
 207
 208static inline int is_double_byte_mode(struct fsl_dspi *dspi)
 
 209{
 210	unsigned int val;
 
 
 
 211
 212	regmap_read(dspi->regmap, SPI_CTAR(0), &val);
 
 
 
 213
 214	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
 
 
 
 
 
 215}
 216
 217static void dspi_tx_dma_callback(void *arg)
 218{
 219	struct fsl_dspi *dspi = arg;
 220	struct fsl_dspi_dma *dma = dspi->dma;
 221
 222	complete(&dma->cmd_tx_complete);
 223}
 224
 225static void dspi_rx_dma_callback(void *arg)
 226{
 227	struct fsl_dspi *dspi = arg;
 228	struct fsl_dspi_dma *dma = dspi->dma;
 229	int rx_word;
 230	int i;
 231	u16 d;
 232
 233	rx_word = is_double_byte_mode(dspi);
 234
 235	if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
 236		for (i = 0; i < dma->curr_xfer_len; i++) {
 237			d = dspi->dma->rx_dma_buf[i];
 238			rx_word ? (*(u16 *)dspi->rx = d) :
 239						(*(u8 *)dspi->rx = d);
 240			dspi->rx += rx_word + 1;
 241		}
 242	}
 243
 244	complete(&dma->cmd_rx_complete);
 245}
 246
 247static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 248{
 
 249	struct fsl_dspi_dma *dma = dspi->dma;
 250	struct device *dev = &dspi->pdev->dev;
 251	int time_left;
 252	int tx_word;
 253	int i;
 254
 255	tx_word = is_double_byte_mode(dspi);
 256
 257	for (i = 0; i < dma->curr_xfer_len; i++) {
 258		dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
 259		if ((dspi->cs_change) && (!dspi->len))
 260			dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
 261	}
 262
 263	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 264					dma->tx_dma_phys,
 265					dma->curr_xfer_len *
 266					DMA_SLAVE_BUSWIDTH_4_BYTES,
 267					DMA_MEM_TO_DEV,
 268					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 269	if (!dma->tx_desc) {
 270		dev_err(dev, "Not able to get desc for DMA xfer\n");
 271		return -EIO;
 272	}
 273
 274	dma->tx_desc->callback = dspi_tx_dma_callback;
 275	dma->tx_desc->callback_param = dspi;
 276	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 277		dev_err(dev, "DMA submit failed\n");
 278		return -EINVAL;
 279	}
 280
 281	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 282					dma->rx_dma_phys,
 283					dma->curr_xfer_len *
 284					DMA_SLAVE_BUSWIDTH_4_BYTES,
 285					DMA_DEV_TO_MEM,
 286					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 287	if (!dma->rx_desc) {
 288		dev_err(dev, "Not able to get desc for DMA xfer\n");
 289		return -EIO;
 290	}
 291
 292	dma->rx_desc->callback = dspi_rx_dma_callback;
 293	dma->rx_desc->callback_param = dspi;
 294	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 295		dev_err(dev, "DMA submit failed\n");
 296		return -EINVAL;
 297	}
 298
 299	reinit_completion(&dspi->dma->cmd_rx_complete);
 300	reinit_completion(&dspi->dma->cmd_tx_complete);
 301
 302	dma_async_issue_pending(dma->chan_rx);
 303	dma_async_issue_pending(dma->chan_tx);
 304
 
 
 
 
 
 305	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 306					DMA_COMPLETION_TIMEOUT);
 307	if (time_left == 0) {
 308		dev_err(dev, "DMA tx timeout\n");
 309		dmaengine_terminate_all(dma->chan_tx);
 310		dmaengine_terminate_all(dma->chan_rx);
 311		return -ETIMEDOUT;
 312	}
 313
 314	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 315					DMA_COMPLETION_TIMEOUT);
 316	if (time_left == 0) {
 317		dev_err(dev, "DMA rx timeout\n");
 318		dmaengine_terminate_all(dma->chan_tx);
 319		dmaengine_terminate_all(dma->chan_rx);
 320		return -ETIMEDOUT;
 321	}
 322
 323	return 0;
 324}
 325
 
