Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.8
    1/*
    2 *    Disk Array driver for HP Smart Array SAS controllers
    3 *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
    4 *    Copyright 2016 Microsemi Corporation
    5 *    Copyright 2014-2015 PMC-Sierra, Inc.
    6 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
    7 *
    8 *    This program is free software; you can redistribute it and/or modify
    9 *    it under the terms of the GNU General Public License as published by
   10 *    the Free Software Foundation; version 2 of the License.
   11 *
   12 *    This program is distributed in the hope that it will be useful,
   13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
   14 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
   15 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
   16 *
   17 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
   18 *
   19 */
   20
   21#include <linux/module.h>
   22#include <linux/interrupt.h>
   23#include <linux/types.h>
   24#include <linux/pci.h>
 
   25#include <linux/kernel.h>
   26#include <linux/slab.h>
   27#include <linux/delay.h>
   28#include <linux/fs.h>
   29#include <linux/timer.h>
   30#include <linux/init.h>
   31#include <linux/spinlock.h>
   32#include <linux/compat.h>
   33#include <linux/blktrace_api.h>
   34#include <linux/uaccess.h>
   35#include <linux/io.h>
   36#include <linux/dma-mapping.h>
   37#include <linux/completion.h>
   38#include <linux/moduleparam.h>
   39#include <scsi/scsi.h>
   40#include <scsi/scsi_cmnd.h>
   41#include <scsi/scsi_device.h>
   42#include <scsi/scsi_host.h>
   43#include <scsi/scsi_tcq.h>
   44#include <scsi/scsi_eh.h>
   45#include <scsi/scsi_transport_sas.h>
   46#include <scsi/scsi_dbg.h>
   47#include <linux/cciss_ioctl.h>
   48#include <linux/string.h>
   49#include <linux/bitmap.h>
   50#include <linux/atomic.h>
   51#include <linux/jiffies.h>
   52#include <linux/percpu-defs.h>
   53#include <linux/percpu.h>
   54#include <asm/unaligned.h>
   55#include <asm/div64.h>
   56#include "hpsa_cmd.h"
   57#include "hpsa.h"
   58
   59/*
   60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
   61 * with an optional trailing '-' followed by a byte value (0-255).
   62 */
   63#define HPSA_DRIVER_VERSION "3.4.20-200"
   64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
   65#define HPSA "hpsa"
   66
   67/* How long to wait for CISS doorbell communication */
   68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
   69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
   70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
   71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
   72#define MAX_IOCTL_CONFIG_WAIT 1000
   73
   74/*define how many times we will try a command because of bus resets */
   75#define MAX_CMD_RETRIES 3
   76/* How long to wait before giving up on a command */
   77#define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
   78
   79/* Embedded module documentation macros - see modules.h */
   80MODULE_AUTHOR("Hewlett-Packard Company");
   81MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
   82	HPSA_DRIVER_VERSION);
 
   83MODULE_VERSION(HPSA_DRIVER_VERSION);
   84MODULE_LICENSE("GPL");
   85MODULE_ALIAS("cciss");
   86
   87static int hpsa_simple_mode;
   88module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
   89MODULE_PARM_DESC(hpsa_simple_mode,
   90	"Use 'simple mode' rather than 'performant mode'");
   91
   92/* define the PCI info for the cards we can control */
   93static const struct pci_device_id hpsa_pci_device_id[] = {
   94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
   95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
   96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
   97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
   98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
   99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
  101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
  102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
  103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
  104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
  105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
  106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
  107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
  108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
  109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
  110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
  111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
  112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
  113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
  114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
  115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
  116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
  117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
  118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
  119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
  120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
  121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
  122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
  123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
  124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
  125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
  126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
  127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
  128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
  129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
  130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
  131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
  132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
  133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
  134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
  135	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
  136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
  137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
  138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
  139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
  140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
  141	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
  142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
  143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
  144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
  145	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
  146	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
  147	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
  148		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  149	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
  150		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  151	{0,}
  152};
  153
  154MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
  155
  156/*  board_id = Subsystem Device ID & Vendor ID
  157 *  product = Marketing Name for the board
  158 *  access = Address of the struct of function pointers
  159 */
  160static struct board_type products[] = {
  161	{0x40700E11, "Smart Array 5300", &SA5A_access},
  162	{0x40800E11, "Smart Array 5i", &SA5B_access},
  163	{0x40820E11, "Smart Array 532", &SA5B_access},
  164	{0x40830E11, "Smart Array 5312", &SA5B_access},
  165	{0x409A0E11, "Smart Array 641", &SA5A_access},
  166	{0x409B0E11, "Smart Array 642", &SA5A_access},
  167	{0x409C0E11, "Smart Array 6400", &SA5A_access},
  168	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
  169	{0x40910E11, "Smart Array 6i", &SA5A_access},
  170	{0x3225103C, "Smart Array P600", &SA5A_access},
  171	{0x3223103C, "Smart Array P800", &SA5A_access},
  172	{0x3234103C, "Smart Array P400", &SA5A_access},
  173	{0x3235103C, "Smart Array P400i", &SA5A_access},
  174	{0x3211103C, "Smart Array E200i", &SA5A_access},
  175	{0x3212103C, "Smart Array E200", &SA5A_access},
  176	{0x3213103C, "Smart Array E200i", &SA5A_access},
  177	{0x3214103C, "Smart Array E200i", &SA5A_access},
  178	{0x3215103C, "Smart Array E200i", &SA5A_access},
  179	{0x3237103C, "Smart Array E500", &SA5A_access},
  180	{0x323D103C, "Smart Array P700m", &SA5A_access},
  181	{0x3241103C, "Smart Array P212", &SA5_access},
  182	{0x3243103C, "Smart Array P410", &SA5_access},
  183	{0x3245103C, "Smart Array P410i", &SA5_access},
  184	{0x3247103C, "Smart Array P411", &SA5_access},
  185	{0x3249103C, "Smart Array P812", &SA5_access},
  186	{0x324A103C, "Smart Array P712m", &SA5_access},
  187	{0x324B103C, "Smart Array P711m", &SA5_access},
  188	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
  189	{0x3350103C, "Smart Array P222", &SA5_access},
  190	{0x3351103C, "Smart Array P420", &SA5_access},
  191	{0x3352103C, "Smart Array P421", &SA5_access},
  192	{0x3353103C, "Smart Array P822", &SA5_access},
  193	{0x3354103C, "Smart Array P420i", &SA5_access},
  194	{0x3355103C, "Smart Array P220i", &SA5_access},
  195	{0x3356103C, "Smart Array P721m", &SA5_access},
  196	{0x1920103C, "Smart Array P430i", &SA5_access},
  197	{0x1921103C, "Smart Array P830i", &SA5_access},
  198	{0x1922103C, "Smart Array P430", &SA5_access},
  199	{0x1923103C, "Smart Array P431", &SA5_access},
  200	{0x1924103C, "Smart Array P830", &SA5_access},
  201	{0x1925103C, "Smart Array P831", &SA5_access},
  202	{0x1926103C, "Smart Array P731m", &SA5_access},
  203	{0x1928103C, "Smart Array P230i", &SA5_access},
  204	{0x1929103C, "Smart Array P530", &SA5_access},
  205	{0x21BD103C, "Smart Array P244br", &SA5_access},
  206	{0x21BE103C, "Smart Array P741m", &SA5_access},
  207	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
  208	{0x21C0103C, "Smart Array P440ar", &SA5_access},
  209	{0x21C1103C, "Smart Array P840ar", &SA5_access},
  210	{0x21C2103C, "Smart Array P440", &SA5_access},
  211	{0x21C3103C, "Smart Array P441", &SA5_access},
  212	{0x21C4103C, "Smart Array", &SA5_access},
  213	{0x21C5103C, "Smart Array P841", &SA5_access},
  214	{0x21C6103C, "Smart HBA H244br", &SA5_access},
  215	{0x21C7103C, "Smart HBA H240", &SA5_access},
  216	{0x21C8103C, "Smart HBA H241", &SA5_access},
  217	{0x21C9103C, "Smart Array", &SA5_access},
  218	{0x21CA103C, "Smart Array P246br", &SA5_access},
  219	{0x21CB103C, "Smart Array P840", &SA5_access},
  220	{0x21CC103C, "Smart Array", &SA5_access},
  221	{0x21CD103C, "Smart Array", &SA5_access},
  222	{0x21CE103C, "Smart HBA", &SA5_access},
  223	{0x05809005, "SmartHBA-SA", &SA5_access},
  224	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
  225	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
  226	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
  227	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
  228	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
  229	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
  230	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
  231	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
  232	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
  233	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
  234	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
  235};
  236
  237static struct scsi_transport_template *hpsa_sas_transport_template;
  238static int hpsa_add_sas_host(struct ctlr_info *h);
  239static void hpsa_delete_sas_host(struct ctlr_info *h);
  240static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
  241			struct hpsa_scsi_dev_t *device);
  242static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
  243static struct hpsa_scsi_dev_t
  244	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
  245		struct sas_rphy *rphy);
  246
  247#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
  248static const struct scsi_cmnd hpsa_cmd_busy;
  249#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
  250static const struct scsi_cmnd hpsa_cmd_idle;
  251static int number_of_controllers;
  252
  253static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
  254static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
  255static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
  256		      void __user *arg);
  257static int hpsa_passthru_ioctl(struct ctlr_info *h,
  258			       IOCTL_Command_struct *iocommand);
  259static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
  260				   BIG_IOCTL_Command_struct *ioc);
  261
  262#ifdef CONFIG_COMPAT
  263static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
  264	void __user *arg);
  265#endif
  266
  267static void cmd_free(struct ctlr_info *h, struct CommandList *c);
  268static struct CommandList *cmd_alloc(struct ctlr_info *h);
  269static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
  270static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
  271					    struct scsi_cmnd *scmd);
  272static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  273	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
  274	int cmd_type);
  275static void hpsa_free_cmd_pool(struct ctlr_info *h);
  276#define VPD_PAGE (1 << 8)
  277#define HPSA_SIMPLE_ERROR_BITS 0x03
  278
  279static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
  280static void hpsa_scan_start(struct Scsi_Host *);
  281static int hpsa_scan_finished(struct Scsi_Host *sh,
  282	unsigned long elapsed_time);
  283static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
  284
  285static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
  286static int hpsa_slave_alloc(struct scsi_device *sdev);
  287static int hpsa_slave_configure(struct scsi_device *sdev);
  288static void hpsa_slave_destroy(struct scsi_device *sdev);
  289
  290static void hpsa_update_scsi_devices(struct ctlr_info *h);
  291static int check_for_unit_attention(struct ctlr_info *h,
  292	struct CommandList *c);
  293static void check_ioctl_unit_attention(struct ctlr_info *h,
  294	struct CommandList *c);
  295/* performant mode helper functions */
  296static void calc_bucket_map(int *bucket, int num_buckets,
  297	int nsgs, int min_blocks, u32 *bucket_map);
  298static void hpsa_free_performant_mode(struct ctlr_info *h);
  299static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
  300static inline u32 next_command(struct ctlr_info *h, u8 q);
  301static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
  302			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  303			       u64 *cfg_offset);
  304static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  305				    unsigned long *memory_bar);
  306static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
  307				bool *legacy_board);
  308static int wait_for_device_to_become_ready(struct ctlr_info *h,
  309					   unsigned char lunaddr[],
  310					   int reply_queue);
  311static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
  312				     int wait_for_ready);
  313static inline void finish_cmd(struct CommandList *c);
  314static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
  315#define BOARD_NOT_READY 0
  316#define BOARD_READY 1
  317static void hpsa_drain_accel_commands(struct ctlr_info *h);
  318static void hpsa_flush_cache(struct ctlr_info *h);
  319static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
  320	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
  321	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
  322static void hpsa_command_resubmit_worker(struct work_struct *work);
  323static u32 lockup_detected(struct ctlr_info *h);
  324static int detect_controller_lockup(struct ctlr_info *h);
  325static void hpsa_disable_rld_caching(struct ctlr_info *h);
  326static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
  327	struct ReportExtendedLUNdata *buf, int bufsize);
  328static bool hpsa_vpd_page_supported(struct ctlr_info *h,
  329	unsigned char scsi3addr[], u8 page);
  330static int hpsa_luns_changed(struct ctlr_info *h);
  331static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
  332			       struct hpsa_scsi_dev_t *dev,
  333			       unsigned char *scsi3addr);
  334
  335static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
  336{
  337	unsigned long *priv = shost_priv(sdev->host);
  338	return (struct ctlr_info *) *priv;
  339}
  340
  341static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
  342{
  343	unsigned long *priv = shost_priv(sh);
  344	return (struct ctlr_info *) *priv;
  345}
  346
  347static inline bool hpsa_is_cmd_idle(struct CommandList *c)
  348{
  349	return c->scsi_cmd == SCSI_CMD_IDLE;
  350}
  351
 
 
 
 
 
  352/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
  353static void decode_sense_data(const u8 *sense_data, int sense_data_len,
  354			u8 *sense_key, u8 *asc, u8 *ascq)
  355{
  356	struct scsi_sense_hdr sshdr;
  357	bool rc;
  358
  359	*sense_key = -1;
  360	*asc = -1;
  361	*ascq = -1;
  362
  363	if (sense_data_len < 1)
  364		return;
  365
  366	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
  367	if (rc) {
  368		*sense_key = sshdr.sense_key;
  369		*asc = sshdr.asc;
  370		*ascq = sshdr.ascq;
  371	}
  372}
  373
  374static int check_for_unit_attention(struct ctlr_info *h,
  375	struct CommandList *c)
  376{
  377	u8 sense_key, asc, ascq;
  378	int sense_len;
  379
  380	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
  381		sense_len = sizeof(c->err_info->SenseInfo);
  382	else
  383		sense_len = c->err_info->SenseLen;
  384
  385	decode_sense_data(c->err_info->SenseInfo, sense_len,
  386				&sense_key, &asc, &ascq);
  387	if (sense_key != UNIT_ATTENTION || asc == 0xff)
  388		return 0;
  389
  390	switch (asc) {
  391	case STATE_CHANGED:
  392		dev_warn(&h->pdev->dev,
  393			"%s: a state change detected, command retried\n",
  394			h->devname);
  395		break;
  396	case LUN_FAILED:
  397		dev_warn(&h->pdev->dev,
  398			"%s: LUN failure detected\n", h->devname);
  399		break;
  400	case REPORT_LUNS_CHANGED:
  401		dev_warn(&h->pdev->dev,
  402			"%s: report LUN data changed\n", h->devname);
  403	/*
  404	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
  405	 * target (array) devices.
  406	 */
  407		break;
  408	case POWER_OR_RESET:
  409		dev_warn(&h->pdev->dev,
  410			"%s: a power on or device reset detected\n",
  411			h->devname);
  412		break;
  413	case UNIT_ATTENTION_CLEARED:
  414		dev_warn(&h->pdev->dev,
  415			"%s: unit attention cleared by another initiator\n",
  416			h->devname);
  417		break;
  418	default:
  419		dev_warn(&h->pdev->dev,
  420			"%s: unknown unit attention detected\n",
  421			h->devname);
  422		break;
  423	}
  424	return 1;
  425}
  426
  427static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
  428{
  429	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
  430		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
  431		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
  432		return 0;
  433	dev_warn(&h->pdev->dev, HPSA "device busy");
  434	return 1;
  435}
  436
  437static u32 lockup_detected(struct ctlr_info *h);
  438static ssize_t host_show_lockup_detected(struct device *dev,
  439		struct device_attribute *attr, char *buf)
  440{
  441	int ld;
  442	struct ctlr_info *h;
  443	struct Scsi_Host *shost = class_to_shost(dev);
  444
  445	h = shost_to_hba(shost);
  446	ld = lockup_detected(h);
  447
  448	return sprintf(buf, "ld=%d\n", ld);
  449}
  450
  451static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
  452					 struct device_attribute *attr,
  453					 const char *buf, size_t count)
  454{
  455	int status, len;
  456	struct ctlr_info *h;
  457	struct Scsi_Host *shost = class_to_shost(dev);
  458	char tmpbuf[10];
  459
  460	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
  461		return -EACCES;
  462	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
  463	strncpy(tmpbuf, buf, len);
  464	tmpbuf[len] = '\0';
  465	if (sscanf(tmpbuf, "%d", &status) != 1)
  466		return -EINVAL;
  467	h = shost_to_hba(shost);
  468	h->acciopath_status = !!status;
  469	dev_warn(&h->pdev->dev,
  470		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
  471		h->acciopath_status ? "enabled" : "disabled");
  472	return count;
  473}
  474
  475static ssize_t host_store_raid_offload_debug(struct device *dev,
  476					 struct device_attribute *attr,
  477					 const char *buf, size_t count)
  478{
  479	int debug_level, len;
  480	struct ctlr_info *h;
  481	struct Scsi_Host *shost = class_to_shost(dev);
  482	char tmpbuf[10];
  483
  484	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
  485		return -EACCES;
  486	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
  487	strncpy(tmpbuf, buf, len);
  488	tmpbuf[len] = '\0';
  489	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
  490		return -EINVAL;
  491	if (debug_level < 0)
  492		debug_level = 0;
  493	h = shost_to_hba(shost);
  494	h->raid_offload_debug = debug_level;
  495	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
  496		h->raid_offload_debug);
  497	return count;
  498}
  499
  500static ssize_t host_store_rescan(struct device *dev,
  501				 struct device_attribute *attr,
  502				 const char *buf, size_t count)
  503{
  504	struct ctlr_info *h;
  505	struct Scsi_Host *shost = class_to_shost(dev);
  506	h = shost_to_hba(shost);
  507	hpsa_scan_start(h->scsi_host);
  508	return count;
  509}
  510
  511static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
  512{
  513	device->offload_enabled = 0;
  514	device->offload_to_be_enabled = 0;
  515}
  516
  517static ssize_t host_show_firmware_revision(struct device *dev,
  518	     struct device_attribute *attr, char *buf)
  519{
  520	struct ctlr_info *h;
  521	struct Scsi_Host *shost = class_to_shost(dev);
  522	unsigned char *fwrev;
  523
  524	h = shost_to_hba(shost);
  525	if (!h->hba_inquiry_data)
  526		return 0;
  527	fwrev = &h->hba_inquiry_data[32];
  528	return snprintf(buf, 20, "%c%c%c%c\n",
  529		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
  530}
  531
  532static ssize_t host_show_commands_outstanding(struct device *dev,
  533	     struct device_attribute *attr, char *buf)
  534{
  535	struct Scsi_Host *shost = class_to_shost(dev);
  536	struct ctlr_info *h = shost_to_hba(shost);
  537
  538	return snprintf(buf, 20, "%d\n",
  539			atomic_read(&h->commands_outstanding));
  540}
  541
  542static ssize_t host_show_transport_mode(struct device *dev,
  543	struct device_attribute *attr, char *buf)
  544{
  545	struct ctlr_info *h;
  546	struct Scsi_Host *shost = class_to_shost(dev);
  547
  548	h = shost_to_hba(shost);
  549	return snprintf(buf, 20, "%s\n",
  550		h->transMethod & CFGTBL_Trans_Performant ?
  551			"performant" : "simple");
  552}
  553
  554static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
  555	struct device_attribute *attr, char *buf)
  556{
  557	struct ctlr_info *h;
  558	struct Scsi_Host *shost = class_to_shost(dev);
  559
  560	h = shost_to_hba(shost);
  561	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
  562		(h->acciopath_status == 1) ?  "enabled" : "disabled");
  563}
  564
  565/* List of controllers which cannot be hard reset on kexec with reset_devices */
  566static u32 unresettable_controller[] = {
  567	0x324a103C, /* Smart Array P712m */
  568	0x324b103C, /* Smart Array P711m */
  569	0x3223103C, /* Smart Array P800 */
  570	0x3234103C, /* Smart Array P400 */
  571	0x3235103C, /* Smart Array P400i */
  572	0x3211103C, /* Smart Array E200i */
  573	0x3212103C, /* Smart Array E200 */
  574	0x3213103C, /* Smart Array E200i */
  575	0x3214103C, /* Smart Array E200i */
  576	0x3215103C, /* Smart Array E200i */
  577	0x3237103C, /* Smart Array E500 */
  578	0x323D103C, /* Smart Array P700m */
  579	0x40800E11, /* Smart Array 5i */
  580	0x409C0E11, /* Smart Array 6400 */
  581	0x409D0E11, /* Smart Array 6400 EM */
  582	0x40700E11, /* Smart Array 5300 */
  583	0x40820E11, /* Smart Array 532 */
  584	0x40830E11, /* Smart Array 5312 */
  585	0x409A0E11, /* Smart Array 641 */
  586	0x409B0E11, /* Smart Array 642 */
  587	0x40910E11, /* Smart Array 6i */
  588};
  589
  590/* List of controllers which cannot even be soft reset */
  591static u32 soft_unresettable_controller[] = {
  592	0x40800E11, /* Smart Array 5i */
  593	0x40700E11, /* Smart Array 5300 */
  594	0x40820E11, /* Smart Array 532 */
  595	0x40830E11, /* Smart Array 5312 */
  596	0x409A0E11, /* Smart Array 641 */
  597	0x409B0E11, /* Smart Array 642 */
  598	0x40910E11, /* Smart Array 6i */
  599	/* Exclude 640x boards.  These are two pci devices in one slot
  600	 * which share a battery backed cache module.  One controls the
  601	 * cache, the other accesses the cache through the one that controls
  602	 * it.  If we reset the one controlling the cache, the other will
  603	 * likely not be happy.  Just forbid resetting this conjoined mess.
  604	 * The 640x isn't really supported by hpsa anyway.
  605	 */
  606	0x409C0E11, /* Smart Array 6400 */
  607	0x409D0E11, /* Smart Array 6400 EM */
  608};
  609
  610static int board_id_in_array(u32 a[], int nelems, u32 board_id)
  611{
  612	int i;
  613
  614	for (i = 0; i < nelems; i++)
  615		if (a[i] == board_id)
  616			return 1;
  617	return 0;
  618}
  619
  620static int ctlr_is_hard_resettable(u32 board_id)
  621{
  622	return !board_id_in_array(unresettable_controller,
  623			ARRAY_SIZE(unresettable_controller), board_id);
  624}
  625
  626static int ctlr_is_soft_resettable(u32 board_id)
  627{
  628	return !board_id_in_array(soft_unresettable_controller,
  629			ARRAY_SIZE(soft_unresettable_controller), board_id);
  630}
  631
  632static int ctlr_is_resettable(u32 board_id)
  633{
  634	return ctlr_is_hard_resettable(board_id) ||
  635		ctlr_is_soft_resettable(board_id);
  636}
  637
  638static ssize_t host_show_resettable(struct device *dev,
  639	struct device_attribute *attr, char *buf)
  640{
  641	struct ctlr_info *h;
  642	struct Scsi_Host *shost = class_to_shost(dev);
  643
  644	h = shost_to_hba(shost);
  645	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
  646}
  647
  648static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
  649{
  650	return (scsi3addr[3] & 0xC0) == 0x40;
  651}
  652
  653static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
  654	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
  655};
  656#define HPSA_RAID_0	0
  657#define HPSA_RAID_4	1
  658#define HPSA_RAID_1	2	/* also used for RAID 10 */
  659#define HPSA_RAID_5	3	/* also used for RAID 50 */
  660#define HPSA_RAID_51	4
  661#define HPSA_RAID_6	5	/* also used for RAID 60 */
  662#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
  663#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
  664#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
  665
  666static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
  667{
  668	return !device->physical_device;
  669}
  670
  671static ssize_t raid_level_show(struct device *dev,
  672	     struct device_attribute *attr, char *buf)
  673{
  674	ssize_t l = 0;
  675	unsigned char rlevel;
  676	struct ctlr_info *h;
  677	struct scsi_device *sdev;
  678	struct hpsa_scsi_dev_t *hdev;
  679	unsigned long flags;
  680
  681	sdev = to_scsi_device(dev);
  682	h = sdev_to_hba(sdev);
  683	spin_lock_irqsave(&h->lock, flags);
  684	hdev = sdev->hostdata;
  685	if (!hdev) {
  686		spin_unlock_irqrestore(&h->lock, flags);
  687		return -ENODEV;
  688	}
  689
  690	/* Is this even a logical drive? */
  691	if (!is_logical_device(hdev)) {
  692		spin_unlock_irqrestore(&h->lock, flags);
  693		l = snprintf(buf, PAGE_SIZE, "N/A\n");
  694		return l;
  695	}
  696
  697	rlevel = hdev->raid_level;
  698	spin_unlock_irqrestore(&h->lock, flags);
  699	if (rlevel > RAID_UNKNOWN)
  700		rlevel = RAID_UNKNOWN;
  701	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
  702	return l;
  703}
  704
  705static ssize_t lunid_show(struct device *dev,
  706	     struct device_attribute *attr, char *buf)
  707{
  708	struct ctlr_info *h;
  709	struct scsi_device *sdev;
  710	struct hpsa_scsi_dev_t *hdev;
  711	unsigned long flags;
  712	unsigned char lunid[8];
  713
  714	sdev = to_scsi_device(dev);
  715	h = sdev_to_hba(sdev);
  716	spin_lock_irqsave(&h->lock, flags);
  717	hdev = sdev->hostdata;
  718	if (!hdev) {
  719		spin_unlock_irqrestore(&h->lock, flags);
  720		return -ENODEV;
  721	}
  722	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
  723	spin_unlock_irqrestore(&h->lock, flags);
  724	return snprintf(buf, 20, "0x%8phN\n", lunid);
  725}
  726
  727static ssize_t unique_id_show(struct device *dev,
  728	     struct device_attribute *attr, char *buf)
  729{
  730	struct ctlr_info *h;
  731	struct scsi_device *sdev;
  732	struct hpsa_scsi_dev_t *hdev;
  733	unsigned long flags;
  734	unsigned char sn[16];
  735
  736	sdev = to_scsi_device(dev);
  737	h = sdev_to_hba(sdev);
  738	spin_lock_irqsave(&h->lock, flags);
  739	hdev = sdev->hostdata;
  740	if (!hdev) {
  741		spin_unlock_irqrestore(&h->lock, flags);
  742		return -ENODEV;
  743	}
  744	memcpy(sn, hdev->device_id, sizeof(sn));
  745	spin_unlock_irqrestore(&h->lock, flags);
  746	return snprintf(buf, 16 * 2 + 2,
  747			"%02X%02X%02X%02X%02X%02X%02X%02X"
  748			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
  749			sn[0], sn[1], sn[2], sn[3],
  750			sn[4], sn[5], sn[6], sn[7],
  751			sn[8], sn[9], sn[10], sn[11],
  752			sn[12], sn[13], sn[14], sn[15]);
  753}
  754
  755static ssize_t sas_address_show(struct device *dev,
  756	      struct device_attribute *attr, char *buf)
  757{
  758	struct ctlr_info *h;
  759	struct scsi_device *sdev;
  760	struct hpsa_scsi_dev_t *hdev;
  761	unsigned long flags;
  762	u64 sas_address;
  763
  764	sdev = to_scsi_device(dev);
  765	h = sdev_to_hba(sdev);
  766	spin_lock_irqsave(&h->lock, flags);
  767	hdev = sdev->hostdata;
  768	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
  769		spin_unlock_irqrestore(&h->lock, flags);
  770		return -ENODEV;
  771	}
  772	sas_address = hdev->sas_address;
  773	spin_unlock_irqrestore(&h->lock, flags);
  774
  775	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
  776}
  777
  778static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
  779	     struct device_attribute *attr, char *buf)
  780{
  781	struct ctlr_info *h;
  782	struct scsi_device *sdev;
  783	struct hpsa_scsi_dev_t *hdev;
  784	unsigned long flags;
  785	int offload_enabled;
  786
  787	sdev = to_scsi_device(dev);
  788	h = sdev_to_hba(sdev);
  789	spin_lock_irqsave(&h->lock, flags);
  790	hdev = sdev->hostdata;
  791	if (!hdev) {
  792		spin_unlock_irqrestore(&h->lock, flags);
  793		return -ENODEV;
  794	}
  795	offload_enabled = hdev->offload_enabled;
  796	spin_unlock_irqrestore(&h->lock, flags);
  797
  798	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
  799		return snprintf(buf, 20, "%d\n", offload_enabled);
  800	else
  801		return snprintf(buf, 40, "%s\n",
  802				"Not applicable for a controller");
  803}
  804
  805#define MAX_PATHS 8
  806static ssize_t path_info_show(struct device *dev,
  807	     struct device_attribute *attr, char *buf)
  808{
  809	struct ctlr_info *h;
  810	struct scsi_device *sdev;
  811	struct hpsa_scsi_dev_t *hdev;
  812	unsigned long flags;
  813	int i;
  814	int output_len = 0;
  815	u8 box;
  816	u8 bay;
  817	u8 path_map_index = 0;
  818	char *active;
  819	unsigned char phys_connector[2];
  820
  821	sdev = to_scsi_device(dev);
  822	h = sdev_to_hba(sdev);
  823	spin_lock_irqsave(&h->devlock, flags);
  824	hdev = sdev->hostdata;
  825	if (!hdev) {
  826		spin_unlock_irqrestore(&h->devlock, flags);
  827		return -ENODEV;
  828	}
  829
  830	bay = hdev->bay;
  831	for (i = 0; i < MAX_PATHS; i++) {
  832		path_map_index = 1<<i;
  833		if (i == hdev->active_path_index)
  834			active = "Active";
  835		else if (hdev->path_map & path_map_index)
  836			active = "Inactive";
  837		else
  838			continue;
  839
  840		output_len += scnprintf(buf + output_len,
  841				PAGE_SIZE - output_len,
  842				"[%d:%d:%d:%d] %20.20s ",
  843				h->scsi_host->host_no,
  844				hdev->bus, hdev->target, hdev->lun,
  845				scsi_device_type(hdev->devtype));
  846
  847		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
  848			output_len += scnprintf(buf + output_len,
  849						PAGE_SIZE - output_len,
  850						"%s\n", active);
  851			continue;
  852		}
  853
  854		box = hdev->box[i];
  855		memcpy(&phys_connector, &hdev->phys_connector[i],
  856			sizeof(phys_connector));
  857		if (phys_connector[0] < '0')
  858			phys_connector[0] = '0';
  859		if (phys_connector[1] < '0')
  860			phys_connector[1] = '0';
  861		output_len += scnprintf(buf + output_len,
  862				PAGE_SIZE - output_len,
  863				"PORT: %.2s ",
  864				phys_connector);
  865		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
  866			hdev->expose_device) {
  867			if (box == 0 || box == 0xFF) {
  868				output_len += scnprintf(buf + output_len,
  869					PAGE_SIZE - output_len,
  870					"BAY: %hhu %s\n",
  871					bay, active);
  872			} else {
  873				output_len += scnprintf(buf + output_len,
  874					PAGE_SIZE - output_len,
  875					"BOX: %hhu BAY: %hhu %s\n",
  876					box, bay, active);
  877			}
  878		} else if (box != 0 && box != 0xFF) {
  879			output_len += scnprintf(buf + output_len,
  880				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
  881				box, active);
  882		} else
  883			output_len += scnprintf(buf + output_len,
  884				PAGE_SIZE - output_len, "%s\n", active);
  885	}
  886
  887	spin_unlock_irqrestore(&h->devlock, flags);
  888	return output_len;
  889}
  890
  891static ssize_t host_show_ctlr_num(struct device *dev,
  892	struct device_attribute *attr, char *buf)
  893{
  894	struct ctlr_info *h;
  895	struct Scsi_Host *shost = class_to_shost(dev);
  896
  897	h = shost_to_hba(shost);
  898	return snprintf(buf, 20, "%d\n", h->ctlr);
  899}
  900
  901static ssize_t host_show_legacy_board(struct device *dev,
  902	struct device_attribute *attr, char *buf)
  903{
  904	struct ctlr_info *h;
  905	struct Scsi_Host *shost = class_to_shost(dev);
  906
  907	h = shost_to_hba(shost);
  908	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
  909}
  910
  911static DEVICE_ATTR_RO(raid_level);
  912static DEVICE_ATTR_RO(lunid);
  913static DEVICE_ATTR_RO(unique_id);
  914static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  915static DEVICE_ATTR_RO(sas_address);
  916static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
  917			host_show_hp_ssd_smart_path_enabled, NULL);
  918static DEVICE_ATTR_RO(path_info);
  919static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
  920		host_show_hp_ssd_smart_path_status,
  921		host_store_hp_ssd_smart_path_status);
  922static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
  923			host_store_raid_offload_debug);
  924static DEVICE_ATTR(firmware_revision, S_IRUGO,
  925	host_show_firmware_revision, NULL);
  926static DEVICE_ATTR(commands_outstanding, S_IRUGO,
  927	host_show_commands_outstanding, NULL);
  928static DEVICE_ATTR(transport_mode, S_IRUGO,
  929	host_show_transport_mode, NULL);
  930static DEVICE_ATTR(resettable, S_IRUGO,
  931	host_show_resettable, NULL);
  932static DEVICE_ATTR(lockup_detected, S_IRUGO,
  933	host_show_lockup_detected, NULL);
  934static DEVICE_ATTR(ctlr_num, S_IRUGO,
  935	host_show_ctlr_num, NULL);
  936static DEVICE_ATTR(legacy_board, S_IRUGO,
  937	host_show_legacy_board, NULL);
  938
  939static struct attribute *hpsa_sdev_attrs[] = {
  940	&dev_attr_raid_level.attr,
  941	&dev_attr_lunid.attr,
  942	&dev_attr_unique_id.attr,
  943	&dev_attr_hp_ssd_smart_path_enabled.attr,
  944	&dev_attr_path_info.attr,
  945	&dev_attr_sas_address.attr,
  946	NULL,
  947};
  948
  949ATTRIBUTE_GROUPS(hpsa_sdev);
  950
  951static struct attribute *hpsa_shost_attrs[] = {
  952	&dev_attr_rescan.attr,
  953	&dev_attr_firmware_revision.attr,
  954	&dev_attr_commands_outstanding.attr,
  955	&dev_attr_transport_mode.attr,
  956	&dev_attr_resettable.attr,
  957	&dev_attr_hp_ssd_smart_path_status.attr,
  958	&dev_attr_raid_offload_debug.attr,
  959	&dev_attr_lockup_detected.attr,
  960	&dev_attr_ctlr_num.attr,
  961	&dev_attr_legacy_board.attr,
  962	NULL,
  963};
  964
  965ATTRIBUTE_GROUPS(hpsa_shost);
  966
  967#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
  968				 HPSA_MAX_CONCURRENT_PASSTHRUS)
  969
  970static const struct scsi_host_template hpsa_driver_template = {
  971	.module			= THIS_MODULE,
  972	.name			= HPSA,
  973	.proc_name		= HPSA,
  974	.queuecommand		= hpsa_scsi_queue_command,
  975	.scan_start		= hpsa_scan_start,
  976	.scan_finished		= hpsa_scan_finished,
  977	.change_queue_depth	= hpsa_change_queue_depth,
  978	.this_id		= -1,
 
  979	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
  980	.ioctl			= hpsa_ioctl,
  981	.slave_alloc		= hpsa_slave_alloc,
  982	.slave_configure	= hpsa_slave_configure,
  983	.slave_destroy		= hpsa_slave_destroy,
  984#ifdef CONFIG_COMPAT
  985	.compat_ioctl		= hpsa_compat_ioctl,
  986#endif
  987	.sdev_groups = hpsa_sdev_groups,
  988	.shost_groups = hpsa_shost_groups,
  989	.max_sectors = 2048,
  990	.no_write_same = 1,
  991};
  992
  993static inline u32 next_command(struct ctlr_info *h, u8 q)
  994{
  995	u32 a;
  996	struct reply_queue_buffer *rq = &h->reply_queue[q];
  997
  998	if (h->transMethod & CFGTBL_Trans_io_accel1)
  999		return h->access.command_completed(h, q);
 1000
 1001	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 1002		return h->access.command_completed(h, q);
 1003
 1004	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 1005		a = rq->head[rq->current_entry];
 1006		rq->current_entry++;
 1007		atomic_dec(&h->commands_outstanding);
 1008	} else {
 1009		a = FIFO_EMPTY;
 1010	}
 1011	/* Check for wraparound */
 1012	if (rq->current_entry == h->max_commands) {
 1013		rq->current_entry = 0;
 1014		rq->wraparound ^= 1;
 1015	}
 1016	return a;
 1017}
 1018
 1019/*
 1020 * There are some special bits in the bus address of the
 1021 * command that we have to set for the controller to know
 1022 * how to process the command:
 1023 *
 1024 * Normal performant mode:
 1025 * bit 0: 1 means performant mode, 0 means simple mode.
 1026 * bits 1-3 = block fetch table entry
 1027 * bits 4-6 = command type (== 0)
 1028 *
 1029 * ioaccel1 mode:
 1030 * bit 0 = "performant mode" bit.
 1031 * bits 1-3 = block fetch table entry
 1032 * bits 4-6 = command type (== 110)
 1033 * (command type is needed because ioaccel1 mode
 1034 * commands are submitted through the same register as normal
 1035 * mode commands, so this is how the controller knows whether
 1036 * the command is normal mode or ioaccel1 mode.)
 1037 *
 1038 * ioaccel2 mode:
 1039 * bit 0 = "performant mode" bit.
 1040 * bits 1-4 = block fetch table entry (note extra bit)
 1041 * bits 4-6 = not needed, because ioaccel2 mode has
 1042 * a separate special register for submitting commands.
 1043 */
 1044
 1045/*
 1046 * set_performant_mode: Modify the tag for cciss performant
 1047 * set bit 0 for pull model, bits 3-1 for block fetch
 1048 * register number
 1049 */
 1050#define DEFAULT_REPLY_QUEUE (-1)
 1051static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
 1052					int reply_queue)
 1053{
 1054	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
 1055		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 1056		if (unlikely(!h->msix_vectors))
 1057			return;
 1058		c->Header.ReplyQueue = reply_queue;
 1059	}
 1060}
 1061
 1062static void set_ioaccel1_performant_mode(struct ctlr_info *h,
 1063						struct CommandList *c,
 1064						int reply_queue)
 1065{
 1066	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 1067
 1068	/*
 1069	 * Tell the controller to post the reply to the queue for this
 1070	 * processor.  This seems to give the best I/O throughput.
 1071	 */
 1072	cp->ReplyQueue = reply_queue;
 1073	/*
 1074	 * Set the bits in the address sent down to include:
 1075	 *  - performant mode bit (bit 0)
 1076	 *  - pull count (bits 1-3)
 1077	 *  - command type (bits 4-6)
 1078	 */
 1079	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
 1080					IOACCEL1_BUSADDR_CMDTYPE;
 1081}
 1082
 1083static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
 1084						struct CommandList *c,
 1085						int reply_queue)
 1086{
 1087	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
 1088		&h->ioaccel2_cmd_pool[c->cmdindex];
 1089
 1090	/* Tell the controller to post the reply to the queue for this
 1091	 * processor.  This seems to give the best I/O throughput.
 1092	 */
 1093	cp->reply_queue = reply_queue;
 1094	/* Set the bits in the address sent down to include:
 1095	 *  - performant mode bit not used in ioaccel mode 2
 1096	 *  - pull count (bits 0-3)
 1097	 *  - command type isn't needed for ioaccel2
 1098	 */
 1099	c->busaddr |= h->ioaccel2_blockFetchTable[0];
 1100}
 1101
 1102static void set_ioaccel2_performant_mode(struct ctlr_info *h,
 1103						struct CommandList *c,
 1104						int reply_queue)
 1105{
 1106	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 1107
 1108	/*
 1109	 * Tell the controller to post the reply to the queue for this
 1110	 * processor.  This seems to give the best I/O throughput.
 1111	 */
 1112	cp->reply_queue = reply_queue;
 1113	/*
 1114	 * Set the bits in the address sent down to include:
 1115	 *  - performant mode bit not used in ioaccel mode 2
 1116	 *  - pull count (bits 0-3)
 1117	 *  - command type isn't needed for ioaccel2
 1118	 */
 1119	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
 1120}
 1121
 1122static int is_firmware_flash_cmd(u8 *cdb)
 1123{
 1124	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
 1125}
 1126
 1127/*
 1128 * During firmware flash, the heartbeat register may not update as frequently
 1129 * as it should.  So we dial down lockup detection during firmware flash. and
 1130 * dial it back up when firmware flash completes.
 1131 */
 1132#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
 1133#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
 1134#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
 1135static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
 1136		struct CommandList *c)
 1137{
 1138	if (!is_firmware_flash_cmd(c->Request.CDB))
 1139		return;
 1140	atomic_inc(&h->firmware_flash_in_progress);
 1141	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
 1142}
 1143
 1144static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
 1145		struct CommandList *c)
 1146{
 1147	if (is_firmware_flash_cmd(c->Request.CDB) &&
 1148		atomic_dec_and_test(&h->firmware_flash_in_progress))
 1149		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 1150}
 1151
 1152static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
 1153	struct CommandList *c, int reply_queue)
 1154{
 1155	dial_down_lockup_detection_during_fw_flash(h, c);
 1156	atomic_inc(&h->commands_outstanding);
 1157	/*
 1158	 * Check to see if the command is being retried.
 1159	 */
 1160	if (c->device && !c->retry_pending)
 1161		atomic_inc(&c->device->commands_outstanding);
 1162
 1163	reply_queue = h->reply_map[raw_smp_processor_id()];
 1164	switch (c->cmd_type) {
 1165	case CMD_IOACCEL1:
 1166		set_ioaccel1_performant_mode(h, c, reply_queue);
 1167		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
 1168		break;
 1169	case CMD_IOACCEL2:
 1170		set_ioaccel2_performant_mode(h, c, reply_queue);
 1171		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 1172		break;
 1173	case IOACCEL2_TMF:
 1174		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
 1175		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
 1176		break;
 1177	default:
 1178		set_performant_mode(h, c, reply_queue);
 1179		h->access.submit_command(h, c);
 1180	}
 1181}
 1182
 1183static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
 1184{
 
 
 
 1185	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
 1186}
 1187
 1188static inline int is_hba_lunid(unsigned char scsi3addr[])
 1189{
 1190	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
 1191}
 1192
 1193static inline int is_scsi_rev_5(struct ctlr_info *h)
 1194{
 1195	if (!h->hba_inquiry_data)
 1196		return 0;
 1197	if ((h->hba_inquiry_data[2] & 0x07) == 5)
 1198		return 1;
 1199	return 0;
 1200}
 1201
 1202static int hpsa_find_target_lun(struct ctlr_info *h,
 1203	unsigned char scsi3addr[], int bus, int *target, int *lun)
 1204{
 1205	/* finds an unused bus, target, lun for a new physical device
 1206	 * assumes h->devlock is held
 1207	 */
 1208	int i, found = 0;
 1209	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
 1210
 1211	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
 1212
 1213	for (i = 0; i < h->ndevices; i++) {
 1214		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
 1215			__set_bit(h->dev[i]->target, lun_taken);
 1216	}
 1217
 1218	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
 1219	if (i < HPSA_MAX_DEVICES) {
 1220		/* *bus = 1; */
 1221		*target = i;
 1222		*lun = 0;
 1223		found = 1;
 1224	}
 1225	return !found;
 1226}
 1227
 1228static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
 1229	struct hpsa_scsi_dev_t *dev, char *description)
 1230{
 1231#define LABEL_SIZE 25
 1232	char label[LABEL_SIZE];
 1233
 1234	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
 1235		return;
 1236
 1237	switch (dev->devtype) {
 1238	case TYPE_RAID:
 1239		snprintf(label, LABEL_SIZE, "controller");
 1240		break;
 1241	case TYPE_ENCLOSURE:
 1242		snprintf(label, LABEL_SIZE, "enclosure");
 1243		break;
 1244	case TYPE_DISK:
 1245	case TYPE_ZBC:
 1246		if (dev->external)
 1247			snprintf(label, LABEL_SIZE, "external");
 1248		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
 1249			snprintf(label, LABEL_SIZE, "%s",
 1250				raid_label[PHYSICAL_DRIVE]);
 1251		else
 1252			snprintf(label, LABEL_SIZE, "RAID-%s",
 1253				dev->raid_level > RAID_UNKNOWN ? "?" :
 1254				raid_label[dev->raid_level]);
 1255		break;
 1256	case TYPE_ROM:
 1257		snprintf(label, LABEL_SIZE, "rom");
 1258		break;
 1259	case TYPE_TAPE:
 1260		snprintf(label, LABEL_SIZE, "tape");
 1261		break;
 1262	case TYPE_MEDIUM_CHANGER:
 1263		snprintf(label, LABEL_SIZE, "changer");
 1264		break;
 1265	default:
 1266		snprintf(label, LABEL_SIZE, "UNKNOWN");
 1267		break;
 1268	}
 1269
 1270	dev_printk(level, &h->pdev->dev,
 1271			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
 1272			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
 1273			description,
 1274			scsi_device_type(dev->devtype),
 1275			dev->vendor,
 1276			dev->model,
 1277			label,
 1278			dev->offload_config ? '+' : '-',
 1279			dev->offload_to_be_enabled ? '+' : '-',
 1280			dev->expose_device);
 1281}
 1282
 1283/* Add an entry into h->dev[] array. */
 1284static int hpsa_scsi_add_entry(struct ctlr_info *h,
 1285		struct hpsa_scsi_dev_t *device,
 1286		struct hpsa_scsi_dev_t *added[], int *nadded)
 1287{
 1288	/* assumes h->devlock is held */
 1289	int n = h->ndevices;
 1290	int i;
 1291	unsigned char addr1[8], addr2[8];
 1292	struct hpsa_scsi_dev_t *sd;
 1293
 1294	if (n >= HPSA_MAX_DEVICES) {
 1295		dev_err(&h->pdev->dev, "too many devices, some will be "
 1296			"inaccessible.\n");
 1297		return -1;
 1298	}
 1299
 1300	/* physical devices do not have lun or target assigned until now. */
 1301	if (device->lun != -1)
 1302		/* Logical device, lun is already assigned. */
 1303		goto lun_assigned;
 1304
 1305	/* If this device a non-zero lun of a multi-lun device
 1306	 * byte 4 of the 8-byte LUN addr will contain the logical
 1307	 * unit no, zero otherwise.
 1308	 */
 1309	if (device->scsi3addr[4] == 0) {
 1310		/* This is not a non-zero lun of a multi-lun device */
 1311		if (hpsa_find_target_lun(h, device->scsi3addr,
 1312			device->bus, &device->target, &device->lun) != 0)
 1313			return -1;
 1314		goto lun_assigned;
 1315	}
 1316
 1317	/* This is a non-zero lun of a multi-lun device.
 1318	 * Search through our list and find the device which
 1319	 * has the same 8 byte LUN address, excepting byte 4 and 5.
 1320	 * Assign the same bus and target for this new LUN.
 1321	 * Use the logical unit number from the firmware.
 1322	 */
 1323	memcpy(addr1, device->scsi3addr, 8);
 1324	addr1[4] = 0;
 1325	addr1[5] = 0;
 1326	for (i = 0; i < n; i++) {
 1327		sd = h->dev[i];
 1328		memcpy(addr2, sd->scsi3addr, 8);
 1329		addr2[4] = 0;
 1330		addr2[5] = 0;
 1331		/* differ only in byte 4 and 5? */
 1332		if (memcmp(addr1, addr2, 8) == 0) {
 1333			device->bus = sd->bus;
 1334			device->target = sd->target;
 1335			device->lun = device->scsi3addr[4];
 1336			break;
 1337		}
 1338	}
 1339	if (device->lun == -1) {
 1340		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
 1341			" suspect firmware bug or unsupported hardware "
 1342			"configuration.\n");
 1343		return -1;
 1344	}
 1345
 1346lun_assigned:
 1347
 1348	h->dev[n] = device;
 1349	h->ndevices++;
 1350	added[*nadded] = device;
 1351	(*nadded)++;
 1352	hpsa_show_dev_msg(KERN_INFO, h, device,
 1353		device->expose_device ? "added" : "masked");
 1354	return 0;
 1355}
 1356
 1357/*
 1358 * Called during a scan operation.
 1359 *
 1360 * Update an entry in h->dev[] array.
 1361 */
 1362static void hpsa_scsi_update_entry(struct ctlr_info *h,
 1363	int entry, struct hpsa_scsi_dev_t *new_entry)
 1364{
 1365	/* assumes h->devlock is held */
 1366	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1367
 1368	/* Raid level changed. */
 1369	h->dev[entry]->raid_level = new_entry->raid_level;
 1370
 1371	/*
 1372	 * ioacccel_handle may have changed for a dual domain disk
 1373	 */
 1374	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 1375
 1376	/* Raid offload parameters changed.  Careful about the ordering. */
 1377	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
 1378		/*
 1379		 * if drive is newly offload_enabled, we want to copy the
 1380		 * raid map data first.  If previously offload_enabled and
 1381		 * offload_config were set, raid map data had better be
 1382		 * the same as it was before. If raid map data has changed
 1383		 * then it had better be the case that
 1384		 * h->dev[entry]->offload_enabled is currently 0.
 1385		 */
 1386		h->dev[entry]->raid_map = new_entry->raid_map;
 1387		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 1388	}
 1389	if (new_entry->offload_to_be_enabled) {
 1390		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
 1391		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
 1392	}
 1393	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
 1394	h->dev[entry]->offload_config = new_entry->offload_config;
 1395	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
 1396	h->dev[entry]->queue_depth = new_entry->queue_depth;
 1397
 1398	/*
 1399	 * We can turn off ioaccel offload now, but need to delay turning
 1400	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
 1401	 * can't do that until all the devices are updated.
 1402	 */
 1403	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
 1404
 1405	/*
 1406	 * turn ioaccel off immediately if told to do so.
 1407	 */
 1408	if (!new_entry->offload_to_be_enabled)
 1409		h->dev[entry]->offload_enabled = 0;
 1410
 1411	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
 1412}
 1413
 1414/* Replace an entry from h->dev[] array. */
 1415static void hpsa_scsi_replace_entry(struct ctlr_info *h,
 1416	int entry, struct hpsa_scsi_dev_t *new_entry,
 1417	struct hpsa_scsi_dev_t *added[], int *nadded,
 1418	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 1419{
 1420	/* assumes h->devlock is held */
 1421	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1422	removed[*nremoved] = h->dev[entry];
 1423	(*nremoved)++;
 1424
 1425	/*
 1426	 * New physical devices won't have target/lun assigned yet
 1427	 * so we need to preserve the values in the slot we are replacing.
 1428	 */
 1429	if (new_entry->target == -1) {
 1430		new_entry->target = h->dev[entry]->target;
 1431		new_entry->lun = h->dev[entry]->lun;
 1432	}
 1433
 1434	h->dev[entry] = new_entry;
 1435	added[*nadded] = new_entry;
 1436	(*nadded)++;
 1437
 1438	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
 1439}
 1440
 1441/* Remove an entry from h->dev[] array. */
 1442static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
 1443	struct hpsa_scsi_dev_t *removed[], int *nremoved)
 1444{
 1445	/* assumes h->devlock is held */
 1446	int i;
 1447	struct hpsa_scsi_dev_t *sd;
 1448
 1449	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
 1450
 1451	sd = h->dev[entry];
 1452	removed[*nremoved] = h->dev[entry];
 1453	(*nremoved)++;
 1454
 1455	for (i = entry; i < h->ndevices-1; i++)
 1456		h->dev[i] = h->dev[i+1];
 1457	h->ndevices--;
 1458	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
 1459}
 1460
 1461#define SCSI3ADDR_EQ(a, b) ( \
 1462	(a)[7] == (b)[7] && \
 1463	(a)[6] == (b)[6] && \
 1464	(a)[5] == (b)[5] && \
 1465	(a)[4] == (b)[4] && \
 1466	(a)[3] == (b)[3] && \
 1467	(a)[2] == (b)[2] && \
 1468	(a)[1] == (b)[1] && \
 1469	(a)[0] == (b)[0])
 1470
 1471static void fixup_botched_add(struct ctlr_info *h,
 1472	struct hpsa_scsi_dev_t *added)
 1473{
 1474	/* called when scsi_add_device fails in order to re-adjust
 1475	 * h->dev[] to match the mid layer's view.
 1476	 */
 1477	unsigned long flags;
 1478	int i, j;
 1479
 1480	spin_lock_irqsave(&h->lock, flags);
 1481	for (i = 0; i < h->ndevices; i++) {
 1482		if (h->dev[i] == added) {
 1483			for (j = i; j < h->ndevices-1; j++)
 1484				h->dev[j] = h->dev[j+1];
 1485			h->ndevices--;
 1486			break;
 1487		}
 1488	}
 1489	spin_unlock_irqrestore(&h->lock, flags);
 1490	kfree(added);
 1491}
 1492
 1493static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
 1494	struct hpsa_scsi_dev_t *dev2)
 1495{
 1496	/* we compare everything except lun and target as these
 1497	 * are not yet assigned.  Compare parts likely
 1498	 * to differ first
 1499	 */
 1500	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
 1501		sizeof(dev1->scsi3addr)) != 0)
 1502		return 0;
 1503	if (memcmp(dev1->device_id, dev2->device_id,
 1504		sizeof(dev1->device_id)) != 0)
 1505		return 0;
 1506	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
 1507		return 0;
 1508	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
 1509		return 0;
 1510	if (dev1->devtype != dev2->devtype)
 1511		return 0;
 1512	if (dev1->bus != dev2->bus)
 1513		return 0;
 1514	return 1;
 1515}
 1516
 1517static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
 1518	struct hpsa_scsi_dev_t *dev2)
 1519{
 1520	/* Device attributes that can change, but don't mean
 1521	 * that the device is a different device, nor that the OS
 1522	 * needs to be told anything about the change.
 1523	 */
 1524	if (dev1->raid_level != dev2->raid_level)
 1525		return 1;
 1526	if (dev1->offload_config != dev2->offload_config)
 1527		return 1;
 1528	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
 1529		return 1;
 1530	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
 1531		if (dev1->queue_depth != dev2->queue_depth)
 1532			return 1;
 1533	/*
 1534	 * This can happen for dual domain devices. An active
 1535	 * path change causes the ioaccel handle to change
 1536	 *
 1537	 * for example note the handle differences between p0 and p1
 1538	 * Device                    WWN               ,WWN hash,Handle
 1539	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
 1540	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
 1541	 */
 1542	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
 1543		return 1;
 1544	return 0;
 1545}
 1546
 1547/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 1548 * and return needle location in *index.  If scsi3addr matches, but not
 1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
 1550 * location in *index.
 1551 * In the case of a minor device attribute change, such as RAID level, just
 1552 * return DEVICE_UPDATED, along with the updated device's location in index.
 1553 * If needle not found, return DEVICE_NOT_FOUND.
 1554 */
 1555static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
 1556	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
 1557	int *index)
 1558{
 1559	int i;
 1560#define DEVICE_NOT_FOUND 0
 1561#define DEVICE_CHANGED 1
 1562#define DEVICE_SAME 2
 1563#define DEVICE_UPDATED 3
 1564	if (needle == NULL)
 1565		return DEVICE_NOT_FOUND;
 1566
 1567	for (i = 0; i < haystack_size; i++) {
 1568		if (haystack[i] == NULL) /* previously removed. */
 1569			continue;
 1570		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
 1571			*index = i;
 1572			if (device_is_the_same(needle, haystack[i])) {
 1573				if (device_updated(needle, haystack[i]))
 1574					return DEVICE_UPDATED;
 1575				return DEVICE_SAME;
 1576			} else {
 1577				/* Keep offline devices offline */
 1578				if (needle->volume_offline)
 1579					return DEVICE_NOT_FOUND;
 1580				return DEVICE_CHANGED;
 1581			}
 1582		}
 1583	}
 1584	*index = -1;
 1585	return DEVICE_NOT_FOUND;
 1586}
 1587
 1588static void hpsa_monitor_offline_device(struct ctlr_info *h,
 1589					unsigned char scsi3addr[])
 1590{
 1591	struct offline_device_entry *device;
 1592	unsigned long flags;
 1593
 1594	/* Check to see if device is already on the list */
 1595	spin_lock_irqsave(&h->offline_device_lock, flags);
 1596	list_for_each_entry(device, &h->offline_device_list, offline_list) {
 1597		if (memcmp(device->scsi3addr, scsi3addr,
 1598			sizeof(device->scsi3addr)) == 0) {
 1599			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1600			return;
 1601		}
 1602	}
 1603	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1604
 1605	/* Device is not on the list, add it. */
 1606	device = kmalloc(sizeof(*device), GFP_KERNEL);
 1607	if (!device)
 1608		return;
 1609
 1610	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
 1611	spin_lock_irqsave(&h->offline_device_lock, flags);
 1612	list_add_tail(&device->offline_list, &h->offline_device_list);
 1613	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 1614}
 1615
 1616/* Print a message explaining various offline volume states */
 1617static void hpsa_show_volume_status(struct ctlr_info *h,
 1618	struct hpsa_scsi_dev_t *sd)
 1619{
 1620	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
 1621		dev_info(&h->pdev->dev,
 1622			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
 1623			h->scsi_host->host_no,
 1624			sd->bus, sd->target, sd->lun);
 1625	switch (sd->volume_offline) {
 1626	case HPSA_LV_OK:
 1627		break;
 1628	case HPSA_LV_UNDERGOING_ERASE:
 1629		dev_info(&h->pdev->dev,
 1630			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
 1631			h->scsi_host->host_no,
 1632			sd->bus, sd->target, sd->lun);
 1633		break;
 1634	case HPSA_LV_NOT_AVAILABLE:
 1635		dev_info(&h->pdev->dev,
 1636			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
 1637			h->scsi_host->host_no,
 1638			sd->bus, sd->target, sd->lun);
 1639		break;
 1640	case HPSA_LV_UNDERGOING_RPI:
 1641		dev_info(&h->pdev->dev,
 1642			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
 1643			h->scsi_host->host_no,
 1644			sd->bus, sd->target, sd->lun);
 1645		break;
 1646	case HPSA_LV_PENDING_RPI:
 1647		dev_info(&h->pdev->dev,
 1648			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
 1649			h->scsi_host->host_no,
 1650			sd->bus, sd->target, sd->lun);
 1651		break;
 1652	case HPSA_LV_ENCRYPTED_NO_KEY:
 1653		dev_info(&h->pdev->dev,
 1654			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
 1655			h->scsi_host->host_no,
 1656			sd->bus, sd->target, sd->lun);
 1657		break;
 1658	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 1659		dev_info(&h->pdev->dev,
 1660			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
 1661			h->scsi_host->host_no,
 1662			sd->bus, sd->target, sd->lun);
 1663		break;
 1664	case HPSA_LV_UNDERGOING_ENCRYPTION:
 1665		dev_info(&h->pdev->dev,
 1666			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
 1667			h->scsi_host->host_no,
 1668			sd->bus, sd->target, sd->lun);
 1669		break;
 1670	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 1671		dev_info(&h->pdev->dev,
 1672			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
 1673			h->scsi_host->host_no,
 1674			sd->bus, sd->target, sd->lun);
 1675		break;
 1676	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 1677		dev_info(&h->pdev->dev,
 1678			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
 1679			h->scsi_host->host_no,
 1680			sd->bus, sd->target, sd->lun);
 1681		break;
 1682	case HPSA_LV_PENDING_ENCRYPTION:
 1683		dev_info(&h->pdev->dev,
 1684			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
 1685			h->scsi_host->host_no,
 1686			sd->bus, sd->target, sd->lun);
 1687		break;
 1688	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
 1689		dev_info(&h->pdev->dev,
 1690			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
 1691			h->scsi_host->host_no,
 1692			sd->bus, sd->target, sd->lun);
 1693		break;
 1694	}
 1695}
 1696
 1697/*
 1698 * Figure the list of physical drive pointers for a logical drive with
 1699 * raid offload configured.
 1700 */
 1701static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
 1702				struct hpsa_scsi_dev_t *dev[], int ndevices,
 1703				struct hpsa_scsi_dev_t *logical_drive)
 1704{
 1705	struct raid_map_data *map = &logical_drive->raid_map;
 1706	struct raid_map_disk_data *dd = &map->data[0];
 1707	int i, j;
 1708	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 1709				le16_to_cpu(map->metadata_disks_per_row);
 1710	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
 1711				le16_to_cpu(map->layout_map_count) *
 1712				total_disks_per_row;
 1713	int nphys_disk = le16_to_cpu(map->layout_map_count) *
 1714				total_disks_per_row;
 1715	int qdepth;
 1716
 1717	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
 1718		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
 1719
 1720	logical_drive->nphysical_disks = nraid_map_entries;
 1721
 1722	qdepth = 0;
 1723	for (i = 0; i < nraid_map_entries; i++) {
 1724		logical_drive->phys_disk[i] = NULL;
 1725		if (!logical_drive->offload_config)
 1726			continue;
 1727		for (j = 0; j < ndevices; j++) {
 1728			if (dev[j] == NULL)
 1729				continue;
 1730			if (dev[j]->devtype != TYPE_DISK &&
 1731			    dev[j]->devtype != TYPE_ZBC)
 1732				continue;
 1733			if (is_logical_device(dev[j]))
 1734				continue;
 1735			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
 1736				continue;
 1737
 1738			logical_drive->phys_disk[i] = dev[j];
 1739			if (i < nphys_disk)
 1740				qdepth = min(h->nr_cmds, qdepth +
 1741				    logical_drive->phys_disk[i]->queue_depth);
 1742			break;
 1743		}
 1744
 1745		/*
 1746		 * This can happen if a physical drive is removed and
 1747		 * the logical drive is degraded.  In that case, the RAID
 1748		 * map data will refer to a physical disk which isn't actually
 1749		 * present.  And in that case offload_enabled should already
 1750		 * be 0, but we'll turn it off here just in case
 1751		 */
 1752		if (!logical_drive->phys_disk[i]) {
 1753			dev_warn(&h->pdev->dev,
 1754				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
 1755				__func__,
 1756				h->scsi_host->host_no, logical_drive->bus,
 1757				logical_drive->target, logical_drive->lun);
 1758			hpsa_turn_off_ioaccel_for_device(logical_drive);
 
 1759			logical_drive->queue_depth = 8;
 1760		}
 1761	}
 1762	if (nraid_map_entries)
 1763		/*
 1764		 * This is correct for reads, too high for full stripe writes,
 1765		 * way too high for partial stripe writes
 1766		 */
 1767		logical_drive->queue_depth = qdepth;
 1768	else {
 1769		if (logical_drive->external)
 1770			logical_drive->queue_depth = EXTERNAL_QD;
 1771		else
 1772			logical_drive->queue_depth = h->nr_cmds;
 1773	}
 1774}
 1775
 1776static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
 1777				struct hpsa_scsi_dev_t *dev[], int ndevices)
 1778{
 1779	int i;
 1780
 1781	for (i = 0; i < ndevices; i++) {
 1782		if (dev[i] == NULL)
 1783			continue;
 1784		if (dev[i]->devtype != TYPE_DISK &&
 1785		    dev[i]->devtype != TYPE_ZBC)
 1786			continue;
 1787		if (!is_logical_device(dev[i]))
 1788			continue;
 1789
 1790		/*
 1791		 * If offload is currently enabled, the RAID map and
 1792		 * phys_disk[] assignment *better* not be changing
 1793		 * because we would be changing ioaccel phsy_disk[] pointers
 1794		 * on a ioaccel volume processing I/O requests.
 1795		 *
 1796		 * If an ioaccel volume status changed, initially because it was
 1797		 * re-configured and thus underwent a transformation, or
 1798		 * a drive failed, we would have received a state change
 1799		 * request and ioaccel should have been turned off. When the
 1800		 * transformation completes, we get another state change
 1801		 * request to turn ioaccel back on. In this case, we need
 1802		 * to update the ioaccel information.
 1803		 *
 1804		 * Thus: If it is not currently enabled, but will be after
 1805		 * the scan completes, make sure the ioaccel pointers
 1806		 * are up to date.
 1807		 */
 1808
 1809		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
 1810			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
 1811	}
 1812}
 1813
 1814static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
 1815{
 1816	int rc = 0;
 1817
 1818	if (!h->scsi_host)
 1819		return 1;
 1820
 1821	if (is_logical_device(device)) /* RAID */
 1822		rc = scsi_add_device(h->scsi_host, device->bus,
 1823					device->target, device->lun);
 1824	else /* HBA */
 1825		rc = hpsa_add_sas_device(h->sas_host, device);
 1826
 1827	return rc;
 1828}
 1829
 1830static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
 1831						struct hpsa_scsi_dev_t *dev)
 1832{
 1833	int i;
 1834	int count = 0;
 1835
 1836	for (i = 0; i < h->nr_cmds; i++) {
 1837		struct CommandList *c = h->cmd_pool + i;
 1838		int refcount = atomic_inc_return(&c->refcount);
 1839
 1840		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
 1841				dev->scsi3addr)) {
 1842			unsigned long flags;
 1843
 1844			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
 1845			if (!hpsa_is_cmd_idle(c))
 1846				++count;
 1847			spin_unlock_irqrestore(&h->lock, flags);
 1848		}
 1849
 1850		cmd_free(h, c);
 1851	}
 1852
 1853	return count;
 1854}
 1855
 1856#define NUM_WAIT 20
 1857static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
 1858						struct hpsa_scsi_dev_t *device)
 1859{
 1860	int cmds = 0;
 1861	int waits = 0;
 1862	int num_wait = NUM_WAIT;
 1863
 1864	if (device->external)
 1865		num_wait = HPSA_EH_PTRAID_TIMEOUT;
 1866
 1867	while (1) {
 1868		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
 1869		if (cmds == 0)
 1870			break;
 1871		if (++waits > num_wait)
 1872			break;
 1873		msleep(1000);
 1874	}
 1875
 1876	if (waits > num_wait) {
 1877		dev_warn(&h->pdev->dev,
 1878			"%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
 1879			__func__,
 1880			h->scsi_host->host_no,
 1881			device->bus, device->target, device->lun, cmds);
 1882	}
 1883}
 1884
 1885static void hpsa_remove_device(struct ctlr_info *h,
 1886			struct hpsa_scsi_dev_t *device)
 1887{
 1888	struct scsi_device *sdev = NULL;
 1889
 1890	if (!h->scsi_host)
 1891		return;
 1892
 1893	/*
 1894	 * Allow for commands to drain
 1895	 */
 1896	device->removed = 1;
 1897	hpsa_wait_for_outstanding_commands_for_dev(h, device);
 1898
 1899	if (is_logical_device(device)) { /* RAID */
 1900		sdev = scsi_device_lookup(h->scsi_host, device->bus,
 1901						device->target, device->lun);
 1902		if (sdev) {
 1903			scsi_remove_device(sdev);
 1904			scsi_device_put(sdev);
 1905		} else {
 1906			/*
 1907			 * We don't expect to get here.  Future commands
 1908			 * to this device will get a selection timeout as
 1909			 * if the device were gone.
 1910			 */
 1911			hpsa_show_dev_msg(KERN_WARNING, h, device,
 1912					"didn't find device for removal.");
 1913		}
 1914	} else { /* HBA */
 1915
 1916		hpsa_remove_sas_device(device);
 1917	}
 1918}
 1919
 1920static void adjust_hpsa_scsi_table(struct ctlr_info *h,
 1921	struct hpsa_scsi_dev_t *sd[], int nsds)
 1922{
 1923	/* sd contains scsi3 addresses and devtypes, and inquiry
 1924	 * data.  This function takes what's in sd to be the current
 1925	 * reality and updates h->dev[] to reflect that reality.
 1926	 */
 1927	int i, entry, device_change, changes = 0;
 1928	struct hpsa_scsi_dev_t *csd;
 1929	unsigned long flags;
 1930	struct hpsa_scsi_dev_t **added, **removed;
 1931	int nadded, nremoved;
 1932
 1933	/*
 1934	 * A reset can cause a device status to change
 1935	 * re-schedule the scan to see what happened.
 1936	 */
 1937	spin_lock_irqsave(&h->reset_lock, flags);
 1938	if (h->reset_in_progress) {
 1939		h->drv_req_rescan = 1;
 1940		spin_unlock_irqrestore(&h->reset_lock, flags);
 1941		return;
 1942	}
 1943	spin_unlock_irqrestore(&h->reset_lock, flags);
 1944
 1945	added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
 1946	removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
 1947
 1948	if (!added || !removed) {
 1949		dev_warn(&h->pdev->dev, "out of memory in "
 1950			"adjust_hpsa_scsi_table\n");
 1951		goto free_and_out;
 1952	}
 1953
 1954	spin_lock_irqsave(&h->devlock, flags);
 1955
 1956	/* find any devices in h->dev[] that are not in
 1957	 * sd[] and remove them from h->dev[], and for any
 1958	 * devices which have changed, remove the old device
 1959	 * info and add the new device info.
 1960	 * If minor device attributes change, just update
 1961	 * the existing device structure.
 1962	 */
 1963	i = 0;
 1964	nremoved = 0;
 1965	nadded = 0;
 1966	while (i < h->ndevices) {
 1967		csd = h->dev[i];
 1968		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
 1969		if (device_change == DEVICE_NOT_FOUND) {
 1970			changes++;
 1971			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
 1972			continue; /* remove ^^^, hence i not incremented */
 1973		} else if (device_change == DEVICE_CHANGED) {
 1974			changes++;
 1975			hpsa_scsi_replace_entry(h, i, sd[entry],
 1976				added, &nadded, removed, &nremoved);
 1977			/* Set it to NULL to prevent it from being freed
 1978			 * at the bottom of hpsa_update_scsi_devices()
 1979			 */
 1980			sd[entry] = NULL;
 1981		} else if (device_change == DEVICE_UPDATED) {
 1982			hpsa_scsi_update_entry(h, i, sd[entry]);
 1983		}
 1984		i++;
 1985	}
 1986
 1987	/* Now, make sure every device listed in sd[] is also
 1988	 * listed in h->dev[], adding them if they aren't found
 1989	 */
 1990
 1991	for (i = 0; i < nsds; i++) {
 1992		if (!sd[i]) /* if already added above. */
 1993			continue;
 1994
 1995		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
 1996		 * as the SCSI mid-layer does not handle such devices well.
 1997		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
 1998		 * at 160Hz, and prevents the system from coming up.
 1999		 */
 2000		if (sd[i]->volume_offline) {
 2001			hpsa_show_volume_status(h, sd[i]);
 2002			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
 2003			continue;
 2004		}
 2005
 2006		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
 2007					h->ndevices, &entry);
 2008		if (device_change == DEVICE_NOT_FOUND) {
 2009			changes++;
 2010			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
 2011				break;
 2012			sd[i] = NULL; /* prevent from being freed later. */
 2013		} else if (device_change == DEVICE_CHANGED) {
 2014			/* should never happen... */
 2015			changes++;
 2016			dev_warn(&h->pdev->dev,
 2017				"device unexpectedly changed.\n");
 2018			/* but if it does happen, we just ignore that device */
 2019		}
 2020	}
 2021	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
 2022
 2023	/*
 2024	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
 2025	 * any logical drives that need it enabled.
 2026	 *
 2027	 * The raid map should be current by now.
 2028	 *
 2029	 * We are updating the device list used for I/O requests.
 2030	 */
 2031	for (i = 0; i < h->ndevices; i++) {
 2032		if (h->dev[i] == NULL)
 2033			continue;
 2034		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
 2035	}
 2036
 2037	spin_unlock_irqrestore(&h->devlock, flags);
 2038
 2039	/* Monitor devices which are in one of several NOT READY states to be
 2040	 * brought online later. This must be done without holding h->devlock,
 2041	 * so don't touch h->dev[]
 2042	 */
 2043	for (i = 0; i < nsds; i++) {
 2044		if (!sd[i]) /* if already added above. */
 2045			continue;
 2046		if (sd[i]->volume_offline)
 2047			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
 2048	}
 2049
 2050	/* Don't notify scsi mid layer of any changes the first time through
 2051	 * (or if there are no changes) scsi_scan_host will do it later the
 2052	 * first time through.
 2053	 */
 2054	if (!changes)
 2055		goto free_and_out;
 2056
 2057	/* Notify scsi mid layer of any removed devices */
 2058	for (i = 0; i < nremoved; i++) {
 2059		if (removed[i] == NULL)
 2060			continue;
 2061		if (removed[i]->expose_device)
 2062			hpsa_remove_device(h, removed[i]);
 2063		kfree(removed[i]);
 2064		removed[i] = NULL;
 2065	}
 2066
 2067	/* Notify scsi mid layer of any added devices */
 2068	for (i = 0; i < nadded; i++) {
 2069		int rc = 0;
 2070
 2071		if (added[i] == NULL)
 2072			continue;
 2073		if (!(added[i]->expose_device))
 2074			continue;
 2075		rc = hpsa_add_device(h, added[i]);
 2076		if (!rc)
 2077			continue;
 2078		dev_warn(&h->pdev->dev,
 2079			"addition failed %d, device not added.", rc);
 2080		/* now we have to remove it from h->dev,
 2081		 * since it didn't get added to scsi mid layer
 2082		 */
 2083		fixup_botched_add(h, added[i]);
 2084		h->drv_req_rescan = 1;
 2085	}
 2086
 2087free_and_out:
 2088	kfree(added);
 2089	kfree(removed);
 2090}
 2091
 2092/*
 2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
 2094 * Assume's h->devlock is held.
 2095 */
 2096static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
 2097	int bus, int target, int lun)
 2098{
 2099	int i;
 2100	struct hpsa_scsi_dev_t *sd;
 2101
 2102	for (i = 0; i < h->ndevices; i++) {
 2103		sd = h->dev[i];
 2104		if (sd->bus == bus && sd->target == target && sd->lun == lun)
 2105			return sd;
 2106	}
 2107	return NULL;
 2108}
 2109
 2110static int hpsa_slave_alloc(struct scsi_device *sdev)
 2111{
 2112	struct hpsa_scsi_dev_t *sd = NULL;
 2113	unsigned long flags;
 2114	struct ctlr_info *h;
 2115
 2116	h = sdev_to_hba(sdev);
 2117	spin_lock_irqsave(&h->devlock, flags);
 2118	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
 2119		struct scsi_target *starget;
 2120		struct sas_rphy *rphy;
 2121
 2122		starget = scsi_target(sdev);
 2123		rphy = target_to_rphy(starget);
 2124		sd = hpsa_find_device_by_sas_rphy(h, rphy);
 2125		if (sd) {
 2126			sd->target = sdev_id(sdev);
 2127			sd->lun = sdev->lun;
 2128		}
 2129	}
 2130	if (!sd)
 2131		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
 2132					sdev_id(sdev), sdev->lun);
 2133
 2134	if (sd && sd->expose_device) {
 2135		atomic_set(&sd->ioaccel_cmds_out, 0);
 2136		sdev->hostdata = sd;
 2137	} else
 2138		sdev->hostdata = NULL;
 2139	spin_unlock_irqrestore(&h->devlock, flags);
 2140	return 0;
 2141}
 2142
 2143/* configure scsi device based on internal per-device structure */
 2144#define CTLR_TIMEOUT (120 * HZ)
 2145static int hpsa_slave_configure(struct scsi_device *sdev)
 2146{
 2147	struct hpsa_scsi_dev_t *sd;
 2148	int queue_depth;
 2149
 2150	sd = sdev->hostdata;
 2151	sdev->no_uld_attach = !sd || !sd->expose_device;
 2152
 2153	if (sd) {
 2154		sd->was_removed = 0;
 2155		queue_depth = sd->queue_depth != 0 ?
 2156				sd->queue_depth : sdev->host->can_queue;
 2157		if (sd->external) {
 2158			queue_depth = EXTERNAL_QD;
 2159			sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
 2160			blk_queue_rq_timeout(sdev->request_queue,
 2161						HPSA_EH_PTRAID_TIMEOUT);
 2162		}
 2163		if (is_hba_lunid(sd->scsi3addr)) {
 2164			sdev->eh_timeout = CTLR_TIMEOUT;
 2165			blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
 2166		}
 2167	} else {
 2168		queue_depth = sdev->host->can_queue;
 2169	}
 2170
 2171	scsi_change_queue_depth(sdev, queue_depth);
 2172
 2173	return 0;
 2174}
 2175
 2176static void hpsa_slave_destroy(struct scsi_device *sdev)
 2177{
 2178	struct hpsa_scsi_dev_t *hdev = NULL;
 2179
 2180	hdev = sdev->hostdata;
 2181
 2182	if (hdev)
 2183		hdev->was_removed = 1;
 2184}
 2185
 2186static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 2187{
 2188	int i;
 2189
 2190	if (!h->ioaccel2_cmd_sg_list)
 2191		return;
 2192	for (i = 0; i < h->nr_cmds; i++) {
 2193		kfree(h->ioaccel2_cmd_sg_list[i]);
 2194		h->ioaccel2_cmd_sg_list[i] = NULL;
 2195	}
 2196	kfree(h->ioaccel2_cmd_sg_list);
 2197	h->ioaccel2_cmd_sg_list = NULL;
 2198}
 2199
 2200static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
 2201{
 2202	int i;
 2203
 2204	if (h->chainsize <= 0)
 2205		return 0;
 2206
 2207	h->ioaccel2_cmd_sg_list =
 2208		kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
 2209					GFP_KERNEL);
 2210	if (!h->ioaccel2_cmd_sg_list)
 2211		return -ENOMEM;
 2212	for (i = 0; i < h->nr_cmds; i++) {
 2213		h->ioaccel2_cmd_sg_list[i] =
 2214			kmalloc_array(h->maxsgentries,
 2215				      sizeof(*h->ioaccel2_cmd_sg_list[i]),
 2216				      GFP_KERNEL);
 2217		if (!h->ioaccel2_cmd_sg_list[i])
 2218			goto clean;
 2219	}
 2220	return 0;
 2221
 2222clean:
 2223	hpsa_free_ioaccel2_sg_chain_blocks(h);
 2224	return -ENOMEM;
 2225}
 2226
 2227static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
 2228{
 2229	int i;
 2230
 2231	if (!h->cmd_sg_list)
 2232		return;
 2233	for (i = 0; i < h->nr_cmds; i++) {
 2234		kfree(h->cmd_sg_list[i]);
 2235		h->cmd_sg_list[i] = NULL;
 2236	}
 2237	kfree(h->cmd_sg_list);
 2238	h->cmd_sg_list = NULL;
 2239}
 2240
 2241static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
 2242{
 2243	int i;
 2244
 2245	if (h->chainsize <= 0)
 2246		return 0;
 2247
 2248	h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
 2249				 GFP_KERNEL);
 2250	if (!h->cmd_sg_list)
 2251		return -ENOMEM;
 2252
 2253	for (i = 0; i < h->nr_cmds; i++) {
 2254		h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
 2255						  sizeof(*h->cmd_sg_list[i]),
 2256						  GFP_KERNEL);
 2257		if (!h->cmd_sg_list[i])
 2258			goto clean;
 2259
 2260	}
 2261	return 0;
 2262
 2263clean:
 2264	hpsa_free_sg_chain_blocks(h);
 2265	return -ENOMEM;
 2266}
 2267
 2268static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
 2269	struct io_accel2_cmd *cp, struct CommandList *c)
 2270{
 2271	struct ioaccel2_sg_element *chain_block;
 2272	u64 temp64;
 2273	u32 chain_size;
 2274
 2275	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
 2276	chain_size = le32_to_cpu(cp->sg[0].length);
 2277	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
 2278				DMA_TO_DEVICE);
 2279	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 2280		/* prevent subsequent unmapping */
 2281		cp->sg->address = 0;
 2282		return -1;
 2283	}
 2284	cp->sg->address = cpu_to_le64(temp64);
 2285	return 0;
 2286}
 2287
 2288static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
 2289	struct io_accel2_cmd *cp)
 2290{
 2291	struct ioaccel2_sg_element *chain_sg;
 2292	u64 temp64;
 2293	u32 chain_size;
 2294
 2295	chain_sg = cp->sg;
 2296	temp64 = le64_to_cpu(chain_sg->address);
 2297	chain_size = le32_to_cpu(cp->sg[0].length);
 2298	dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
 2299}
 2300
 2301static int hpsa_map_sg_chain_block(struct ctlr_info *h,
 2302	struct CommandList *c)
 2303{
 2304	struct SGDescriptor *chain_sg, *chain_block;
 2305	u64 temp64;
 2306	u32 chain_len;
 2307
 2308	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 2309	chain_block = h->cmd_sg_list[c->cmdindex];
 2310	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
 2311	chain_len = sizeof(*chain_sg) *
 2312		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
 2313	chain_sg->Len = cpu_to_le32(chain_len);
 2314	temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
 2315				DMA_TO_DEVICE);
 2316	if (dma_mapping_error(&h->pdev->dev, temp64)) {
 2317		/* prevent subsequent unmapping */
 2318		chain_sg->Addr = cpu_to_le64(0);
 2319		return -1;
 2320	}
 2321	chain_sg->Addr = cpu_to_le64(temp64);
 2322	return 0;
 2323}
 2324
 2325static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
 2326	struct CommandList *c)
 2327{
 2328	struct SGDescriptor *chain_sg;
 2329
 2330	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
 2331		return;
 2332
 2333	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
 2334	dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
 2335			le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
 2336}
 2337
 2338
 2339/* Decode the various types of errors on ioaccel2 path.
 2340 * Return 1 for any error that should generate a RAID path retry.
 2341 * Return 0 for errors that don't require a RAID path retry.
 2342 */
 2343static int handle_ioaccel_mode2_error(struct ctlr_info *h,
 2344					struct CommandList *c,
 2345					struct scsi_cmnd *cmd,
 2346					struct io_accel2_cmd *c2,
 2347					struct hpsa_scsi_dev_t *dev)
 2348{
 2349	int data_len;
 2350	int retry = 0;
 2351	u32 ioaccel2_resid = 0;
 2352
 2353	switch (c2->error_data.serv_response) {
 2354	case IOACCEL2_SERV_RESPONSE_COMPLETE:
 2355		switch (c2->error_data.status) {
 2356		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
 2357			if (cmd)
 2358				cmd->result = 0;
 2359			break;
 2360		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
 2361			cmd->result |= SAM_STAT_CHECK_CONDITION;
 2362			if (c2->error_data.data_present !=
 2363					IOACCEL2_SENSE_DATA_PRESENT) {
 2364				memset(cmd->sense_buffer, 0,
 2365					SCSI_SENSE_BUFFERSIZE);
 2366				break;
 2367			}
 2368			/* copy the sense data */
 2369			data_len = c2->error_data.sense_data_len;
 2370			if (data_len > SCSI_SENSE_BUFFERSIZE)
 2371				data_len = SCSI_SENSE_BUFFERSIZE;
 2372			if (data_len > sizeof(c2->error_data.sense_data_buff))
 2373				data_len =
 2374					sizeof(c2->error_data.sense_data_buff);
 2375			memcpy(cmd->sense_buffer,
 2376				c2->error_data.sense_data_buff, data_len);
 2377			retry = 1;
 2378			break;
 2379		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
 2380			retry = 1;
 2381			break;
 2382		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
 2383			retry = 1;
 2384			break;
 2385		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
 2386			retry = 1;
 2387			break;
 2388		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
 2389			retry = 1;
 2390			break;
 2391		default:
 2392			retry = 1;
 2393			break;
 2394		}
 2395		break;
 2396	case IOACCEL2_SERV_RESPONSE_FAILURE:
 2397		switch (c2->error_data.status) {
 2398		case IOACCEL2_STATUS_SR_IO_ERROR:
 2399		case IOACCEL2_STATUS_SR_IO_ABORTED:
 2400		case IOACCEL2_STATUS_SR_OVERRUN:
 2401			retry = 1;
 2402			break;
 2403		case IOACCEL2_STATUS_SR_UNDERRUN:
 2404			cmd->result = (DID_OK << 16);		/* host byte */
 