 
 326static int dspi_dma_xfer(struct fsl_dspi *dspi)
 327{
 328	struct fsl_dspi_dma *dma = dspi->dma;
 329	struct device *dev = &dspi->pdev->dev;
 330	int curr_remaining_bytes;
 331	int bytes_per_buffer;
 332	int word = 1;
 333	int ret = 0;
 334
 335	if (is_double_byte_mode(dspi))
 336		word = 2;
 337	curr_remaining_bytes = dspi->len;
 338	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
 339	while (curr_remaining_bytes) {
 340		/* Check if current transfer fits the DMA buffer */
 341		dma->curr_xfer_len = curr_remaining_bytes / word;
 342		if (dma->curr_xfer_len > bytes_per_buffer)
 343			dma->curr_xfer_len = bytes_per_buffer;
 
 
 
 
 
 344
 345		ret = dspi_next_xfer_dma_submit(dspi);
 346		if (ret) {
 347			dev_err(dev, "DMA transfer failed\n");
 348			goto exit;
 349
 350		} else {
 351			curr_remaining_bytes -= dma->curr_xfer_len * word;
 352			if (curr_remaining_bytes < 0)
 353				curr_remaining_bytes = 0;
 354		}
 355	}
 356
 357exit:
 358	return ret;
 359}
 360
 361static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 362{
 
 
 
 363	struct fsl_dspi_dma *dma;
 364	struct dma_slave_config cfg;
 365	struct device *dev = &dspi->pdev->dev;
 366	int ret;
 367
 368	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 369	if (!dma)
 370		return -ENOMEM;
 371
 372	dma->chan_rx = dma_request_slave_channel(dev, "rx");
 373	if (!dma->chan_rx) {
 374		dev_err(dev, "rx dma channel not available\n");
 375		ret = -ENODEV;
 376		return ret;
 377	}
 378
 379	dma->chan_tx = dma_request_slave_channel(dev, "tx");
 380	if (!dma->chan_tx) {
 381		dev_err(dev, "tx dma channel not available\n");
 382		ret = -ENODEV;
 383		goto err_tx_channel;
 384	}
 385
 386	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 387					&dma->tx_dma_phys, GFP_KERNEL);
 
 388	if (!dma->tx_dma_buf) {
 389		ret = -ENOMEM;
 390		goto err_tx_dma_buf;
 391	}
 392
 393	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 394					&dma->rx_dma_phys, GFP_KERNEL);
 
 395	if (!dma->rx_dma_buf) {
 396		ret = -ENOMEM;
 397		goto err_rx_dma_buf;
 398	}
 399
 
 400	cfg.src_addr = phy_addr + SPI_POPR;
 401	cfg.dst_addr = phy_addr + SPI_PUSHR;
 402	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 403	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 404	cfg.src_maxburst = 1;
 405	cfg.dst_maxburst = 1;
 406
 407	cfg.direction = DMA_DEV_TO_MEM;
 408	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 409	if (ret) {
 410		dev_err(dev, "can't configure rx dma channel\n");
 411		ret = -EINVAL;
 412		goto err_slave_config;
 413	}
 414
 415	cfg.direction = DMA_MEM_TO_DEV;
 416	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 417	if (ret) {
 418		dev_err(dev, "can't configure tx dma channel\n");
 419		ret = -EINVAL;
 420		goto err_slave_config;
 421	}
 422
 423	dspi->dma = dma;
 424	init_completion(&dma->cmd_tx_complete);
 425	init_completion(&dma->cmd_rx_complete);
 426
 427	return 0;
 428
 429err_slave_config:
 430	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 431			dma->rx_dma_buf, dma->rx_dma_phys);
 432err_rx_dma_buf:
 433	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 434			dma->tx_dma_buf, dma->tx_dma_phys);
 435err_tx_dma_buf:
 436	dma_release_channel(dma->chan_tx);
 437err_tx_channel:
 438	dma_release_channel(dma->chan_rx);
 439
 440	devm_kfree(dev, dma);
 441	dspi->dma = NULL;
 442
 443	return ret;
 444}
 445
 446static void dspi_release_dma(struct fsl_dspi *dspi)
 447{
 