 2405			ioaccel2_resid = get_unaligned_le32(
 2406						&c2->error_data.resid_cnt[0]);
 2407			scsi_set_resid(cmd, ioaccel2_resid);
 2408			break;
 2409		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
 2410		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
 2411		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
 2412			/*
 2413			 * Did an HBA disk disappear? We will eventually
 2414			 * get a state change event from the controller but
 2415			 * in the meantime, we need to tell the OS that the
 2416			 * HBA disk is no longer there and stop I/O
 2417			 * from going down. This allows the potential re-insert
 2418			 * of the disk to get the same device node.
 2419			 */
 2420			if (dev->physical_device && dev->expose_device) {
 2421				cmd->result = DID_NO_CONNECT << 16;
 2422				dev->removed = 1;
 2423				h->drv_req_rescan = 1;
 2424				dev_warn(&h->pdev->dev,
 2425					"%s: device is gone!\n", __func__);
 2426			} else
 2427				/*
 2428				 * Retry by sending down the RAID path.
 2429				 * We will get an event from ctlr to
 2430				 * trigger rescan regardless.
 2431				 */
 2432				retry = 1;
 2433			break;
 2434		default:
 2435			retry = 1;
 2436		}
 2437		break;
 2438	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
 2439		break;
 2440	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
 2441		break;
 2442	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
 2443		retry = 1;
 2444		break;
 2445	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
 2446		break;
 2447	default:
 2448		retry = 1;
 2449		break;
 2450	}
 2451
 2452	if (dev->in_reset)
 2453		retry = 0;
 2454
 2455	return retry;	/* retry on raid path? */
 2456}
 2457
 2458static void hpsa_cmd_resolve_events(struct ctlr_info *h,
 2459		struct CommandList *c)
 2460{
 2461	struct hpsa_scsi_dev_t *dev = c->device;
 2462
 2463	/*
 2464	 * Reset c->scsi_cmd here so that the reset handler will know
 2465	 * this command has completed.  Then, check to see if the handler is
 2466	 * waiting for this command, and, if so, wake it.
 2467	 */
 2468	c->scsi_cmd = SCSI_CMD_IDLE;
 2469	mb();	/* Declare command idle before checking for pending events. */
 2470	if (dev) {
 2471		atomic_dec(&dev->commands_outstanding);
 2472		if (dev->in_reset &&
 2473			atomic_read(&dev->commands_outstanding) <= 0)
 2474			wake_up_all(&h->event_sync_wait_queue);
 
 
 
 
 
 
 
 
 
 
 2475	}
 
 
 
 2476}
 2477
 2478static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
 2479				      struct CommandList *c)
 2480{
 2481	hpsa_cmd_resolve_events(h, c);
 2482	cmd_tagged_free(h, c);
 2483}
 2484
 2485static void hpsa_cmd_free_and_done(struct ctlr_info *h,
 2486		struct CommandList *c, struct scsi_cmnd *cmd)
 2487{
 2488	hpsa_cmd_resolve_and_free(h, c);
 2489	if (cmd)
 2490		scsi_done(cmd);
 2491}
 2492
 2493static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
 2494{
 2495	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
 2496	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
 2497}
 2498
 2499static void process_ioaccel2_completion(struct ctlr_info *h,
 2500		struct CommandList *c, struct scsi_cmnd *cmd,
 2501		struct hpsa_scsi_dev_t *dev)
 2502{
 2503	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 2504
 2505	/* check for good status */
 2506	if (likely(c2->error_data.serv_response == 0 &&
 2507			c2->error_data.status == 0)) {
 2508		cmd->result = 0;
 2509		return hpsa_cmd_free_and_done(h, c, cmd);
 2510	}
 2511
 2512	/*
 2513	 * Any RAID offload error results in retry which will use
 2514	 * the normal I/O path so the controller can handle whatever is
 2515	 * wrong.
 2516	 */
 2517	if (is_logical_device(dev) &&
 2518		c2->error_data.serv_response ==
 2519			IOACCEL2_SERV_RESPONSE_FAILURE) {
 2520		if (c2->error_data.status ==
 2521			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
 2522			hpsa_turn_off_ioaccel_for_device(dev);
 2523		}
 2524
 2525		if (dev->in_reset) {
 2526			cmd->result = DID_RESET << 16;
 2527			return hpsa_cmd_free_and_done(h, c, cmd);
 2528		}
 2529
 2530		return hpsa_retry_cmd(h, c);
 2531	}
 2532
 2533	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
 2534		return hpsa_retry_cmd(h, c);
 2535
 2536	return hpsa_cmd_free_and_done(h, c, cmd);
 2537}
 2538
 2539/* Returns 0 on success, < 0 otherwise. */
 2540static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
 2541					struct CommandList *cp)
 2542{
 2543	u8 tmf_status = cp->err_info->ScsiStatus;
 2544
 2545	switch (tmf_status) {
 2546	case CISS_TMF_COMPLETE:
 2547		/*
 2548		 * CISS_TMF_COMPLETE never happens, instead,
 2549		 * ei->CommandStatus == 0 for this case.
 2550		 */
 2551	case CISS_TMF_SUCCESS:
 2552		return 0;
 2553	case CISS_TMF_INVALID_FRAME:
 2554	case CISS_TMF_NOT_SUPPORTED:
 2555	case CISS_TMF_FAILED:
 2556	case CISS_TMF_WRONG_LUN:
 2557	case CISS_TMF_OVERLAPPED_TAG:
 2558		break;
 2559	default:
 2560		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
 2561				tmf_status);
 2562		break;
 2563	}
 2564	return -tmf_status;
 2565}
 2566
 2567static void complete_scsi_command(struct CommandList *cp)
 2568{
 2569	struct scsi_cmnd *cmd;
 2570	struct ctlr_info *h;
 2571	struct ErrorInfo *ei;
 2572	struct hpsa_scsi_dev_t *dev;
 2573	struct io_accel2_cmd *c2;
 2574
 2575	u8 sense_key;
 2576	u8 asc;      /* additional sense code */
 2577	u8 ascq;     /* additional sense code qualifier */
 2578	unsigned long sense_data_size;
 2579
 2580	ei = cp->err_info;
 2581	cmd = cp->scsi_cmd;
 2582	h = cp->h;
 2583
 2584	if (!cmd->device) {
 2585		cmd->result = DID_NO_CONNECT << 16;
 2586		return hpsa_cmd_free_and_done(h, cp, cmd);
 2587	}
 2588
 2589	dev = cmd->device->hostdata;
 2590	if (!dev) {
 2591		cmd->result = DID_NO_CONNECT << 16;
 2592		return hpsa_cmd_free_and_done(h, cp, cmd);
 2593	}
 2594	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
 2595
 2596	scsi_dma_unmap(cmd); /* undo the DMA mappings */
 2597	if ((cp->cmd_type == CMD_SCSI) &&
 2598		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
 2599		hpsa_unmap_sg_chain_block(h, cp);
 2600
 2601	if ((cp->cmd_type == CMD_IOACCEL2) &&
 2602		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
 2603		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
 2604
 2605	cmd->result = (DID_OK << 16);		/* host byte */
 2606
 2607	/* SCSI command has already been cleaned up in SML */
 2608	if (dev->was_removed) {
 2609		hpsa_cmd_resolve_and_free(h, cp);
 2610		return;
 2611	}
 2612
 2613	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
 2614		if (dev->physical_device && dev->expose_device &&
 2615			dev->removed) {
 2616			cmd->result = DID_NO_CONNECT << 16;
 2617			return hpsa_cmd_free_and_done(h, cp, cmd);
 2618		}
 2619		if (likely(cp->phys_disk != NULL))
 2620			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
 2621	}
 2622
 2623	/*
 2624	 * We check for lockup status here as it may be set for
 2625	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
 2626	 * fail_all_oustanding_cmds()
 2627	 */
 2628	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
 2629		/* DID_NO_CONNECT will prevent a retry */
 2630		cmd->result = DID_NO_CONNECT << 16;
 2631		return hpsa_cmd_free_and_done(h, cp, cmd);
 2632	}
 2633
 
 
 
 
 2634	if (cp->cmd_type == CMD_IOACCEL2)
 2635		return process_ioaccel2_completion(h, cp, cmd, dev);
 2636
 2637	scsi_set_resid(cmd, ei->ResidualCnt);
 2638	if (ei->CommandStatus == 0)
 2639		return hpsa_cmd_free_and_done(h, cp, cmd);
 2640
 2641	/* For I/O accelerator commands, copy over some fields to the normal
 2642	 * CISS header used below for error handling.
 2643	 */
 2644	if (cp->cmd_type == CMD_IOACCEL1) {
 2645		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
 2646		cp->Header.SGList = scsi_sg_count(cmd);
 2647		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
 2648		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
 2649			IOACCEL1_IOFLAGS_CDBLEN_MASK;
 2650		cp->Header.tag = c->tag;
 2651		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
 2652		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
 2653
 2654		/* Any RAID offload error results in retry which will use
 2655		 * the normal I/O path so the controller can handle whatever's
 2656		 * wrong.
 2657		 */
 2658		if (is_logical_device(dev)) {
 2659			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
 2660				dev->offload_enabled = 0;
 2661			return hpsa_retry_cmd(h, cp);
 2662		}
 2663	}
 2664
 2665	/* an error has occurred */
 2666	switch (ei->CommandStatus) {
 2667
 2668	case CMD_TARGET_STATUS:
 2669		cmd->result |= ei->ScsiStatus;
 2670		/* copy the sense data */
 2671		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
 2672			sense_data_size = SCSI_SENSE_BUFFERSIZE;
 2673		else
 2674			sense_data_size = sizeof(ei->SenseInfo);
 2675		if (ei->SenseLen < sense_data_size)
 2676			sense_data_size = ei->SenseLen;
 2677		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
 2678		if (ei->ScsiStatus)
 2679			decode_sense_data(ei->SenseInfo, sense_data_size,
 2680				&sense_key, &asc, &ascq);
 2681		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
 2682			switch (sense_key) {
 2683			case ABORTED_COMMAND:
 2684				cmd->result |= DID_SOFT_ERROR << 16;
 2685				break;
 2686			case UNIT_ATTENTION:
 2687				if (asc == 0x3F && ascq == 0x0E)
 2688					h->drv_req_rescan = 1;
 2689				break;
 2690			case ILLEGAL_REQUEST:
 2691				if (asc == 0x25 && ascq == 0x00) {
 2692					dev->removed = 1;
 2693					cmd->result = DID_NO_CONNECT << 16;
 2694				}
 2695				break;
 2696			}
 2697			break;
 2698		}
 2699		/* Problem was not a check condition
 2700		 * Pass it up to the upper layers...
 2701		 */
 2702		if (ei->ScsiStatus) {
 2703			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
 2704				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
 2705				"Returning result: 0x%x\n",
 2706				cp, ei->ScsiStatus,
 2707				sense_key, asc, ascq,
 2708				cmd->result);
 2709		} else {  /* scsi status is zero??? How??? */
 2710			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
 2711				"Returning no connection.\n", cp),
 2712
 2713			/* Ordinarily, this case should never happen,
 2714			 * but there is a bug in some released firmware
 2715			 * revisions that allows it to happen if, for
 2716			 * example, a 4100 backplane loses power and
 2717			 * the tape drive is in it.  We assume that
 2718			 * it's a fatal error of some kind because we
 2719			 * can't show that it wasn't. We will make it
 2720			 * look like selection timeout since that is
 2721			 * the most common reason for this to occur,
 2722			 * and it's severe enough.
 2723			 */
 2724
 2725			cmd->result = DID_NO_CONNECT << 16;
 2726		}
 2727		break;
 2728
 2729	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 2730		break;
 2731	case CMD_DATA_OVERRUN:
 2732		dev_warn(&h->pdev->dev,
 2733			"CDB %16phN data overrun\n", cp->Request.CDB);
 2734		break;
 2735	case CMD_INVALID: {
 2736		/* print_bytes(cp, sizeof(*cp), 1, 0);
 2737		print_cmd(cp); */
 2738		/* We get CMD_INVALID if you address a non-existent device
 2739		 * instead of a selection timeout (no response).  You will
 2740		 * see this if you yank out a drive, then try to access it.
 2741		 * This is kind of a shame because it means that any other
 2742		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
 2743		 * missing target. */
 2744		cmd->result = DID_NO_CONNECT << 16;
 2745	}
 2746		break;
 2747	case CMD_PROTOCOL_ERR:
 2748		cmd->result = DID_ERROR << 16;
 2749		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
 2750				cp->Request.CDB);
 2751		break;
 2752	case CMD_HARDWARE_ERR:
 2753		cmd->result = DID_ERROR << 16;
 2754		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
 2755			cp->Request.CDB);
 2756		break;
 2757	case CMD_CONNECTION_LOST:
 2758		cmd->result = DID_ERROR << 16;
 2759		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
 2760			cp->Request.CDB);
 2761		break;
 2762	case CMD_ABORTED:
 2763		cmd->result = DID_ABORT << 16;
 2764		break;
 2765	case CMD_ABORT_FAILED:
 2766		cmd->result = DID_ERROR << 16;
 2767		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
 2768			cp->Request.CDB);
 2769		break;
 2770	case CMD_UNSOLICITED_ABORT:
 2771		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
 2772		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
 2773			cp->Request.CDB);
 2774		break;
 2775	case CMD_TIMEOUT:
 2776		cmd->result = DID_TIME_OUT << 16;
 2777		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
 2778			cp->Request.CDB);
 2779		break;
 2780	case CMD_UNABORTABLE:
 2781		cmd->result = DID_ERROR << 16;
 2782		dev_warn(&h->pdev->dev, "Command unabortable\n");
 2783		break;
 2784	case CMD_TMF_STATUS:
 2785		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
 2786			cmd->result = DID_ERROR << 16;
 2787		break;
 2788	case CMD_IOACCEL_DISABLED:
 2789		/* This only handles the direct pass-through case since RAID
 2790		 * offload is handled above.  Just attempt a retry.
 2791		 */
 2792		cmd->result = DID_SOFT_ERROR << 16;
 2793		dev_warn(&h->pdev->dev,
 2794				"cp %p had HP SSD Smart Path error\n", cp);
 2795		break;
 2796	default:
 2797		cmd->result = DID_ERROR << 16;
 2798		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
 2799				cp, ei->CommandStatus);
 2800	}
 2801
 2802	return hpsa_cmd_free_and_done(h, cp, cmd);
 2803}
 2804
 2805static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
 2806		int sg_used, enum dma_data_direction data_direction)
 2807{
 2808	int i;
 2809
 2810	for (i = 0; i < sg_used; i++)
 2811		dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
 2812				le32_to_cpu(c->SG[i].Len),
 2813				data_direction);
 2814}
 2815
 2816static int hpsa_map_one(struct pci_dev *pdev,
 2817		struct CommandList *cp,
 2818		unsigned char *buf,
 2819		size_t buflen,
 2820		enum dma_data_direction data_direction)
 2821{
 2822	u64 addr64;
 2823
 2824	if (buflen == 0 || data_direction == DMA_NONE) {
 2825		cp->Header.SGList = 0;
 2826		cp->Header.SGTotal = cpu_to_le16(0);
 2827		return 0;
 2828	}
 2829
 2830	addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
 2831	if (dma_mapping_error(&pdev->dev, addr64)) {
 2832		/* Prevent subsequent unmap of something never mapped */
 2833		cp->Header.SGList = 0;
 2834		cp->Header.SGTotal = cpu_to_le16(0);
 2835		return -1;
 2836	}
 2837	cp->SG[0].Addr = cpu_to_le64(addr64);
 2838	cp->SG[0].Len = cpu_to_le32(buflen);
 2839	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
 2840	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
 2841	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
 2842	return 0;
 2843}
 2844
 2845#define NO_TIMEOUT ((unsigned long) -1)
 2846#define DEFAULT_TIMEOUT 30000 /* milliseconds */
 2847static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
 2848	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
 2849{
 2850	DECLARE_COMPLETION_ONSTACK(wait);
 2851
 2852	c->waiting = &wait;
 2853	__enqueue_cmd_and_start_io(h, c, reply_queue);
 2854	if (timeout_msecs == NO_TIMEOUT) {
 2855		/* TODO: get rid of this no-timeout thing */
 2856		wait_for_completion_io(&wait);
 2857		return IO_OK;
 2858	}
 2859	if (!wait_for_completion_io_timeout(&wait,
 2860					msecs_to_jiffies(timeout_msecs))) {
 2861		dev_warn(&h->pdev->dev, "Command timed out.\n");
 2862		return -ETIMEDOUT;
 2863	}
 2864	return IO_OK;
 2865}
 2866
 2867static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
 2868				   int reply_queue, unsigned long timeout_msecs)
 2869{
 2870	if (unlikely(lockup_detected(h))) {
 2871		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 2872		return IO_OK;
 2873	}
 2874	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
 2875}
 2876
 2877static u32 lockup_detected(struct ctlr_info *h)
 2878{
 2879	int cpu;
 2880	u32 rc, *lockup_detected;
 2881
 2882	cpu = get_cpu();
 2883	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 2884	rc = *lockup_detected;
 2885	put_cpu();
 2886	return rc;
 2887}
 2888
 2889#define MAX_DRIVER_CMD_RETRIES 25
 2890static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
 2891		struct CommandList *c, enum dma_data_direction data_direction,
 2892		unsigned long timeout_msecs)
 2893{
 2894	int backoff_time = 10, retry_count = 0;
 2895	int rc;
 2896
 2897	do {
 2898		memset(c->err_info, 0, sizeof(*c->err_info));
 2899		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 2900						  timeout_msecs);
 2901		if (rc)
 2902			break;
 2903		retry_count++;
 2904		if (retry_count > 3) {
 2905			msleep(backoff_time);
 2906			if (backoff_time < 1000)
 2907				backoff_time *= 2;
 2908		}
 2909	} while ((check_for_unit_attention(h, c) ||
 2910			check_for_busy(h, c)) &&
 2911			retry_count <= MAX_DRIVER_CMD_RETRIES);
 2912	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
 2913	if (retry_count > MAX_DRIVER_CMD_RETRIES)
 2914		rc = -EIO;
 2915	return rc;
 2916}
 2917
 2918static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
 2919				struct CommandList *c)
 2920{
 2921	const u8 *cdb = c->Request.CDB;
 2922	const u8 *lun = c->Header.LUN.LunAddrBytes;
 2923
 2924	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
 2925		 txt, lun, cdb);
 2926}
 2927
 2928static void hpsa_scsi_interpret_error(struct ctlr_info *h,
 2929			struct CommandList *cp)
 2930{
 2931	const struct ErrorInfo *ei = cp->err_info;
 2932	struct device *d = &cp->h->pdev->dev;
 2933	u8 sense_key, asc, ascq;
 2934	int sense_len;
 2935
 2936	switch (ei->CommandStatus) {
 2937	case CMD_TARGET_STATUS:
 2938		if (ei->SenseLen > sizeof(ei->SenseInfo))
 2939			sense_len = sizeof(ei->SenseInfo);
 2940		else
 2941			sense_len = ei->SenseLen;
 2942		decode_sense_data(ei->SenseInfo, sense_len,
 2943					&sense_key, &asc, &ascq);
 2944		hpsa_print_cmd(h, "SCSI status", cp);
 2945		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
 2946			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
 2947				sense_key, asc, ascq);
 2948		else
 2949			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
 2950		if (ei->ScsiStatus == 0)
 2951			dev_warn(d, "SCSI status is abnormally zero.  "
 2952			"(probably indicates selection timeout "
 2953			"reported incorrectly due to a known "
 2954			"firmware bug, circa July, 2001.)\n");
 2955		break;
 2956	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
 2957		break;
 2958	case CMD_DATA_OVERRUN:
 2959		hpsa_print_cmd(h, "overrun condition", cp);
 2960		break;
 2961	case CMD_INVALID: {
 2962		/* controller unfortunately reports SCSI passthru's
 2963		 * to non-existent targets as invalid commands.
 2964		 */
 2965		hpsa_print_cmd(h, "invalid command", cp);
 2966		dev_warn(d, "probably means device no longer present\n");
 2967		}
 2968		break;
 2969	case CMD_PROTOCOL_ERR:
 2970		hpsa_print_cmd(h, "protocol error", cp);
 2971		break;
 2972	case CMD_HARDWARE_ERR:
 2973		hpsa_print_cmd(h, "hardware error", cp);
 2974		break;
 2975	case CMD_CONNECTION_LOST:
 2976		hpsa_print_cmd(h, "connection lost", cp);
 2977		break;
 2978	case CMD_ABORTED:
 2979		hpsa_print_cmd(h, "aborted", cp);
 2980		break;
 2981	case CMD_ABORT_FAILED:
 2982		hpsa_print_cmd(h, "abort failed", cp);
 2983		break;
 2984	case CMD_UNSOLICITED_ABORT:
 2985		hpsa_print_cmd(h, "unsolicited abort", cp);
 2986		break;
 2987	case CMD_TIMEOUT:
 2988		hpsa_print_cmd(h, "timed out", cp);
 2989		break;
 2990	case CMD_UNABORTABLE:
 2991		hpsa_print_cmd(h, "unabortable", cp);
 2992		break;
 2993	case CMD_CTLR_LOCKUP:
 2994		hpsa_print_cmd(h, "controller lockup detected", cp);
 2995		break;
 2996	default:
 2997		hpsa_print_cmd(h, "unknown status", cp);
 2998		dev_warn(d, "Unknown command status %x\n",
 2999				ei->CommandStatus);
 3000	}
 3001}
 3002
 3003static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
 3004					u8 page, u8 *buf, size_t bufsize)
 3005{
 3006	int rc = IO_OK;
 3007	struct CommandList *c;
 3008	struct ErrorInfo *ei;
 3009
 3010	c = cmd_alloc(h);
 3011	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
 3012			page, scsi3addr, TYPE_CMD)) {
 3013		rc = -1;
 3014		goto out;
 3015	}
 3016	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3017			NO_TIMEOUT);
 3018	if (rc)
 3019		goto out;
 3020	ei = c->err_info;
 3021	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3022		hpsa_scsi_interpret_error(h, c);
 3023		rc = -1;
 3024	}
 3025out:
 3026	cmd_free(h, c);
 3027	return rc;
 3028}
 3029
 3030static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
 3031						u8 *scsi3addr)
 3032{
 3033	u8 *buf;
 3034	u64 sa = 0;
 3035	int rc = 0;
 3036
 3037	buf = kzalloc(1024, GFP_KERNEL);
 3038	if (!buf)
 3039		return 0;
 3040
 3041	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
 3042					buf, 1024);
 3043
 3044	if (rc)
 3045		goto out;
 3046
 3047	sa = get_unaligned_be64(buf+12);
 3048
 3049out:
 3050	kfree(buf);
 3051	return sa;
 3052}
 3053
 3054static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
 3055			u16 page, unsigned char *buf,
 3056			unsigned char bufsize)
 3057{
 3058	int rc = IO_OK;
 3059	struct CommandList *c;
 3060	struct ErrorInfo *ei;
 3061
 3062	c = cmd_alloc(h);
 3063
 3064	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
 3065			page, scsi3addr, TYPE_CMD)) {
 3066		rc = -1;
 3067		goto out;
 3068	}
 3069	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3070			NO_TIMEOUT);
 3071	if (rc)
 3072		goto out;
 3073	ei = c->err_info;
 3074	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3075		hpsa_scsi_interpret_error(h, c);
 3076		rc = -1;
 3077	}
 3078out:
 3079	cmd_free(h, c);
 3080	return rc;
 3081}
 3082
 3083static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
 3084	u8 reset_type, int reply_queue)
 3085{
 3086	int rc = IO_OK;
 3087	struct CommandList *c;
 3088	struct ErrorInfo *ei;
 3089
 3090	c = cmd_alloc(h);
 3091	c->device = dev;
 3092
 3093	/* fill_cmd can't fail here, no data buffer to map. */
 3094	(void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
 
 3095	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
 3096	if (rc) {
 3097		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
 3098		goto out;
 3099	}
 3100	/* no unmap needed here because no data xfer. */
 3101
 3102	ei = c->err_info;
 3103	if (ei->CommandStatus != 0) {
 3104		hpsa_scsi_interpret_error(h, c);
 3105		rc = -1;
 3106	}
 3107out:
 3108	cmd_free(h, c);
 3109	return rc;
 3110}
 3111
 3112static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 3113			       struct hpsa_scsi_dev_t *dev,
 3114			       unsigned char *scsi3addr)
 3115{
 3116	int i;
 3117	bool match = false;
 3118	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 3119	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
 3120
 3121	if (hpsa_is_cmd_idle(c))
 3122		return false;
 3123
 3124	switch (c->cmd_type) {
 3125	case CMD_SCSI:
 3126	case CMD_IOCTL_PEND:
 3127		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
 3128				sizeof(c->Header.LUN.LunAddrBytes));
 3129		break;
 3130
 3131	case CMD_IOACCEL1:
 3132	case CMD_IOACCEL2:
 3133		if (c->phys_disk == dev) {
 3134			/* HBA mode match */
 3135			match = true;
 3136		} else {
 3137			/* Possible RAID mode -- check each phys dev. */
 3138			/* FIXME:  Do we need to take out a lock here?  If
 3139			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
 3140			 * instead. */
 3141			for (i = 0; i < dev->nphysical_disks && !match; i++) {
 3142				/* FIXME: an alternate test might be
 3143				 *
 3144				 * match = dev->phys_disk[i]->ioaccel_handle
 3145				 *              == c2->scsi_nexus;      */
 3146				match = dev->phys_disk[i] == c->phys_disk;
 3147			}
 3148		}
 3149		break;
 3150
 3151	case IOACCEL2_TMF:
 3152		for (i = 0; i < dev->nphysical_disks && !match; i++) {
 3153			match = dev->phys_disk[i]->ioaccel_handle ==
 3154					le32_to_cpu(ac->it_nexus);
 3155		}
 3156		break;
 3157
 3158	case 0:		/* The command is in the middle of being initialized. */
 3159		match = false;
 3160		break;
 3161
 3162	default:
 3163		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
 3164			c->cmd_type);
 3165		BUG();
 3166	}
 3167
 3168	return match;
 3169}
 3170
 3171static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
 3172	u8 reset_type, int reply_queue)
 3173{
 
 3174	int rc = 0;
 3175
 3176	/* We can really only handle one reset at a time */
 3177	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
 3178		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
 3179		return -EINTR;
 3180	}
 3181
 3182	rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
 3183	if (!rc) {
 3184		/* incremented by sending the reset request */
 3185		atomic_dec(&dev->commands_outstanding);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3186		wait_event(h->event_sync_wait_queue,
 3187			atomic_read(&dev->commands_outstanding) <= 0 ||
 3188			lockup_detected(h));
 3189	}
 3190
 3191	if (unlikely(lockup_detected(h))) {
 3192		dev_warn(&h->pdev->dev,
 3193			 "Controller lockup detected during reset wait\n");
 3194		rc = -ENODEV;
 3195	}
 3196
 3197	if (!rc)
 3198		rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
 
 
 3199
 3200	mutex_unlock(&h->reset_mutex);
 3201	return rc;
 3202}
 3203
 3204static void hpsa_get_raid_level(struct ctlr_info *h,
 3205	unsigned char *scsi3addr, unsigned char *raid_level)
 3206{
 3207	int rc;
 3208	unsigned char *buf;
 3209
 3210	*raid_level = RAID_UNKNOWN;
 3211	buf = kzalloc(64, GFP_KERNEL);
 3212	if (!buf)
 3213		return;
 3214
 3215	if (!hpsa_vpd_page_supported(h, scsi3addr,
 3216		HPSA_VPD_LV_DEVICE_GEOMETRY))
 3217		goto exit;
 3218
 3219	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 3220		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
 3221
 3222	if (rc == 0)
 3223		*raid_level = buf[8];
 3224	if (*raid_level > RAID_UNKNOWN)
 3225		*raid_level = RAID_UNKNOWN;
 3226exit:
 3227	kfree(buf);
 3228	return;
 3229}
 3230
 3231#define HPSA_MAP_DEBUG
 3232#ifdef HPSA_MAP_DEBUG
 3233static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
 3234				struct raid_map_data *map_buff)
 3235{
 3236	struct raid_map_disk_data *dd = &map_buff->data[0];
 3237	int map, row, col;
 3238	u16 map_cnt, row_cnt, disks_per_row;
 3239
 3240	if (rc != 0)
 3241		return;
 3242
 3243	/* Show details only if debugging has been activated. */
 3244	if (h->raid_offload_debug < 2)
 3245		return;
 3246
 3247	dev_info(&h->pdev->dev, "structure_size = %u\n",
 3248				le32_to_cpu(map_buff->structure_size));
 3249	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
 3250			le32_to_cpu(map_buff->volume_blk_size));
 3251	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
 3252			le64_to_cpu(map_buff->volume_blk_cnt));
 3253	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
 3254			map_buff->phys_blk_shift);
 3255	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
 3256			map_buff->parity_rotation_shift);
 3257	dev_info(&h->pdev->dev, "strip_size = %u\n",
 3258			le16_to_cpu(map_buff->strip_size));
 3259	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
 3260			le64_to_cpu(map_buff->disk_starting_blk));
 3261	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
 3262			le64_to_cpu(map_buff->disk_blk_cnt));
 3263	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
 3264			le16_to_cpu(map_buff->data_disks_per_row));
 3265	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
 3266			le16_to_cpu(map_buff->metadata_disks_per_row));
 3267	dev_info(&h->pdev->dev, "row_cnt = %u\n",
 3268			le16_to_cpu(map_buff->row_cnt));
 3269	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
 3270			le16_to_cpu(map_buff->layout_map_count));
 3271	dev_info(&h->pdev->dev, "flags = 0x%x\n",
 3272			le16_to_cpu(map_buff->flags));
 3273	dev_info(&h->pdev->dev, "encryption = %s\n",
 3274			le16_to_cpu(map_buff->flags) &
 3275			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
 3276	dev_info(&h->pdev->dev, "dekindex = %u\n",
 3277			le16_to_cpu(map_buff->dekindex));
 3278	map_cnt = le16_to_cpu(map_buff->layout_map_count);
 3279	for (map = 0; map < map_cnt; map++) {
 3280		dev_info(&h->pdev->dev, "Map%u:\n", map);
 3281		row_cnt = le16_to_cpu(map_buff->row_cnt);
 3282		for (row = 0; row < row_cnt; row++) {
 3283			dev_info(&h->pdev->dev, "  Row%u:\n", row);
 3284			disks_per_row =
 3285				le16_to_cpu(map_buff->data_disks_per_row);
 3286			for (col = 0; col < disks_per_row; col++, dd++)
 3287				dev_info(&h->pdev->dev,
 3288					"    D%02u: h=0x%04x xor=%u,%u\n",
 3289					col, dd->ioaccel_handle,
 3290					dd->xor_mult[0], dd->xor_mult[1]);
 3291			disks_per_row =
 3292				le16_to_cpu(map_buff->metadata_disks_per_row);
 3293			for (col = 0; col < disks_per_row; col++, dd++)
 3294				dev_info(&h->pdev->dev,
 3295					"    M%02u: h=0x%04x xor=%u,%u\n",
 3296					col, dd->ioaccel_handle,
 3297					dd->xor_mult[0], dd->xor_mult[1]);
 3298		}
 3299	}
 3300}
 3301#else
 3302static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
 3303			__attribute__((unused)) int rc,
 3304			__attribute__((unused)) struct raid_map_data *map_buff)
 3305{
 3306}
 3307#endif
 3308
 3309static int hpsa_get_raid_map(struct ctlr_info *h,
 3310	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 3311{
 3312	int rc = 0;
 3313	struct CommandList *c;
 3314	struct ErrorInfo *ei;
 3315
 3316	c = cmd_alloc(h);
 3317
 3318	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
 3319			sizeof(this_device->raid_map), 0,
 3320			scsi3addr, TYPE_CMD)) {
 3321		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
 3322		cmd_free(h, c);
 3323		return -1;
 3324	}
 3325	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3326			NO_TIMEOUT);
 3327	if (rc)
 3328		goto out;
 3329	ei = c->err_info;
 3330	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3331		hpsa_scsi_interpret_error(h, c);
 3332		rc = -1;
 3333		goto out;
 3334	}
 3335	cmd_free(h, c);
 3336
 3337	/* @todo in the future, dynamically allocate RAID map memory */
 3338	if (le32_to_cpu(this_device->raid_map.structure_size) >
 3339				sizeof(this_device->raid_map)) {
 3340		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
 3341		rc = -1;
 3342	}
 3343	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
 3344	return rc;
 3345out:
 3346	cmd_free(h, c);
 3347	return rc;
 3348}
 3349
 3350static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
 3351		unsigned char scsi3addr[], u16 bmic_device_index,
 3352		struct bmic_sense_subsystem_info *buf, size_t bufsize)
 3353{
 3354	int rc = IO_OK;
 3355	struct CommandList *c;
 3356	struct ErrorInfo *ei;
 3357
 3358	c = cmd_alloc(h);
 3359
 3360	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
 3361		0, RAID_CTLR_LUNID, TYPE_CMD);
 3362	if (rc)
 3363		goto out;
 3364
 3365	c->Request.CDB[2] = bmic_device_index & 0xff;
 3366	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 3367
 3368	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3369			NO_TIMEOUT);
 3370	if (rc)
 3371		goto out;
 3372	ei = c->err_info;
 3373	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3374		hpsa_scsi_interpret_error(h, c);
 3375		rc = -1;
 3376	}
 3377out:
 3378	cmd_free(h, c);
 3379	return rc;
 3380}
 3381
 3382static int hpsa_bmic_id_controller(struct ctlr_info *h,
 3383	struct bmic_identify_controller *buf, size_t bufsize)
 3384{
 3385	int rc = IO_OK;
 3386	struct CommandList *c;
 3387	struct ErrorInfo *ei;
 3388
 3389	c = cmd_alloc(h);
 3390
 3391	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
 3392		0, RAID_CTLR_LUNID, TYPE_CMD);
 3393	if (rc)
 3394		goto out;
 3395
 3396	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3397			NO_TIMEOUT);
 3398	if (rc)
 3399		goto out;
 3400	ei = c->err_info;
 3401	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3402		hpsa_scsi_interpret_error(h, c);
 3403		rc = -1;
 3404	}
 3405out:
 3406	cmd_free(h, c);
 3407	return rc;
 3408}
 3409
 3410static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
 3411		unsigned char scsi3addr[], u16 bmic_device_index,
 3412		struct bmic_identify_physical_device *buf, size_t bufsize)
 3413{
 3414	int rc = IO_OK;
 3415	struct CommandList *c;
 3416	struct ErrorInfo *ei;
 3417
 3418	c = cmd_alloc(h);
 3419	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
 3420		0, RAID_CTLR_LUNID, TYPE_CMD);
 3421	if (rc)
 3422		goto out;
 3423
 3424	c->Request.CDB[2] = bmic_device_index & 0xff;
 3425	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
 3426
 3427	hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3428						NO_TIMEOUT);
 3429	ei = c->err_info;
 3430	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3431		hpsa_scsi_interpret_error(h, c);
 3432		rc = -1;
 3433	}
 3434out:
 3435	cmd_free(h, c);
 3436
 3437	return rc;
 3438}
 3439
 3440/*
 3441 * get enclosure information
 3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
 3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
 3444 * Uses id_physical_device to determine the box_index.
 3445 */
 3446static void hpsa_get_enclosure_info(struct ctlr_info *h,
 3447			unsigned char *scsi3addr,
 3448			struct ReportExtendedLUNdata *rlep, int rle_index,
 3449			struct hpsa_scsi_dev_t *encl_dev)
 3450{
 3451	int rc = -1;
 3452	struct CommandList *c = NULL;
 3453	struct ErrorInfo *ei = NULL;
 3454	struct bmic_sense_storage_box_params *bssbp = NULL;
 3455	struct bmic_identify_physical_device *id_phys = NULL;
 3456	struct ext_report_lun_entry *rle;
 3457	u16 bmic_device_index = 0;
 3458
 3459	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
 3460		return;
 3461
 3462	rle = &rlep->LUN[rle_index];
 3463
 3464	encl_dev->eli =
 3465		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
 3466
 3467	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
 3468
 3469	if (encl_dev->target == -1 || encl_dev->lun == -1) {
 3470		rc = IO_OK;
 3471		goto out;
 3472	}
 3473
 3474	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
 3475		rc = IO_OK;
 3476		goto out;
 3477	}
 3478
 3479	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
 3480	if (!bssbp)
 3481		goto out;
 3482
 3483	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 3484	if (!id_phys)
 3485		goto out;
 3486
 3487	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
 3488						id_phys, sizeof(*id_phys));
 3489	if (rc) {
 3490		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
 3491			__func__, encl_dev->external, bmic_device_index);
 3492		goto out;
 3493	}
 3494
 3495	c = cmd_alloc(h);
 3496
 3497	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
 3498			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
 3499
 3500	if (rc)
 3501		goto out;
 3502
 3503	if (id_phys->phys_connector[1] == 'E')
 3504		c->Request.CDB[5] = id_phys->box_index;
 3505	else
 3506		c->Request.CDB[5] = 0;
 3507
 3508	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3509						NO_TIMEOUT);
 3510	if (rc)
 3511		goto out;
 3512
 3513	ei = c->err_info;
 3514	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3515		rc = -1;
 3516		goto out;
 3517	}
 3518
 3519	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
 3520	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
 3521		bssbp->phys_connector, sizeof(bssbp->phys_connector));
 3522
 3523	rc = IO_OK;
 3524out:
 3525	kfree(bssbp);
 3526	kfree(id_phys);
 3527
 3528	if (c)
 3529		cmd_free(h, c);
 3530
 3531	if (rc != IO_OK)
 3532		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
 3533			"Error, could not get enclosure information");
 3534}
 3535
 3536static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
 3537						unsigned char *scsi3addr)
 3538{
 3539	struct ReportExtendedLUNdata *physdev;
 3540	u32 nphysicals;
 3541	u64 sa = 0;
 3542	int i;
 3543
 3544	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
 3545	if (!physdev)
 3546		return 0;
 3547
 3548	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 3549		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 3550		kfree(physdev);
 3551		return 0;
 3552	}
 3553	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
 3554
 3555	for (i = 0; i < nphysicals; i++)
 3556		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
 3557			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
 3558			break;
 3559		}
 3560
 3561	kfree(physdev);
 3562
 3563	return sa;
 3564}
 3565
 3566static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
 3567					struct hpsa_scsi_dev_t *dev)
 3568{
 3569	int rc;
 3570	u64 sa = 0;
 3571
 3572	if (is_hba_lunid(scsi3addr)) {
 3573		struct bmic_sense_subsystem_info *ssi;
 3574
 3575		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
 3576		if (!ssi)
 3577			return;
 3578
 3579		rc = hpsa_bmic_sense_subsystem_information(h,
 3580					scsi3addr, 0, ssi, sizeof(*ssi));
 3581		if (rc == 0) {
 3582			sa = get_unaligned_be64(ssi->primary_world_wide_id);
 3583			h->sas_address = sa;
 3584		}
 3585
 3586		kfree(ssi);
 3587	} else
 3588		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
 3589
 3590	dev->sas_address = sa;
 3591}
 3592
 3593static void hpsa_ext_ctrl_present(struct ctlr_info *h,
 3594	struct ReportExtendedLUNdata *physdev)
 3595{
 3596	u32 nphysicals;
 3597	int i;
 3598
 3599	if (h->discovery_polling)
 3600		return;
 3601
 3602	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
 3603
 3604	for (i = 0; i < nphysicals; i++) {
 3605		if (physdev->LUN[i].device_type ==
 3606			BMIC_DEVICE_TYPE_CONTROLLER
 3607			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
 3608			dev_info(&h->pdev->dev,
 3609				"External controller present, activate discovery polling and disable rld caching\n");
 3610			hpsa_disable_rld_caching(h);
 3611			h->discovery_polling = 1;
 3612			break;
 3613		}
 3614	}
 3615}
 3616
 3617/* Get a device id from inquiry page 0x83 */
 3618static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 3619	unsigned char scsi3addr[], u8 page)
 3620{
 3621	int rc;
 3622	int i;
 3623	int pages;
 3624	unsigned char *buf, bufsize;
 3625
 3626	buf = kzalloc(256, GFP_KERNEL);
 3627	if (!buf)
 3628		return false;
 3629
 3630	/* Get the size of the page list first */
 3631	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3632				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 3633				buf, HPSA_VPD_HEADER_SZ);
 3634	if (rc != 0)
 3635		goto exit_unsupported;
 3636	pages = buf[3];
 3637	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
 3638		bufsize = pages + HPSA_VPD_HEADER_SZ;
 3639	else
 3640		bufsize = 255;
 3641
 3642	/* Get the whole VPD page list */
 3643	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3644				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
 3645				buf, bufsize);
 3646	if (rc != 0)
 3647		goto exit_unsupported;
 3648
 3649	pages = buf[3];
 3650	for (i = 1; i <= pages; i++)
 3651		if (buf[3 + i] == page)
 3652			goto exit_supported;
 3653exit_unsupported:
 3654	kfree(buf);
 3655	return false;
 3656exit_supported:
 3657	kfree(buf);
 3658	return true;
 3659}
 3660
 3661/*
 3662 * Called during a scan operation.
 3663 * Sets ioaccel status on the new device list, not the existing device list
 3664 *
 3665 * The device list used during I/O will be updated later in
 3666 * adjust_hpsa_scsi_table.
 3667 */
 3668static void hpsa_get_ioaccel_status(struct ctlr_info *h,
 3669	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
 3670{
 3671	int rc;
 3672	unsigned char *buf;
 3673	u8 ioaccel_status;
 3674
 3675	this_device->offload_config = 0;
 3676	this_device->offload_enabled = 0;
 3677	this_device->offload_to_be_enabled = 0;
 3678
 3679	buf = kzalloc(64, GFP_KERNEL);
 3680	if (!buf)
 3681		return;
 3682	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
 3683		goto out;
 3684	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
 3685			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
 3686	if (rc != 0)
 3687		goto out;
 3688
 3689#define IOACCEL_STATUS_BYTE 4
 3690#define OFFLOAD_CONFIGURED_BIT 0x01
 3691#define OFFLOAD_ENABLED_BIT 0x02
 3692	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
 3693	this_device->offload_config =
 3694		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
 3695	if (this_device->offload_config) {
 3696		bool offload_enabled =
 3697			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
 3698		/*
 3699		 * Check to see if offload can be enabled.
 3700		 */
 3701		if (offload_enabled) {
 3702			rc = hpsa_get_raid_map(h, scsi3addr, this_device);
 3703			if (rc) /* could not load raid_map */
 3704				goto out;
 3705			this_device->offload_to_be_enabled = 1;
 3706		}
 3707	}
 3708
 3709out:
 3710	kfree(buf);
 3711	return;
 3712}
 3713
 3714/* Get the device id from inquiry page 0x83 */
 3715static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
 3716	unsigned char *device_id, int index, int buflen)
 3717{
 3718	int rc;
 3719	unsigned char *buf;
 3720
 3721	/* Does controller have VPD for device id? */
 3722	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
 3723		return 1; /* not supported */
 3724
 3725	buf = kzalloc(64, GFP_KERNEL);
 3726	if (!buf)
 3727		return -ENOMEM;
 3728
 3729	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
 3730					HPSA_VPD_LV_DEVICE_ID, buf, 64);
 3731	if (rc == 0) {
 3732		if (buflen > 16)
 3733			buflen = 16;
 3734		memcpy(device_id, &buf[8], buflen);
 3735	}
 3736
 3737	kfree(buf);
 3738
 3739	return rc; /*0 - got id,  otherwise, didn't */
 3740}
 3741
 3742static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
 3743		void *buf, int bufsize,
 3744		int extended_response)
 3745{
 3746	int rc = IO_OK;
 3747	struct CommandList *c;
 3748	unsigned char scsi3addr[8];
 3749	struct ErrorInfo *ei;
 3750
 3751	c = cmd_alloc(h);
 3752
 3753	/* address the controller */
 3754	memset(scsi3addr, 0, sizeof(scsi3addr));
 3755	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
 3756		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
 3757		rc = -EAGAIN;
 3758		goto out;
 3759	}
 3760	if (extended_response)
 3761		c->Request.CDB[1] = extended_response;
 3762	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 3763			NO_TIMEOUT);
 3764	if (rc)
 3765		goto out;
 3766	ei = c->err_info;
 3767	if (ei->CommandStatus != 0 &&
 3768	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
 3769		hpsa_scsi_interpret_error(h, c);
 3770		rc = -EIO;
 3771	} else {
 3772		struct ReportLUNdata *rld = buf;
 3773
 3774		if (rld->extended_response_flag != extended_response) {
 3775			if (!h->legacy_board) {
 3776				dev_err(&h->pdev->dev,
 3777					"report luns requested format %u, got %u\n",
 3778					extended_response,
 3779					rld->extended_response_flag);
 3780				rc = -EINVAL;
 3781			} else
 3782				rc = -EOPNOTSUPP;
 3783		}
 3784	}
 3785out:
 3786	cmd_free(h, c);
 3787	return rc;
 3788}
 3789
 3790static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 3791		struct ReportExtendedLUNdata *buf, int bufsize)
 3792{
 3793	int rc;
 3794	struct ReportLUNdata *lbuf;
 3795
 3796	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
 3797				      HPSA_REPORT_PHYS_EXTENDED);
 3798	if (!rc || rc != -EOPNOTSUPP)
 3799		return rc;
 3800
 3801	/* REPORT PHYS EXTENDED is not supported */
 3802	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
 3803	if (!lbuf)
 3804		return -ENOMEM;
 3805
 3806	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
 3807	if (!rc) {
 3808		int i;
 3809		u32 nphys;
 3810
 3811		/* Copy ReportLUNdata header */
 3812		memcpy(buf, lbuf, 8);
 3813		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
 3814		for (i = 0; i < nphys; i++)
 3815			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
 3816	}
 3817	kfree(lbuf);
 3818	return rc;
 3819}
 3820
 3821static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
 3822		struct ReportLUNdata *buf, int bufsize)
 3823{
 3824	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
 3825}
 3826
 3827static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
 3828	int bus, int target, int lun)
 3829{
 3830	device->bus = bus;
 3831	device->target = target;
 3832	device->lun = lun;
 3833}
 3834
 3835/* Use VPD inquiry to get details of volume status */
 3836static int hpsa_get_volume_status(struct ctlr_info *h,
 3837					unsigned char scsi3addr[])
 3838{
 3839	int rc;
 3840	int status;
 3841	int size;
 3842	unsigned char *buf;
 3843
 3844	buf = kzalloc(64, GFP_KERNEL);
 3845	if (!buf)
 3846		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3847
 3848	/* Does controller have VPD for logical volume status? */
 3849	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
 3850		goto exit_failed;
 3851
 3852	/* Get the size of the VPD return buffer */
 3853	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 3854					buf, HPSA_VPD_HEADER_SZ);
 3855	if (rc != 0)
 3856		goto exit_failed;
 3857	size = buf[3];
 3858
 3859	/* Now get the whole VPD buffer */
 3860	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
 3861					buf, size + HPSA_VPD_HEADER_SZ);
 3862	if (rc != 0)
 3863		goto exit_failed;
 3864	status = buf[4]; /* status byte */
 3865
 3866	kfree(buf);
 3867	return status;
 3868exit_failed:
 3869	kfree(buf);
 3870	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3871}
 3872
 3873/* Determine offline status of a volume.
 3874 * Return either:
 3875 *  0 (not offline)
 3876 *  0xff (offline for unknown reasons)
 3877 *  # (integer code indicating one of several NOT READY states
 3878 *     describing why a volume is to be kept offline)
 3879 */
 3880static unsigned char hpsa_volume_offline(struct ctlr_info *h,
 3881					unsigned char scsi3addr[])
 3882{
 3883	struct CommandList *c;
 3884	unsigned char *sense;
 3885	u8 sense_key, asc, ascq;
 3886	int sense_len;
 3887	int rc, ldstat = 0;
 
 
 3888#define ASC_LUN_NOT_READY 0x04
 3889#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
 3890#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
 3891
 3892	c = cmd_alloc(h);
 3893
 3894	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
 3895	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 3896					NO_TIMEOUT);
 3897	if (rc) {
 3898		cmd_free(h, c);
 3899		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
 3900	}
 3901	sense = c->err_info->SenseInfo;
 3902	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 3903		sense_len = sizeof(c->err_info->SenseInfo);
 3904	else
 3905		sense_len = c->err_info->SenseLen;
 3906	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
 
 
 3907	cmd_free(h, c);
 3908
 3909	/* Determine the reason for not ready state */
 3910	ldstat = hpsa_get_volume_status(h, scsi3addr);
 3911
 3912	/* Keep volume offline in certain cases: */
 3913	switch (ldstat) {
 3914	case HPSA_LV_FAILED:
 3915	case HPSA_LV_UNDERGOING_ERASE:
 3916	case HPSA_LV_NOT_AVAILABLE:
 3917	case HPSA_LV_UNDERGOING_RPI:
 3918	case HPSA_LV_PENDING_RPI:
 3919	case HPSA_LV_ENCRYPTED_NO_KEY:
 3920	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
 3921	case HPSA_LV_UNDERGOING_ENCRYPTION:
 3922	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
 3923	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
 3924		return ldstat;
 3925	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
 3926		/* If VPD status page isn't available,
 3927		 * use ASC/ASCQ to determine state
 3928		 */
 3929		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
 3930			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
 3931			return ldstat;
 3932		break;
 3933	default:
 3934		break;
 3935	}
 3936	return HPSA_LV_OK;
 3937}
 3938
 3939static int hpsa_update_device_info(struct ctlr_info *h,
 3940	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
 3941	unsigned char *is_OBDR_device)
 3942{
 3943
 3944#define OBDR_SIG_OFFSET 43
 3945#define OBDR_TAPE_SIG "$DR-10"
 3946#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
 3947#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
 3948
 3949	unsigned char *inq_buff;
 3950	unsigned char *obdr_sig;
 3951	int rc = 0;
 3952
 3953	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
 3954	if (!inq_buff) {
 3955		rc = -ENOMEM;
 3956		goto bail_out;
 3957	}
 3958
 3959	/* Do an inquiry to the device to see what it is. */
 3960	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
 3961		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
 3962		dev_err(&h->pdev->dev,
 3963			"%s: inquiry failed, device will be skipped.\n",
 3964			__func__);
 3965		rc = HPSA_INQUIRY_FAILED;
 3966		goto bail_out;
 3967	}
 3968
 3969	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
 3970	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
 3971
 3972	this_device->devtype = (inq_buff[0] & 0x1f);
 3973	memcpy(this_device->scsi3addr, scsi3addr, 8);
 3974	memcpy(this_device->vendor, &inq_buff[8],
 3975		sizeof(this_device->vendor));
 3976	memcpy(this_device->model, &inq_buff[16],
 3977		sizeof(this_device->model));
 3978	this_device->rev = inq_buff[2];
 3979	memset(this_device->device_id, 0,
 3980		sizeof(this_device->device_id));
 3981	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
 3982		sizeof(this_device->device_id)) < 0) {
 3983		dev_err(&h->pdev->dev,
 3984			"hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
 3985			h->ctlr, __func__,
 3986			h->scsi_host->host_no,
 3987			this_device->bus, this_device->target,
 3988			this_device->lun,
 3989			scsi_device_type(this_device->devtype),
 3990			this_device->model);
 3991		rc = HPSA_LV_FAILED;
 3992		goto bail_out;
 3993	}
 3994
 3995	if ((this_device->devtype == TYPE_DISK ||
 3996		this_device->devtype == TYPE_ZBC) &&
 3997		is_logical_dev_addr_mode(scsi3addr)) {
 3998		unsigned char volume_offline;
 3999
 4000		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
 4001		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
 4002			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
 4003		volume_offline = hpsa_volume_offline(h, scsi3addr);
 4004		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
 4005		    h->legacy_board) {
 4006			/*
 4007			 * Legacy boards might not support volume status
 4008			 */
 4009			dev_info(&h->pdev->dev,
 4010				 "C0:T%d:L%d Volume status not available, assuming online.\n",
 4011				 this_device->target, this_device->lun);
 4012			volume_offline = 0;
 4013		}
 4014		this_device->volume_offline = volume_offline;
 4015		if (volume_offline == HPSA_LV_FAILED) {
 4016			rc = HPSA_LV_FAILED;
 4017			dev_err(&h->pdev->dev,
 4018				"%s: LV failed, device will be skipped.\n",
 4019				__func__);
 4020			goto bail_out;
 4021		}
 4022	} else {
 4023		this_device->raid_level = RAID_UNKNOWN;
 4024		this_device->offload_config = 0;
 4025		hpsa_turn_off_ioaccel_for_device(this_device);
 
 4026		this_device->hba_ioaccel_enabled = 0;
 4027		this_device->volume_offline = 0;
 4028		this_device->queue_depth = h->nr_cmds;
 4029	}
 4030
 4031	if (this_device->external)
 4032		this_device->queue_depth = EXTERNAL_QD;
 4033
 4034	if (is_OBDR_device) {
 4035		/* See if this is a One-Button-Disaster-Recovery device
 4036		 * by looking for "$DR-10" at offset 43 in inquiry data.
 4037		 */
 4038		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
 4039		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
 4040					strncmp(obdr_sig, OBDR_TAPE_SIG,
 4041						OBDR_SIG_LEN) == 0);
 4042	}
 4043	kfree(inq_buff);
 4044	return 0;
 4045
 4046bail_out:
 4047	kfree(inq_buff);
 4048	return rc;
 4049}
 4050
 4051/*
 4052 * Helper function to assign bus, target, lun mapping of devices.
 4053 * Logical drive target and lun are assigned at this time, but
 4054 * physical device lun and target assignment are deferred (assigned
 4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 4056*/
 4057static void figure_bus_target_lun(struct ctlr_info *h,
 4058	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
 4059{
 4060	u32 lunid = get_unaligned_le32(lunaddrbytes);
 4061
 4062	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
 4063		/* physical device, target and lun filled in later */
 4064		if (is_hba_lunid(lunaddrbytes)) {
 4065			int bus = HPSA_HBA_BUS;
 4066
 4067			if (!device->rev)
 4068				bus = HPSA_LEGACY_HBA_BUS;
 4069			hpsa_set_bus_target_lun(device,
 4070					bus, 0, lunid & 0x3fff);
 4071		} else
 4072			/* defer target, lun assignment for physical devices */
 4073			hpsa_set_bus_target_lun(device,
 4074					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
 4075		return;
 4076	}
 4077	/* It's a logical device */
 4078	if (device->external) {
 4079		hpsa_set_bus_target_lun(device,
 4080			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
 4081			lunid & 0x00ff);
 4082		return;
 4083	}
 4084	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
 4085				0, lunid & 0x3fff);
 4086}
 4087
 4088static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
 4089	int i, int nphysicals, int nlocal_logicals)
 4090{
 4091	/* In report logicals, local logicals are listed first,
 4092	* then any externals.
 4093	*/
 4094	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 4095
 4096	if (i == raid_ctlr_position)
 4097		return 0;
 4098
 4099	if (i < logicals_start)
 4100		return 0;
 4101
 4102	/* i is in logicals range, but still within local logicals */
 4103	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
 4104		return 0;
 4105
 4106	return 1; /* it's an external lun */
 4107}
 4108
 4109/*
 4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 4111 * logdev.  The number of luns in physdev and logdev are returned in
 4112 * *nphysicals and *nlogicals, respectively.
 4113 * Returns 0 on success, -1 otherwise.
 4114 */
 4115static int hpsa_gather_lun_info(struct ctlr_info *h,
 4116	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
 4117	struct ReportLUNdata *logdev, u32 *nlogicals)
 4118{
 4119	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
 4120		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
 4121		return -1;
 4122	}
 4123	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
 4124	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
 4125		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
 4126			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
 4127		*nphysicals = HPSA_MAX_PHYS_LUN;
 4128	}
 4129	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
 4130		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
 4131		return -1;
 4132	}
 4133	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
 4134	/* Reject Logicals in excess of our max capability. */
 4135	if (*nlogicals > HPSA_MAX_LUN) {
 4136		dev_warn(&h->pdev->dev,
 4137			"maximum logical LUNs (%d) exceeded.  "
 4138			"%d LUNs ignored.\n", HPSA_MAX_LUN,
 4139			*nlogicals - HPSA_MAX_LUN);
 4140		*nlogicals = HPSA_MAX_LUN;
 4141	}
 4142	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
 4143		dev_warn(&h->pdev->dev,
 4144			"maximum logical + physical LUNs (%d) exceeded. "
 4145			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
 4146			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
 4147		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
 4148	}
 4149	return 0;
 4150}
 4151
 4152static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
 4153	int i, int nphysicals, int nlogicals,
 4154	struct ReportExtendedLUNdata *physdev_list,
 4155	struct ReportLUNdata *logdev_list)
 4156{
 4157	/* Helper function, figure out where the LUN ID info is coming from
 4158	 * given index i, lists of physical and logical devices, where in
 4159	 * the list the raid controller is supposed to appear (first or last)
 4160	 */
 4161
 4162	int logicals_start = nphysicals + (raid_ctlr_position == 0);
 4163	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
 4164
 4165	if (i == raid_ctlr_position)
 4166		return RAID_CTLR_LUNID;
 4167
 4168	if (i < logicals_start)
 4169		return &physdev_list->LUN[i -
 4170				(raid_ctlr_position == 0)].lunid[0];
 4171
 4172	if (i < last_device)
 4173		return &logdev_list->LUN[i - nphysicals -
 4174			(raid_ctlr_position == 0)][0];
 4175	BUG();
 4176	return NULL;
 4177}
 4178
 4179/* get physical drive ioaccel handle and queue depth */
 4180static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
 4181		struct hpsa_scsi_dev_t *dev,
 4182		struct ReportExtendedLUNdata *rlep, int rle_index,
 4183		struct bmic_identify_physical_device *id_phys)
 4184{
 4185	int rc;
 4186	struct ext_report_lun_entry *rle;
 4187
 4188	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
 4189		return;
 4190
 4191	rle = &rlep->LUN[rle_index];
 4192
 4193	dev->ioaccel_handle = rle->ioaccel_handle;
 4194	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
 4195		dev->hba_ioaccel_enabled = 1;
 4196	memset(id_phys, 0, sizeof(*id_phys));
 4197	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
 4198			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
 4199			sizeof(*id_phys));
 4200	if (!rc)
 4201		/* Reserve space for FW operations */
 4202#define DRIVE_CMDS_RESERVED_FOR_FW 2
 4203#define DRIVE_QUEUE_DEPTH 7
 4204		dev->queue_depth =
 4205			le16_to_cpu(id_phys->current_queue_depth_limit) -
 4206				DRIVE_CMDS_RESERVED_FOR_FW;
 4207	else
 4208		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
 4209}
 4210
 4211static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
 4212	struct ReportExtendedLUNdata *rlep, int rle_index,
 4213	struct bmic_identify_physical_device *id_phys)
 4214{
 4215	struct ext_report_lun_entry *rle;
 4216
 4217	if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
 4218		return;
 4219
 4220	rle = &rlep->LUN[rle_index];
 4221
 4222	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
 4223		this_device->hba_ioaccel_enabled = 1;
 4224
 4225	memcpy(&this_device->active_path_index,
 4226		&id_phys->active_path_number,
 4227		sizeof(this_device->active_path_index));
 4228	memcpy(&this_device->path_map,
 4229		&id_phys->redundant_path_present_map,
 4230		sizeof(this_device->path_map));
 4231	memcpy(&this_device->box,
 4232		&id_phys->alternate_paths_phys_box_on_port,
 4233		sizeof(this_device->box));
 4234	memcpy(&this_device->phys_connector,
 4235		&id_phys->alternate_paths_phys_connector,
 4236		sizeof(this_device->phys_connector));
 4237	memcpy(&this_device->bay,
 4238		&id_phys->phys_bay_in_box,
 4239		sizeof(this_device->bay));
 4240}
 4241
 4242/* get number of local logical disks. */
 4243static int hpsa_set_local_logical_count(struct ctlr_info *h,
 4244	struct bmic_identify_controller *id_ctlr,
 4245	u32 *nlocals)
 4246{
 4247	int rc;
 4248
 4249	if (!id_ctlr) {
 4250		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
 4251			__func__);
 4252		return -ENOMEM;
 4253	}
 4254	memset(id_ctlr, 0, sizeof(*id_ctlr));
 4255	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
 4256	if (!rc)
 4257		if (id_ctlr->configured_logical_drive_count < 255)
 4258			*nlocals = id_ctlr->configured_logical_drive_count;
 4259		else
 4260			*nlocals = le16_to_cpu(
 4261					id_ctlr->extended_logical_unit_count);
 4262	else
 4263		*nlocals = -1;
 4264	return rc;
 4265}
 4266
 4267static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
 4268{
 4269	struct bmic_identify_physical_device *id_phys;
 4270	bool is_spare = false;
 4271	int rc;
 4272
 4273	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 4274	if (!id_phys)
 4275		return false;
 4276
 4277	rc = hpsa_bmic_id_physical_device(h,
 4278					lunaddrbytes,
 4279					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
 4280					id_phys, sizeof(*id_phys));
 4281	if (rc == 0)
 4282		is_spare = (id_phys->more_flags >> 6) & 0x01;
 4283
 4284	kfree(id_phys);
 4285	return is_spare;
 4286}
 4287
 4288#define RPL_DEV_FLAG_NON_DISK                           0x1
 4289#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
 4290#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
 4291
 4292#define BMIC_DEVICE_TYPE_ENCLOSURE  6
 4293
 4294static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
 4295				struct ext_report_lun_entry *rle)
 4296{
 4297	u8 device_flags;
 4298	u8 device_type;
 4299
 4300	if (!MASKED_DEVICE(lunaddrbytes))
 4301		return false;
 4302
 4303	device_flags = rle->device_flags;
 4304	device_type = rle->device_type;
 4305
 4306	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
 4307		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
 4308			return false;
 4309		return true;
 4310	}
 4311
 4312	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
 4313		return false;
 4314
 4315	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
 4316		return false;
 4317
 4318	/*
 4319	 * Spares may be spun down, we do not want to
 4320	 * do an Inquiry to a RAID set spare drive as
 4321	 * that would have them spun up, that is a
 4322	 * performance hit because I/O to the RAID device
 4323	 * stops while the spin up occurs which can take
 4324	 * over 50 seconds.
 4325	 */
 4326	if (hpsa_is_disk_spare(h, lunaddrbytes))
 4327		return true;
 4328
 4329	return false;
 4330}
 4331
 4332static void hpsa_update_scsi_devices(struct ctlr_info *h)
 4333{
 4334	/* the idea here is we could get notified
 4335	 * that some devices have changed, so we do a report
 4336	 * physical luns and report logical luns cmd, and adjust
 4337	 * our list of devices accordingly.
 4338	 *
 4339	 * The scsi3addr's of devices won't change so long as the
 4340	 * adapter is not reset.  That means we can rescan and
 4341	 * tell which devices we already know about, vs. new
 4342	 * devices, vs.  disappearing devices.
 4343	 */
 4344	struct ReportExtendedLUNdata *physdev_list = NULL;
 4345	struct ReportLUNdata *logdev_list = NULL;
 4346	struct bmic_identify_physical_device *id_phys = NULL;
 4347	struct bmic_identify_controller *id_ctlr = NULL;
 4348	u32 nphysicals = 0;
 4349	u32 nlogicals = 0;
 4350	u32 nlocal_logicals = 0;
 4351	u32 ndev_allocated = 0;
 4352	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
 4353	int ncurrent = 0;
 4354	int i, ndevs_to_allocate;
 4355	int raid_ctlr_position;
 4356	bool physical_device;
 
 4357
 4358	currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
 4359	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
 4360	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
 4361	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
 4362	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
 4363	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
 4364
 4365	if (!currentsd || !physdev_list || !logdev_list ||
 4366		!tmpdevice || !id_phys || !id_ctlr) {
 4367		dev_err(&h->pdev->dev, "out of memory\n");
 4368		goto out;
 4369	}
 
 4370
 4371	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
 4372
 4373	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
 4374			logdev_list, &nlogicals)) {
 4375		h->drv_req_rescan = 1;
 4376		goto out;
 4377	}
 4378
 4379	/* Set number of local logicals (non PTRAID) */
 4380	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
 4381		dev_warn(&h->pdev->dev,
 4382			"%s: Can't determine number of local logical devices.\n",
 4383			__func__);
 4384	}
 4385
 4386	/* We might see up to the maximum number of logical and physical disks
 4387	 * plus external target devices, and a device for the local RAID
 4388	 * controller.
 4389	 */
 4390	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
 4391
 4392	hpsa_ext_ctrl_present(h, physdev_list);
 4393
 4394	/* Allocate the per device structures */
 4395	for (i = 0; i < ndevs_to_allocate; i++) {
 4396		if (i >= HPSA_MAX_DEVICES) {
 4397			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
 4398				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
 4399				ndevs_to_allocate - HPSA_MAX_DEVICES);
 4400			break;
 4401		}
 4402
 4403		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
 4404		if (!currentsd[i]) {
 4405			h->drv_req_rescan = 1;
 4406			goto out;
 4407		}
 4408		ndev_allocated++;
 4409	}
 4410
 4411	if (is_scsi_rev_5(h))
 4412		raid_ctlr_position = 0;
 4413	else
 4414		raid_ctlr_position = nphysicals + nlogicals;
 4415
 4416	/* adjust our table of devices */
 
 4417	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
 4418		u8 *lunaddrbytes, is_OBDR = 0;
 4419		int rc = 0;
 4420		int phys_dev_index = i - (raid_ctlr_position == 0);
 4421		bool skip_device = false;
 4422
 4423		memset(tmpdevice, 0, sizeof(*tmpdevice));
 4424
 4425		physical_device = i < nphysicals + (raid_ctlr_position == 0);
 4426
 4427		/* Figure out where the LUN ID info is coming from */
 4428		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
 4429			i, nphysicals, nlogicals, physdev_list, logdev_list);
 4430
 4431		/* Determine if this is a lun from an external target array */
 4432		tmpdevice->external =
 4433			figure_external_status(h, raid_ctlr_position, i,
 4434						nphysicals, nlocal_logicals);
 4435
 4436		/*
 4437		 * Skip over some devices such as a spare.
 4438		 */
 4439		if (phys_dev_index >= 0 && !tmpdevice->external &&
 4440			physical_device) {
 4441			skip_device = hpsa_skip_device(h, lunaddrbytes,
 4442					&physdev_list->LUN[phys_dev_index]);
 4443			if (skip_device)
 4444				continue;
 4445		}
 4446
 4447		/* Get device type, vendor, model, device id, raid_map */
 4448		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
 4449							&is_OBDR);
 4450		if (rc == -ENOMEM) {
 4451			dev_warn(&h->pdev->dev,
 4452				"Out of memory, rescan deferred.\n");
 4453			h->drv_req_rescan = 1;
 4454			goto out;
 4455		}
 4456		if (rc) {
 4457			h->drv_req_rescan = 1;
 4458			continue;
 4459		}
 4460
 4461		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
 4462		this_device = currentsd[ncurrent];
 4463
 4464		*this_device = *tmpdevice;
 4465		this_device->physical_device = physical_device;
 4466
 4467		/*
 4468		 * Expose all devices except for physical devices that
 4469		 * are masked.
 4470		 */
 4471		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
 4472			this_device->expose_device = 0;
 4473		else
 4474			this_device->expose_device = 1;
 4475
 4476
 4477		/*
 4478		 * Get the SAS address for physical devices that are exposed.
 4479		 */
 4480		if (this_device->physical_device && this_device->expose_device)
 4481			hpsa_get_sas_address(h, lunaddrbytes, this_device);
 4482
 4483		switch (this_device->devtype) {
 4484		case TYPE_ROM:
 4485			/* We don't *really* support actual CD-ROM devices,
 4486			 * just "One Button Disaster Recovery" tape drive
 4487			 * which temporarily pretends to be a CD-ROM drive.
 4488			 * So we check that the device is really an OBDR tape
 4489			 * device by checking for "$DR-10" in bytes 43-48 of
 4490			 * the inquiry data.
 4491			 */
 4492			if (is_OBDR)
 4493				ncurrent++;
 4494			break;
 4495		case TYPE_DISK:
 4496		case TYPE_ZBC:
 4497			if (this_device->physical_device) {
 4498				/* The disk is in HBA mode. */
 4499				/* Never use RAID mapper in HBA mode. */
 4500				this_device->offload_enabled = 0;
 4501				hpsa_get_ioaccel_drive_info(h, this_device,
 4502					physdev_list, phys_dev_index, id_phys);
 4503				hpsa_get_path_info(this_device,
 4504					physdev_list, phys_dev_index, id_phys);
 4505			}
 4506			ncurrent++;
 4507			break;
 4508		case TYPE_TAPE:
 4509		case TYPE_MEDIUM_CHANGER:
 4510			ncurrent++;
 4511			break;
 4512		case TYPE_ENCLOSURE:
 4513			if (!this_device->external)
 4514				hpsa_get_enclosure_info(h, lunaddrbytes,
 4515						physdev_list, phys_dev_index,
 4516						this_device);
 4517			ncurrent++;
 4518			break;
 4519		case TYPE_RAID:
 4520			/* Only present the Smartarray HBA as a RAID controller.
 4521			 * If it's a RAID controller other than the HBA itself
 4522			 * (an external RAID controller, MSA500 or similar)
 4523			 * don't present it.
 4524			 */
 4525			if (!is_hba_lunid(lunaddrbytes))
 4526				break;
 4527			ncurrent++;
 4528			break;
 4529		default:
 4530			break;
 4531		}
 4532		if (ncurrent >= HPSA_MAX_DEVICES)
 4533			break;
 4534	}
 4535
 4536	if (h->sas_host == NULL) {
 4537		int rc = 0;
 4538
 4539		rc = hpsa_add_sas_host(h);
 4540		if (rc) {
 4541			dev_warn(&h->pdev->dev,
 4542				"Could not add sas host %d\n", rc);
 4543			goto out;
 4544		}
 4545	}
 4546
 4547	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
 4548out:
 4549	kfree(tmpdevice);
 4550	for (i = 0; i < ndev_allocated; i++)
 4551		kfree(currentsd[i]);
 4552	kfree(currentsd);
 4553	kfree(physdev_list);
 4554	kfree(logdev_list);
 4555	kfree(id_ctlr);
 4556	kfree(id_phys);
 4557}
 4558
 4559static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
 4560				   struct scatterlist *sg)
 4561{
 4562	u64 addr64 = (u64) sg_dma_address(sg);
 4563	unsigned int len = sg_dma_len(sg);
 4564
 4565	desc->Addr = cpu_to_le64(addr64);
 4566	desc->Len = cpu_to_le32(len);
 4567	desc->Ext = 0;
 4568}
 4569
 4570/*
 4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 4572 * dma mapping  and fills in the scatter gather entries of the
 4573 * hpsa command, cp.
 4574 */
 4575static int hpsa_scatter_gather(struct ctlr_info *h,
 4576		struct CommandList *cp,
 4577		struct scsi_cmnd *cmd)
 4578{
 4579	struct scatterlist *sg;
 4580	int use_sg, i, sg_limit, chained;
 4581	struct SGDescriptor *curr_sg;
 4582
 4583	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 4584
 4585	use_sg = scsi_dma_map(cmd);
 4586	if (use_sg < 0)
 4587		return use_sg;
 4588
 4589	if (!use_sg)
 4590		goto sglist_finished;
 4591
 4592	/*
 4593	 * If the number of entries is greater than the max for a single list,
 4594	 * then we have a chained list; we will set up all but one entry in the
 4595	 * first list (the last entry is saved for link information);
 4596	 * otherwise, we don't have a chained list and we'll set up at each of
 4597	 * the entries in the one list.
 4598	 */
 4599	curr_sg = cp->SG;
 4600	chained = use_sg > h->max_cmd_sg_entries;
 4601	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
 
 4602	scsi_for_each_sg(cmd, sg, sg_limit, i) {
 4603		hpsa_set_sg_descriptor(curr_sg, sg);
 4604		curr_sg++;
 4605	}
 4606
 4607	if (chained) {
 4608		/*
 4609		 * Continue with the chained list.  Set curr_sg to the chained
 4610		 * list.  Modify the limit to the total count less the entries
 4611		 * we've already set up.  Resume the scan at the list entry
 4612		 * where the previous loop left off.
 4613		 */
 4614		curr_sg = h->cmd_sg_list[cp->cmdindex];
 4615		sg_limit = use_sg - sg_limit;
 4616		for_each_sg(sg, sg, sg_limit, i) {
 4617			hpsa_set_sg_descriptor(curr_sg, sg);
 4618			curr_sg++;
 4619		}
 4620	}
 4621
 4622	/* Back the pointer up to the last entry and mark it as "last". */
 4623	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
 4624
 4625	if (use_sg + chained > h->maxSG)
 4626		h->maxSG = use_sg + chained;
 4627
 4628	if (chained) {
 4629		cp->Header.SGList = h->max_cmd_sg_entries;
 4630		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
 4631		if (hpsa_map_sg_chain_block(h, cp)) {
 4632			scsi_dma_unmap(cmd);
 4633			return -1;
 4634		}
 4635		return 0;
 4636	}
 4637
 4638sglist_finished:
 4639
 4640	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
 4641	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
 4642	return 0;
 4643}
 4644
 4645static inline void warn_zero_length_transfer(struct ctlr_info *h,
 4646						u8 *cdb, int cdb_len,
 4647						const char *func)
 4648{
 4649	dev_warn(&h->pdev->dev,
 4650		 "%s: Blocking zero-length request: CDB:%*phN\n",
 4651		 func, cdb_len, cdb);
 4652}
 4653
 4654#define IO_ACCEL_INELIGIBLE 1
 4655/* zero-length transfers trigger hardware errors. */
 4656static bool is_zero_length_transfer(u8 *cdb)
 4657{
 4658	u32 block_cnt;
 4659
 4660	/* Block zero-length transfer sizes on certain commands. */
 4661	switch (cdb[0]) {
 4662	case READ_10:
 4663	case WRITE_10:
 4664	case VERIFY:		/* 0x2F */
 4665	case WRITE_VERIFY:	/* 0x2E */
 4666		block_cnt = get_unaligned_be16(&cdb[7]);
 4667		break;
 4668	case READ_12:
 4669	case WRITE_12:
 4670	case VERIFY_12: /* 0xAF */
 4671	case WRITE_VERIFY_12:	/* 0xAE */
 4672		block_cnt = get_unaligned_be32(&cdb[6]);
 4673		break;
 4674	case READ_16:
 4675	case WRITE_16:
 4676	case VERIFY_16:		/* 0x8F */
 4677		block_cnt = get_unaligned_be32(&cdb[10]);
 4678		break;
 4679	default:
 4680		return false;
 4681	}
 4682
 4683	return block_cnt == 0;
 4684}
 4685
 4686static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
 4687{
 4688	int is_write = 0;
 4689	u32 block;
 4690	u32 block_cnt;
 4691
 4692	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
 4693	switch (cdb[0]) {
 4694	case WRITE_6:
 4695	case WRITE_12:
 4696		is_write = 1;
 4697		fallthrough;
 4698	case READ_6:
 4699	case READ_12:
 4700		if (*cdb_len == 6) {
 4701			block = (((cdb[1] & 0x1F) << 16) |
 4702				(cdb[2] << 8) |
 4703				cdb[3]);
 4704			block_cnt = cdb[4];
 4705			if (block_cnt == 0)
 4706				block_cnt = 256;
 4707		} else {
 4708			BUG_ON(*cdb_len != 12);
 4709			block = get_unaligned_be32(&cdb[2]);
 4710			block_cnt = get_unaligned_be32(&cdb[6]);
 4711		}
 4712		if (block_cnt > 0xffff)
 4713			return IO_ACCEL_INELIGIBLE;
 4714
 4715		cdb[0] = is_write ? WRITE_10 : READ_10;
 4716		cdb[1] = 0;
 4717		cdb[2] = (u8) (block >> 24);
 4718		cdb[3] = (u8) (block >> 16);
 4719		cdb[4] = (u8) (block >> 8);
 4720		cdb[5] = (u8) (block);
 4721		cdb[6] = 0;
 4722		cdb[7] = (u8) (block_cnt >> 8);
 4723		cdb[8] = (u8) (block_cnt);
 4724		cdb[9] = 0;
 4725		*cdb_len = 10;
 4726		break;
 4727	}
 4728	return 0;
 4729}
 4730
 4731static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
 4732	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 4733	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 4734{
 4735	struct scsi_cmnd *cmd = c->scsi_cmd;
 4736	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
 4737	unsigned int len;
 4738	unsigned int total_len = 0;
 4739	struct scatterlist *sg;
 4740	u64 addr64;
 4741	int use_sg, i;
 4742	struct SGDescriptor *curr_sg;
 4743	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
 4744
 4745	/* TODO: implement chaining support */
 4746	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
 4747		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4748		return IO_ACCEL_INELIGIBLE;
 4749	}
 4750
 4751	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
 4752
 4753	if (is_zero_length_transfer(cdb)) {
 4754		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
 4755		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4756		return IO_ACCEL_INELIGIBLE;
 4757	}
 4758
 4759	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 4760		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4761		return IO_ACCEL_INELIGIBLE;
 4762	}
 4763
 4764	c->cmd_type = CMD_IOACCEL1;
 4765
 4766	/* Adjust the DMA address to point to the accelerated command buffer */
 4767	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
 4768				(c->cmdindex * sizeof(*cp));
 4769	BUG_ON(c->busaddr & 0x0000007F);
 4770
 4771	use_sg = scsi_dma_map(cmd);
 4772	if (use_sg < 0) {
 4773		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4774		return use_sg;
 4775	}
 4776
 4777	if (use_sg) {
 4778		curr_sg = cp->SG;
 4779		scsi_for_each_sg(cmd, sg, use_sg, i) {
 4780			addr64 = (u64) sg_dma_address(sg);
 4781			len  = sg_dma_len(sg);
 4782			total_len += len;
 4783			curr_sg->Addr = cpu_to_le64(addr64);
 4784			curr_sg->Len = cpu_to_le32(len);
 4785			curr_sg->Ext = cpu_to_le32(0);
 4786			curr_sg++;
 4787		}
 4788		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
 4789
 4790		switch (cmd->sc_data_direction) {
 4791		case DMA_TO_DEVICE:
 4792			control |= IOACCEL1_CONTROL_DATA_OUT;
 4793			break;
 4794		case DMA_FROM_DEVICE:
 4795			control |= IOACCEL1_CONTROL_DATA_IN;
 4796			break;
 4797		case DMA_NONE:
 4798			control |= IOACCEL1_CONTROL_NODATAXFER;
 4799			break;
 4800		default:
 4801			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 4802			cmd->sc_data_direction);
 4803			BUG();
 4804			break;
 4805		}
 4806	} else {
 4807		control |= IOACCEL1_CONTROL_NODATAXFER;
 4808	}
 4809
 4810	c->Header.SGList = use_sg;
 4811	/* Fill out the command structure to submit */
 4812	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
 4813	cp->transfer_len = cpu_to_le32(total_len);
 4814	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
 4815			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
 4816	cp->control = cpu_to_le32(control);
 4817	memcpy(cp->CDB, cdb, cdb_len);
 4818	memcpy(cp->CISS_LUN, scsi3addr, 8);
 4819	/* Tag was already set at init time. */
 4820	enqueue_cmd_and_start_io(h, c);
 4821	return 0;
 4822}
 4823
 4824/*
 4825 * Queue a command directly to a device behind the controller using the
 4826 * I/O accelerator path.
 4827 */
 4828static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
 4829	struct CommandList *c)
 4830{
 4831	struct scsi_cmnd *cmd = c->scsi_cmd;
 4832	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 4833
 4834	if (!dev)
 4835		return -1;
 4836
 4837	c->phys_disk = dev;
 4838
 4839	if (dev->in_reset)
 4840		return -1;
 4841
 4842	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
 4843		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
 4844}
 4845
 4846/*
 4847 * Set encryption parameters for the ioaccel2 request
 4848 */
 4849static void set_encrypt_ioaccel2(struct ctlr_info *h,
 4850	struct CommandList *c, struct io_accel2_cmd *cp)
 4851{
 4852	struct scsi_cmnd *cmd = c->scsi_cmd;
 4853	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 4854	struct raid_map_data *map = &dev->raid_map;
 4855	u64 first_block;
 4856
 4857	/* Are we doing encryption on this device */
 4858	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
 4859		return;
 4860	/* Set the data encryption key index. */
 4861	cp->dekindex = map->dekindex;
 4862
 4863	/* Set the encryption enable flag, encoded into direction field. */
 4864	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
 4865
 4866	/* Set encryption tweak values based on logical block address
 4867	 * If block size is 512, tweak value is LBA.
 4868	 * For other block sizes, tweak is (LBA * block size)/ 512)
 4869	 */
 4870	switch (cmd->cmnd[0]) {
 4871	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
 4872	case READ_6:
 4873	case WRITE_6:
 4874		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 4875				(cmd->cmnd[2] << 8) |
 4876				cmd->cmnd[3]);
 4877		break;
 4878	case WRITE_10:
 4879	case READ_10:
 4880	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
 4881	case WRITE_12:
 4882	case READ_12:
 4883		first_block = get_unaligned_be32(&cmd->cmnd[2]);
 4884		break;
 4885	case WRITE_16:
 4886	case READ_16:
 4887		first_block = get_unaligned_be64(&cmd->cmnd[2]);
 4888		break;
 4889	default:
 4890		dev_err(&h->pdev->dev,
 4891			"ERROR: %s: size (0x%x) not supported for encryption\n",
 4892			__func__, cmd->cmnd[0]);
 4893		BUG();
 4894		break;
 4895	}
 4896
 4897	if (le32_to_cpu(map->volume_blk_size) != 512)
 4898		first_block = first_block *
 4899				le32_to_cpu(map->volume_blk_size)/512;
 4900
 4901	cp->tweak_lower = cpu_to_le32(first_block);
 4902	cp->tweak_upper = cpu_to_le32(first_block >> 32);
 4903}
 4904
 4905static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
 4906	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 4907	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 4908{
 4909	struct scsi_cmnd *cmd = c->scsi_cmd;
 4910	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
 4911	struct ioaccel2_sg_element *curr_sg;
 4912	int use_sg, i;
 4913	struct scatterlist *sg;
 4914	u64 addr64;
 4915	u32 len;
 4916	u32 total_len = 0;
 4917
 4918	if (!cmd->device)
 4919		return -1;
 4920
 4921	if (!cmd->device->hostdata)
 4922		return -1;
 4923
 4924	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
 4925
 4926	if (is_zero_length_transfer(cdb)) {
 4927		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
 4928		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4929		return IO_ACCEL_INELIGIBLE;
 4930	}
 4931
 4932	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
 4933		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4934		return IO_ACCEL_INELIGIBLE;
 4935	}
 4936
 4937	c->cmd_type = CMD_IOACCEL2;
 4938	/* Adjust the DMA address to point to the accelerated command buffer */
 4939	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
 4940				(c->cmdindex * sizeof(*cp));
 4941	BUG_ON(c->busaddr & 0x0000007F);
 4942
 4943	memset(cp, 0, sizeof(*cp));
 4944	cp->IU_type = IOACCEL2_IU_TYPE;
 4945
 4946	use_sg = scsi_dma_map(cmd);
 4947	if (use_sg < 0) {
 4948		atomic_dec(&phys_disk->ioaccel_cmds_out);
 4949		return use_sg;
 4950	}
 4951
 4952	if (use_sg) {
 4953		curr_sg = cp->sg;
 4954		if (use_sg > h->ioaccel_maxsg) {
 4955			addr64 = le64_to_cpu(
 4956				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
 4957			curr_sg->address = cpu_to_le64(addr64);
 4958			curr_sg->length = 0;
 4959			curr_sg->reserved[0] = 0;
 4960			curr_sg->reserved[1] = 0;
 4961			curr_sg->reserved[2] = 0;
 4962			curr_sg->chain_indicator = IOACCEL2_CHAIN;
 4963
 4964			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
 4965		}
 4966		scsi_for_each_sg(cmd, sg, use_sg, i) {
 4967			addr64 = (u64) sg_dma_address(sg);
 4968			len  = sg_dma_len(sg);
 4969			total_len += len;
 4970			curr_sg->address = cpu_to_le64(addr64);
 4971			curr_sg->length = cpu_to_le32(len);
 4972			curr_sg->reserved[0] = 0;
 4973			curr_sg->reserved[1] = 0;
 4974			curr_sg->reserved[2] = 0;
 4975			curr_sg->chain_indicator = 0;
 4976			curr_sg++;
 4977		}
 4978
 4979		/*
 4980		 * Set the last s/g element bit
 4981		 */
 4982		(curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
 4983
 4984		switch (cmd->sc_data_direction) {
 4985		case DMA_TO_DEVICE:
 4986			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4987			cp->direction |= IOACCEL2_DIR_DATA_OUT;
 4988			break;
 4989		case DMA_FROM_DEVICE:
 4990			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4991			cp->direction |= IOACCEL2_DIR_DATA_IN;
 4992			break;
 4993		case DMA_NONE:
 4994			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 4995			cp->direction |= IOACCEL2_DIR_NO_DATA;
 4996			break;
 4997		default:
 4998			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 4999				cmd->sc_data_direction);
 5000			BUG();
 5001			break;
 5002		}
 5003	} else {
 5004		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
 5005		cp->direction |= IOACCEL2_DIR_NO_DATA;
 5006	}
 5007
 5008	/* Set encryption parameters, if necessary */
 5009	set_encrypt_ioaccel2(h, c, cp);
 5010
 5011	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
 5012	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
 5013	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
 5014
 5015	cp->data_len = cpu_to_le32(total_len);
 5016	cp->err_ptr = cpu_to_le64(c->busaddr +
 5017			offsetof(struct io_accel2_cmd, error_data));
 5018	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
 5019
 5020	/* fill in sg elements */
 5021	if (use_sg > h->ioaccel_maxsg) {
 5022		cp->sg_count = 1;
 5023		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
 5024		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
 5025			atomic_dec(&phys_disk->ioaccel_cmds_out);
 5026			scsi_dma_unmap(cmd);
 5027			return -1;
 5028		}
 5029	} else
 5030		cp->sg_count = (u8) use_sg;
 5031
 5032	if (phys_disk->in_reset) {
 5033		cmd->result = DID_RESET << 16;
 5034		return -1;
 5035	}
 5036
 5037	enqueue_cmd_and_start_io(h, c);
 5038	return 0;
 5039}
 5040
 5041/*
 5042 * Queue a command to the correct I/O accelerator path.
 5043 */
 5044static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 5045	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 5046	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
 5047{
 5048	if (!c->scsi_cmd->device)
 5049		return -1;
 5050
 5051	if (!c->scsi_cmd->device->hostdata)
 5052		return -1;
 5053
 5054	if (phys_disk->in_reset)
 5055		return -1;
 5056
 5057	/* Try to honor the device's queue depth */
 5058	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
 5059					phys_disk->queue_depth) {
 5060		atomic_dec(&phys_disk->ioaccel_cmds_out);
 5061		return IO_ACCEL_INELIGIBLE;
 5062	}
 5063	if (h->transMethod & CFGTBL_Trans_io_accel1)
 5064		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
 5065						cdb, cdb_len, scsi3addr,
 5066						phys_disk);
 5067	else
 5068		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
 5069						cdb, cdb_len, scsi3addr,
 5070						phys_disk);
 5071}
 5072
 5073static void raid_map_helper(struct raid_map_data *map,
 5074		int offload_to_mirror, u32 *map_index, u32 *current_group)
 5075{
 5076	if (offload_to_mirror == 0)  {
 5077		/* use physical disk in the first mirrored group. */
 5078		*map_index %= le16_to_cpu(map->data_disks_per_row);
 5079		return;
 5080	}
 5081	do {
 5082		/* determine mirror group that *map_index indicates */
 5083		*current_group = *map_index /
 5084			le16_to_cpu(map->data_disks_per_row);
 5085		if (offload_to_mirror == *current_group)
 5086			continue;
 5087		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
 5088			/* select map index from next group */
 5089			*map_index += le16_to_cpu(map->data_disks_per_row);
 5090			(*current_group)++;
 5091		} else {
 5092			/* select map index from first group */
 5093			*map_index %= le16_to_cpu(map->data_disks_per_row);
 5094			*current_group = 0;
 5095		}
 5096	} while (offload_to_mirror != *current_group);
 5097}
 5098
 5099/*
 5100 * Attempt to perform offload RAID mapping for a logical volume I/O.
 5101 */
 5102static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
 5103	struct CommandList *c)
 5104{
 5105	struct scsi_cmnd *cmd = c->scsi_cmd;
 5106	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 5107	struct raid_map_data *map = &dev->raid_map;
 5108	struct raid_map_disk_data *dd = &map->data[0];
 5109	int is_write = 0;
 5110	u32 map_index;
 5111	u64 first_block, last_block;
 5112	u32 block_cnt;
 5113	u32 blocks_per_row;
 5114	u64 first_row, last_row;
 5115	u32 first_row_offset, last_row_offset;
 5116	u32 first_column, last_column;
 5117	u64 r0_first_row, r0_last_row;
 5118	u32 r5or6_blocks_per_row;
 5119	u64 r5or6_first_row, r5or6_last_row;
 5120	u32 r5or6_first_row_offset, r5or6_last_row_offset;
 5121	u32 r5or6_first_column, r5or6_last_column;
 5122	u32 total_disks_per_row;
 5123	u32 stripesize;
 5124	u32 first_group, last_group, current_group;
 5125	u32 map_row;
 5126	u32 disk_handle;
 5127	u64 disk_block;
 5128	u32 disk_block_cnt;
 5129	u8 cdb[16];
 5130	u8 cdb_len;
 5131	u16 strip_size;
 5132#if BITS_PER_LONG == 32
 5133	u64 tmpdiv;
 5134#endif
 5135	int offload_to_mirror;
 5136
 5137	if (!dev)
 5138		return -1;
 5139
 5140	if (dev->in_reset)
 5141		return -1;
 5142
 5143	/* check for valid opcode, get LBA and block count */
 5144	switch (cmd->cmnd[0]) {
 5145	case WRITE_6:
 5146		is_write = 1;
 5147		fallthrough;
 5148	case READ_6:
 5149		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
 5150				(cmd->cmnd[2] << 8) |
 5151				cmd->cmnd[3]);
 5152		block_cnt = cmd->cmnd[4];
 5153		if (block_cnt == 0)
 5154			block_cnt = 256;
 5155		break;
 5156	case WRITE_10:
 5157		is_write = 1;
 5158		fallthrough;
 5159	case READ_10:
 5160		first_block =
 5161			(((u64) cmd->cmnd[2]) << 24) |
 5162			(((u64) cmd->cmnd[3]) << 16) |
 5163			(((u64) cmd->cmnd[4]) << 8) |
 5164			cmd->cmnd[5];
 5165		block_cnt =
 5166			(((u32) cmd->cmnd[7]) << 8) |
 5167			cmd->cmnd[8];
 5168		break;
 5169	case WRITE_12:
 5170		is_write = 1;
 5171		fallthrough;
 5172	case READ_12:
 5173		first_block =
 5174			(((u64) cmd->cmnd[2]) << 24) |
 5175			(((u64) cmd->cmnd[3]) << 16) |
 5176			(((u64) cmd->cmnd[4]) << 8) |
 5177			cmd->cmnd[5];
 5178		block_cnt =
 5179			(((u32) cmd->cmnd[6]) << 24) |
 5180			(((u32) cmd->cmnd[7]) << 16) |
 5181			(((u32) cmd->cmnd[8]) << 8) |
 5182		cmd->cmnd[9];
 5183		break;
 5184	case WRITE_16:
 5185		is_write = 1;
 5186		fallthrough;
 5187	case READ_16:
 5188		first_block =
 5189			(((u64) cmd->cmnd[2]) << 56) |
 5190			(((u64) cmd->cmnd[3]) << 48) |
 5191			(((u64) cmd->cmnd[4]) << 40) |
 5192			(((u64) cmd->cmnd[5]) << 32) |
 5193			(((u64) cmd->cmnd[6]) << 24) |
 5194			(((u64) cmd->cmnd[7]) << 16) |
 5195			(((u64) cmd->cmnd[8]) << 8) |
 5196			cmd->cmnd[9];
 5197		block_cnt =
 5198			(((u32) cmd->cmnd[10]) << 24) |
 5199			(((u32) cmd->cmnd[11]) << 16) |
 5200			(((u32) cmd->cmnd[12]) << 8) |
 5201			cmd->cmnd[13];
 5202		break;
 5203	default:
 5204		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
 5205	}
 5206	last_block = first_block + block_cnt - 1;
 5207
 5208	/* check for write to non-RAID-0 */
 5209	if (is_write && dev->raid_level != 0)
 5210		return IO_ACCEL_INELIGIBLE;
 5211
 5212	/* check for invalid block or wraparound */
 5213	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
 5214		last_block < first_block)
 5215		return IO_ACCEL_INELIGIBLE;
 5216
 5217	/* calculate stripe information for the request */
 5218	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
 5219				le16_to_cpu(map->strip_size);
 5220	strip_size = le16_to_cpu(map->strip_size);
 5221#if BITS_PER_LONG == 32
 5222	tmpdiv = first_block;
 5223	(void) do_div(tmpdiv, blocks_per_row);
 5224	first_row = tmpdiv;
 5225	tmpdiv = last_block;
 5226	(void) do_div(tmpdiv, blocks_per_row);
 5227	last_row = tmpdiv;
 5228	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 5229	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 5230	tmpdiv = first_row_offset;
 5231	(void) do_div(tmpdiv, strip_size);
 5232	first_column = tmpdiv;
 5233	tmpdiv = last_row_offset;
 5234	(void) do_div(tmpdiv, strip_size);
 5235	last_column = tmpdiv;
 5236#else
 5237	first_row = first_block / blocks_per_row;
 5238	last_row = last_block / blocks_per_row;
 5239	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
 5240	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
 5241	first_column = first_row_offset / strip_size;
 5242	last_column = last_row_offset / strip_size;
 5243#endif
 5244
 5245	/* if this isn't a single row/column then give to the controller */
 5246	if ((first_row != last_row) || (first_column != last_column))
 5247		return IO_ACCEL_INELIGIBLE;
 5248
 5249	/* proceeding with driver mapping */
 5250	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
 5251				le16_to_cpu(map->metadata_disks_per_row);
 5252	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 5253				le16_to_cpu(map->row_cnt);
 5254	map_index = (map_row * total_disks_per_row) + first_column;
 5255
 5256	switch (dev->raid_level) {
 5257	case HPSA_RAID_0:
 5258		break; /* nothing special to do */
 5259	case HPSA_RAID_1:
 5260		/* Handles load balance across RAID 1 members.
 5261		 * (2-drive R1 and R10 with even # of drives.)
 5262		 * Appropriate for SSDs, not optimal for HDDs
 5263		 * Ensure we have the correct raid_map.
 5264		 */
 5265		if (le16_to_cpu(map->layout_map_count) != 2) {
 5266			hpsa_turn_off_ioaccel_for_device(dev);
 5267			return IO_ACCEL_INELIGIBLE;
 5268		}
 5269		if (dev->offload_to_mirror)
 5270			map_index += le16_to_cpu(map->data_disks_per_row);
 5271		dev->offload_to_mirror = !dev->offload_to_mirror;
 5272		break;
 5273	case HPSA_RAID_ADM:
 5274		/* Handles N-way mirrors  (R1-ADM)
 5275		 * and R10 with # of drives divisible by 3.)
 5276		 * Ensure we have the correct raid_map.
 5277		 */
 5278		if (le16_to_cpu(map->layout_map_count) != 3) {
 5279			hpsa_turn_off_ioaccel_for_device(dev);
 5280			return IO_ACCEL_INELIGIBLE;
 5281		}
 5282
 5283		offload_to_mirror = dev->offload_to_mirror;
 5284		raid_map_helper(map, offload_to_mirror,
 5285				&map_index, &current_group);
 5286		/* set mirror group to use next time */
 5287		offload_to_mirror =
 5288			(offload_to_mirror >=
 5289			le16_to_cpu(map->layout_map_count) - 1)
 5290			? 0 : offload_to_mirror + 1;
 5291		dev->offload_to_mirror = offload_to_mirror;
 5292		/* Avoid direct use of dev->offload_to_mirror within this
 5293		 * function since multiple threads might simultaneously
 5294		 * increment it beyond the range of dev->layout_map_count -1.
 5295		 */
 5296		break;
 5297	case HPSA_RAID_5:
 5298	case HPSA_RAID_6:
 5299		if (le16_to_cpu(map->layout_map_count) <= 1)
 5300			break;
 5301
 5302		/* Verify first and last block are in same RAID group */
 5303		r5or6_blocks_per_row =
 5304			le16_to_cpu(map->strip_size) *
 5305			le16_to_cpu(map->data_disks_per_row);
 5306		if (r5or6_blocks_per_row == 0) {
 5307			hpsa_turn_off_ioaccel_for_device(dev);
 5308			return IO_ACCEL_INELIGIBLE;
 5309		}
 5310		stripesize = r5or6_blocks_per_row *
 5311			le16_to_cpu(map->layout_map_count);
 5312#if BITS_PER_LONG == 32
 5313		tmpdiv = first_block;
 5314		first_group = do_div(tmpdiv, stripesize);
 5315		tmpdiv = first_group;
 5316		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 5317		first_group = tmpdiv;
 5318		tmpdiv = last_block;
 5319		last_group = do_div(tmpdiv, stripesize);
 5320		tmpdiv = last_group;
 5321		(void) do_div(tmpdiv, r5or6_blocks_per_row);
 5322		last_group = tmpdiv;
 5323#else
 5324		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
 5325		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
 5326#endif
 5327		if (first_group != last_group)
 5328			return IO_ACCEL_INELIGIBLE;
 5329
 5330		/* Verify request is in a single row of RAID 5/6 */
 5331#if BITS_PER_LONG == 32
 5332		tmpdiv = first_block;
 5333		(void) do_div(tmpdiv, stripesize);
 5334		first_row = r5or6_first_row = r0_first_row = tmpdiv;
 5335		tmpdiv = last_block;
 5336		(void) do_div(tmpdiv, stripesize);
 5337		r5or6_last_row = r0_last_row = tmpdiv;
 5338#else
 5339		first_row = r5or6_first_row = r0_first_row =
 5340						first_block / stripesize;
 5341		r5or6_last_row = r0_last_row = last_block / stripesize;
 5342#endif
 5343		if (r5or6_first_row != r5or6_last_row)
 5344			return IO_ACCEL_INELIGIBLE;
 5345
 5346
 5347		/* Verify request is in a single column */
 5348#if BITS_PER_LONG == 32
 5349		tmpdiv = first_block;
 5350		first_row_offset = do_div(tmpdiv, stripesize);
 5351		tmpdiv = first_row_offset;
 5352		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
 5353		r5or6_first_row_offset = first_row_offset;
 5354		tmpdiv = last_block;
 5355		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
 5356		tmpdiv = r5or6_last_row_offset;
 5357		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
 5358		tmpdiv = r5or6_first_row_offset;
 5359		(void) do_div(tmpdiv, map->strip_size);
 5360		first_column = r5or6_first_column = tmpdiv;
 5361		tmpdiv = r5or6_last_row_offset;
 5362		(void) do_div(tmpdiv, map->strip_size);
 5363		r5or6_last_column = tmpdiv;
 5364#else
 5365		first_row_offset = r5or6_first_row_offset =
 5366			(u32)((first_block % stripesize) %
 5367						r5or6_blocks_per_row);
 5368
 5369		r5or6_last_row_offset =
 5370			(u32)((last_block % stripesize) %
 5371						r5or6_blocks_per_row);
 5372
 5373		first_column = r5or6_first_column =
 5374			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
 5375		r5or6_last_column =
 5376			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
 5377#endif
 5378		if (r5or6_first_column != r5or6_last_column)
 5379			return IO_ACCEL_INELIGIBLE;
 5380
 5381		/* Request is eligible */
 5382		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
 5383			le16_to_cpu(map->row_cnt);
 5384
 5385		map_index = (first_group *
 5386			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
 5387			(map_row * total_disks_per_row) + first_column;
 5388		break;
 5389	default:
 5390		return IO_ACCEL_INELIGIBLE;
 5391	}
 5392
 5393	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
 5394		return IO_ACCEL_INELIGIBLE;
 5395
 5396	c->phys_disk = dev->phys_disk[map_index];
 5397	if (!c->phys_disk)
 5398		return IO_ACCEL_INELIGIBLE;
 5399
 5400	disk_handle = dd[map_index].ioaccel_handle;
 5401	disk_block = le64_to_cpu(map->disk_starting_blk) +
 5402			first_row * le16_to_cpu(map->strip_size) +
 5403			(first_row_offset - first_column *
 5404			le16_to_cpu(map->strip_size));
 5405	disk_block_cnt = block_cnt;
 5406
 5407	/* handle differing logical/physical block sizes */
 5408	if (map->phys_blk_shift) {
 5409		disk_block <<= map->phys_blk_shift;
 5410		disk_block_cnt <<= map->phys_blk_shift;
 5411	}
 5412	BUG_ON(disk_block_cnt > 0xffff);
 5413
 5414	/* build the new CDB for the physical disk I/O */
 5415	if (disk_block > 0xffffffff) {
 5416		cdb[0] = is_write ? WRITE_16 : READ_16;
 5417		cdb[1] = 0;
 5418		cdb[2] = (u8) (disk_block >> 56);
 5419		cdb[3] = (u8) (disk_block >> 48);
 5420		cdb[4] = (u8) (disk_block >> 40);
 5421		cdb[5] = (u8) (disk_block >> 32);
 5422		cdb[6] = (u8) (disk_block >> 24);
 5423		cdb[7] = (u8) (disk_block >> 16);
 5424		cdb[8] = (u8) (disk_block >> 8);
 5425		cdb[9] = (u8) (disk_block);
 5426		cdb[10] = (u8) (disk_block_cnt >> 24);
 5427		cdb[11] = (u8) (disk_block_cnt >> 16);
 5428		cdb[12] = (u8) (disk_block_cnt >> 8);
 5429		cdb[13] = (u8) (disk_block_cnt);
 5430		cdb[14] = 0;
 5431		cdb[15] = 0;
 5432		cdb_len = 16;
 5433	} else {
 5434		cdb[0] = is_write ? WRITE_10 : READ_10;
 5435		cdb[1] = 0;
 5436		cdb[2] = (u8) (disk_block >> 24);
 5437		cdb[3] = (u8) (disk_block >> 16);
 5438		cdb[4] = (u8) (disk_block >> 8);
 5439		cdb[5] = (u8) (disk_block);
 5440		cdb[6] = 0;
 5441		cdb[7] = (u8) (disk_block_cnt >> 8);
 5442		cdb[8] = (u8) (disk_block_cnt);
 5443		cdb[9] = 0;
 5444		cdb_len = 10;
 5445	}
 5446	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
 5447						dev->scsi3addr,
 5448						dev->phys_disk[map_index]);
 5449}
 5450
 5451/*
 5452 * Submit commands down the "normal" RAID stack path
 5453 * All callers to hpsa_ciss_submit must check lockup_detected
 5454 * beforehand, before (opt.) and after calling cmd_alloc
 5455 */
 5456static int hpsa_ciss_submit(struct ctlr_info *h,
 5457	struct CommandList *c, struct scsi_cmnd *cmd,
 5458	struct hpsa_scsi_dev_t *dev)
 5459{
 5460	cmd->host_scribble = (unsigned char *) c;
 5461	c->cmd_type = CMD_SCSI;
 5462	c->scsi_cmd = cmd;
 5463	c->Header.ReplyQueue = 0;  /* unused in simple mode */
 5464	memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
 5465	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
 5466
 5467	/* Fill in the request block... */
 5468
 5469	c->Request.Timeout = 0;
 5470	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
 5471	c->Request.CDBLen = cmd->cmd_len;
 5472	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
 5473	switch (cmd->sc_data_direction) {
 5474	case DMA_TO_DEVICE:
 5475		c->Request.type_attr_dir =
 5476			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
 5477		break;
 5478	case DMA_FROM_DEVICE:
 5479		c->Request.type_attr_dir =
 5480			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
 5481		break;
 5482	case DMA_NONE:
 5483		c->Request.type_attr_dir =
 5484			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
 5485		break;
 5486	case DMA_BIDIRECTIONAL:
 5487		/* This can happen if a buggy application does a scsi passthru
 5488		 * and sets both inlen and outlen to non-zero. ( see
 5489		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
 5490		 */
 5491
 5492		c->Request.type_attr_dir =
 5493			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
 5494		/* This is technically wrong, and hpsa controllers should
 5495		 * reject it with CMD_INVALID, which is the most correct
 5496		 * response, but non-fibre backends appear to let it
 5497		 * slide by, and give the same results as if this field
 5498		 * were set correctly.  Either way is acceptable for
 5499		 * our purposes here.
 5500		 */
 5501
 5502		break;
 5503
 5504	default:
 5505		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
 5506			cmd->sc_data_direction);
 5507		BUG();
 5508		break;
 5509	}
 5510
 5511	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
 5512		hpsa_cmd_resolve_and_free(h, c);
 5513		return SCSI_MLQUEUE_HOST_BUSY;
 5514	}
 5515
 5516	if (dev->in_reset) {
 5517		hpsa_cmd_resolve_and_free(h, c);
 5518		return SCSI_MLQUEUE_HOST_BUSY;
 5519	}
 5520
 5521	c->device = dev;
 5522
 5523	enqueue_cmd_and_start_io(h, c);
 5524	/* the cmd'll come back via intr handler in complete_scsi_command()  */
 5525	return 0;
 5526}
 5527
 5528static void hpsa_cmd_init(struct ctlr_info *h, int index,
 5529				struct CommandList *c)
 5530{
 5531	dma_addr_t cmd_dma_handle, err_dma_handle;
 5532
 5533	/* Zero out all of commandlist except the last field, refcount */
 5534	memset(c, 0, offsetof(struct CommandList, refcount));
 5535	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
 5536	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 5537	c->err_info = h->errinfo_pool + index;
 5538	memset(c->err_info, 0, sizeof(*c->err_info));
 5539	err_dma_handle = h->errinfo_pool_dhandle
 5540	    + index * sizeof(*c->err_info);
 5541	c->cmdindex = index;
 5542	c->busaddr = (u32) cmd_dma_handle;
 5543	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
 5544	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
 5545	c->h = h;
 5546	c->scsi_cmd = SCSI_CMD_IDLE;
 5547}
 5548
 5549static void hpsa_preinitialize_commands(struct ctlr_info *h)
 5550{
 5551	int i;
 5552
 5553	for (i = 0; i < h->nr_cmds; i++) {
 5554		struct CommandList *c = h->cmd_pool + i;
 5555
 5556		hpsa_cmd_init(h, i, c);
 5557		atomic_set(&c->refcount, 0);
 5558	}
 5559}
 5560
 5561static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
 5562				struct CommandList *c)
 5563{
 5564	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
 5565
 5566	BUG_ON(c->cmdindex != index);
 5567
 5568	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
 5569	memset(c->err_info, 0, sizeof(*c->err_info));
 5570	c->busaddr = (u32) cmd_dma_handle;
 5571}
 5572
 5573static int hpsa_ioaccel_submit(struct ctlr_info *h,
 5574		struct CommandList *c, struct scsi_cmnd *cmd,
 5575		bool retry)
 5576{
 5577	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
 5578	int rc = IO_ACCEL_INELIGIBLE;
 5579
 5580	if (!dev)
 5581		return SCSI_MLQUEUE_HOST_BUSY;
 5582
 5583	if (dev->in_reset)
 5584		return SCSI_MLQUEUE_HOST_BUSY;
 5585
 5586	if (hpsa_simple_mode)
 5587		return IO_ACCEL_INELIGIBLE;
 5588
 5589	cmd->host_scribble = (unsigned char *) c;
 5590
 5591	if (dev->offload_enabled) {
 5592		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
 5593		c->cmd_type = CMD_SCSI;
 5594		c->scsi_cmd = cmd;
 5595		c->device = dev;
 5596		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
 5597			c->retry_pending = true;
 5598		rc = hpsa_scsi_ioaccel_raid_map(h, c);
 5599		if (rc < 0)     /* scsi_dma_map failed. */
 5600			rc = SCSI_MLQUEUE_HOST_BUSY;
 5601	} else if (dev->hba_ioaccel_enabled) {
 5602		hpsa_cmd_init(h, c->cmdindex, c); /* Zeroes out all fields */
 5603		c->cmd_type = CMD_SCSI;
 5604		c->scsi_cmd = cmd;
 5605		c->device = dev;
 5606		if (retry) /* Resubmit but do not increment device->commands_outstanding. */
 5607			c->retry_pending = true;
 5608		rc = hpsa_scsi_ioaccel_direct_map(h, c);
 5609		if (rc < 0)     /* scsi_dma_map failed. */
 5610			rc = SCSI_MLQUEUE_HOST_BUSY;
 5611	}
 5612	return rc;
 5613}
 5614
 5615static void hpsa_command_resubmit_worker(struct work_struct *work)
 5616{
 5617	struct scsi_cmnd *cmd;
 5618	struct hpsa_scsi_dev_t *dev;
 5619	struct CommandList *c = container_of(work, struct CommandList, work);
 5620
 5621	cmd = c->scsi_cmd;
 5622	dev = cmd->device->hostdata;
 5623	if (!dev) {
 5624		cmd->result = DID_NO_CONNECT << 16;
 5625		return hpsa_cmd_free_and_done(c->h, c, cmd);
 5626	}
 5627
 5628	if (dev->in_reset) {
 5629		cmd->result = DID_RESET << 16;
 5630		return hpsa_cmd_free_and_done(c->h, c, cmd);
 5631	}
 5632
 5633	if (c->cmd_type == CMD_IOACCEL2) {
 5634		struct ctlr_info *h = c->h;
 5635		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
 5636		int rc;
 5637
 5638		if (c2->error_data.serv_response ==
 5639				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
 5640			/* Resubmit with the retry_pending flag set. */
 5641			rc = hpsa_ioaccel_submit(h, c, cmd, true);
 5642			if (rc == 0)
 5643				return;
 5644			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 5645				/*
 5646				 * If we get here, it means dma mapping failed.
 5647				 * Try again via scsi mid layer, which will
 5648				 * then get SCSI_MLQUEUE_HOST_BUSY.
 5649				 */
 5650				cmd->result = DID_IMM_RETRY << 16;
 5651				return hpsa_cmd_free_and_done(h, c, cmd);
 5652			}
 5653			/* else, fall thru and resubmit down CISS path */
 5654		}
 5655	}
 5656	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
 5657	/*
 5658	 * Here we have not come in though queue_command, so we
 5659	 * can set the retry_pending flag to true for a driver initiated
 5660	 * retry attempt (I.E. not a SML retry).
 5661	 * I.E. We are submitting a driver initiated retry.
 5662	 * Note: hpsa_ciss_submit does not zero out the command fields like
 5663	 *       ioaccel submit does.
 5664	 */
 5665	c->retry_pending = true;
 5666	if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
 5667		/*
 5668		 * If we get here, it means dma mapping failed. Try
 5669		 * again via scsi mid layer, which will then get
 5670		 * SCSI_MLQUEUE_HOST_BUSY.
 5671		 *
 5672		 * hpsa_ciss_submit will have already freed c
 5673		 * if it encountered a dma mapping failure.
 5674		 */
 5675		cmd->result = DID_IMM_RETRY << 16;
 5676		scsi_done(cmd);
 5677	}
 5678}
 5679
 5680/* Running in struct Scsi_Host->host_lock less mode */
 5681static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
 5682{
 5683	struct ctlr_info *h;
 5684	struct hpsa_scsi_dev_t *dev;
 
 5685	struct CommandList *c;
 5686	int rc = 0;
 5687
 5688	/* Get the ptr to our adapter structure out of cmd->host. */
 5689	h = sdev_to_hba(cmd->device);
 5690
 5691	BUG_ON(scsi_cmd_to_rq(cmd)->tag < 0);
 5692
 5693	dev = cmd->device->hostdata;
 5694	if (!dev) {
 5695		cmd->result = DID_NO_CONNECT << 16;
 5696		scsi_done(cmd);
 5697		return 0;
 5698	}
 5699
 5700	if (dev->removed) {
 5701		cmd->result = DID_NO_CONNECT << 16;
 5702		scsi_done(cmd);
 5703		return 0;
 5704	}
 5705
 
 
 5706	if (unlikely(lockup_detected(h))) {
 5707		cmd->result = DID_NO_CONNECT << 16;
 5708		scsi_done(cmd);
 5709		return 0;
 5710	}
 5711
 5712	if (dev->in_reset)
 5713		return SCSI_MLQUEUE_DEVICE_BUSY;
 5714
 5715	c = cmd_tagged_alloc(h, cmd);
 5716	if (c == NULL)
 5717		return SCSI_MLQUEUE_DEVICE_BUSY;
 5718
 5719	/*
 5720	 * This is necessary because the SML doesn't zero out this field during
 5721	 * error recovery.
 5722	 */
 5723	cmd->result = 0;
 5724
 5725	/*
 5726	 * Call alternate submit routine for I/O accelerated commands.
 5727	 * Retries always go down the normal I/O path.
 5728	 * Note: If cmd->retries is non-zero, then this is a SML
 5729	 *       initiated retry and not a driver initiated retry.
 5730	 *       This command has been obtained from cmd_tagged_alloc
 5731	 *       and is therefore a brand-new command.
 5732	 */
 5733	if (likely(cmd->retries == 0 &&
 5734			!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd)) &&
 5735			h->acciopath_status)) {
 5736		/* Submit with the retry_pending flag unset. */
 5737		rc = hpsa_ioaccel_submit(h, c, cmd, false);
 5738		if (rc == 0)
 5739			return 0;
 5740		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
 5741			hpsa_cmd_resolve_and_free(h, c);
 5742			return SCSI_MLQUEUE_HOST_BUSY;
 5743		}
 5744	}
 5745	return hpsa_ciss_submit(h, c, cmd, dev);
 5746}
 5747
 5748static void hpsa_scan_complete(struct ctlr_info *h)
 5749{
 5750	unsigned long flags;
 5751
 5752	spin_lock_irqsave(&h->scan_lock, flags);
 5753	h->scan_finished = 1;
 5754	wake_up(&h->scan_wait_queue);
 5755	spin_unlock_irqrestore(&h->scan_lock, flags);
 5756}
 5757
 5758static void hpsa_scan_start(struct Scsi_Host *sh)
 5759{
 5760	struct ctlr_info *h = shost_to_hba(sh);
 5761	unsigned long flags;
 5762
 5763	/*
 5764	 * Don't let rescans be initiated on a controller known to be locked
 5765	 * up.  If the controller locks up *during* a rescan, that thread is
 5766	 * probably hosed, but at least we can prevent new rescan threads from
 5767	 * piling up on a locked up controller.
 5768	 */
 5769	if (unlikely(lockup_detected(h)))
 5770		return hpsa_scan_complete(h);
 5771
 5772	/*
 5773	 * If a scan is already waiting to run, no need to add another
 5774	 */
 5775	spin_lock_irqsave(&h->scan_lock, flags);
 5776	if (h->scan_waiting) {
 5777		spin_unlock_irqrestore(&h->scan_lock, flags);
 5778		return;
 5779	}
 5780
 5781	spin_unlock_irqrestore(&h->scan_lock, flags);
 5782
 5783	/* wait until any scan already in progress is finished. */
 5784	while (1) {
 5785		spin_lock_irqsave(&h->scan_lock, flags);
 5786		if (h->scan_finished)
 5787			break;
 5788		h->scan_waiting = 1;
 5789		spin_unlock_irqrestore(&h->scan_lock, flags);
 5790		wait_event(h->scan_wait_queue, h->scan_finished);
 5791		/* Note: We don't need to worry about a race between this
 5792		 * thread and driver unload because the midlayer will
 5793		 * have incremented the reference count, so unload won't
 5794		 * happen if we're in here.
 5795		 */
 5796	}
 5797	h->scan_finished = 0; /* mark scan as in progress */
 5798	h->scan_waiting = 0;
 5799	spin_unlock_irqrestore(&h->scan_lock, flags);
 5800
 5801	if (unlikely(lockup_detected(h)))
 5802		return hpsa_scan_complete(h);
 5803
 5804	/*
 5805	 * Do the scan after a reset completion
 5806	 */
 5807	spin_lock_irqsave(&h->reset_lock, flags);
 5808	if (h->reset_in_progress) {
 5809		h->drv_req_rescan = 1;
 5810		spin_unlock_irqrestore(&h->reset_lock, flags);
 5811		hpsa_scan_complete(h);
 5812		return;
 5813	}
 5814	spin_unlock_irqrestore(&h->reset_lock, flags);
 5815
 5816	hpsa_update_scsi_devices(h);
 5817
 5818	hpsa_scan_complete(h);
 5819}
 5820
 5821static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
 5822{
 5823	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
 5824
 5825	if (!logical_drive)
 5826		return -ENODEV;
 5827
 5828	if (qdepth < 1)
 5829		qdepth = 1;
 5830	else if (qdepth > logical_drive->queue_depth)
 5831		qdepth = logical_drive->queue_depth;
 5832
 5833	return scsi_change_queue_depth(sdev, qdepth);
 5834}
 5835
 5836static int hpsa_scan_finished(struct Scsi_Host *sh,
 5837	unsigned long elapsed_time)
 5838{
 5839	struct ctlr_info *h = shost_to_hba(sh);
 5840	unsigned long flags;
 5841	int finished;
 5842
 5843	spin_lock_irqsave(&h->scan_lock, flags);
 5844	finished = h->scan_finished;
 5845	spin_unlock_irqrestore(&h->scan_lock, flags);
 5846	return finished;
 5847}
 5848
 5849static int hpsa_scsi_host_alloc(struct ctlr_info *h)
 5850{
 5851	struct Scsi_Host *sh;
 5852
 5853	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(struct ctlr_info));
 5854	if (sh == NULL) {
 5855		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
 5856		return -ENOMEM;
 5857	}
 5858
 5859	sh->io_port = 0;
 5860	sh->n_io_port = 0;
 5861	sh->this_id = -1;
 5862	sh->max_channel = 3;
 5863	sh->max_cmd_len = MAX_COMMAND_SIZE;
 5864	sh->max_lun = HPSA_MAX_LUN;
 5865	sh->max_id = HPSA_MAX_LUN;
 5866	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
 5867	sh->cmd_per_lun = sh->can_queue;
 5868	sh->sg_tablesize = h->maxsgentries;
 5869	sh->transportt = hpsa_sas_transport_template;
 5870	sh->hostdata[0] = (unsigned long) h;
 5871	sh->irq = pci_irq_vector(h->pdev, 0);
 5872	sh->unique_id = sh->irq;
 5873
 5874	h->scsi_host = sh;
 5875	return 0;
 5876}
 5877
 5878static int hpsa_scsi_add_host(struct ctlr_info *h)
 5879{
 5880	int rv;
 5881
 5882	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
 5883	if (rv) {
 5884		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
 5885		return rv;
 5886	}
 5887	scsi_scan_host(h->scsi_host);
 5888	return 0;
 5889}
 5890
 5891/*
 5892 * The block layer has already gone to the trouble of picking out a unique,
 5893 * small-integer tag for this request.  We use an offset from that value as
 5894 * an index to select our command block.  (The offset allows us to reserve the
 5895 * low-numbered entries for our own uses.)
 5896 */
 5897static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
 5898{
 5899	int idx = scsi_cmd_to_rq(scmd)->tag;
 5900
 5901	if (idx < 0)
 5902		return idx;
 5903
 5904	/* Offset to leave space for internal cmds. */
 5905	return idx += HPSA_NRESERVED_CMDS;
 5906}
 5907
 5908/*
 5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified
 5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
 5911 */
 5912static int hpsa_send_test_unit_ready(struct ctlr_info *h,
 5913				struct CommandList *c, unsigned char lunaddr[],
 5914				int reply_queue)
 5915{
 5916	int rc;
 5917
 5918	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
 5919	(void) fill_cmd(c, TEST_UNIT_READY, h,
 5920			NULL, 0, 0, lunaddr, TYPE_CMD);
 5921	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
 5922	if (rc)
 5923		return rc;
 5924	/* no unmap needed here because no data xfer. */
 5925
 5926	/* Check if the unit is already ready. */
 5927	if (c->err_info->CommandStatus == CMD_SUCCESS)
 5928		return 0;
 5929
 5930	/*
 5931	 * The first command sent after reset will receive "unit attention" to
 5932	 * indicate that the LUN has been reset...this is actually what we're
 5933	 * looking for (but, success is good too).
 5934	 */
 5935	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 5936		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
 5937			(c->err_info->SenseInfo[2] == NO_SENSE ||
 5938			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
 5939		return 0;
 5940
 5941	return 1;
 5942}
 5943
 5944/*
 5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
 5946 * returns zero when the unit is ready, and non-zero when giving up.
 5947 */
 5948static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
 5949				struct CommandList *c,
 5950				unsigned char lunaddr[], int reply_queue)
 5951{
 5952	int rc;
 5953	int count = 0;
 5954	int waittime = 1; /* seconds */
 5955
 5956	/* Send test unit ready until device ready, or give up. */
 5957	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
 5958
 5959		/*
 5960		 * Wait for a bit.  do this first, because if we send
 5961		 * the TUR right away, the reset will just abort it.
 5962		 */
 5963		msleep(1000 * waittime);
 5964
 5965		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
 5966		if (!rc)
 5967			break;
 5968
 5969		/* Increase wait time with each try, up to a point. */
 5970		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
 5971			waittime *= 2;
 5972
 5973		dev_warn(&h->pdev->dev,
 5974			 "waiting %d secs for device to become ready.\n",
 5975			 waittime);
 5976	}
 5977
 5978	return rc;
 5979}
 5980
 5981static int wait_for_device_to_become_ready(struct ctlr_info *h,
 5982					   unsigned char lunaddr[],
 5983					   int reply_queue)
 5984{
 5985	int first_queue;
 5986	int last_queue;
 5987	int rq;
 5988	int rc = 0;
 5989	struct CommandList *c;
 5990
 5991	c = cmd_alloc(h);
 5992
 5993	/*
 5994	 * If no specific reply queue was requested, then send the TUR
 5995	 * repeatedly, requesting a reply on each reply queue; otherwise execute
 5996	 * the loop exactly once using only the specified queue.
 5997	 */
 5998	if (reply_queue == DEFAULT_REPLY_QUEUE) {
 5999		first_queue = 0;
 6000		last_queue = h->nreply_queues - 1;
 6001	} else {
 6002		first_queue = reply_queue;
 6003		last_queue = reply_queue;
 6004	}
 6005
 6006	for (rq = first_queue; rq <= last_queue; rq++) {
 6007		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
 6008		if (rc)
 6009			break;
 6010	}
 6011
 6012	if (rc)
 6013		dev_warn(&h->pdev->dev, "giving up on device.\n");
 6014	else
 6015		dev_warn(&h->pdev->dev, "device is ready.\n");
 6016
 6017	cmd_free(h, c);
 6018	return rc;
 6019}
 6020
 6021/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 6022 * complaining.  Doing a host- or bus-reset can't do anything good here.
 6023 */
 6024static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
 6025{
 6026	int rc = SUCCESS;
 6027	int i;
 6028	struct ctlr_info *h;
 6029	struct hpsa_scsi_dev_t *dev = NULL;
 6030	u8 reset_type;
 6031	char msg[48];
 6032	unsigned long flags;
 6033
 6034	/* find the controller to which the command to be aborted was sent */
 6035	h = sdev_to_hba(scsicmd->device);
 6036	if (h == NULL) /* paranoia */
 6037		return FAILED;
 6038
 6039	spin_lock_irqsave(&h->reset_lock, flags);
 6040	h->reset_in_progress = 1;
 6041	spin_unlock_irqrestore(&h->reset_lock, flags);
 6042
 6043	if (lockup_detected(h)) {
 6044		rc = FAILED;
 6045		goto return_reset_status;
 6046	}
 6047
 6048	dev = scsicmd->device->hostdata;
 6049	if (!dev) {
 6050		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
 6051		rc = FAILED;
 6052		goto return_reset_status;
 6053	}
 6054
 6055	if (dev->devtype == TYPE_ENCLOSURE) {
 6056		rc = SUCCESS;
 6057		goto return_reset_status;
 6058	}
 6059
 6060	/* if controller locked up, we can guarantee command won't complete */
 6061	if (lockup_detected(h)) {
 6062		snprintf(msg, sizeof(msg),
 6063			 "cmd %d RESET FAILED, lockup detected",
 6064			 hpsa_get_cmd_index(scsicmd));
 6065		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 6066		rc = FAILED;
 6067		goto return_reset_status;
 6068	}
 6069
 6070	/* this reset request might be the result of a lockup; check */
 6071	if (detect_controller_lockup(h)) {
 6072		snprintf(msg, sizeof(msg),
 6073			 "cmd %d RESET FAILED, new lockup detected",
 6074			 hpsa_get_cmd_index(scsicmd));
 6075		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 6076		rc = FAILED;
 6077		goto return_reset_status;
 6078	}
 6079
 6080	/* Do not attempt on controller */
 6081	if (is_hba_lunid(dev->scsi3addr)) {
 6082		rc = SUCCESS;
 6083		goto return_reset_status;
 6084	}
 6085
 6086	if (is_logical_dev_addr_mode(dev->scsi3addr))
 6087		reset_type = HPSA_DEVICE_RESET_MSG;
 6088	else
 6089		reset_type = HPSA_PHYS_TARGET_RESET;
 6090
 6091	sprintf(msg, "resetting %s",
 6092		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
 6093	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 6094
 6095	/*
 6096	 * wait to see if any commands will complete before sending reset
 6097	 */
 6098	dev->in_reset = true; /* block any new cmds from OS for this device */
 6099	for (i = 0; i < 10; i++) {
 6100		if (atomic_read(&dev->commands_outstanding) > 0)
 6101			msleep(1000);
 6102		else
 6103			break;
 6104	}
 6105
 6106	/* send a reset to the SCSI LUN which the command was sent to */
 6107	rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
 
 6108	if (rc == 0)
 6109		rc = SUCCESS;
 6110	else
 6111		rc = FAILED;
 6112
 6113	sprintf(msg, "reset %s %s",
 6114		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
 6115		rc == SUCCESS ? "completed successfully" : "failed");
 6116	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
 6117
 6118return_reset_status:
 6119	spin_lock_irqsave(&h->reset_lock, flags);
 6120	h->reset_in_progress = 0;
 6121	if (dev)
 6122		dev->in_reset = false;
 6123	spin_unlock_irqrestore(&h->reset_lock, flags);
 6124	return rc;
 6125}
 6126
 6127/*
 6128 * For operations with an associated SCSI command, a command block is allocated
 6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
 6130 * block request tag as an index into a table of entries.  cmd_tagged_free() is
 6131 * the complement, although cmd_free() may be called instead.
 6132 * This function is only called for new requests from queue_command.
 6133 */
 6134static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 6135					    struct scsi_cmnd *scmd)
 6136{
 6137	int idx = hpsa_get_cmd_index(scmd);
 6138	struct CommandList *c = h->cmd_pool + idx;
 6139
 6140	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
 6141		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
 6142			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
 6143		/* The index value comes from the block layer, so if it's out of
 6144		 * bounds, it's probably not our bug.
 6145		 */
 6146		BUG();
 6147	}
 6148
 
 6149	if (unlikely(!hpsa_is_cmd_idle(c))) {
 6150		/*
 6151		 * We expect that the SCSI layer will hand us a unique tag
 6152		 * value.  Thus, there should never be a collision here between
 6153		 * two requests...because if the selected command isn't idle
 6154		 * then someone is going to be very disappointed.
 6155		 */
 6156		if (idx != h->last_collision_tag) { /* Print once per tag */
 6157			dev_warn(&h->pdev->dev,
 6158				"%s: tag collision (tag=%d)\n", __func__, idx);
 6159			if (scmd)
 6160				scsi_print_command(scmd);
 6161			h->last_collision_tag = idx;
 6162		}
 6163		return NULL;
 6164	}
 6165
 6166	atomic_inc(&c->refcount);
 6167	hpsa_cmd_partial_init(h, idx, c);
 6168
 6169	/*
 6170	 * This is a new command obtained from queue_command so
 6171	 * there have not been any driver initiated retry attempts.
 6172	 */
 6173	c->retry_pending = false;
 6174
 6175	return c;
 6176}
 6177
 6178static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
 6179{
 6180	/*
 6181	 * Release our reference to the block.  We don't need to do anything
 6182	 * else to free it, because it is accessed by index.
 6183	 */
 6184	(void)atomic_dec(&c->refcount);
 6185}
 6186
 6187/*
 6188 * For operations that cannot sleep, a command block is allocated at init,
 6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 6190 * which ones are free or in use.  Lock must be held when calling this.
 6191 * cmd_free() is the complement.
 6192 * This function never gives up and returns NULL.  If it hangs,
 6193 * another thread must call cmd_free() to free some tags.
 6194 */
 6195
 6196static struct CommandList *cmd_alloc(struct ctlr_info *h)
 6197{
 6198	struct CommandList *c;
 6199	int refcount, i;
 6200	int offset = 0;
 6201
 6202	/*
 6203	 * There is some *extremely* small but non-zero chance that that
 6204	 * multiple threads could get in here, and one thread could
 6205	 * be scanning through the list of bits looking for a free
 6206	 * one, but the free ones are always behind him, and other
 6207	 * threads sneak in behind him and eat them before he can
 6208	 * get to them, so that while there is always a free one, a
 6209	 * very unlucky thread might be starved anyway, never able to
 6210	 * beat the other threads.  In reality, this happens so
 6211	 * infrequently as to be indistinguishable from never.
 6212	 *
 6213	 * Note that we start allocating commands before the SCSI host structure
 6214	 * is initialized.  Since the search starts at bit zero, this
 6215	 * all works, since we have at least one command structure available;
 6216	 * however, it means that the structures with the low indexes have to be
 6217	 * reserved for driver-initiated requests, while requests from the block
 6218	 * layer will use the higher indexes.
 6219	 */
 6220
 6221	for (;;) {
 6222		i = find_next_zero_bit(h->cmd_pool_bits,
 6223					HPSA_NRESERVED_CMDS,
 6224					offset);
 6225		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
 6226			offset = 0;
 6227			continue;
 6228		}
 6229		c = h->cmd_pool + i;
 6230		refcount = atomic_inc_return(&c->refcount);
 6231		if (unlikely(refcount > 1)) {
 6232			cmd_free(h, c); /* already in use */
 6233			offset = (i + 1) % HPSA_NRESERVED_CMDS;
 6234			continue;
 6235		}
 6236		set_bit(i, h->cmd_pool_bits);
 
 6237		break; /* it's ours now. */
 6238	}
 6239	hpsa_cmd_partial_init(h, i, c);
 6240	c->device = NULL;
 6241
 6242	/*
 6243	 * cmd_alloc is for "internal" commands and they are never
 6244	 * retried.
 6245	 */
 6246	c->retry_pending = false;
 6247
 6248	return c;
 6249}
 6250
 6251/*
 6252 * This is the complementary operation to cmd_alloc().  Note, however, in some
 6253 * corner cases it may also be used to free blocks allocated by
 6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
 6255 * the clear-bit is harmless.
 6256 */
 6257static void cmd_free(struct ctlr_info *h, struct CommandList *c)
 6258{
 6259	if (atomic_dec_and_test(&c->refcount)) {
 6260		int i;
 6261
 6262		i = c - h->cmd_pool;
 6263		clear_bit(i, h->cmd_pool_bits);
 
 6264	}
 6265}
 6266
 6267#ifdef CONFIG_COMPAT
 6268
 6269static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
 6270	void __user *arg)
 6271{
 6272	struct ctlr_info *h = sdev_to_hba(dev);
 6273	IOCTL32_Command_struct __user *arg32 = arg;
 6274	IOCTL_Command_struct arg64;
 
 6275	int err;
 6276	u32 cp;
 6277
 6278	if (!arg)
 6279		return -EINVAL;
 6280
 6281	memset(&arg64, 0, sizeof(arg64));
 6282	if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
 6283		return -EFAULT;
 6284	if (get_user(cp, &arg32->buf))
 6285		return -EFAULT;
 
 
 
 
 
 6286	arg64.buf = compat_ptr(cp);
 
 
 
 
 6287
 6288	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6289		return -EAGAIN;
 6290	err = hpsa_passthru_ioctl(h, &arg64);
 6291	atomic_inc(&h->passthru_cmds_avail);
 6292	if (err)
 6293		return err;
 6294	if (copy_to_user(&arg32->error_info, &arg64.error_info,
 6295			 sizeof(arg32->error_info)))
 
 6296		return -EFAULT;
 6297	return 0;
 6298}
 6299
 6300static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
 6301	unsigned int cmd, void __user *arg)
 6302{
 6303	struct ctlr_info *h = sdev_to_hba(dev);
 6304	BIG_IOCTL32_Command_struct __user *arg32 = arg;
 6305	BIG_IOCTL_Command_struct arg64;
 
 
 6306	int err;
 6307	u32 cp;
 6308
 6309	if (!arg)
 6310		return -EINVAL;
 6311	memset(&arg64, 0, sizeof(arg64));
 6312	if (copy_from_user(&arg64, arg32,
 6313			   offsetof(BIG_IOCTL32_Command_struct, buf)))
 6314		return -EFAULT;
 6315	if (get_user(cp, &arg32->buf))
 6316		return -EFAULT;
 
 
 
 
 
 6317	arg64.buf = compat_ptr(cp);
 
 
 
 
 6318
 6319	if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6320		return -EAGAIN;
 6321	err = hpsa_big_passthru_ioctl(h, &arg64);
 6322	atomic_inc(&h->passthru_cmds_avail);
 6323	if (err)
 6324		return err;
 6325	if (copy_to_user(&arg32->error_info, &arg64.error_info,
 6326			 sizeof(arg32->error_info)))
 
 6327		return -EFAULT;
 6328	return 0;
 6329}
 6330
 6331static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
 6332			     void __user *arg)
 6333{
 6334	switch (cmd) {
 6335	case CCISS_GETPCIINFO:
 6336	case CCISS_GETINTINFO:
 6337	case CCISS_SETINTINFO:
 6338	case CCISS_GETNODENAME:
 6339	case CCISS_SETNODENAME:
 6340	case CCISS_GETHEARTBEAT:
 6341	case CCISS_GETBUSTYPES:
 6342	case CCISS_GETFIRMVER:
 6343	case CCISS_GETDRIVVER:
 6344	case CCISS_REVALIDVOLS:
 6345	case CCISS_DEREGDISK:
 6346	case CCISS_REGNEWDISK:
 6347	case CCISS_REGNEWD:
 6348	case CCISS_RESCANDISK:
 6349	case CCISS_GETLUNINFO:
 6350		return hpsa_ioctl(dev, cmd, arg);
 6351
 6352	case CCISS_PASSTHRU32:
 6353		return hpsa_ioctl32_passthru(dev, cmd, arg);
 6354	case CCISS_BIG_PASSTHRU32:
 6355		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
 6356
 6357	default:
 6358		return -ENOIOCTLCMD;
 6359	}
 6360}
 6361#endif
 6362
 6363static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
 6364{
 6365	struct hpsa_pci_info pciinfo;
 6366
 6367	if (!argp)
 6368		return -EINVAL;
 6369	pciinfo.domain = pci_domain_nr(h->pdev->bus);
 6370	pciinfo.bus = h->pdev->bus->number;
 6371	pciinfo.dev_fn = h->pdev->devfn;
 6372	pciinfo.board_id = h->board_id;
 6373	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
 6374		return -EFAULT;
 6375	return 0;
 6376}
 6377
 6378static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
 6379{
 6380	DriverVer_type DriverVer;
 6381	unsigned char vmaj, vmin, vsubmin;
 6382	int rc;
 6383
 6384	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
 6385		&vmaj, &vmin, &vsubmin);
 6386	if (rc != 3) {
 6387		dev_info(&h->pdev->dev, "driver version string '%s' "
 6388			"unrecognized.", HPSA_DRIVER_VERSION);
 6389		vmaj = 0;
 6390		vmin = 0;
 6391		vsubmin = 0;
 6392	}
 6393	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
 6394	if (!argp)
 6395		return -EINVAL;
 6396	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
 6397		return -EFAULT;
 6398	return 0;
 6399}
 6400
 6401static int hpsa_passthru_ioctl(struct ctlr_info *h,
 6402			       IOCTL_Command_struct *iocommand)
 6403{
 
 6404	struct CommandList *c;
 6405	char *buff = NULL;
 6406	u64 temp64;
 6407	int rc = 0;
 6408
 
 
 6409	if (!capable(CAP_SYS_RAWIO))
 6410		return -EPERM;
 6411	if ((iocommand->buf_size < 1) &&
 6412	    (iocommand->Request.Type.Direction != XFER_NONE)) {
 
 
 6413		return -EINVAL;
 6414	}
 6415	if (iocommand->buf_size > 0) {
 6416		buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
 6417		if (buff == NULL)
 6418			return -ENOMEM;
 6419		if (iocommand->Request.Type.Direction & XFER_WRITE) {
 6420			/* Copy the data into the buffer we created */
 6421			if (copy_from_user(buff, iocommand->buf,
 6422				iocommand->buf_size)) {
 6423				rc = -EFAULT;
 6424				goto out_kfree;
 6425			}
 6426		} else {
 6427			memset(buff, 0, iocommand->buf_size);
 6428		}
 6429	}
 6430	c = cmd_alloc(h);
 6431
 6432	/* Fill in the command type */
 6433	c->cmd_type = CMD_IOCTL_PEND;
 6434	c->scsi_cmd = SCSI_CMD_BUSY;
 6435	/* Fill in Command Header */
 6436	c->Header.ReplyQueue = 0; /* unused in simple mode */
 6437	if (iocommand->buf_size > 0) {	/* buffer to fill */
 6438		c->Header.SGList = 1;
 6439		c->Header.SGTotal = cpu_to_le16(1);
 6440	} else	{ /* no buffers to fill */
 6441		c->Header.SGList = 0;
 6442		c->Header.SGTotal = cpu_to_le16(0);
 6443	}
 6444	memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
 6445
 6446	/* Fill in Request block */
 6447	memcpy(&c->Request, &iocommand->Request,
 6448		sizeof(c->Request));
 6449
 6450	/* Fill in the scatter gather information */
 6451	if (iocommand->buf_size > 0) {
 6452		temp64 = dma_map_single(&h->pdev->dev, buff,
 6453			iocommand->buf_size, DMA_BIDIRECTIONAL);
 6454		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
 6455			c->SG[0].Addr = cpu_to_le64(0);
 6456			c->SG[0].Len = cpu_to_le32(0);
 6457			rc = -ENOMEM;
 6458			goto out;
 6459		}
 6460		c->SG[0].Addr = cpu_to_le64(temp64);
 6461		c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
 6462		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
 6463	}
 6464	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 6465					NO_TIMEOUT);
 6466	if (iocommand->buf_size > 0)
 6467		hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
 6468	check_ioctl_unit_attention(h, c);
 6469	if (rc) {
 6470		rc = -EIO;
 6471		goto out;
 6472	}
 6473
 6474	/* Copy the error information out */
 6475	memcpy(&iocommand->error_info, c->err_info,
 6476		sizeof(iocommand->error_info));
 6477	if ((iocommand->Request.Type.Direction & XFER_READ) &&
 6478		iocommand->buf_size > 0) {
 
 
 
 
 6479		/* Copy the data out of the buffer we created */
 6480		if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
 6481			rc = -EFAULT;
 6482			goto out;
 6483		}
 6484	}
 6485out:
 6486	cmd_free(h, c);
 6487out_kfree:
 6488	kfree(buff);
 6489	return rc;
 6490}
 6491
 6492static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
 6493				   BIG_IOCTL_Command_struct *ioc)
 6494{
 
 6495	struct CommandList *c;
 6496	unsigned char **buff = NULL;
 6497	int *buff_size = NULL;
 6498	u64 temp64;
 6499	BYTE sg_used = 0;
 6500	int status = 0;
 6501	u32 left;
 6502	u32 sz;
 6503	BYTE __user *data_ptr;
 6504
 
 
 6505	if (!capable(CAP_SYS_RAWIO))
 6506		return -EPERM;
 6507
 
 
 
 
 
 
 
 
 6508	if ((ioc->buf_size < 1) &&
 6509	    (ioc->Request.Type.Direction != XFER_NONE))
 6510		return -EINVAL;
 
 
 6511	/* Check kmalloc limits  using all SGs */
 6512	if (ioc->malloc_size > MAX_KMALLOC_SIZE)
 6513		return -EINVAL;
 6514	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
 6515		return -EINVAL;
 6516	buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
 
 
 
 
 6517	if (!buff) {
 6518		status = -ENOMEM;
 6519		goto cleanup1;
 6520	}
 6521	buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
 6522	if (!buff_size) {
 6523		status = -ENOMEM;
 6524		goto cleanup1;
 6525	}
 6526	left = ioc->buf_size;
 6527	data_ptr = ioc->buf;
 6528	while (left) {
 6529		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
 6530		buff_size[sg_used] = sz;
 6531		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
 6532		if (buff[sg_used] == NULL) {
 6533			status = -ENOMEM;
 6534			goto cleanup1;
 6535		}
 6536		if (ioc->Request.Type.Direction & XFER_WRITE) {
 6537			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
 6538				status = -EFAULT;
 6539				goto cleanup1;
 6540			}
 6541		} else
 6542			memset(buff[sg_used], 0, sz);
 6543		left -= sz;
 6544		data_ptr += sz;
 6545		sg_used++;
 6546	}
 6547	c = cmd_alloc(h);
 6548
 6549	c->cmd_type = CMD_IOCTL_PEND;
 6550	c->scsi_cmd = SCSI_CMD_BUSY;
 6551	c->Header.ReplyQueue = 0;
 6552	c->Header.SGList = (u8) sg_used;
 6553	c->Header.SGTotal = cpu_to_le16(sg_used);
 6554	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
 6555	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
 6556	if (ioc->buf_size > 0) {
 6557		int i;
 6558		for (i = 0; i < sg_used; i++) {
 6559			temp64 = dma_map_single(&h->pdev->dev, buff[i],
 6560				    buff_size[i], DMA_BIDIRECTIONAL);
 6561			if (dma_mapping_error(&h->pdev->dev,
 6562							(dma_addr_t) temp64)) {
 6563				c->SG[i].Addr = cpu_to_le64(0);
 6564				c->SG[i].Len = cpu_to_le32(0);
 6565				hpsa_pci_unmap(h->pdev, c, i,
 6566					DMA_BIDIRECTIONAL);
 6567				status = -ENOMEM;
 6568				goto cleanup0;
 6569			}
 6570			c->SG[i].Addr = cpu_to_le64(temp64);
 6571			c->SG[i].Len = cpu_to_le32(buff_size[i]);
 6572			c->SG[i].Ext = cpu_to_le32(0);
 6573		}
 6574		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
 6575	}
 6576	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
 6577						NO_TIMEOUT);
 6578	if (sg_used)
 6579		hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
 6580	check_ioctl_unit_attention(h, c);
 6581	if (status) {
 6582		status = -EIO;
 6583		goto cleanup0;
 6584	}
 6585
 6586	/* Copy the error information out */
 6587	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
 
 
 
 
 6588	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
 6589		int i;
 6590
 6591		/* Copy the data out of the buffer we created */
 6592		BYTE __user *ptr = ioc->buf;
 6593		for (i = 0; i < sg_used; i++) {
 6594			if (copy_to_user(ptr, buff[i], buff_size[i])) {
 6595				status = -EFAULT;
 6596				goto cleanup0;
 6597			}
 6598			ptr += buff_size[i];
 6599		}
 6600	}
 6601	status = 0;
 6602cleanup0:
 6603	cmd_free(h, c);
 6604cleanup1:
 6605	if (buff) {
 6606		int i;
 6607
 6608		for (i = 0; i < sg_used; i++)
 6609			kfree(buff[i]);
 6610		kfree(buff);
 6611	}
 6612	kfree(buff_size);
 
 6613	return status;
 6614}
 6615
 6616static void check_ioctl_unit_attention(struct ctlr_info *h,
 6617	struct CommandList *c)
 6618{
 6619	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
 6620			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
 6621		(void) check_for_unit_attention(h, c);
 6622}
 6623
 6624/*
 6625 * ioctl
 6626 */
 6627static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
 6628		      void __user *argp)
 6629{
 6630	struct ctlr_info *h = sdev_to_hba(dev);
 
 6631	int rc;
 6632
 
 
 6633	switch (cmd) {
 6634	case CCISS_DEREGDISK:
 6635	case CCISS_REGNEWDISK:
 6636	case CCISS_REGNEWD:
 6637		hpsa_scan_start(h->scsi_host);
 6638		return 0;
 6639	case CCISS_GETPCIINFO:
 6640		return hpsa_getpciinfo_ioctl(h, argp);
 6641	case CCISS_GETDRIVVER:
 6642		return hpsa_getdrivver_ioctl(h, argp);
 6643	case CCISS_PASSTHRU: {
 6644		IOCTL_Command_struct iocommand;
 6645
 6646		if (!argp)
 6647			return -EINVAL;
 6648		if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
 6649			return -EFAULT;
 6650		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6651			return -EAGAIN;
 6652		rc = hpsa_passthru_ioctl(h, &iocommand);
 6653		atomic_inc(&h->passthru_cmds_avail);
 6654		if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
 6655			rc = -EFAULT;
 6656		return rc;
 6657	}
 6658	case CCISS_BIG_PASSTHRU: {
 6659		BIG_IOCTL_Command_struct ioc;
 6660		if (!argp)
 6661			return -EINVAL;
 6662		if (copy_from_user(&ioc, argp, sizeof(ioc)))
 6663			return -EFAULT;
 6664		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
 6665			return -EAGAIN;
 6666		rc = hpsa_big_passthru_ioctl(h, &ioc);
 6667		atomic_inc(&h->passthru_cmds_avail);
 6668		if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
 6669			rc = -EFAULT;
 6670		return rc;
 6671	}
 6672	default:
 6673		return -ENOTTY;
 6674	}
 6675}
 6676
 6677static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
 
 6678{
 6679	struct CommandList *c;
 6680
 6681	c = cmd_alloc(h);
 6682
 6683	/* fill_cmd can't fail here, no data buffer to map */
 6684	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
 6685		RAID_CTLR_LUNID, TYPE_MSG);
 6686	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
 6687	c->waiting = NULL;
 6688	enqueue_cmd_and_start_io(h, c);
 6689	/* Don't wait for completion, the reset won't complete.  Don't free
 6690	 * the command either.  This is the last command we will send before
 6691	 * re-initializing everything, so it doesn't matter and won't leak.
 6692	 */
 6693	return;
 6694}
 6695
 6696static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 6697	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 6698	int cmd_type)
 6699{
 6700	enum dma_data_direction dir = DMA_NONE;
 6701
 6702	c->cmd_type = CMD_IOCTL_PEND;
 6703	c->scsi_cmd = SCSI_CMD_BUSY;
 6704	c->Header.ReplyQueue = 0;
 6705	if (buff != NULL && size > 0) {
 6706		c->Header.SGList = 1;
 6707		c->Header.SGTotal = cpu_to_le16(1);
 6708	} else {
 6709		c->Header.SGList = 0;
 6710		c->Header.SGTotal = cpu_to_le16(0);
 6711	}
 6712	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
 6713
 6714	if (cmd_type == TYPE_CMD) {
 6715		switch (cmd) {
 6716		case HPSA_INQUIRY:
 6717			/* are we trying to read a vital product page */
 6718			if (page_code & VPD_PAGE) {
 6719				c->Request.CDB[1] = 0x01;
 6720				c->Request.CDB[2] = (page_code & 0xff);
 6721			}
 6722			c->Request.CDBLen = 6;
 6723			c->Request.type_attr_dir =
 6724				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6725			c->Request.Timeout = 0;
 6726			c->Request.CDB[0] = HPSA_INQUIRY;
 6727			c->Request.CDB[4] = size & 0xFF;
 6728			break;
 6729		case RECEIVE_DIAGNOSTIC:
 6730			c->Request.CDBLen = 6;
 6731			c->Request.type_attr_dir =
 6732				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6733			c->Request.Timeout = 0;
 6734			c->Request.CDB[0] = cmd;
 6735			c->Request.CDB[1] = 1;
 6736			c->Request.CDB[2] = 1;
 6737			c->Request.CDB[3] = (size >> 8) & 0xFF;
 6738			c->Request.CDB[4] = size & 0xFF;
 6739			break;
 6740		case HPSA_REPORT_LOG:
 6741		case HPSA_REPORT_PHYS:
 6742			/* Talking to controller so It's a physical command
 6743			   mode = 00 target = 0.  Nothing to write.
 6744			 */
 6745			c->Request.CDBLen = 12;
 6746			c->Request.type_attr_dir =
 6747				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6748			c->Request.Timeout = 0;
 6749			c->Request.CDB[0] = cmd;
 6750			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 6751			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6752			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6753			c->Request.CDB[9] = size & 0xFF;
 6754			break;
 6755		case BMIC_SENSE_DIAG_OPTIONS:
 6756			c->Request.CDBLen = 16;
 6757			c->Request.type_attr_dir =
 6758				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6759			c->Request.Timeout = 0;
 6760			/* Spec says this should be BMIC_WRITE */
 6761			c->Request.CDB[0] = BMIC_READ;
 6762			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
 6763			break;
 6764		case BMIC_SET_DIAG_OPTIONS:
 6765			c->Request.CDBLen = 16;
 6766			c->Request.type_attr_dir =
 6767					TYPE_ATTR_DIR(cmd_type,
 6768						ATTR_SIMPLE, XFER_WRITE);
 6769			c->Request.Timeout = 0;
 6770			c->Request.CDB[0] = BMIC_WRITE;
 6771			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
 6772			break;
 6773		case HPSA_CACHE_FLUSH:
 6774			c->Request.CDBLen = 12;
 6775			c->Request.type_attr_dir =
 6776					TYPE_ATTR_DIR(cmd_type,
 6777						ATTR_SIMPLE, XFER_WRITE);
 6778			c->Request.Timeout = 0;
 6779			c->Request.CDB[0] = BMIC_WRITE;
 6780			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
 6781			c->Request.CDB[7] = (size >> 8) & 0xFF;
 6782			c->Request.CDB[8] = size & 0xFF;
 6783			break;
 6784		case TEST_UNIT_READY:
 6785			c->Request.CDBLen = 6;
 6786			c->Request.type_attr_dir =
 6787				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 6788			c->Request.Timeout = 0;
 6789			break;
 6790		case HPSA_GET_RAID_MAP:
 6791			c->Request.CDBLen = 12;
 6792			c->Request.type_attr_dir =
 6793				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6794			c->Request.Timeout = 0;
 6795			c->Request.CDB[0] = HPSA_CISS_READ;
 6796			c->Request.CDB[1] = cmd;
 6797			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
 6798			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6799			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6800			c->Request.CDB[9] = size & 0xFF;
 6801			break;
 6802		case BMIC_SENSE_CONTROLLER_PARAMETERS:
 6803			c->Request.CDBLen = 10;
 6804			c->Request.type_attr_dir =
 6805				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6806			c->Request.Timeout = 0;
 6807			c->Request.CDB[0] = BMIC_READ;
 6808			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
 6809			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6810			c->Request.CDB[8] = (size >> 8) & 0xFF;
 6811			break;
 6812		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
 6813			c->Request.CDBLen = 10;
 6814			c->Request.type_attr_dir =
 6815				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6816			c->Request.Timeout = 0;
 6817			c->Request.CDB[0] = BMIC_READ;
 6818			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
 6819			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6820			c->Request.CDB[8] = (size >> 8) & 0XFF;
 6821			break;
 6822		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
 6823			c->Request.CDBLen = 10;
 6824			c->Request.type_attr_dir =
 6825				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6826			c->Request.Timeout = 0;
 6827			c->Request.CDB[0] = BMIC_READ;
 6828			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
 6829			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6830			c->Request.CDB[8] = (size >> 8) & 0XFF;
 6831			break;
 6832		case BMIC_SENSE_STORAGE_BOX_PARAMS:
 6833			c->Request.CDBLen = 10;
 6834			c->Request.type_attr_dir =
 6835				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6836			c->Request.Timeout = 0;
 6837			c->Request.CDB[0] = BMIC_READ;
 6838			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
 6839			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6840			c->Request.CDB[8] = (size >> 8) & 0XFF;
 6841			break;
 6842		case BMIC_IDENTIFY_CONTROLLER:
 6843			c->Request.CDBLen = 10;
 6844			c->Request.type_attr_dir =
 6845				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
 6846			c->Request.Timeout = 0;
 6847			c->Request.CDB[0] = BMIC_READ;
 6848			c->Request.CDB[1] = 0;
 6849			c->Request.CDB[2] = 0;
 6850			c->Request.CDB[3] = 0;
 6851			c->Request.CDB[4] = 0;
 6852			c->Request.CDB[5] = 0;
 6853			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
 6854			c->Request.CDB[7] = (size >> 16) & 0xFF;
 6855			c->Request.CDB[8] = (size >> 8) & 0XFF;
 6856			c->Request.CDB[9] = 0;
 6857			break;
 6858		default:
 6859			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
 6860			BUG();
 6861		}
 6862	} else if (cmd_type == TYPE_MSG) {
 6863		switch (cmd) {
 6864
 6865		case  HPSA_PHYS_TARGET_RESET:
 6866			c->Request.CDBLen = 16;
 6867			c->Request.type_attr_dir =
 6868				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 6869			c->Request.Timeout = 0; /* Don't time out */
 6870			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 6871			c->Request.CDB[0] = HPSA_RESET;
 6872			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
 6873			/* Physical target reset needs no control bytes 4-7*/
 6874			c->Request.CDB[4] = 0x00;
 6875			c->Request.CDB[5] = 0x00;
 6876			c->Request.CDB[6] = 0x00;
 6877			c->Request.CDB[7] = 0x00;
 6878			break;
 6879		case  HPSA_DEVICE_RESET_MSG:
 6880			c->Request.CDBLen = 16;
 6881			c->Request.type_attr_dir =
 6882				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
 6883			c->Request.Timeout = 0; /* Don't time out */
 6884			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
 6885			c->Request.CDB[0] =  cmd;
 6886			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
 6887			/* If bytes 4-7 are zero, it means reset the */
 6888			/* LunID device */
 6889			c->Request.CDB[4] = 0x00;
 6890			c->Request.CDB[5] = 0x00;
 6891			c->Request.CDB[6] = 0x00;
 6892			c->Request.CDB[7] = 0x00;
 6893			break;
 6894		default:
 6895			dev_warn(&h->pdev->dev, "unknown message type %d\n",
 6896				cmd);
 6897			BUG();
 6898		}
 6899	} else {
 6900		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
 6901		BUG();
 6902	}
 6903
 6904	switch (GET_DIR(c->Request.type_attr_dir)) {
 6905	case XFER_READ:
 6906		dir = DMA_FROM_DEVICE;
 6907		break;
 6908	case XFER_WRITE:
 6909		dir = DMA_TO_DEVICE;
 6910		break;
 6911	case XFER_NONE:
 6912		dir = DMA_NONE;
 6913		break;
 6914	default:
 6915		dir = DMA_BIDIRECTIONAL;
 6916	}
 6917	if (hpsa_map_one(h->pdev, c, buff, size, dir))
 6918		return -1;
 6919	return 0;
 6920}
 6921
 6922/*
 6923 * Map (physical) PCI mem into (virtual) kernel space
 6924 */
 6925static void __iomem *remap_pci_mem(ulong base, ulong size)
 6926{
 6927	ulong page_base = ((ulong) base) & PAGE_MASK;
 6928	ulong page_offs = ((ulong) base) - page_base;
 6929	void __iomem *page_remapped = ioremap(page_base,
 6930		page_offs + size);
 6931
 6932	return page_remapped ? (page_remapped + page_offs) : NULL;
 6933}
 6934
 6935static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
 6936{
 6937	return h->access.command_completed(h, q);
 6938}
 6939
 6940static inline bool interrupt_pending(struct ctlr_info *h)
 6941{
 6942	return h->access.intr_pending(h);
 6943}
 6944
 6945static inline long interrupt_not_for_us(struct ctlr_info *h)
 6946{
 6947	return (h->access.intr_pending(h) == 0) ||
 6948		(h->interrupts_enabled == 0);
 6949}
 6950
 6951static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
 6952	u32 raw_tag)
 6953{
 6954	if (unlikely(tag_index >= h->nr_cmds)) {
 6955		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
 6956		return 1;
 6957	}
 6958	return 0;
 6959}
 6960
 6961static inline void finish_cmd(struct CommandList *c)
 6962{
 6963	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
 6964	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
 6965			|| c->cmd_type == CMD_IOACCEL2))
 6966		complete_scsi_command(c);
 6967	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
 6968		complete(c->waiting);
 6969}
 6970
 6971/* process completion of an indexed ("direct lookup") command */
 6972static inline void process_indexed_cmd(struct ctlr_info *h,
 6973	u32 raw_tag)
 6974{
 6975	u32 tag_index;
 6976	struct CommandList *c;
 6977
 6978	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
 6979	if (!bad_tag(h, tag_index, raw_tag)) {
 6980		c = h->cmd_pool + tag_index;
 6981		finish_cmd(c);
 6982	}
 6983}
 6984
 6985/* Some controllers, like p400, will give us one interrupt
 6986 * after a soft reset, even if we turned interrupts off.
 6987 * Only need to check for this in the hpsa_xxx_discard_completions
 6988 * functions.
 6989 */
 6990static int ignore_bogus_interrupt(struct ctlr_info *h)
 6991{
 6992	if (likely(!reset_devices))
 6993		return 0;
 6994
 6995	if (likely(h->interrupts_enabled))
 6996		return 0;
 6997
 6998	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
 6999		"(known firmware bug.)  Ignoring.\n");
 7000
 7001	return 1;
 7002}
 7003
 7004/*
 7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 7006 * Relies on (h-q[x] == x) being true for x such that
 7007 * 0 <= x < MAX_REPLY_QUEUES.
 7008 */
 7009static struct ctlr_info *queue_to_hba(u8 *queue)
 7010{
 7011	return container_of((queue - *queue), struct ctlr_info, q[0]);
 7012}
 7013
 7014static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
 7015{
 7016	struct ctlr_info *h = queue_to_hba(queue);
 7017	u8 q = *(u8 *) queue;
 7018	u32 raw_tag;
 7019
 7020	if (ignore_bogus_interrupt(h))
 7021		return IRQ_NONE;
 7022
 7023	if (interrupt_not_for_us(h))
 7024		return IRQ_NONE;
 7025	h->last_intr_timestamp = get_jiffies_64();
 7026	while (interrupt_pending(h)) {
 7027		raw_tag = get_next_completion(h, q);
 7028		while (raw_tag != FIFO_EMPTY)
 7029			raw_tag = next_command(h, q);
 7030	}
 7031	return IRQ_HANDLED;
 7032}
 7033
 7034static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
 7035{
 7036	struct ctlr_info *h = queue_to_hba(queue);
 7037	u32 raw_tag;
 7038	u8 q = *(u8 *) queue;
 7039
 7040	if (ignore_bogus_interrupt(h))
 7041		return IRQ_NONE;
 7042
 7043	h->last_intr_timestamp = get_jiffies_64();
 7044	raw_tag = get_next_completion(h, q);
 7045	while (raw_tag != FIFO_EMPTY)
 7046		raw_tag = next_command(h, q);
 7047	return IRQ_HANDLED;
 7048}
 7049
 7050static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
 7051{
 7052	struct ctlr_info *h = queue_to_hba((u8 *) queue);
 7053	u32 raw_tag;
 7054	u8 q = *(u8 *) queue;
 7055
 7056	if (interrupt_not_for_us(h))
 7057		return IRQ_NONE;
 7058	h->last_intr_timestamp = get_jiffies_64();
 7059	while (interrupt_pending(h)) {
 7060		raw_tag = get_next_completion(h, q);
 7061		while (raw_tag != FIFO_EMPTY) {
 7062			process_indexed_cmd(h, raw_tag);
 7063			raw_tag = next_command(h, q);
 7064		}
 7065	}
 7066	return IRQ_HANDLED;
 7067}
 7068
 7069static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
 7070{
 7071	struct ctlr_info *h = queue_to_hba(queue);
 7072	u32 raw_tag;
 7073	u8 q = *(u8 *) queue;
 7074
 7075	h->last_intr_timestamp = get_jiffies_64();
 7076	raw_tag = get_next_completion(h, q);
 7077	while (raw_tag != FIFO_EMPTY) {
 7078		process_indexed_cmd(h, raw_tag);
 7079		raw_tag = next_command(h, q);
 7080	}
 7081	return IRQ_HANDLED;
 7082}
 7083
 7084/* Send a message CDB to the firmware. Careful, this only works
 7085 * in simple mode, not performant mode due to the tag lookup.
 7086 * We only ever use this immediately after a controller reset.
 7087 */
 7088static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
 7089			unsigned char type)
 7090{
 7091	struct Command {
 7092		struct CommandListHeader CommandHeader;
 7093		struct RequestBlock Request;
 7094		struct ErrDescriptor ErrorDescriptor;
 7095	};
 7096	struct Command *cmd;
 7097	static const size_t cmd_sz = sizeof(*cmd) +
 7098					sizeof(cmd->ErrorDescriptor);
 7099	dma_addr_t paddr64;
 7100	__le32 paddr32;
 7101	u32 tag;
 7102	void __iomem *vaddr;
 7103	int i, err;
 7104
 7105	vaddr = pci_ioremap_bar(pdev, 0);
 7106	if (vaddr == NULL)
 7107		return -ENOMEM;
 7108
 7109	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
 7110	 * CCISS commands, so they must be allocated from the lower 4GiB of
 7111	 * memory.
 7112	 */
 7113	err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 7114	if (err) {
 7115		iounmap(vaddr);
 7116		return err;
 7117	}
 7118
 7119	cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
 7120	if (cmd == NULL) {
 7121		iounmap(vaddr);
 7122		return -ENOMEM;
 7123	}
 7124
 7125	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
 7126	 * although there's no guarantee, we assume that the address is at
 7127	 * least 4-byte aligned (most likely, it's page-aligned).
 7128	 */
 7129	paddr32 = cpu_to_le32(paddr64);
 7130
 7131	cmd->CommandHeader.ReplyQueue = 0;
 7132	cmd->CommandHeader.SGList = 0;
 7133	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
 7134	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
 7135	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
 7136
 7137	cmd->Request.CDBLen = 16;
 7138	cmd->Request.type_attr_dir =
 7139			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
 7140	cmd->Request.Timeout = 0; /* Don't time out */
 7141	cmd->Request.CDB[0] = opcode;
 7142	cmd->Request.CDB[1] = type;
 7143	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
 7144	cmd->ErrorDescriptor.Addr =
 7145			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
 7146	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
 7147
 7148	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
 7149
 7150	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
 7151		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
 7152		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
 7153			break;
 7154		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
 7155	}
 7156
 7157	iounmap(vaddr);
 7158
 7159	/* we leak the DMA buffer here ... no choice since the controller could
 7160	 *  still complete the command.
 7161	 */
 7162	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
 7163		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
 7164			opcode, type);
 7165		return -ETIMEDOUT;
 7166	}
 7167
 7168	dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
 7169
 7170	if (tag & HPSA_ERROR_BIT) {
 7171		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
 7172			opcode, type);
 7173		return -EIO;
 7174	}
 7175
 7176	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
 7177		opcode, type);
 7178	return 0;
 7179}
 7180
 7181#define hpsa_noop(p) hpsa_message(p, 3, 0)
 7182
 7183static int hpsa_controller_hard_reset(struct pci_dev *pdev,
 7184	void __iomem *vaddr, u32 use_doorbell)
 7185{
 7186
 7187	if (use_doorbell) {
 7188		/* For everything after the P600, the PCI power state method
 7189		 * of resetting the controller doesn't work, so we have this
 7190		 * other way using the doorbell register.
 7191		 */
 7192		dev_info(&pdev->dev, "using doorbell to reset controller\n");
 7193		writel(use_doorbell, vaddr + SA5_DOORBELL);
 7194
 7195		/* PMC hardware guys tell us we need a 10 second delay after
 7196		 * doorbell reset and before any attempt to talk to the board
 7197		 * at all to ensure that this actually works and doesn't fall
 7198		 * over in some weird corner cases.
 7199		 */
 7200		msleep(10000);
 7201	} else { /* Try to do it the PCI power state way */
 7202
 7203		/* Quoting from the Open CISS Specification: "The Power
 7204		 * Management Control/Status Register (CSR) controls the power
 7205		 * state of the device.  The normal operating state is D0,
 7206		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
 7207		 * the controller, place the interface device in D3 then to D0,
 7208		 * this causes a secondary PCI reset which will reset the
 7209		 * controller." */
 7210
 7211		int rc = 0;
 7212
 7213		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
 7214
 7215		/* enter the D3hot power management state */
 7216		rc = pci_set_power_state(pdev, PCI_D3hot);
 7217		if (rc)
 7218			return rc;
 7219
 7220		msleep(500);
 7221
 7222		/* enter the D0 power management state */
 7223		rc = pci_set_power_state(pdev, PCI_D0);
 7224		if (rc)
 7225			return rc;
 7226
 7227		/*
 7228		 * The P600 requires a small delay when changing states.
 7229		 * Otherwise we may think the board did not reset and we bail.
 7230		 * This for kdump only and is particular to the P600.
 7231		 */
 7232		msleep(500);
 7233	}
 7234	return 0;
 7235}
 7236
 7237static void init_driver_version(char *driver_version, int len)
 7238{
 7239	memset(driver_version, 0, len);
 7240	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
 7241}
 7242
 7243static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
 7244{
 7245	char *driver_version;
 7246	int i, size = sizeof(cfgtable->driver_version);
 7247
 7248	driver_version = kmalloc(size, GFP_KERNEL);
 7249	if (!driver_version)
 7250		return -ENOMEM;
 7251
 7252	init_driver_version(driver_version, size);
 7253	for (i = 0; i < size; i++)
 7254		writeb(driver_version[i], &cfgtable->driver_version[i]);
 7255	kfree(driver_version);
 7256	return 0;
 7257}
 7258
 7259static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
 7260					  unsigned char *driver_ver)
 7261{
 7262	int i;
 7263
 7264	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
 7265		driver_ver[i] = readb(&cfgtable->driver_version[i]);
 7266}
 7267
 7268static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
 7269{
 7270
 7271	char *driver_ver, *old_driver_ver;
 7272	int rc, size = sizeof(cfgtable->driver_version);
 7273
 7274	old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
 7275	if (!old_driver_ver)
 7276		return -ENOMEM;
 7277	driver_ver = old_driver_ver + size;
 7278
 7279	/* After a reset, the 32 bytes of "driver version" in the cfgtable
 7280	 * should have been changed, otherwise we know the reset failed.
 7281	 */
 7282	init_driver_version(old_driver_ver, size);
 7283	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
 7284	rc = !memcmp(driver_ver, old_driver_ver, size);
 7285	kfree(old_driver_ver);
 7286	return rc;
 7287}
 7288/* This does a hard reset of the controller using PCI power management
 7289 * states or the using the doorbell register.
 7290 */
 7291static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
 7292{
 7293	u64 cfg_offset;
 7294	u32 cfg_base_addr;
 7295	u64 cfg_base_addr_index;
 7296	void __iomem *vaddr;
 7297	unsigned long paddr;
 7298	u32 misc_fw_support;
 7299	int rc;
 7300	struct CfgTable __iomem *cfgtable;
 7301	u32 use_doorbell;
 7302	u16 command_register;
 7303
 7304	/* For controllers as old as the P600, this is very nearly
 7305	 * the same thing as
 7306	 *
 7307	 * pci_save_state(pci_dev);
 7308	 * pci_set_power_state(pci_dev, PCI_D3hot);
 7309	 * pci_set_power_state(pci_dev, PCI_D0);
 7310	 * pci_restore_state(pci_dev);
 7311	 *
 7312	 * For controllers newer than the P600, the pci power state
 7313	 * method of resetting doesn't work so we have another way
 7314	 * using the doorbell register.
 7315	 */
 7316
 7317	if (!ctlr_is_resettable(board_id)) {
 7318		dev_warn(&pdev->dev, "Controller not resettable\n");
 7319		return -ENODEV;
 7320	}
 7321
 7322	/* if controller is soft- but not hard resettable... */
 7323	if (!ctlr_is_hard_resettable(board_id))
 7324		return -ENOTSUPP; /* try soft reset later. */
 7325
 7326	/* Save the PCI command register */
 7327	pci_read_config_word(pdev, 4, &command_register);
 7328	pci_save_state(pdev);
 7329
 7330	/* find the first memory BAR, so we can find the cfg table */
 7331	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
 7332	if (rc)
 7333		return rc;
 7334	vaddr = remap_pci_mem(paddr, 0x250);
 7335	if (!vaddr)
 7336		return -ENOMEM;
 7337
 7338	/* find cfgtable in order to check if reset via doorbell is supported */
 7339	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
 7340					&cfg_base_addr_index, &cfg_offset);
 7341	if (rc)
 7342		goto unmap_vaddr;
 7343	cfgtable = remap_pci_mem(pci_resource_start(pdev,
 7344		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
 7345	if (!cfgtable) {
 7346		rc = -ENOMEM;
 7347		goto unmap_vaddr;
 7348	}
 7349	rc = write_driver_ver_to_cfgtable(cfgtable);
 7350	if (rc)
 7351		goto unmap_cfgtable;
 7352
 7353	/* If reset via doorbell register is supported, use that.
 7354	 * There are two such methods.  Favor the newest method.
 7355	 */
 7356	misc_fw_support = readl(&cfgtable->misc_fw_support);
 7357	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
 7358	if (use_doorbell) {
 7359		use_doorbell = DOORBELL_CTLR_RESET2;
 7360	} else {
 7361		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
 7362		if (use_doorbell) {
 7363			dev_warn(&pdev->dev,
 7364				"Soft reset not supported. Firmware update is required.\n");
 7365			rc = -ENOTSUPP; /* try soft reset */
 7366			goto unmap_cfgtable;
 7367		}
 7368	}
 7369
 7370	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
 7371	if (rc)
 7372		goto unmap_cfgtable;
 7373
 7374	pci_restore_state(pdev);
 7375	pci_write_config_word(pdev, 4, command_register);
 7376
 7377	/* Some devices (notably the HP Smart Array 5i Controller)
 7378	   need a little pause here */
 7379	msleep(HPSA_POST_RESET_PAUSE_MSECS);
 7380
 7381	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
 7382	if (rc) {
 7383		dev_warn(&pdev->dev,
 7384			"Failed waiting for board to become ready after hard reset\n");
 7385		goto unmap_cfgtable;
 7386	}
 7387
 7388	rc = controller_reset_failed(vaddr);
 7389	if (rc < 0)
 7390		goto unmap_cfgtable;
 7391	if (rc) {
 7392		dev_warn(&pdev->dev, "Unable to successfully reset "
 7393			"controller. Will try soft reset.\n");
 7394		rc = -ENOTSUPP;
 7395	} else {
 7396		dev_info(&pdev->dev, "board ready after hard reset.\n");
 7397	}
 7398
 7399unmap_cfgtable:
 7400	iounmap(cfgtable);
 7401
 7402unmap_vaddr:
 7403	iounmap(vaddr);
 7404	return rc;
 7405}
 7406
 7407/*
 7408 *  We cannot read the structure directly, for portability we must use
 7409 *   the io functions.
 7410 *   This is for debug only.
 7411 */
 7412static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
 7413{
 7414#ifdef HPSA_DEBUG
 7415	int i;
 7416	char temp_name[17];
 7417
 7418	dev_info(dev, "Controller Configuration information\n");
 7419	dev_info(dev, "------------------------------------\n");
 7420	for (i = 0; i < 4; i++)
 7421		temp_name[i] = readb(&(tb->Signature[i]));
 7422	temp_name[4] = '\0';
 7423	dev_info(dev, "   Signature = %s\n", temp_name);
 7424	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
 7425	dev_info(dev, "   Transport methods supported = 0x%x\n",
 7426	       readl(&(tb->TransportSupport)));
 7427	dev_info(dev, "   Transport methods active = 0x%x\n",
 7428	       readl(&(tb->TransportActive)));
 7429	dev_info(dev, "   Requested transport Method = 0x%x\n",
 7430	       readl(&(tb->HostWrite.TransportRequest)));
 7431	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
 7432	       readl(&(tb->HostWrite.CoalIntDelay)));
 7433	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
 7434	       readl(&(tb->HostWrite.CoalIntCount)));
 7435	dev_info(dev, "   Max outstanding commands = %d\n",
 7436	       readl(&(tb->CmdsOutMax)));
 7437	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
 7438	for (i = 0; i < 16; i++)
 7439		temp_name[i] = readb(&(tb->ServerName[i]));
 7440	temp_name[16] = '\0';
 7441	dev_info(dev, "   Server Name = %s\n", temp_name);
 7442	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
 7443		readl(&(tb->HeartBeat)));
 7444#endif				/* HPSA_DEBUG */
 7445}
 7446
 7447static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
 7448{
 7449	int i, offset, mem_type, bar_type;
 7450
 7451	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
 7452		return 0;
 7453	offset = 0;
 7454	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
 7455		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
 7456		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
 7457			offset += 4;
 7458		else {
 7459			mem_type = pci_resource_flags(pdev, i) &
 7460			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
 7461			switch (mem_type) {
 7462			case PCI_BASE_ADDRESS_MEM_TYPE_32:
 7463			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
 7464				offset += 4;	/* 32 bit */
 7465				break;
 7466			case PCI_BASE_ADDRESS_MEM_TYPE_64:
 7467				offset += 8;
 7468				break;
 7469			default:	/* reserved in PCI 2.2 */
 7470				dev_warn(&pdev->dev,
 7471				       "base address is invalid\n");
 7472				return -1;
 