 448	struct fsl_dspi_dma *dma = dspi->dma;
 449	struct device *dev = &dspi->pdev->dev;
 450
 451	if (dma) {
 452		if (dma->chan_tx) {
 453			dma_unmap_single(dev, dma->tx_dma_phys,
 454					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
 455			dma_release_channel(dma->chan_tx);
 456		}
 
 
 457
 458		if (dma->chan_rx) {
 459			dma_unmap_single(dev, dma->rx_dma_phys,
 460					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
 461			dma_release_channel(dma->chan_rx);
 462		}
 463	}
 464}
 465
 466static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 467		unsigned long clkrate)
 468{
 469	/* Valid baud rate pre-scaler values */
 470	int pbr_tbl[4] = {2, 3, 5, 7};
 471	int brs[16] = {	2,	4,	6,	8,
 472		16,	32,	64,	128,
 473		256,	512,	1024,	2048,
 474		4096,	8192,	16384,	32768 };
 475	int scale_needed, scale, minscale = INT_MAX;
 476	int i, j;
 477
 478	scale_needed = clkrate / speed_hz;
 479	if (clkrate % speed_hz)
 480		scale_needed++;
 481
 482	for (i = 0; i < ARRAY_SIZE(brs); i++)
 483		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 484			scale = brs[i] * pbr_tbl[j];
 485			if (scale >= scale_needed) {
 486				if (scale < minscale) {
 487					minscale = scale;
 488					*br = i;
 489					*pbr = j;
 490				}
 491				break;
 492			}
 493		}
 494
 495	if (minscale == INT_MAX) {
 496		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 497			speed_hz, clkrate);
 498		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 499		*br =  ARRAY_SIZE(brs) - 1;
 500	}
 501}
 502
 503static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 504		unsigned long clkrate)
 505{
 
 506	int pscale_tbl[4] = {1, 3, 5, 7};
 507	int scale_needed, scale, minscale = INT_MAX;
 508	int i, j;
 509	u32 remainder;
 510
 511	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 512			&remainder);
 513	if (remainder)
 514		scale_needed++;
 515
 516	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 517		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 518			scale = pscale_tbl[i] * (2 << j);
 519			if (scale >= scale_needed) {
 520				if (scale < minscale) {
 521					minscale = scale;
 522					*psc = i;
 523					*sc = j;
 524				}
 525				break;
 526			}
 527		}
 528
 529	if (minscale == INT_MAX) {
 530		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 531			delay_ns, clkrate);
 532		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 533		*sc = SPI_CTAR_SCALE_BITS;
 534	}
 535}
 536
 537static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538{
 539	u16 d16;
 
 540
 541	if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
 542		d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
 543	else
 544		d16 = dspi->void_write_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545
 546	dspi->tx += tx_word + 1;
 547	dspi->len -= tx_word + 1;
 
 548
 549	return	SPI_PUSHR_TXDATA(d16) |
 550		SPI_PUSHR_PCS(dspi->cs) |
 551		SPI_PUSHR_CTAS(0) |
 552		SPI_PUSHR_CONT;
 553}
 554
 555static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
 556{
 557	u16 d;
 558	unsigned int val;
 559
 560	regmap_read(dspi->regmap, SPI_POPR, &val);
 561	d = SPI_POPR_RXDATA(val);
 
 562
 563	if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
 564		rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
 
 565
 566	dspi->rx += rx_word + 1;
 
 
 567}
 568
 569static int dspi_eoq_write(struct fsl_dspi *dspi)
 570{
 571	int tx_count = 0;
 572	int tx_word;
 573	u32 dspi_pushr = 0;
 574
 575	tx_word = is_double_byte_mode(dspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
 578		/* If we are in word mode, only have a single byte to transfer
 579		 * switch to byte mode temporarily.  Will switch back at the
 580		 * end of the transfer.
 581		 */
 582		if (tx_word && (dspi->len == 1)) {
 583			dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 584			regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 585					SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 586			tx_word = 0;
 587		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588
 589		dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 
 590
 591		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
 592			/* last transfer in the transfer */
 593			dspi_pushr |= SPI_PUSHR_EOQ;
 594			if ((dspi->cs_change) && (!dspi->len))
 595				dspi_pushr &= ~SPI_PUSHR_CONT;
 596		} else if (tx_word && (dspi->len == 1))
 597			dspi_pushr |= SPI_PUSHR_EOQ;
 598
 599		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 600
 601		tx_count++;
 602	}
 