 7473			}
 7474		}
 7475		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
 7476			return i + 1;
 7477	}
 7478	return -1;
 7479}
 7480
 7481static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
 7482{
 7483	pci_free_irq_vectors(h->pdev);
 7484	h->msix_vectors = 0;
 7485}
 7486
 7487static void hpsa_setup_reply_map(struct ctlr_info *h)
 7488{
 7489	const struct cpumask *mask;
 7490	unsigned int queue, cpu;
 7491
 7492	for (queue = 0; queue < h->msix_vectors; queue++) {
 7493		mask = pci_irq_get_affinity(h->pdev, queue);
 7494		if (!mask)
 7495			goto fallback;
 7496
 7497		for_each_cpu(cpu, mask)
 7498			h->reply_map[cpu] = queue;
 7499	}
 7500	return;
 7501
 7502fallback:
 7503	for_each_possible_cpu(cpu)
 7504		h->reply_map[cpu] = 0;
 7505}
 7506
 7507/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 7508 * controllers that are capable. If not, we use legacy INTx mode.
 7509 */
 7510static int hpsa_interrupt_mode(struct ctlr_info *h)
 7511{
 7512	unsigned int flags = PCI_IRQ_LEGACY;
 7513	int ret;
 7514
 7515	/* Some boards advertise MSI but don't really support it */
 7516	switch (h->board_id) {
 7517	case 0x40700E11:
 7518	case 0x40800E11:
 7519	case 0x40820E11:
 7520	case 0x40830E11:
 7521		break;
 7522	default:
 7523		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
 7524				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
 7525		if (ret > 0) {
 7526			h->msix_vectors = ret;
 7527			return 0;
 7528		}
 7529
 7530		flags |= PCI_IRQ_MSI;
 7531		break;
 7532	}
 7533
 7534	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
 7535	if (ret < 0)
 7536		return ret;
 7537	return 0;
 7538}
 7539
 7540static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 7541				bool *legacy_board)
 7542{
 7543	int i;
 7544	u32 subsystem_vendor_id, subsystem_device_id;
 7545
 7546	subsystem_vendor_id = pdev->subsystem_vendor;
 7547	subsystem_device_id = pdev->subsystem_device;
 7548	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
 7549		    subsystem_vendor_id;
 7550
 7551	if (legacy_board)
 7552		*legacy_board = false;
 7553	for (i = 0; i < ARRAY_SIZE(products); i++)
 7554		if (*board_id == products[i].board_id) {
 7555			if (products[i].access != &SA5A_access &&
 7556			    products[i].access != &SA5B_access)
 7557				return i;
 7558			dev_warn(&pdev->dev,
 7559				 "legacy board ID: 0x%08x\n",
 7560				 *board_id);
 7561			if (legacy_board)
 7562			    *legacy_board = true;
 7563			return i;
 7564		}
 7565
 7566	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
 7567	if (legacy_board)
 7568		*legacy_board = true;
 7569	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
 7570}
 7571
 7572static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 7573				    unsigned long *memory_bar)
 7574{
 7575	int i;
 7576
 7577	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
 7578		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
 7579			/* addressing mode bits already removed */
 7580			*memory_bar = pci_resource_start(pdev, i);
 7581			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
 7582				*memory_bar);
 7583			return 0;
 7584		}
 7585	dev_warn(&pdev->dev, "no memory BAR found\n");
 7586	return -ENODEV;
 7587}
 7588
 7589static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 7590				     int wait_for_ready)
 7591{
 7592	int i, iterations;
 7593	u32 scratchpad;
 7594	if (wait_for_ready)
 7595		iterations = HPSA_BOARD_READY_ITERATIONS;
 7596	else
 7597		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
 7598
 7599	for (i = 0; i < iterations; i++) {
 7600		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
 7601		if (wait_for_ready) {
 7602			if (scratchpad == HPSA_FIRMWARE_READY)
 7603				return 0;
 7604		} else {
 7605			if (scratchpad != HPSA_FIRMWARE_READY)
 7606				return 0;
 7607		}
 7608		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
 7609	}
 7610	dev_warn(&pdev->dev, "board not ready, timed out.\n");
 7611	return -ENODEV;
 7612}
 7613
 7614static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 7615			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 7616			       u64 *cfg_offset)
 7617{
 7618	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
 7619	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
 7620	*cfg_base_addr &= (u32) 0x0000ffff;
 7621	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
 7622	if (*cfg_base_addr_index == -1) {
 7623		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
 7624		return -ENODEV;
 7625	}
 7626	return 0;
 7627}
 7628
 7629static void hpsa_free_cfgtables(struct ctlr_info *h)
 7630{
 7631	if (h->transtable) {
 7632		iounmap(h->transtable);
 7633		h->transtable = NULL;
 7634	}
 7635	if (h->cfgtable) {
 7636		iounmap(h->cfgtable);
 7637		h->cfgtable = NULL;
 7638	}
 7639}
 7640
 7641/* Find and map CISS config table and transfer table
 7642+ * several items must be unmapped (freed) later
 7643+ * */
 7644static int hpsa_find_cfgtables(struct ctlr_info *h)
 7645{
 7646	u64 cfg_offset;
 7647	u32 cfg_base_addr;
 7648	u64 cfg_base_addr_index;
 7649	u32 trans_offset;
 7650	int rc;
 7651
 7652	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 7653		&cfg_base_addr_index, &cfg_offset);
 7654	if (rc)
 7655		return rc;
 7656	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
 7657		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
 7658	if (!h->cfgtable) {
 7659		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
 7660		return -ENOMEM;
 7661	}
 7662	rc = write_driver_ver_to_cfgtable(h->cfgtable);
 7663	if (rc)
 7664		return rc;
 7665	/* Find performant mode table. */
 7666	trans_offset = readl(&h->cfgtable->TransMethodOffset);
 7667	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
 7668				cfg_base_addr_index)+cfg_offset+trans_offset,
 7669				sizeof(*h->transtable));
 7670	if (!h->transtable) {
 7671		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
 7672		hpsa_free_cfgtables(h);
 7673		return -ENOMEM;
 7674	}
 7675	return 0;
 7676}
 7677
 7678static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
 7679{
 7680#define MIN_MAX_COMMANDS 16
 7681	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
 7682
 7683	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
 7684
 7685	/* Limit commands in memory limited kdump scenario. */
 7686	if (reset_devices && h->max_commands > 32)
 7687		h->max_commands = 32;
 7688
 7689	if (h->max_commands < MIN_MAX_COMMANDS) {
 7690		dev_warn(&h->pdev->dev,
 7691			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
 7692			h->max_commands,
 7693			MIN_MAX_COMMANDS);
 7694		h->max_commands = MIN_MAX_COMMANDS;
 7695	}
 7696}
 7697
 7698/* If the controller reports that the total max sg entries is greater than 512,
 7699 * then we know that chained SG blocks work.  (Original smart arrays did not
 7700 * support chained SG blocks and would return zero for max sg entries.)
 7701 */
 7702static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
 7703{
 7704	return h->maxsgentries > 512;
 7705}
 7706
 7707/* Interrogate the hardware for some limits:
 7708 * max commands, max SG elements without chaining, and with chaining,
 7709 * SG chain block size, etc.
 7710 */
 7711static void hpsa_find_board_params(struct ctlr_info *h)
 7712{
 7713	hpsa_get_max_perf_mode_cmds(h);
 7714	h->nr_cmds = h->max_commands;
 7715	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
 7716	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
 7717	if (hpsa_supports_chained_sg_blocks(h)) {
 7718		/* Limit in-command s/g elements to 32 save dma'able memory. */
 7719		h->max_cmd_sg_entries = 32;
 7720		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
 7721		h->maxsgentries--; /* save one for chain pointer */
 7722	} else {
 7723		/*
 7724		 * Original smart arrays supported at most 31 s/g entries
 7725		 * embedded inline in the command (trying to use more
 7726		 * would lock up the controller)
 7727		 */
 7728		h->max_cmd_sg_entries = 31;
 7729		h->maxsgentries = 31; /* default to traditional values */
 7730		h->chainsize = 0;
 7731	}
 7732
 7733	/* Find out what task management functions are supported and cache */
 7734	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
 7735	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
 7736		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
 7737	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
 7738		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
 7739	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
 7740		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
 7741}
 7742
 7743static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
 7744{
 7745	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
 7746		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
 7747		return false;
 7748	}
 7749	return true;
 7750}
 7751
 7752static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
 7753{
 7754	u32 driver_support;
 7755
 7756	driver_support = readl(&(h->cfgtable->driver_support));
 7757	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
 7758#ifdef CONFIG_X86
 7759	driver_support |= ENABLE_SCSI_PREFETCH;
 7760#endif
 7761	driver_support |= ENABLE_UNIT_ATTN;
 7762	writel(driver_support, &(h->cfgtable->driver_support));
 7763}
 7764
 7765/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 7766 * in a prefetch beyond physical memory.
 7767 */
 7768static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
 7769{
 7770	u32 dma_prefetch;
 7771
 7772	if (h->board_id != 0x3225103C)
 7773		return;
 7774	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
 7775	dma_prefetch |= 0x8000;
 7776	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
 7777}
 7778
 7779static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
 7780{
 7781	int i;
 7782	u32 doorbell_value;
 7783	unsigned long flags;
 7784	/* wait until the clear_event_notify bit 6 is cleared by controller. */
 7785	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
 7786		spin_lock_irqsave(&h->lock, flags);
 7787		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 7788		spin_unlock_irqrestore(&h->lock, flags);
 7789		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
 7790			goto done;
 7791		/* delay and try again */
 7792		msleep(CLEAR_EVENT_WAIT_INTERVAL);
 7793	}
 7794	return -ENODEV;
 7795done:
 7796	return 0;
 7797}
 7798
 7799static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
 7800{
 7801	int i;
 7802	u32 doorbell_value;
 7803	unsigned long flags;
 7804
 7805	/* under certain very rare conditions, this can take awhile.
 7806	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
 7807	 * as we enter this code.)
 7808	 */
 7809	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
 7810		if (h->remove_in_progress)
 7811			goto done;
 7812		spin_lock_irqsave(&h->lock, flags);
 7813		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
 7814		spin_unlock_irqrestore(&h->lock, flags);
 7815		if (!(doorbell_value & CFGTBL_ChangeReq))
 7816			goto done;
 7817		/* delay and try again */
 7818		msleep(MODE_CHANGE_WAIT_INTERVAL);
 7819	}
 7820	return -ENODEV;
 7821done:
 7822	return 0;
 7823}
 7824
 7825/* return -ENODEV or other reason on error, 0 on success */
 7826static int hpsa_enter_simple_mode(struct ctlr_info *h)
 7827{
 7828	u32 trans_support;
 7829
 7830	trans_support = readl(&(h->cfgtable->TransportSupport));
 7831	if (!(trans_support & SIMPLE_MODE))
 7832		return -ENOTSUPP;
 7833
 7834	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
 7835
 7836	/* Update the field, and then ring the doorbell */
 7837	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
 7838	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 7839	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 7840	if (hpsa_wait_for_mode_change_ack(h))
 7841		goto error;
 7842	print_cfg_table(&h->pdev->dev, h->cfgtable);
 7843	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
 7844		goto error;
 7845	h->transMethod = CFGTBL_Trans_Simple;
 7846	return 0;
 7847error:
 7848	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
 7849	return -ENODEV;
 7850}
 7851
 7852/* free items allocated or mapped by hpsa_pci_init */
 7853static void hpsa_free_pci_init(struct ctlr_info *h)
 7854{
 7855	hpsa_free_cfgtables(h);			/* pci_init 4 */
 7856	iounmap(h->vaddr);			/* pci_init 3 */
 7857	h->vaddr = NULL;
 7858	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 7859	/*
 7860	 * call pci_disable_device before pci_release_regions per
 7861	 * Documentation/driver-api/pci/pci.rst
 7862	 */
 7863	pci_disable_device(h->pdev);		/* pci_init 1 */
 7864	pci_release_regions(h->pdev);		/* pci_init 2 */
 7865}
 7866
 7867/* several items must be freed later */
 7868static int hpsa_pci_init(struct ctlr_info *h)
 7869{
 7870	int prod_index, err;
 7871	bool legacy_board;
 7872
 7873	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
 7874	if (prod_index < 0)
 7875		return prod_index;
 7876	h->product_name = products[prod_index].product_name;
 7877	h->access = *(products[prod_index].access);
 7878	h->legacy_board = legacy_board;
 7879	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
 7880			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
 7881
 7882	err = pci_enable_device(h->pdev);
 7883	if (err) {
 7884		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
 7885		pci_disable_device(h->pdev);
 7886		return err;
 7887	}
 7888
 7889	err = pci_request_regions(h->pdev, HPSA);
 7890	if (err) {
 7891		dev_err(&h->pdev->dev,
 7892			"failed to obtain PCI resources\n");
 7893		pci_disable_device(h->pdev);
 7894		return err;
 7895	}
 7896
 7897	pci_set_master(h->pdev);
 7898
 7899	err = hpsa_interrupt_mode(h);
 7900	if (err)
 7901		goto clean1;
 7902
 7903	/* setup mapping between CPU and reply queue */
 7904	hpsa_setup_reply_map(h);
 7905
 7906	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
 7907	if (err)
 7908		goto clean2;	/* intmode+region, pci */
 7909	h->vaddr = remap_pci_mem(h->paddr, 0x250);
 7910	if (!h->vaddr) {
 7911		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
 7912		err = -ENOMEM;
 7913		goto clean2;	/* intmode+region, pci */
 7914	}
 7915	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 7916	if (err)
 7917		goto clean3;	/* vaddr, intmode+region, pci */
 7918	err = hpsa_find_cfgtables(h);
 7919	if (err)
 7920		goto clean3;	/* vaddr, intmode+region, pci */
 7921	hpsa_find_board_params(h);
 7922
 7923	if (!hpsa_CISS_signature_present(h)) {
 7924		err = -ENODEV;
 7925		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 7926	}
 7927	hpsa_set_driver_support_bits(h);
 7928	hpsa_p600_dma_prefetch_quirk(h);
 7929	err = hpsa_enter_simple_mode(h);
 7930	if (err)
 7931		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
 7932	return 0;
 7933
 7934clean4:	/* cfgtables, vaddr, intmode+region, pci */
 7935	hpsa_free_cfgtables(h);
 7936clean3:	/* vaddr, intmode+region, pci */
 7937	iounmap(h->vaddr);
 7938	h->vaddr = NULL;
 7939clean2:	/* intmode+region, pci */
 7940	hpsa_disable_interrupt_mode(h);
 7941clean1:
 7942	/*
 7943	 * call pci_disable_device before pci_release_regions per
 7944	 * Documentation/driver-api/pci/pci.rst
 7945	 */
 7946	pci_disable_device(h->pdev);
 7947	pci_release_regions(h->pdev);
 7948	return err;
 7949}
 7950
 7951static void hpsa_hba_inquiry(struct ctlr_info *h)
 7952{
 7953	int rc;
 7954
 7955#define HBA_INQUIRY_BYTE_COUNT 64
 7956	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
 7957	if (!h->hba_inquiry_data)
 7958		return;
 7959	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
 7960		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
 7961	if (rc != 0) {
 7962		kfree(h->hba_inquiry_data);
 7963		h->hba_inquiry_data = NULL;
 7964	}
 7965}
 7966
 7967static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
 7968{
 7969	int rc, i;
 7970	void __iomem *vaddr;
 7971
 7972	if (!reset_devices)
 7973		return 0;
 7974
 7975	/* kdump kernel is loading, we don't know in which state is
 7976	 * the pci interface. The dev->enable_cnt is equal zero
 7977	 * so we call enable+disable, wait a while and switch it on.
 7978	 */
 7979	rc = pci_enable_device(pdev);
 7980	if (rc) {
 7981		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
 7982		return -ENODEV;
 7983	}
 7984	pci_disable_device(pdev);
 7985	msleep(260);			/* a randomly chosen number */
 7986	rc = pci_enable_device(pdev);
 7987	if (rc) {
 7988		dev_warn(&pdev->dev, "failed to enable device.\n");
 7989		return -ENODEV;
 7990	}
 7991
 7992	pci_set_master(pdev);
 7993
 7994	vaddr = pci_ioremap_bar(pdev, 0);
 7995	if (vaddr == NULL) {
 7996		rc = -ENOMEM;
 7997		goto out_disable;
 7998	}
 7999	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
 8000	iounmap(vaddr);
 8001
 8002	/* Reset the controller with a PCI power-cycle or via doorbell */
 8003	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
 8004
 8005	/* -ENOTSUPP here means we cannot reset the controller
 8006	 * but it's already (and still) up and running in
 8007	 * "performant mode".  Or, it might be 640x, which can't reset
 8008	 * due to concerns about shared bbwc between 6402/6404 pair.
 8009	 */
 8010	if (rc)
 8011		goto out_disable;
 8012
 8013	/* Now try to get the controller to respond to a no-op */
 8014	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
 8015	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
 8016		if (hpsa_noop(pdev) == 0)
 8017			break;
 8018		else
 8019			dev_warn(&pdev->dev, "no-op failed%s\n",
 8020					(i < 11 ? "; re-trying" : ""));
 8021	}
 8022
 8023out_disable:
 8024
 8025	pci_disable_device(pdev);
 8026	return rc;
 8027}
 8028
 8029static void hpsa_free_cmd_pool(struct ctlr_info *h)
 8030{
 8031	bitmap_free(h->cmd_pool_bits);
 8032	h->cmd_pool_bits = NULL;
 8033	if (h->cmd_pool) {
 8034		dma_free_coherent(&h->pdev->dev,
 8035				h->nr_cmds * sizeof(struct CommandList),
 8036				h->cmd_pool,
 8037				h->cmd_pool_dhandle);
 8038		h->cmd_pool = NULL;
 8039		h->cmd_pool_dhandle = 0;
 8040	}
 8041	if (h->errinfo_pool) {
 8042		dma_free_coherent(&h->pdev->dev,
 8043				h->nr_cmds * sizeof(struct ErrorInfo),
 8044				h->errinfo_pool,
 8045				h->errinfo_pool_dhandle);
 8046		h->errinfo_pool = NULL;
 8047		h->errinfo_pool_dhandle = 0;
 8048	}
 8049}
 8050
 8051static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
 8052{
 8053	h->cmd_pool_bits = bitmap_zalloc(h->nr_cmds, GFP_KERNEL);
 8054	h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
 
 
 8055		    h->nr_cmds * sizeof(*h->cmd_pool),
 8056		    &h->cmd_pool_dhandle, GFP_KERNEL);
 8057	h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
 8058		    h->nr_cmds * sizeof(*h->errinfo_pool),
 8059		    &h->errinfo_pool_dhandle, GFP_KERNEL);
 8060	if ((h->cmd_pool_bits == NULL)
 8061	    || (h->cmd_pool == NULL)
 8062	    || (h->errinfo_pool == NULL)) {
 8063		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
 8064		goto clean_up;
 8065	}
 8066	hpsa_preinitialize_commands(h);
 8067	return 0;
 8068clean_up:
 8069	hpsa_free_cmd_pool(h);
 8070	return -ENOMEM;
 8071}
 8072
 8073/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
 8074static void hpsa_free_irqs(struct ctlr_info *h)
 8075{
 8076	int i;
 8077	int irq_vector = 0;
 8078
 8079	if (hpsa_simple_mode)
 8080		irq_vector = h->intr_mode;
 8081
 8082	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
 8083		/* Single reply queue, only one irq to free */
 8084		free_irq(pci_irq_vector(h->pdev, irq_vector),
 8085				&h->q[h->intr_mode]);
 8086		h->q[h->intr_mode] = 0;
 8087		return;
 8088	}
 8089
 8090	for (i = 0; i < h->msix_vectors; i++) {
 8091		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
 8092		h->q[i] = 0;
 8093	}
 8094	for (; i < MAX_REPLY_QUEUES; i++)
 8095		h->q[i] = 0;
 8096}
 8097
 8098/* returns 0 on success; cleans up and returns -Enn on error */
 8099static int hpsa_request_irqs(struct ctlr_info *h,
 8100	irqreturn_t (*msixhandler)(int, void *),
 8101	irqreturn_t (*intxhandler)(int, void *))
 8102{
 8103	int rc, i;
 8104	int irq_vector = 0;
 8105
 8106	if (hpsa_simple_mode)
 8107		irq_vector = h->intr_mode;
 8108
 8109	/*
 8110	 * initialize h->q[x] = x so that interrupt handlers know which
 8111	 * queue to process.
 8112	 */
 8113	for (i = 0; i < MAX_REPLY_QUEUES; i++)
 8114		h->q[i] = (u8) i;
 8115
 8116	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
 8117		/* If performant mode and MSI-X, use multiple reply queues */
 8118		for (i = 0; i < h->msix_vectors; i++) {
 8119			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
 8120			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
 8121					0, h->intrname[i],
 8122					&h->q[i]);
 8123			if (rc) {
 8124				int j;
 8125
 8126				dev_err(&h->pdev->dev,
 8127					"failed to get irq %d for %s\n",
 8128				       pci_irq_vector(h->pdev, i), h->devname);
 8129				for (j = 0; j < i; j++) {
 8130					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
 8131					h->q[j] = 0;
 8132				}
 8133				for (; j < MAX_REPLY_QUEUES; j++)
 8134					h->q[j] = 0;
 8135				return rc;
 8136			}
 8137		}
 8138	} else {
 8139		/* Use single reply pool */
 8140		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
 8141			sprintf(h->intrname[0], "%s-msi%s", h->devname,
 8142				h->msix_vectors ? "x" : "");
 8143			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
 8144				msixhandler, 0,
 8145				h->intrname[0],
 8146				&h->q[h->intr_mode]);
 8147		} else {
 8148			sprintf(h->intrname[h->intr_mode],
 8149				"%s-intx", h->devname);
 8150			rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
 8151				intxhandler, IRQF_SHARED,
 8152				h->intrname[0],
 8153				&h->q[h->intr_mode]);
 8154		}
 8155	}
 8156	if (rc) {
 8157		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
 8158		       pci_irq_vector(h->pdev, irq_vector), h->devname);
 8159		hpsa_free_irqs(h);
 8160		return -ENODEV;
 8161	}
 8162	return 0;
 8163}
 8164
 8165static int hpsa_kdump_soft_reset(struct ctlr_info *h)
 8166{
 8167	int rc;
 8168	hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
 8169
 8170	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
 8171	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
 8172	if (rc) {
 8173		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
 8174		return rc;
 8175	}
 8176
 8177	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
 8178	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
 8179	if (rc) {
 8180		dev_warn(&h->pdev->dev, "Board failed to become ready "
 8181			"after soft reset.\n");
 8182		return rc;
 8183	}
 8184
 8185	return 0;
 8186}
 8187
 8188static void hpsa_free_reply_queues(struct ctlr_info *h)
 8189{
 8190	int i;
 8191
 8192	for (i = 0; i < h->nreply_queues; i++) {
 8193		if (!h->reply_queue[i].head)
 8194			continue;
 8195		dma_free_coherent(&h->pdev->dev,
 8196					h->reply_queue_size,
 8197					h->reply_queue[i].head,
 8198					h->reply_queue[i].busaddr);
 8199		h->reply_queue[i].head = NULL;
 8200		h->reply_queue[i].busaddr = 0;
 8201	}
 8202	h->reply_queue_size = 0;
 8203}
 8204
 8205static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
 8206{
 8207	hpsa_free_performant_mode(h);		/* init_one 7 */
 8208	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
 8209	hpsa_free_cmd_pool(h);			/* init_one 5 */
 8210	hpsa_free_irqs(h);			/* init_one 4 */
 8211	scsi_host_put(h->scsi_host);		/* init_one 3 */
 8212	h->scsi_host = NULL;			/* init_one 3 */
 8213	hpsa_free_pci_init(h);			/* init_one 2_5 */
 8214	free_percpu(h->lockup_detected);	/* init_one 2 */
 8215	h->lockup_detected = NULL;		/* init_one 2 */
 8216	if (h->resubmit_wq) {
 8217		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
 8218		h->resubmit_wq = NULL;
 8219	}
 8220	if (h->rescan_ctlr_wq) {
 8221		destroy_workqueue(h->rescan_ctlr_wq);
 8222		h->rescan_ctlr_wq = NULL;
 8223	}
 8224	if (h->monitor_ctlr_wq) {
 8225		destroy_workqueue(h->monitor_ctlr_wq);
 8226		h->monitor_ctlr_wq = NULL;
 8227	}
 8228
 8229	kfree(h);				/* init_one 1 */
 8230}
 8231
 8232/* Called when controller lockup detected. */
 8233static void fail_all_outstanding_cmds(struct ctlr_info *h)
 8234{
 8235	int i, refcount;
 8236	struct CommandList *c;
 8237	int failcount = 0;
 8238
 8239	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
 8240	for (i = 0; i < h->nr_cmds; i++) {
 8241		c = h->cmd_pool + i;
 8242		refcount = atomic_inc_return(&c->refcount);
 8243		if (refcount > 1) {
 8244			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
 8245			finish_cmd(c);
 8246			atomic_dec(&h->commands_outstanding);
 8247			failcount++;
 8248		}
 8249		cmd_free(h, c);
 8250	}
 8251	dev_warn(&h->pdev->dev,
 8252		"failed %d commands in fail_all\n", failcount);
 8253}
 8254
 8255static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
 8256{
 8257	int cpu;
 8258
 8259	for_each_online_cpu(cpu) {
 8260		u32 *lockup_detected;
 8261		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
 8262		*lockup_detected = value;
 8263	}
 8264	wmb(); /* be sure the per-cpu variables are out to memory */
 8265}
 8266
 8267static void controller_lockup_detected(struct ctlr_info *h)
 8268{
 8269	unsigned long flags;
 8270	u32 lockup_detected;
 8271
 8272	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8273	spin_lock_irqsave(&h->lock, flags);
 8274	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
 8275	if (!lockup_detected) {
 8276		/* no heartbeat, but controller gave us a zero. */
 8277		dev_warn(&h->pdev->dev,
 8278			"lockup detected after %d but scratchpad register is zero\n",
 8279			h->heartbeat_sample_interval / HZ);
 8280		lockup_detected = 0xffffffff;
 8281	}
 8282	set_lockup_detected_for_all_cpus(h, lockup_detected);
 8283	spin_unlock_irqrestore(&h->lock, flags);
 8284	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
 8285			lockup_detected, h->heartbeat_sample_interval / HZ);
 8286	if (lockup_detected == 0xffff0000) {
 8287		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
 8288		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
 8289	}
 8290	pci_disable_device(h->pdev);
 8291	fail_all_outstanding_cmds(h);
 8292}
 8293
 8294static int detect_controller_lockup(struct ctlr_info *h)
 8295{
 8296	u64 now;
 8297	u32 heartbeat;
 8298	unsigned long flags;
 8299
 8300	now = get_jiffies_64();
 8301	/* If we've received an interrupt recently, we're ok. */
 8302	if (time_after64(h->last_intr_timestamp +
 8303				(h->heartbeat_sample_interval), now))
 8304		return false;
 8305
 8306	/*
 8307	 * If we've already checked the heartbeat recently, we're ok.
 8308	 * This could happen if someone sends us a signal. We
 8309	 * otherwise don't care about signals in this thread.
 8310	 */
 8311	if (time_after64(h->last_heartbeat_timestamp +
 8312				(h->heartbeat_sample_interval), now))
 8313		return false;
 8314
 8315	/* If heartbeat has not changed since we last looked, we're not ok. */
 8316	spin_lock_irqsave(&h->lock, flags);
 8317	heartbeat = readl(&h->cfgtable->HeartBeat);
 8318	spin_unlock_irqrestore(&h->lock, flags);
 8319	if (h->last_heartbeat == heartbeat) {
 8320		controller_lockup_detected(h);
 8321		return true;
 8322	}
 8323
 8324	/* We're ok. */
 8325	h->last_heartbeat = heartbeat;
 8326	h->last_heartbeat_timestamp = now;
 8327	return false;
 8328}
 8329
 8330/*
 8331 * Set ioaccel status for all ioaccel volumes.
 8332 *
 8333 * Called from monitor controller worker (hpsa_event_monitor_worker)
 8334 *
 8335 * A Volume (or Volumes that comprise an Array set) may be undergoing a
 8336 * transformation, so we will be turning off ioaccel for all volumes that
 8337 * make up the Array.
 8338 */
 8339static void hpsa_set_ioaccel_status(struct ctlr_info *h)
 8340{
 8341	int rc;
 8342	int i;
 8343	u8 ioaccel_status;
 8344	unsigned char *buf;
 8345	struct hpsa_scsi_dev_t *device;
 8346
 8347	if (!h)
 8348		return;
 8349
 8350	buf = kmalloc(64, GFP_KERNEL);
 8351	if (!buf)
 8352		return;
 8353
 8354	/*
 8355	 * Run through current device list used during I/O requests.
 8356	 */
 8357	for (i = 0; i < h->ndevices; i++) {
 8358		int offload_to_be_enabled = 0;
 8359		int offload_config = 0;
 8360
 8361		device = h->dev[i];
 8362
 8363		if (!device)
 8364			continue;
 8365		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
 8366						HPSA_VPD_LV_IOACCEL_STATUS))
 8367			continue;
 8368
 8369		memset(buf, 0, 64);
 8370
 8371		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
 8372					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
 8373					buf, 64);
 8374		if (rc != 0)
 8375			continue;
 8376
 8377		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
 8378
 8379		/*
 8380		 * Check if offload is still configured on
 8381		 */
 8382		offload_config =
 8383				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
 8384		/*
 8385		 * If offload is configured on, check to see if ioaccel
 8386		 * needs to be enabled.
 8387		 */
 8388		if (offload_config)
 8389			offload_to_be_enabled =
 8390				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
 8391
 8392		/*
 8393		 * If ioaccel is to be re-enabled, re-enable later during the
 8394		 * scan operation so the driver can get a fresh raidmap
 8395		 * before turning ioaccel back on.
 8396		 */
 8397		if (offload_to_be_enabled)
 8398			continue;
 8399
 8400		/*
 8401		 * Immediately turn off ioaccel for any volume the
 8402		 * controller tells us to. Some of the reasons could be:
 8403		 *    transformation - change to the LVs of an Array.
 8404		 *    degraded volume - component failure
 
 
 
 
 
 8405		 */
 8406		hpsa_turn_off_ioaccel_for_device(device);
 
 8407	}
 8408
 8409	kfree(buf);
 8410}
 8411
 8412static void hpsa_ack_ctlr_events(struct ctlr_info *h)
 8413{
 8414	char *event_type;
 8415
 8416	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 8417		return;
 8418
 8419	/* Ask the controller to clear the events we're handling. */
 8420	if ((h->transMethod & (CFGTBL_Trans_io_accel1
 8421			| CFGTBL_Trans_io_accel2)) &&
 8422		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
 8423		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
 8424
 8425		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
 8426			event_type = "state change";
 8427		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
 8428			event_type = "configuration change";
 8429		/* Stop sending new RAID offload reqs via the IO accelerator */
 8430		scsi_block_requests(h->scsi_host);
 8431		hpsa_set_ioaccel_status(h);
 8432		hpsa_drain_accel_commands(h);
 8433		/* Set 'accelerator path config change' bit */
 8434		dev_warn(&h->pdev->dev,
 8435			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
 8436			h->events, event_type);
 8437		writel(h->events, &(h->cfgtable->clear_event_notify));
 8438		/* Set the "clear event notify field update" bit 6 */
 8439		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 8440		/* Wait until ctlr clears 'clear event notify field', bit 6 */
 8441		hpsa_wait_for_clear_event_notify_ack(h);
 8442		scsi_unblock_requests(h->scsi_host);
 8443	} else {
 8444		/* Acknowledge controller notification events. */
 8445		writel(h->events, &(h->cfgtable->clear_event_notify));
 8446		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
 8447		hpsa_wait_for_clear_event_notify_ack(h);
 8448	}
 8449	return;
 8450}
 8451
 8452/* Check a register on the controller to see if there are configuration
 8453 * changes (added/changed/removed logical drives, etc.) which mean that
 8454 * we should rescan the controller for devices.
 8455 * Also check flag for driver-initiated rescan.
 8456 */
 8457static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
 8458{
 8459	if (h->drv_req_rescan) {
 8460		h->drv_req_rescan = 0;
 8461		return 1;
 8462	}
 8463
 8464	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
 8465		return 0;
 8466
 8467	h->events = readl(&(h->cfgtable->event_notify));
 8468	return h->events & RESCAN_REQUIRED_EVENT_BITS;
 8469}
 8470
 8471/*
 8472 * Check if any of the offline devices have become ready
 8473 */
 8474static int hpsa_offline_devices_ready(struct ctlr_info *h)
 8475{
 8476	unsigned long flags;
 8477	struct offline_device_entry *d;
 8478	struct list_head *this, *tmp;
 8479
 8480	spin_lock_irqsave(&h->offline_device_lock, flags);
 8481	list_for_each_safe(this, tmp, &h->offline_device_list) {
 8482		d = list_entry(this, struct offline_device_entry,
 8483				offline_list);
 8484		spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8485		if (!hpsa_volume_offline(h, d->scsi3addr)) {
 8486			spin_lock_irqsave(&h->offline_device_lock, flags);
 8487			list_del(&d->offline_list);
 8488			spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8489			return 1;
 8490		}
 8491		spin_lock_irqsave(&h->offline_device_lock, flags);
 8492	}
 8493	spin_unlock_irqrestore(&h->offline_device_lock, flags);
 8494	return 0;
 8495}
 8496
 8497static int hpsa_luns_changed(struct ctlr_info *h)
 8498{
 8499	int rc = 1; /* assume there are changes */
 8500	struct ReportLUNdata *logdev = NULL;
 8501
 8502	/* if we can't find out if lun data has changed,
 8503	 * assume that it has.
 8504	 */
 8505
 8506	if (!h->lastlogicals)
 8507		return rc;
 8508
 8509	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
 8510	if (!logdev)
 8511		return rc;
 8512
 8513	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
 8514		dev_warn(&h->pdev->dev,
 8515			"report luns failed, can't track lun changes.\n");
 8516		goto out;
 8517	}
 8518	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
 8519		dev_info(&h->pdev->dev,
 8520			"Lun changes detected.\n");
 8521		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
 8522		goto out;
 8523	} else
 8524		rc = 0; /* no changes detected. */
 8525out:
 8526	kfree(logdev);
 8527	return rc;
 8528}
 8529
 8530static void hpsa_perform_rescan(struct ctlr_info *h)
 8531{
 8532	struct Scsi_Host *sh = NULL;
 8533	unsigned long flags;
 8534
 8535	/*
 8536	 * Do the scan after the reset
 8537	 */
 8538	spin_lock_irqsave(&h->reset_lock, flags);
 8539	if (h->reset_in_progress) {
 8540		h->drv_req_rescan = 1;
 8541		spin_unlock_irqrestore(&h->reset_lock, flags);
 8542		return;
 8543	}
 8544	spin_unlock_irqrestore(&h->reset_lock, flags);
 8545
 8546	sh = scsi_host_get(h->scsi_host);
 8547	if (sh != NULL) {
 8548		hpsa_scan_start(sh);
 8549		scsi_host_put(sh);
 8550		h->drv_req_rescan = 0;
 8551	}
 8552}
 8553
 8554/*
 8555 * watch for controller events
 8556 */
 8557static void hpsa_event_monitor_worker(struct work_struct *work)
 8558{
 8559	struct ctlr_info *h = container_of(to_delayed_work(work),
 8560					struct ctlr_info, event_monitor_work);
 8561	unsigned long flags;
 8562
 8563	spin_lock_irqsave(&h->lock, flags);
 8564	if (h->remove_in_progress) {
 8565		spin_unlock_irqrestore(&h->lock, flags);
 8566		return;
 8567	}
 8568	spin_unlock_irqrestore(&h->lock, flags);
 8569
 8570	if (hpsa_ctlr_needs_rescan(h)) {
 8571		hpsa_ack_ctlr_events(h);
 8572		hpsa_perform_rescan(h);
 8573	}
 8574
 8575	spin_lock_irqsave(&h->lock, flags);
 8576	if (!h->remove_in_progress)
 8577		queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
 8578				HPSA_EVENT_MONITOR_INTERVAL);
 8579	spin_unlock_irqrestore(&h->lock, flags);
 8580}
 8581
 8582static void hpsa_rescan_ctlr_worker(struct work_struct *work)
 8583{
 8584	unsigned long flags;
 8585	struct ctlr_info *h = container_of(to_delayed_work(work),
 8586					struct ctlr_info, rescan_ctlr_work);
 8587
 8588	spin_lock_irqsave(&h->lock, flags);
 8589	if (h->remove_in_progress) {
 8590		spin_unlock_irqrestore(&h->lock, flags);
 8591		return;
 8592	}
 8593	spin_unlock_irqrestore(&h->lock, flags);
 8594
 8595	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
 8596		hpsa_perform_rescan(h);
 8597	} else if (h->discovery_polling) {
 8598		if (hpsa_luns_changed(h)) {
 8599			dev_info(&h->pdev->dev,
 8600				"driver discovery polling rescan.\n");
 8601			hpsa_perform_rescan(h);
 8602		}
 8603	}
 8604	spin_lock_irqsave(&h->lock, flags);
 8605	if (!h->remove_in_progress)
 8606		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 8607				h->heartbeat_sample_interval);
 8608	spin_unlock_irqrestore(&h->lock, flags);
 8609}
 8610
 8611static void hpsa_monitor_ctlr_worker(struct work_struct *work)
 8612{
 8613	unsigned long flags;
 8614	struct ctlr_info *h = container_of(to_delayed_work(work),
 8615					struct ctlr_info, monitor_ctlr_work);
 8616
 8617	detect_controller_lockup(h);
 8618	if (lockup_detected(h))
 8619		return;
 8620
 8621	spin_lock_irqsave(&h->lock, flags);
 8622	if (!h->remove_in_progress)
 8623		queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
 8624				h->heartbeat_sample_interval);
 8625	spin_unlock_irqrestore(&h->lock, flags);
 8626}
 8627
 8628static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
 8629						char *name)
 8630{
 8631	struct workqueue_struct *wq = NULL;
 8632
 8633	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
 8634	if (!wq)
 8635		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
 8636
 8637	return wq;
 8638}
 8639
 8640static void hpda_free_ctlr_info(struct ctlr_info *h)
 8641{
 8642	kfree(h->reply_map);
 8643	kfree(h);
 8644}
 8645
 8646static struct ctlr_info *hpda_alloc_ctlr_info(void)
 8647{
 8648	struct ctlr_info *h;
 8649
 8650	h = kzalloc(sizeof(*h), GFP_KERNEL);
 8651	if (!h)
 8652		return NULL;
 8653
 8654	h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
 8655	if (!h->reply_map) {
 8656		kfree(h);
 8657		return NULL;
 8658	}
 8659	return h;
 8660}
 8661
 8662static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 8663{
 8664	int rc;
 8665	struct ctlr_info *h;
 8666	int try_soft_reset = 0;
 8667	unsigned long flags;
 8668	u32 board_id;
 8669
 8670	if (number_of_controllers == 0)
 8671		printk(KERN_INFO DRIVER_NAME "\n");
 8672
 8673	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
 8674	if (rc < 0) {
 8675		dev_warn(&pdev->dev, "Board ID not found\n");
 8676		return rc;
 8677	}
 8678
 8679	rc = hpsa_init_reset_devices(pdev, board_id);
 8680	if (rc) {
 8681		if (rc != -ENOTSUPP)
 8682			return rc;
 8683		/* If the reset fails in a particular way (it has no way to do
 8684		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
 8685		 * a soft reset once we get the controller configured up to the
 8686		 * point that it can accept a command.
 8687		 */
 8688		try_soft_reset = 1;
 8689		rc = 0;
 8690	}
 8691
 8692reinit_after_soft_reset:
 8693
 8694	/* Command structures must be aligned on a 32-byte boundary because
 8695	 * the 5 lower bits of the address are used by the hardware. and by
 8696	 * the driver.  See comments in hpsa.h for more info.
 8697	 */
 8698	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
 8699	h = hpda_alloc_ctlr_info();
 8700	if (!h) {
 8701		dev_err(&pdev->dev, "Failed to allocate controller head\n");
 8702		return -ENOMEM;
 8703	}
 8704
 8705	h->pdev = pdev;
 8706
 8707	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
 8708	INIT_LIST_HEAD(&h->offline_device_list);
 8709	spin_lock_init(&h->lock);
 8710	spin_lock_init(&h->offline_device_lock);
 8711	spin_lock_init(&h->scan_lock);
 8712	spin_lock_init(&h->reset_lock);
 8713	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
 8714
 8715	/* Allocate and clear per-cpu variable lockup_detected */
 8716	h->lockup_detected = alloc_percpu(u32);
 8717	if (!h->lockup_detected) {
 8718		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
 8719		rc = -ENOMEM;
 8720		goto clean1;	/* aer/h */
 8721	}
 8722	set_lockup_detected_for_all_cpus(h, 0);
 8723
 8724	rc = hpsa_pci_init(h);
 8725	if (rc)
 8726		goto clean2;	/* lu, aer/h */
 8727
 8728	/* relies on h-> settings made by hpsa_pci_init, including
 8729	 * interrupt_mode h->intr */
 8730	rc = hpsa_scsi_host_alloc(h);
 8731	if (rc)
 8732		goto clean2_5;	/* pci, lu, aer/h */
 8733
 8734	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
 8735	h->ctlr = number_of_controllers;
 8736	number_of_controllers++;
 8737
 8738	/* configure PCI DMA stuff */
 8739	rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
 8740	if (rc != 0) {
 8741		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
 8742		if (rc != 0) {
 
 
 
 
 8743			dev_err(&pdev->dev, "no suitable DMA available\n");
 8744			goto clean3;	/* shost, pci, lu, aer/h */
 8745		}
 8746	}
 8747
 8748	/* make sure the board interrupts are off */
 8749	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8750
 8751	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
 8752	if (rc)
 8753		goto clean3;	/* shost, pci, lu, aer/h */
 8754	rc = hpsa_alloc_cmd_pool(h);
 8755	if (rc)
 8756		goto clean4;	/* irq, shost, pci, lu, aer/h */
 8757	rc = hpsa_alloc_sg_chain_blocks(h);
 8758	if (rc)
 8759		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
 8760	init_waitqueue_head(&h->scan_wait_queue);
 8761	init_waitqueue_head(&h->event_sync_wait_queue);
 8762	mutex_init(&h->reset_mutex);
 8763	h->scan_finished = 1; /* no scan currently in progress */
 8764	h->scan_waiting = 0;
 8765
 8766	pci_set_drvdata(pdev, h);
 8767	h->ndevices = 0;
 8768
 8769	spin_lock_init(&h->devlock);
 8770	rc = hpsa_put_ctlr_into_performant_mode(h);
 8771	if (rc)
 8772		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
 8773
 8774	/* create the resubmit workqueue */
 8775	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
 8776	if (!h->rescan_ctlr_wq) {
 8777		rc = -ENOMEM;
 8778		goto clean7;
 8779	}
 8780
 8781	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
 8782	if (!h->resubmit_wq) {
 8783		rc = -ENOMEM;
 8784		goto clean7;	/* aer/h */
 8785	}
 8786
 8787	h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
 8788	if (!h->monitor_ctlr_wq) {
 8789		rc = -ENOMEM;
 8790		goto clean7;
 8791	}
 8792
 8793	/*
 8794	 * At this point, the controller is ready to take commands.
 8795	 * Now, if reset_devices and the hard reset didn't work, try
 8796	 * the soft reset and see if that works.
 8797	 */
 8798	if (try_soft_reset) {
 8799
 8800		/* This is kind of gross.  We may or may not get a completion
 8801		 * from the soft reset command, and if we do, then the value
 8802		 * from the fifo may or may not be valid.  So, we wait 10 secs
 8803		 * after the reset throwing away any completions we get during
 8804		 * that time.  Unregister the interrupt handler and register
 8805		 * fake ones to scoop up any residual completions.
 8806		 */
 8807		spin_lock_irqsave(&h->lock, flags);
 8808		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8809		spin_unlock_irqrestore(&h->lock, flags);
 8810		hpsa_free_irqs(h);
 8811		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
 8812					hpsa_intx_discard_completions);
 8813		if (rc) {
 8814			dev_warn(&h->pdev->dev,
 8815				"Failed to request_irq after soft reset.\n");
 8816			/*
 8817			 * cannot goto clean7 or free_irqs will be called
 8818			 * again. Instead, do its work
 8819			 */
 8820			hpsa_free_performant_mode(h);	/* clean7 */
 8821			hpsa_free_sg_chain_blocks(h);	/* clean6 */
 8822			hpsa_free_cmd_pool(h);		/* clean5 */
 8823			/*
 8824			 * skip hpsa_free_irqs(h) clean4 since that
 8825			 * was just called before request_irqs failed
 8826			 */
 8827			goto clean3;
 8828		}
 8829
 8830		rc = hpsa_kdump_soft_reset(h);
 8831		if (rc)
 8832			/* Neither hard nor soft reset worked, we're hosed. */
 8833			goto clean7;
 8834
 8835		dev_info(&h->pdev->dev, "Board READY.\n");
 8836		dev_info(&h->pdev->dev,
 8837			"Waiting for stale completions to drain.\n");
 8838		h->access.set_intr_mask(h, HPSA_INTR_ON);
 8839		msleep(10000);
 8840		h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8841
 8842		rc = controller_reset_failed(h->cfgtable);
 8843		if (rc)
 8844			dev_info(&h->pdev->dev,
 8845				"Soft reset appears to have failed.\n");
 8846
 8847		/* since the controller's reset, we have to go back and re-init
 8848		 * everything.  Easiest to just forget what we've done and do it
 8849		 * all over again.
 8850		 */
 8851		hpsa_undo_allocations_after_kdump_soft_reset(h);
 8852		try_soft_reset = 0;
 8853		if (rc)
 8854			/* don't goto clean, we already unallocated */
 8855			return -ENODEV;
 8856
 8857		goto reinit_after_soft_reset;
 8858	}
 8859
 8860	/* Enable Accelerated IO path at driver layer */
 8861	h->acciopath_status = 1;
 8862	/* Disable discovery polling.*/
 8863	h->discovery_polling = 0;
 8864
 8865
 8866	/* Turn the interrupts on so we can service requests */
 8867	h->access.set_intr_mask(h, HPSA_INTR_ON);
 8868
 8869	hpsa_hba_inquiry(h);
 8870
 8871	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
 8872	if (!h->lastlogicals)
 8873		dev_info(&h->pdev->dev,
 8874			"Can't track change to report lun data\n");
 8875
 8876	/* hook into SCSI subsystem */
 8877	rc = hpsa_scsi_add_host(h);
 8878	if (rc)
 8879		goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
 8880
 8881	/* Monitor the controller for firmware lockups */
 8882	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
 8883	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
 8884	schedule_delayed_work(&h->monitor_ctlr_work,
 8885				h->heartbeat_sample_interval);
 8886	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
 8887	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
 8888				h->heartbeat_sample_interval);
 8889	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
 8890	schedule_delayed_work(&h->event_monitor_work,
 8891				HPSA_EVENT_MONITOR_INTERVAL);
 8892	return 0;
 8893
 8894clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
 8895	kfree(h->lastlogicals);
 8896clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
 8897	hpsa_free_performant_mode(h);
 8898	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 8899clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
 8900	hpsa_free_sg_chain_blocks(h);
 8901clean5: /* cmd, irq, shost, pci, lu, aer/h */
 8902	hpsa_free_cmd_pool(h);
 8903clean4: /* irq, shost, pci, lu, aer/h */
 8904	hpsa_free_irqs(h);
 8905clean3: /* shost, pci, lu, aer/h */
 8906	scsi_host_put(h->scsi_host);
 8907	h->scsi_host = NULL;
 8908clean2_5: /* pci, lu, aer/h */
 8909	hpsa_free_pci_init(h);
 8910clean2: /* lu, aer/h */
 8911	if (h->lockup_detected) {
 8912		free_percpu(h->lockup_detected);
 8913		h->lockup_detected = NULL;
 8914	}
 8915clean1:	/* wq/aer/h */
 8916	if (h->resubmit_wq) {
 8917		destroy_workqueue(h->resubmit_wq);
 8918		h->resubmit_wq = NULL;
 8919	}
 8920	if (h->rescan_ctlr_wq) {
 8921		destroy_workqueue(h->rescan_ctlr_wq);
 8922		h->rescan_ctlr_wq = NULL;
 8923	}
 8924	if (h->monitor_ctlr_wq) {
 8925		destroy_workqueue(h->monitor_ctlr_wq);
 8926		h->monitor_ctlr_wq = NULL;
 8927	}
 8928	hpda_free_ctlr_info(h);
 8929	return rc;
 8930}
 8931
 8932static void hpsa_flush_cache(struct ctlr_info *h)
 8933{
 8934	char *flush_buf;
 8935	struct CommandList *c;
 8936	int rc;
 8937
 8938	if (unlikely(lockup_detected(h)))
 8939		return;
 8940	flush_buf = kzalloc(4, GFP_KERNEL);
 8941	if (!flush_buf)
 8942		return;
 8943
 8944	c = cmd_alloc(h);
 8945
 8946	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
 8947		RAID_CTLR_LUNID, TYPE_CMD)) {
 8948		goto out;
 8949	}
 8950	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
 8951			DEFAULT_TIMEOUT);
 8952	if (rc)
 8953		goto out;
 8954	if (c->err_info->CommandStatus != 0)
 8955out:
 8956		dev_warn(&h->pdev->dev,
 8957			"error flushing cache on controller\n");
 8958	cmd_free(h, c);
 8959	kfree(flush_buf);
 8960}
 8961
 8962/* Make controller gather fresh report lun data each time we
 8963 * send down a report luns request
 8964 */
 8965static void hpsa_disable_rld_caching(struct ctlr_info *h)
 8966{
 8967	u32 *options;
 8968	struct CommandList *c;
 8969	int rc;
 8970
 8971	/* Don't bother trying to set diag options if locked up */
 8972	if (unlikely(h->lockup_detected))
 8973		return;
 8974
 8975	options = kzalloc(sizeof(*options), GFP_KERNEL);
 8976	if (!options)
 8977		return;
 8978
 8979	c = cmd_alloc(h);
 8980
 8981	/* first, get the current diag options settings */
 8982	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 8983		RAID_CTLR_LUNID, TYPE_CMD))
 8984		goto errout;
 8985
 8986	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 8987			NO_TIMEOUT);
 8988	if ((rc != 0) || (c->err_info->CommandStatus != 0))
 8989		goto errout;
 8990
 8991	/* Now, set the bit for disabling the RLD caching */
 8992	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
 8993
 8994	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
 8995		RAID_CTLR_LUNID, TYPE_CMD))
 8996		goto errout;
 8997
 8998	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
 8999			NO_TIMEOUT);
 9000	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 9001		goto errout;
 9002
 9003	/* Now verify that it got set: */
 9004	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
 9005		RAID_CTLR_LUNID, TYPE_CMD))
 9006		goto errout;
 9007
 9008	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
 9009			NO_TIMEOUT);
 9010	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
 9011		goto errout;
 9012
 9013	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
 9014		goto out;
 9015
 9016errout:
 9017	dev_err(&h->pdev->dev,
 9018			"Error: failed to disable report lun data caching.\n");
 9019out:
 9020	cmd_free(h, c);
 9021	kfree(options);
 9022}
 9023
 9024static void __hpsa_shutdown(struct pci_dev *pdev)
 9025{
 9026	struct ctlr_info *h;
 9027
 9028	h = pci_get_drvdata(pdev);
 9029	/* Turn board interrupts off  and send the flush cache command
 9030	 * sendcmd will turn off interrupt, and send the flush...
 9031	 * To write all data in the battery backed cache to disks
 9032	 */
 9033	hpsa_flush_cache(h);
 9034	h->access.set_intr_mask(h, HPSA_INTR_OFF);
 9035	hpsa_free_irqs(h);			/* init_one 4 */
 9036	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
 9037}
 9038
 9039static void hpsa_shutdown(struct pci_dev *pdev)
 9040{
 9041	__hpsa_shutdown(pdev);
 9042	pci_disable_device(pdev);
 9043}
 9044
 9045static void hpsa_free_device_info(struct ctlr_info *h)
 9046{
 9047	int i;
 9048
 9049	for (i = 0; i < h->ndevices; i++) {
 9050		kfree(h->dev[i]);
 9051		h->dev[i] = NULL;
 9052	}
 9053}
 9054
 9055static void hpsa_remove_one(struct pci_dev *pdev)
 9056{
 9057	struct ctlr_info *h;
 9058	unsigned long flags;
 9059
 9060	if (pci_get_drvdata(pdev) == NULL) {
 9061		dev_err(&pdev->dev, "unable to remove device\n");
 9062		return;
 9063	}
 9064	h = pci_get_drvdata(pdev);
 9065
 9066	/* Get rid of any controller monitoring work items */
 9067	spin_lock_irqsave(&h->lock, flags);
 9068	h->remove_in_progress = 1;
 9069	spin_unlock_irqrestore(&h->lock, flags);
 9070	cancel_delayed_work_sync(&h->monitor_ctlr_work);
 9071	cancel_delayed_work_sync(&h->rescan_ctlr_work);
 9072	cancel_delayed_work_sync(&h->event_monitor_work);
 9073	destroy_workqueue(h->rescan_ctlr_wq);
 9074	destroy_workqueue(h->resubmit_wq);
 9075	destroy_workqueue(h->monitor_ctlr_wq);
 9076
 9077	hpsa_delete_sas_host(h);
 9078
 9079	/*
 9080	 * Call before disabling interrupts.
 9081	 * scsi_remove_host can trigger I/O operations especially
 9082	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
 9083	 * operations which cannot complete and will hang the system.
 9084	 */
 9085	if (h->scsi_host)
 9086		scsi_remove_host(h->scsi_host);		/* init_one 8 */
 9087	/* includes hpsa_free_irqs - init_one 4 */
 9088	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 9089	__hpsa_shutdown(pdev);
 9090
 9091	hpsa_free_device_info(h);		/* scan */
 9092
 9093	kfree(h->hba_inquiry_data);			/* init_one 10 */
 9094	h->hba_inquiry_data = NULL;			/* init_one 10 */
 9095	hpsa_free_ioaccel2_sg_chain_blocks(h);
 9096	hpsa_free_performant_mode(h);			/* init_one 7 */
 9097	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
 9098	hpsa_free_cmd_pool(h);				/* init_one 5 */
 9099	kfree(h->lastlogicals);
 9100
 9101	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
 9102
 9103	scsi_host_put(h->scsi_host);			/* init_one 3 */
 9104	h->scsi_host = NULL;				/* init_one 3 */
 9105
 9106	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
 9107	hpsa_free_pci_init(h);				/* init_one 2.5 */
 9108
 9109	free_percpu(h->lockup_detected);		/* init_one 2 */
 9110	h->lockup_detected = NULL;			/* init_one 2 */
 
 9111
 9112	hpda_free_ctlr_info(h);				/* init_one 1 */
 9113}
 9114
 9115static int __maybe_unused hpsa_suspend(
 9116	__attribute__((unused)) struct device *dev)
 9117{
 9118	return -ENOSYS;
 9119}
 9120
 9121static int __maybe_unused hpsa_resume
 9122	(__attribute__((unused)) struct device *dev)
 9123{
 9124	return -ENOSYS;
 9125}
 9126
 9127static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
 9128
 9129static struct pci_driver hpsa_pci_driver = {
 9130	.name = HPSA,
 9131	.probe = hpsa_init_one,
 9132	.remove = hpsa_remove_one,
 9133	.id_table = hpsa_pci_device_id,	/* id_table */
 9134	.shutdown = hpsa_shutdown,
 9135	.driver.pm = &hpsa_pm_ops,
 
 9136};
 9137
 9138/* Fill in bucket_map[], given nsgs (the max number of
 9139 * scatter gather elements supported) and bucket[],
 9140 * which is an array of 8 integers.  The bucket[] array
 9141 * contains 8 different DMA transfer sizes (in 16
 9142 * byte increments) which the controller uses to fetch
 9143 * commands.  This function fills in bucket_map[], which
 9144 * maps a given number of scatter gather elements to one of
 9145 * the 8 DMA transfer sizes.  The point of it is to allow the
 9146 * controller to only do as much DMA as needed to fetch the
 9147 * command, with the DMA transfer size encoded in the lower
 9148 * bits of the command address.
 9149 */
 9150static void  calc_bucket_map(int bucket[], int num_buckets,
 9151	int nsgs, int min_blocks, u32 *bucket_map)
 9152{
 9153	int i, j, b, size;
 9154
 9155	/* Note, bucket_map must have nsgs+1 entries. */
 9156	for (i = 0; i <= nsgs; i++) {
 9157		/* Compute size of a command with i SG entries */
 9158		size = i + min_blocks;
 9159		b = num_buckets; /* Assume the biggest bucket */
 9160		/* Find the bucket that is just big enough */
 9161		for (j = 0; j < num_buckets; j++) {
 9162			if (bucket[j] >= size) {
 9163				b = j;
 9164				break;
 9165			}
 9166		}
 9167		/* for a command with i SG entries, use bucket b. */
 9168		bucket_map[i] = b;
 9169	}
 9170}
 9171
 9172/*
 9173 * return -ENODEV on err, 0 on success (or no action)
 9174 * allocates numerous items that must be freed later
 9175 */
 9176static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
 9177{
 9178	int i;
 9179	unsigned long register_value;
 9180	unsigned long transMethod = CFGTBL_Trans_Performant |
 9181			(trans_support & CFGTBL_Trans_use_short_tags) |
 9182				CFGTBL_Trans_enable_directed_msix |
 9183			(trans_support & (CFGTBL_Trans_io_accel1 |
 9184				CFGTBL_Trans_io_accel2));
 9185	struct access_method access = SA5_performant_access;
 9186
 9187	/* This is a bit complicated.  There are 8 registers on
 9188	 * the controller which we write to to tell it 8 different
 9189	 * sizes of commands which there may be.  It's a way of
 9190	 * reducing the DMA done to fetch each command.  Encoded into
 9191	 * each command's tag are 3 bits which communicate to the controller
 9192	 * which of the eight sizes that command fits within.  The size of
 9193	 * each command depends on how many scatter gather entries there are.
 9194	 * Each SG entry requires 16 bytes.  The eight registers are programmed
 9195	 * with the number of 16-byte blocks a command of that size requires.
 9196	 * The smallest command possible requires 5 such 16 byte blocks.
 9197	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
 9198	 * blocks.  Note, this only extends to the SG entries contained
 9199	 * within the command block, and does not extend to chained blocks
 9200	 * of SG elements.   bft[] contains the eight values we write to
 9201	 * the registers.  They are not evenly distributed, but have more
 9202	 * sizes for small commands, and fewer sizes for larger commands.
 9203	 */
 9204	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
 9205#define MIN_IOACCEL2_BFT_ENTRY 5
 9206#define HPSA_IOACCEL2_HEADER_SZ 4
 9207	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
 9208			13, 14, 15, 16, 17, 18, 19,
 9209			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
 9210	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
 9211	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
 9212	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
 9213				 16 * MIN_IOACCEL2_BFT_ENTRY);
 9214	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
 9215	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
 9216	/*  5 = 1 s/g entry or 4k
 9217	 *  6 = 2 s/g entry or 8k
 9218	 *  8 = 4 s/g entry or 16k
 9219	 * 10 = 6 s/g entry or 24k
 9220	 */
 9221
 9222	/* If the controller supports either ioaccel method then
 9223	 * we can also use the RAID stack submit path that does not
 9224	 * perform the superfluous readl() after each command submission.
 9225	 */
 9226	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
 9227		access = SA5_performant_access_no_read;
 9228
 9229	/* Controller spec: zero out this buffer. */
 9230	for (i = 0; i < h->nreply_queues; i++)
 9231		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
 9232
 9233	bft[7] = SG_ENTRIES_IN_CMD + 4;
 9234	calc_bucket_map(bft, ARRAY_SIZE(bft),
 9235				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
 9236	for (i = 0; i < 8; i++)
 9237		writel(bft[i], &h->transtable->BlockFetch[i]);
 9238
 9239	/* size of controller ring buffer */
 9240	writel(h->max_commands, &h->transtable->RepQSize);
 9241	writel(h->nreply_queues, &h->transtable->RepQCount);
 9242	writel(0, &h->transtable->RepQCtrAddrLow32);
 9243	writel(0, &h->transtable->RepQCtrAddrHigh32);
 9244
 9245	for (i = 0; i < h->nreply_queues; i++) {
 9246		writel(0, &h->transtable->RepQAddr[i].upper);
 9247		writel(h->reply_queue[i].busaddr,
 9248			&h->transtable->RepQAddr[i].lower);
 9249	}
 9250
 9251	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
 9252	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
 9253	/*
 9254	 * enable outbound interrupt coalescing in accelerator mode;
 9255	 */
 9256	if (trans_support & CFGTBL_Trans_io_accel1) {
 9257		access = SA5_ioaccel_mode1_access;
 9258		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
 9259		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
 9260	} else
 9261		if (trans_support & CFGTBL_Trans_io_accel2)
 9262			access = SA5_ioaccel_mode2_access;
 9263	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 9264	if (hpsa_wait_for_mode_change_ack(h)) {
 9265		dev_err(&h->pdev->dev,
 9266			"performant mode problem - doorbell timeout\n");
 9267		return -ENODEV;
 9268	}
 9269	register_value = readl(&(h->cfgtable->TransportActive));
 9270	if (!(register_value & CFGTBL_Trans_Performant)) {
 9271		dev_err(&h->pdev->dev,
 9272			"performant mode problem - transport not active\n");
 9273		return -ENODEV;
 9274	}
 9275	/* Change the access methods to the performant access methods */
 9276	h->access = access;
 9277	h->transMethod = transMethod;
 9278
 9279	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
 9280		(trans_support & CFGTBL_Trans_io_accel2)))
 9281		return 0;
 9282
 9283	if (trans_support & CFGTBL_Trans_io_accel1) {
 9284		/* Set up I/O accelerator mode */
 9285		for (i = 0; i < h->nreply_queues; i++) {
 9286			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
 9287			h->reply_queue[i].current_entry =
 9288				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
 9289		}
 9290		bft[7] = h->ioaccel_maxsg + 8;
 9291		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
 9292				h->ioaccel1_blockFetchTable);
 9293
 9294		/* initialize all reply queue entries to unused */
 9295		for (i = 0; i < h->nreply_queues; i++)
 9296			memset(h->reply_queue[i].head,
 9297				(u8) IOACCEL_MODE1_REPLY_UNUSED,
 9298				h->reply_queue_size);
 9299
 9300		/* set all the constant fields in the accelerator command
 9301		 * frames once at init time to save CPU cycles later.
 9302		 */
 9303		for (i = 0; i < h->nr_cmds; i++) {
 9304			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
 9305
 9306			cp->function = IOACCEL1_FUNCTION_SCSIIO;
 9307			cp->err_info = (u32) (h->errinfo_pool_dhandle +
 9308					(i * sizeof(struct ErrorInfo)));
 9309			cp->err_info_len = sizeof(struct ErrorInfo);
 9310			cp->sgl_offset = IOACCEL1_SGLOFFSET;
 9311			cp->host_context_flags =
 9312				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
 9313			cp->timeout_sec = 0;
 9314			cp->ReplyQueue = 0;
 9315			cp->tag =
 9316				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
 9317			cp->host_addr =
 9318				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
 9319					(i * sizeof(struct io_accel1_cmd)));
 9320		}
 9321	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 9322		u64 cfg_offset, cfg_base_addr_index;
 9323		u32 bft2_offset, cfg_base_addr;
 
 9324
 9325		hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
 9326				    &cfg_base_addr_index, &cfg_offset);
 9327		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
 9328		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
 9329		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
 9330				4, h->ioaccel2_blockFetchTable);
 9331		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
 9332		BUILD_BUG_ON(offsetof(struct CfgTable,
 9333				io_accel_request_size_offset) != 0xb8);
 9334		h->ioaccel2_bft2_regs =
 9335			remap_pci_mem(pci_resource_start(h->pdev,
 9336					cfg_base_addr_index) +
 9337					cfg_offset + bft2_offset,
 9338					ARRAY_SIZE(bft2) *
 9339					sizeof(*h->ioaccel2_bft2_regs));
 9340		for (i = 0; i < ARRAY_SIZE(bft2); i++)
 9341			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
 9342	}
 9343	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
 9344	if (hpsa_wait_for_mode_change_ack(h)) {
 9345		dev_err(&h->pdev->dev,
 9346			"performant mode problem - enabling ioaccel mode\n");
 9347		return -ENODEV;
 9348	}
 9349	return 0;
 9350}
 9351
 9352/* Free ioaccel1 mode command blocks and block fetch table */
 9353static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 9354{
 9355	if (h->ioaccel_cmd_pool) {
 9356		dma_free_coherent(&h->pdev->dev,
 9357				  h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 9358				  h->ioaccel_cmd_pool,
 9359				  h->ioaccel_cmd_pool_dhandle);
 9360		h->ioaccel_cmd_pool = NULL;
 9361		h->ioaccel_cmd_pool_dhandle = 0;
 9362	}
 9363	kfree(h->ioaccel1_blockFetchTable);
 9364	h->ioaccel1_blockFetchTable = NULL;
 9365}
 9366
 9367/* Allocate ioaccel1 mode command blocks and block fetch table */
 9368static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
 9369{
 9370	h->ioaccel_maxsg =
 9371		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 9372	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
 9373		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
 9374
 9375	/* Command structures must be aligned on a 128-byte boundary
 9376	 * because the 7 lower bits of the address are used by the
 9377	 * hardware.
 9378	 */
 9379	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
 9380			IOACCEL1_COMMANDLIST_ALIGNMENT);
 9381	h->ioaccel_cmd_pool =
 9382		dma_alloc_coherent(&h->pdev->dev,
 9383			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
 9384			&h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
 9385
 9386	h->ioaccel1_blockFetchTable =
 9387		kmalloc(((h->ioaccel_maxsg + 1) *
 9388				sizeof(u32)), GFP_KERNEL);
 9389
 9390	if ((h->ioaccel_cmd_pool == NULL) ||
 9391		(h->ioaccel1_blockFetchTable == NULL))
 9392		goto clean_up;
 9393
 9394	memset(h->ioaccel_cmd_pool, 0,
 9395		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
 9396	return 0;
 9397
 9398clean_up:
 9399	hpsa_free_ioaccel1_cmd_and_bft(h);
 9400	return -ENOMEM;
 9401}
 9402
 9403/* Free ioaccel2 mode command blocks and block fetch table */
 9404static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 9405{
 9406	hpsa_free_ioaccel2_sg_chain_blocks(h);
 9407
 9408	if (h->ioaccel2_cmd_pool) {
 9409		dma_free_coherent(&h->pdev->dev,
 9410				  h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 9411				  h->ioaccel2_cmd_pool,
 9412				  h->ioaccel2_cmd_pool_dhandle);
 9413		h->ioaccel2_cmd_pool = NULL;
 9414		h->ioaccel2_cmd_pool_dhandle = 0;
 9415	}
 9416	kfree(h->ioaccel2_blockFetchTable);
 9417	h->ioaccel2_blockFetchTable = NULL;
 9418}
 9419
 9420/* Allocate ioaccel2 mode command blocks and block fetch table */
 9421static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
 9422{
 9423	int rc;
 9424
 9425	/* Allocate ioaccel2 mode command blocks and block fetch table */
 9426
 9427	h->ioaccel_maxsg =
 9428		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
 9429	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
 9430		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
 9431
 9432	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
 9433			IOACCEL2_COMMANDLIST_ALIGNMENT);
 9434	h->ioaccel2_cmd_pool =
 9435		dma_alloc_coherent(&h->pdev->dev,
 9436			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
 9437			&h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
 9438
 9439	h->ioaccel2_blockFetchTable =
 9440		kmalloc(((h->ioaccel_maxsg + 1) *
 9441				sizeof(u32)), GFP_KERNEL);
 9442
 9443	if ((h->ioaccel2_cmd_pool == NULL) ||
 9444		(h->ioaccel2_blockFetchTable == NULL)) {
 9445		rc = -ENOMEM;
 9446		goto clean_up;
 9447	}
 9448
 9449	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
 9450	if (rc)
 9451		goto clean_up;
 9452
 9453	memset(h->ioaccel2_cmd_pool, 0,
 9454		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
 9455	return 0;
 9456
 9457clean_up:
 9458	hpsa_free_ioaccel2_cmd_and_bft(h);
 9459	return rc;
 9460}
 9461
 9462/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
 9463static void hpsa_free_performant_mode(struct ctlr_info *h)
 9464{
 9465	kfree(h->blockFetchTable);
 9466	h->blockFetchTable = NULL;
 9467	hpsa_free_reply_queues(h);
 9468	hpsa_free_ioaccel1_cmd_and_bft(h);
 9469	hpsa_free_ioaccel2_cmd_and_bft(h);
 9470}
 9471
 9472/* return -ENODEV on error, 0 on success (or no action)
 9473 * allocates numerous items that must be freed later
 9474 */
 9475static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
 9476{
 9477	u32 trans_support;
 
 
 9478	int i, rc;
 9479
 9480	if (hpsa_simple_mode)
 9481		return 0;
 9482
 9483	trans_support = readl(&(h->cfgtable->TransportSupport));
 9484	if (!(trans_support & PERFORMANT_MODE))
 9485		return 0;
 9486
 9487	/* Check for I/O accelerator mode support */
 9488	if (trans_support & CFGTBL_Trans_io_accel1) {
 
 
 9489		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
 9490		if (rc)
 9491			return rc;
 9492	} else if (trans_support & CFGTBL_Trans_io_accel2) {
 
 
 9493		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
 9494		if (rc)
 9495			return rc;
 9496	}
 9497
 9498	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
 9499	hpsa_get_max_perf_mode_cmds(h);
 9500	/* Performant mode ring buffer and supporting data structures */
 9501	h->reply_queue_size = h->max_commands * sizeof(u64);
 9502
 9503	for (i = 0; i < h->nreply_queues; i++) {
 9504		h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
 9505						h->reply_queue_size,
 9506						&h->reply_queue[i].busaddr,
 9507						GFP_KERNEL);
 9508		if (!h->reply_queue[i].head) {
 9509			rc = -ENOMEM;
 9510			goto clean1;	/* rq, ioaccel */
 9511		}
 9512		h->reply_queue[i].size = h->max_commands;
 9513		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
 9514		h->reply_queue[i].current_entry = 0;
 9515	}
 9516
 9517	/* Need a block fetch table for performant mode */
 9518	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
 9519				sizeof(u32)), GFP_KERNEL);
 9520	if (!h->blockFetchTable) {
 9521		rc = -ENOMEM;
 9522		goto clean1;	/* rq, ioaccel */
 9523	}
 9524
 9525	rc = hpsa_enter_performant_mode(h, trans_support);
 9526	if (rc)
 9527		goto clean2;	/* bft, rq, ioaccel */
 9528	return 0;
 9529
 9530clean2:	/* bft, rq, ioaccel */
 9531	kfree(h->blockFetchTable);
 9532	h->blockFetchTable = NULL;
 9533clean1:	/* rq, ioaccel */
 9534	hpsa_free_reply_queues(h);
 9535	hpsa_free_ioaccel1_cmd_and_bft(h);
 9536	hpsa_free_ioaccel2_cmd_and_bft(h);
 9537	return rc;
 9538}
 9539
 9540static int is_accelerated_cmd(struct CommandList *c)
 9541{
 9542	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
 9543}
 9544
 9545static void hpsa_drain_accel_commands(struct ctlr_info *h)
 9546{
 9547	struct CommandList *c = NULL;
 9548	int i, accel_cmds_out;
 9549	int refcount;
 9550
 9551	do { /* wait for all outstanding ioaccel commands to drain out */
 9552		accel_cmds_out = 0;
 9553		for (i = 0; i < h->nr_cmds; i++) {
 9554			c = h->cmd_pool + i;
 9555			refcount = atomic_inc_return(&c->refcount);
 9556			if (refcount > 1) /* Command is allocated */
 9557				accel_cmds_out += is_accelerated_cmd(c);
 9558			cmd_free(h, c);
 9559		}
 9560		if (accel_cmds_out <= 0)
 9561			break;
 9562		msleep(100);
 9563	} while (1);
 9564}
 9565
 9566static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
 9567				struct hpsa_sas_port *hpsa_sas_port)
 9568{
 9569	struct hpsa_sas_phy *hpsa_sas_phy;
 9570	struct sas_phy *phy;
 9571
 9572	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
 9573	if (!hpsa_sas_phy)
 9574		return NULL;
 9575
 9576	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
 9577		hpsa_sas_port->next_phy_index);
 9578	if (!phy) {
 9579		kfree(hpsa_sas_phy);
 9580		return NULL;
 9581	}
 9582
 9583	hpsa_sas_port->next_phy_index++;
 9584	hpsa_sas_phy->phy = phy;
 9585	hpsa_sas_phy->parent_port = hpsa_sas_port;
 9586
 9587	return hpsa_sas_phy;
 9588}
 9589
 9590static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 9591{
 9592	struct sas_phy *phy = hpsa_sas_phy->phy;
 9593
 9594	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
 9595	if (hpsa_sas_phy->added_to_port)
 9596		list_del(&hpsa_sas_phy->phy_list_entry);
 9597	sas_phy_delete(phy);
 9598	kfree(hpsa_sas_phy);
 9599}
 9600
 9601static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
 9602{
 9603	int rc;
 9604	struct hpsa_sas_port *hpsa_sas_port;
 9605	struct sas_phy *phy;
 9606	struct sas_identify *identify;
 9607
 9608	hpsa_sas_port = hpsa_sas_phy->parent_port;
 9609	phy = hpsa_sas_phy->phy;
 9610
 9611	identify = &phy->identify;
 9612	memset(identify, 0, sizeof(*identify));
 9613	identify->sas_address = hpsa_sas_port->sas_address;
 9614	identify->device_type = SAS_END_DEVICE;
 9615	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 9616	identify->target_port_protocols = SAS_PROTOCOL_STP;
 9617	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 9618	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
 9619	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
 9620	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
 9621	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
 9622
 9623	rc = sas_phy_add(hpsa_sas_phy->phy);
 9624	if (rc)
 9625		return rc;
 9626
 9627	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
 9628	list_add_tail(&hpsa_sas_phy->phy_list_entry,
 9629			&hpsa_sas_port->phy_list_head);
 9630	hpsa_sas_phy->added_to_port = true;
 9631
 9632	return 0;
 9633}
 9634
 9635static int
 9636	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
 9637				struct sas_rphy *rphy)
 9638{
 9639	struct sas_identify *identify;
 9640
 9641	identify = &rphy->identify;
 9642	identify->sas_address = hpsa_sas_port->sas_address;
 9643	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
 9644	identify->target_port_protocols = SAS_PROTOCOL_STP;
 9645
 9646	return sas_rphy_add(rphy);
 9647}
 9648
 9649static struct hpsa_sas_port
 9650	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
 9651				u64 sas_address)
 9652{
 9653	int rc;
 9654	struct hpsa_sas_port *hpsa_sas_port;
 9655	struct sas_port *port;
 9656
 9657	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
 9658	if (!hpsa_sas_port)
 9659		return NULL;
 9660
 9661	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
 9662	hpsa_sas_port->parent_node = hpsa_sas_node;
 9663
 9664	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
 9665	if (!port)
 9666		goto free_hpsa_port;
 9667
 9668	rc = sas_port_add(port);
 9669	if (rc)
 9670		goto free_sas_port;
 9671
 9672	hpsa_sas_port->port = port;
 9673	hpsa_sas_port->sas_address = sas_address;
 9674	list_add_tail(&hpsa_sas_port->port_list_entry,
 9675			&hpsa_sas_node->port_list_head);
 9676
 9677	return hpsa_sas_port;
 9678
 9679free_sas_port:
 9680	sas_port_free(port);
 9681free_hpsa_port:
 9682	kfree(hpsa_sas_port);
 9683
 9684	return NULL;
 9685}
 9686
 9687static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
 9688{
 9689	struct hpsa_sas_phy *hpsa_sas_phy;
 9690	struct hpsa_sas_phy *next;
 9691
 9692	list_for_each_entry_safe(hpsa_sas_phy, next,
 9693			&hpsa_sas_port->phy_list_head, phy_list_entry)
 9694		hpsa_free_sas_phy(hpsa_sas_phy);
 9695
 9696	sas_port_delete(hpsa_sas_port->port);
 9697	list_del(&hpsa_sas_port->port_list_entry);
 9698	kfree(hpsa_sas_port);
 9699}
 9700
 9701static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
 9702{
 9703	struct hpsa_sas_node *hpsa_sas_node;
 9704
 9705	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
 9706	if (hpsa_sas_node) {
 9707		hpsa_sas_node->parent_dev = parent_dev;
 9708		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
 9709	}
 9710
 9711	return hpsa_sas_node;
 9712}
 9713
 9714static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
 9715{
 9716	struct hpsa_sas_port *hpsa_sas_port;
 9717	struct hpsa_sas_port *next;
 9718
 9719	if (!hpsa_sas_node)
 9720		return;
 9721
 9722	list_for_each_entry_safe(hpsa_sas_port, next,
 9723			&hpsa_sas_node->port_list_head, port_list_entry)
 9724		hpsa_free_sas_port(hpsa_sas_port);
 9725
 9726	kfree(hpsa_sas_node);
 9727}
 9728
 9729static struct hpsa_scsi_dev_t
 9730	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 9731					struct sas_rphy *rphy)
 9732{
 9733	int i;
 9734	struct hpsa_scsi_dev_t *device;
 9735
 9736	for (i = 0; i < h->ndevices; i++) {
 9737		device = h->dev[i];
 9738		if (!device->sas_port)
 9739			continue;
 9740		if (device->sas_port->rphy == rphy)
 9741			return device;
 9742	}
 9743
 9744	return NULL;
 9745}
 9746
 9747static int hpsa_add_sas_host(struct ctlr_info *h)
 9748{
 9749	int rc;
 9750	struct device *parent_dev;
 9751	struct hpsa_sas_node *hpsa_sas_node;
 9752	struct hpsa_sas_port *hpsa_sas_port;
 9753	struct hpsa_sas_phy *hpsa_sas_phy;
 9754
 9755	parent_dev = &h->scsi_host->shost_dev;
 9756
 9757	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
 9758	if (!hpsa_sas_node)
 9759		return -ENOMEM;
 9760
 9761	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
 9762	if (!hpsa_sas_port) {
 9763		rc = -ENODEV;
 9764		goto free_sas_node;
 9765	}
 9766
 9767	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
 9768	if (!hpsa_sas_phy) {
 9769		rc = -ENODEV;
 9770		goto free_sas_port;
 9771	}
 9772
 9773	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
 9774	if (rc)
 9775		goto free_sas_phy;
 9776
 9777	h->sas_host = hpsa_sas_node;
 9778
 9779	return 0;
 9780
 9781free_sas_phy:
 9782	sas_phy_free(hpsa_sas_phy->phy);
 9783	kfree(hpsa_sas_phy);
 9784free_sas_port:
 9785	hpsa_free_sas_port(hpsa_sas_port);
 9786free_sas_node:
 9787	hpsa_free_sas_node(hpsa_sas_node);
 9788
 9789	return rc;
 9790}
 9791
 9792static void hpsa_delete_sas_host(struct ctlr_info *h)
 9793{
 9794	hpsa_free_sas_node(h->sas_host);
 9795}
 9796
 9797static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 9798				struct hpsa_scsi_dev_t *device)
 9799{
 9800	int rc;
 9801	struct hpsa_sas_port *hpsa_sas_port;
 9802	struct sas_rphy *rphy;
 9803
 9804	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
 9805	if (!hpsa_sas_port)
 9806		return -ENOMEM;
 9807
 9808	rphy = sas_end_device_alloc(hpsa_sas_port->port);
 9809	if (!rphy) {
 9810		rc = -ENODEV;
 9811		goto free_sas_port;
 9812	}
 9813
 9814	hpsa_sas_port->rphy = rphy;
 9815	device->sas_port = hpsa_sas_port;
 9816
 9817	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
 9818	if (rc)
 9819		goto free_sas_rphy;
 9820
 9821	return 0;
 9822
 9823free_sas_rphy:
 9824	sas_rphy_free(rphy);
 9825free_sas_port:
 9826	hpsa_free_sas_port(hpsa_sas_port);
 9827	device->sas_port = NULL;
 9828
 9829	return rc;
 9830}
 9831
 9832static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
 9833{
 9834	if (device->sas_port) {
 9835		hpsa_free_sas_port(device->sas_port);
 9836		device->sas_port = NULL;
 9837	}
 9838}
 9839
 9840static int
 9841hpsa_sas_get_linkerrors(struct sas_phy *phy)
 9842{
 9843	return 0;
 9844}
 9845
 9846static int
 9847hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
 9848{
 9849	struct Scsi_Host *shost = phy_to_shost(rphy);
 9850	struct ctlr_info *h;
 9851	struct hpsa_scsi_dev_t *sd;
 9852
 9853	if (!shost)
 9854		return -ENXIO;
 9855
 9856	h = shost_to_hba(shost);
 9857
 9858	if (!h)
 9859		return -ENXIO;
 9860
 9861	sd = hpsa_find_device_by_sas_rphy(h, rphy);
 9862	if (!sd)
 9863		return -ENXIO;
 9864
 9865	*identifier = sd->eli;
 9866
 9867	return 0;
 9868}
 9869
 9870static int
 9871hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
 9872{
 9873	return -ENXIO;
 9874}
 9875
 9876static int
 9877hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
 9878{
 9879	return 0;
 9880}
 9881
 9882static int
 9883hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
 9884{
 9885	return 0;
 9886}
 9887
 9888static int
 9889hpsa_sas_phy_setup(struct sas_phy *phy)
 9890{
 9891	return 0;
 9892}
 9893
 9894static void
 9895hpsa_sas_phy_release(struct sas_phy *phy)
 9896{
 9897}
 9898
 9899static int
 9900hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
 9901{
 9902	return -EINVAL;
 9903}
 9904
 9905static struct sas_function_template hpsa_sas_transport_functions = {
 9906	.get_linkerrors = hpsa_sas_get_linkerrors,
 9907	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
 9908	.get_bay_identifier = hpsa_sas_get_bay_identifier,
 9909	.phy_reset = hpsa_sas_phy_reset,
 9910	.phy_enable = hpsa_sas_phy_enable,
 9911	.phy_setup = hpsa_sas_phy_setup,
 9912	.phy_release = hpsa_sas_phy_release,
 9913	.set_phy_speed = hpsa_sas_phy_speed,
 9914};
 9915
 9916/*
 9917 *  This is it.  Register the PCI driver information for the cards we control
 9918 *  the OS will call our registered routines when it finds one of our cards.
 9919 */
 9920static int __init hpsa_init(void)
 9921{
 9922	int rc;
 9923
 9924	hpsa_sas_transport_template =
 9925		sas_attach_transport(&hpsa_sas_transport_functions);
 9926	if (!hpsa_sas_transport_template)
 9927		return -ENODEV;
 9928
 9929	rc = pci_register_driver(&hpsa_pci_driver);
 9930
 9931	if (rc)
 9932		sas_release_transport(hpsa_sas_transport_template);
 9933
 9934	return rc;
 9935}
 9936
 9937static void __exit hpsa_cleanup(void)
 9938{
 9939	pci_unregister_driver(&hpsa_pci_driver);
 9940	sas_release_transport(hpsa_sas_transport_template);
 9941}
 9942
 9943static void __attribute__((unused)) verify_offsets(void)
 9944{
 9945#define VERIFY_OFFSET(member, offset) \
 9946	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
 9947
 9948	VERIFY_OFFSET(structure_size, 0);
 9949	VERIFY_OFFSET(volume_blk_size, 4);
 9950	VERIFY_OFFSET(volume_blk_cnt, 8);
 9951	VERIFY_OFFSET(phys_blk_shift, 16);
 9952	VERIFY_OFFSET(parity_rotation_shift, 17);
 9953	VERIFY_OFFSET(strip_size, 18);
 9954	VERIFY_OFFSET(disk_starting_blk, 20);
 9955	VERIFY_OFFSET(disk_blk_cnt, 28);
 9956	VERIFY_OFFSET(data_disks_per_row, 36);
 9957	VERIFY_OFFSET(metadata_disks_per_row, 38);
 9958	VERIFY_OFFSET(row_cnt, 40);
 9959	VERIFY_OFFSET(layout_map_count, 42);
 9960	VERIFY_OFFSET(flags, 44);
 9961	VERIFY_OFFSET(dekindex, 46);
 9962	/* VERIFY_OFFSET(reserved, 48 */
 9963	VERIFY_OFFSET(data, 64);
 9964
 9965#undef VERIFY_OFFSET
 9966
 9967#define VERIFY_OFFSET(member, offset) \
 9968	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
 9969
 9970	VERIFY_OFFSET(IU_type, 0);
 9971	VERIFY_OFFSET(direction, 1);
 9972	VERIFY_OFFSET(reply_queue, 2);
 9973	/* VERIFY_OFFSET(reserved1, 3);  */
 9974	VERIFY_OFFSET(scsi_nexus, 4);
 9975	VERIFY_OFFSET(Tag, 8);
 9976	VERIFY_OFFSET(cdb, 16);
 9977	VERIFY_OFFSET(cciss_lun, 32);
 9978	VERIFY_OFFSET(data_len, 40);
 9979	VERIFY_OFFSET(cmd_priority_task_attr, 44);
 9980	VERIFY_OFFSET(sg_count, 45);
 9981	/* VERIFY_OFFSET(reserved3 */
 9982	VERIFY_OFFSET(err_ptr, 48);
 9983	VERIFY_OFFSET(err_len, 56);
 9984	/* VERIFY_OFFSET(reserved4  */
 9985	VERIFY_OFFSET(sg, 64);
 9986
 9987#undef VERIFY_OFFSET
 9988
 9989#define VERIFY_OFFSET(member, offset) \
 9990	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
 9991
 9992	VERIFY_OFFSET(dev_handle, 0x00);
 9993	VERIFY_OFFSET(reserved1, 0x02);
 9994	VERIFY_OFFSET(function, 0x03);
 9995	VERIFY_OFFSET(reserved2, 0x04);
 9996	VERIFY_OFFSET(err_info, 0x0C);
 9997	VERIFY_OFFSET(reserved3, 0x10);
 9998	VERIFY_OFFSET(err_info_len, 0x12);
 9999	VERIFY_OFFSET(reserved4, 0x13);
10000	VERIFY_OFFSET(sgl_offset, 0x14);
10001	VERIFY_OFFSET(reserved5, 0x15);
10002	VERIFY_OFFSET(transfer_len, 0x1C);
10003	VERIFY_OFFSET(reserved6, 0x20);
10004	VERIFY_OFFSET(io_flags, 0x24);
10005	VERIFY_OFFSET(reserved7, 0x26);
10006	VERIFY_OFFSET(LUN, 0x34);
10007	VERIFY_OFFSET(control, 0x3C);
10008	VERIFY_OFFSET(CDB, 0x40);
10009	VERIFY_OFFSET(reserved8, 0x50);
10010	VERIFY_OFFSET(host_context_flags, 0x60);
10011	VERIFY_OFFSET(timeout_sec, 0x62);
10012	VERIFY_OFFSET(ReplyQueue, 0x64);
10013	VERIFY_OFFSET(reserved9, 0x65);
10014	VERIFY_OFFSET(tag, 0x68);
10015	VERIFY_OFFSET(host_addr, 0x70);
10016	VERIFY_OFFSET(CISS_LUN, 0x78);
10017	VERIFY_OFFSET(SG, 0x78 + 8);
10018#undef VERIFY_OFFSET
10019}
10020
10021module_init(hpsa_init);
10022module_exit(hpsa_cleanup);
v4.17
   1/*
   2 *    Disk Array driver for HP Smart Array SAS controllers
 
   3 *    Copyright 2016 Microsemi Corporation
   4 *    Copyright 2014-2015 PMC-Sierra, Inc.
   5 *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; version 2 of the License.
  10 *
  11 *    This program is distributed in the hope that it will be useful,
  12 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  14 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
  15 *
  16 *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
  17 *
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/types.h>
  23#include <linux/pci.h>
  24#include <linux/pci-aspm.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/delay.h>
  28#include <linux/fs.h>
  29#include <linux/timer.h>
  30#include <linux/init.h>
  31#include <linux/spinlock.h>
  32#include <linux/compat.h>
  33#include <linux/blktrace_api.h>
  34#include <linux/uaccess.h>
  35#include <linux/io.h>
  36#include <linux/dma-mapping.h>
  37#include <linux/completion.h>
  38#include <linux/moduleparam.h>
  39#include <scsi/scsi.h>
  40#include <scsi/scsi_cmnd.h>
  41#include <scsi/scsi_device.h>
  42#include <scsi/scsi_host.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi_eh.h>
  45#include <scsi/scsi_transport_sas.h>
  46#include <scsi/scsi_dbg.h>
  47#include <linux/cciss_ioctl.h>
  48#include <linux/string.h>
  49#include <linux/bitmap.h>
  50#include <linux/atomic.h>
  51#include <linux/jiffies.h>
  52#include <linux/percpu-defs.h>
  53#include <linux/percpu.h>
  54#include <asm/unaligned.h>
  55#include <asm/div64.h>
  56#include "hpsa_cmd.h"
  57#include "hpsa.h"
  58
  59/*
  60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
  61 * with an optional trailing '-' followed by a byte value (0-255).
  62 */
  63#define HPSA_DRIVER_VERSION "3.4.20-125"
  64#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  65#define HPSA "hpsa"
  66
  67/* How long to wait for CISS doorbell communication */
  68#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
  69#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
  70#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
  71#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
  72#define MAX_IOCTL_CONFIG_WAIT 1000
  73
  74/*define how many times we will try a command because of bus resets */
  75#define MAX_CMD_RETRIES 3
 
 
  76
  77/* Embedded module documentation macros - see modules.h */
  78MODULE_AUTHOR("Hewlett-Packard Company");
  79MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  80	HPSA_DRIVER_VERSION);
  81MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  82MODULE_VERSION(HPSA_DRIVER_VERSION);
  83MODULE_LICENSE("GPL");
  84MODULE_ALIAS("cciss");
  85
  86static int hpsa_simple_mode;
  87module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  88MODULE_PARM_DESC(hpsa_simple_mode,
  89	"Use 'simple mode' rather than 'performant mode'");
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id hpsa_pci_device_id[] = {
  93	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
  94	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
  95	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
  96	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
  97	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
  98	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
  99	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
 100	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
 101	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
 102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
 103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
 104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
 105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
 106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
 107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
 108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
 109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
 110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
 111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
 112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
 113	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
 114	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
 115	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
 116	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
 117	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
 118	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
 119	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
 120	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
 121	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
 122	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
 123	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
 124	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
 125	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
 126	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
 127	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
 128	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
 129	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
 130	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
 131	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
 132	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
 133	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
 134	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
 135	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
 136	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
 137	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
 138	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
 139	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
 140	{PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
 141	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
 142	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
 143	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
 144	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
 145	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
 146	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 147		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 148	{PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
 149		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
 150	{0,}
 151};
 152
 153MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
 154
 155/*  board_id = Subsystem Device ID & Vendor ID
 156 *  product = Marketing Name for the board
 157 *  access = Address of the struct of function pointers
 158 */
 159static struct board_type products[] = {
 160	{0x40700E11, "Smart Array 5300", &SA5A_access},
 161	{0x40800E11, "Smart Array 5i", &SA5B_access},
 162	{0x40820E11, "Smart Array 532", &SA5B_access},
 163	{0x40830E11, "Smart Array 5312", &SA5B_access},
 164	{0x409A0E11, "Smart Array 641", &SA5A_access},
 165	{0x409B0E11, "Smart Array 642", &SA5A_access},
 166	{0x409C0E11, "Smart Array 6400", &SA5A_access},
 167	{0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
 168	{0x40910E11, "Smart Array 6i", &SA5A_access},
 169	{0x3225103C, "Smart Array P600", &SA5A_access},
 170	{0x3223103C, "Smart Array P800", &SA5A_access},
 171	{0x3234103C, "Smart Array P400", &SA5A_access},
 172	{0x3235103C, "Smart Array P400i", &SA5A_access},
 173	{0x3211103C, "Smart Array E200i", &SA5A_access},
 174	{0x3212103C, "Smart Array E200", &SA5A_access},
 175	{0x3213103C, "Smart Array E200i", &SA5A_access},
 176	{0x3214103C, "Smart Array E200i", &SA5A_access},
 177	{0x3215103C, "Smart Array E200i", &SA5A_access},
 178	{0x3237103C, "Smart Array E500", &SA5A_access},
 179	{0x323D103C, "Smart Array P700m", &SA5A_access},
 180	{0x3241103C, "Smart Array P212", &SA5_access},
 181	{0x3243103C, "Smart Array P410", &SA5_access},
 182	{0x3245103C, "Smart Array P410i", &SA5_access},
 183	{0x3247103C, "Smart Array P411", &SA5_access},
 184	{0x3249103C, "Smart Array P812", &SA5_access},
 185	{0x324A103C, "Smart Array P712m", &SA5_access},
 186	{0x324B103C, "Smart Array P711m", &SA5_access},
 187	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
 188	{0x3350103C, "Smart Array P222", &SA5_access},
 189	{0x3351103C, "Smart Array P420", &SA5_access},
 190	{0x3352103C, "Smart Array P421", &SA5_access},
 191	{0x3353103C, "Smart Array P822", &SA5_access},
 192	{0x3354103C, "Smart Array P420i", &SA5_access},
 193	{0x3355103C, "Smart Array P220i", &SA5_access},
 194	{0x3356103C, "Smart Array P721m", &SA5_access},
 195	{0x1920103C, "Smart Array P430i", &SA5_access},
 196	{0x1921103C, "Smart Array P830i", &SA5_access},
 197	{0x1922103C, "Smart Array P430", &SA5_access},
 198	{0x1923103C, "Smart Array P431", &SA5_access},
 199	{0x1924103C, "Smart Array P830", &SA5_access},
 200	{0x1925103C, "Smart Array P831", &SA5_access},
 201	{0x1926103C, "Smart Array P731m", &SA5_access},
 202	{0x1928103C, "Smart Array P230i", &SA5_access},
 203	{0x1929103C, "Smart Array P530", &SA5_access},
 204	{0x21BD103C, "Smart Array P244br", &SA5_access},
 205	{0x21BE103C, "Smart Array P741m", &SA5_access},
 206	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
 207	{0x21C0103C, "Smart Array P440ar", &SA5_access},
 208	{0x21C1103C, "Smart Array P840ar", &SA5_access},
 209	{0x21C2103C, "Smart Array P440", &SA5_access},
 210	{0x21C3103C, "Smart Array P441", &SA5_access},
 211	{0x21C4103C, "Smart Array", &SA5_access},
 212	{0x21C5103C, "Smart Array P841", &SA5_access},
 213	{0x21C6103C, "Smart HBA H244br", &SA5_access},
 214	{0x21C7103C, "Smart HBA H240", &SA5_access},
 215	{0x21C8103C, "Smart HBA H241", &SA5_access},
 216	{0x21C9103C, "Smart Array", &SA5_access},
 217	{0x21CA103C, "Smart Array P246br", &SA5_access},
 218	{0x21CB103C, "Smart Array P840", &SA5_access},
 219	{0x21CC103C, "Smart Array", &SA5_access},
 220	{0x21CD103C, "Smart Array", &SA5_access},
 221	{0x21CE103C, "Smart HBA", &SA5_access},
 222	{0x05809005, "SmartHBA-SA", &SA5_access},
 223	{0x05819005, "SmartHBA-SA 8i", &SA5_access},
 224	{0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
 225	{0x05839005, "SmartHBA-SA 8e", &SA5_access},
 226	{0x05849005, "SmartHBA-SA 16i", &SA5_access},
 227	{0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
 228	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
 229	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
 230	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
 231	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
 232	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
 233	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
 234};
 235
 236static struct scsi_transport_template *hpsa_sas_transport_template;
 237static int hpsa_add_sas_host(struct ctlr_info *h);
 238static void hpsa_delete_sas_host(struct ctlr_info *h);
 239static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
 240			struct hpsa_scsi_dev_t *device);
 241static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
 242static struct hpsa_scsi_dev_t
 243	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
 244		struct sas_rphy *rphy);
 245
 246#define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
 247static const struct scsi_cmnd hpsa_cmd_busy;
 248#define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
 249static const struct scsi_cmnd hpsa_cmd_idle;
 250static int number_of_controllers;
 251
 252static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
 253static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
 254static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
 
 
 
 
 
 255
 256#ifdef CONFIG_COMPAT
 257static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
 258	void __user *arg);
 259#endif
 260
 261static void cmd_free(struct ctlr_info *h, struct CommandList *c);
 262static struct CommandList *cmd_alloc(struct ctlr_info *h);
 263static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
 264static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
 265					    struct scsi_cmnd *scmd);
 266static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
 267	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
 268	int cmd_type);
 269static void hpsa_free_cmd_pool(struct ctlr_info *h);
 270#define VPD_PAGE (1 << 8)
 271#define HPSA_SIMPLE_ERROR_BITS 0x03
 272
 273static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
 274static void hpsa_scan_start(struct Scsi_Host *);
 275static int hpsa_scan_finished(struct Scsi_Host *sh,
 276	unsigned long elapsed_time);
 277static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
 278
 279static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
 280static int hpsa_slave_alloc(struct scsi_device *sdev);
 281static int hpsa_slave_configure(struct scsi_device *sdev);
 282static void hpsa_slave_destroy(struct scsi_device *sdev);
 283
 284static void hpsa_update_scsi_devices(struct ctlr_info *h);
 285static int check_for_unit_attention(struct ctlr_info *h,
 286	struct CommandList *c);
 287static void check_ioctl_unit_attention(struct ctlr_info *h,
 288	struct CommandList *c);
 289/* performant mode helper functions */
 290static void calc_bucket_map(int *bucket, int num_buckets,
 291	int nsgs, int min_blocks, u32 *bucket_map);
 292static void hpsa_free_performant_mode(struct ctlr_info *h);
 293static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
 294static inline u32 next_command(struct ctlr_info *h, u8 q);
 295static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 296			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 297			       u64 *cfg_offset);
 298static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
 299				    unsigned long *memory_bar);
 300static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
 301				bool *legacy_board);
 302static int wait_for_device_to_become_ready(struct ctlr_info *h,
 303					   unsigned char lunaddr[],
 304					   int reply_queue);
 305static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
 306				     int wait_for_ready);
 307static inline void finish_cmd(struct CommandList *c);
 308static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
 309#define BOARD_NOT_READY 0
 310#define BOARD_READY 1
 311static void hpsa_drain_accel_commands(struct ctlr_info *h);
 312static void hpsa_flush_cache(struct ctlr_info *h);
 313static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
 314	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
 315	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
 316static void hpsa_command_resubmit_worker(struct work_struct *work);
 317static u32 lockup_detected(struct ctlr_info *h);
 318static int detect_controller_lockup(struct ctlr_info *h);
 319static void hpsa_disable_rld_caching(struct ctlr_info *h);
 320static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
 321	struct ReportExtendedLUNdata *buf, int bufsize);
 322static bool hpsa_vpd_page_supported(struct ctlr_info *h,
 323	unsigned char scsi3addr[], u8 page);
 324static int hpsa_luns_changed(struct ctlr_info *h);
 325static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
 326			       struct hpsa_scsi_dev_t *dev,
 327			       unsigned char *scsi3addr);
 328
 329static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
 330{
 331	unsigned long *priv = shost_priv(sdev->host);
 332	return (struct ctlr_info *) *priv;
 333}
 334
 335static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
 336{
 337	unsigned long *priv = shost_priv(sh);
 338	return (struct ctlr_info *) *priv;
 339}
 340
 341static inline bool hpsa_is_cmd_idle(struct CommandList *c)
 342{
 343	return c->scsi_cmd == SCSI_CMD_IDLE;
 344}
 345
 346static inline bool hpsa_is_pending_event(struct CommandList *c)
 347{
 348	return c->reset_pending;
 349}
 350
 351/* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
 352static void decode_sense_data(const u8 *sense_data, int sense_data_len,
 353			u8 *sense_key, u8 *asc, u8 *ascq)
 354{
 355	struct scsi_sense_hdr sshdr;
 356	bool rc;
 357
 358	*sense_key = -1;
 359	*asc = -1;
 360	*ascq = -1;
 361
 362	if (sense_data_len < 1)
 363		return;
 364
 365	rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
 366	if (rc) {
 367		*sense_key = sshdr.sense_key;
 368		*asc = sshdr.asc;
 369		*ascq = sshdr.ascq;
 370	}
 371}
 372
 373static int check_for_unit_attention(struct ctlr_info *h,
 374	struct CommandList *c)
 375{
 376	u8 sense_key, asc, ascq;
 377	int sense_len;
 378
 379	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
 380		sense_len = sizeof(c->err_info->SenseInfo);
 381	else
 382		sense_len = c->err_info->SenseLen;
 383
 384	decode_sense_data(c->err_info->SenseInfo, sense_len,
 385				&sense_key, &asc, &ascq);
 386	if (sense_key != UNIT_ATTENTION || asc == 0xff)
 387		return 0;
 388
 389	switch (asc) {
 390	case STATE_CHANGED:
 391		dev_warn(&h->pdev->dev,
 392			"%s: a state change detected, command retried\n",
 393			h->devname);
 394		break;
 395	case LUN_FAILED:
 396		dev_warn(&h->pdev->dev,
 397			"%s: LUN failure detected\n", h->devname);
 398		break;
 399	case REPORT_LUNS_CHANGED:
 400		dev_warn(&h->pdev->dev,
 401			"%s: report LUN data changed\n", h->devname);
 402	/*
 403	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
 404	 * target (array) devices.
 405	 */
 406		break;
 407	case POWER_OR_RESET:
 408		dev_warn(&h->pdev->dev,
 409			"%s: a power on or device reset detected\n",
 410			h->devname);
 411		break;
 412	case UNIT_ATTENTION_CLEARED:
 413		dev_warn(&h->pdev->dev,
 414			"%s: unit attention cleared by another initiator\n",
 415			h->devname);
 416		break;
 417	default:
 418		dev_warn(&h->pdev->dev,
 419			"%s: unknown unit attention detected\n",
 420			h->devname);
 421		break;
 422	}
 423	return 1;
 424}
 425
 426static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
 427{
 428	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
 429		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
 430		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
 431		return 0;
 432	dev_warn(&h->pdev->dev, HPSA "device busy");
 433	return 1;
 434}
 435
 436static u32 lockup_detected(struct ctlr_info *h);
 437static ssize_t host_show_lockup_detected(struct device *dev,
 438		struct device_attribute *attr, char *buf)
 439{
 440	int ld;
 441	struct ctlr_info *h;
 442	struct Scsi_Host *shost = class_to_shost(dev);
 443
 444	h = shost_to_hba(shost);
 445	ld = lockup_detected(h);
 446
 447	return sprintf(buf, "ld=%d\n", ld);
 448}
 449
 450static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
 451					 struct device_attribute *attr,
 452					 const char *buf, size_t count)
 453{
 454	int status, len;
 455	struct ctlr_info *h;
 456	struct Scsi_Host *shost = class_to_shost(dev);
 457	char tmpbuf[10];
 458
 459	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 460		return -EACCES;
 461	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 462	strncpy(tmpbuf, buf, len);
 463	tmpbuf[len] = '\0';
 464	if (sscanf(tmpbuf, "%d", &status) != 1)
 465		return -EINVAL;
 466	h = shost_to_hba(shost);
 467	h->acciopath_status = !!status;
 468	dev_warn(&h->pdev->dev,
 469		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
 470		h->acciopath_status ? "enabled" : "disabled");
 471	return count;
 472}
 473
 474static ssize_t host_store_raid_offload_debug(struct device *dev,
 475					 struct device_attribute *attr,
 476					 const char *buf, size_t count)
 477{
 478	int debug_level, len;
 479	struct ctlr_info *h;
 480	struct Scsi_Host *shost = class_to_shost(dev);
 481	char tmpbuf[10];
 482
 483	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
 484		return -EACCES;
 485	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
 486	strncpy(tmpbuf, buf, len);
 487	tmpbuf[len] = '\0';
 488	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
 489		return -EINVAL;
 490	if (debug_level < 0)
 491		debug_level = 0;
 492	h = shost_to_hba(shost);
 493	h->raid_offload_debug = debug_level;
 494	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
 495		h->raid_offload_debug);
 496	return count;
 497}
 498
 499static ssize_t host_store_rescan(struct device *dev,
 500				 struct device_attribute *attr,
 501				 const char *buf, size_t count)
 502{
 503	struct ctlr_info *h;
 504	struct Scsi_Host *shost = class_to_shost(dev);
 505	h = shost_to_hba(shost);
 506	hpsa_scan_start(h->scsi_host);
 507	return count;
 508}
 509
 
 
 
 
 
 
 510static ssize_t host_show_firmware_revision(struct device *dev,
 511	     struct device_attribute *attr, char *buf)
 512{
 513	struct ctlr_info *h;
 514	struct Scsi_Host *shost = class_to_shost(dev);
 515	unsigned char *fwrev;
 516
 517	h = shost_to_hba(shost);
 518	if (!h->hba_inquiry_data)
 519		return 0;
 520	fwrev = &h->hba_inquiry_data[32];
 521	return snprintf(buf, 20, "%c%c%c%c\n",
 522		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
 523}
 524
 525static ssize_t host_show_commands_outstanding(struct device *dev,
 526	     struct device_attribute *attr, char *buf)
 527{
 528	struct Scsi_Host *shost = class_to_shost(dev);
 529	struct ctlr_info *h = shost_to_hba(shost);
 530
 531	return snprintf(buf, 20, "%d\n",
 532			atomic_read(&h->commands_outstanding));
 533}
 534
 535static ssize_t host_show_transport_mode(struct device *dev,
 536	struct device_attribute *attr, char *buf)
 537{
 538	struct ctlr_info *h;
 539	struct Scsi_Host *shost = class_to_shost(dev);
 540
 541	h = shost_to_hba(shost);
 542	return snprintf(buf, 20, "%s\n",
 543		h->transMethod & CFGTBL_Trans_Performant ?
 544			"performant" : "simple");
 545}
 546
 547static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
 548	struct device_attribute *attr, char *buf)
 549{
 550	struct ctlr_info *h;
 551	struct Scsi_Host *shost = class_to_shost(dev);
 552
 553	h = shost_to_hba(shost);
 554	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
 555		(h->acciopath_status == 1) ?  "enabled" : "disabled");
 556}
 557
 558/* List of controllers which cannot be hard reset on kexec with reset_devices */
 559static u32 unresettable_controller[] = {
 560	0x324a103C, /* Smart Array P712m */
 561	0x324b103C, /* Smart Array P711m */
 562	0x3223103C, /* Smart Array P800 */
 563	0x3234103C, /* Smart Array P400 */
 564	0x3235103C, /* Smart Array P400i */
 565	0x3211103C, /* Smart Array E200i */
 566	0x3212103C, /* Smart Array E200 */
 567	0x3213103C, /* Smart Array E200i */
 568	0x3214103C, /* Smart Array E200i */
 569	0x3215103C, /* Smart Array E200i */
 570	0x3237103C, /* Smart Array E500 */
 571	0x323D103C, /* Smart Array P700m */
 572	0x40800E11, /* Smart Array 5i */
 573	0x409C0E11, /* Smart Array 6400 */
 574	0x409D0E11, /* Smart Array 6400 EM */
 575	0x40700E11, /* Smart Array 5300 */
 576	0x40820E11, /* Smart Array 532 */
 577	0x40830E11, /* Smart Array 5312 */
 578	0x409A0E11, /* Smart Array 641 */
 579	0x409B0E11, /* Smart Array 642 */
 580	0x40910E11, /* Smart Array 6i */
 581};
 582
 583/* List of controllers which cannot even be soft reset */
 584static u32 soft_unresettable_controller[] = {
 585	0x40800E11, /* Smart Array 5i */
 586	0x40700E11, /* Smart Array 5300 */
 587	0x40820E11, /* Smart Array 532 */
 588	0x40830E11, /* Smart Array 5312 */
 589	0x409A0E11, /* Smart Array 641 */
 590	0x409B0E11, /* Smart Array 642 */
 591	0x40910E11, /* Smart Array 6i */
 592	/* Exclude 640x boards.  These are two pci devices in one slot
 593	 * which share a battery backed cache module.  One controls the
 594	 * cache, the other accesses the cache through the one that controls
 595	 * it.  If we reset the one controlling the cache, the other will
 596	 * likely not be happy.  Just forbid resetting this conjoined mess.
 597	 * The 640x isn't really supported by hpsa anyway.
 598	 */
 599	0x409C0E11, /* Smart Array 6400 */
 600	0x409D0E11, /* Smart Array 6400 EM */
 601};
 602
 603static int board_id_in_array(u32 a[], int nelems, u32 board_id)
 604{
 605	int i;
 606
 607	for (i = 0; i < nelems; i++)
 608		if (a[i] == board_id)
 609			return 1;
 610	return 0;
 611}
 612
 613static int ctlr_is_hard_resettable(u32 board_id)
 614{
 615	return !board_id_in_array(unresettable_controller,
 616			ARRAY_SIZE(unresettable_controller), board_id);
 617}
 618
 619static int ctlr_is_soft_resettable(u32 board_id)
 620{
 621	return !board_id_in_array(soft_unresettable_controller,
 622			ARRAY_SIZE(soft_unresettable_controller), board_id);
 623}
 624
 625static int ctlr_is_resettable(u32 board_id)
 626{
 627	return ctlr_is_hard_resettable(board_id) ||
 628		ctlr_is_soft_resettable(board_id);
 629}
 630
 631static ssize_t host_show_resettable(struct device *dev,
 632	struct device_attribute *attr, char *buf)
 633{
 634	struct ctlr_info *h;
 635	struct Scsi_Host *shost = class_to_shost(dev);
 636
 637	h = shost_to_hba(shost);
 638	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 639}
 640
 641static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
 642{
 643	return (scsi3addr[3] & 0xC0) == 0x40;
 644}
 645
 646static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
 647	"1(+0)ADM", "UNKNOWN", "PHYS DRV"
 648};
 649#define HPSA_RAID_0	0
 650#define HPSA_RAID_4	1
 651#define HPSA_RAID_1	2	/* also used for RAID 10 */
 652#define HPSA_RAID_5	3	/* also used for RAID 50 */
 653#define HPSA_RAID_51	4
 654#define HPSA_RAID_6	5	/* also used for RAID 60 */
 655#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
 656#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
 657#define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
 658
 659static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
 660{
 661	return !device->physical_device;
 662}
 663
 664static ssize_t raid_level_show(struct device *dev,
 665	     struct device_attribute *attr, char *buf)
 666{
 667	ssize_t l = 0;
 668	unsigned char rlevel;
 669	struct ctlr_info *h;
 670	struct scsi_device *sdev;
 671	struct hpsa_scsi_dev_t *hdev;
 672	unsigned long flags;
 673
 674	sdev = to_scsi_device(dev);
 675	h = sdev_to_hba(sdev);
 676	spin_lock_irqsave(&h->lock, flags);
 677	hdev = sdev->hostdata;
 678	if (!hdev) {
 679		spin_unlock_irqrestore(&h->lock, flags);
 680		return -ENODEV;
 681	}
 682
 683	/* Is this even a logical drive? */
 684	if (!is_logical_device(hdev)) {
 685		spin_unlock_irqrestore(&h->lock, flags);
 686		l = snprintf(buf, PAGE_SIZE, "N/A\n");
 687		return l;
 688	}
 689
 690	rlevel = hdev->raid_level;
 691	spin_unlock_irqrestore(&h->lock, flags);
 692	if (rlevel > RAID_UNKNOWN)
 693		rlevel = RAID_UNKNOWN;
 694	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
 695	return l;
 696}
 697
 698static ssize_t lunid_show(struct device *dev,
 699	     struct device_attribute *attr, char *buf)
 700{
 701	struct ctlr_info *h;
 702	struct scsi_device *sdev;
 703	struct hpsa_scsi_dev_t *hdev;
 704	unsigned long flags;
 705	unsigned char lunid[8];
 706
 707	sdev = to_scsi_device(dev);
 708	h = sdev_to_hba(sdev);
 709	spin_lock_irqsave(&h->lock, flags);
 710	hdev = sdev->hostdata;
 711	if (!hdev) {
 712		spin_unlock_irqrestore(&h->lock, flags);
 713		return -ENODEV;
 714	}
 715	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
 716	spin_unlock_irqrestore(&h->lock, flags);
 717	return snprintf(buf, 20, "0x%8phN\n", lunid);
 718}
 719
 720static ssize_t unique_id_show(struct device *dev,
 721	     struct device_attribute *attr, char *buf)
 722{
 723	struct ctlr_info *h;
 724	struct scsi_device *sdev;
 725	struct hpsa_scsi_dev_t *hdev;
 726	unsigned long flags;
 727	unsigned char sn[16];
 728
 729	sdev = to_scsi_device(dev);
 730	h = sdev_to_hba(sdev);
 731	spin_lock_irqsave(&h->lock, flags);
 732	hdev = sdev->hostdata;
 733	if (!hdev) {
 734		spin_unlock_irqrestore(&h->lock, flags);
 735		return -ENODEV;
 736	}
 737	memcpy(sn, hdev->device_id, sizeof(sn));
 738	spin_unlock_irqrestore(&h->lock, flags);
 739	return snprintf(buf, 16 * 2 + 2,
 740			"%02X%02X%02X%02X%02X%02X%02X%02X"
 741			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
 742			sn[0], sn[1], sn[2], sn[3],
 743			sn[4], sn[5], sn[6], sn[7],
 744			sn[8], sn[9], sn[10], sn[11],
 745			sn[12], sn[13], sn[14], sn[15]);
 746}
 747
 748static ssize_t sas_address_show(struct device *dev,
 749	      struct device_attribute *attr, char *buf)
 750{
 751	struct ctlr_info *h;
 752	struct scsi_device *sdev;
 753	struct hpsa_scsi_dev_t *hdev;
 754	unsigned long flags;
 755	u64 sas_address;
 756
 757	sdev = to_scsi_device(dev);
 758	h = sdev_to_hba(sdev);
 759	spin_lock_irqsave(&h->lock, flags);
 760	hdev = sdev->hostdata;
 761	if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
 762		spin_unlock_irqrestore(&h->lock, flags);
 763		return -ENODEV;
 764	}
 765	sas_address = hdev->sas_address;
 766	spin_unlock_irqrestore(&h->lock, flags);
 767
 768	return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
 769}
 770
 771static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
 772	     struct device_attribute *attr, char *buf)
 773{
 774	struct ctlr_info *h;
 775	struct scsi_device *sdev;
 776	struct hpsa_scsi_dev_t *hdev;
 777	unsigned long flags;
 778	int offload_enabled;
 779
 780	sdev = to_scsi_device(dev);
 781	h = sdev_to_hba(sdev);
 782	spin_lock_irqsave(&h->lock, flags);
 783	hdev = sdev->hostdata;
 784	if (!hdev) {
 785		spin_unlock_irqrestore(&h->lock, flags);
 786		return -ENODEV;
 787	}
 788	offload_enabled = hdev->offload_enabled;
 789	spin_unlock_irqrestore(&h->lock, flags);
 790
 791	if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
 792		return snprintf(buf, 20, "%d\n", offload_enabled);
 793	else
 794		return snprintf(buf, 40, "%s\n",
 795				"Not applicable for a controller");
 796}
 797
 798#define MAX_PATHS 8
 799static ssize_t path_info_show(struct device *dev,
 800	     struct device_attribute *attr, char *buf)
 801{
 802	struct ctlr_info *h;
 803	struct scsi_device *sdev;
 804	struct hpsa_scsi_dev_t *hdev;
 805	unsigned long flags;
 806	int i;
 807	int output_len = 0;
 808	u8 box;
 809	u8 bay;
 810	u8 path_map_index = 0;
 811	char *active;
 812	unsigned char phys_connector[2];
 813
 814	sdev = to_scsi_device(dev);
 815	h = sdev_to_hba(sdev);
 816	spin_lock_irqsave(&h->devlock, flags);
 817	hdev = sdev->hostdata;
 818	if (!hdev) {
 819		spin_unlock_irqrestore(&h->devlock, flags);
 820		return -ENODEV;
 821	}
 822
 823	bay = hdev->bay;
 824	for (i = 0; i < MAX_PATHS; i++) {
 825		path_map_index = 1<<i;
 826		if (i == hdev->active_path_index)
 827			active = "Active";
 828		else if (hdev->path_map & path_map_index)
 829			active = "Inactive";
 830		else
 831			continue;
 832
 833		output_len += scnprintf(buf + output_len,
 834				PAGE_SIZE - output_len,
 835				"[%d:%d:%d:%d] %20.20s ",
 836				h->scsi_host->host_no,
 837				hdev->bus, hdev->target, hdev->lun,
 838				scsi_device_type(hdev->devtype));
 839
 840		if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
 841			output_len += scnprintf(buf + output_len,
 842						PAGE_SIZE - output_len,
 843						"%s\n", active);
 844			continue;
 845		}
 846
 847		box = hdev->box[i];
 848		memcpy(&phys_connector, &hdev->phys_connector[i],
 849			sizeof(phys_connector));
 850		if (phys_connector[0] < '0')
 851			phys_connector[0] = '0';
 852		if (phys_connector[1] < '0')
 853			phys_connector[1] = '0';
 854		output_len += scnprintf(buf + output_len,
 855				PAGE_SIZE - output_len,
 856				"PORT: %.2s ",
 857				phys_connector);
 858		if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
 859			hdev->expose_device) {
 860			if (box == 0 || box == 0xFF) {
 861				output_len += scnprintf(buf + output_len,
 862					PAGE_SIZE - output_len,
 863					"BAY: %hhu %s\n",
 864					bay, active);
 865			} else {
 866				output_len += scnprintf(buf + output_len,
 867					PAGE_SIZE - output_len,
 868					"BOX: %hhu BAY: %hhu %s\n",
 869					box, bay, active);
 870			}
 871		} else if (box != 0 && box != 0xFF) {
 872			output_len += scnprintf(buf + output_len,
 873				PAGE_SIZE - output_len, "BOX: %hhu %s\n",
 874				box, active);
 875		} else
 876			output_len += scnprintf(buf + output_len,
 877				PAGE_SIZE - output_len, "%s\n", active);
 878	}
 879
 880	spin_unlock_irqrestore(&h->devlock, flags);
 881	return output_len;
 882}
 883
 884static ssize_t host_show_ctlr_num(struct device *dev,
 885	struct device_attribute *attr, char *buf)
 886{
 887	struct ctlr_info *h;
 888	struct Scsi_Host *shost = class_to_shost(dev);
 889
 890	h = shost_to_hba(shost);
 891	return snprintf(buf, 20, "%d\n", h->ctlr);
 892}
 893
 894static ssize_t host_show_legacy_board(struct device *dev,
 895	struct device_attribute *attr, char *buf)
 896{
 897	struct ctlr_info *h;
 898	struct Scsi_Host *shost = class_to_shost(dev);
 899
 900	h = shost_to_hba(shost);
 901	return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
 902}
 903
 904static DEVICE_ATTR_RO(raid_level);
 905static DEVICE_ATTR_RO(lunid);
 906static DEVICE_ATTR_RO(unique_id);
 907static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 908static DEVICE_ATTR_RO(sas_address);
 909static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
 910			host_show_hp_ssd_smart_path_enabled, NULL);
 911static DEVICE_ATTR_RO(path_info);
 912static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
 913		host_show_hp_ssd_smart_path_status,
 914		host_store_hp_ssd_smart_path_status);
 915static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
 916			host_store_raid_offload_debug);
 917static DEVICE_ATTR(firmware_revision, S_IRUGO,
 918	host_show_firmware_revision, NULL);
 919static DEVICE_ATTR(commands_outstanding, S_IRUGO,
 920	host_show_commands_outstanding, NULL);
 921static DEVICE_ATTR(transport_mode, S_IRUGO,
 922	host_show_transport_mode, NULL);
 923static DEVICE_ATTR(resettable, S_IRUGO,
 924	host_show_resettable, NULL);
 925static DEVICE_ATTR(lockup_detected, S_IRUGO,
 926	host_show_lockup_detected, NULL);
 927static DEVICE_ATTR(ctlr_num, S_IRUGO,
 928	host_show_ctlr_num, NULL);
 929static DEVICE_ATTR(legacy_board, S_IRUGO,
 930	host_show_legacy_board, NULL);
 931
 932static struct device_attribute *hpsa_sdev_attrs[] = {
 933	&dev_attr_raid_level,
 934	&dev_attr_lunid,
 935	&dev_attr_unique_id,
 936	&dev_attr_hp_ssd_smart_path_enabled,
 937	&dev_attr_path_info,
 938	&dev_attr_sas_address,
 939	NULL,
 940};
 941
 942static struct device_attribute *hpsa_shost_attrs[] = {
 943	&dev_attr_rescan,
 944	&dev_attr_firmware_revision,
 945	&dev_attr_commands_outstanding,
 946	&dev_attr_transport_mode,
 947	&dev_attr_resettable,
 948	&dev_attr_hp_ssd_smart_path_status,
 949	&dev_attr_raid_offload_debug,
 950	&dev_attr_lockup_detected,
 951	&dev_attr_ctlr_num,
 952	&dev_attr_legacy_board,
 
 
 953	NULL,
 954};
 955
 
 
 956#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_DRIVER +\
 957				 HPSA_MAX_CONCURRENT_PASSTHRUS)
 958
 959static struct scsi_host_template hpsa_driver_template = {
 960	.module			= THIS_MODULE,
 961	.name			= HPSA,
 962	.proc_name		= HPSA,
 963	.queuecommand		= hpsa_scsi_queue_command,
 964	.scan_start		= hpsa_scan_start,
 965	.scan_finished		= hpsa_scan_finished,
 966	.change_queue_depth	= hpsa_change_queue_depth,
 967	.this_id		= -1,
 968	.use_clustering		= ENABLE_CLUSTERING,
 969	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
 970	.ioctl			= hpsa_ioctl,
 971	.slave_alloc		= hpsa_slave_alloc,
 972	.slave_configure	= hpsa_slave_configure,
 973	.slave_destroy		= hpsa_slave_destroy,
 974#ifdef CONFIG_COMPAT
 975	.compat_ioctl		= hpsa_compat_ioctl,
 976#endif
 977	.sdev_attrs = hpsa_sdev_attrs,
 978	.shost_attrs = hpsa_shost_attrs,
 979	.max_sectors = 1024,
 980	.no_write_same = 1,
 981};
 982
 983static inline u32 next_command(struct ctlr_info *h, u8 q)
 984{
 985	u32 a;
 986	struct reply_queue_buffer *rq = &h->reply_queue[q];
 987
 988	if (h->transMethod & CFGTBL_Trans_io_accel1)
 989		return h->access.command_completed(h, q);
 990
 991	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
 992		return h->access.command_completed(h, q);
 993
 994	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
 995		a = rq->head[rq->current_entry];
 996		rq->current_entry++;
 997		atomic_dec(&h->commands_outstanding);
 998	} else {
 999		a = FIFO_EMPTY;
1000	}
1001	/* Check for wraparound */
1002	if (rq->current_entry == h->max_commands) {
1003		rq->current_entry = 0;
1004		rq->wraparound ^= 1;
1005	}
1006	return a;
1007}
1008
1009/*
1010 * There are some special bits in the bus address of the
1011 * command that we have to set for the controller to know
1012 * how to process the command:
1013 *
1014 * Normal performant mode:
1015 * bit 0: 1 means performant mode, 0 means simple mode.
1016 * bits 1-3 = block fetch table entry
1017 * bits 4-6 = command type (== 0)
1018 *
1019 * ioaccel1 mode:
1020 * bit 0 = "performant mode" bit.
1021 * bits 1-3 = block fetch table entry
1022 * bits 4-6 = command type (== 110)
1023 * (command type is needed because ioaccel1 mode
1024 * commands are submitted through the same register as normal
1025 * mode commands, so this is how the controller knows whether
1026 * the command is normal mode or ioaccel1 mode.)
1027 *
1028 * ioaccel2 mode:
1029 * bit 0 = "performant mode" bit.
1030 * bits 1-4 = block fetch table entry (note extra bit)
1031 * bits 4-6 = not needed, because ioaccel2 mode has
1032 * a separate special register for submitting commands.
1033 */
1034
1035/*
1036 * set_performant_mode: Modify the tag for cciss performant
1037 * set bit 0 for pull model, bits 3-1 for block fetch
1038 * register number
1039 */
1040#define DEFAULT_REPLY_QUEUE (-1)
1041static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1042					int reply_queue)
1043{
1044	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1045		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1046		if (unlikely(!h->msix_vectors))
1047			return;
1048		c->Header.ReplyQueue = reply_queue;
1049	}
1050}
1051
1052static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1053						struct CommandList *c,
1054						int reply_queue)
1055{
1056	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1057
1058	/*
1059	 * Tell the controller to post the reply to the queue for this
1060	 * processor.  This seems to give the best I/O throughput.
1061	 */
1062	cp->ReplyQueue = reply_queue;
1063	/*
1064	 * Set the bits in the address sent down to include:
1065	 *  - performant mode bit (bit 0)
1066	 *  - pull count (bits 1-3)
1067	 *  - command type (bits 4-6)
1068	 */
1069	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1070					IOACCEL1_BUSADDR_CMDTYPE;
1071}
1072
1073static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1074						struct CommandList *c,
1075						int reply_queue)
1076{
1077	struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1078		&h->ioaccel2_cmd_pool[c->cmdindex];
1079
1080	/* Tell the controller to post the reply to the queue for this
1081	 * processor.  This seems to give the best I/O throughput.
1082	 */
1083	cp->reply_queue = reply_queue;
1084	/* Set the bits in the address sent down to include:
1085	 *  - performant mode bit not used in ioaccel mode 2
1086	 *  - pull count (bits 0-3)
1087	 *  - command type isn't needed for ioaccel2
1088	 */
1089	c->busaddr |= h->ioaccel2_blockFetchTable[0];
1090}
1091
1092static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1093						struct CommandList *c,
1094						int reply_queue)
1095{
1096	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1097
1098	/*
1099	 * Tell the controller to post the reply to the queue for this
1100	 * processor.  This seems to give the best I/O throughput.
1101	 */
1102	cp->reply_queue = reply_queue;
1103	/*
1104	 * Set the bits in the address sent down to include:
1105	 *  - performant mode bit not used in ioaccel mode 2
1106	 *  - pull count (bits 0-3)
1107	 *  - command type isn't needed for ioaccel2
1108	 */
1109	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1110}
1111
1112static int is_firmware_flash_cmd(u8 *cdb)
1113{
1114	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115}
1116
1117/*
1118 * During firmware flash, the heartbeat register may not update as frequently
1119 * as it should.  So we dial down lockup detection during firmware flash. and
1120 * dial it back up when firmware flash completes.
1121 */
1122#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1123#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1124#define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1125static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1126		struct CommandList *c)
1127{
1128	if (!is_firmware_flash_cmd(c->Request.CDB))
1129		return;
1130	atomic_inc(&h->firmware_flash_in_progress);
1131	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1132}
1133
1134static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1135		struct CommandList *c)
1136{
1137	if (is_firmware_flash_cmd(c->Request.CDB) &&
1138		atomic_dec_and_test(&h->firmware_flash_in_progress))
1139		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1140}
1141
1142static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1143	struct CommandList *c, int reply_queue)
1144{
1145	dial_down_lockup_detection_during_fw_flash(h, c);
1146	atomic_inc(&h->commands_outstanding);
 
 
 
 
 
1147
1148	reply_queue = h->reply_map[raw_smp_processor_id()];
1149	switch (c->cmd_type) {
1150	case CMD_IOACCEL1:
1151		set_ioaccel1_performant_mode(h, c, reply_queue);
1152		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1153		break;
1154	case CMD_IOACCEL2:
1155		set_ioaccel2_performant_mode(h, c, reply_queue);
1156		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1157		break;
1158	case IOACCEL2_TMF:
1159		set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1160		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1161		break;
1162	default:
1163		set_performant_mode(h, c, reply_queue);
1164		h->access.submit_command(h, c);
1165	}
1166}
1167
1168static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169{
1170	if (unlikely(hpsa_is_pending_event(c)))
1171		return finish_cmd(c);
1172
1173	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1174}
1175
1176static inline int is_hba_lunid(unsigned char scsi3addr[])
1177{
1178	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1179}
1180
1181static inline int is_scsi_rev_5(struct ctlr_info *h)
1182{
1183	if (!h->hba_inquiry_data)
1184		return 0;
1185	if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186		return 1;
1187	return 0;
1188}
1189
1190static int hpsa_find_target_lun(struct ctlr_info *h,
1191	unsigned char scsi3addr[], int bus, int *target, int *lun)
1192{
1193	/* finds an unused bus, target, lun for a new physical device
1194	 * assumes h->devlock is held
1195	 */
1196	int i, found = 0;
1197	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1198
1199	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1200
1201	for (i = 0; i < h->ndevices; i++) {
1202		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1203			__set_bit(h->dev[i]->target, lun_taken);
1204	}
1205
1206	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1207	if (i < HPSA_MAX_DEVICES) {
1208		/* *bus = 1; */
1209		*target = i;
1210		*lun = 0;
1211		found = 1;
1212	}
1213	return !found;
1214}
1215
1216static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1217	struct hpsa_scsi_dev_t *dev, char *description)
1218{
1219#define LABEL_SIZE 25
1220	char label[LABEL_SIZE];
1221
1222	if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1223		return;
1224
1225	switch (dev->devtype) {
1226	case TYPE_RAID:
1227		snprintf(label, LABEL_SIZE, "controller");
1228		break;
1229	case TYPE_ENCLOSURE:
1230		snprintf(label, LABEL_SIZE, "enclosure");
1231		break;
1232	case TYPE_DISK:
1233	case TYPE_ZBC:
1234		if (dev->external)
1235			snprintf(label, LABEL_SIZE, "external");
1236		else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1237			snprintf(label, LABEL_SIZE, "%s",
1238				raid_label[PHYSICAL_DRIVE]);
1239		else
1240			snprintf(label, LABEL_SIZE, "RAID-%s",
1241				dev->raid_level > RAID_UNKNOWN ? "?" :
1242				raid_label[dev->raid_level]);
1243		break;
1244	case TYPE_ROM:
1245		snprintf(label, LABEL_SIZE, "rom");
1246		break;
1247	case TYPE_TAPE:
1248		snprintf(label, LABEL_SIZE, "tape");
1249		break;
1250	case TYPE_MEDIUM_CHANGER:
1251		snprintf(label, LABEL_SIZE, "changer");
1252		break;
1253	default:
1254		snprintf(label, LABEL_SIZE, "UNKNOWN");
1255		break;
1256	}
1257
1258	dev_printk(level, &h->pdev->dev,
1259			"scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1260			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1261			description,
1262			scsi_device_type(dev->devtype),
1263			dev->vendor,
1264			dev->model,
1265			label,
1266			dev->offload_config ? '+' : '-',
1267			dev->offload_to_be_enabled ? '+' : '-',
1268			dev->expose_device);
1269}
1270
1271/* Add an entry into h->dev[] array. */
1272static int hpsa_scsi_add_entry(struct ctlr_info *h,
1273		struct hpsa_scsi_dev_t *device,
1274		struct hpsa_scsi_dev_t *added[], int *nadded)
1275{
1276	/* assumes h->devlock is held */
1277	int n = h->ndevices;
1278	int i;
1279	unsigned char addr1[8], addr2[8];
1280	struct hpsa_scsi_dev_t *sd;
1281
1282	if (n >= HPSA_MAX_DEVICES) {
1283		dev_err(&h->pdev->dev, "too many devices, some will be "
1284			"inaccessible.\n");
1285		return -1;
1286	}
1287
1288	/* physical devices do not have lun or target assigned until now. */
1289	if (device->lun != -1)
1290		/* Logical device, lun is already assigned. */
1291		goto lun_assigned;
1292
1293	/* If this device a non-zero lun of a multi-lun device
1294	 * byte 4 of the 8-byte LUN addr will contain the logical
1295	 * unit no, zero otherwise.
1296	 */
1297	if (device->scsi3addr[4] == 0) {
1298		/* This is not a non-zero lun of a multi-lun device */
1299		if (hpsa_find_target_lun(h, device->scsi3addr,
1300			device->bus, &device->target, &device->lun) != 0)
1301			return -1;
1302		goto lun_assigned;
1303	}
1304
1305	/* This is a non-zero lun of a multi-lun device.
1306	 * Search through our list and find the device which
1307	 * has the same 8 byte LUN address, excepting byte 4 and 5.
1308	 * Assign the same bus and target for this new LUN.
1309	 * Use the logical unit number from the firmware.
1310	 */
1311	memcpy(addr1, device->scsi3addr, 8);
1312	addr1[4] = 0;
1313	addr1[5] = 0;
1314	for (i = 0; i < n; i++) {
1315		sd = h->dev[i];
1316		memcpy(addr2, sd->scsi3addr, 8);
1317		addr2[4] = 0;
1318		addr2[5] = 0;
1319		/* differ only in byte 4 and 5? */
1320		if (memcmp(addr1, addr2, 8) == 0) {
1321			device->bus = sd->bus;
1322			device->target = sd->target;
1323			device->lun = device->scsi3addr[4];
1324			break;
1325		}
1326	}
1327	if (device->lun == -1) {
1328		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1329			" suspect firmware bug or unsupported hardware "
1330			"configuration.\n");
1331			return -1;
1332	}
1333
1334lun_assigned:
1335
1336	h->dev[n] = device;
1337	h->ndevices++;
1338	added[*nadded] = device;
1339	(*nadded)++;
1340	hpsa_show_dev_msg(KERN_INFO, h, device,
1341		device->expose_device ? "added" : "masked");
1342	return 0;
1343}
1344
1345/*
1346 * Called during a scan operation.
1347 *
1348 * Update an entry in h->dev[] array.
1349 */
1350static void hpsa_scsi_update_entry(struct ctlr_info *h,
1351	int entry, struct hpsa_scsi_dev_t *new_entry)
1352{
1353	/* assumes h->devlock is held */
1354	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1355
1356	/* Raid level changed. */
1357	h->dev[entry]->raid_level = new_entry->raid_level;
1358
1359	/*
1360	 * ioacccel_handle may have changed for a dual domain disk
1361	 */
1362	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1363
1364	/* Raid offload parameters changed.  Careful about the ordering. */
1365	if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1366		/*
1367		 * if drive is newly offload_enabled, we want to copy the
1368		 * raid map data first.  If previously offload_enabled and
1369		 * offload_config were set, raid map data had better be
1370		 * the same as it was before. If raid map data has changed
1371		 * then it had better be the case that
1372		 * h->dev[entry]->offload_enabled is currently 0.
1373		 */
1374		h->dev[entry]->raid_map = new_entry->raid_map;
1375		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1376	}
1377	if (new_entry->offload_to_be_enabled) {
1378		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1379		wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1380	}
1381	h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1382	h->dev[entry]->offload_config = new_entry->offload_config;
1383	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1384	h->dev[entry]->queue_depth = new_entry->queue_depth;
1385
1386	/*
1387	 * We can turn off ioaccel offload now, but need to delay turning
1388	 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1389	 * can't do that until all the devices are updated.
1390	 */
1391	h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1392
1393	/*
1394	 * turn ioaccel off immediately if told to do so.
1395	 */
1396	if (!new_entry->offload_to_be_enabled)
1397		h->dev[entry]->offload_enabled = 0;
1398
1399	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1400}
1401
1402/* Replace an entry from h->dev[] array. */
1403static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1404	int entry, struct hpsa_scsi_dev_t *new_entry,
1405	struct hpsa_scsi_dev_t *added[], int *nadded,
1406	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1407{
1408	/* assumes h->devlock is held */
1409	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1410	removed[*nremoved] = h->dev[entry];
1411	(*nremoved)++;
1412
1413	/*
1414	 * New physical devices won't have target/lun assigned yet
1415	 * so we need to preserve the values in the slot we are replacing.
1416	 */
1417	if (new_entry->target == -1) {
1418		new_entry->target = h->dev[entry]->target;
1419		new_entry->lun = h->dev[entry]->lun;
1420	}
1421
1422	h->dev[entry] = new_entry;
1423	added[*nadded] = new_entry;
1424	(*nadded)++;
1425
1426	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1427}
1428
1429/* Remove an entry from h->dev[] array. */
1430static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1431	struct hpsa_scsi_dev_t *removed[], int *nremoved)
1432{
1433	/* assumes h->devlock is held */
1434	int i;
1435	struct hpsa_scsi_dev_t *sd;
1436
1437	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1438
1439	sd = h->dev[entry];
1440	removed[*nremoved] = h->dev[entry];
1441	(*nremoved)++;
1442
1443	for (i = entry; i < h->ndevices-1; i++)
1444		h->dev[i] = h->dev[i+1];
1445	h->ndevices--;
1446	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1447}
1448
1449#define SCSI3ADDR_EQ(a, b) ( \
1450	(a)[7] == (b)[7] && \
1451	(a)[6] == (b)[6] && \
1452	(a)[5] == (b)[5] && \
1453	(a)[4] == (b)[4] && \
1454	(a)[3] == (b)[3] && \
1455	(a)[2] == (b)[2] && \
1456	(a)[1] == (b)[1] && \
1457	(a)[0] == (b)[0])
1458
1459static void fixup_botched_add(struct ctlr_info *h,
1460	struct hpsa_scsi_dev_t *added)
1461{
1462	/* called when scsi_add_device fails in order to re-adjust
1463	 * h->dev[] to match the mid layer's view.
1464	 */
1465	unsigned long flags;
1466	int i, j;
1467
1468	spin_lock_irqsave(&h->lock, flags);
1469	for (i = 0; i < h->ndevices; i++) {
1470		if (h->dev[i] == added) {
1471			for (j = i; j < h->ndevices-1; j++)
1472				h->dev[j] = h->dev[j+1];
1473			h->ndevices--;
1474			break;
1475		}
1476	}
1477	spin_unlock_irqrestore(&h->lock, flags);
1478	kfree(added);
1479}
1480
1481static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1482	struct hpsa_scsi_dev_t *dev2)
1483{
1484	/* we compare everything except lun and target as these
1485	 * are not yet assigned.  Compare parts likely
1486	 * to differ first
1487	 */
1488	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1489		sizeof(dev1->scsi3addr)) != 0)
1490		return 0;
1491	if (memcmp(dev1->device_id, dev2->device_id,
1492		sizeof(dev1->device_id)) != 0)
1493		return 0;
1494	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1495		return 0;
1496	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1497		return 0;
1498	if (dev1->devtype != dev2->devtype)
1499		return 0;
1500	if (dev1->bus != dev2->bus)
1501		return 0;
1502	return 1;
1503}
1504
1505static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1506	struct hpsa_scsi_dev_t *dev2)
1507{
1508	/* Device attributes that can change, but don't mean
1509	 * that the device is a different device, nor that the OS
1510	 * needs to be told anything about the change.
1511	 */
1512	if (dev1->raid_level != dev2->raid_level)
1513		return 1;
1514	if (dev1->offload_config != dev2->offload_config)
1515		return 1;
1516	if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1517		return 1;
1518	if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1519		if (dev1->queue_depth != dev2->queue_depth)
1520			return 1;
1521	/*
1522	 * This can happen for dual domain devices. An active
1523	 * path change causes the ioaccel handle to change
1524	 *
1525	 * for example note the handle differences between p0 and p1
1526	 * Device                    WWN               ,WWN hash,Handle
1527	 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1528	 *	p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1529	 */
1530	if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531		return 1;
1532	return 0;
1533}
1534
1535/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1536 * and return needle location in *index.  If scsi3addr matches, but not
1537 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1538 * location in *index.
1539 * In the case of a minor device attribute change, such as RAID level, just
1540 * return DEVICE_UPDATED, along with the updated device's location in index.
1541 * If needle not found, return DEVICE_NOT_FOUND.
1542 */
1543static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1544	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1545	int *index)
1546{
1547	int i;
1548#define DEVICE_NOT_FOUND 0
1549#define DEVICE_CHANGED 1
1550#define DEVICE_SAME 2
1551#define DEVICE_UPDATED 3
1552	if (needle == NULL)
1553		return DEVICE_NOT_FOUND;
1554
1555	for (i = 0; i < haystack_size; i++) {
1556		if (haystack[i] == NULL) /* previously removed. */
1557			continue;
1558		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1559			*index = i;
1560			if (device_is_the_same(needle, haystack[i])) {
1561				if (device_updated(needle, haystack[i]))
1562					return DEVICE_UPDATED;
1563				return DEVICE_SAME;
1564			} else {
1565				/* Keep offline devices offline */
1566				if (needle->volume_offline)
1567					return DEVICE_NOT_FOUND;
1568				return DEVICE_CHANGED;
1569			}
1570		}
1571	}
1572	*index = -1;
1573	return DEVICE_NOT_FOUND;
1574}
1575
1576static void hpsa_monitor_offline_device(struct ctlr_info *h,
1577					unsigned char scsi3addr[])
1578{
1579	struct offline_device_entry *device;
1580	unsigned long flags;
1581
1582	/* Check to see if device is already on the list */
1583	spin_lock_irqsave(&h->offline_device_lock, flags);
1584	list_for_each_entry(device, &h->offline_device_list, offline_list) {
1585		if (memcmp(device->scsi3addr, scsi3addr,
1586			sizeof(device->scsi3addr)) == 0) {
1587			spin_unlock_irqrestore(&h->offline_device_lock, flags);
1588			return;
1589		}
1590	}
1591	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1592
1593	/* Device is not on the list, add it. */
1594	device = kmalloc(sizeof(*device), GFP_KERNEL);
1595	if (!device)
1596		return;
1597
1598	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1599	spin_lock_irqsave(&h->offline_device_lock, flags);
1600	list_add_tail(&device->offline_list, &h->offline_device_list);
1601	spin_unlock_irqrestore(&h->offline_device_lock, flags);
1602}
1603
1604/* Print a message explaining various offline volume states */
1605static void hpsa_show_volume_status(struct ctlr_info *h,
1606	struct hpsa_scsi_dev_t *sd)
1607{
1608	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1609		dev_info(&h->pdev->dev,
1610			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1611			h->scsi_host->host_no,
1612			sd->bus, sd->target, sd->lun);
1613	switch (sd->volume_offline) {
1614	case HPSA_LV_OK:
1615		break;
1616	case HPSA_LV_UNDERGOING_ERASE:
1617		dev_info(&h->pdev->dev,
1618			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1619			h->scsi_host->host_no,
1620			sd->bus, sd->target, sd->lun);
1621		break;
1622	case HPSA_LV_NOT_AVAILABLE:
1623		dev_info(&h->pdev->dev,
1624			"C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1625			h->scsi_host->host_no,
1626			sd->bus, sd->target, sd->lun);
1627		break;
1628	case HPSA_LV_UNDERGOING_RPI:
1629		dev_info(&h->pdev->dev,
1630			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1631			h->scsi_host->host_no,
1632			sd->bus, sd->target, sd->lun);
1633		break;
1634	case HPSA_LV_PENDING_RPI:
1635		dev_info(&h->pdev->dev,
1636			"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1637			h->scsi_host->host_no,
1638			sd->bus, sd->target, sd->lun);
1639		break;
1640	case HPSA_LV_ENCRYPTED_NO_KEY:
1641		dev_info(&h->pdev->dev,
1642			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1643			h->scsi_host->host_no,
1644			sd->bus, sd->target, sd->lun);
1645		break;
1646	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1647		dev_info(&h->pdev->dev,
1648			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1649			h->scsi_host->host_no,
1650			sd->bus, sd->target, sd->lun);
1651		break;
1652	case HPSA_LV_UNDERGOING_ENCRYPTION:
1653		dev_info(&h->pdev->dev,
1654			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1655			h->scsi_host->host_no,
1656			sd->bus, sd->target, sd->lun);
1657		break;
1658	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1659		dev_info(&h->pdev->dev,
1660			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1661			h->scsi_host->host_no,
1662			sd->bus, sd->target, sd->lun);
1663		break;
1664	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1665		dev_info(&h->pdev->dev,
1666			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1667			h->scsi_host->host_no,
1668			sd->bus, sd->target, sd->lun);
1669		break;
1670	case HPSA_LV_PENDING_ENCRYPTION:
1671		dev_info(&h->pdev->dev,
1672			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1673			h->scsi_host->host_no,
1674			sd->bus, sd->target, sd->lun);
1675		break;
1676	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1677		dev_info(&h->pdev->dev,
1678			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1679			h->scsi_host->host_no,
1680			sd->bus, sd->target, sd->lun);
1681		break;
1682	}
1683}
1684
1685/*
1686 * Figure the list of physical drive pointers for a logical drive with
1687 * raid offload configured.
1688 */
1689static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1690				struct hpsa_scsi_dev_t *dev[], int ndevices,
1691				struct hpsa_scsi_dev_t *logical_drive)
1692{
1693	struct raid_map_data *map = &logical_drive->raid_map;
1694	struct raid_map_disk_data *dd = &map->data[0];
1695	int i, j;
1696	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1697				le16_to_cpu(map->metadata_disks_per_row);
1698	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1699				le16_to_cpu(map->layout_map_count) *
1700				total_disks_per_row;
1701	int nphys_disk = le16_to_cpu(map->layout_map_count) *
1702				total_disks_per_row;
1703	int qdepth;
1704
1705	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1706		nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1707
1708	logical_drive->nphysical_disks = nraid_map_entries;
1709
1710	qdepth = 0;
1711	for (i = 0; i < nraid_map_entries; i++) {
1712		logical_drive->phys_disk[i] = NULL;
1713		if (!logical_drive->offload_config)
1714			continue;
1715		for (j = 0; j < ndevices; j++) {
1716			if (dev[j] == NULL)
1717				continue;
1718			if (dev[j]->devtype != TYPE_DISK &&
1719			    dev[j]->devtype != TYPE_ZBC)
1720				continue;
1721			if (is_logical_device(dev[j]))
1722				continue;
1723			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1724				continue;
1725
1726			logical_drive->phys_disk[i] = dev[j];
1727			if (i < nphys_disk)
1728				qdepth = min(h->nr_cmds, qdepth +
1729				    logical_drive->phys_disk[i]->queue_depth);
1730			break;
1731		}
1732
1733		/*
1734		 * This can happen if a physical drive is removed and
1735		 * the logical drive is degraded.  In that case, the RAID
1736		 * map data will refer to a physical disk which isn't actually
1737		 * present.  And in that case offload_enabled should already
1738		 * be 0, but we'll turn it off here just in case
1739		 */
1740		if (!logical_drive->phys_disk[i]) {
1741			dev_warn(&h->pdev->dev,
1742				"%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1743				__func__,
1744				h->scsi_host->host_no, logical_drive->bus,
1745				logical_drive->target, logical_drive->lun);
1746			logical_drive->offload_enabled = 0;
1747			logical_drive->offload_to_be_enabled = 0;
1748			logical_drive->queue_depth = 8;
1749		}
1750	}
1751	if (nraid_map_entries)
1752		/*
1753		 * This is correct for reads, too high for full stripe writes,
1754		 * way too high for partial stripe writes
1755		 */
1756		logical_drive->queue_depth = qdepth;
1757	else {
1758		if (logical_drive->external)
1759			logical_drive->queue_depth = EXTERNAL_QD;
1760		else
1761			logical_drive->queue_depth = h->nr_cmds;
1762	}
1763}
1764
1765static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1766				struct hpsa_scsi_dev_t *dev[], int ndevices)
1767{
1768	int i;
1769
1770	for (i = 0; i < ndevices; i++) {
1771		if (dev[i] == NULL)
1772			continue;
1773		if (dev[i]->devtype != TYPE_DISK &&
1774		    dev[i]->devtype != TYPE_ZBC)
1775			continue;
1776		if (!is_logical_device(dev[i]))
1777			continue;
1778
1779		/*
1780		 * If offload is currently enabled, the RAID map and
1781		 * phys_disk[] assignment *better* not be changing
1782		 * because we would be changing ioaccel phsy_disk[] pointers
1783		 * on a ioaccel volume processing I/O requests.
1784		 *
1785		 * If an ioaccel volume status changed, initially because it was
1786		 * re-configured and thus underwent a transformation, or
1787		 * a drive failed, we would have received a state change
1788		 * request and ioaccel should have been turned off. When the
1789		 * transformation completes, we get another state change
1790		 * request to turn ioaccel back on. In this case, we need
1791		 * to update the ioaccel information.
1792		 *
1793		 * Thus: If it is not currently enabled, but will be after
1794		 * the scan completes, make sure the ioaccel pointers
1795		 * are up to date.
1796		 */
1797
1798		if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1799			hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1800	}
1801}
1802
1803static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1804{
1805	int rc = 0;
1806
1807	if (!h->scsi_host)
1808		return 1;
1809
1810	if (is_logical_device(device)) /* RAID */
1811		rc = scsi_add_device(h->scsi_host, device->bus,
1812					device->target, device->lun);
1813	else /* HBA */
1814		rc = hpsa_add_sas_device(h->sas_host, device);
1815
1816	return rc;
1817}
1818
1819static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1820						struct hpsa_scsi_dev_t *dev)
1821{
1822	int i;
1823	int count = 0;
1824
1825	for (i = 0; i < h->nr_cmds; i++) {
1826		struct CommandList *c = h->cmd_pool + i;
1827		int refcount = atomic_inc_return(&c->refcount);
1828
1829		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1830				dev->scsi3addr)) {
1831			unsigned long flags;
1832
1833			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
1834			if (!hpsa_is_cmd_idle(c))
1835				++count;
1836			spin_unlock_irqrestore(&h->lock, flags);
1837		}
1838
1839		cmd_free(h, c);
1840	}
1841
1842	return count;
1843}
1844
 
1845static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1846						struct hpsa_scsi_dev_t *device)
1847{
1848	int cmds = 0;
1849	int waits = 0;
 
 
 
 
1850
1851	while (1) {
1852		cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1853		if (cmds == 0)
1854			break;
1855		if (++waits > 20)
1856			break;
1857		msleep(1000);
1858	}
1859
1860	if (waits > 20)
1861		dev_warn(&h->pdev->dev,
1862			"%s: removing device with %d outstanding commands!\n",
1863			__func__, cmds);
 
 
 
1864}
1865
1866static void hpsa_remove_device(struct ctlr_info *h,
1867			struct hpsa_scsi_dev_t *device)
1868{
1869	struct scsi_device *sdev = NULL;
1870
1871	if (!h->scsi_host)
1872		return;
1873
1874	/*
1875	 * Allow for commands to drain
1876	 */
1877	device->removed = 1;
1878	hpsa_wait_for_outstanding_commands_for_dev(h, device);
1879
1880	if (is_logical_device(device)) { /* RAID */
1881		sdev = scsi_device_lookup(h->scsi_host, device->bus,
1882						device->target, device->lun);
1883		if (sdev) {
1884			scsi_remove_device(sdev);
1885			scsi_device_put(sdev);
1886		} else {
1887			/*
1888			 * We don't expect to get here.  Future commands
1889			 * to this device will get a selection timeout as
1890			 * if the device were gone.
1891			 */
1892			hpsa_show_dev_msg(KERN_WARNING, h, device,
1893					"didn't find device for removal.");
1894		}
1895	} else { /* HBA */
1896
1897		hpsa_remove_sas_device(device);
1898	}
1899}
1900
1901static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1902	struct hpsa_scsi_dev_t *sd[], int nsds)
1903{
1904	/* sd contains scsi3 addresses and devtypes, and inquiry
1905	 * data.  This function takes what's in sd to be the current
1906	 * reality and updates h->dev[] to reflect that reality.
1907	 */
1908	int i, entry, device_change, changes = 0;
1909	struct hpsa_scsi_dev_t *csd;
1910	unsigned long flags;
1911	struct hpsa_scsi_dev_t **added, **removed;
1912	int nadded, nremoved;
1913
1914	/*
1915	 * A reset can cause a device status to change
1916	 * re-schedule the scan to see what happened.
1917	 */
1918	spin_lock_irqsave(&h->reset_lock, flags);
1919	if (h->reset_in_progress) {
1920		h->drv_req_rescan = 1;
1921		spin_unlock_irqrestore(&h->reset_lock, flags);
1922		return;
1923	}
1924	spin_unlock_irqrestore(&h->reset_lock, flags);
1925
1926	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1927	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1928
1929	if (!added || !removed) {
1930		dev_warn(&h->pdev->dev, "out of memory in "
1931			"adjust_hpsa_scsi_table\n");
1932		goto free_and_out;
1933	}
1934
1935	spin_lock_irqsave(&h->devlock, flags);
1936
1937	/* find any devices in h->dev[] that are not in
1938	 * sd[] and remove them from h->dev[], and for any
1939	 * devices which have changed, remove the old device
1940	 * info and add the new device info.
1941	 * If minor device attributes change, just update
1942	 * the existing device structure.
1943	 */
1944	i = 0;
1945	nremoved = 0;
1946	nadded = 0;
1947	while (i < h->ndevices) {
1948		csd = h->dev[i];
1949		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1950		if (device_change == DEVICE_NOT_FOUND) {
1951			changes++;
1952			hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1953			continue; /* remove ^^^, hence i not incremented */
1954		} else if (device_change == DEVICE_CHANGED) {
1955			changes++;
1956			hpsa_scsi_replace_entry(h, i, sd[entry],
1957				added, &nadded, removed, &nremoved);
1958			/* Set it to NULL to prevent it from being freed
1959			 * at the bottom of hpsa_update_scsi_devices()
1960			 */
1961			sd[entry] = NULL;
1962		} else if (device_change == DEVICE_UPDATED) {
1963			hpsa_scsi_update_entry(h, i, sd[entry]);
1964		}
1965		i++;
1966	}
1967
1968	/* Now, make sure every device listed in sd[] is also
1969	 * listed in h->dev[], adding them if they aren't found
1970	 */
1971
1972	for (i = 0; i < nsds; i++) {
1973		if (!sd[i]) /* if already added above. */
1974			continue;
1975
1976		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1977		 * as the SCSI mid-layer does not handle such devices well.
1978		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1979		 * at 160Hz, and prevents the system from coming up.
1980		 */
1981		if (sd[i]->volume_offline) {
1982			hpsa_show_volume_status(h, sd[i]);
1983			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1984			continue;
1985		}
1986
1987		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1988					h->ndevices, &entry);
1989		if (device_change == DEVICE_NOT_FOUND) {
1990			changes++;
1991			if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1992				break;
1993			sd[i] = NULL; /* prevent from being freed later. */
1994		} else if (device_change == DEVICE_CHANGED) {
1995			/* should never happen... */
1996			changes++;
1997			dev_warn(&h->pdev->dev,
1998				"device unexpectedly changed.\n");
1999			/* but if it does happen, we just ignore that device */
2000		}
2001	}
2002	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2003
2004	/*
2005	 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2006	 * any logical drives that need it enabled.
2007	 *
2008	 * The raid map should be current by now.
2009	 *
2010	 * We are updating the device list used for I/O requests.
2011	 */
2012	for (i = 0; i < h->ndevices; i++) {
2013		if (h->dev[i] == NULL)
2014			continue;
2015		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2016	}
2017
2018	spin_unlock_irqrestore(&h->devlock, flags);
2019
2020	/* Monitor devices which are in one of several NOT READY states to be
2021	 * brought online later. This must be done without holding h->devlock,
2022	 * so don't touch h->dev[]
2023	 */
2024	for (i = 0; i < nsds; i++) {
2025		if (!sd[i]) /* if already added above. */
2026			continue;
2027		if (sd[i]->volume_offline)
2028			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2029	}
2030
2031	/* Don't notify scsi mid layer of any changes the first time through
2032	 * (or if there are no changes) scsi_scan_host will do it later the
2033	 * first time through.
2034	 */
2035	if (!changes)
2036		goto free_and_out;
2037
2038	/* Notify scsi mid layer of any removed devices */
2039	for (i = 0; i < nremoved; i++) {
2040		if (removed[i] == NULL)
2041			continue;
2042		if (removed[i]->expose_device)
2043			hpsa_remove_device(h, removed[i]);
2044		kfree(removed[i]);
2045		removed[i] = NULL;
2046	}
2047
2048	/* Notify scsi mid layer of any added devices */
2049	for (i = 0; i < nadded; i++) {
2050		int rc = 0;
2051
2052		if (added[i] == NULL)
2053			continue;
2054		if (!(added[i]->expose_device))
2055			continue;
2056		rc = hpsa_add_device(h, added[i]);
2057		if (!rc)
2058			continue;
2059		dev_warn(&h->pdev->dev,
2060			"addition failed %d, device not added.", rc);
2061		/* now we have to remove it from h->dev,
2062		 * since it didn't get added to scsi mid layer
2063		 */
2064		fixup_botched_add(h, added[i]);
2065		h->drv_req_rescan = 1;
2066	}
2067
2068free_and_out:
2069	kfree(added);
2070	kfree(removed);
2071}
2072
2073/*
2074 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2075 * Assume's h->devlock is held.
2076 */
2077static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2078	int bus, int target, int lun)
2079{
2080	int i;
2081	struct hpsa_scsi_dev_t *sd;
2082
2083	for (i = 0; i < h->ndevices; i++) {
2084		sd = h->dev[i];
2085		if (sd->bus == bus && sd->target == target && sd->lun == lun)
2086			return sd;
2087	}
2088	return NULL;
2089}
2090
2091static int hpsa_slave_alloc(struct scsi_device *sdev)
2092{
2093	struct hpsa_scsi_dev_t *sd = NULL;
2094	unsigned long flags;
2095	struct ctlr_info *h;
2096
2097	h = sdev_to_hba(sdev);
2098	spin_lock_irqsave(&h->devlock, flags);
2099	if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2100		struct scsi_target *starget;
2101		struct sas_rphy *rphy;
2102
2103		starget = scsi_target(sdev);
2104		rphy = target_to_rphy(starget);
2105		sd = hpsa_find_device_by_sas_rphy(h, rphy);
2106		if (sd) {
2107			sd->target = sdev_id(sdev);
2108			sd->lun = sdev->lun;
2109		}
2110	}
2111	if (!sd)
2112		sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2113					sdev_id(sdev), sdev->lun);
2114
2115	if (sd && sd->expose_device) {
2116		atomic_set(&sd->ioaccel_cmds_out, 0);
2117		sdev->hostdata = sd;
2118	} else
2119		sdev->hostdata = NULL;
2120	spin_unlock_irqrestore(&h->devlock, flags);
2121	return 0;
2122}
2123
2124/* configure scsi device based on internal per-device structure */
 