 
 
 
 603
 604	return tx_count * (tx_word + 1);
 
 605}
 606
 607static int dspi_eoq_read(struct fsl_dspi *dspi)
 608{
 609	int rx_count = 0;
 610	int rx_word = is_double_byte_mode(dspi);
 611
 612	while ((dspi->rx < dspi->rx_end)
 613			&& (rx_count < DSPI_FIFO_SIZE)) {
 614		if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 615			rx_word = 0;
 616
 617		dspi_data_from_popr(dspi, rx_word);
 618		rx_count++;
 619	}
 620
 621	return rx_count;
 622}
 623
 624static int dspi_tcfq_write(struct fsl_dspi *dspi)
 625{
 626	int tx_word;
 627	u32 dspi_pushr = 0;
 
 
 
 
 
 
 
 
 628
 629	tx_word = is_double_byte_mode(dspi);
 
 630
 631	if (tx_word && (dspi->len == 1)) {
 632		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 633		regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 634				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 635		tx_word = 0;
 636	}
 637
 638	dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 
 639
 640	if ((dspi->cs_change) && (!dspi->len))
 641		dspi_pushr &= ~SPI_PUSHR_CONT;
 642
 643	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 
 644
 645	return tx_word + 1;
 
 
 
 646}
 647
 648static void dspi_tcfq_read(struct fsl_dspi *dspi)
 649{
 650	int rx_word = is_double_byte_mode(dspi);
 
 651
 652	if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 653		rx_word = 0;
 
 654
 655	dspi_data_from_popr(dspi, rx_word);
 
 
 
 
 
 
 656}
 657
 658static int dspi_transfer_one_message(struct spi_master *master,
 659		struct spi_message *message)
 660{
 661	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 662	struct spi_device *spi = message->spi;
 663	struct spi_transfer *transfer;
 
 664	int status = 0;
 665	enum dspi_trans_mode trans_mode;
 666	u32 spi_tcr;
 667
 668	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 669	dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 670
 671	message->actual_length = 0;
 672
 673	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 674		dspi->cur_transfer = transfer;
 675		dspi->cur_msg = message;
 676		dspi->cur_chip = spi_get_ctldata(spi);
 677		dspi->cs = spi->chip_select;
 678		dspi->cs_change = 0;
 
 
 
 
 
 
 679		if (list_is_last(&dspi->cur_transfer->transfer_list,
 680				 &dspi->cur_msg->transfers) || transfer->cs_change)
 681			dspi->cs_change = 1;
 682		dspi->void_write_data = dspi->cur_chip->void_write_data;
 683
 684		dspi->dataflags = 0;
 685		dspi->tx = (void *)transfer->tx_buf;
 686		dspi->tx_end = dspi->tx + transfer->len;
 
 
 
 
 
 
 
 
 
 
 687		dspi->rx = transfer->rx_buf;
 688		dspi->rx_end = dspi->rx + transfer->len;
 689		dspi->len = transfer->len;
 
 690
 691		if (!dspi->rx)
 692			dspi->dataflags |= TRAN_STATE_RX_VOID;
 
 693
 694		if (!dspi->tx)
 695			dspi->dataflags |= TRAN_STATE_TX_VOID;
 696
 697		regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
 698		regmap_update_bits(dspi->regmap, SPI_MCR,
 699				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 700				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 701		regmap_write(dspi->regmap, SPI_CTAR(0),
 702				dspi->cur_chip->ctar_val);
 703
 704		trans_mode = dspi->devtype_data->trans_mode;
 705		switch (trans_mode) {
 706		case DSPI_EOQ_MODE:
 707			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
 708			dspi_eoq_write(dspi);
 709			break;
 710		case DSPI_TCFQ_MODE:
 711			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
 712			dspi_tcfq_write(dspi);
 713			break;
 714		case DSPI_DMA_MODE:
 715			regmap_write(dspi->regmap, SPI_RSER,
 716				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
 717				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
 718			status = dspi_dma_xfer(dspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 719			break;
 720		default:
 721			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 722				trans_mode);
 723			status = -EINVAL;
 724			goto out;
 725		}
 726
 727		if (trans_mode != DSPI_DMA_MODE) {
 728			if (wait_event_interruptible(dspi->waitq,
 729						dspi->waitflags))
 730				dev_err(&dspi->pdev->dev,
 731					"wait transfer complete fail!\n");
 732			dspi->waitflags = 0;
 733		}
 734
 735		if (transfer->delay_usecs)
 736			udelay(transfer->delay_usecs);
 737	}
 738
 739out:
 740	message->status = status;
 741	spi_finalize_current_message(master);
 742
 743	return status;
 744}
 745
 746static int dspi_setup(struct spi_device *spi)
 747{
 
 
 
 
 
 
 
 748	struct chip_data *chip;
 749	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
 750	struct fsl_dspi_platform_data *pdata;
 751	u32 cs_sck_delay = 0, sck_cs_delay = 0;
 752	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 753	unsigned char pasc = 0, asc = 0, fmsz = 0;
 754	unsigned long clkrate;
 755
 756	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
 757		fmsz = spi->bits_per_word - 1;
 758	} else {
 759		pr_err("Invalid wordsize\n");
 760		return -ENODEV;
 761	}
 762
 763	/* Only alloc on first setup */
 764	chip = spi_get_ctldata(spi);
 765	if (chip == NULL) {
 766		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 767		if (!chip)
 768			return -ENOMEM;
 769	}
 770
 771	pdata = dev_get_platdata(&dspi->pdev->dev);
 772
 773	if (!pdata) {
 774		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 775				&cs_sck_delay);
 776
 777		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
 778				&sck_cs_delay);
 779	} else {
 780		cs_sck_delay = pdata->cs_sck_delay;
 781		sck_cs_delay = pdata->sck_cs_delay;
 782	}
 783
 784	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
 785		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
 786
 787	chip->void_write_data = 0;
 
 
 
 
 
 
 
 
 788
 789	clkrate = clk_get_rate(dspi->clk);
 790	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
 791
 792	/* Set PCS to SCK delay scale values */
 793	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
 794
 795	/* Set After SCK delay scale values */
 796	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
 797
 798	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
 799		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
 800		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
 801		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
 802		| SPI_CTAR_PCSSCK(pcssck)
 803		| SPI_CTAR_CSSCK(cssck)
 804		| SPI_CTAR_PASC(pasc)
 805		| SPI_CTAR_ASC(asc)
 806		| SPI_CTAR_PBR(pbr)
 807		| SPI_CTAR_BR(br);
 
 
 
 
 
 
 
 
 