2125static int hpsa_slave_configure(struct scsi_device *sdev)
2126{
2127	struct hpsa_scsi_dev_t *sd;
2128	int queue_depth;
2129
2130	sd = sdev->hostdata;
2131	sdev->no_uld_attach = !sd || !sd->expose_device;
2132
2133	if (sd) {
2134		if (sd->external)
 
 
 
2135			queue_depth = EXTERNAL_QD;
2136		else
2137			queue_depth = sd->queue_depth != 0 ?
2138					sd->queue_depth : sdev->host->can_queue;
2139	} else
 
 
 
 
 
2140		queue_depth = sdev->host->can_queue;
 
2141
2142	scsi_change_queue_depth(sdev, queue_depth);
2143
2144	return 0;
2145}
2146
2147static void hpsa_slave_destroy(struct scsi_device *sdev)
2148{
2149	/* nothing to do. */
 
 
 
 
 
2150}
2151
2152static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2153{
2154	int i;
2155
2156	if (!h->ioaccel2_cmd_sg_list)
2157		return;
2158	for (i = 0; i < h->nr_cmds; i++) {
2159		kfree(h->ioaccel2_cmd_sg_list[i]);
2160		h->ioaccel2_cmd_sg_list[i] = NULL;
2161	}
2162	kfree(h->ioaccel2_cmd_sg_list);
2163	h->ioaccel2_cmd_sg_list = NULL;
2164}
2165
2166static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2167{
2168	int i;
2169
2170	if (h->chainsize <= 0)
2171		return 0;
2172
2173	h->ioaccel2_cmd_sg_list =
2174		kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2175					GFP_KERNEL);
2176	if (!h->ioaccel2_cmd_sg_list)
2177		return -ENOMEM;
2178	for (i = 0; i < h->nr_cmds; i++) {
2179		h->ioaccel2_cmd_sg_list[i] =
2180			kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2181					h->maxsgentries, GFP_KERNEL);
 
2182		if (!h->ioaccel2_cmd_sg_list[i])
2183			goto clean;
2184	}
2185	return 0;
2186
2187clean:
2188	hpsa_free_ioaccel2_sg_chain_blocks(h);
2189	return -ENOMEM;
2190}
2191
2192static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2193{
2194	int i;
2195
2196	if (!h->cmd_sg_list)
2197		return;
2198	for (i = 0; i < h->nr_cmds; i++) {
2199		kfree(h->cmd_sg_list[i]);
2200		h->cmd_sg_list[i] = NULL;
2201	}
2202	kfree(h->cmd_sg_list);
2203	h->cmd_sg_list = NULL;
2204}
2205
2206static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2207{
2208	int i;
2209
2210	if (h->chainsize <= 0)
2211		return 0;
2212
2213	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2214				GFP_KERNEL);
2215	if (!h->cmd_sg_list)
2216		return -ENOMEM;
2217
2218	for (i = 0; i < h->nr_cmds; i++) {
2219		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2220						h->chainsize, GFP_KERNEL);
 
2221		if (!h->cmd_sg_list[i])
2222			goto clean;
2223
2224	}
2225	return 0;
2226
2227clean:
2228	hpsa_free_sg_chain_blocks(h);
2229	return -ENOMEM;
2230}
2231
2232static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2233	struct io_accel2_cmd *cp, struct CommandList *c)
2234{
2235	struct ioaccel2_sg_element *chain_block;
2236	u64 temp64;
2237	u32 chain_size;
2238
2239	chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2240	chain_size = le32_to_cpu(cp->sg[0].length);
2241	temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2242				PCI_DMA_TODEVICE);
2243	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2244		/* prevent subsequent unmapping */
2245		cp->sg->address = 0;
2246		return -1;
2247	}
2248	cp->sg->address = cpu_to_le64(temp64);
2249	return 0;
2250}
2251
2252static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2253	struct io_accel2_cmd *cp)
2254{
2255	struct ioaccel2_sg_element *chain_sg;
2256	u64 temp64;
2257	u32 chain_size;
2258
2259	chain_sg = cp->sg;
2260	temp64 = le64_to_cpu(chain_sg->address);
2261	chain_size = le32_to_cpu(cp->sg[0].length);
2262	pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2263}
2264
2265static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2266	struct CommandList *c)
2267{
2268	struct SGDescriptor *chain_sg, *chain_block;
2269	u64 temp64;
2270	u32 chain_len;
2271
2272	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2273	chain_block = h->cmd_sg_list[c->cmdindex];
2274	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2275	chain_len = sizeof(*chain_sg) *
2276		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2277	chain_sg->Len = cpu_to_le32(chain_len);
2278	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2279				PCI_DMA_TODEVICE);
2280	if (dma_mapping_error(&h->pdev->dev, temp64)) {
2281		/* prevent subsequent unmapping */
2282		chain_sg->Addr = cpu_to_le64(0);
2283		return -1;
2284	}
2285	chain_sg->Addr = cpu_to_le64(temp64);
2286	return 0;
2287}
2288
2289static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2290	struct CommandList *c)
2291{
2292	struct SGDescriptor *chain_sg;
2293
2294	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2295		return;
2296
2297	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2298	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2299			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2300}
2301
2302
2303/* Decode the various types of errors on ioaccel2 path.
2304 * Return 1 for any error that should generate a RAID path retry.
2305 * Return 0 for errors that don't require a RAID path retry.
2306 */
2307static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2308					struct CommandList *c,
2309					struct scsi_cmnd *cmd,
2310					struct io_accel2_cmd *c2,
2311					struct hpsa_scsi_dev_t *dev)
2312{
2313	int data_len;
2314	int retry = 0;
2315	u32 ioaccel2_resid = 0;
2316
2317	switch (c2->error_data.serv_response) {
2318	case IOACCEL2_SERV_RESPONSE_COMPLETE:
2319		switch (c2->error_data.status) {
2320		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
 
 
2321			break;
2322		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2323			cmd->result |= SAM_STAT_CHECK_CONDITION;
2324			if (c2->error_data.data_present !=
2325					IOACCEL2_SENSE_DATA_PRESENT) {
2326				memset(cmd->sense_buffer, 0,
2327					SCSI_SENSE_BUFFERSIZE);
2328				break;
2329			}
2330			/* copy the sense data */
2331			data_len = c2->error_data.sense_data_len;
2332			if (data_len > SCSI_SENSE_BUFFERSIZE)
2333				data_len = SCSI_SENSE_BUFFERSIZE;
2334			if (data_len > sizeof(c2->error_data.sense_data_buff))
2335				data_len =
2336					sizeof(c2->error_data.sense_data_buff);
2337			memcpy(cmd->sense_buffer,
2338				c2->error_data.sense_data_buff, data_len);
2339			retry = 1;
2340			break;
2341		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2342			retry = 1;
2343			break;
2344		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2345			retry = 1;
2346			break;
2347		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2348			retry = 1;
2349			break;
2350		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2351			retry = 1;
2352			break;
2353		default:
2354			retry = 1;
2355			break;
2356		}
2357		break;
2358	case IOACCEL2_SERV_RESPONSE_FAILURE:
2359		switch (c2->error_data.status) {
2360		case IOACCEL2_STATUS_SR_IO_ERROR:
2361		case IOACCEL2_STATUS_SR_IO_ABORTED:
2362		case IOACCEL2_STATUS_SR_OVERRUN:
2363			retry = 1;
2364			break;
2365		case IOACCEL2_STATUS_SR_UNDERRUN:
2366			cmd->result = (DID_OK << 16);		/* host byte */
2367			cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
2368			ioaccel2_resid = get_unaligned_le32(
2369						&c2->error_data.resid_cnt[0]);
2370			scsi_set_resid(cmd, ioaccel2_resid);
2371			break;
2372		case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2373		case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2374		case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2375			/*
2376			 * Did an HBA disk disappear? We will eventually
2377			 * get a state change event from the controller but
2378			 * in the meantime, we need to tell the OS that the
2379			 * HBA disk is no longer there and stop I/O
2380			 * from going down. This allows the potential re-insert
2381			 * of the disk to get the same device node.
2382			 */
2383			if (dev->physical_device && dev->expose_device) {
2384				cmd->result = DID_NO_CONNECT << 16;
2385				dev->removed = 1;
2386				h->drv_req_rescan = 1;
2387				dev_warn(&h->pdev->dev,
2388					"%s: device is gone!\n", __func__);
2389			} else
2390				/*
2391				 * Retry by sending down the RAID path.
2392				 * We will get an event from ctlr to
2393				 * trigger rescan regardless.
2394				 */
2395				retry = 1;
2396			break;
2397		default:
2398			retry = 1;
2399		}
2400		break;
2401	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2402		break;
2403	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2404		break;
2405	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2406		retry = 1;
2407		break;
2408	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2409		break;
2410	default:
2411		retry = 1;
2412		break;
2413	}
2414
 
 
 
2415	return retry;	/* retry on raid path? */
2416}
2417
2418static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2419		struct CommandList *c)
2420{
2421	bool do_wake = false;
2422
2423	/*
2424	 * Reset c->scsi_cmd here so that the reset handler will know
2425	 * this command has completed.  Then, check to see if the handler is
2426	 * waiting for this command, and, if so, wake it.
2427	 */
2428	c->scsi_cmd = SCSI_CMD_IDLE;
2429	mb();	/* Declare command idle before checking for pending events. */
2430	if (c->reset_pending) {
2431		unsigned long flags;
2432		struct hpsa_scsi_dev_t *dev;
2433
2434		/*
2435		 * There appears to be a reset pending; lock the lock and
2436		 * reconfirm.  If so, then decrement the count of outstanding
2437		 * commands and wake the reset command if this is the last one.
2438		 */
2439		spin_lock_irqsave(&h->lock, flags);
2440		dev = c->reset_pending;		/* Re-fetch under the lock. */
2441		if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2442			do_wake = true;
2443		c->reset_pending = NULL;
2444		spin_unlock_irqrestore(&h->lock, flags);
2445	}
2446
2447	if (do_wake)
2448		wake_up_all(&h->event_sync_wait_queue);
2449}
2450
2451static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2452				      struct CommandList *c)
2453{
2454	hpsa_cmd_resolve_events(h, c);
2455	cmd_tagged_free(h, c);
2456}
2457
2458static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2459		struct CommandList *c, struct scsi_cmnd *cmd)
2460{
2461	hpsa_cmd_resolve_and_free(h, c);
2462	if (cmd && cmd->scsi_done)
2463		cmd->scsi_done(cmd);
2464}
2465
2466static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2467{
2468	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2469	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2470}
2471
2472static void process_ioaccel2_completion(struct ctlr_info *h,
2473		struct CommandList *c, struct scsi_cmnd *cmd,
2474		struct hpsa_scsi_dev_t *dev)
2475{
2476	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2477
2478	/* check for good status */
2479	if (likely(c2->error_data.serv_response == 0 &&
2480			c2->error_data.status == 0))
 
2481		return hpsa_cmd_free_and_done(h, c, cmd);
 
2482
2483	/*
2484	 * Any RAID offload error results in retry which will use
2485	 * the normal I/O path so the controller can handle whatever is
2486	 * wrong.
2487	 */
2488	if (is_logical_device(dev) &&
2489		c2->error_data.serv_response ==
2490			IOACCEL2_SERV_RESPONSE_FAILURE) {
2491		if (c2->error_data.status ==
2492			IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2493			dev->offload_enabled = 0;
2494			dev->offload_to_be_enabled = 0;
 
 
 
 
2495		}
2496
2497		return hpsa_retry_cmd(h, c);
2498	}
2499
2500	if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2501		return hpsa_retry_cmd(h, c);
2502
2503	return hpsa_cmd_free_and_done(h, c, cmd);
2504}
2505
2506/* Returns 0 on success, < 0 otherwise. */
2507static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2508					struct CommandList *cp)
2509{
2510	u8 tmf_status = cp->err_info->ScsiStatus;
2511
2512	switch (tmf_status) {
2513	case CISS_TMF_COMPLETE:
2514		/*
2515		 * CISS_TMF_COMPLETE never happens, instead,
2516		 * ei->CommandStatus == 0 for this case.
2517		 */
2518	case CISS_TMF_SUCCESS:
2519		return 0;
2520	case CISS_TMF_INVALID_FRAME:
2521	case CISS_TMF_NOT_SUPPORTED:
2522	case CISS_TMF_FAILED:
2523	case CISS_TMF_WRONG_LUN:
2524	case CISS_TMF_OVERLAPPED_TAG:
2525		break;
2526	default:
2527		dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2528				tmf_status);
2529		break;
2530	}
2531	return -tmf_status;
2532}
2533
2534static void complete_scsi_command(struct CommandList *cp)
2535{
2536	struct scsi_cmnd *cmd;
2537	struct ctlr_info *h;
2538	struct ErrorInfo *ei;
2539	struct hpsa_scsi_dev_t *dev;
2540	struct io_accel2_cmd *c2;
2541
2542	u8 sense_key;
2543	u8 asc;      /* additional sense code */
2544	u8 ascq;     /* additional sense code qualifier */
2545	unsigned long sense_data_size;
2546
2547	ei = cp->err_info;
2548	cmd = cp->scsi_cmd;
2549	h = cp->h;
2550
2551	if (!cmd->device) {
2552		cmd->result = DID_NO_CONNECT << 16;
2553		return hpsa_cmd_free_and_done(h, cp, cmd);
2554	}
2555
2556	dev = cmd->device->hostdata;
2557	if (!dev) {
2558		cmd->result = DID_NO_CONNECT << 16;
2559		return hpsa_cmd_free_and_done(h, cp, cmd);
2560	}
2561	c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2562
2563	scsi_dma_unmap(cmd); /* undo the DMA mappings */
2564	if ((cp->cmd_type == CMD_SCSI) &&
2565		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2566		hpsa_unmap_sg_chain_block(h, cp);
2567
2568	if ((cp->cmd_type == CMD_IOACCEL2) &&
2569		(c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2570		hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2571
2572	cmd->result = (DID_OK << 16); 		/* host byte */
2573	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
 
 
 
 
 
2574
2575	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2576		if (dev->physical_device && dev->expose_device &&
2577			dev->removed) {
2578			cmd->result = DID_NO_CONNECT << 16;
2579			return hpsa_cmd_free_and_done(h, cp, cmd);
2580		}
2581		if (likely(cp->phys_disk != NULL))
2582			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2583	}
2584
2585	/*
2586	 * We check for lockup status here as it may be set for
2587	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2588	 * fail_all_oustanding_cmds()
2589	 */
2590	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2591		/* DID_NO_CONNECT will prevent a retry */
2592		cmd->result = DID_NO_CONNECT << 16;
2593		return hpsa_cmd_free_and_done(h, cp, cmd);
2594	}
2595
2596	if ((unlikely(hpsa_is_pending_event(cp))))
2597		if (cp->reset_pending)
2598			return hpsa_cmd_free_and_done(h, cp, cmd);
2599
2600	if (cp->cmd_type == CMD_IOACCEL2)
2601		return process_ioaccel2_completion(h, cp, cmd, dev);
2602
2603	scsi_set_resid(cmd, ei->ResidualCnt);
2604	if (ei->CommandStatus == 0)
2605		return hpsa_cmd_free_and_done(h, cp, cmd);
2606
2607	/* For I/O accelerator commands, copy over some fields to the normal
2608	 * CISS header used below for error handling.
2609	 */
2610	if (cp->cmd_type == CMD_IOACCEL1) {
2611		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2612		cp->Header.SGList = scsi_sg_count(cmd);
2613		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2614		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2615			IOACCEL1_IOFLAGS_CDBLEN_MASK;
2616		cp->Header.tag = c->tag;
2617		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2618		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2619
2620		/* Any RAID offload error results in retry which will use
2621		 * the normal I/O path so the controller can handle whatever's
2622		 * wrong.
2623		 */
2624		if (is_logical_device(dev)) {
2625			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2626				dev->offload_enabled = 0;
2627			return hpsa_retry_cmd(h, cp);
2628		}
2629	}
2630
2631	/* an error has occurred */
2632	switch (ei->CommandStatus) {
2633
2634	case CMD_TARGET_STATUS:
2635		cmd->result |= ei->ScsiStatus;
2636		/* copy the sense data */
2637		if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2638			sense_data_size = SCSI_SENSE_BUFFERSIZE;
2639		else
2640			sense_data_size = sizeof(ei->SenseInfo);
2641		if (ei->SenseLen < sense_data_size)
2642			sense_data_size = ei->SenseLen;
2643		memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2644		if (ei->ScsiStatus)
2645			decode_sense_data(ei->SenseInfo, sense_data_size,
2646				&sense_key, &asc, &ascq);
2647		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2648			if (sense_key == ABORTED_COMMAND) {
 
2649				cmd->result |= DID_SOFT_ERROR << 16;
2650				break;
 
 
 
 
 
 
 
 
 
 
2651			}
2652			break;
2653		}
2654		/* Problem was not a check condition
2655		 * Pass it up to the upper layers...
2656		 */
2657		if (ei->ScsiStatus) {
2658			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2659				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2660				"Returning result: 0x%x\n",
2661				cp, ei->ScsiStatus,
2662				sense_key, asc, ascq,
2663				cmd->result);
2664		} else {  /* scsi status is zero??? How??? */
2665			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2666				"Returning no connection.\n", cp),
2667
2668			/* Ordinarily, this case should never happen,
2669			 * but there is a bug in some released firmware
2670			 * revisions that allows it to happen if, for
2671			 * example, a 4100 backplane loses power and
2672			 * the tape drive is in it.  We assume that
2673			 * it's a fatal error of some kind because we
2674			 * can't show that it wasn't. We will make it
2675			 * look like selection timeout since that is
2676			 * the most common reason for this to occur,
2677			 * and it's severe enough.
2678			 */
2679
2680			cmd->result = DID_NO_CONNECT << 16;
2681		}
2682		break;
2683
2684	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2685		break;
2686	case CMD_DATA_OVERRUN:
2687		dev_warn(&h->pdev->dev,
2688			"CDB %16phN data overrun\n", cp->Request.CDB);
2689		break;
2690	case CMD_INVALID: {
2691		/* print_bytes(cp, sizeof(*cp), 1, 0);
2692		print_cmd(cp); */
2693		/* We get CMD_INVALID if you address a non-existent device
2694		 * instead of a selection timeout (no response).  You will
2695		 * see this if you yank out a drive, then try to access it.
2696		 * This is kind of a shame because it means that any other
2697		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2698		 * missing target. */
2699		cmd->result = DID_NO_CONNECT << 16;
2700	}
2701		break;
2702	case CMD_PROTOCOL_ERR:
2703		cmd->result = DID_ERROR << 16;
2704		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2705				cp->Request.CDB);
2706		break;
2707	case CMD_HARDWARE_ERR:
2708		cmd->result = DID_ERROR << 16;
2709		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2710			cp->Request.CDB);
2711		break;
2712	case CMD_CONNECTION_LOST:
2713		cmd->result = DID_ERROR << 16;
2714		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2715			cp->Request.CDB);
2716		break;
2717	case CMD_ABORTED:
2718		cmd->result = DID_ABORT << 16;
2719		break;
2720	case CMD_ABORT_FAILED:
2721		cmd->result = DID_ERROR << 16;
2722		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2723			cp->Request.CDB);
2724		break;
2725	case CMD_UNSOLICITED_ABORT:
2726		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2727		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2728			cp->Request.CDB);
2729		break;
2730	case CMD_TIMEOUT:
2731		cmd->result = DID_TIME_OUT << 16;
2732		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2733			cp->Request.CDB);
2734		break;
2735	case CMD_UNABORTABLE:
2736		cmd->result = DID_ERROR << 16;
2737		dev_warn(&h->pdev->dev, "Command unabortable\n");
2738		break;
2739	case CMD_TMF_STATUS:
2740		if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2741			cmd->result = DID_ERROR << 16;
2742		break;
2743	case CMD_IOACCEL_DISABLED:
2744		/* This only handles the direct pass-through case since RAID
2745		 * offload is handled above.  Just attempt a retry.
2746		 */
2747		cmd->result = DID_SOFT_ERROR << 16;
2748		dev_warn(&h->pdev->dev,
2749				"cp %p had HP SSD Smart Path error\n", cp);
2750		break;
2751	default:
2752		cmd->result = DID_ERROR << 16;
2753		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2754				cp, ei->CommandStatus);
2755	}
2756
2757	return hpsa_cmd_free_and_done(h, cp, cmd);
2758}
2759
2760static void hpsa_pci_unmap(struct pci_dev *pdev,
2761	struct CommandList *c, int sg_used, int data_direction)
2762{
2763	int i;
2764
2765	for (i = 0; i < sg_used; i++)
2766		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2767				le32_to_cpu(c->SG[i].Len),
2768				data_direction);
2769}
2770
2771static int hpsa_map_one(struct pci_dev *pdev,
2772		struct CommandList *cp,
2773		unsigned char *buf,
2774		size_t buflen,
2775		int data_direction)
2776{
2777	u64 addr64;
2778
2779	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2780		cp->Header.SGList = 0;
2781		cp->Header.SGTotal = cpu_to_le16(0);
2782		return 0;
2783	}
2784
2785	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2786	if (dma_mapping_error(&pdev->dev, addr64)) {
2787		/* Prevent subsequent unmap of something never mapped */
2788		cp->Header.SGList = 0;
2789		cp->Header.SGTotal = cpu_to_le16(0);
2790		return -1;
2791	}
2792	cp->SG[0].Addr = cpu_to_le64(addr64);
2793	cp->SG[0].Len = cpu_to_le32(buflen);
2794	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2795	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2796	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2797	return 0;
2798}
2799
2800#define NO_TIMEOUT ((unsigned long) -1)
2801#define DEFAULT_TIMEOUT 30000 /* milliseconds */
2802static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2803	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2804{
2805	DECLARE_COMPLETION_ONSTACK(wait);
2806
2807	c->waiting = &wait;
2808	__enqueue_cmd_and_start_io(h, c, reply_queue);
2809	if (timeout_msecs == NO_TIMEOUT) {
2810		/* TODO: get rid of this no-timeout thing */
2811		wait_for_completion_io(&wait);
2812		return IO_OK;
2813	}
2814	if (!wait_for_completion_io_timeout(&wait,
2815					msecs_to_jiffies(timeout_msecs))) {
2816		dev_warn(&h->pdev->dev, "Command timed out.\n");
2817		return -ETIMEDOUT;
2818	}
2819	return IO_OK;
2820}
2821
2822static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2823				   int reply_queue, unsigned long timeout_msecs)
2824{
2825	if (unlikely(lockup_detected(h))) {
2826		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2827		return IO_OK;
2828	}
2829	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2830}
2831
2832static u32 lockup_detected(struct ctlr_info *h)
2833{
2834	int cpu;
2835	u32 rc, *lockup_detected;
2836
2837	cpu = get_cpu();
2838	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2839	rc = *lockup_detected;
2840	put_cpu();
2841	return rc;
2842}
2843
2844#define MAX_DRIVER_CMD_RETRIES 25
2845static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2846	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
 
2847{
2848	int backoff_time = 10, retry_count = 0;
2849	int rc;
2850
2851	do {
2852		memset(c->err_info, 0, sizeof(*c->err_info));
2853		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2854						  timeout_msecs);
2855		if (rc)
2856			break;
2857		retry_count++;
2858		if (retry_count > 3) {
2859			msleep(backoff_time);
2860			if (backoff_time < 1000)
2861				backoff_time *= 2;
2862		}
2863	} while ((check_for_unit_attention(h, c) ||
2864			check_for_busy(h, c)) &&
2865			retry_count <= MAX_DRIVER_CMD_RETRIES);
2866	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2867	if (retry_count > MAX_DRIVER_CMD_RETRIES)
2868		rc = -EIO;
2869	return rc;
2870}
2871
2872static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2873				struct CommandList *c)
2874{
2875	const u8 *cdb = c->Request.CDB;
2876	const u8 *lun = c->Header.LUN.LunAddrBytes;
2877
2878	dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2879		 txt, lun, cdb);
2880}
2881
2882static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2883			struct CommandList *cp)
2884{
2885	const struct ErrorInfo *ei = cp->err_info;
2886	struct device *d = &cp->h->pdev->dev;
2887	u8 sense_key, asc, ascq;
2888	int sense_len;
2889
2890	switch (ei->CommandStatus) {
2891	case CMD_TARGET_STATUS:
2892		if (ei->SenseLen > sizeof(ei->SenseInfo))
2893			sense_len = sizeof(ei->SenseInfo);
2894		else
2895			sense_len = ei->SenseLen;
2896		decode_sense_data(ei->SenseInfo, sense_len,
2897					&sense_key, &asc, &ascq);
2898		hpsa_print_cmd(h, "SCSI status", cp);
2899		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2900			dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2901				sense_key, asc, ascq);
2902		else
2903			dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2904		if (ei->ScsiStatus == 0)
2905			dev_warn(d, "SCSI status is abnormally zero.  "
2906			"(probably indicates selection timeout "
2907			"reported incorrectly due to a known "
2908			"firmware bug, circa July, 2001.)\n");
2909		break;
2910	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2911		break;
2912	case CMD_DATA_OVERRUN:
2913		hpsa_print_cmd(h, "overrun condition", cp);
2914		break;
2915	case CMD_INVALID: {
2916		/* controller unfortunately reports SCSI passthru's
2917		 * to non-existent targets as invalid commands.
2918		 */
2919		hpsa_print_cmd(h, "invalid command", cp);
2920		dev_warn(d, "probably means device no longer present\n");
2921		}
2922		break;
2923	case CMD_PROTOCOL_ERR:
2924		hpsa_print_cmd(h, "protocol error", cp);
2925		break;
2926	case CMD_HARDWARE_ERR:
2927		hpsa_print_cmd(h, "hardware error", cp);
2928		break;
2929	case CMD_CONNECTION_LOST:
2930		hpsa_print_cmd(h, "connection lost", cp);
2931		break;
2932	case CMD_ABORTED:
2933		hpsa_print_cmd(h, "aborted", cp);
2934		break;
2935	case CMD_ABORT_FAILED:
2936		hpsa_print_cmd(h, "abort failed", cp);
2937		break;
2938	case CMD_UNSOLICITED_ABORT:
2939		hpsa_print_cmd(h, "unsolicited abort", cp);
2940		break;
2941	case CMD_TIMEOUT:
2942		hpsa_print_cmd(h, "timed out", cp);
2943		break;
2944	case CMD_UNABORTABLE:
2945		hpsa_print_cmd(h, "unabortable", cp);
2946		break;
2947	case CMD_CTLR_LOCKUP:
2948		hpsa_print_cmd(h, "controller lockup detected", cp);
2949		break;
2950	default:
2951		hpsa_print_cmd(h, "unknown status", cp);
2952		dev_warn(d, "Unknown command status %x\n",
2953				ei->CommandStatus);
2954	}
2955}
2956
2957static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2958					u8 page, u8 *buf, size_t bufsize)
2959{
2960	int rc = IO_OK;
2961	struct CommandList *c;
2962	struct ErrorInfo *ei;
2963
2964	c = cmd_alloc(h);
2965	if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2966			page, scsi3addr, TYPE_CMD)) {
2967		rc = -1;
2968		goto out;
2969	}
2970	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2971		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2972	if (rc)
2973		goto out;
2974	ei = c->err_info;
2975	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2976		hpsa_scsi_interpret_error(h, c);
2977		rc = -1;
2978	}
2979out:
2980	cmd_free(h, c);
2981	return rc;
2982}
2983
2984static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
2985						u8 *scsi3addr)
2986{
2987	u8 *buf;
2988	u64 sa = 0;
2989	int rc = 0;
2990
2991	buf = kzalloc(1024, GFP_KERNEL);
2992	if (!buf)
2993		return 0;
2994
2995	rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
2996					buf, 1024);
2997
2998	if (rc)
2999		goto out;
3000
3001	sa = get_unaligned_be64(buf+12);
3002
3003out:
3004	kfree(buf);
3005	return sa;
3006}
3007
3008static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3009			u16 page, unsigned char *buf,
3010			unsigned char bufsize)
3011{
3012	int rc = IO_OK;
3013	struct CommandList *c;
3014	struct ErrorInfo *ei;
3015
3016	c = cmd_alloc(h);
3017
3018	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3019			page, scsi3addr, TYPE_CMD)) {
3020		rc = -1;
3021		goto out;
3022	}
3023	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3024					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3025	if (rc)
3026		goto out;
3027	ei = c->err_info;
3028	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3029		hpsa_scsi_interpret_error(h, c);
3030		rc = -1;
3031	}
3032out:
3033	cmd_free(h, c);
3034	return rc;
3035}
3036
3037static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3038	u8 reset_type, int reply_queue)
3039{
3040	int rc = IO_OK;
3041	struct CommandList *c;
3042	struct ErrorInfo *ei;
3043
3044	c = cmd_alloc(h);
3045
3046
3047	/* fill_cmd can't fail here, no data buffer to map. */
3048	(void) fill_cmd(c, reset_type, h, NULL, 0, 0,
3049			scsi3addr, TYPE_MSG);
3050	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3051	if (rc) {
3052		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3053		goto out;
3054	}
3055	/* no unmap needed here because no data xfer. */
3056
3057	ei = c->err_info;
3058	if (ei->CommandStatus != 0) {
3059		hpsa_scsi_interpret_error(h, c);
3060		rc = -1;
3061	}
3062out:
3063	cmd_free(h, c);
3064	return rc;
3065}
3066
3067static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3068			       struct hpsa_scsi_dev_t *dev,
3069			       unsigned char *scsi3addr)
3070{
3071	int i;
3072	bool match = false;
3073	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3074	struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3075
3076	if (hpsa_is_cmd_idle(c))
3077		return false;
3078
3079	switch (c->cmd_type) {
3080	case CMD_SCSI:
3081	case CMD_IOCTL_PEND:
3082		match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3083				sizeof(c->Header.LUN.LunAddrBytes));
3084		break;
3085
3086	case CMD_IOACCEL1:
3087	case CMD_IOACCEL2:
3088		if (c->phys_disk == dev) {
3089			/* HBA mode match */
3090			match = true;
3091		} else {
3092			/* Possible RAID mode -- check each phys dev. */
3093			/* FIXME:  Do we need to take out a lock here?  If
3094			 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3095			 * instead. */
3096			for (i = 0; i < dev->nphysical_disks && !match; i++) {
3097				/* FIXME: an alternate test might be
3098				 *
3099				 * match = dev->phys_disk[i]->ioaccel_handle
3100				 *              == c2->scsi_nexus;      */
3101				match = dev->phys_disk[i] == c->phys_disk;
3102			}
3103		}
3104		break;
3105
3106	case IOACCEL2_TMF:
3107		for (i = 0; i < dev->nphysical_disks && !match; i++) {
3108			match = dev->phys_disk[i]->ioaccel_handle ==
3109					le32_to_cpu(ac->it_nexus);
3110		}
3111		break;
3112
3113	case 0:		/* The command is in the middle of being initialized. */
3114		match = false;
3115		break;
3116
3117	default:
3118		dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3119			c->cmd_type);
3120		BUG();
3121	}
3122
3123	return match;
3124}
3125
3126static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3127	unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3128{
3129	int i;
3130	int rc = 0;
3131
3132	/* We can really only handle one reset at a time */
3133	if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3134		dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3135		return -EINTR;
3136	}
3137
3138	BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3139
3140	for (i = 0; i < h->nr_cmds; i++) {
3141		struct CommandList *c = h->cmd_pool + i;
3142		int refcount = atomic_inc_return(&c->refcount);
3143
3144		if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3145			unsigned long flags;
3146
3147			/*
3148			 * Mark the target command as having a reset pending,
3149			 * then lock a lock so that the command cannot complete
3150			 * while we're considering it.  If the command is not
3151			 * idle then count it; otherwise revoke the event.
3152			 */
3153			c->reset_pending = dev;
3154			spin_lock_irqsave(&h->lock, flags);	/* Implied MB */
3155			if (!hpsa_is_cmd_idle(c))
3156				atomic_inc(&dev->reset_cmds_out);
3157			else
3158				c->reset_pending = NULL;
3159			spin_unlock_irqrestore(&h->lock, flags);
3160		}
3161
3162		cmd_free(h, c);
3163	}
3164
3165	rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3166	if (!rc)
3167		wait_event(h->event_sync_wait_queue,
3168			atomic_read(&dev->reset_cmds_out) == 0 ||
3169			lockup_detected(h));
 
3170
3171	if (unlikely(lockup_detected(h))) {
3172		dev_warn(&h->pdev->dev,
3173			 "Controller lockup detected during reset wait\n");
3174		rc = -ENODEV;
3175	}
3176
3177	if (unlikely(rc))
3178		atomic_set(&dev->reset_cmds_out, 0);
3179	else
3180		rc = wait_for_device_to_become_ready(h, scsi3addr, 0);
3181
3182	mutex_unlock(&h->reset_mutex);
3183	return rc;
3184}
3185
3186static void hpsa_get_raid_level(struct ctlr_info *h,
3187	unsigned char *scsi3addr, unsigned char *raid_level)
3188{
3189	int rc;
3190	unsigned char *buf;
3191
3192	*raid_level = RAID_UNKNOWN;
3193	buf = kzalloc(64, GFP_KERNEL);
3194	if (!buf)
3195		return;
3196
3197	if (!hpsa_vpd_page_supported(h, scsi3addr,
3198		HPSA_VPD_LV_DEVICE_GEOMETRY))
3199		goto exit;
3200
3201	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3202		HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3203
3204	if (rc == 0)
3205		*raid_level = buf[8];
3206	if (*raid_level > RAID_UNKNOWN)
3207		*raid_level = RAID_UNKNOWN;
3208exit:
3209	kfree(buf);
3210	return;
3211}
3212
3213#define HPSA_MAP_DEBUG
3214#ifdef HPSA_MAP_DEBUG
3215static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3216				struct raid_map_data *map_buff)
3217{
3218	struct raid_map_disk_data *dd = &map_buff->data[0];
3219	int map, row, col;
3220	u16 map_cnt, row_cnt, disks_per_row;
3221
3222	if (rc != 0)
3223		return;
3224
3225	/* Show details only if debugging has been activated. */
3226	if (h->raid_offload_debug < 2)
3227		return;
3228
3229	dev_info(&h->pdev->dev, "structure_size = %u\n",
3230				le32_to_cpu(map_buff->structure_size));
3231	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3232			le32_to_cpu(map_buff->volume_blk_size));
3233	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3234			le64_to_cpu(map_buff->volume_blk_cnt));
3235	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3236			map_buff->phys_blk_shift);
3237	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3238			map_buff->parity_rotation_shift);
3239	dev_info(&h->pdev->dev, "strip_size = %u\n",
3240			le16_to_cpu(map_buff->strip_size));
3241	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3242			le64_to_cpu(map_buff->disk_starting_blk));
3243	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3244			le64_to_cpu(map_buff->disk_blk_cnt));
3245	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3246			le16_to_cpu(map_buff->data_disks_per_row));
3247	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3248			le16_to_cpu(map_buff->metadata_disks_per_row));
3249	dev_info(&h->pdev->dev, "row_cnt = %u\n",
3250			le16_to_cpu(map_buff->row_cnt));
3251	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3252			le16_to_cpu(map_buff->layout_map_count));
3253	dev_info(&h->pdev->dev, "flags = 0x%x\n",
3254			le16_to_cpu(map_buff->flags));
3255	dev_info(&h->pdev->dev, "encryption = %s\n",
3256			le16_to_cpu(map_buff->flags) &
3257			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3258	dev_info(&h->pdev->dev, "dekindex = %u\n",
3259			le16_to_cpu(map_buff->dekindex));
3260	map_cnt = le16_to_cpu(map_buff->layout_map_count);
3261	for (map = 0; map < map_cnt; map++) {
3262		dev_info(&h->pdev->dev, "Map%u:\n", map);
3263		row_cnt = le16_to_cpu(map_buff->row_cnt);
3264		for (row = 0; row < row_cnt; row++) {
3265			dev_info(&h->pdev->dev, "  Row%u:\n", row);
3266			disks_per_row =
3267				le16_to_cpu(map_buff->data_disks_per_row);
3268			for (col = 0; col < disks_per_row; col++, dd++)
3269				dev_info(&h->pdev->dev,
3270					"    D%02u: h=0x%04x xor=%u,%u\n",
3271					col, dd->ioaccel_handle,
3272					dd->xor_mult[0], dd->xor_mult[1]);
3273			disks_per_row =
3274				le16_to_cpu(map_buff->metadata_disks_per_row);
3275			for (col = 0; col < disks_per_row; col++, dd++)
3276				dev_info(&h->pdev->dev,
3277					"    M%02u: h=0x%04x xor=%u,%u\n",
3278					col, dd->ioaccel_handle,
3279					dd->xor_mult[0], dd->xor_mult[1]);
3280		}
3281	}
3282}
3283#else
3284static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3285			__attribute__((unused)) int rc,
3286			__attribute__((unused)) struct raid_map_data *map_buff)
3287{
3288}
3289#endif
3290
3291static int hpsa_get_raid_map(struct ctlr_info *h,
3292	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3293{
3294	int rc = 0;
3295	struct CommandList *c;
3296	struct ErrorInfo *ei;
3297
3298	c = cmd_alloc(h);
3299
3300	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3301			sizeof(this_device->raid_map), 0,
3302			scsi3addr, TYPE_CMD)) {
3303		dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304		cmd_free(h, c);
3305		return -1;
3306	}
3307	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3308					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3309	if (rc)
3310		goto out;
3311	ei = c->err_info;
3312	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3313		hpsa_scsi_interpret_error(h, c);
3314		rc = -1;
3315		goto out;
3316	}
3317	cmd_free(h, c);
3318
3319	/* @todo in the future, dynamically allocate RAID map memory */
3320	if (le32_to_cpu(this_device->raid_map.structure_size) >
3321				sizeof(this_device->raid_map)) {
3322		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3323		rc = -1;
3324	}
3325	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3326	return rc;
3327out:
3328	cmd_free(h, c);
3329	return rc;
3330}
3331
3332static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3333		unsigned char scsi3addr[], u16 bmic_device_index,
3334		struct bmic_sense_subsystem_info *buf, size_t bufsize)
3335{
3336	int rc = IO_OK;
3337	struct CommandList *c;
3338	struct ErrorInfo *ei;
3339
3340	c = cmd_alloc(h);
3341
3342	rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3343		0, RAID_CTLR_LUNID, TYPE_CMD);
3344	if (rc)
3345		goto out;
3346
3347	c->Request.CDB[2] = bmic_device_index & 0xff;
3348	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3349
3350	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3351				PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3352	if (rc)
3353		goto out;
3354	ei = c->err_info;
3355	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3356		hpsa_scsi_interpret_error(h, c);
3357		rc = -1;
3358	}
3359out:
3360	cmd_free(h, c);
3361	return rc;
3362}
3363
3364static int hpsa_bmic_id_controller(struct ctlr_info *h,
3365	struct bmic_identify_controller *buf, size_t bufsize)
3366{
3367	int rc = IO_OK;
3368	struct CommandList *c;
3369	struct ErrorInfo *ei;
3370
3371	c = cmd_alloc(h);
3372
3373	rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3374		0, RAID_CTLR_LUNID, TYPE_CMD);
3375	if (rc)
3376		goto out;
3377
3378	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3379		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3380	if (rc)
3381		goto out;
3382	ei = c->err_info;
3383	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3384		hpsa_scsi_interpret_error(h, c);
3385		rc = -1;
3386	}
3387out:
3388	cmd_free(h, c);
3389	return rc;
3390}
3391
3392static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3393		unsigned char scsi3addr[], u16 bmic_device_index,
3394		struct bmic_identify_physical_device *buf, size_t bufsize)
3395{
3396	int rc = IO_OK;
3397	struct CommandList *c;
3398	struct ErrorInfo *ei;
3399
3400	c = cmd_alloc(h);
3401	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3402		0, RAID_CTLR_LUNID, TYPE_CMD);
3403	if (rc)
3404		goto out;
3405
3406	c->Request.CDB[2] = bmic_device_index & 0xff;
3407	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3408
3409	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3410						NO_TIMEOUT);
3411	ei = c->err_info;
3412	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3413		hpsa_scsi_interpret_error(h, c);
3414		rc = -1;
3415	}
3416out:
3417	cmd_free(h, c);
3418
3419	return rc;
3420}
3421
3422/*
3423 * get enclosure information
3424 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3425 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3426 * Uses id_physical_device to determine the box_index.
3427 */
3428static void hpsa_get_enclosure_info(struct ctlr_info *h,
3429			unsigned char *scsi3addr,
3430			struct ReportExtendedLUNdata *rlep, int rle_index,
3431			struct hpsa_scsi_dev_t *encl_dev)
3432{
3433	int rc = -1;
3434	struct CommandList *c = NULL;
3435	struct ErrorInfo *ei = NULL;
3436	struct bmic_sense_storage_box_params *bssbp = NULL;
3437	struct bmic_identify_physical_device *id_phys = NULL;
3438	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3439	u16 bmic_device_index = 0;
3440
3441	bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
 
 
 
3442
3443	encl_dev->sas_address =
3444		hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3445
 
 
3446	if (encl_dev->target == -1 || encl_dev->lun == -1) {
3447		rc = IO_OK;
3448		goto out;
3449	}
3450
3451	if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3452		rc = IO_OK;
3453		goto out;
3454	}
3455
3456	bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457	if (!bssbp)
3458		goto out;
3459
3460	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461	if (!id_phys)
3462		goto out;
3463
3464	rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3465						id_phys, sizeof(*id_phys));
3466	if (rc) {
3467		dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3468			__func__, encl_dev->external, bmic_device_index);
3469		goto out;
3470	}
3471
3472	c = cmd_alloc(h);
3473
3474	rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3475			sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3476
3477	if (rc)
3478		goto out;
3479
3480	if (id_phys->phys_connector[1] == 'E')
3481		c->Request.CDB[5] = id_phys->box_index;
3482	else
3483		c->Request.CDB[5] = 0;
3484
3485	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3486						NO_TIMEOUT);
3487	if (rc)
3488		goto out;
3489
3490	ei = c->err_info;
3491	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3492		rc = -1;
3493		goto out;
3494	}
3495
3496	encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3497	memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3498		bssbp->phys_connector, sizeof(bssbp->phys_connector));
3499
3500	rc = IO_OK;
3501out:
3502	kfree(bssbp);
3503	kfree(id_phys);
3504
3505	if (c)
3506		cmd_free(h, c);
3507
3508	if (rc != IO_OK)
3509		hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3510			"Error, could not get enclosure information");
3511}
3512
3513static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3514						unsigned char *scsi3addr)
3515{
3516	struct ReportExtendedLUNdata *physdev;
3517	u32 nphysicals;
3518	u64 sa = 0;
3519	int i;
3520
3521	physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522	if (!physdev)
3523		return 0;
3524
3525	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3526		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527		kfree(physdev);
3528		return 0;
3529	}
3530	nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3531
3532	for (i = 0; i < nphysicals; i++)
3533		if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3534			sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3535			break;
3536		}
3537
3538	kfree(physdev);
3539
3540	return sa;
3541}
3542
3543static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3544					struct hpsa_scsi_dev_t *dev)
3545{
3546	int rc;
3547	u64 sa = 0;
3548
3549	if (is_hba_lunid(scsi3addr)) {
3550		struct bmic_sense_subsystem_info *ssi;
3551
3552		ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553		if (!ssi)
3554			return;
3555
3556		rc = hpsa_bmic_sense_subsystem_information(h,
3557					scsi3addr, 0, ssi, sizeof(*ssi));
3558		if (rc == 0) {
3559			sa = get_unaligned_be64(ssi->primary_world_wide_id);
3560			h->sas_address = sa;
3561		}
3562
3563		kfree(ssi);
3564	} else
3565		sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3566
3567	dev->sas_address = sa;
3568}
3569
3570static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3571	struct ReportExtendedLUNdata *physdev)
3572{
3573	u32 nphysicals;
3574	int i;
3575
3576	if (h->discovery_polling)
3577		return;
3578
3579	nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3580
3581	for (i = 0; i < nphysicals; i++) {
3582		if (physdev->LUN[i].device_type ==
3583			BMIC_DEVICE_TYPE_CONTROLLER
3584			&& !is_hba_lunid(physdev->LUN[i].lunid)) {
3585			dev_info(&h->pdev->dev,
3586				"External controller present, activate discovery polling and disable rld caching\n");
3587			hpsa_disable_rld_caching(h);
3588			h->discovery_polling = 1;
3589			break;
3590		}
3591	}
3592}
3593
3594/* Get a device id from inquiry page 0x83 */
3595static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3596	unsigned char scsi3addr[], u8 page)
3597{
3598	int rc;
3599	int i;
3600	int pages;
3601	unsigned char *buf, bufsize;
3602
3603	buf = kzalloc(256, GFP_KERNEL);
3604	if (!buf)
3605		return false;
3606
3607	/* Get the size of the page list first */
3608	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3609				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3610				buf, HPSA_VPD_HEADER_SZ);
3611	if (rc != 0)
3612		goto exit_unsupported;
3613	pages = buf[3];
3614	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3615		bufsize = pages + HPSA_VPD_HEADER_SZ;
3616	else
3617		bufsize = 255;
3618
3619	/* Get the whole VPD page list */
3620	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3621				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3622				buf, bufsize);
3623	if (rc != 0)
3624		goto exit_unsupported;
3625
3626	pages = buf[3];
3627	for (i = 1; i <= pages; i++)
3628		if (buf[3 + i] == page)
3629			goto exit_supported;
3630exit_unsupported:
3631	kfree(buf);
3632	return false;
3633exit_supported:
3634	kfree(buf);
3635	return true;
3636}
3637
3638/*
3639 * Called during a scan operation.
3640 * Sets ioaccel status on the new device list, not the existing device list
3641 *
3642 * The device list used during I/O will be updated later in
3643 * adjust_hpsa_scsi_table.
3644 */
3645static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3646	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3647{
3648	int rc;
3649	unsigned char *buf;
3650	u8 ioaccel_status;
3651
3652	this_device->offload_config = 0;
3653	this_device->offload_enabled = 0;
3654	this_device->offload_to_be_enabled = 0;
3655
3656	buf = kzalloc(64, GFP_KERNEL);
3657	if (!buf)
3658		return;
3659	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3660		goto out;
3661	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3662			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663	if (rc != 0)
3664		goto out;
3665
3666#define IOACCEL_STATUS_BYTE 4
3667#define OFFLOAD_CONFIGURED_BIT 0x01
3668#define OFFLOAD_ENABLED_BIT 0x02
3669	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3670	this_device->offload_config =
3671		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3672	if (this_device->offload_config) {
3673		this_device->offload_to_be_enabled =
3674			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3675		if (hpsa_get_raid_map(h, scsi3addr, this_device))
3676			this_device->offload_to_be_enabled = 0;
 
 
 
 
 
 
 
3677	}
3678
3679out:
3680	kfree(buf);
3681	return;
3682}
3683
3684/* Get the device id from inquiry page 0x83 */
3685static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3686	unsigned char *device_id, int index, int buflen)
3687{
3688	int rc;
3689	unsigned char *buf;
3690
3691	/* Does controller have VPD for device id? */
3692	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3693		return 1; /* not supported */
3694
3695	buf = kzalloc(64, GFP_KERNEL);
3696	if (!buf)
3697		return -ENOMEM;
3698
3699	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3700					HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701	if (rc == 0) {
3702		if (buflen > 16)
3703			buflen = 16;
3704		memcpy(device_id, &buf[8], buflen);
3705	}
3706
3707	kfree(buf);
3708
3709	return rc; /*0 - got id,  otherwise, didn't */
3710}
3711
3712static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3713		void *buf, int bufsize,
3714		int extended_response)
3715{
3716	int rc = IO_OK;
3717	struct CommandList *c;
3718	unsigned char scsi3addr[8];
3719	struct ErrorInfo *ei;
3720
3721	c = cmd_alloc(h);
3722
3723	/* address the controller */
3724	memset(scsi3addr, 0, sizeof(scsi3addr));
3725	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3726		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727		rc = -EAGAIN;
3728		goto out;
3729	}
3730	if (extended_response)
3731		c->Request.CDB[1] = extended_response;
3732	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3733					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3734	if (rc)
3735		goto out;
3736	ei = c->err_info;
3737	if (ei->CommandStatus != 0 &&
3738	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
3739		hpsa_scsi_interpret_error(h, c);
3740		rc = -EIO;
3741	} else {
3742		struct ReportLUNdata *rld = buf;
3743
3744		if (rld->extended_response_flag != extended_response) {
3745			if (!h->legacy_board) {
3746				dev_err(&h->pdev->dev,
3747					"report luns requested format %u, got %u\n",
3748					extended_response,
3749					rld->extended_response_flag);
3750				rc = -EINVAL;
3751			} else
3752				rc = -EOPNOTSUPP;
3753		}
3754	}
3755out:
3756	cmd_free(h, c);
3757	return rc;
3758}
3759
3760static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3761		struct ReportExtendedLUNdata *buf, int bufsize)
3762{
3763	int rc;
3764	struct ReportLUNdata *lbuf;
3765
3766	rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3767				      HPSA_REPORT_PHYS_EXTENDED);
3768	if (!rc || rc != -EOPNOTSUPP)
3769		return rc;
3770
3771	/* REPORT PHYS EXTENDED is not supported */
3772	lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773	if (!lbuf)
3774		return -ENOMEM;
3775
3776	rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3777	if (!rc) {
3778		int i;
3779		u32 nphys;
3780
3781		/* Copy ReportLUNdata header */
3782		memcpy(buf, lbuf, 8);
3783		nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3784		for (i = 0; i < nphys; i++)
3785			memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3786	}
3787	kfree(lbuf);
3788	return rc;
3789}
3790
3791static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3792		struct ReportLUNdata *buf, int bufsize)
3793{
3794	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3795}
3796
3797static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3798	int bus, int target, int lun)
3799{
3800	device->bus = bus;
3801	device->target = target;
3802	device->lun = lun;
3803}
3804
3805/* Use VPD inquiry to get details of volume status */
3806static int hpsa_get_volume_status(struct ctlr_info *h,
3807					unsigned char scsi3addr[])
3808{
3809	int rc;
3810	int status;
3811	int size;
3812	unsigned char *buf;
3813
3814	buf = kzalloc(64, GFP_KERNEL);
3815	if (!buf)
3816		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3817
3818	/* Does controller have VPD for logical volume status? */
3819	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3820		goto exit_failed;
3821
3822	/* Get the size of the VPD return buffer */
3823	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3824					buf, HPSA_VPD_HEADER_SZ);
3825	if (rc != 0)
3826		goto exit_failed;
3827	size = buf[3];
3828
3829	/* Now get the whole VPD buffer */
3830	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3831					buf, size + HPSA_VPD_HEADER_SZ);
3832	if (rc != 0)
3833		goto exit_failed;
3834	status = buf[4]; /* status byte */
3835
3836	kfree(buf);
3837	return status;
3838exit_failed:
3839	kfree(buf);
3840	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3841}
3842
3843/* Determine offline status of a volume.
3844 * Return either:
3845 *  0 (not offline)
3846 *  0xff (offline for unknown reasons)
3847 *  # (integer code indicating one of several NOT READY states
3848 *     describing why a volume is to be kept offline)
3849 */
3850static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3851					unsigned char scsi3addr[])
3852{
3853	struct CommandList *c;
3854	unsigned char *sense;
3855	u8 sense_key, asc, ascq;
3856	int sense_len;
3857	int rc, ldstat = 0;
3858	u16 cmd_status;
3859	u8 scsi_status;
3860#define ASC_LUN_NOT_READY 0x04
3861#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3862#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863
3864	c = cmd_alloc(h);
3865
3866	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3867	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868					NO_TIMEOUT);
3869	if (rc) {
3870		cmd_free(h, c);
3871		return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3872	}
3873	sense = c->err_info->SenseInfo;
3874	if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3875		sense_len = sizeof(c->err_info->SenseInfo);
3876	else
3877		sense_len = c->err_info->SenseLen;
3878	decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3879	cmd_status = c->err_info->CommandStatus;
3880	scsi_status = c->err_info->ScsiStatus;
3881	cmd_free(h, c);
3882
3883	/* Determine the reason for not ready state */
3884	ldstat = hpsa_get_volume_status(h, scsi3addr);
3885
3886	/* Keep volume offline in certain cases: */
3887	switch (ldstat) {
3888	case HPSA_LV_FAILED:
3889	case HPSA_LV_UNDERGOING_ERASE:
3890	case HPSA_LV_NOT_AVAILABLE:
3891	case HPSA_LV_UNDERGOING_RPI:
3892	case HPSA_LV_PENDING_RPI:
3893	case HPSA_LV_ENCRYPTED_NO_KEY:
3894	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3895	case HPSA_LV_UNDERGOING_ENCRYPTION:
3896	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3897	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3898		return ldstat;
3899	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3900		/* If VPD status page isn't available,
3901		 * use ASC/ASCQ to determine state
3902		 */
3903		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3904			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3905			return ldstat;
3906		break;
3907	default:
3908		break;
3909	}
3910	return HPSA_LV_OK;
3911}
3912
3913static int hpsa_update_device_info(struct ctlr_info *h,
3914	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3915	unsigned char *is_OBDR_device)
3916{
3917
3918#define OBDR_SIG_OFFSET 43
3919#define OBDR_TAPE_SIG "$DR-10"
3920#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3921#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3922
3923	unsigned char *inq_buff;
3924	unsigned char *obdr_sig;
3925	int rc = 0;
3926
3927	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3928	if (!inq_buff) {
3929		rc = -ENOMEM;
3930		goto bail_out;
3931	}
3932
3933	/* Do an inquiry to the device to see what it is. */
3934	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3935		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3936		dev_err(&h->pdev->dev,
3937			"%s: inquiry failed, device will be skipped.\n",
3938			__func__);
3939		rc = HPSA_INQUIRY_FAILED;
3940		goto bail_out;
3941	}
3942
3943	scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3944	scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3945
3946	this_device->devtype = (inq_buff[0] & 0x1f);
3947	memcpy(this_device->scsi3addr, scsi3addr, 8);
3948	memcpy(this_device->vendor, &inq_buff[8],
3949		sizeof(this_device->vendor));
3950	memcpy(this_device->model, &inq_buff[16],
3951		sizeof(this_device->model));
3952	this_device->rev = inq_buff[2];
3953	memset(this_device->device_id, 0,
3954		sizeof(this_device->device_id));
3955	if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3956		sizeof(this_device->device_id)) < 0)
3957		dev_err(&h->pdev->dev,
3958			"hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3959			h->ctlr, __func__,
3960			h->scsi_host->host_no,
3961			this_device->target, this_device->lun,
 
3962			scsi_device_type(this_device->devtype),
3963			this_device->model);
 
 
 
3964
3965	if ((this_device->devtype == TYPE_DISK ||
3966		this_device->devtype == TYPE_ZBC) &&
3967		is_logical_dev_addr_mode(scsi3addr)) {
3968		unsigned char volume_offline;
3969
3970		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3971		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3972			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3973		volume_offline = hpsa_volume_offline(h, scsi3addr);
3974		if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3975		    h->legacy_board) {
3976			/*
3977			 * Legacy boards might not support volume status
3978			 */
3979			dev_info(&h->pdev->dev,
3980				 "C0:T%d:L%d Volume status not available, assuming online.\n",
3981				 this_device->target, this_device->lun);
3982			volume_offline = 0;
3983		}
3984		this_device->volume_offline = volume_offline;
3985		if (volume_offline == HPSA_LV_FAILED) {
3986			rc = HPSA_LV_FAILED;
3987			dev_err(&h->pdev->dev,
3988				"%s: LV failed, device will be skipped.\n",
3989				__func__);
3990			goto bail_out;
3991		}
3992	} else {
3993		this_device->raid_level = RAID_UNKNOWN;
3994		this_device->offload_config = 0;
3995		this_device->offload_enabled = 0;
3996		this_device->offload_to_be_enabled = 0;
3997		this_device->hba_ioaccel_enabled = 0;
3998		this_device->volume_offline = 0;
3999		this_device->queue_depth = h->nr_cmds;
4000	}
4001
4002	if (this_device->external)
4003		this_device->queue_depth = EXTERNAL_QD;
4004
4005	if (is_OBDR_device) {
4006		/* See if this is a One-Button-Disaster-Recovery device
4007		 * by looking for "$DR-10" at offset 43 in inquiry data.
4008		 */
4009		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4010		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4011					strncmp(obdr_sig, OBDR_TAPE_SIG,
4012						OBDR_SIG_LEN) == 0);
4013	}
4014	kfree(inq_buff);
4015	return 0;
4016
4017bail_out:
4018	kfree(inq_buff);
4019	return rc;
4020}
4021
4022/*
4023 * Helper function to assign bus, target, lun mapping of devices.
4024 * Logical drive target and lun are assigned at this time, but
4025 * physical device lun and target assignment are deferred (assigned
4026 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4027*/
4028static void figure_bus_target_lun(struct ctlr_info *h,
4029	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4030{
4031	u32 lunid = get_unaligned_le32(lunaddrbytes);
4032
4033	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4034		/* physical device, target and lun filled in later */
4035		if (is_hba_lunid(lunaddrbytes)) {
4036			int bus = HPSA_HBA_BUS;
4037
4038			if (!device->rev)
4039				bus = HPSA_LEGACY_HBA_BUS;
4040			hpsa_set_bus_target_lun(device,
4041					bus, 0, lunid & 0x3fff);
4042		} else
4043			/* defer target, lun assignment for physical devices */
4044			hpsa_set_bus_target_lun(device,
4045					HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4046		return;
4047	}
4048	/* It's a logical device */
4049	if (device->external) {
4050		hpsa_set_bus_target_lun(device,
4051			HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4052			lunid & 0x00ff);
4053		return;
4054	}
4055	hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4056				0, lunid & 0x3fff);
4057}
4058
4059static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4060	int i, int nphysicals, int nlocal_logicals)
4061{
4062	/* In report logicals, local logicals are listed first,
4063	* then any externals.
4064	*/
4065	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4066
4067	if (i == raid_ctlr_position)
4068		return 0;
4069
4070	if (i < logicals_start)
4071		return 0;
4072
4073	/* i is in logicals range, but still within local logicals */
4074	if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4075		return 0;
4076
4077	return 1; /* it's an external lun */
4078}
4079
4080/*
4081 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4082 * logdev.  The number of luns in physdev and logdev are returned in
4083 * *nphysicals and *nlogicals, respectively.
4084 * Returns 0 on success, -1 otherwise.
4085 */
4086static int hpsa_gather_lun_info(struct ctlr_info *h,
4087	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4088	struct ReportLUNdata *logdev, u32 *nlogicals)
4089{
4090	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4091		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4092		return -1;
4093	}
4094	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4095	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4096		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4097			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4098		*nphysicals = HPSA_MAX_PHYS_LUN;
4099	}
4100	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4101		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4102		return -1;
4103	}
4104	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4105	/* Reject Logicals in excess of our max capability. */
4106	if (*nlogicals > HPSA_MAX_LUN) {
4107		dev_warn(&h->pdev->dev,
4108			"maximum logical LUNs (%d) exceeded.  "
4109			"%d LUNs ignored.\n", HPSA_MAX_LUN,
4110			*nlogicals - HPSA_MAX_LUN);
4111			*nlogicals = HPSA_MAX_LUN;
4112	}
4113	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4114		dev_warn(&h->pdev->dev,
4115			"maximum logical + physical LUNs (%d) exceeded. "
4116			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4117			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4118		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4119	}
4120	return 0;
4121}
4122
4123static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4124	int i, int nphysicals, int nlogicals,
4125	struct ReportExtendedLUNdata *physdev_list,
4126	struct ReportLUNdata *logdev_list)
4127{
4128	/* Helper function, figure out where the LUN ID info is coming from
4129	 * given index i, lists of physical and logical devices, where in
4130	 * the list the raid controller is supposed to appear (first or last)
4131	 */
4132
4133	int logicals_start = nphysicals + (raid_ctlr_position == 0);
4134	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4135
4136	if (i == raid_ctlr_position)
4137		return RAID_CTLR_LUNID;
4138
4139	if (i < logicals_start)
4140		return &physdev_list->LUN[i -
4141				(raid_ctlr_position == 0)].lunid[0];
4142
4143	if (i < last_device)
4144		return &logdev_list->LUN[i - nphysicals -
4145			(raid_ctlr_position == 0)][0];
4146	BUG();
4147	return NULL;
4148}
4149
4150/* get physical drive ioaccel handle and queue depth */
4151static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4152		struct hpsa_scsi_dev_t *dev,
4153		struct ReportExtendedLUNdata *rlep, int rle_index,
4154		struct bmic_identify_physical_device *id_phys)
4155{
4156	int rc;
4157	struct ext_report_lun_entry *rle;
4158
 
 
 
4159	rle = &rlep->LUN[rle_index];
4160
4161	dev->ioaccel_handle = rle->ioaccel_handle;
4162	if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4163		dev->hba_ioaccel_enabled = 1;
4164	memset(id_phys, 0, sizeof(*id_phys));
4165	rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4166			GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4167			sizeof(*id_phys));
4168	if (!rc)
4169		/* Reserve space for FW operations */
4170#define DRIVE_CMDS_RESERVED_FOR_FW 2
4171#define DRIVE_QUEUE_DEPTH 7
4172		dev->queue_depth =
4173			le16_to_cpu(id_phys->current_queue_depth_limit) -
4174				DRIVE_CMDS_RESERVED_FOR_FW;
4175	else
4176		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4177}
4178
4179static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4180	struct ReportExtendedLUNdata *rlep, int rle_index,
4181	struct bmic_identify_physical_device *id_phys)
4182{
4183	struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
 
 
 
 
 
4184
4185	if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4186		this_device->hba_ioaccel_enabled = 1;
4187
4188	memcpy(&this_device->active_path_index,
4189		&id_phys->active_path_number,
4190		sizeof(this_device->active_path_index));
4191	memcpy(&this_device->path_map,
4192		&id_phys->redundant_path_present_map,
4193		sizeof(this_device->path_map));
4194	memcpy(&this_device->box,
4195		&id_phys->alternate_paths_phys_box_on_port,
4196		sizeof(this_device->box));
4197	memcpy(&this_device->phys_connector,
4198		&id_phys->alternate_paths_phys_connector,
4199		sizeof(this_device->phys_connector));
4200	memcpy(&this_device->bay,
4201		&id_phys->phys_bay_in_box,
4202		sizeof(this_device->bay));
4203}
4204
4205/* get number of local logical disks. */
4206static int hpsa_set_local_logical_count(struct ctlr_info *h,
4207	struct bmic_identify_controller *id_ctlr,
4208	u32 *nlocals)
4209{
4210	int rc;
4211
4212	if (!id_ctlr) {
4213		dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4214			__func__);
4215		return -ENOMEM;
4216	}
4217	memset(id_ctlr, 0, sizeof(*id_ctlr));
4218	rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4219	if (!rc)
4220		if (id_ctlr->configured_logical_drive_count < 255)
4221			*nlocals = id_ctlr->configured_logical_drive_count;
4222		else
4223			*nlocals = le16_to_cpu(
4224					id_ctlr->extended_logical_unit_count);
4225	else
4226		*nlocals = -1;
4227	return rc;
4228}
4229
4230static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4231{
4232	struct bmic_identify_physical_device *id_phys;
4233	bool is_spare = false;
4234	int rc;
4235
4236	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4237	if (!id_phys)
4238		return false;
4239
4240	rc = hpsa_bmic_id_physical_device(h,
4241					lunaddrbytes,
4242					GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4243					id_phys, sizeof(*id_phys));
4244	if (rc == 0)
4245		is_spare = (id_phys->more_flags >> 6) & 0x01;
4246
4247	kfree(id_phys);
4248	return is_spare;
4249}
4250
4251#define RPL_DEV_FLAG_NON_DISK                           0x1
4252#define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4253#define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4254
4255#define BMIC_DEVICE_TYPE_ENCLOSURE  6
4256
4257static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4258				struct ext_report_lun_entry *rle)
4259{
4260	u8 device_flags;
4261	u8 device_type;
4262
4263	if (!MASKED_DEVICE(lunaddrbytes))
4264		return false;
4265
4266	device_flags = rle->device_flags;
4267	device_type = rle->device_type;
4268
4269	if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4270		if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4271			return false;
4272		return true;
4273	}
4274
4275	if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4276		return false;
4277
4278	if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4279		return false;
4280
4281	/*
4282	 * Spares may be spun down, we do not want to
4283	 * do an Inquiry to a RAID set spare drive as
4284	 * that would have them spun up, that is a
4285	 * performance hit because I/O to the RAID device
4286	 * stops while the spin up occurs which can take
4287	 * over 50 seconds.
4288	 */
4289	if (hpsa_is_disk_spare(h, lunaddrbytes))
4290		return true;
4291
4292	return false;
4293}
4294
4295static void hpsa_update_scsi_devices(struct ctlr_info *h)
4296{
4297	/* the idea here is we could get notified
4298	 * that some devices have changed, so we do a report
4299	 * physical luns and report logical luns cmd, and adjust
4300	 * our list of devices accordingly.
4301	 *
4302	 * The scsi3addr's of devices won't change so long as the
4303	 * adapter is not reset.  That means we can rescan and
4304	 * tell which devices we already know about, vs. new
4305	 * devices, vs.  disappearing devices.
4306	 */
4307	struct ReportExtendedLUNdata *physdev_list = NULL;
4308	struct ReportLUNdata *logdev_list = NULL;
4309	struct bmic_identify_physical_device *id_phys = NULL;
4310	struct bmic_identify_controller *id_ctlr = NULL;
4311	u32 nphysicals = 0;
4312	u32 nlogicals = 0;
4313	u32 nlocal_logicals = 0;
4314	u32 ndev_allocated = 0;
4315	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4316	int ncurrent = 0;
4317	int i, n_ext_target_devs, ndevs_to_allocate;
4318	int raid_ctlr_position;
4319	bool physical_device;
4320	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4321
4322	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4323	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4324	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4325	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4326	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4327	id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4328
4329	if (!currentsd || !physdev_list || !logdev_list ||
4330		!tmpdevice || !id_phys || !id_ctlr) {
4331		dev_err(&h->pdev->dev, "out of memory\n");
4332		goto out;
4333	}
4334	memset(lunzerobits, 0, sizeof(lunzerobits));
4335
4336	h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4337
4338	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4339			logdev_list, &nlogicals)) {
4340		h->drv_req_rescan = 1;
4341		goto out;
4342	}
4343
4344	/* Set number of local logicals (non PTRAID) */
4345	if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4346		dev_warn(&h->pdev->dev,
4347			"%s: Can't determine number of local logical devices.\n",
4348			__func__);
4349	}
4350
4351	/* We might see up to the maximum number of logical and physical disks
4352	 * plus external target devices, and a device for the local RAID
4353	 * controller.
4354	 */
4355	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4356
4357	hpsa_ext_ctrl_present(h, physdev_list);
4358
4359	/* Allocate the per device structures */
4360	for (i = 0; i < ndevs_to_allocate; i++) {
4361		if (i >= HPSA_MAX_DEVICES) {
4362			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4363				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
4364				ndevs_to_allocate - HPSA_MAX_DEVICES);
4365			break;
4366		}
4367
4368		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4369		if (!currentsd[i]) {
4370			h->drv_req_rescan = 1;
4371			goto out;
4372		}
4373		ndev_allocated++;
4374	}
4375
4376	if (is_scsi_rev_5(h))
4377		raid_ctlr_position = 0;
4378	else
4379		raid_ctlr_position = nphysicals + nlogicals;
4380
4381	/* adjust our table of devices */
4382	n_ext_target_devs = 0;
4383	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4384		u8 *lunaddrbytes, is_OBDR = 0;
4385		int rc = 0;
4386		int phys_dev_index = i - (raid_ctlr_position == 0);
4387		bool skip_device = false;
4388
4389		memset(tmpdevice, 0, sizeof(*tmpdevice));
4390
4391		physical_device = i < nphysicals + (raid_ctlr_position == 0);
4392
4393		/* Figure out where the LUN ID info is coming from */
4394		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4395			i, nphysicals, nlogicals, physdev_list, logdev_list);
4396
4397		/* Determine if this is a lun from an external target array */
4398		tmpdevice->external =
4399			figure_external_status(h, raid_ctlr_position, i,
4400						nphysicals, nlocal_logicals);
4401
4402		/*
4403		 * Skip over some devices such as a spare.
4404		 */
4405		if (!tmpdevice->external && physical_device) {
 
4406			skip_device = hpsa_skip_device(h, lunaddrbytes,
4407					&physdev_list->LUN[phys_dev_index]);
4408			if (skip_device)
4409				continue;
4410		}
4411
4412		/* Get device type, vendor, model, device id, raid_map */
4413		rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4414							&is_OBDR);
4415		if (rc == -ENOMEM) {
4416			dev_warn(&h->pdev->dev,
4417				"Out of memory, rescan deferred.\n");
4418			h->drv_req_rescan = 1;
4419			goto out;
4420		}
4421		if (rc) {
4422			h->drv_req_rescan = 1;
4423			continue;
4424		}
4425
4426		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4427		this_device = currentsd[ncurrent];
4428
4429		*this_device = *tmpdevice;
4430		this_device->physical_device = physical_device;
4431
4432		/*
4433		 * Expose all devices except for physical devices that
4434		 * are masked.
4435		 */
4436		if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4437			this_device->expose_device = 0;
4438		else
4439			this_device->expose_device = 1;
4440
4441
4442		/*
4443		 * Get the SAS address for physical devices that are exposed.
4444		 */
4445		if (this_device->physical_device && this_device->expose_device)
4446			hpsa_get_sas_address(h, lunaddrbytes, this_device);
4447
4448		switch (this_device->devtype) {
4449		case TYPE_ROM:
4450			/* We don't *really* support actual CD-ROM devices,
4451			 * just "One Button Disaster Recovery" tape drive
4452			 * which temporarily pretends to be a CD-ROM drive.
4453			 * So we check that the device is really an OBDR tape
4454			 * device by checking for "$DR-10" in bytes 43-48 of
4455			 * the inquiry data.
4456			 */
4457			if (is_OBDR)
4458				ncurrent++;
4459			break;
4460		case TYPE_DISK:
4461		case TYPE_ZBC:
4462			if (this_device->physical_device) {
4463				/* The disk is in HBA mode. */
4464				/* Never use RAID mapper in HBA mode. */
4465				this_device->offload_enabled = 0;
4466				hpsa_get_ioaccel_drive_info(h, this_device,
4467					physdev_list, phys_dev_index, id_phys);
4468				hpsa_get_path_info(this_device,
4469					physdev_list, phys_dev_index, id_phys);
4470			}
4471			ncurrent++;
4472			break;
4473		case TYPE_TAPE:
4474		case TYPE_MEDIUM_CHANGER:
4475			ncurrent++;
4476			break;
4477		case TYPE_ENCLOSURE:
4478			if (!this_device->external)
4479				hpsa_get_enclosure_info(h, lunaddrbytes,
4480						physdev_list, phys_dev_index,
4481						this_device);
4482			ncurrent++;
4483			break;
4484		case TYPE_RAID:
4485			/* Only present the Smartarray HBA as a RAID controller.
4486			 * If it's a RAID controller other than the HBA itself
4487			 * (an external RAID controller, MSA500 or similar)
4488			 * don't present it.
4489			 */
4490			if (!is_hba_lunid(lunaddrbytes))
4491				break;
4492			ncurrent++;
4493			break;
4494		default:
4495			break;
4496		}
4497		if (ncurrent >= HPSA_MAX_DEVICES)
4498			break;
4499	}
4500
4501	if (h->sas_host == NULL) {
4502		int rc = 0;
4503
4504		rc = hpsa_add_sas_host(h);
4505		if (rc) {
4506			dev_warn(&h->pdev->dev,
4507				"Could not add sas host %d\n", rc);
4508			goto out;
4509		}
4510	}
4511
4512	adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4513out:
4514	kfree(tmpdevice);
4515	for (i = 0; i < ndev_allocated; i++)
4516		kfree(currentsd[i]);
4517	kfree(currentsd);
4518	kfree(physdev_list);
4519	kfree(logdev_list);
4520	kfree(id_ctlr);
4521	kfree(id_phys);
4522}
4523
4524static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4525				   struct scatterlist *sg)
4526{
4527	u64 addr64 = (u64) sg_dma_address(sg);
4528	unsigned int len = sg_dma_len(sg);
4529
4530	desc->Addr = cpu_to_le64(addr64);
4531	desc->Len = cpu_to_le32(len);
4532	desc->Ext = 0;
4533}
4534
4535/*
4536 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4537 * dma mapping  and fills in the scatter gather entries of the
4538 * hpsa command, cp.
4539 */
4540static int hpsa_scatter_gather(struct ctlr_info *h,
4541		struct CommandList *cp,
4542		struct scsi_cmnd *cmd)
4543{
4544	struct scatterlist *sg;
4545	int use_sg, i, sg_limit, chained, last_sg;
4546	struct SGDescriptor *curr_sg;
4547
4548	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4549
4550	use_sg = scsi_dma_map(cmd);
4551	if (use_sg < 0)
4552		return use_sg;
4553
4554	if (!use_sg)
4555		goto sglist_finished;
4556
4557	/*
4558	 * If the number of entries is greater than the max for a single list,
4559	 * then we have a chained list; we will set up all but one entry in the
4560	 * first list (the last entry is saved for link information);
4561	 * otherwise, we don't have a chained list and we'll set up at each of
4562	 * the entries in the one list.
4563	 */
4564	curr_sg = cp->SG;
4565	chained = use_sg > h->max_cmd_sg_entries;
4566	sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4567	last_sg = scsi_sg_count(cmd) - 1;
4568	scsi_for_each_sg(cmd, sg, sg_limit, i) {
4569		hpsa_set_sg_descriptor(curr_sg, sg);
4570		curr_sg++;
4571	}
4572
4573	if (chained) {
4574		/*
4575		 * Continue with the chained list.  Set curr_sg to the chained
4576		 * list.  Modify the limit to the total count less the entries
4577		 * we've already set up.  Resume the scan at the list entry
4578		 * where the previous loop left off.
4579		 */
4580		curr_sg = h->cmd_sg_list[cp->cmdindex];
4581		sg_limit = use_sg - sg_limit;
4582		for_each_sg(sg, sg, sg_limit, i) {
4583			hpsa_set_sg_descriptor(curr_sg, sg);
4584			curr_sg++;
4585		}
4586	}
4587
4588	/* Back the pointer up to the last entry and mark it as "last". */
4589	(curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4590
4591	if (use_sg + chained > h->maxSG)
4592		h->maxSG = use_sg + chained;
4593
4594	if (chained) {
4595		cp->Header.SGList = h->max_cmd_sg_entries;
4596		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4597		if (hpsa_map_sg_chain_block(h, cp)) {
4598			scsi_dma_unmap(cmd);
4599			return -1;
4600		}
4601		return 0;
4602	}
4603
4604sglist_finished:
4605
4606	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4607	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4608	return 0;
4609}
4610
4611static inline void warn_zero_length_transfer(struct ctlr_info *h,
4612						u8 *cdb, int cdb_len,
4613						const char *func)
4614{
4615	dev_warn(&h->pdev->dev,
4616		 "%s: Blocking zero-length request: CDB:%*phN\n",
4617		 func, cdb_len, cdb);
4618}
4619
4620#define IO_ACCEL_INELIGIBLE 1
4621/* zero-length transfers trigger hardware errors. */
4622static bool is_zero_length_transfer(u8 *cdb)
4623{
4624	u32 block_cnt;
4625
4626	/* Block zero-length transfer sizes on certain commands. */
4627	switch (cdb[0]) {
4628	case READ_10:
4629	case WRITE_10:
4630	case VERIFY:		/* 0x2F */
4631	case WRITE_VERIFY:	/* 0x2E */
4632		block_cnt = get_unaligned_be16(&cdb[7]);
4633		break;
4634	case READ_12:
4635	case WRITE_12:
4636	case VERIFY_12: /* 0xAF */
4637	case WRITE_VERIFY_12:	/* 0xAE */
4638		block_cnt = get_unaligned_be32(&cdb[6]);
4639		break;
4640	case READ_16:
4641	case WRITE_16:
4642	case VERIFY_16:		/* 0x8F */
4643		block_cnt = get_unaligned_be32(&cdb[10]);
4644		break;
4645	default:
4646		return false;
4647	}
4648
4649	return block_cnt == 0;
4650}
4651
4652static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4653{
4654	int is_write = 0;
4655	u32 block;
4656	u32 block_cnt;
4657
4658	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
4659	switch (cdb[0]) {
4660	case WRITE_6:
4661	case WRITE_12:
4662		is_write = 1;
 
4663	case READ_6:
4664	case READ_12:
4665		if (*cdb_len == 6) {
4666			block = (((cdb[1] & 0x1F) << 16) |
4667				(cdb[2] << 8) |
4668				cdb[3]);
4669			block_cnt = cdb[4];
4670			if (block_cnt == 0)
4671				block_cnt = 256;
4672		} else {
4673			BUG_ON(*cdb_len != 12);
4674			block = get_unaligned_be32(&cdb[2]);
4675			block_cnt = get_unaligned_be32(&cdb[6]);
4676		}
4677		if (block_cnt > 0xffff)
4678			return IO_ACCEL_INELIGIBLE;
4679
4680		cdb[0] = is_write ? WRITE_10 : READ_10;
4681		cdb[1] = 0;
4682		cdb[2] = (u8) (block >> 24);
4683		cdb[3] = (u8) (block >> 16);
4684		cdb[4] = (u8) (block >> 8);
4685		cdb[5] = (u8) (block);
4686		cdb[6] = 0;
4687		cdb[7] = (u8) (block_cnt >> 8);
4688		cdb[8] = (u8) (block_cnt);
4689		cdb[9] = 0;
4690		*cdb_len = 10;
4691		break;
4692	}
4693	return 0;
4694}
4695
4696static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4697	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4698	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4699{
4700	struct scsi_cmnd *cmd = c->scsi_cmd;
4701	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4702	unsigned int len;
4703	unsigned int total_len = 0;
4704	struct scatterlist *sg;
4705	u64 addr64;
4706	int use_sg, i;
4707	struct SGDescriptor *curr_sg;
4708	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4709
4710	/* TODO: implement chaining support */
4711	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4712		atomic_dec(&phys_disk->ioaccel_cmds_out);
4713		return IO_ACCEL_INELIGIBLE;
4714	}
4715
4716	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4717
4718	if (is_zero_length_transfer(cdb)) {
4719		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4720		atomic_dec(&phys_disk->ioaccel_cmds_out);
4721		return IO_ACCEL_INELIGIBLE;
4722	}
4723
4724	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4725		atomic_dec(&phys_disk->ioaccel_cmds_out);
4726		return IO_ACCEL_INELIGIBLE;
4727	}
4728
4729	c->cmd_type = CMD_IOACCEL1;
4730
4731	/* Adjust the DMA address to point to the accelerated command buffer */
4732	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4733				(c->cmdindex * sizeof(*cp));
4734	BUG_ON(c->busaddr & 0x0000007F);
4735
4736	use_sg = scsi_dma_map(cmd);
4737	if (use_sg < 0) {
4738		atomic_dec(&phys_disk->ioaccel_cmds_out);
4739		return use_sg;
4740	}
4741
4742	if (use_sg) {
4743		curr_sg = cp->SG;
4744		scsi_for_each_sg(cmd, sg, use_sg, i) {
4745			addr64 = (u64) sg_dma_address(sg);
4746			len  = sg_dma_len(sg);
4747			total_len += len;
4748			curr_sg->Addr = cpu_to_le64(addr64);
4749			curr_sg->Len = cpu_to_le32(len);
4750			curr_sg->Ext = cpu_to_le32(0);
4751			curr_sg++;
4752		}
4753		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4754
4755		switch (cmd->sc_data_direction) {
4756		case DMA_TO_DEVICE:
4757			control |= IOACCEL1_CONTROL_DATA_OUT;
4758			break;
4759		case DMA_FROM_DEVICE:
4760			control |= IOACCEL1_CONTROL_DATA_IN;
4761			break;
4762		case DMA_NONE:
4763			control |= IOACCEL1_CONTROL_NODATAXFER;
4764			break;
4765		default:
4766			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4767			cmd->sc_data_direction);
4768			BUG();
4769			break;
4770		}
4771	} else {
4772		control |= IOACCEL1_CONTROL_NODATAXFER;
4773	}
4774
4775	c->Header.SGList = use_sg;
4776	/* Fill out the command structure to submit */
4777	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4778	cp->transfer_len = cpu_to_le32(total_len);
4779	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4780			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4781	cp->control = cpu_to_le32(control);
4782	memcpy(cp->CDB, cdb, cdb_len);
4783	memcpy(cp->CISS_LUN, scsi3addr, 8);
4784	/* Tag was already set at init time. */
4785	enqueue_cmd_and_start_io(h, c);
4786	return 0;
4787}
4788
4789/*
4790 * Queue a command directly to a device behind the controller using the
4791 * I/O accelerator path.
4792 */
4793static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4794	struct CommandList *c)
4795{
4796	struct scsi_cmnd *cmd = c->scsi_cmd;
4797	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4798
4799	if (!dev)
4800		return -1;
4801
4802	c->phys_disk = dev;
4803
 