 
 808
 809	spi_set_ctldata(spi, chip);
 810
 811	return 0;
 812}
 813
 814static void dspi_cleanup(struct spi_device *spi)
 815{
 816	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
 817
 818	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
 819			spi->master->bus_num, spi->chip_select);
 820
 821	kfree(chip);
 822}
 823
 824static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 825{
 826	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 827	struct spi_message *msg = dspi->cur_msg;
 828	enum dspi_trans_mode trans_mode;
 829	u32 spi_sr, spi_tcr;
 830	u32 spi_tcnt, tcnt_diff;
 831	int tx_word;
 832
 833	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 834	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 835
 836
 837	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
 838		tx_word = is_double_byte_mode(dspi);
 839
 840		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 841		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 842		/*
 843		 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
 844		 * so the max couner is 65535. When the counter reach 65535,
 845		 * it will wrap around, counter reset to zero.
 846		 * spi_tcnt my be less than dspi->spi_tcnt, it means the
 847		 * counter already wrapped around.
 848		 * SPI Transfer Counter is a counter of transmitted frames.
 849		 * The size of frame maybe two bytes.
 850		 */
 851		tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
 852			% SPI_TCR_TCNT_MAX;
 853		tcnt_diff *= (tx_word + 1);
 854		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
 855			tcnt_diff--;
 856
 857		msg->actual_length += tcnt_diff;
 858
 859		dspi->spi_tcnt = spi_tcnt;
 860
 861		trans_mode = dspi->devtype_data->trans_mode;
 862		switch (trans_mode) {
 863		case DSPI_EOQ_MODE:
 864			dspi_eoq_read(dspi);
 865			break;
 866		case DSPI_TCFQ_MODE:
 867			dspi_tcfq_read(dspi);
 868			break;
 869		default:
 870			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 871				trans_mode);
 872				return IRQ_HANDLED;
 873		}
 874
 875		if (!dspi->len) {
 876			if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
 877				regmap_update_bits(dspi->regmap,
 878						   SPI_CTAR(0),
 879						   SPI_FRAME_BITS_MASK,
 880						   SPI_FRAME_BITS(16));
 881				dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
 882			}
 883
 884			dspi->waitflags = 1;
 885			wake_up_interruptible(&dspi->waitq);
 886		} else {
 887			switch (trans_mode) {
 888			case DSPI_EOQ_MODE:
 889				dspi_eoq_write(dspi);
 890				break;
 891			case DSPI_TCFQ_MODE:
 892				dspi_tcfq_write(dspi);
 893				break;
 894			default:
 895				dev_err(&dspi->pdev->dev,
 896					"unsupported trans_mode %u\n",
 897					trans_mode);
 898			}
 899		}
 900	}
 901
 902	return IRQ_HANDLED;
 903}
 904
 905static const struct of_device_id fsl_dspi_dt_ids[] = {
 906	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
 907	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
 908	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909	{ /* sentinel */ }
 910};
 911MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
 912
 913#ifdef CONFIG_PM_SLEEP
 914static int dspi_suspend(struct device *dev)
 915{
 916	struct spi_master *master = dev_get_drvdata(dev);
 917	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 918
 919	spi_master_suspend(master);
 
 
 920	clk_disable_unprepare(dspi->clk);
 921
 922	pinctrl_pm_select_sleep_state(dev);
 923
 924	return 0;
 925}
 926
 927static int dspi_resume(struct device *dev)
 928{
 929	struct spi_master *master = dev_get_drvdata(dev);
 930	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 931	int ret;
 932
 933	pinctrl_pm_select_default_state(dev);
 934
 935	ret = clk_prepare_enable(dspi->clk);
 936	if (ret)
 937		return ret;
 938	spi_master_resume(master);
 
 
 939
 940	return 0;
 941}
 942#endif /* CONFIG_PM_SLEEP */
 943
 944static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
 945
 
 
 
 
 
 
 
 
 
 
 
 946static const struct regmap_config dspi_regmap_config = {
 947	.reg_bits = 32,
 948	.val_bits = 32,
 949	.reg_stride = 4,
 950	.max_register = 0x88,
 
 
 
 
 
 
 
 
 951};
 952
 953static void dspi_init(struct fsl_dspi *dspi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954{
 
 
 
 
 
 
 
 
 
 
 
 955	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956}
 957
 958static int dspi_probe(struct platform_device *pdev)
 959{
 960	struct device_node *np = pdev->dev.of_node;
 961	struct spi_master *master;
 
 
 
 962	struct fsl_dspi *dspi;
 963	struct resource *res;
 964	void __iomem *base;
 965	struct fsl_dspi_platform_data *pdata;
 966	int ret = 0, cs_num, bus_num;
 
 
 
 967
 968	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
 969	if (!master)
 970		return -ENOMEM;
 971
 972	dspi = spi_master_get_devdata(master);
 
 
 973	dspi->pdev = pdev;
 974	dspi->master = master;
 975
 976	master->transfer = NULL;
 977	master->setup = dspi_setup;
 978	master->transfer_one_message = dspi_transfer_one_message;
 979	master->dev.of_node = pdev->dev.of_node;
 980
 981	master->cleanup = dspi_cleanup;
 982	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 983	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
 984					SPI_BPW_MASK(16);
 985
 986	pdata = dev_get_platdata(&pdev->dev);
 987	if (pdata) {
 988		master->num_chipselect = pdata->cs_num;
 989		master->bus_num = pdata->bus_num;
 990
 991		dspi->devtype_data = &coldfire_data;
 
 
 992	} else {
 993
 994		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
 995		if (ret < 0) {
 996			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
 997			goto out_master_put;
 998		}
 999		master->num_chipselect = cs_num;
1000
1001		ret = of_property_read_u32(np, "bus-num", &bus_num);
1002		if (ret < 0) {
1003			dev_err(&pdev->dev, "can't get bus-num\n");
1004			goto out_master_put;
1005		}
1006		master->bus_num = bus_num;
1007
1008		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1009		if (!dspi->devtype_data) {
1010			dev_err(&pdev->dev, "can't get devtype_data\n");
1011			ret = -EFAULT;
1012			goto out_master_put;
1013		}
 
 
1014	}
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1017	base = devm_ioremap_resource(&pdev->dev, res);
1018	if (IS_ERR(base)) {
1019		ret = PTR_ERR(base);
1020		goto out_master_put;
1021	}
1022
1023	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
1024						&dspi_regmap_config);
 
 
 
1025	if (IS_ERR(dspi->regmap)) {
1026		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1027				PTR_ERR(dspi->regmap));
1028		ret = PTR_ERR(dspi->regmap);
1029		goto out_master_put;
1030	}
1031
1032	dspi_init(dspi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	dspi->irq = platform_get_irq(pdev, 0);
1034	if (dspi->irq < 0) {
1035		dev_err(&pdev->dev, "can't get platform irq\n");
1036		ret = dspi->irq;
1037		goto out_master_put;
 
1038	}
1039
1040	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1041			pdev->name, dspi);
 
 
1042	if (ret < 0) {
1043		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1044		goto out_master_put;
1045	}
1046
1047	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1048	if (IS_ERR(dspi->clk)) {
1049		ret = PTR_ERR(dspi->clk);
1050		dev_err(&pdev->dev, "unable to get clock\n");
1051		goto out_master_put;
1052	}
1053	ret = clk_prepare_enable(dspi->clk);
1054	if (ret)
1055		goto out_master_put;
1056
1057	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1058		ret = dspi_request_dma(dspi, res->start);
1059		if (ret < 0) {
1060			dev_err(&pdev->dev, "can't get dma channels\n");
1061			goto out_clk_put;
1062		}
1063	}
1064
1065	master->max_speed_hz =
1066		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1067
1068	init_waitqueue_head(&dspi->waitq);
1069	platform_set_drvdata(pdev, master);
1070
1071	ret = spi_register_master(master);
1072	if (ret != 0) {
1073		dev_err(&pdev->dev, "Problem registering DSPI master\n");
1074		goto out_clk_put;
1075	}
1076
1077	return ret;
1078
1079out_clk_put:
1080	clk_disable_unprepare(dspi->clk);
1081out_master_put:
1082	spi_master_put(master);
 
 
 
1083
1084	return ret;
1085}
1086
1087static int dspi_remove(struct platform_device *pdev)
1088{
1089	struct spi_master *master = platform_get_drvdata(pdev);
1090	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1091
1092	/* Disconnect from the SPI framework */
 
 
 
 
 
 
 
 
 
 
1093	dspi_release_dma(dspi);
1094	clk_disable_unprepare(dspi->clk);
1095	spi_unregister_master(dspi->master);
 
1096
1097	return 0;
 
 
1098}
1099
1100static struct platform_driver fsl_dspi_driver = {
1101	.driver.name    = DRIVER_NAME,
1102	.driver.of_match_table = fsl_dspi_dt_ids,
1103	.driver.owner   = THIS_MODULE,
1104	.driver.pm = &dspi_pm,
1105	.probe          = dspi_probe,
1106	.remove		= dspi_remove,
 
1107};
1108module_platform_driver(fsl_dspi_driver);
1109
1110MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1111MODULE_LICENSE("GPL");
1112MODULE_ALIAS("platform:" DRIVER_NAME);