 
 
4804	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4805		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4806}
4807
4808/*
4809 * Set encryption parameters for the ioaccel2 request
4810 */
4811static void set_encrypt_ioaccel2(struct ctlr_info *h,
4812	struct CommandList *c, struct io_accel2_cmd *cp)
4813{
4814	struct scsi_cmnd *cmd = c->scsi_cmd;
4815	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4816	struct raid_map_data *map = &dev->raid_map;
4817	u64 first_block;
4818
4819	/* Are we doing encryption on this device */
4820	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4821		return;
4822	/* Set the data encryption key index. */
4823	cp->dekindex = map->dekindex;
4824
4825	/* Set the encryption enable flag, encoded into direction field. */
4826	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4827
4828	/* Set encryption tweak values based on logical block address
4829	 * If block size is 512, tweak value is LBA.
4830	 * For other block sizes, tweak is (LBA * block size)/ 512)
4831	 */
4832	switch (cmd->cmnd[0]) {
4833	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4834	case READ_6:
4835	case WRITE_6:
4836		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4837				(cmd->cmnd[2] << 8) |
4838				cmd->cmnd[3]);
4839		break;
4840	case WRITE_10:
4841	case READ_10:
4842	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4843	case WRITE_12:
4844	case READ_12:
4845		first_block = get_unaligned_be32(&cmd->cmnd[2]);
4846		break;
4847	case WRITE_16:
4848	case READ_16:
4849		first_block = get_unaligned_be64(&cmd->cmnd[2]);
4850		break;
4851	default:
4852		dev_err(&h->pdev->dev,
4853			"ERROR: %s: size (0x%x) not supported for encryption\n",
4854			__func__, cmd->cmnd[0]);
4855		BUG();
4856		break;
4857	}
4858
4859	if (le32_to_cpu(map->volume_blk_size) != 512)
4860		first_block = first_block *
4861				le32_to_cpu(map->volume_blk_size)/512;
4862
4863	cp->tweak_lower = cpu_to_le32(first_block);
4864	cp->tweak_upper = cpu_to_le32(first_block >> 32);
4865}
4866
4867static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4868	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4869	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4870{
4871	struct scsi_cmnd *cmd = c->scsi_cmd;
4872	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4873	struct ioaccel2_sg_element *curr_sg;
4874	int use_sg, i;
4875	struct scatterlist *sg;
4876	u64 addr64;
4877	u32 len;
4878	u32 total_len = 0;
4879
4880	if (!cmd->device)
4881		return -1;
4882
4883	if (!cmd->device->hostdata)
4884		return -1;
4885
4886	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4887
4888	if (is_zero_length_transfer(cdb)) {
4889		warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4890		atomic_dec(&phys_disk->ioaccel_cmds_out);
4891		return IO_ACCEL_INELIGIBLE;
4892	}
4893
4894	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4895		atomic_dec(&phys_disk->ioaccel_cmds_out);
4896		return IO_ACCEL_INELIGIBLE;
4897	}
4898
4899	c->cmd_type = CMD_IOACCEL2;
4900	/* Adjust the DMA address to point to the accelerated command buffer */
4901	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4902				(c->cmdindex * sizeof(*cp));
4903	BUG_ON(c->busaddr & 0x0000007F);
4904
4905	memset(cp, 0, sizeof(*cp));
4906	cp->IU_type = IOACCEL2_IU_TYPE;
4907
4908	use_sg = scsi_dma_map(cmd);
4909	if (use_sg < 0) {
4910		atomic_dec(&phys_disk->ioaccel_cmds_out);
4911		return use_sg;
4912	}
4913
4914	if (use_sg) {
4915		curr_sg = cp->sg;
4916		if (use_sg > h->ioaccel_maxsg) {
4917			addr64 = le64_to_cpu(
4918				h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4919			curr_sg->address = cpu_to_le64(addr64);
4920			curr_sg->length = 0;
4921			curr_sg->reserved[0] = 0;
4922			curr_sg->reserved[1] = 0;
4923			curr_sg->reserved[2] = 0;
4924			curr_sg->chain_indicator = 0x80;
4925
4926			curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4927		}
4928		scsi_for_each_sg(cmd, sg, use_sg, i) {
4929			addr64 = (u64) sg_dma_address(sg);
4930			len  = sg_dma_len(sg);
4931			total_len += len;
4932			curr_sg->address = cpu_to_le64(addr64);
4933			curr_sg->length = cpu_to_le32(len);
4934			curr_sg->reserved[0] = 0;
4935			curr_sg->reserved[1] = 0;
4936			curr_sg->reserved[2] = 0;
4937			curr_sg->chain_indicator = 0;
4938			curr_sg++;
4939		}
4940
 
 
 
 
 
4941		switch (cmd->sc_data_direction) {
4942		case DMA_TO_DEVICE:
4943			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4944			cp->direction |= IOACCEL2_DIR_DATA_OUT;
4945			break;
4946		case DMA_FROM_DEVICE:
4947			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4948			cp->direction |= IOACCEL2_DIR_DATA_IN;
4949			break;
4950		case DMA_NONE:
4951			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4952			cp->direction |= IOACCEL2_DIR_NO_DATA;
4953			break;
4954		default:
4955			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4956				cmd->sc_data_direction);
4957			BUG();
4958			break;
4959		}
4960	} else {
4961		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962		cp->direction |= IOACCEL2_DIR_NO_DATA;
4963	}
4964
4965	/* Set encryption parameters, if necessary */
4966	set_encrypt_ioaccel2(h, c, cp);
4967
4968	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4969	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4970	memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4971
4972	cp->data_len = cpu_to_le32(total_len);
4973	cp->err_ptr = cpu_to_le64(c->busaddr +
4974			offsetof(struct io_accel2_cmd, error_data));
4975	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4976
4977	/* fill in sg elements */
4978	if (use_sg > h->ioaccel_maxsg) {
4979		cp->sg_count = 1;
4980		cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4981		if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4982			atomic_dec(&phys_disk->ioaccel_cmds_out);
4983			scsi_dma_unmap(cmd);
4984			return -1;
4985		}
4986	} else
4987		cp->sg_count = (u8) use_sg;
4988
 
 
 
 
 
4989	enqueue_cmd_and_start_io(h, c);
4990	return 0;
4991}
4992
4993/*
4994 * Queue a command to the correct I/O accelerator path.
4995 */
4996static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4997	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4998	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4999{
5000	if (!c->scsi_cmd->device)
5001		return -1;
5002
5003	if (!c->scsi_cmd->device->hostdata)
5004		return -1;
5005
 
 
 
5006	/* Try to honor the device's queue depth */
5007	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5008					phys_disk->queue_depth) {
5009		atomic_dec(&phys_disk->ioaccel_cmds_out);
5010		return IO_ACCEL_INELIGIBLE;
5011	}
5012	if (h->transMethod & CFGTBL_Trans_io_accel1)
5013		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5014						cdb, cdb_len, scsi3addr,
5015						phys_disk);
5016	else
5017		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5018						cdb, cdb_len, scsi3addr,
5019						phys_disk);
5020}
5021
5022static void raid_map_helper(struct raid_map_data *map,
5023		int offload_to_mirror, u32 *map_index, u32 *current_group)
5024{
5025	if (offload_to_mirror == 0)  {
5026		/* use physical disk in the first mirrored group. */
5027		*map_index %= le16_to_cpu(map->data_disks_per_row);
5028		return;
5029	}
5030	do {
5031		/* determine mirror group that *map_index indicates */
5032		*current_group = *map_index /
5033			le16_to_cpu(map->data_disks_per_row);
5034		if (offload_to_mirror == *current_group)
5035			continue;
5036		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5037			/* select map index from next group */
5038			*map_index += le16_to_cpu(map->data_disks_per_row);
5039			(*current_group)++;
5040		} else {
5041			/* select map index from first group */
5042			*map_index %= le16_to_cpu(map->data_disks_per_row);
5043			*current_group = 0;
5044		}
5045	} while (offload_to_mirror != *current_group);
5046}
5047
5048/*
5049 * Attempt to perform offload RAID mapping for a logical volume I/O.
5050 */
5051static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5052	struct CommandList *c)
5053{
5054	struct scsi_cmnd *cmd = c->scsi_cmd;
5055	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5056	struct raid_map_data *map = &dev->raid_map;
5057	struct raid_map_disk_data *dd = &map->data[0];
5058	int is_write = 0;
5059	u32 map_index;
5060	u64 first_block, last_block;
5061	u32 block_cnt;
5062	u32 blocks_per_row;
5063	u64 first_row, last_row;
5064	u32 first_row_offset, last_row_offset;
5065	u32 first_column, last_column;
5066	u64 r0_first_row, r0_last_row;
5067	u32 r5or6_blocks_per_row;
5068	u64 r5or6_first_row, r5or6_last_row;
5069	u32 r5or6_first_row_offset, r5or6_last_row_offset;
5070	u32 r5or6_first_column, r5or6_last_column;
5071	u32 total_disks_per_row;
5072	u32 stripesize;
5073	u32 first_group, last_group, current_group;
5074	u32 map_row;
5075	u32 disk_handle;
5076	u64 disk_block;
5077	u32 disk_block_cnt;
5078	u8 cdb[16];
5079	u8 cdb_len;
5080	u16 strip_size;
5081#if BITS_PER_LONG == 32
5082	u64 tmpdiv;
5083#endif
5084	int offload_to_mirror;
5085
5086	if (!dev)
5087		return -1;
5088
 
 
 
5089	/* check for valid opcode, get LBA and block count */
5090	switch (cmd->cmnd[0]) {
5091	case WRITE_6:
5092		is_write = 1;
 
5093	case READ_6:
5094		first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5095				(cmd->cmnd[2] << 8) |
5096				cmd->cmnd[3]);
5097		block_cnt = cmd->cmnd[4];
5098		if (block_cnt == 0)
5099			block_cnt = 256;
5100		break;
5101	case WRITE_10:
5102		is_write = 1;
 
5103	case READ_10:
5104		first_block =
5105			(((u64) cmd->cmnd[2]) << 24) |
5106			(((u64) cmd->cmnd[3]) << 16) |
5107			(((u64) cmd->cmnd[4]) << 8) |
5108			cmd->cmnd[5];
5109		block_cnt =
5110			(((u32) cmd->cmnd[7]) << 8) |
5111			cmd->cmnd[8];
5112		break;
5113	case WRITE_12:
5114		is_write = 1;
 
5115	case READ_12:
5116		first_block =
5117			(((u64) cmd->cmnd[2]) << 24) |
5118			(((u64) cmd->cmnd[3]) << 16) |
5119			(((u64) cmd->cmnd[4]) << 8) |
5120			cmd->cmnd[5];
5121		block_cnt =
5122			(((u32) cmd->cmnd[6]) << 24) |
5123			(((u32) cmd->cmnd[7]) << 16) |
5124			(((u32) cmd->cmnd[8]) << 8) |
5125		cmd->cmnd[9];
5126		break;
5127	case WRITE_16:
5128		is_write = 1;
 
5129	case READ_16:
5130		first_block =
5131			(((u64) cmd->cmnd[2]) << 56) |
5132			(((u64) cmd->cmnd[3]) << 48) |
5133			(((u64) cmd->cmnd[4]) << 40) |
5134			(((u64) cmd->cmnd[5]) << 32) |
5135			(((u64) cmd->cmnd[6]) << 24) |
5136			(((u64) cmd->cmnd[7]) << 16) |
5137			(((u64) cmd->cmnd[8]) << 8) |
5138			cmd->cmnd[9];
5139		block_cnt =
5140			(((u32) cmd->cmnd[10]) << 24) |
5141			(((u32) cmd->cmnd[11]) << 16) |
5142			(((u32) cmd->cmnd[12]) << 8) |
5143			cmd->cmnd[13];
5144		break;
5145	default:
5146		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5147	}
5148	last_block = first_block + block_cnt - 1;
5149
5150	/* check for write to non-RAID-0 */
5151	if (is_write && dev->raid_level != 0)
5152		return IO_ACCEL_INELIGIBLE;
5153
5154	/* check for invalid block or wraparound */
5155	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5156		last_block < first_block)
5157		return IO_ACCEL_INELIGIBLE;
5158
5159	/* calculate stripe information for the request */
5160	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5161				le16_to_cpu(map->strip_size);
5162	strip_size = le16_to_cpu(map->strip_size);
5163#if BITS_PER_LONG == 32
5164	tmpdiv = first_block;
5165	(void) do_div(tmpdiv, blocks_per_row);
5166	first_row = tmpdiv;
5167	tmpdiv = last_block;
5168	(void) do_div(tmpdiv, blocks_per_row);
5169	last_row = tmpdiv;
5170	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5171	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5172	tmpdiv = first_row_offset;
5173	(void) do_div(tmpdiv, strip_size);
5174	first_column = tmpdiv;
5175	tmpdiv = last_row_offset;
5176	(void) do_div(tmpdiv, strip_size);
5177	last_column = tmpdiv;
5178#else
5179	first_row = first_block / blocks_per_row;
5180	last_row = last_block / blocks_per_row;
5181	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5182	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5183	first_column = first_row_offset / strip_size;
5184	last_column = last_row_offset / strip_size;
5185#endif
5186
5187	/* if this isn't a single row/column then give to the controller */
5188	if ((first_row != last_row) || (first_column != last_column))
5189		return IO_ACCEL_INELIGIBLE;
5190
5191	/* proceeding with driver mapping */
5192	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5193				le16_to_cpu(map->metadata_disks_per_row);
5194	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5195				le16_to_cpu(map->row_cnt);
5196	map_index = (map_row * total_disks_per_row) + first_column;
5197
5198	switch (dev->raid_level) {
5199	case HPSA_RAID_0:
5200		break; /* nothing special to do */
5201	case HPSA_RAID_1:
5202		/* Handles load balance across RAID 1 members.
5203		 * (2-drive R1 and R10 with even # of drives.)
5204		 * Appropriate for SSDs, not optimal for HDDs
 
5205		 */
5206		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
 
 
 
5207		if (dev->offload_to_mirror)
5208			map_index += le16_to_cpu(map->data_disks_per_row);
5209		dev->offload_to_mirror = !dev->offload_to_mirror;
5210		break;
5211	case HPSA_RAID_ADM:
5212		/* Handles N-way mirrors  (R1-ADM)
5213		 * and R10 with # of drives divisible by 3.)
 
5214		 */
5215		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
 
 
 
5216
5217		offload_to_mirror = dev->offload_to_mirror;
5218		raid_map_helper(map, offload_to_mirror,
5219				&map_index, &current_group);
5220		/* set mirror group to use next time */
5221		offload_to_mirror =
5222			(offload_to_mirror >=
5223			le16_to_cpu(map->layout_map_count) - 1)
5224			? 0 : offload_to_mirror + 1;
5225		dev->offload_to_mirror = offload_to_mirror;
5226		/* Avoid direct use of dev->offload_to_mirror within this
5227		 * function since multiple threads might simultaneously
5228		 * increment it beyond the range of dev->layout_map_count -1.
5229		 */
5230		break;
5231	case HPSA_RAID_5:
5232	case HPSA_RAID_6:
5233		if (le16_to_cpu(map->layout_map_count) <= 1)
5234			break;
5235
5236		/* Verify first and last block are in same RAID group */
5237		r5or6_blocks_per_row =
5238			le16_to_cpu(map->strip_size) *
5239			le16_to_cpu(map->data_disks_per_row);
5240		BUG_ON(r5or6_blocks_per_row == 0);
 
 
 
5241		stripesize = r5or6_blocks_per_row *
5242			le16_to_cpu(map->layout_map_count);
5243#if BITS_PER_LONG == 32
5244		tmpdiv = first_block;
5245		first_group = do_div(tmpdiv, stripesize);
5246		tmpdiv = first_group;
5247		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5248		first_group = tmpdiv;
5249		tmpdiv = last_block;
5250		last_group = do_div(tmpdiv, stripesize);
5251		tmpdiv = last_group;
5252		(void) do_div(tmpdiv, r5or6_blocks_per_row);
5253		last_group = tmpdiv;
5254#else
5255		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5256		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5257#endif
5258		if (first_group != last_group)
5259			return IO_ACCEL_INELIGIBLE;
5260
5261		/* Verify request is in a single row of RAID 5/6 */
5262#if BITS_PER_LONG == 32
5263		tmpdiv = first_block;
5264		(void) do_div(tmpdiv, stripesize);
5265		first_row = r5or6_first_row = r0_first_row = tmpdiv;
5266		tmpdiv = last_block;
5267		(void) do_div(tmpdiv, stripesize);
5268		r5or6_last_row = r0_last_row = tmpdiv;
5269#else
5270		first_row = r5or6_first_row = r0_first_row =
5271						first_block / stripesize;
5272		r5or6_last_row = r0_last_row = last_block / stripesize;
5273#endif
5274		if (r5or6_first_row != r5or6_last_row)
5275			return IO_ACCEL_INELIGIBLE;
5276
5277
5278		/* Verify request is in a single column */
5279#if BITS_PER_LONG == 32
5280		tmpdiv = first_block;
5281		first_row_offset = do_div(tmpdiv, stripesize);
5282		tmpdiv = first_row_offset;
5283		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5284		r5or6_first_row_offset = first_row_offset;
5285		tmpdiv = last_block;
5286		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5287		tmpdiv = r5or6_last_row_offset;
5288		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5289		tmpdiv = r5or6_first_row_offset;
5290		(void) do_div(tmpdiv, map->strip_size);
5291		first_column = r5or6_first_column = tmpdiv;
5292		tmpdiv = r5or6_last_row_offset;
5293		(void) do_div(tmpdiv, map->strip_size);
5294		r5or6_last_column = tmpdiv;
5295#else
5296		first_row_offset = r5or6_first_row_offset =
5297			(u32)((first_block % stripesize) %
5298						r5or6_blocks_per_row);
5299
5300		r5or6_last_row_offset =
5301			(u32)((last_block % stripesize) %
5302						r5or6_blocks_per_row);
5303
5304		first_column = r5or6_first_column =
5305			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5306		r5or6_last_column =
5307			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5308#endif
5309		if (r5or6_first_column != r5or6_last_column)
5310			return IO_ACCEL_INELIGIBLE;
5311
5312		/* Request is eligible */
5313		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5314			le16_to_cpu(map->row_cnt);
5315
5316		map_index = (first_group *
5317			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5318			(map_row * total_disks_per_row) + first_column;
5319		break;
5320	default:
5321		return IO_ACCEL_INELIGIBLE;
5322	}
5323
5324	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5325		return IO_ACCEL_INELIGIBLE;
5326
5327	c->phys_disk = dev->phys_disk[map_index];
5328	if (!c->phys_disk)
5329		return IO_ACCEL_INELIGIBLE;
5330
5331	disk_handle = dd[map_index].ioaccel_handle;
5332	disk_block = le64_to_cpu(map->disk_starting_blk) +
5333			first_row * le16_to_cpu(map->strip_size) +
5334			(first_row_offset - first_column *
5335			le16_to_cpu(map->strip_size));
5336	disk_block_cnt = block_cnt;
5337
5338	/* handle differing logical/physical block sizes */
5339	if (map->phys_blk_shift) {
5340		disk_block <<= map->phys_blk_shift;
5341		disk_block_cnt <<= map->phys_blk_shift;
5342	}
5343	BUG_ON(disk_block_cnt > 0xffff);
5344
5345	/* build the new CDB for the physical disk I/O */
5346	if (disk_block > 0xffffffff) {
5347		cdb[0] = is_write ? WRITE_16 : READ_16;
5348		cdb[1] = 0;
5349		cdb[2] = (u8) (disk_block >> 56);
5350		cdb[3] = (u8) (disk_block >> 48);
5351		cdb[4] = (u8) (disk_block >> 40);
5352		cdb[5] = (u8) (disk_block >> 32);
5353		cdb[6] = (u8) (disk_block >> 24);
5354		cdb[7] = (u8) (disk_block >> 16);
5355		cdb[8] = (u8) (disk_block >> 8);
5356		cdb[9] = (u8) (disk_block);
5357		cdb[10] = (u8) (disk_block_cnt >> 24);
5358		cdb[11] = (u8) (disk_block_cnt >> 16);
5359		cdb[12] = (u8) (disk_block_cnt >> 8);
5360		cdb[13] = (u8) (disk_block_cnt);
5361		cdb[14] = 0;
5362		cdb[15] = 0;
5363		cdb_len = 16;
5364	} else {
5365		cdb[0] = is_write ? WRITE_10 : READ_10;
5366		cdb[1] = 0;
5367		cdb[2] = (u8) (disk_block >> 24);
5368		cdb[3] = (u8) (disk_block >> 16);
5369		cdb[4] = (u8) (disk_block >> 8);
5370		cdb[5] = (u8) (disk_block);
5371		cdb[6] = 0;
5372		cdb[7] = (u8) (disk_block_cnt >> 8);
5373		cdb[8] = (u8) (disk_block_cnt);
5374		cdb[9] = 0;
5375		cdb_len = 10;
5376	}
5377	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5378						dev->scsi3addr,
5379						dev->phys_disk[map_index]);
5380}
5381
5382/*
5383 * Submit commands down the "normal" RAID stack path
5384 * All callers to hpsa_ciss_submit must check lockup_detected
5385 * beforehand, before (opt.) and after calling cmd_alloc
5386 */
5387static int hpsa_ciss_submit(struct ctlr_info *h,
5388	struct CommandList *c, struct scsi_cmnd *cmd,
5389	unsigned char scsi3addr[])
5390{
5391	cmd->host_scribble = (unsigned char *) c;
5392	c->cmd_type = CMD_SCSI;
5393	c->scsi_cmd = cmd;
5394	c->Header.ReplyQueue = 0;  /* unused in simple mode */
5395	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5396	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5397
5398	/* Fill in the request block... */
5399
5400	c->Request.Timeout = 0;
5401	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5402	c->Request.CDBLen = cmd->cmd_len;
5403	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5404	switch (cmd->sc_data_direction) {
5405	case DMA_TO_DEVICE:
5406		c->Request.type_attr_dir =
5407			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5408		break;
5409	case DMA_FROM_DEVICE:
5410		c->Request.type_attr_dir =
5411			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5412		break;
5413	case DMA_NONE:
5414		c->Request.type_attr_dir =
5415			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5416		break;
5417	case DMA_BIDIRECTIONAL:
5418		/* This can happen if a buggy application does a scsi passthru
5419		 * and sets both inlen and outlen to non-zero. ( see
5420		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5421		 */
5422
5423		c->Request.type_attr_dir =
5424			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5425		/* This is technically wrong, and hpsa controllers should
5426		 * reject it with CMD_INVALID, which is the most correct
5427		 * response, but non-fibre backends appear to let it
5428		 * slide by, and give the same results as if this field
5429		 * were set correctly.  Either way is acceptable for
5430		 * our purposes here.
5431		 */
5432
5433		break;
5434
5435	default:
5436		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5437			cmd->sc_data_direction);
5438		BUG();
5439		break;
5440	}
5441
5442	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5443		hpsa_cmd_resolve_and_free(h, c);
5444		return SCSI_MLQUEUE_HOST_BUSY;
5445	}
 
 
 
 
 
 
 
 
5446	enqueue_cmd_and_start_io(h, c);
5447	/* the cmd'll come back via intr handler in complete_scsi_command()  */
5448	return 0;
5449}
5450
5451static void hpsa_cmd_init(struct ctlr_info *h, int index,
5452				struct CommandList *c)
5453{
5454	dma_addr_t cmd_dma_handle, err_dma_handle;
5455
5456	/* Zero out all of commandlist except the last field, refcount */
5457	memset(c, 0, offsetof(struct CommandList, refcount));
5458	c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5459	cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5460	c->err_info = h->errinfo_pool + index;
5461	memset(c->err_info, 0, sizeof(*c->err_info));
5462	err_dma_handle = h->errinfo_pool_dhandle
5463	    + index * sizeof(*c->err_info);
5464	c->cmdindex = index;
5465	c->busaddr = (u32) cmd_dma_handle;
5466	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5467	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5468	c->h = h;
5469	c->scsi_cmd = SCSI_CMD_IDLE;
5470}
5471
5472static void hpsa_preinitialize_commands(struct ctlr_info *h)
5473{
5474	int i;
5475
5476	for (i = 0; i < h->nr_cmds; i++) {
5477		struct CommandList *c = h->cmd_pool + i;
5478
5479		hpsa_cmd_init(h, i, c);
5480		atomic_set(&c->refcount, 0);
5481	}
5482}
5483
5484static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5485				struct CommandList *c)
5486{
5487	dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5488
5489	BUG_ON(c->cmdindex != index);
5490
5491	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5492	memset(c->err_info, 0, sizeof(*c->err_info));
5493	c->busaddr = (u32) cmd_dma_handle;
5494}
5495
5496static int hpsa_ioaccel_submit(struct ctlr_info *h,
5497		struct CommandList *c, struct scsi_cmnd *cmd,
5498		unsigned char *scsi3addr)
5499{
5500	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5501	int rc = IO_ACCEL_INELIGIBLE;
5502
5503	if (!dev)
5504		return SCSI_MLQUEUE_HOST_BUSY;
5505
 
 
 
 
 
 
5506	cmd->host_scribble = (unsigned char *) c;
5507
5508	if (dev->offload_enabled) {
5509		hpsa_cmd_init(h, c->cmdindex, c);
5510		c->cmd_type = CMD_SCSI;
5511		c->scsi_cmd = cmd;
 
 
 
5512		rc = hpsa_scsi_ioaccel_raid_map(h, c);
5513		if (rc < 0)     /* scsi_dma_map failed. */
5514			rc = SCSI_MLQUEUE_HOST_BUSY;
5515	} else if (dev->hba_ioaccel_enabled) {
5516		hpsa_cmd_init(h, c->cmdindex, c);
5517		c->cmd_type = CMD_SCSI;
5518		c->scsi_cmd = cmd;
 
 
 
5519		rc = hpsa_scsi_ioaccel_direct_map(h, c);
5520		if (rc < 0)     /* scsi_dma_map failed. */
5521			rc = SCSI_MLQUEUE_HOST_BUSY;
5522	}
5523	return rc;
5524}
5525
5526static void hpsa_command_resubmit_worker(struct work_struct *work)
5527{
5528	struct scsi_cmnd *cmd;
5529	struct hpsa_scsi_dev_t *dev;
5530	struct CommandList *c = container_of(work, struct CommandList, work);
5531
5532	cmd = c->scsi_cmd;
5533	dev = cmd->device->hostdata;
5534	if (!dev) {
5535		cmd->result = DID_NO_CONNECT << 16;
5536		return hpsa_cmd_free_and_done(c->h, c, cmd);
5537	}
5538	if (c->reset_pending)
 
 
5539		return hpsa_cmd_free_and_done(c->h, c, cmd);
 
 
5540	if (c->cmd_type == CMD_IOACCEL2) {
5541		struct ctlr_info *h = c->h;
5542		struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5543		int rc;
5544
5545		if (c2->error_data.serv_response ==
5546				IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5547			rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
 
5548			if (rc == 0)
5549				return;
5550			if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5551				/*
5552				 * If we get here, it means dma mapping failed.
5553				 * Try again via scsi mid layer, which will
5554				 * then get SCSI_MLQUEUE_HOST_BUSY.
5555				 */
5556				cmd->result = DID_IMM_RETRY << 16;
5557				return hpsa_cmd_free_and_done(h, c, cmd);
5558			}
5559			/* else, fall thru and resubmit down CISS path */
5560		}
5561	}
5562	hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5563	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
 
 
 
 
 
 
 
 
 
5564		/*
5565		 * If we get here, it means dma mapping failed. Try
5566		 * again via scsi mid layer, which will then get
5567		 * SCSI_MLQUEUE_HOST_BUSY.
5568		 *
5569		 * hpsa_ciss_submit will have already freed c
5570		 * if it encountered a dma mapping failure.
5571		 */
5572		cmd->result = DID_IMM_RETRY << 16;
5573		cmd->scsi_done(cmd);
5574	}
5575}
5576
5577/* Running in struct Scsi_Host->host_lock less mode */
5578static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5579{
5580	struct ctlr_info *h;
5581	struct hpsa_scsi_dev_t *dev;
5582	unsigned char scsi3addr[8];
5583	struct CommandList *c;
5584	int rc = 0;
5585
5586	/* Get the ptr to our adapter structure out of cmd->host. */
5587	h = sdev_to_hba(cmd->device);
5588
5589	BUG_ON(cmd->request->tag < 0);
5590
5591	dev = cmd->device->hostdata;
5592	if (!dev) {
5593		cmd->result = DID_NO_CONNECT << 16;
5594		cmd->scsi_done(cmd);
5595		return 0;
5596	}
5597
5598	if (dev->removed) {
5599		cmd->result = DID_NO_CONNECT << 16;
5600		cmd->scsi_done(cmd);
5601		return 0;
5602	}
5603
5604	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5605
5606	if (unlikely(lockup_detected(h))) {
5607		cmd->result = DID_NO_CONNECT << 16;
5608		cmd->scsi_done(cmd);
5609		return 0;
5610	}
 
 
 
 
5611	c = cmd_tagged_alloc(h, cmd);
 
 
 
 
 
 
 
 
5612
5613	/*
5614	 * Call alternate submit routine for I/O accelerated commands.
5615	 * Retries always go down the normal I/O path.
 
 
 
 
5616	 */
5617	if (likely(cmd->retries == 0 &&
5618			!blk_rq_is_passthrough(cmd->request) &&
5619			h->acciopath_status)) {
5620		rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
 
5621		if (rc == 0)
5622			return 0;
5623		if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5624			hpsa_cmd_resolve_and_free(h, c);
5625			return SCSI_MLQUEUE_HOST_BUSY;
5626		}
5627	}
5628	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5629}
5630
5631static void hpsa_scan_complete(struct ctlr_info *h)
5632{
5633	unsigned long flags;
5634
5635	spin_lock_irqsave(&h->scan_lock, flags);
5636	h->scan_finished = 1;
5637	wake_up(&h->scan_wait_queue);
5638	spin_unlock_irqrestore(&h->scan_lock, flags);
5639}
5640
5641static void hpsa_scan_start(struct Scsi_Host *sh)
5642{
5643	struct ctlr_info *h = shost_to_hba(sh);
5644	unsigned long flags;
5645
5646	/*
5647	 * Don't let rescans be initiated on a controller known to be locked
5648	 * up.  If the controller locks up *during* a rescan, that thread is
5649	 * probably hosed, but at least we can prevent new rescan threads from
5650	 * piling up on a locked up controller.
5651	 */
5652	if (unlikely(lockup_detected(h)))
5653		return hpsa_scan_complete(h);
5654
5655	/*
5656	 * If a scan is already waiting to run, no need to add another
5657	 */
5658	spin_lock_irqsave(&h->scan_lock, flags);
5659	if (h->scan_waiting) {
5660		spin_unlock_irqrestore(&h->scan_lock, flags);
5661		return;
5662	}
5663
5664	spin_unlock_irqrestore(&h->scan_lock, flags);
5665
5666	/* wait until any scan already in progress is finished. */
5667	while (1) {
5668		spin_lock_irqsave(&h->scan_lock, flags);
5669		if (h->scan_finished)
5670			break;
5671		h->scan_waiting = 1;
5672		spin_unlock_irqrestore(&h->scan_lock, flags);
5673		wait_event(h->scan_wait_queue, h->scan_finished);
5674		/* Note: We don't need to worry about a race between this
5675		 * thread and driver unload because the midlayer will
5676		 * have incremented the reference count, so unload won't
5677		 * happen if we're in here.
5678		 */
5679	}
5680	h->scan_finished = 0; /* mark scan as in progress */
5681	h->scan_waiting = 0;
5682	spin_unlock_irqrestore(&h->scan_lock, flags);
5683
5684	if (unlikely(lockup_detected(h)))
5685		return hpsa_scan_complete(h);
5686
5687	/*
5688	 * Do the scan after a reset completion
5689	 */
5690	spin_lock_irqsave(&h->reset_lock, flags);
5691	if (h->reset_in_progress) {
5692		h->drv_req_rescan = 1;
5693		spin_unlock_irqrestore(&h->reset_lock, flags);
5694		hpsa_scan_complete(h);
5695		return;
5696	}
5697	spin_unlock_irqrestore(&h->reset_lock, flags);
5698
5699	hpsa_update_scsi_devices(h);
5700
5701	hpsa_scan_complete(h);
5702}
5703
5704static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5705{
5706	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5707
5708	if (!logical_drive)
5709		return -ENODEV;
5710
5711	if (qdepth < 1)
5712		qdepth = 1;
5713	else if (qdepth > logical_drive->queue_depth)
5714		qdepth = logical_drive->queue_depth;
5715
5716	return scsi_change_queue_depth(sdev, qdepth);
5717}
5718
5719static int hpsa_scan_finished(struct Scsi_Host *sh,
5720	unsigned long elapsed_time)
5721{
5722	struct ctlr_info *h = shost_to_hba(sh);
5723	unsigned long flags;
5724	int finished;
5725
5726	spin_lock_irqsave(&h->scan_lock, flags);
5727	finished = h->scan_finished;
5728	spin_unlock_irqrestore(&h->scan_lock, flags);
5729	return finished;
5730}
5731
5732static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5733{
5734	struct Scsi_Host *sh;
5735
5736	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5737	if (sh == NULL) {
5738		dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5739		return -ENOMEM;
5740	}
5741
5742	sh->io_port = 0;
5743	sh->n_io_port = 0;
5744	sh->this_id = -1;
5745	sh->max_channel = 3;
5746	sh->max_cmd_len = MAX_COMMAND_SIZE;
5747	sh->max_lun = HPSA_MAX_LUN;
5748	sh->max_id = HPSA_MAX_LUN;
5749	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5750	sh->cmd_per_lun = sh->can_queue;
5751	sh->sg_tablesize = h->maxsgentries;
5752	sh->transportt = hpsa_sas_transport_template;
5753	sh->hostdata[0] = (unsigned long) h;
5754	sh->irq = pci_irq_vector(h->pdev, 0);
5755	sh->unique_id = sh->irq;
5756
5757	h->scsi_host = sh;
5758	return 0;
5759}
5760
5761static int hpsa_scsi_add_host(struct ctlr_info *h)
5762{
5763	int rv;
5764
5765	rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5766	if (rv) {
5767		dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5768		return rv;
5769	}
5770	scsi_scan_host(h->scsi_host);
5771	return 0;
5772}
5773
5774/*
5775 * The block layer has already gone to the trouble of picking out a unique,
5776 * small-integer tag for this request.  We use an offset from that value as
5777 * an index to select our command block.  (The offset allows us to reserve the
5778 * low-numbered entries for our own uses.)
5779 */
5780static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5781{
5782	int idx = scmd->request->tag;
5783
5784	if (idx < 0)
5785		return idx;
5786
5787	/* Offset to leave space for internal cmds. */
5788	return idx += HPSA_NRESERVED_CMDS;
5789}
5790
5791/*
5792 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5793 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5794 */
5795static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5796				struct CommandList *c, unsigned char lunaddr[],
5797				int reply_queue)
5798{
5799	int rc;
5800
5801	/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5802	(void) fill_cmd(c, TEST_UNIT_READY, h,
5803			NULL, 0, 0, lunaddr, TYPE_CMD);
5804	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5805	if (rc)
5806		return rc;
5807	/* no unmap needed here because no data xfer. */
5808
5809	/* Check if the unit is already ready. */
5810	if (c->err_info->CommandStatus == CMD_SUCCESS)
5811		return 0;
5812
5813	/*
5814	 * The first command sent after reset will receive "unit attention" to
5815	 * indicate that the LUN has been reset...this is actually what we're
5816	 * looking for (but, success is good too).
5817	 */
5818	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5819		c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5820			(c->err_info->SenseInfo[2] == NO_SENSE ||
5821			 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5822		return 0;
5823
5824	return 1;
5825}
5826
5827/*
5828 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5829 * returns zero when the unit is ready, and non-zero when giving up.
5830 */
5831static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5832				struct CommandList *c,
5833				unsigned char lunaddr[], int reply_queue)
5834{
5835	int rc;
5836	int count = 0;
5837	int waittime = 1; /* seconds */
5838
5839	/* Send test unit ready until device ready, or give up. */
5840	for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5841
5842		/*
5843		 * Wait for a bit.  do this first, because if we send
5844		 * the TUR right away, the reset will just abort it.
5845		 */
5846		msleep(1000 * waittime);
5847
5848		rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5849		if (!rc)
5850			break;
5851
5852		/* Increase wait time with each try, up to a point. */
5853		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5854			waittime *= 2;
5855
5856		dev_warn(&h->pdev->dev,
5857			 "waiting %d secs for device to become ready.\n",
5858			 waittime);
5859	}
5860
5861	return rc;
5862}
5863
5864static int wait_for_device_to_become_ready(struct ctlr_info *h,
5865					   unsigned char lunaddr[],
5866					   int reply_queue)
5867{
5868	int first_queue;
5869	int last_queue;
5870	int rq;
5871	int rc = 0;
5872	struct CommandList *c;
5873
5874	c = cmd_alloc(h);
5875
5876	/*
5877	 * If no specific reply queue was requested, then send the TUR
5878	 * repeatedly, requesting a reply on each reply queue; otherwise execute
5879	 * the loop exactly once using only the specified queue.
5880	 */
5881	if (reply_queue == DEFAULT_REPLY_QUEUE) {
5882		first_queue = 0;
5883		last_queue = h->nreply_queues - 1;
5884	} else {
5885		first_queue = reply_queue;
5886		last_queue = reply_queue;
5887	}
5888
5889	for (rq = first_queue; rq <= last_queue; rq++) {
5890		rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5891		if (rc)
5892			break;
5893	}
5894
5895	if (rc)
5896		dev_warn(&h->pdev->dev, "giving up on device.\n");
5897	else
5898		dev_warn(&h->pdev->dev, "device is ready.\n");
5899
5900	cmd_free(h, c);
5901	return rc;
5902}
5903
5904/* Need at least one of these error handlers to keep ../scsi/hosts.c from
5905 * complaining.  Doing a host- or bus-reset can't do anything good here.
5906 */
5907static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5908{
5909	int rc = SUCCESS;
 
5910	struct ctlr_info *h;
5911	struct hpsa_scsi_dev_t *dev;
5912	u8 reset_type;
5913	char msg[48];
5914	unsigned long flags;
5915
5916	/* find the controller to which the command to be aborted was sent */
5917	h = sdev_to_hba(scsicmd->device);
5918	if (h == NULL) /* paranoia */
5919		return FAILED;
5920
5921	spin_lock_irqsave(&h->reset_lock, flags);
5922	h->reset_in_progress = 1;
5923	spin_unlock_irqrestore(&h->reset_lock, flags);
5924
5925	if (lockup_detected(h)) {
5926		rc = FAILED;
5927		goto return_reset_status;
5928	}
5929
5930	dev = scsicmd->device->hostdata;
5931	if (!dev) {
5932		dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5933		rc = FAILED;
5934		goto return_reset_status;
5935	}
5936
5937	if (dev->devtype == TYPE_ENCLOSURE) {
5938		rc = SUCCESS;
5939		goto return_reset_status;
5940	}
5941
5942	/* if controller locked up, we can guarantee command won't complete */
5943	if (lockup_detected(h)) {
5944		snprintf(msg, sizeof(msg),
5945			 "cmd %d RESET FAILED, lockup detected",
5946			 hpsa_get_cmd_index(scsicmd));
5947		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5948		rc = FAILED;
5949		goto return_reset_status;
5950	}
5951
5952	/* this reset request might be the result of a lockup; check */
5953	if (detect_controller_lockup(h)) {
5954		snprintf(msg, sizeof(msg),
5955			 "cmd %d RESET FAILED, new lockup detected",
5956			 hpsa_get_cmd_index(scsicmd));
5957		hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5958		rc = FAILED;
5959		goto return_reset_status;
5960	}
5961
5962	/* Do not attempt on controller */
5963	if (is_hba_lunid(dev->scsi3addr)) {
5964		rc = SUCCESS;
5965		goto return_reset_status;
5966	}
5967
5968	if (is_logical_dev_addr_mode(dev->scsi3addr))
5969		reset_type = HPSA_DEVICE_RESET_MSG;
5970	else
5971		reset_type = HPSA_PHYS_TARGET_RESET;
5972
5973	sprintf(msg, "resetting %s",
5974		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5975	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5976
 
 
 
 
 
 
 
 
 
 
 
5977	/* send a reset to the SCSI LUN which the command was sent to */
5978	rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5979			   DEFAULT_REPLY_QUEUE);
5980	if (rc == 0)
5981		rc = SUCCESS;
5982	else
5983		rc = FAILED;
5984
5985	sprintf(msg, "reset %s %s",
5986		reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5987		rc == SUCCESS ? "completed successfully" : "failed");
5988	hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5989
5990return_reset_status:
5991	spin_lock_irqsave(&h->reset_lock, flags);
5992	h->reset_in_progress = 0;
 
 
5993	spin_unlock_irqrestore(&h->reset_lock, flags);
5994	return rc;
5995}
5996
5997/*
5998 * For operations with an associated SCSI command, a command block is allocated
5999 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6000 * block request tag as an index into a table of entries.  cmd_tagged_free() is
6001 * the complement, although cmd_free() may be called instead.
 
6002 */
6003static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6004					    struct scsi_cmnd *scmd)
6005{
6006	int idx = hpsa_get_cmd_index(scmd);
6007	struct CommandList *c = h->cmd_pool + idx;
6008
6009	if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6010		dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6011			idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6012		/* The index value comes from the block layer, so if it's out of
6013		 * bounds, it's probably not our bug.
6014		 */
6015		BUG();
6016	}
6017
6018	atomic_inc(&c->refcount);
6019	if (unlikely(!hpsa_is_cmd_idle(c))) {
6020		/*
6021		 * We expect that the SCSI layer will hand us a unique tag
6022		 * value.  Thus, there should never be a collision here between
6023		 * two requests...because if the selected command isn't idle
6024		 * then someone is going to be very disappointed.
6025		 */
6026		dev_err(&h->pdev->dev,
6027			"tag collision (tag=%d) in cmd_tagged_alloc().\n",
6028			idx);
6029		if (c->scsi_cmd != NULL)
6030			scsi_print_command(c->scsi_cmd);
6031		scsi_print_command(scmd);
 
 
6032	}
6033
 
6034	hpsa_cmd_partial_init(h, idx, c);
 
 
 
 
 
 
 
6035	return c;
6036}
6037
6038static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6039{
6040	/*
6041	 * Release our reference to the block.  We don't need to do anything
6042	 * else to free it, because it is accessed by index.
6043	 */
6044	(void)atomic_dec(&c->refcount);
6045}
6046
6047/*
6048 * For operations that cannot sleep, a command block is allocated at init,
6049 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6050 * which ones are free or in use.  Lock must be held when calling this.
6051 * cmd_free() is the complement.
6052 * This function never gives up and returns NULL.  If it hangs,
6053 * another thread must call cmd_free() to free some tags.
6054 */
6055
6056static struct CommandList *cmd_alloc(struct ctlr_info *h)
6057{
6058	struct CommandList *c;
6059	int refcount, i;
6060	int offset = 0;
6061
6062	/*
6063	 * There is some *extremely* small but non-zero chance that that
6064	 * multiple threads could get in here, and one thread could
6065	 * be scanning through the list of bits looking for a free
6066	 * one, but the free ones are always behind him, and other
6067	 * threads sneak in behind him and eat them before he can
6068	 * get to them, so that while there is always a free one, a
6069	 * very unlucky thread might be starved anyway, never able to
6070	 * beat the other threads.  In reality, this happens so
6071	 * infrequently as to be indistinguishable from never.
6072	 *
6073	 * Note that we start allocating commands before the SCSI host structure
6074	 * is initialized.  Since the search starts at bit zero, this
6075	 * all works, since we have at least one command structure available;
6076	 * however, it means that the structures with the low indexes have to be
6077	 * reserved for driver-initiated requests, while requests from the block
6078	 * layer will use the higher indexes.
6079	 */
6080
6081	for (;;) {
6082		i = find_next_zero_bit(h->cmd_pool_bits,
6083					HPSA_NRESERVED_CMDS,
6084					offset);
6085		if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6086			offset = 0;
6087			continue;
6088		}
6089		c = h->cmd_pool + i;
6090		refcount = atomic_inc_return(&c->refcount);
6091		if (unlikely(refcount > 1)) {
6092			cmd_free(h, c); /* already in use */
6093			offset = (i + 1) % HPSA_NRESERVED_CMDS;
6094			continue;
6095		}
6096		set_bit(i & (BITS_PER_LONG - 1),
6097			h->cmd_pool_bits + (i / BITS_PER_LONG));
6098		break; /* it's ours now. */
6099	}
6100	hpsa_cmd_partial_init(h, i, c);
 
 
 
 
 
 
 
 
6101	return c;
6102}
6103
6104/*
6105 * This is the complementary operation to cmd_alloc().  Note, however, in some
6106 * corner cases it may also be used to free blocks allocated by
6107 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6108 * the clear-bit is harmless.
6109 */
6110static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6111{
6112	if (atomic_dec_and_test(&c->refcount)) {
6113		int i;
6114
6115		i = c - h->cmd_pool;
6116		clear_bit(i & (BITS_PER_LONG - 1),
6117			  h->cmd_pool_bits + (i / BITS_PER_LONG));
6118	}
6119}
6120
6121#ifdef CONFIG_COMPAT
6122
6123static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6124	void __user *arg)
6125{
6126	IOCTL32_Command_struct __user *arg32 =
6127	    (IOCTL32_Command_struct __user *) arg;
6128	IOCTL_Command_struct arg64;
6129	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6130	int err;
6131	u32 cp;
6132
 
 
 
6133	memset(&arg64, 0, sizeof(arg64));
6134	err = 0;
6135	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6136			   sizeof(arg64.LUN_info));
6137	err |= copy_from_user(&arg64.Request, &arg32->Request,
6138			   sizeof(arg64.Request));
6139	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6140			   sizeof(arg64.error_info));
6141	err |= get_user(arg64.buf_size, &arg32->buf_size);
6142	err |= get_user(cp, &arg32->buf);
6143	arg64.buf = compat_ptr(cp);
6144	err |= copy_to_user(p, &arg64, sizeof(arg64));
6145
6146	if (err)
6147		return -EFAULT;
6148
6149	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
 
 
 
6150	if (err)
6151		return err;
6152	err |= copy_in_user(&arg32->error_info, &p->error_info,
6153			 sizeof(arg32->error_info));
6154	if (err)
6155		return -EFAULT;
6156	return err;
6157}
6158
6159static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6160	int cmd, void __user *arg)
6161{
6162	BIG_IOCTL32_Command_struct __user *arg32 =
6163	    (BIG_IOCTL32_Command_struct __user *) arg;
6164	BIG_IOCTL_Command_struct arg64;
6165	BIG_IOCTL_Command_struct __user *p =
6166	    compat_alloc_user_space(sizeof(arg64));
6167	int err;
6168	u32 cp;
6169
 
 
6170	memset(&arg64, 0, sizeof(arg64));
6171	err = 0;
6172	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6173			   sizeof(arg64.LUN_info));
6174	err |= copy_from_user(&arg64.Request, &arg32->Request,
6175			   sizeof(arg64.Request));
6176	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6177			   sizeof(arg64.error_info));
6178	err |= get_user(arg64.buf_size, &arg32->buf_size);
6179	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6180	err |= get_user(cp, &arg32->buf);
6181	arg64.buf = compat_ptr(cp);
6182	err |= copy_to_user(p, &arg64, sizeof(arg64));
6183
6184	if (err)
6185		return -EFAULT;
6186
6187	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
 
 
 
6188	if (err)
6189		return err;
6190	err |= copy_in_user(&arg32->error_info, &p->error_info,
6191			 sizeof(arg32->error_info));
6192	if (err)
6193		return -EFAULT;
6194	return err;
6195}
6196
6197static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 
6198{
6199	switch (cmd) {
6200	case CCISS_GETPCIINFO:
6201	case CCISS_GETINTINFO:
6202	case CCISS_SETINTINFO:
6203	case CCISS_GETNODENAME:
6204	case CCISS_SETNODENAME:
6205	case CCISS_GETHEARTBEAT:
6206	case CCISS_GETBUSTYPES:
6207	case CCISS_GETFIRMVER:
6208	case CCISS_GETDRIVVER:
6209	case CCISS_REVALIDVOLS:
6210	case CCISS_DEREGDISK:
6211	case CCISS_REGNEWDISK:
6212	case CCISS_REGNEWD:
6213	case CCISS_RESCANDISK:
6214	case CCISS_GETLUNINFO:
6215		return hpsa_ioctl(dev, cmd, arg);
6216
6217	case CCISS_PASSTHRU32:
6218		return hpsa_ioctl32_passthru(dev, cmd, arg);
6219	case CCISS_BIG_PASSTHRU32:
6220		return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6221
6222	default:
6223		return -ENOIOCTLCMD;
6224	}
6225}
6226#endif
6227
6228static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6229{
6230	struct hpsa_pci_info pciinfo;
6231
6232	if (!argp)
6233		return -EINVAL;
6234	pciinfo.domain = pci_domain_nr(h->pdev->bus);
6235	pciinfo.bus = h->pdev->bus->number;
6236	pciinfo.dev_fn = h->pdev->devfn;
6237	pciinfo.board_id = h->board_id;
6238	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6239		return -EFAULT;
6240	return 0;
6241}
6242
6243static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6244{
6245	DriverVer_type DriverVer;
6246	unsigned char vmaj, vmin, vsubmin;
6247	int rc;
6248
6249	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6250		&vmaj, &vmin, &vsubmin);
6251	if (rc != 3) {
6252		dev_info(&h->pdev->dev, "driver version string '%s' "
6253			"unrecognized.", HPSA_DRIVER_VERSION);
6254		vmaj = 0;
6255		vmin = 0;
6256		vsubmin = 0;
6257	}
6258	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6259	if (!argp)
6260		return -EINVAL;
6261	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6262		return -EFAULT;
6263	return 0;
6264}
6265
6266static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 
6267{
6268	IOCTL_Command_struct iocommand;
6269	struct CommandList *c;
6270	char *buff = NULL;
6271	u64 temp64;
6272	int rc = 0;
6273
6274	if (!argp)
6275		return -EINVAL;
6276	if (!capable(CAP_SYS_RAWIO))
6277		return -EPERM;
6278	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6279		return -EFAULT;
6280	if ((iocommand.buf_size < 1) &&
6281	    (iocommand.Request.Type.Direction != XFER_NONE)) {
6282		return -EINVAL;
6283	}
6284	if (iocommand.buf_size > 0) {
6285		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6286		if (buff == NULL)
6287			return -ENOMEM;
6288		if (iocommand.Request.Type.Direction & XFER_WRITE) {
6289			/* Copy the data into the buffer we created */
6290			if (copy_from_user(buff, iocommand.buf,
6291				iocommand.buf_size)) {
6292				rc = -EFAULT;
6293				goto out_kfree;
6294			}
6295		} else {
6296			memset(buff, 0, iocommand.buf_size);
6297		}
6298	}
6299	c = cmd_alloc(h);
6300
6301	/* Fill in the command type */
6302	c->cmd_type = CMD_IOCTL_PEND;
6303	c->scsi_cmd = SCSI_CMD_BUSY;
6304	/* Fill in Command Header */
6305	c->Header.ReplyQueue = 0; /* unused in simple mode */
6306	if (iocommand.buf_size > 0) {	/* buffer to fill */
6307		c->Header.SGList = 1;
6308		c->Header.SGTotal = cpu_to_le16(1);
6309	} else	{ /* no buffers to fill */
6310		c->Header.SGList = 0;
6311		c->Header.SGTotal = cpu_to_le16(0);
6312	}
6313	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6314
6315	/* Fill in Request block */
6316	memcpy(&c->Request, &iocommand.Request,
6317		sizeof(c->Request));
6318
6319	/* Fill in the scatter gather information */
6320	if (iocommand.buf_size > 0) {
6321		temp64 = pci_map_single(h->pdev, buff,
6322			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6323		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6324			c->SG[0].Addr = cpu_to_le64(0);
6325			c->SG[0].Len = cpu_to_le32(0);
6326			rc = -ENOMEM;
6327			goto out;
6328		}
6329		c->SG[0].Addr = cpu_to_le64(temp64);
6330		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6331		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6332	}
6333	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6334					NO_TIMEOUT);
6335	if (iocommand.buf_size > 0)
6336		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6337	check_ioctl_unit_attention(h, c);
6338	if (rc) {
6339		rc = -EIO;
6340		goto out;
6341	}
6342
6343	/* Copy the error information out */
6344	memcpy(&iocommand.error_info, c->err_info,
6345		sizeof(iocommand.error_info));
6346	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6347		rc = -EFAULT;
6348		goto out;
6349	}
6350	if ((iocommand.Request.Type.Direction & XFER_READ) &&
6351		iocommand.buf_size > 0) {
6352		/* Copy the data out of the buffer we created */
6353		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6354			rc = -EFAULT;
6355			goto out;
6356		}
6357	}
6358out:
6359	cmd_free(h, c);
6360out_kfree:
6361	kfree(buff);
6362	return rc;
6363}
6364
6365static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
 
6366{
6367	BIG_IOCTL_Command_struct *ioc;
6368	struct CommandList *c;
6369	unsigned char **buff = NULL;
6370	int *buff_size = NULL;
6371	u64 temp64;
6372	BYTE sg_used = 0;
6373	int status = 0;
6374	u32 left;
6375	u32 sz;
6376	BYTE __user *data_ptr;
6377
6378	if (!argp)
6379		return -EINVAL;
6380	if (!capable(CAP_SYS_RAWIO))
6381		return -EPERM;
6382	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
6383	if (!ioc) {
6384		status = -ENOMEM;
6385		goto cleanup1;
6386	}
6387	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6388		status = -EFAULT;
6389		goto cleanup1;
6390	}
6391	if ((ioc->buf_size < 1) &&
6392	    (ioc->Request.Type.Direction != XFER_NONE)) {
6393		status = -EINVAL;
6394		goto cleanup1;
6395	}
6396	/* Check kmalloc limits  using all SGs */
6397	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6398		status = -EINVAL;
6399		goto cleanup1;
6400	}
6401	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6402		status = -EINVAL;
6403		goto cleanup1;
6404	}
6405	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6406	if (!buff) {
6407		status = -ENOMEM;
6408		goto cleanup1;
6409	}
6410	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6411	if (!buff_size) {
6412		status = -ENOMEM;
6413		goto cleanup1;
6414	}
6415	left = ioc->buf_size;
6416	data_ptr = ioc->buf;
6417	while (left) {
6418		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6419		buff_size[sg_used] = sz;
6420		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6421		if (buff[sg_used] == NULL) {
6422			status = -ENOMEM;
6423			goto cleanup1;
6424		}
6425		if (ioc->Request.Type.Direction & XFER_WRITE) {
6426			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6427				status = -EFAULT;
6428				goto cleanup1;
6429			}
6430		} else
6431			memset(buff[sg_used], 0, sz);
6432		left -= sz;
6433		data_ptr += sz;
6434		sg_used++;
6435	}
6436	c = cmd_alloc(h);
6437
6438	c->cmd_type = CMD_IOCTL_PEND;
6439	c->scsi_cmd = SCSI_CMD_BUSY;
6440	c->Header.ReplyQueue = 0;
6441	c->Header.SGList = (u8) sg_used;
6442	c->Header.SGTotal = cpu_to_le16(sg_used);
6443	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6444	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6445	if (ioc->buf_size > 0) {
6446		int i;
6447		for (i = 0; i < sg_used; i++) {
6448			temp64 = pci_map_single(h->pdev, buff[i],
6449				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
6450			if (dma_mapping_error(&h->pdev->dev,
6451							(dma_addr_t) temp64)) {
6452				c->SG[i].Addr = cpu_to_le64(0);
6453				c->SG[i].Len = cpu_to_le32(0);
6454				hpsa_pci_unmap(h->pdev, c, i,
6455					PCI_DMA_BIDIRECTIONAL);
6456				status = -ENOMEM;
6457				goto cleanup0;
6458			}
6459			c->SG[i].Addr = cpu_to_le64(temp64);
6460			c->SG[i].Len = cpu_to_le32(buff_size[i]);
6461			c->SG[i].Ext = cpu_to_le32(0);
6462		}
6463		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6464	}
6465	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6466						NO_TIMEOUT);
6467	if (sg_used)
6468		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6469	check_ioctl_unit_attention(h, c);
6470	if (status) {
6471		status = -EIO;
6472		goto cleanup0;
6473	}
6474
6475	/* Copy the error information out */
6476	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6477	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6478		status = -EFAULT;
6479		goto cleanup0;
6480	}
6481	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6482		int i;
6483
6484		/* Copy the data out of the buffer we created */
6485		BYTE __user *ptr = ioc->buf;
6486		for (i = 0; i < sg_used; i++) {
6487			if (copy_to_user(ptr, buff[i], buff_size[i])) {
6488				status = -EFAULT;
6489				goto cleanup0;
6490			}
6491			ptr += buff_size[i];
6492		}
6493	}
6494	status = 0;
6495cleanup0:
6496	cmd_free(h, c);
6497cleanup1:
6498	if (buff) {
6499		int i;
6500
6501		for (i = 0; i < sg_used; i++)
6502			kfree(buff[i]);
6503		kfree(buff);
6504	}
6505	kfree(buff_size);
6506	kfree(ioc);
6507	return status;
6508}
6509
6510static void check_ioctl_unit_attention(struct ctlr_info *h,
6511	struct CommandList *c)
6512{
6513	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6514			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6515		(void) check_for_unit_attention(h, c);
6516}
6517
6518/*
6519 * ioctl
6520 */
6521static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
 
6522{
6523	struct ctlr_info *h;
6524	void __user *argp = (void __user *)arg;
6525	int rc;
6526
6527	h = sdev_to_hba(dev);
6528
6529	switch (cmd) {
6530	case CCISS_DEREGDISK:
6531	case CCISS_REGNEWDISK:
6532	case CCISS_REGNEWD:
6533		hpsa_scan_start(h->scsi_host);
6534		return 0;
6535	case CCISS_GETPCIINFO:
6536		return hpsa_getpciinfo_ioctl(h, argp);
6537	case CCISS_GETDRIVVER:
6538		return hpsa_getdrivver_ioctl(h, argp);
6539	case CCISS_PASSTHRU:
 
 
 
 
 
 
6540		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6541			return -EAGAIN;
6542		rc = hpsa_passthru_ioctl(h, argp);
6543		atomic_inc(&h->passthru_cmds_avail);
 
 
6544		return rc;
6545	case CCISS_BIG_PASSTHRU:
 
 
 
 
 
 
6546		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6547			return -EAGAIN;
6548		rc = hpsa_big_passthru_ioctl(h, argp);
6549		atomic_inc(&h->passthru_cmds_avail);
 
 
6550		return rc;
 
6551	default:
6552		return -ENOTTY;
6553	}
6554}
6555
6556static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6557				u8 reset_type)
6558{
6559	struct CommandList *c;
6560
6561	c = cmd_alloc(h);
6562
6563	/* fill_cmd can't fail here, no data buffer to map */
6564	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6565		RAID_CTLR_LUNID, TYPE_MSG);
6566	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6567	c->waiting = NULL;
6568	enqueue_cmd_and_start_io(h, c);
6569	/* Don't wait for completion, the reset won't complete.  Don't free
6570	 * the command either.  This is the last command we will send before
6571	 * re-initializing everything, so it doesn't matter and won't leak.
6572	 */
6573	return;
6574}
6575
6576static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6577	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6578	int cmd_type)
6579{
6580	int pci_dir = XFER_NONE;
6581
6582	c->cmd_type = CMD_IOCTL_PEND;
6583	c->scsi_cmd = SCSI_CMD_BUSY;
6584	c->Header.ReplyQueue = 0;
6585	if (buff != NULL && size > 0) {
6586		c->Header.SGList = 1;
6587		c->Header.SGTotal = cpu_to_le16(1);
6588	} else {
6589		c->Header.SGList = 0;
6590		c->Header.SGTotal = cpu_to_le16(0);
6591	}
6592	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6593
6594	if (cmd_type == TYPE_CMD) {
6595		switch (cmd) {
6596		case HPSA_INQUIRY:
6597			/* are we trying to read a vital product page */
6598			if (page_code & VPD_PAGE) {
6599				c->Request.CDB[1] = 0x01;
6600				c->Request.CDB[2] = (page_code & 0xff);
6601			}
6602			c->Request.CDBLen = 6;
6603			c->Request.type_attr_dir =
6604				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6605			c->Request.Timeout = 0;
6606			c->Request.CDB[0] = HPSA_INQUIRY;
6607			c->Request.CDB[4] = size & 0xFF;
6608			break;
6609		case RECEIVE_DIAGNOSTIC:
6610			c->Request.CDBLen = 6;
6611			c->Request.type_attr_dir =
6612				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6613			c->Request.Timeout = 0;
6614			c->Request.CDB[0] = cmd;
6615			c->Request.CDB[1] = 1;
6616			c->Request.CDB[2] = 1;
6617			c->Request.CDB[3] = (size >> 8) & 0xFF;
6618			c->Request.CDB[4] = size & 0xFF;
6619			break;
6620		case HPSA_REPORT_LOG:
6621		case HPSA_REPORT_PHYS:
6622			/* Talking to controller so It's a physical command
6623			   mode = 00 target = 0.  Nothing to write.
6624			 */
6625			c->Request.CDBLen = 12;
6626			c->Request.type_attr_dir =
6627				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6628			c->Request.Timeout = 0;
6629			c->Request.CDB[0] = cmd;
6630			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6631			c->Request.CDB[7] = (size >> 16) & 0xFF;
6632			c->Request.CDB[8] = (size >> 8) & 0xFF;
6633			c->Request.CDB[9] = size & 0xFF;
6634			break;
6635		case BMIC_SENSE_DIAG_OPTIONS:
6636			c->Request.CDBLen = 16;
6637			c->Request.type_attr_dir =
6638				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6639			c->Request.Timeout = 0;
6640			/* Spec says this should be BMIC_WRITE */
6641			c->Request.CDB[0] = BMIC_READ;
6642			c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6643			break;
6644		case BMIC_SET_DIAG_OPTIONS:
6645			c->Request.CDBLen = 16;
6646			c->Request.type_attr_dir =
6647					TYPE_ATTR_DIR(cmd_type,
6648						ATTR_SIMPLE, XFER_WRITE);
6649			c->Request.Timeout = 0;
6650			c->Request.CDB[0] = BMIC_WRITE;
6651			c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6652			break;
6653		case HPSA_CACHE_FLUSH:
6654			c->Request.CDBLen = 12;
6655			c->Request.type_attr_dir =
6656					TYPE_ATTR_DIR(cmd_type,
6657						ATTR_SIMPLE, XFER_WRITE);
6658			c->Request.Timeout = 0;
6659			c->Request.CDB[0] = BMIC_WRITE;
6660			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6661			c->Request.CDB[7] = (size >> 8) & 0xFF;
6662			c->Request.CDB[8] = size & 0xFF;
6663			break;
6664		case TEST_UNIT_READY:
6665			c->Request.CDBLen = 6;
6666			c->Request.type_attr_dir =
6667				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6668			c->Request.Timeout = 0;
6669			break;
6670		case HPSA_GET_RAID_MAP:
6671			c->Request.CDBLen = 12;
6672			c->Request.type_attr_dir =
6673				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6674			c->Request.Timeout = 0;
6675			c->Request.CDB[0] = HPSA_CISS_READ;
6676			c->Request.CDB[1] = cmd;
6677			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6678			c->Request.CDB[7] = (size >> 16) & 0xFF;
6679			c->Request.CDB[8] = (size >> 8) & 0xFF;
6680			c->Request.CDB[9] = size & 0xFF;
6681			break;
6682		case BMIC_SENSE_CONTROLLER_PARAMETERS:
6683			c->Request.CDBLen = 10;
6684			c->Request.type_attr_dir =
6685				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6686			c->Request.Timeout = 0;
6687			c->Request.CDB[0] = BMIC_READ;
6688			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6689			c->Request.CDB[7] = (size >> 16) & 0xFF;
6690			c->Request.CDB[8] = (size >> 8) & 0xFF;
6691			break;
6692		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6693			c->Request.CDBLen = 10;
6694			c->Request.type_attr_dir =
6695				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6696			c->Request.Timeout = 0;
6697			c->Request.CDB[0] = BMIC_READ;
6698			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6699			c->Request.CDB[7] = (size >> 16) & 0xFF;
6700			c->Request.CDB[8] = (size >> 8) & 0XFF;
6701			break;
6702		case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6703			c->Request.CDBLen = 10;
6704			c->Request.type_attr_dir =
6705				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6706			c->Request.Timeout = 0;
6707			c->Request.CDB[0] = BMIC_READ;
6708			c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6709			c->Request.CDB[7] = (size >> 16) & 0xFF;
6710			c->Request.CDB[8] = (size >> 8) & 0XFF;
6711			break;
6712		case BMIC_SENSE_STORAGE_BOX_PARAMS:
6713			c->Request.CDBLen = 10;
6714			c->Request.type_attr_dir =
6715				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6716			c->Request.Timeout = 0;
6717			c->Request.CDB[0] = BMIC_READ;
6718			c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6719			c->Request.CDB[7] = (size >> 16) & 0xFF;
6720			c->Request.CDB[8] = (size >> 8) & 0XFF;
6721			break;
6722		case BMIC_IDENTIFY_CONTROLLER:
6723			c->Request.CDBLen = 10;
6724			c->Request.type_attr_dir =
6725				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6726			c->Request.Timeout = 0;
6727			c->Request.CDB[0] = BMIC_READ;
6728			c->Request.CDB[1] = 0;
6729			c->Request.CDB[2] = 0;
6730			c->Request.CDB[3] = 0;
6731			c->Request.CDB[4] = 0;
6732			c->Request.CDB[5] = 0;
6733			c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6734			c->Request.CDB[7] = (size >> 16) & 0xFF;
6735			c->Request.CDB[8] = (size >> 8) & 0XFF;
6736			c->Request.CDB[9] = 0;
6737			break;
6738		default:
6739			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6740			BUG();
6741		}
6742	} else if (cmd_type == TYPE_MSG) {
6743		switch (cmd) {
6744
6745		case  HPSA_PHYS_TARGET_RESET:
6746			c->Request.CDBLen = 16;
6747			c->Request.type_attr_dir =
6748				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6749			c->Request.Timeout = 0; /* Don't time out */
6750			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6751			c->Request.CDB[0] = HPSA_RESET;
6752			c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6753			/* Physical target reset needs no control bytes 4-7*/
6754			c->Request.CDB[4] = 0x00;
6755			c->Request.CDB[5] = 0x00;
6756			c->Request.CDB[6] = 0x00;
6757			c->Request.CDB[7] = 0x00;
6758			break;
6759		case  HPSA_DEVICE_RESET_MSG:
6760			c->Request.CDBLen = 16;
6761			c->Request.type_attr_dir =
6762				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6763			c->Request.Timeout = 0; /* Don't time out */
6764			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6765			c->Request.CDB[0] =  cmd;
6766			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6767			/* If bytes 4-7 are zero, it means reset the */
6768			/* LunID device */
6769			c->Request.CDB[4] = 0x00;
6770			c->Request.CDB[5] = 0x00;
6771			c->Request.CDB[6] = 0x00;
6772			c->Request.CDB[7] = 0x00;
6773			break;
6774		default:
6775			dev_warn(&h->pdev->dev, "unknown message type %d\n",
6776				cmd);
6777			BUG();
6778		}
6779	} else {
6780		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6781		BUG();
6782	}
6783
6784	switch (GET_DIR(c->Request.type_attr_dir)) {
6785	case XFER_READ:
6786		pci_dir = PCI_DMA_FROMDEVICE;
6787		break;
6788	case XFER_WRITE:
6789		pci_dir = PCI_DMA_TODEVICE;
6790		break;
6791	case XFER_NONE:
6792		pci_dir = PCI_DMA_NONE;
6793		break;
6794	default:
6795		pci_dir = PCI_DMA_BIDIRECTIONAL;
6796	}
6797	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6798		return -1;
6799	return 0;
6800}
6801
6802/*
6803 * Map (physical) PCI mem into (virtual) kernel space
6804 */
6805static void __iomem *remap_pci_mem(ulong base, ulong size)
6806{
6807	ulong page_base = ((ulong) base) & PAGE_MASK;
6808	ulong page_offs = ((ulong) base) - page_base;
6809	void __iomem *page_remapped = ioremap_nocache(page_base,
6810		page_offs + size);
6811
6812	return page_remapped ? (page_remapped + page_offs) : NULL;
6813}
6814
6815static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6816{
6817	return h->access.command_completed(h, q);
6818}
6819
6820static inline bool interrupt_pending(struct ctlr_info *h)
6821{
6822	return h->access.intr_pending(h);
6823}
6824
6825static inline long interrupt_not_for_us(struct ctlr_info *h)
6826{
6827	return (h->access.intr_pending(h) == 0) ||
6828		(h->interrupts_enabled == 0);
6829}
6830
6831static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6832	u32 raw_tag)
6833{
6834	if (unlikely(tag_index >= h->nr_cmds)) {
6835		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6836		return 1;
6837	}
6838	return 0;
6839}
6840
6841static inline void finish_cmd(struct CommandList *c)
6842{
6843	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6844	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6845			|| c->cmd_type == CMD_IOACCEL2))
6846		complete_scsi_command(c);
6847	else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6848		complete(c->waiting);
6849}
6850
6851/* process completion of an indexed ("direct lookup") command */
6852static inline void process_indexed_cmd(struct ctlr_info *h,
6853	u32 raw_tag)
6854{
6855	u32 tag_index;
6856	struct CommandList *c;
6857
6858	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6859	if (!bad_tag(h, tag_index, raw_tag)) {
6860		c = h->cmd_pool + tag_index;
6861		finish_cmd(c);
6862	}
6863}
6864
6865/* Some controllers, like p400, will give us one interrupt
6866 * after a soft reset, even if we turned interrupts off.
6867 * Only need to check for this in the hpsa_xxx_discard_completions
6868 * functions.
6869 */
6870static int ignore_bogus_interrupt(struct ctlr_info *h)
6871{
6872	if (likely(!reset_devices))
6873		return 0;
6874
6875	if (likely(h->interrupts_enabled))
6876		return 0;
6877
6878	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6879		"(known firmware bug.)  Ignoring.\n");
6880
6881	return 1;
6882}
6883
6884/*
6885 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6886 * Relies on (h-q[x] == x) being true for x such that
6887 * 0 <= x < MAX_REPLY_QUEUES.
6888 */
6889static struct ctlr_info *queue_to_hba(u8 *queue)
6890{
6891	return container_of((queue - *queue), struct ctlr_info, q[0]);
6892}
6893
6894static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6895{
6896	struct ctlr_info *h = queue_to_hba(queue);
6897	u8 q = *(u8 *) queue;
6898	u32 raw_tag;
6899
6900	if (ignore_bogus_interrupt(h))
6901		return IRQ_NONE;
6902
6903	if (interrupt_not_for_us(h))
6904		return IRQ_NONE;
6905	h->last_intr_timestamp = get_jiffies_64();
6906	while (interrupt_pending(h)) {
6907		raw_tag = get_next_completion(h, q);
6908		while (raw_tag != FIFO_EMPTY)
6909			raw_tag = next_command(h, q);
6910	}
6911	return IRQ_HANDLED;
6912}
6913
6914static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6915{
6916	struct ctlr_info *h = queue_to_hba(queue);
6917	u32 raw_tag;
6918	u8 q = *(u8 *) queue;
6919
6920	if (ignore_bogus_interrupt(h))
6921		return IRQ_NONE;
6922
6923	h->last_intr_timestamp = get_jiffies_64();
6924	raw_tag = get_next_completion(h, q);
6925	while (raw_tag != FIFO_EMPTY)
6926		raw_tag = next_command(h, q);
6927	return IRQ_HANDLED;
6928}
6929
6930static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6931{
6932	struct ctlr_info *h = queue_to_hba((u8 *) queue);
6933	u32 raw_tag;
6934	u8 q = *(u8 *) queue;
6935
6936	if (interrupt_not_for_us(h))
6937		return IRQ_NONE;
6938	h->last_intr_timestamp = get_jiffies_64();
6939	while (interrupt_pending(h)) {
6940		raw_tag = get_next_completion(h, q);
6941		while (raw_tag != FIFO_EMPTY) {
6942			process_indexed_cmd(h, raw_tag);
6943			raw_tag = next_command(h, q);
6944		}
6945	}
6946	return IRQ_HANDLED;
6947}
6948
6949static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6950{
6951	struct ctlr_info *h = queue_to_hba(queue);
6952	u32 raw_tag;
6953	u8 q = *(u8 *) queue;
6954
6955	h->last_intr_timestamp = get_jiffies_64();
6956	raw_tag = get_next_completion(h, q);
6957	while (raw_tag != FIFO_EMPTY) {
6958		process_indexed_cmd(h, raw_tag);
6959		raw_tag = next_command(h, q);
6960	}
6961	return IRQ_HANDLED;
6962}
6963
6964/* Send a message CDB to the firmware. Careful, this only works
6965 * in simple mode, not performant mode due to the tag lookup.
6966 * We only ever use this immediately after a controller reset.
6967 */
6968static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6969			unsigned char type)
6970{
6971	struct Command {
6972		struct CommandListHeader CommandHeader;
6973		struct RequestBlock Request;
6974		struct ErrDescriptor ErrorDescriptor;
6975	};
6976	struct Command *cmd;
6977	static const size_t cmd_sz = sizeof(*cmd) +
6978					sizeof(cmd->ErrorDescriptor);
6979	dma_addr_t paddr64;
6980	__le32 paddr32;
6981	u32 tag;
6982	void __iomem *vaddr;
6983	int i, err;
6984
6985	vaddr = pci_ioremap_bar(pdev, 0);
6986	if (vaddr == NULL)
6987		return -ENOMEM;
6988
6989	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
6990	 * CCISS commands, so they must be allocated from the lower 4GiB of
6991	 * memory.
6992	 */
6993	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
6994	if (err) {
6995		iounmap(vaddr);
6996		return err;
6997	}
6998
6999	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7000	if (cmd == NULL) {
7001		iounmap(vaddr);
7002		return -ENOMEM;
7003	}
7004
7005	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
7006	 * although there's no guarantee, we assume that the address is at
7007	 * least 4-byte aligned (most likely, it's page-aligned).
7008	 */
7009	paddr32 = cpu_to_le32(paddr64);
7010
7011	cmd->CommandHeader.ReplyQueue = 0;
7012	cmd->CommandHeader.SGList = 0;
7013	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7014	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7015	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7016
7017	cmd->Request.CDBLen = 16;
7018	cmd->Request.type_attr_dir =
7019			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7020	cmd->Request.Timeout = 0; /* Don't time out */
7021	cmd->Request.CDB[0] = opcode;
7022	cmd->Request.CDB[1] = type;
7023	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7024	cmd->ErrorDescriptor.Addr =
7025			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7026	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7027
7028	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7029
7030	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7031		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7032		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7033			break;
7034		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7035	}
7036
7037	iounmap(vaddr);
7038
7039	/* we leak the DMA buffer here ... no choice since the controller could
7040	 *  still complete the command.
7041	 */
7042	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7043		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7044			opcode, type);
7045		return -ETIMEDOUT;
7046	}
7047
7048	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7049
7050	if (tag & HPSA_ERROR_BIT) {
7051		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7052			opcode, type);
7053		return -EIO;
7054	}
7055
7056	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7057		opcode, type);
7058	return 0;
7059}
7060
7061#define hpsa_noop(p) hpsa_message(p, 3, 0)
7062
7063static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7064	void __iomem *vaddr, u32 use_doorbell)
7065{
7066
7067	if (use_doorbell) {
7068		/* For everything after the P600, the PCI power state method
7069		 * of resetting the controller doesn't work, so we have this
7070		 * other way using the doorbell register.
7071		 */
7072		dev_info(&pdev->dev, "using doorbell to reset controller\n");
7073		writel(use_doorbell, vaddr + SA5_DOORBELL);
7074
7075		/* PMC hardware guys tell us we need a 10 second delay after
7076		 * doorbell reset and before any attempt to talk to the board
7077		 * at all to ensure that this actually works and doesn't fall
7078		 * over in some weird corner cases.
7079		 */
7080		msleep(10000);
7081	} else { /* Try to do it the PCI power state way */
7082
7083		/* Quoting from the Open CISS Specification: "The Power
7084		 * Management Control/Status Register (CSR) controls the power
7085		 * state of the device.  The normal operating state is D0,
7086		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7087		 * the controller, place the interface device in D3 then to D0,
7088		 * this causes a secondary PCI reset which will reset the
7089		 * controller." */
7090
7091		int rc = 0;
7092
7093		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7094
7095		/* enter the D3hot power management state */
7096		rc = pci_set_power_state(pdev, PCI_D3hot);
7097		if (rc)
7098			return rc;
7099
7100		msleep(500);
7101
7102		/* enter the D0 power management state */
7103		rc = pci_set_power_state(pdev, PCI_D0);
7104		if (rc)
7105			return rc;
7106
7107		/*
7108		 * The P600 requires a small delay when changing states.
7109		 * Otherwise we may think the board did not reset and we bail.
7110		 * This for kdump only and is particular to the P600.
7111		 */
7112		msleep(500);
7113	}
7114	return 0;
7115}
7116
7117static void init_driver_version(char *driver_version, int len)
7118{
7119	memset(driver_version, 0, len);
7120	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7121}
7122
7123static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7124{
7125	char *driver_version;
7126	int i, size = sizeof(cfgtable->driver_version);
7127
7128	driver_version = kmalloc(size, GFP_KERNEL);
7129	if (!driver_version)
7130		return -ENOMEM;
7131
7132	init_driver_version(driver_version, size);
7133	for (i = 0; i < size; i++)
7134		writeb(driver_version[i], &cfgtable->driver_version[i]);
7135	kfree(driver_version);
7136	return 0;
7137}
7138
7139static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7140					  unsigned char *driver_ver)
7141{
7142	int i;
7143
7144	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7145		driver_ver[i] = readb(&cfgtable->driver_version[i]);
7146}
7147
7148static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7149{
7150
7151	char *driver_ver, *old_driver_ver;
7152	int rc, size = sizeof(cfgtable->driver_version);
7153
7154	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7155	if (!old_driver_ver)
7156		return -ENOMEM;
7157	driver_ver = old_driver_ver + size;
7158
7159	/* After a reset, the 32 bytes of "driver version" in the cfgtable
7160	 * should have been changed, otherwise we know the reset failed.
7161	 */
7162	init_driver_version(old_driver_ver, size);
7163	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7164	rc = !memcmp(driver_ver, old_driver_ver, size);
7165	kfree(old_driver_ver);
7166	return rc;
7167}
7168/* This does a hard reset of the controller using PCI power management
7169 * states or the using the doorbell register.
7170 */
7171static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7172{
7173	u64 cfg_offset;
7174	u32 cfg_base_addr;
7175	u64 cfg_base_addr_index;
7176	void __iomem *vaddr;
7177	unsigned long paddr;
7178	u32 misc_fw_support;
7179	int rc;
7180	struct CfgTable __iomem *cfgtable;
7181	u32 use_doorbell;
7182	u16 command_register;
7183
7184	/* For controllers as old as the P600, this is very nearly
7185	 * the same thing as
7186	 *
7187	 * pci_save_state(pci_dev);
7188	 * pci_set_power_state(pci_dev, PCI_D3hot);
7189	 * pci_set_power_state(pci_dev, PCI_D0);
7190	 * pci_restore_state(pci_dev);
7191	 *
7192	 * For controllers newer than the P600, the pci power state
7193	 * method of resetting doesn't work so we have another way
7194	 * using the doorbell register.
7195	 */
7196
7197	if (!ctlr_is_resettable(board_id)) {
7198		dev_warn(&pdev->dev, "Controller not resettable\n");
7199		return -ENODEV;
7200	}
7201
7202	/* if controller is soft- but not hard resettable... */
7203	if (!ctlr_is_hard_resettable(board_id))
7204		return -ENOTSUPP; /* try soft reset later. */
7205
7206	/* Save the PCI command register */
7207	pci_read_config_word(pdev, 4, &command_register);
7208	pci_save_state(pdev);
7209
7210	/* find the first memory BAR, so we can find the cfg table */
7211	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7212	if (rc)
7213		return rc;
7214	vaddr = remap_pci_mem(paddr, 0x250);
7215	if (!vaddr)
7216		return -ENOMEM;
7217
7218	/* find cfgtable in order to check if reset via doorbell is supported */
7219	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7220					&cfg_base_addr_index, &cfg_offset);
7221	if (rc)
7222		goto unmap_vaddr;
7223	cfgtable = remap_pci_mem(pci_resource_start(pdev,
7224		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7225	if (!cfgtable) {
7226		rc = -ENOMEM;
7227		goto unmap_vaddr;
7228	}
7229	rc = write_driver_ver_to_cfgtable(cfgtable);
7230	if (rc)
7231		goto unmap_cfgtable;
7232
7233	/* If reset via doorbell register is supported, use that.
7234	 * There are two such methods.  Favor the newest method.
7235	 */
7236	misc_fw_support = readl(&cfgtable->misc_fw_support);
7237	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7238	if (use_doorbell) {
7239		use_doorbell = DOORBELL_CTLR_RESET2;
7240	} else {
7241		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7242		if (use_doorbell) {
7243			dev_warn(&pdev->dev,
7244				"Soft reset not supported. Firmware update is required.\n");
7245			rc = -ENOTSUPP; /* try soft reset */
7246			goto unmap_cfgtable;
7247		}
7248	}
7249
7250	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7251	if (rc)
7252		goto unmap_cfgtable;
7253
7254	pci_restore_state(pdev);
7255	pci_write_config_word(pdev, 4, command_register);
7256
7257	/* Some devices (notably the HP Smart Array 5i Controller)
7258	   need a little pause here */
7259	msleep(HPSA_POST_RESET_PAUSE_MSECS);
7260
7261	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7262	if (rc) {
7263		dev_warn(&pdev->dev,
7264			"Failed waiting for board to become ready after hard reset\n");
7265		goto unmap_cfgtable;
7266	}
7267
7268	rc = controller_reset_failed(vaddr);
7269	if (rc < 0)
7270		goto unmap_cfgtable;
7271	if (rc) {
7272		dev_warn(&pdev->dev, "Unable to successfully reset "
7273			"controller. Will try soft reset.\n");
7274		rc = -ENOTSUPP;
7275	} else {
7276		dev_info(&pdev->dev, "board ready after hard reset.\n");
7277	}
7278
7279unmap_cfgtable:
7280	iounmap(cfgtable);
7281
7282unmap_vaddr:
7283	iounmap(vaddr);
7284	return rc;
7285}
7286
7287/*
7288 *  We cannot read the structure directly, for portability we must use
7289 *   the io functions.
7290 *   This is for debug only.
7291 */
7292static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7293{
7294#ifdef HPSA_DEBUG
7295	int i;
7296	char temp_name[17];
7297
7298	dev_info(dev, "Controller Configuration information\n");
7299	dev_info(dev, "------------------------------------\n");
7300	for (i = 0; i < 4; i++)
7301		temp_name[i] = readb(&(tb->Signature[i]));
7302	temp_name[4] = '\0';
7303	dev_info(dev, "   Signature = %s\n", temp_name);
7304	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7305	dev_info(dev, "   Transport methods supported = 0x%x\n",
7306	       readl(&(tb->TransportSupport)));
7307	dev_info(dev, "   Transport methods active = 0x%x\n",
7308	       readl(&(tb->TransportActive)));
7309	dev_info(dev, "   Requested transport Method = 0x%x\n",
7310	       readl(&(tb->HostWrite.TransportRequest)));
7311	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7312	       readl(&(tb->HostWrite.CoalIntDelay)));
7313	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7314	       readl(&(tb->HostWrite.CoalIntCount)));
7315	dev_info(dev, "   Max outstanding commands = %d\n",
7316	       readl(&(tb->CmdsOutMax)));
7317	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7318	for (i = 0; i < 16; i++)
7319		temp_name[i] = readb(&(tb->ServerName[i]));
7320	temp_name[16] = '\0';
7321	dev_info(dev, "   Server Name = %s\n", temp_name);
7322	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7323		readl(&(tb->HeartBeat)));
7324#endif				/* HPSA_DEBUG */
7325}
7326
7327static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7328{
7329	int i, offset, mem_type, bar_type;
7330
7331	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
7332		return 0;
7333	offset = 0;
7334	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7335		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7336		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7337			offset += 4;
7338		else {
7339			mem_type = pci_resource_flags(pdev, i) &
7340			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7341			switch (mem_type) {
7342			case PCI_BASE_ADDRESS_MEM_TYPE_32:
7343			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7344				offset += 4;	/* 32 bit */
7345				break;
7346			case PCI_BASE_ADDRESS_MEM_TYPE_64:
7347				offset += 8;
7348				break;
7349			default:	/* reserved in PCI 2.2 */
7350				dev_warn(&pdev->dev,
7351				       "base address is invalid\n");
7352				return -1;
7353				break;
7354			}
7355		}
7356		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7357			return i + 1;
7358	}
7359	return -1;
7360}
7361
7362static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7363{
7364	pci_free_irq_vectors(h->pdev);
7365	h->msix_vectors = 0;
7366}
7367
7368static void hpsa_setup_reply_map(struct ctlr_info *h)
7369{
7370	const struct cpumask *mask;
7371	unsigned int queue, cpu;
7372
7373	for (queue = 0; queue < h->msix_vectors; queue++) {
7374		mask = pci_irq_get_affinity(h->pdev, queue);
7375		if (!mask)
7376			goto fallback;
7377
7378		for_each_cpu(cpu, mask)
7379			h->reply_map[cpu] = queue;
7380	}
7381	return;
7382
7383fallback:
7384	for_each_possible_cpu(cpu)
7385		h->reply_map[cpu] = 0;
7386}
7387
7388/* If MSI/MSI-X is supported by the kernel we will try to enable it on
7389 * controllers that are capable. If not, we use legacy INTx mode.
7390 */
7391static int hpsa_interrupt_mode(struct ctlr_info *h)
7392{
7393	unsigned int flags = PCI_IRQ_LEGACY;
7394	int ret;
7395
7396	/* Some boards advertise MSI but don't really support it */
7397	switch (h->board_id) {
7398	case 0x40700E11:
7399	case 0x40800E11:
7400	case 0x40820E11:
7401	case 0x40830E11:
7402		break;
7403	default:
7404		ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7405				PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7406		if (ret > 0) {
7407			h->msix_vectors = ret;
7408			return 0;
7409		}
7410
7411		flags |= PCI_IRQ_MSI;
7412		break;
7413	}
7414
7415	ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7416	if (ret < 0)
7417		return ret;
7418	return 0;
7419}
7420
7421static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7422				bool *legacy_board)
7423{
7424	int i;
7425	u32 subsystem_vendor_id, subsystem_device_id;
7426
7427	subsystem_vendor_id = pdev->subsystem_vendor;
7428	subsystem_device_id = pdev->subsystem_device;
7429	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7430		    subsystem_vendor_id;
7431
7432	if (legacy_board)
7433		*legacy_board = false;
7434	for (i = 0; i < ARRAY_SIZE(products); i++)
7435		if (*board_id == products[i].board_id) {
7436			if (products[i].access != &SA5A_access &&
7437			    products[i].access != &SA5B_access)
7438				return i;
7439			dev_warn(&pdev->dev,
7440				 "legacy board ID: 0x%08x\n",
7441				 *board_id);
7442			if (legacy_board)
7443			    *legacy_board = true;
7444			return i;
7445		}
7446
7447	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7448	if (legacy_board)
7449		*legacy_board = true;
7450	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7451}
7452
7453static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7454				    unsigned long *memory_bar)
7455{
7456	int i;
7457
7458	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7459		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7460			/* addressing mode bits already removed */
7461			*memory_bar = pci_resource_start(pdev, i);
7462			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7463				*memory_bar);
7464			return 0;
7465		}
7466	dev_warn(&pdev->dev, "no memory BAR found\n");
7467	return -ENODEV;
7468}
7469
7470static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7471				     int wait_for_ready)
7472{
7473	int i, iterations;
7474	u32 scratchpad;
7475	if (wait_for_ready)
7476		iterations = HPSA_BOARD_READY_ITERATIONS;
7477	else
7478		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7479
7480	for (i = 0; i < iterations; i++) {
7481		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7482		if (wait_for_ready) {
7483			if (scratchpad == HPSA_FIRMWARE_READY)
7484				return 0;
7485		} else {
7486			if (scratchpad != HPSA_FIRMWARE_READY)
7487				return 0;
7488		}
7489		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7490	}
7491	dev_warn(&pdev->dev, "board not ready, timed out.\n");
7492	return -ENODEV;
7493}
7494
7495static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7496			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7497			       u64 *cfg_offset)
7498{
7499	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7500	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7501	*cfg_base_addr &= (u32) 0x0000ffff;
7502	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7503	if (*cfg_base_addr_index == -1) {
7504		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7505		return -ENODEV;
7506	}
7507	return 0;
7508}
7509
7510static void hpsa_free_cfgtables(struct ctlr_info *h)
7511{
7512	if (h->transtable) {
7513		iounmap(h->transtable);
7514		h->transtable = NULL;
7515	}
7516	if (h->cfgtable) {
7517		iounmap(h->cfgtable);
7518		h->cfgtable = NULL;
7519	}
7520}
7521
7522/* Find and map CISS config table and transfer table
7523+ * several items must be unmapped (freed) later
7524+ * */
7525static int hpsa_find_cfgtables(struct ctlr_info *h)
7526{
7527	u64 cfg_offset;
7528	u32 cfg_base_addr;
7529	u64 cfg_base_addr_index;
7530	u32 trans_offset;
7531	int rc;
7532
7533	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7534		&cfg_base_addr_index, &cfg_offset);
7535	if (rc)
7536		return rc;
7537	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7538		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7539	if (!h->cfgtable) {
7540		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7541		return -ENOMEM;
7542	}
7543	rc = write_driver_ver_to_cfgtable(h->cfgtable);
7544	if (rc)
7545		return rc;
7546	/* Find performant mode table. */
7547	trans_offset = readl(&h->cfgtable->TransMethodOffset);
7548	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7549				cfg_base_addr_index)+cfg_offset+trans_offset,
7550				sizeof(*h->transtable));
7551	if (!h->transtable) {
7552		dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7553		hpsa_free_cfgtables(h);
7554		return -ENOMEM;
7555	}
7556	return 0;
7557}
7558
7559static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7560{
7561#define MIN_MAX_COMMANDS 16
7562	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7563
7564	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7565
7566	/* Limit commands in memory limited kdump scenario. */
7567	if (reset_devices && h->max_commands > 32)
7568		h->max_commands = 32;
7569
7570	if (h->max_commands < MIN_MAX_COMMANDS) {
7571		dev_warn(&h->pdev->dev,
7572			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7573			h->max_commands,
7574			MIN_MAX_COMMANDS);
7575		h->max_commands = MIN_MAX_COMMANDS;
7576	}
7577}
7578
7579/* If the controller reports that the total max sg entries is greater than 512,
7580 * then we know that chained SG blocks work.  (Original smart arrays did not
7581 * support chained SG blocks and would return zero for max sg entries.)
7582 */
7583static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7584{
7585	return h->maxsgentries > 512;
7586}
7587
7588/* Interrogate the hardware for some limits:
7589 * max commands, max SG elements without chaining, and with chaining,
7590 * SG chain block size, etc.
7591 */
7592static void hpsa_find_board_params(struct ctlr_info *h)
7593{
7594	hpsa_get_max_perf_mode_cmds(h);
7595	h->nr_cmds = h->max_commands;
7596	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7597	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7598	if (hpsa_supports_chained_sg_blocks(h)) {
7599		/* Limit in-command s/g elements to 32 save dma'able memory. */
7600		h->max_cmd_sg_entries = 32;
7601		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7602		h->maxsgentries--; /* save one for chain pointer */
7603	} else {
7604		/*
7605		 * Original smart arrays supported at most 31 s/g entries
7606		 * embedded inline in the command (trying to use more
7607		 * would lock up the controller)
7608		 */
7609		h->max_cmd_sg_entries = 31;
7610		h->maxsgentries = 31; /* default to traditional values */
7611		h->chainsize = 0;
7612	}
7613
7614	/* Find out what task management functions are supported and cache */
7615	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7616	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7617		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7618	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7619		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7620	if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7621		dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7622}
7623
7624static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7625{
7626	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7627		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7628		return false;
7629	}
7630	return true;
7631}
7632
7633static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7634{
7635	u32 driver_support;
7636
7637	driver_support = readl(&(h->cfgtable->driver_support));
7638	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
7639#ifdef CONFIG_X86
7640	driver_support |= ENABLE_SCSI_PREFETCH;
7641#endif
7642	driver_support |= ENABLE_UNIT_ATTN;
7643	writel(driver_support, &(h->cfgtable->driver_support));
7644}
7645
7646/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7647 * in a prefetch beyond physical memory.
7648 */
7649static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7650{
7651	u32 dma_prefetch;
7652
7653	if (h->board_id != 0x3225103C)
7654		return;
7655	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7656	dma_prefetch |= 0x8000;
7657	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7658}
7659
7660static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7661{
7662	int i;
7663	u32 doorbell_value;
7664	unsigned long flags;
7665	/* wait until the clear_event_notify bit 6 is cleared by controller. */
7666	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7667		spin_lock_irqsave(&h->lock, flags);
7668		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7669		spin_unlock_irqrestore(&h->lock, flags);
7670		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7671			goto done;
7672		/* delay and try again */
7673		msleep(CLEAR_EVENT_WAIT_INTERVAL);
7674	}
7675	return -ENODEV;
7676done:
7677	return 0;
7678}
7679
7680static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7681{
7682	int i;
7683	u32 doorbell_value;
7684	unsigned long flags;
7685
7686	/* under certain very rare conditions, this can take awhile.
7687	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7688	 * as we enter this code.)
7689	 */
7690	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7691		if (h->remove_in_progress)
7692			goto done;
7693		spin_lock_irqsave(&h->lock, flags);
7694		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695		spin_unlock_irqrestore(&h->lock, flags);
7696		if (!(doorbell_value & CFGTBL_ChangeReq))
7697			goto done;
7698		/* delay and try again */
7699		msleep(MODE_CHANGE_WAIT_INTERVAL);
7700	}
7701	return -ENODEV;
7702done:
7703	return 0;
7704}
7705
7706/* return -ENODEV or other reason on error, 0 on success */
7707static int hpsa_enter_simple_mode(struct ctlr_info *h)
7708{
7709	u32 trans_support;
7710
7711	trans_support = readl(&(h->cfgtable->TransportSupport));
7712	if (!(trans_support & SIMPLE_MODE))
7713		return -ENOTSUPP;
7714
7715	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7716
7717	/* Update the field, and then ring the doorbell */
7718	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7719	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7720	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7721	if (hpsa_wait_for_mode_change_ack(h))
7722		goto error;
7723	print_cfg_table(&h->pdev->dev, h->cfgtable);
7724	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7725		goto error;
7726	h->transMethod = CFGTBL_Trans_Simple;
7727	return 0;
7728error:
7729	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7730	return -ENODEV;
7731}
7732
7733/* free items allocated or mapped by hpsa_pci_init */
7734static void hpsa_free_pci_init(struct ctlr_info *h)
7735{
7736	hpsa_free_cfgtables(h);			/* pci_init 4 */
7737	iounmap(h->vaddr);			/* pci_init 3 */
7738	h->vaddr = NULL;
7739	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
7740	/*
7741	 * call pci_disable_device before pci_release_regions per
7742	 * Documentation/PCI/pci.txt
7743	 */
7744	pci_disable_device(h->pdev);		/* pci_init 1 */
7745	pci_release_regions(h->pdev);		/* pci_init 2 */
7746}
7747
7748/* several items must be freed later */
7749static int hpsa_pci_init(struct ctlr_info *h)
7750{
7751	int prod_index, err;
7752	bool legacy_board;
7753
7754	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7755	if (prod_index < 0)
7756		return prod_index;
7757	h->product_name = products[prod_index].product_name;
7758	h->access = *(products[prod_index].access);
7759	h->legacy_board = legacy_board;
7760	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7761			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7762
7763	err = pci_enable_device(h->pdev);
7764	if (err) {
7765		dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7766		pci_disable_device(h->pdev);
7767		return err;
7768	}
7769
7770	err = pci_request_regions(h->pdev, HPSA);
7771	if (err) {
7772		dev_err(&h->pdev->dev,
7773			"failed to obtain PCI resources\n");
7774		pci_disable_device(h->pdev);
7775		return err;
7776	}
7777
7778	pci_set_master(h->pdev);
7779
7780	err = hpsa_interrupt_mode(h);
7781	if (err)
7782		goto clean1;
7783
7784	/* setup mapping between CPU and reply queue */
7785	hpsa_setup_reply_map(h);
7786
7787	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7788	if (err)
7789		goto clean2;	/* intmode+region, pci */
7790	h->vaddr = remap_pci_mem(h->paddr, 0x250);
7791	if (!h->vaddr) {
7792		dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7793		err = -ENOMEM;
7794		goto clean2;	/* intmode+region, pci */
7795	}
7796	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7797	if (err)
7798		goto clean3;	/* vaddr, intmode+region, pci */
7799	err = hpsa_find_cfgtables(h);
7800	if (err)
7801		goto clean3;	/* vaddr, intmode+region, pci */
7802	hpsa_find_board_params(h);
7803
7804	if (!hpsa_CISS_signature_present(h)) {
7805		err = -ENODEV;
7806		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7807	}
7808	hpsa_set_driver_support_bits(h);
7809	hpsa_p600_dma_prefetch_quirk(h);
7810	err = hpsa_enter_simple_mode(h);
7811	if (err)
7812		goto clean4;	/* cfgtables, vaddr, intmode+region, pci */
7813	return 0;
7814
7815clean4:	/* cfgtables, vaddr, intmode+region, pci */
7816	hpsa_free_cfgtables(h);
7817clean3:	/* vaddr, intmode+region, pci */
7818	iounmap(h->vaddr);
7819	h->vaddr = NULL;
7820clean2:	/* intmode+region, pci */
7821	hpsa_disable_interrupt_mode(h);
7822clean1:
7823	/*
7824	 * call pci_disable_device before pci_release_regions per
7825	 * Documentation/PCI/pci.txt
7826	 */
7827	pci_disable_device(h->pdev);
7828	pci_release_regions(h->pdev);
7829	return err;
7830}
7831
7832static void hpsa_hba_inquiry(struct ctlr_info *h)
7833{
7834	int rc;
7835
7836#define HBA_INQUIRY_BYTE_COUNT 64
7837	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7838	if (!h->hba_inquiry_data)
7839		return;
7840	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7841		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7842	if (rc != 0) {
7843		kfree(h->hba_inquiry_data);
7844		h->hba_inquiry_data = NULL;
7845	}
7846}
7847
7848static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7849{
7850	int rc, i;
7851	void __iomem *vaddr;
7852
7853	if (!reset_devices)
7854		return 0;
7855
7856	/* kdump kernel is loading, we don't know in which state is
7857	 * the pci interface. The dev->enable_cnt is equal zero
7858	 * so we call enable+disable, wait a while and switch it on.
7859	 */
7860	rc = pci_enable_device(pdev);
7861	if (rc) {
7862		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7863		return -ENODEV;
7864	}
7865	pci_disable_device(pdev);
7866	msleep(260);			/* a randomly chosen number */
7867	rc = pci_enable_device(pdev);
7868	if (rc) {
7869		dev_warn(&pdev->dev, "failed to enable device.\n");
7870		return -ENODEV;
7871	}
7872
7873	pci_set_master(pdev);
7874
7875	vaddr = pci_ioremap_bar(pdev, 0);
7876	if (vaddr == NULL) {
7877		rc = -ENOMEM;
7878		goto out_disable;
7879	}
7880	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7881	iounmap(vaddr);
7882
7883	/* Reset the controller with a PCI power-cycle or via doorbell */
7884	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7885
7886	/* -ENOTSUPP here means we cannot reset the controller
7887	 * but it's already (and still) up and running in
7888	 * "performant mode".  Or, it might be 640x, which can't reset
7889	 * due to concerns about shared bbwc between 6402/6404 pair.
7890	 */
7891	if (rc)
7892		goto out_disable;
7893
7894	/* Now try to get the controller to respond to a no-op */
7895	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7896	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7897		if (hpsa_noop(pdev) == 0)
7898			break;
7899		else
7900			dev_warn(&pdev->dev, "no-op failed%s\n",
7901					(i < 11 ? "; re-trying" : ""));
7902	}
7903
7904out_disable:
7905
7906	pci_disable_device(pdev);
7907	return rc;
7908}
7909
7910static void hpsa_free_cmd_pool(struct ctlr_info *h)
7911{
7912	kfree(h->cmd_pool_bits);
7913	h->cmd_pool_bits = NULL;
7914	if (h->cmd_pool) {
7915		pci_free_consistent(h->pdev,
7916				h->nr_cmds * sizeof(struct CommandList),
7917				h->cmd_pool,
7918				h->cmd_pool_dhandle);
7919		h->cmd_pool = NULL;
7920		h->cmd_pool_dhandle = 0;
7921	}
7922	if (h->errinfo_pool) {
7923		pci_free_consistent(h->pdev,
7924				h->nr_cmds * sizeof(struct ErrorInfo),
7925				h->errinfo_pool,
7926				h->errinfo_pool_dhandle);
7927		h->errinfo_pool = NULL;
7928		h->errinfo_pool_dhandle = 0;
7929	}
7930}
7931
7932static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7933{
7934	h->cmd_pool_bits = kzalloc(
7935		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7936		sizeof(unsigned long), GFP_KERNEL);
7937	h->cmd_pool = pci_alloc_consistent(h->pdev,
7938		    h->nr_cmds * sizeof(*h->cmd_pool),
7939		    &(h->cmd_pool_dhandle));
7940	h->errinfo_pool = pci_alloc_consistent(h->pdev,
7941		    h->nr_cmds * sizeof(*h->errinfo_pool),
7942		    &(h->errinfo_pool_dhandle));
7943	if ((h->cmd_pool_bits == NULL)
7944	    || (h->cmd_pool == NULL)
7945	    || (h->errinfo_pool == NULL)) {
7946		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7947		goto clean_up;
7948	}
7949	hpsa_preinitialize_commands(h);
7950	return 0;
7951clean_up:
7952	hpsa_free_cmd_pool(h);
7953	return -ENOMEM;
7954}
7955
7956/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7957static void hpsa_free_irqs(struct ctlr_info *h)
7958{
7959	int i;
 
 
 
 
7960
7961	if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
7962		/* Single reply queue, only one irq to free */
7963		free_irq(pci_irq_vector(h->pdev, 0), &h->q[h->intr_mode]);
 
7964		h->q[h->intr_mode] = 0;
7965		return;
7966	}
7967
7968	for (i = 0; i < h->msix_vectors; i++) {
7969		free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
7970		h->q[i] = 0;
7971	}
7972	for (; i < MAX_REPLY_QUEUES; i++)
7973		h->q[i] = 0;
7974}
7975
7976/* returns 0 on success; cleans up and returns -Enn on error */
7977static int hpsa_request_irqs(struct ctlr_info *h,
7978	irqreturn_t (*msixhandler)(int, void *),
7979	irqreturn_t (*intxhandler)(int, void *))
7980{
7981	int rc, i;
 
 
 
 
7982
7983	/*
7984	 * initialize h->q[x] = x so that interrupt handlers know which
7985	 * queue to process.
7986	 */
7987	for (i = 0; i < MAX_REPLY_QUEUES; i++)
7988		h->q[i] = (u8) i;
7989
7990	if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
7991		/* If performant mode and MSI-X, use multiple reply queues */
7992		for (i = 0; i < h->msix_vectors; i++) {
7993			sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
7994			rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
7995					0, h->intrname[i],
7996					&h->q[i]);
7997			if (rc) {
7998				int j;
7999
8000				dev_err(&h->pdev->dev,
8001					"failed to get irq %d for %s\n",
8002				       pci_irq_vector(h->pdev, i), h->devname);
8003				for (j = 0; j < i; j++) {
8004					free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8005					h->q[j] = 0;
8006				}
8007				for (; j < MAX_REPLY_QUEUES; j++)
8008					h->q[j] = 0;
8009				return rc;
8010			}
8011		}
8012	} else {
8013		/* Use single reply pool */
8014		if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8015			sprintf(h->intrname[0], "%s-msi%s", h->devname,
8016				h->msix_vectors ? "x" : "");
8017			rc = request_irq(pci_irq_vector(h->pdev, 0),
8018				msixhandler, 0,
8019				h->intrname[0],
8020				&h->q[h->intr_mode]);
8021		} else {
8022			sprintf(h->intrname[h->intr_mode],
8023				"%s-intx", h->devname);
8024			rc = request_irq(pci_irq_vector(h->pdev, 0),
8025				intxhandler, IRQF_SHARED,
8026				h->intrname[0],
8027				&h->q[h->intr_mode]);
8028		}
8029	}
8030	if (rc) {
8031		dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8032		       pci_irq_vector(h->pdev, 0), h->devname);
8033		hpsa_free_irqs(h);
8034		return -ENODEV;
8035	}
8036	return 0;
8037}
8038
8039static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8040{
8041	int rc;
8042	hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8043
8044	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8045	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8046	if (rc) {
8047		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8048		return rc;
8049	}
8050
8051	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8052	rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8053	if (rc) {
8054		dev_warn(&h->pdev->dev, "Board failed to become ready "
8055			"after soft reset.\n");
8056		return rc;
8057	}
8058
8059	return 0;
8060}
8061
8062static void hpsa_free_reply_queues(struct ctlr_info *h)
8063{
8064	int i;
8065
8066	for (i = 0; i < h->nreply_queues; i++) {
8067		if (!h->reply_queue[i].head)
8068			continue;
8069		pci_free_consistent(h->pdev,
8070					h->reply_queue_size,
8071					h->reply_queue[i].head,
8072					h->reply_queue[i].busaddr);
8073		h->reply_queue[i].head = NULL;
8074		h->reply_queue[i].busaddr = 0;
8075	}
8076	h->reply_queue_size = 0;
8077}
8078
8079static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8080{
8081	hpsa_free_performant_mode(h);		/* init_one 7 */
8082	hpsa_free_sg_chain_blocks(h);		/* init_one 6 */
8083	hpsa_free_cmd_pool(h);			/* init_one 5 */
8084	hpsa_free_irqs(h);			/* init_one 4 */
8085	scsi_host_put(h->scsi_host);		/* init_one 3 */
8086	h->scsi_host = NULL;			/* init_one 3 */
8087	hpsa_free_pci_init(h);			/* init_one 2_5 */
8088	free_percpu(h->lockup_detected);	/* init_one 2 */
8089	h->lockup_detected = NULL;		/* init_one 2 */
8090	if (h->resubmit_wq) {
8091		destroy_workqueue(h->resubmit_wq);	/* init_one 1 */
8092		h->resubmit_wq = NULL;
8093	}
8094	if (h->rescan_ctlr_wq) {
8095		destroy_workqueue(h->rescan_ctlr_wq);
8096		h->rescan_ctlr_wq = NULL;
8097	}
 
 
 
 
 
8098	kfree(h);				/* init_one 1 */
8099}
8100
8101/* Called when controller lockup detected. */
8102static void fail_all_outstanding_cmds(struct ctlr_info *h)
8103{
8104	int i, refcount;
8105	struct CommandList *c;
8106	int failcount = 0;
8107
8108	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8109	for (i = 0; i < h->nr_cmds; i++) {
8110		c = h->cmd_pool + i;
8111		refcount = atomic_inc_return(&c->refcount);
8112		if (refcount > 1) {
8113			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8114			finish_cmd(c);
8115			atomic_dec(&h->commands_outstanding);
8116			failcount++;
8117		}
8118		cmd_free(h, c);
8119	}
8120	dev_warn(&h->pdev->dev,
8121		"failed %d commands in fail_all\n", failcount);
8122}
8123
8124static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8125{
8126	int cpu;
8127
8128	for_each_online_cpu(cpu) {
8129		u32 *lockup_detected;
8130		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8131		*lockup_detected = value;
8132	}
8133	wmb(); /* be sure the per-cpu variables are out to memory */
8134}
8135
8136static void controller_lockup_detected(struct ctlr_info *h)
8137{
8138	unsigned long flags;
8139	u32 lockup_detected;
8140
8141	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8142	spin_lock_irqsave(&h->lock, flags);
8143	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8144	if (!lockup_detected) {
8145		/* no heartbeat, but controller gave us a zero. */
8146		dev_warn(&h->pdev->dev,
8147			"lockup detected after %d but scratchpad register is zero\n",
8148			h->heartbeat_sample_interval / HZ);
8149		lockup_detected = 0xffffffff;
8150	}
8151	set_lockup_detected_for_all_cpus(h, lockup_detected);
8152	spin_unlock_irqrestore(&h->lock, flags);
8153	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8154			lockup_detected, h->heartbeat_sample_interval / HZ);
8155	if (lockup_detected == 0xffff0000) {
8156		dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8157		writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8158	}
8159	pci_disable_device(h->pdev);
8160	fail_all_outstanding_cmds(h);
8161}
8162
8163static int detect_controller_lockup(struct ctlr_info *h)
8164{
8165	u64 now;
8166	u32 heartbeat;
8167	unsigned long flags;
8168
8169	now = get_jiffies_64();
8170	/* If we've received an interrupt recently, we're ok. */
8171	if (time_after64(h->last_intr_timestamp +
8172				(h->heartbeat_sample_interval), now))
8173		return false;
8174
8175	/*
8176	 * If we've already checked the heartbeat recently, we're ok.
8177	 * This could happen if someone sends us a signal. We
8178	 * otherwise don't care about signals in this thread.
8179	 */
8180	if (time_after64(h->last_heartbeat_timestamp +
8181				(h->heartbeat_sample_interval), now))
8182		return false;
8183
8184	/* If heartbeat has not changed since we last looked, we're not ok. */
8185	spin_lock_irqsave(&h->lock, flags);
8186	heartbeat = readl(&h->cfgtable->HeartBeat);
8187	spin_unlock_irqrestore(&h->lock, flags);
8188	if (h->last_heartbeat == heartbeat) {
8189		controller_lockup_detected(h);
8190		return true;
8191	}
8192
8193	/* We're ok. */
8194	h->last_heartbeat = heartbeat;
8195	h->last_heartbeat_timestamp = now;
8196	return false;
8197}
8198
8199/*
8200 * Set ioaccel status for all ioaccel volumes.
8201 *
8202 * Called from monitor controller worker (hpsa_event_monitor_worker)
8203 *
8204 * A Volume (or Volumes that comprise an Array set may be undergoing a
8205 * transformation, so we will be turning off ioaccel for all volumes that
8206 * make up the Array.
8207 */
8208static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8209{
8210	int rc;
8211	int i;
8212	u8 ioaccel_status;
8213	unsigned char *buf;
8214	struct hpsa_scsi_dev_t *device;
8215
8216	if (!h)
8217		return;
8218
8219	buf = kmalloc(64, GFP_KERNEL);
8220	if (!buf)
8221		return;
8222
8223	/*
8224	 * Run through current device list used during I/O requests.
8225	 */
8226	for (i = 0; i < h->ndevices; i++) {
 
 
 
8227		device = h->dev[i];
8228
8229		if (!device)
8230			continue;
8231		if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8232						HPSA_VPD_LV_IOACCEL_STATUS))
8233			continue;
8234
8235		memset(buf, 0, 64);
8236
8237		rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8238					VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8239					buf, 64);
8240		if (rc != 0)
8241			continue;
8242
8243		ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8244		device->offload_config =
 
 
 
 
8245				!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8246		if (device->offload_config)
8247			device->offload_to_be_enabled =
 
 
 
 
8248				!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8249
8250		/*
 
 
 
 
 
 
 
 
8251		 * Immediately turn off ioaccel for any volume the
8252		 * controller tells us to. Some of the reasons could be:
8253		 *    transformation - change to the LVs of an Array.
8254		 *    degraded volume - component failure
8255		 *
8256		 * If ioaccel is to be re-enabled, re-enable later during the
8257		 * scan operation so the driver can get a fresh raidmap
8258		 * before turning ioaccel back on.
8259		 *
8260		 */
8261		if (!device->offload_to_be_enabled)
8262			device->offload_enabled = 0;
8263	}
8264
8265	kfree(buf);
8266}
8267
8268static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8269{
8270	char *event_type;
8271
8272	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8273		return;
8274
8275	/* Ask the controller to clear the events we're handling. */
8276	if ((h->transMethod & (CFGTBL_Trans_io_accel1
8277			| CFGTBL_Trans_io_accel2)) &&
8278		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8279		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8280
8281		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8282			event_type = "state change";
8283		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8284			event_type = "configuration change";
8285		/* Stop sending new RAID offload reqs via the IO accelerator */
8286		scsi_block_requests(h->scsi_host);
8287		hpsa_set_ioaccel_status(h);
8288		hpsa_drain_accel_commands(h);
8289		/* Set 'accelerator path config change' bit */
8290		dev_warn(&h->pdev->dev,
8291			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8292			h->events, event_type);
8293		writel(h->events, &(h->cfgtable->clear_event_notify));
8294		/* Set the "clear event notify field update" bit 6 */
8295		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8296		/* Wait until ctlr clears 'clear event notify field', bit 6 */
8297		hpsa_wait_for_clear_event_notify_ack(h);
8298		scsi_unblock_requests(h->scsi_host);
8299	} else {
8300		/* Acknowledge controller notification events. */
8301		writel(h->events, &(h->cfgtable->clear_event_notify));
8302		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8303		hpsa_wait_for_clear_event_notify_ack(h);
8304	}
8305	return;
8306}
8307
8308/* Check a register on the controller to see if there are configuration
8309 * changes (added/changed/removed logical drives, etc.) which mean that
8310 * we should rescan the controller for devices.
8311 * Also check flag for driver-initiated rescan.
8312 */
8313static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8314{
8315	if (h->drv_req_rescan) {
8316		h->drv_req_rescan = 0;
8317		return 1;
8318	}
8319
8320	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8321		return 0;
8322
8323	h->events = readl(&(h->cfgtable->event_notify));
8324	return h->events & RESCAN_REQUIRED_EVENT_BITS;
8325}
8326
8327/*
8328 * Check if any of the offline devices have become ready
8329 */
8330static int hpsa_offline_devices_ready(struct ctlr_info *h)
8331{
8332	unsigned long flags;
8333	struct offline_device_entry *d;
8334	struct list_head *this, *tmp;
8335
8336	spin_lock_irqsave(&h->offline_device_lock, flags);
8337	list_for_each_safe(this, tmp, &h->offline_device_list) {
8338		d = list_entry(this, struct offline_device_entry,
8339				offline_list);
8340		spin_unlock_irqrestore(&h->offline_device_lock, flags);
8341		if (!hpsa_volume_offline(h, d->scsi3addr)) {
8342			spin_lock_irqsave(&h->offline_device_lock, flags);
8343			list_del(&d->offline_list);
8344			spin_unlock_irqrestore(&h->offline_device_lock, flags);
8345			return 1;
8346		}
8347		spin_lock_irqsave(&h->offline_device_lock, flags);
8348	}
8349	spin_unlock_irqrestore(&h->offline_device_lock, flags);
8350	return 0;
8351}
8352
8353static int hpsa_luns_changed(struct ctlr_info *h)
8354{
8355	int rc = 1; /* assume there are changes */
8356	struct ReportLUNdata *logdev = NULL;
8357
8358	/* if we can't find out if lun data has changed,
8359	 * assume that it has.
8360	 */
8361
8362	if (!h->lastlogicals)
8363		return rc;
8364
8365	logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8366	if (!logdev)
8367		return rc;
8368
8369	if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8370		dev_warn(&h->pdev->dev,
8371			"report luns failed, can't track lun changes.\n");
8372		goto out;
8373	}
8374	if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8375		dev_info(&h->pdev->dev,
8376			"Lun changes detected.\n");
8377		memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8378		goto out;
8379	} else
8380		rc = 0; /* no changes detected. */
8381out:
8382	kfree(logdev);
8383	return rc;
8384}
8385
8386static void hpsa_perform_rescan(struct ctlr_info *h)
8387{
8388	struct Scsi_Host *sh = NULL;
8389	unsigned long flags;
8390
8391	/*
8392	 * Do the scan after the reset
8393	 */
8394	spin_lock_irqsave(&h->reset_lock, flags);
8395	if (h->reset_in_progress) {
8396		h->drv_req_rescan = 1;
8397		spin_unlock_irqrestore(&h->reset_lock, flags);
8398		return;
8399	}
8400	spin_unlock_irqrestore(&h->reset_lock, flags);
8401
8402	sh = scsi_host_get(h->scsi_host);
8403	if (sh != NULL) {
8404		hpsa_scan_start(sh);
8405		scsi_host_put(sh);
8406		h->drv_req_rescan = 0;
8407	}
8408}
8409
8410/*
8411 * watch for controller events
8412 */
8413static void hpsa_event_monitor_worker(struct work_struct *work)
8414{
8415	struct ctlr_info *h = container_of(to_delayed_work(work),
8416					struct ctlr_info, event_monitor_work);
8417	unsigned long flags;
8418
8419	spin_lock_irqsave(&h->lock, flags);
8420	if (h->remove_in_progress) {
8421		spin_unlock_irqrestore(&h->lock, flags);
8422		return;
8423	}
8424	spin_unlock_irqrestore(&h->lock, flags);
8425
8426	if (hpsa_ctlr_needs_rescan(h)) {
8427		hpsa_ack_ctlr_events(h);
8428		hpsa_perform_rescan(h);
8429	}
8430
8431	spin_lock_irqsave(&h->lock, flags);
8432	if (!h->remove_in_progress)
8433		schedule_delayed_work(&h->event_monitor_work,
8434					HPSA_EVENT_MONITOR_INTERVAL);
8435	spin_unlock_irqrestore(&h->lock, flags);
8436}
8437
8438static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8439{
8440	unsigned long flags;
8441	struct ctlr_info *h = container_of(to_delayed_work(work),
8442					struct ctlr_info, rescan_ctlr_work);
8443
8444	spin_lock_irqsave(&h->lock, flags);
8445	if (h->remove_in_progress) {
8446		spin_unlock_irqrestore(&h->lock, flags);
8447		return;
8448	}
8449	spin_unlock_irqrestore(&h->lock, flags);
8450
8451	if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8452		hpsa_perform_rescan(h);
8453	} else if (h->discovery_polling) {
8454		if (hpsa_luns_changed(h)) {
8455			dev_info(&h->pdev->dev,
8456				"driver discovery polling rescan.\n");
8457			hpsa_perform_rescan(h);
8458		}
8459	}
8460	spin_lock_irqsave(&h->lock, flags);
8461	if (!h->remove_in_progress)
8462		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8463				h->heartbeat_sample_interval);
8464	spin_unlock_irqrestore(&h->lock, flags);
8465}
8466
8467static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8468{
8469	unsigned long flags;
8470	struct ctlr_info *h = container_of(to_delayed_work(work),
8471					struct ctlr_info, monitor_ctlr_work);
8472
8473	detect_controller_lockup(h);
8474	if (lockup_detected(h))
8475		return;
8476
8477	spin_lock_irqsave(&h->lock, flags);
8478	if (!h->remove_in_progress)
8479		schedule_delayed_work(&h->monitor_ctlr_work,
8480				h->heartbeat_sample_interval);
8481	spin_unlock_irqrestore(&h->lock, flags);
8482}
8483
8484static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8485						char *name)
8486{
8487	struct workqueue_struct *wq = NULL;
8488
8489	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8490	if (!wq)
8491		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8492
8493	return wq;
8494}
8495
8496static void hpda_free_ctlr_info(struct ctlr_info *h)
8497{
8498	kfree(h->reply_map);
8499	kfree(h);
8500}
8501
8502static struct ctlr_info *hpda_alloc_ctlr_info(void)
8503{
8504	struct ctlr_info *h;
8505
8506	h = kzalloc(sizeof(*h), GFP_KERNEL);
8507	if (!h)
8508		return NULL;
8509
8510	h->reply_map = kzalloc(sizeof(*h->reply_map) * nr_cpu_ids, GFP_KERNEL);
8511	if (!h->reply_map) {
8512		kfree(h);
8513		return NULL;
8514	}
8515	return h;
8516}
8517
8518static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8519{
8520	int dac, rc;
8521	struct ctlr_info *h;
8522	int try_soft_reset = 0;
8523	unsigned long flags;
8524	u32 board_id;
8525
8526	if (number_of_controllers == 0)
8527		printk(KERN_INFO DRIVER_NAME "\n");
8528
8529	rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8530	if (rc < 0) {
8531		dev_warn(&pdev->dev, "Board ID not found\n");
8532		return rc;
8533	}
8534
8535	rc = hpsa_init_reset_devices(pdev, board_id);
8536	if (rc) {
8537		if (rc != -ENOTSUPP)
8538			return rc;
8539		/* If the reset fails in a particular way (it has no way to do
8540		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8541		 * a soft reset once we get the controller configured up to the
8542		 * point that it can accept a command.
8543		 */
8544		try_soft_reset = 1;
8545		rc = 0;
8546	}
8547
8548reinit_after_soft_reset:
8549
8550	/* Command structures must be aligned on a 32-byte boundary because
8551	 * the 5 lower bits of the address are used by the hardware. and by
8552	 * the driver.  See comments in hpsa.h for more info.
8553	 */
8554	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8555	h = hpda_alloc_ctlr_info();
8556	if (!h) {
8557		dev_err(&pdev->dev, "Failed to allocate controller head\n");
8558		return -ENOMEM;
8559	}
8560
8561	h->pdev = pdev;
8562
8563	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8564	INIT_LIST_HEAD(&h->offline_device_list);
8565	spin_lock_init(&h->lock);
8566	spin_lock_init(&h->offline_device_lock);
8567	spin_lock_init(&h->scan_lock);
8568	spin_lock_init(&h->reset_lock);
8569	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8570
8571	/* Allocate and clear per-cpu variable lockup_detected */
8572	h->lockup_detected = alloc_percpu(u32);
8573	if (!h->lockup_detected) {
8574		dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8575		rc = -ENOMEM;
8576		goto clean1;	/* aer/h */
8577	}
8578	set_lockup_detected_for_all_cpus(h, 0);
8579
8580	rc = hpsa_pci_init(h);
8581	if (rc)
8582		goto clean2;	/* lu, aer/h */
8583
8584	/* relies on h-> settings made by hpsa_pci_init, including
8585	 * interrupt_mode h->intr */
8586	rc = hpsa_scsi_host_alloc(h);
8587	if (rc)
8588		goto clean2_5;	/* pci, lu, aer/h */
8589
8590	sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8591	h->ctlr = number_of_controllers;
8592	number_of_controllers++;
8593
8594	/* configure PCI DMA stuff */
8595	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8596	if (rc == 0) {
8597		dac = 1;
8598	} else {
8599		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8600		if (rc == 0) {
8601			dac = 0;
8602		} else {
8603			dev_err(&pdev->dev, "no suitable DMA available\n");
8604			goto clean3;	/* shost, pci, lu, aer/h */
8605		}
8606	}
8607
8608	/* make sure the board interrupts are off */
8609	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611	rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8612	if (rc)
8613		goto clean3;	/* shost, pci, lu, aer/h */
8614	rc = hpsa_alloc_cmd_pool(h);
8615	if (rc)
8616		goto clean4;	/* irq, shost, pci, lu, aer/h */
8617	rc = hpsa_alloc_sg_chain_blocks(h);
8618	if (rc)
8619		goto clean5;	/* cmd, irq, shost, pci, lu, aer/h */
8620	init_waitqueue_head(&h->scan_wait_queue);
8621	init_waitqueue_head(&h->event_sync_wait_queue);
8622	mutex_init(&h->reset_mutex);
8623	h->scan_finished = 1; /* no scan currently in progress */
8624	h->scan_waiting = 0;
8625
8626	pci_set_drvdata(pdev, h);
8627	h->ndevices = 0;
8628
8629	spin_lock_init(&h->devlock);
8630	rc = hpsa_put_ctlr_into_performant_mode(h);
8631	if (rc)
8632		goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8633
8634	/* create the resubmit workqueue */
8635	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8636	if (!h->rescan_ctlr_wq) {
8637		rc = -ENOMEM;
8638		goto clean7;
8639	}
8640
8641	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8642	if (!h->resubmit_wq) {
8643		rc = -ENOMEM;
8644		goto clean7;	/* aer/h */
8645	}
8646
 
 
 
 
 
 
8647	/*
8648	 * At this point, the controller is ready to take commands.
8649	 * Now, if reset_devices and the hard reset didn't work, try
8650	 * the soft reset and see if that works.
8651	 */
8652	if (try_soft_reset) {
8653
8654		/* This is kind of gross.  We may or may not get a completion
8655		 * from the soft reset command, and if we do, then the value
8656		 * from the fifo may or may not be valid.  So, we wait 10 secs
8657		 * after the reset throwing away any completions we get during
8658		 * that time.  Unregister the interrupt handler and register
8659		 * fake ones to scoop up any residual completions.
8660		 */
8661		spin_lock_irqsave(&h->lock, flags);
8662		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8663		spin_unlock_irqrestore(&h->lock, flags);
8664		hpsa_free_irqs(h);
8665		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8666					hpsa_intx_discard_completions);
8667		if (rc) {
8668			dev_warn(&h->pdev->dev,
8669				"Failed to request_irq after soft reset.\n");
8670			/*
8671			 * cannot goto clean7 or free_irqs will be called
8672			 * again. Instead, do its work
8673			 */
8674			hpsa_free_performant_mode(h);	/* clean7 */
8675			hpsa_free_sg_chain_blocks(h);	/* clean6 */
8676			hpsa_free_cmd_pool(h);		/* clean5 */
8677			/*
8678			 * skip hpsa_free_irqs(h) clean4 since that
8679			 * was just called before request_irqs failed
8680			 */
8681			goto clean3;
8682		}
8683
8684		rc = hpsa_kdump_soft_reset(h);
8685		if (rc)
8686			/* Neither hard nor soft reset worked, we're hosed. */
8687			goto clean7;
8688
8689		dev_info(&h->pdev->dev, "Board READY.\n");
8690		dev_info(&h->pdev->dev,
8691			"Waiting for stale completions to drain.\n");
8692		h->access.set_intr_mask(h, HPSA_INTR_ON);
8693		msleep(10000);
8694		h->access.set_intr_mask(h, HPSA_INTR_OFF);
8695
8696		rc = controller_reset_failed(h->cfgtable);
8697		if (rc)
8698			dev_info(&h->pdev->dev,
8699				"Soft reset appears to have failed.\n");
8700
8701		/* since the controller's reset, we have to go back and re-init
8702		 * everything.  Easiest to just forget what we've done and do it
8703		 * all over again.
8704		 */
8705		hpsa_undo_allocations_after_kdump_soft_reset(h);
8706		try_soft_reset = 0;
8707		if (rc)
8708			/* don't goto clean, we already unallocated */
8709			return -ENODEV;
8710
8711		goto reinit_after_soft_reset;
8712	}
8713
8714	/* Enable Accelerated IO path at driver layer */
8715	h->acciopath_status = 1;
8716	/* Disable discovery polling.*/
8717	h->discovery_polling = 0;
8718
8719
8720	/* Turn the interrupts on so we can service requests */
8721	h->access.set_intr_mask(h, HPSA_INTR_ON);
8722
8723	hpsa_hba_inquiry(h);
8724
8725	h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8726	if (!h->lastlogicals)
8727		dev_info(&h->pdev->dev,
8728			"Can't track change to report lun data\n");
8729
8730	/* hook into SCSI subsystem */
8731	rc = hpsa_scsi_add_host(h);
8732	if (rc)
8733		goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8734
8735	/* Monitor the controller for firmware lockups */
8736	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8737	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8738	schedule_delayed_work(&h->monitor_ctlr_work,
8739				h->heartbeat_sample_interval);
8740	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8741	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8742				h->heartbeat_sample_interval);
8743	INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8744	schedule_delayed_work(&h->event_monitor_work,
8745				HPSA_EVENT_MONITOR_INTERVAL);
8746	return 0;
8747
 
 
8748clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8749	hpsa_free_performant_mode(h);
8750	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8751clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8752	hpsa_free_sg_chain_blocks(h);
8753clean5: /* cmd, irq, shost, pci, lu, aer/h */
8754	hpsa_free_cmd_pool(h);
8755clean4: /* irq, shost, pci, lu, aer/h */
8756	hpsa_free_irqs(h);
8757clean3: /* shost, pci, lu, aer/h */
8758	scsi_host_put(h->scsi_host);
8759	h->scsi_host = NULL;
8760clean2_5: /* pci, lu, aer/h */
8761	hpsa_free_pci_init(h);
8762clean2: /* lu, aer/h */
8763	if (h->lockup_detected) {
8764		free_percpu(h->lockup_detected);
8765		h->lockup_detected = NULL;
8766	}
8767clean1:	/* wq/aer/h */
8768	if (h->resubmit_wq) {
8769		destroy_workqueue(h->resubmit_wq);
8770		h->resubmit_wq = NULL;
8771	}
8772	if (h->rescan_ctlr_wq) {
8773		destroy_workqueue(h->rescan_ctlr_wq);
8774		h->rescan_ctlr_wq = NULL;
8775	}
8776	kfree(h);
 
 
 
 
8777	return rc;
8778}
8779
8780static void hpsa_flush_cache(struct ctlr_info *h)
8781{
8782	char *flush_buf;
8783	struct CommandList *c;
8784	int rc;
8785
8786	if (unlikely(lockup_detected(h)))
8787		return;
8788	flush_buf = kzalloc(4, GFP_KERNEL);
8789	if (!flush_buf)
8790		return;
8791
8792	c = cmd_alloc(h);
8793
8794	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8795		RAID_CTLR_LUNID, TYPE_CMD)) {
8796		goto out;
8797	}
8798	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8799					PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8800	if (rc)
8801		goto out;
8802	if (c->err_info->CommandStatus != 0)
8803out:
8804		dev_warn(&h->pdev->dev,
8805			"error flushing cache on controller\n");
8806	cmd_free(h, c);
8807	kfree(flush_buf);
8808}
8809
8810/* Make controller gather fresh report lun data each time we
8811 * send down a report luns request
8812 */
8813static void hpsa_disable_rld_caching(struct ctlr_info *h)
8814{
8815	u32 *options;
8816	struct CommandList *c;
8817	int rc;
8818
8819	/* Don't bother trying to set diag options if locked up */
8820	if (unlikely(h->lockup_detected))
8821		return;
8822
8823	options = kzalloc(sizeof(*options), GFP_KERNEL);
8824	if (!options)
8825		return;
8826
8827	c = cmd_alloc(h);
8828
8829	/* first, get the current diag options settings */
8830	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8831		RAID_CTLR_LUNID, TYPE_CMD))
8832		goto errout;
8833
8834	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8835		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8836	if ((rc != 0) || (c->err_info->CommandStatus != 0))
8837		goto errout;
8838
8839	/* Now, set the bit for disabling the RLD caching */
8840	*options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8841
8842	if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8843		RAID_CTLR_LUNID, TYPE_CMD))
8844		goto errout;
8845
8846	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8847		PCI_DMA_TODEVICE, NO_TIMEOUT);
8848	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8849		goto errout;
8850
8851	/* Now verify that it got set: */
8852	if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8853		RAID_CTLR_LUNID, TYPE_CMD))
8854		goto errout;
8855
8856	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8857		PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8858	if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8859		goto errout;
8860
8861	if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8862		goto out;
8863
8864errout:
8865	dev_err(&h->pdev->dev,
8866			"Error: failed to disable report lun data caching.\n");
8867out:
8868	cmd_free(h, c);
8869	kfree(options);
8870}
8871
8872static void hpsa_shutdown(struct pci_dev *pdev)
8873{
8874	struct ctlr_info *h;
8875
8876	h = pci_get_drvdata(pdev);
8877	/* Turn board interrupts off  and send the flush cache command
8878	 * sendcmd will turn off interrupt, and send the flush...
8879	 * To write all data in the battery backed cache to disks
8880	 */
8881	hpsa_flush_cache(h);
8882	h->access.set_intr_mask(h, HPSA_INTR_OFF);
8883	hpsa_free_irqs(h);			/* init_one 4 */
8884	hpsa_disable_interrupt_mode(h);		/* pci_init 2 */
8885}
8886
 
 
 
 
 
 
8887static void hpsa_free_device_info(struct ctlr_info *h)
8888{
8889	int i;
8890
8891	for (i = 0; i < h->ndevices; i++) {
8892		kfree(h->dev[i]);
8893		h->dev[i] = NULL;
8894	}
8895}
8896
8897static void hpsa_remove_one(struct pci_dev *pdev)
8898{
8899	struct ctlr_info *h;
8900	unsigned long flags;
8901
8902	if (pci_get_drvdata(pdev) == NULL) {
8903		dev_err(&pdev->dev, "unable to remove device\n");
8904		return;
8905	}
8906	h = pci_get_drvdata(pdev);
8907
8908	/* Get rid of any controller monitoring work items */
8909	spin_lock_irqsave(&h->lock, flags);
8910	h->remove_in_progress = 1;
8911	spin_unlock_irqrestore(&h->lock, flags);
8912	cancel_delayed_work_sync(&h->monitor_ctlr_work);
8913	cancel_delayed_work_sync(&h->rescan_ctlr_work);
8914	cancel_delayed_work_sync(&h->event_monitor_work);
8915	destroy_workqueue(h->rescan_ctlr_wq);
8916	destroy_workqueue(h->resubmit_wq);
 
8917
8918	hpsa_delete_sas_host(h);
8919
8920	/*
8921	 * Call before disabling interrupts.
8922	 * scsi_remove_host can trigger I/O operations especially
8923	 * when multipath is enabled. There can be SYNCHRONIZE CACHE
8924	 * operations which cannot complete and will hang the system.
8925	 */
8926	if (h->scsi_host)
8927		scsi_remove_host(h->scsi_host);		/* init_one 8 */
8928	/* includes hpsa_free_irqs - init_one 4 */
8929	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8930	hpsa_shutdown(pdev);
8931
8932	hpsa_free_device_info(h);		/* scan */
8933
8934	kfree(h->hba_inquiry_data);			/* init_one 10 */
8935	h->hba_inquiry_data = NULL;			/* init_one 10 */
8936	hpsa_free_ioaccel2_sg_chain_blocks(h);
8937	hpsa_free_performant_mode(h);			/* init_one 7 */
8938	hpsa_free_sg_chain_blocks(h);			/* init_one 6 */
8939	hpsa_free_cmd_pool(h);				/* init_one 5 */
8940	kfree(h->lastlogicals);
8941
8942	/* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8943
8944	scsi_host_put(h->scsi_host);			/* init_one 3 */
8945	h->scsi_host = NULL;				/* init_one 3 */
8946
8947	/* includes hpsa_disable_interrupt_mode - pci_init 2 */
8948	hpsa_free_pci_init(h);				/* init_one 2.5 */
8949
8950	free_percpu(h->lockup_detected);		/* init_one 2 */
8951	h->lockup_detected = NULL;			/* init_one 2 */
8952	/* (void) pci_disable_pcie_error_reporting(pdev); */	/* init_one 1 */
8953
8954	hpda_free_ctlr_info(h);				/* init_one 1 */
8955}
8956
8957static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8958	__attribute__((unused)) pm_message_t state)
8959{
8960	return -ENOSYS;
8961}
8962
8963static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
 
8964{
8965	return -ENOSYS;
8966}
8967
 
 
8968static struct pci_driver hpsa_pci_driver = {
8969	.name = HPSA,
8970	.probe = hpsa_init_one,
8971	.remove = hpsa_remove_one,
8972	.id_table = hpsa_pci_device_id,	/* id_table */
8973	.shutdown = hpsa_shutdown,
8974	.suspend = hpsa_suspend,
8975	.resume = hpsa_resume,
8976};
8977
8978/* Fill in bucket_map[], given nsgs (the max number of
8979 * scatter gather elements supported) and bucket[],
8980 * which is an array of 8 integers.  The bucket[] array
8981 * contains 8 different DMA transfer sizes (in 16
8982 * byte increments) which the controller uses to fetch
8983 * commands.  This function fills in bucket_map[], which
8984 * maps a given number of scatter gather elements to one of
8985 * the 8 DMA transfer sizes.  The point of it is to allow the
8986 * controller to only do as much DMA as needed to fetch the
8987 * command, with the DMA transfer size encoded in the lower
8988 * bits of the command address.
8989 */
8990static void  calc_bucket_map(int bucket[], int num_buckets,
8991	int nsgs, int min_blocks, u32 *bucket_map)
8992{
8993	int i, j, b, size;
8994
8995	/* Note, bucket_map must have nsgs+1 entries. */
8996	for (i = 0; i <= nsgs; i++) {
8997		/* Compute size of a command with i SG entries */
8998		size = i + min_blocks;
8999		b = num_buckets; /* Assume the biggest bucket */
9000		/* Find the bucket that is just big enough */
9001		for (j = 0; j < num_buckets; j++) {
9002			if (bucket[j] >= size) {
9003				b = j;
9004				break;
9005			}
9006		}
9007		/* for a command with i SG entries, use bucket b. */
9008		bucket_map[i] = b;
9009	}
9010}
9011
9012/*
9013 * return -ENODEV on err, 0 on success (or no action)
9014 * allocates numerous items that must be freed later
9015 */
9016static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9017{
9018	int i;
9019	unsigned long register_value;
9020	unsigned long transMethod = CFGTBL_Trans_Performant |
9021			(trans_support & CFGTBL_Trans_use_short_tags) |
9022				CFGTBL_Trans_enable_directed_msix |
9023			(trans_support & (CFGTBL_Trans_io_accel1 |
9024				CFGTBL_Trans_io_accel2));
9025	struct access_method access = SA5_performant_access;
9026
9027	/* This is a bit complicated.  There are 8 registers on
9028	 * the controller which we write to to tell it 8 different
9029	 * sizes of commands which there may be.  It's a way of
9030	 * reducing the DMA done to fetch each command.  Encoded into
9031	 * each command's tag are 3 bits which communicate to the controller
9032	 * which of the eight sizes that command fits within.  The size of
9033	 * each command depends on how many scatter gather entries there are.
9034	 * Each SG entry requires 16 bytes.  The eight registers are programmed
9035	 * with the number of 16-byte blocks a command of that size requires.
9036	 * The smallest command possible requires 5 such 16 byte blocks.
9037	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9038	 * blocks.  Note, this only extends to the SG entries contained
9039	 * within the command block, and does not extend to chained blocks
9040	 * of SG elements.   bft[] contains the eight values we write to
9041	 * the registers.  They are not evenly distributed, but have more
9042	 * sizes for small commands, and fewer sizes for larger commands.
9043	 */
9044	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9045#define MIN_IOACCEL2_BFT_ENTRY 5
9046#define HPSA_IOACCEL2_HEADER_SZ 4
9047	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9048			13, 14, 15, 16, 17, 18, 19,
9049			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9050	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9051	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9052	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9053				 16 * MIN_IOACCEL2_BFT_ENTRY);
9054	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9055	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9056	/*  5 = 1 s/g entry or 4k
9057	 *  6 = 2 s/g entry or 8k
9058	 *  8 = 4 s/g entry or 16k
9059	 * 10 = 6 s/g entry or 24k
9060	 */
9061
9062	/* If the controller supports either ioaccel method then
9063	 * we can also use the RAID stack submit path that does not
9064	 * perform the superfluous readl() after each command submission.
9065	 */
9066	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9067		access = SA5_performant_access_no_read;
9068
9069	/* Controller spec: zero out this buffer. */
9070	for (i = 0; i < h->nreply_queues; i++)
9071		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9072
9073	bft[7] = SG_ENTRIES_IN_CMD + 4;
9074	calc_bucket_map(bft, ARRAY_SIZE(bft),
9075				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9076	for (i = 0; i < 8; i++)
9077		writel(bft[i], &h->transtable->BlockFetch[i]);
9078
9079	/* size of controller ring buffer */
9080	writel(h->max_commands, &h->transtable->RepQSize);
9081	writel(h->nreply_queues, &h->transtable->RepQCount);
9082	writel(0, &h->transtable->RepQCtrAddrLow32);
9083	writel(0, &h->transtable->RepQCtrAddrHigh32);
9084
9085	for (i = 0; i < h->nreply_queues; i++) {
9086		writel(0, &h->transtable->RepQAddr[i].upper);
9087		writel(h->reply_queue[i].busaddr,
9088			&h->transtable->RepQAddr[i].lower);
9089	}
9090
9091	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9092	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9093	/*
9094	 * enable outbound interrupt coalescing in accelerator mode;
9095	 */
9096	if (trans_support & CFGTBL_Trans_io_accel1) {
9097		access = SA5_ioaccel_mode1_access;
9098		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9099		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9100	} else
9101		if (trans_support & CFGTBL_Trans_io_accel2)
9102			access = SA5_ioaccel_mode2_access;
9103	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9104	if (hpsa_wait_for_mode_change_ack(h)) {
9105		dev_err(&h->pdev->dev,
9106			"performant mode problem - doorbell timeout\n");
9107		return -ENODEV;
9108	}
9109	register_value = readl(&(h->cfgtable->TransportActive));
9110	if (!(register_value & CFGTBL_Trans_Performant)) {
9111		dev_err(&h->pdev->dev,
9112			"performant mode problem - transport not active\n");
9113		return -ENODEV;
9114	}
9115	/* Change the access methods to the performant access methods */
9116	h->access = access;
9117	h->transMethod = transMethod;
9118
9119	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9120		(trans_support & CFGTBL_Trans_io_accel2)))
9121		return 0;
9122
9123	if (trans_support & CFGTBL_Trans_io_accel1) {
9124		/* Set up I/O accelerator mode */
9125		for (i = 0; i < h->nreply_queues; i++) {
9126			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9127			h->reply_queue[i].current_entry =
9128				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9129		}
9130		bft[7] = h->ioaccel_maxsg + 8;
9131		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9132				h->ioaccel1_blockFetchTable);
9133
9134		/* initialize all reply queue entries to unused */
9135		for (i = 0; i < h->nreply_queues; i++)
9136			memset(h->reply_queue[i].head,
9137				(u8) IOACCEL_MODE1_REPLY_UNUSED,
9138				h->reply_queue_size);
9139
9140		/* set all the constant fields in the accelerator command
9141		 * frames once at init time to save CPU cycles later.
9142		 */
9143		for (i = 0; i < h->nr_cmds; i++) {
9144			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9145
9146			cp->function = IOACCEL1_FUNCTION_SCSIIO;
9147			cp->err_info = (u32) (h->errinfo_pool_dhandle +
9148					(i * sizeof(struct ErrorInfo)));
9149			cp->err_info_len = sizeof(struct ErrorInfo);
9150			cp->sgl_offset = IOACCEL1_SGLOFFSET;
9151			cp->host_context_flags =
9152				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9153			cp->timeout_sec = 0;
9154			cp->ReplyQueue = 0;
9155			cp->tag =
9156				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9157			cp->host_addr =
9158				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9159					(i * sizeof(struct io_accel1_cmd)));
9160		}
9161	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9162		u64 cfg_offset, cfg_base_addr_index;
9163		u32 bft2_offset, cfg_base_addr;
9164		int rc;
9165
9166		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9167			&cfg_base_addr_index, &cfg_offset);
9168		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9169		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9170		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9171				4, h->ioaccel2_blockFetchTable);
9172		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9173		BUILD_BUG_ON(offsetof(struct CfgTable,
9174				io_accel_request_size_offset) != 0xb8);
9175		h->ioaccel2_bft2_regs =
9176			remap_pci_mem(pci_resource_start(h->pdev,
9177					cfg_base_addr_index) +
9178					cfg_offset + bft2_offset,
9179					ARRAY_SIZE(bft2) *
9180					sizeof(*h->ioaccel2_bft2_regs));
9181		for (i = 0; i < ARRAY_SIZE(bft2); i++)
9182			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9183	}
9184	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9185	if (hpsa_wait_for_mode_change_ack(h)) {
9186		dev_err(&h->pdev->dev,
9187			"performant mode problem - enabling ioaccel mode\n");
9188		return -ENODEV;
9189	}
9190	return 0;
9191}
9192
9193/* Free ioaccel1 mode command blocks and block fetch table */
9194static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9195{
9196	if (h->ioaccel_cmd_pool) {
9197		pci_free_consistent(h->pdev,
9198			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9199			h->ioaccel_cmd_pool,
9200			h->ioaccel_cmd_pool_dhandle);
9201		h->ioaccel_cmd_pool = NULL;
9202		h->ioaccel_cmd_pool_dhandle = 0;
9203	}
9204	kfree(h->ioaccel1_blockFetchTable);
9205	h->ioaccel1_blockFetchTable = NULL;
9206}
9207
9208/* Allocate ioaccel1 mode command blocks and block fetch table */
9209static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9210{
9211	h->ioaccel_maxsg =
9212		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9213	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9214		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9215
9216	/* Command structures must be aligned on a 128-byte boundary
9217	 * because the 7 lower bits of the address are used by the
9218	 * hardware.
9219	 */
9220	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9221			IOACCEL1_COMMANDLIST_ALIGNMENT);
9222	h->ioaccel_cmd_pool =
9223		pci_alloc_consistent(h->pdev,
9224			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9225			&(h->ioaccel_cmd_pool_dhandle));
9226
9227	h->ioaccel1_blockFetchTable =
9228		kmalloc(((h->ioaccel_maxsg + 1) *
9229				sizeof(u32)), GFP_KERNEL);
9230
9231	if ((h->ioaccel_cmd_pool == NULL) ||
9232		(h->ioaccel1_blockFetchTable == NULL))
9233		goto clean_up;
9234
9235	memset(h->ioaccel_cmd_pool, 0,
9236		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9237	return 0;
9238
9239clean_up:
9240	hpsa_free_ioaccel1_cmd_and_bft(h);
9241	return -ENOMEM;
9242}
9243
9244/* Free ioaccel2 mode command blocks and block fetch table */
9245static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9246{
9247	hpsa_free_ioaccel2_sg_chain_blocks(h);
9248
9249	if (h->ioaccel2_cmd_pool) {
9250		pci_free_consistent(h->pdev,
9251			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9252			h->ioaccel2_cmd_pool,
9253			h->ioaccel2_cmd_pool_dhandle);
9254		h->ioaccel2_cmd_pool = NULL;
9255		h->ioaccel2_cmd_pool_dhandle = 0;
9256	}
9257	kfree(h->ioaccel2_blockFetchTable);
9258	h->ioaccel2_blockFetchTable = NULL;
9259}
9260
9261/* Allocate ioaccel2 mode command blocks and block fetch table */
9262static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9263{
9264	int rc;
9265
9266	/* Allocate ioaccel2 mode command blocks and block fetch table */
9267
9268	h->ioaccel_maxsg =
9269		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9270	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9271		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9272
9273	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9274			IOACCEL2_COMMANDLIST_ALIGNMENT);
9275	h->ioaccel2_cmd_pool =
9276		pci_alloc_consistent(h->pdev,
9277			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9278			&(h->ioaccel2_cmd_pool_dhandle));
9279
9280	h->ioaccel2_blockFetchTable =
9281		kmalloc(((h->ioaccel_maxsg + 1) *
9282				sizeof(u32)), GFP_KERNEL);
9283
9284	if ((h->ioaccel2_cmd_pool == NULL) ||
9285		(h->ioaccel2_blockFetchTable == NULL)) {
9286		rc = -ENOMEM;
9287		goto clean_up;
9288	}
9289
9290	rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9291	if (rc)
9292		goto clean_up;
9293
9294	memset(h->ioaccel2_cmd_pool, 0,
9295		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9296	return 0;
9297
9298clean_up:
9299	hpsa_free_ioaccel2_cmd_and_bft(h);
9300	return rc;
9301}
9302
9303/* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9304static void hpsa_free_performant_mode(struct ctlr_info *h)
9305{
9306	kfree(h->blockFetchTable);
9307	h->blockFetchTable = NULL;
9308	hpsa_free_reply_queues(h);
9309	hpsa_free_ioaccel1_cmd_and_bft(h);
9310	hpsa_free_ioaccel2_cmd_and_bft(h);
9311}
9312
9313/* return -ENODEV on error, 0 on success (or no action)
9314 * allocates numerous items that must be freed later
9315 */
9316static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9317{
9318	u32 trans_support;
9319	unsigned long transMethod = CFGTBL_Trans_Performant |
9320					CFGTBL_Trans_use_short_tags;
9321	int i, rc;
9322
9323	if (hpsa_simple_mode)
9324		return 0;
9325
9326	trans_support = readl(&(h->cfgtable->TransportSupport));
9327	if (!(trans_support & PERFORMANT_MODE))
9328		return 0;
9329
9330	/* Check for I/O accelerator mode support */
9331	if (trans_support & CFGTBL_Trans_io_accel1) {
9332		transMethod |= CFGTBL_Trans_io_accel1 |
9333				CFGTBL_Trans_enable_directed_msix;
9334		rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9335		if (rc)
9336			return rc;
9337	} else if (trans_support & CFGTBL_Trans_io_accel2) {
9338		transMethod |= CFGTBL_Trans_io_accel2 |
9339				CFGTBL_Trans_enable_directed_msix;
9340		rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9341		if (rc)
9342			return rc;
9343	}
9344
9345	h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9346	hpsa_get_max_perf_mode_cmds(h);
9347	/* Performant mode ring buffer and supporting data structures */
9348	h->reply_queue_size = h->max_commands * sizeof(u64);
9349
9350	for (i = 0; i < h->nreply_queues; i++) {
9351		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9352						h->reply_queue_size,
9353						&(h->reply_queue[i].busaddr));
 
9354		if (!h->reply_queue[i].head) {
9355			rc = -ENOMEM;
9356			goto clean1;	/* rq, ioaccel */
9357		}
9358		h->reply_queue[i].size = h->max_commands;
9359		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9360		h->reply_queue[i].current_entry = 0;
9361	}
9362
9363	/* Need a block fetch table for performant mode */
9364	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9365				sizeof(u32)), GFP_KERNEL);
9366	if (!h->blockFetchTable) {
9367		rc = -ENOMEM;
9368		goto clean1;	/* rq, ioaccel */
9369	}
9370
9371	rc = hpsa_enter_performant_mode(h, trans_support);
9372	if (rc)
9373		goto clean2;	/* bft, rq, ioaccel */
9374	return 0;
9375
9376clean2:	/* bft, rq, ioaccel */
9377	kfree(h->blockFetchTable);
9378	h->blockFetchTable = NULL;
9379clean1:	/* rq, ioaccel */
9380	hpsa_free_reply_queues(h);
9381	hpsa_free_ioaccel1_cmd_and_bft(h);
9382	hpsa_free_ioaccel2_cmd_and_bft(h);
9383	return rc;
9384}
9385
9386static int is_accelerated_cmd(struct CommandList *c)
9387{
9388	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9389}
9390
9391static void hpsa_drain_accel_commands(struct ctlr_info *h)
9392{
9393	struct CommandList *c = NULL;
9394	int i, accel_cmds_out;
9395	int refcount;
9396
9397	do { /* wait for all outstanding ioaccel commands to drain out */
9398		accel_cmds_out = 0;
9399		for (i = 0; i < h->nr_cmds; i++) {
9400			c = h->cmd_pool + i;
9401			refcount = atomic_inc_return(&c->refcount);
9402			if (refcount > 1) /* Command is allocated */
9403				accel_cmds_out += is_accelerated_cmd(c);
9404			cmd_free(h, c);
9405		}
9406		if (accel_cmds_out <= 0)
9407			break;
9408		msleep(100);
9409	} while (1);
9410}
9411
9412static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9413				struct hpsa_sas_port *hpsa_sas_port)
9414{
9415	struct hpsa_sas_phy *hpsa_sas_phy;
9416	struct sas_phy *phy;
9417
9418	hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9419	if (!hpsa_sas_phy)
9420		return NULL;
9421
9422	phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9423		hpsa_sas_port->next_phy_index);
9424	if (!phy) {
9425		kfree(hpsa_sas_phy);
9426		return NULL;
9427	}
9428
9429	hpsa_sas_port->next_phy_index++;
9430	hpsa_sas_phy->phy = phy;
9431	hpsa_sas_phy->parent_port = hpsa_sas_port;
9432
9433	return hpsa_sas_phy;
9434}
9435
9436static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9437{
9438	struct sas_phy *phy = hpsa_sas_phy->phy;
9439
9440	sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9441	if (hpsa_sas_phy->added_to_port)
9442		list_del(&hpsa_sas_phy->phy_list_entry);
9443	sas_phy_delete(phy);
9444	kfree(hpsa_sas_phy);
9445}
9446
9447static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9448{
9449	int rc;
9450	struct hpsa_sas_port *hpsa_sas_port;
9451	struct sas_phy *phy;
9452	struct sas_identify *identify;
9453
9454	hpsa_sas_port = hpsa_sas_phy->parent_port;
9455	phy = hpsa_sas_phy->phy;
9456
9457	identify = &phy->identify;
9458	memset(identify, 0, sizeof(*identify));
9459	identify->sas_address = hpsa_sas_port->sas_address;
9460	identify->device_type = SAS_END_DEVICE;
9461	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9462	identify->target_port_protocols = SAS_PROTOCOL_STP;
9463	phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9464	phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9465	phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9466	phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9467	phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9468
9469	rc = sas_phy_add(hpsa_sas_phy->phy);
9470	if (rc)
9471		return rc;
9472
9473	sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9474	list_add_tail(&hpsa_sas_phy->phy_list_entry,
9475			&hpsa_sas_port->phy_list_head);
9476	hpsa_sas_phy->added_to_port = true;
9477
9478	return 0;
9479}
9480
9481static int
9482	hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9483				struct sas_rphy *rphy)
9484{
9485	struct sas_identify *identify;
9486
9487	identify = &rphy->identify;
9488	identify->sas_address = hpsa_sas_port->sas_address;
9489	identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9490	identify->target_port_protocols = SAS_PROTOCOL_STP;
9491
9492	return sas_rphy_add(rphy);
9493}
9494
9495static struct hpsa_sas_port
9496	*hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9497				u64 sas_address)
9498{
9499	int rc;
9500	struct hpsa_sas_port *hpsa_sas_port;
9501	struct sas_port *port;
9502
9503	hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9504	if (!hpsa_sas_port)
9505		return NULL;
9506
9507	INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9508	hpsa_sas_port->parent_node = hpsa_sas_node;
9509
9510	port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9511	if (!port)
9512		goto free_hpsa_port;
9513
9514	rc = sas_port_add(port);
9515	if (rc)
9516		goto free_sas_port;
9517
9518	hpsa_sas_port->port = port;
9519	hpsa_sas_port->sas_address = sas_address;
9520	list_add_tail(&hpsa_sas_port->port_list_entry,
9521			&hpsa_sas_node->port_list_head);
9522
9523	return hpsa_sas_port;
9524
9525free_sas_port:
9526	sas_port_free(port);
9527free_hpsa_port:
9528	kfree(hpsa_sas_port);
9529
9530	return NULL;
9531}
9532
9533static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9534{
9535	struct hpsa_sas_phy *hpsa_sas_phy;
9536	struct hpsa_sas_phy *next;
9537
9538	list_for_each_entry_safe(hpsa_sas_phy, next,
9539			&hpsa_sas_port->phy_list_head, phy_list_entry)
9540		hpsa_free_sas_phy(hpsa_sas_phy);
9541
9542	sas_port_delete(hpsa_sas_port->port);
9543	list_del(&hpsa_sas_port->port_list_entry);
9544	kfree(hpsa_sas_port);
9545}
9546
9547static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9548{
9549	struct hpsa_sas_node *hpsa_sas_node;
9550
9551	hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9552	if (hpsa_sas_node) {
9553		hpsa_sas_node->parent_dev = parent_dev;
9554		INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9555	}
9556
9557	return hpsa_sas_node;
9558}
9559
9560static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9561{
9562	struct hpsa_sas_port *hpsa_sas_port;
9563	struct hpsa_sas_port *next;
9564
9565	if (!hpsa_sas_node)
9566		return;
9567
9568	list_for_each_entry_safe(hpsa_sas_port, next,
9569			&hpsa_sas_node->port_list_head, port_list_entry)
9570		hpsa_free_sas_port(hpsa_sas_port);
9571
9572	kfree(hpsa_sas_node);
9573}
9574
9575static struct hpsa_scsi_dev_t
9576	*hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9577					struct sas_rphy *rphy)
9578{
9579	int i;
9580	struct hpsa_scsi_dev_t *device;
9581
9582	for (i = 0; i < h->ndevices; i++) {
9583		device = h->dev[i];
9584		if (!device->sas_port)
9585			continue;
9586		if (device->sas_port->rphy == rphy)
9587			return device;
9588	}
9589
9590	return NULL;
9591}
9592
9593static int hpsa_add_sas_host(struct ctlr_info *h)
9594{
9595	int rc;
9596	struct device *parent_dev;
9597	struct hpsa_sas_node *hpsa_sas_node;
9598	struct hpsa_sas_port *hpsa_sas_port;
9599	struct hpsa_sas_phy *hpsa_sas_phy;
9600
9601	parent_dev = &h->scsi_host->shost_dev;
9602
9603	hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9604	if (!hpsa_sas_node)
9605		return -ENOMEM;
9606
9607	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9608	if (!hpsa_sas_port) {
9609		rc = -ENODEV;
9610		goto free_sas_node;
9611	}
9612
9613	hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9614	if (!hpsa_sas_phy) {
9615		rc = -ENODEV;
9616		goto free_sas_port;
9617	}
9618
9619	rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9620	if (rc)
9621		goto free_sas_phy;
9622
9623	h->sas_host = hpsa_sas_node;
9624
9625	return 0;
9626
9627free_sas_phy:
9628	hpsa_free_sas_phy(hpsa_sas_phy);
 
9629free_sas_port:
9630	hpsa_free_sas_port(hpsa_sas_port);
9631free_sas_node:
9632	hpsa_free_sas_node(hpsa_sas_node);
9633
9634	return rc;
9635}
9636
9637static void hpsa_delete_sas_host(struct ctlr_info *h)
9638{
9639	hpsa_free_sas_node(h->sas_host);
9640}
9641
9642static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9643				struct hpsa_scsi_dev_t *device)
9644{
9645	int rc;
9646	struct hpsa_sas_port *hpsa_sas_port;
9647	struct sas_rphy *rphy;
9648
9649	hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9650	if (!hpsa_sas_port)
9651		return -ENOMEM;
9652
9653	rphy = sas_end_device_alloc(hpsa_sas_port->port);
9654	if (!rphy) {
9655		rc = -ENODEV;
9656		goto free_sas_port;
9657	}
9658
9659	hpsa_sas_port->rphy = rphy;
9660	device->sas_port = hpsa_sas_port;
9661
9662	rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9663	if (rc)
9664		goto free_sas_port;
9665
9666	return 0;
9667
 
 
9668free_sas_port:
9669	hpsa_free_sas_port(hpsa_sas_port);
9670	device->sas_port = NULL;
9671
9672	return rc;
9673}
9674
9675static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9676{
9677	if (device->sas_port) {
9678		hpsa_free_sas_port(device->sas_port);
9679		device->sas_port = NULL;
9680	}
9681}
9682
9683static int
9684hpsa_sas_get_linkerrors(struct sas_phy *phy)
9685{
9686	return 0;
9687}
9688
9689static int
9690hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9691{
9692	*identifier = rphy->identify.sas_address;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9693	return 0;
9694}
9695
9696static int
9697hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9698{
9699	return -ENXIO;
9700}
9701
9702static int
9703hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9704{
9705	return 0;
9706}
9707
9708static int
9709hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9710{
9711	return 0;
9712}
9713
9714static int
9715hpsa_sas_phy_setup(struct sas_phy *phy)
9716{
9717	return 0;
9718}
9719
9720static void
9721hpsa_sas_phy_release(struct sas_phy *phy)
9722{
9723}
9724
9725static int
9726hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9727{
9728	return -EINVAL;
9729}
9730
9731static struct sas_function_template hpsa_sas_transport_functions = {
9732	.get_linkerrors = hpsa_sas_get_linkerrors,
9733	.get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9734	.get_bay_identifier = hpsa_sas_get_bay_identifier,
9735	.phy_reset = hpsa_sas_phy_reset,
9736	.phy_enable = hpsa_sas_phy_enable,
9737	.phy_setup = hpsa_sas_phy_setup,
9738	.phy_release = hpsa_sas_phy_release,
9739	.set_phy_speed = hpsa_sas_phy_speed,
9740};
9741
9742/*
9743 *  This is it.  Register the PCI driver information for the cards we control
9744 *  the OS will call our registered routines when it finds one of our cards.
9745 */
9746static int __init hpsa_init(void)
9747{
9748	int rc;
9749
9750	hpsa_sas_transport_template =
9751		sas_attach_transport(&hpsa_sas_transport_functions);
9752	if (!hpsa_sas_transport_template)
9753		return -ENODEV;
9754
9755	rc = pci_register_driver(&hpsa_pci_driver);
9756
9757	if (rc)
9758		sas_release_transport(hpsa_sas_transport_template);
9759
9760	return rc;
9761}
9762
9763static void __exit hpsa_cleanup(void)
9764{
9765	pci_unregister_driver(&hpsa_pci_driver);
9766	sas_release_transport(hpsa_sas_transport_template);
9767}
9768
9769static void __attribute__((unused)) verify_offsets(void)
9770{
9771#define VERIFY_OFFSET(member, offset) \
9772	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9773
9774	VERIFY_OFFSET(structure_size, 0);
9775	VERIFY_OFFSET(volume_blk_size, 4);
9776	VERIFY_OFFSET(volume_blk_cnt, 8);
9777	VERIFY_OFFSET(phys_blk_shift, 16);
9778	VERIFY_OFFSET(parity_rotation_shift, 17);
9779	VERIFY_OFFSET(strip_size, 18);
9780	VERIFY_OFFSET(disk_starting_blk, 20);
9781	VERIFY_OFFSET(disk_blk_cnt, 28);
9782	VERIFY_OFFSET(data_disks_per_row, 36);
9783	VERIFY_OFFSET(metadata_disks_per_row, 38);
9784	VERIFY_OFFSET(row_cnt, 40);
9785	VERIFY_OFFSET(layout_map_count, 42);
9786	VERIFY_OFFSET(flags, 44);
9787	VERIFY_OFFSET(dekindex, 46);
9788	/* VERIFY_OFFSET(reserved, 48 */
9789	VERIFY_OFFSET(data, 64);
9790
9791#undef VERIFY_OFFSET
9792
9793#define VERIFY_OFFSET(member, offset) \
9794	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9795
9796	VERIFY_OFFSET(IU_type, 0);
9797	VERIFY_OFFSET(direction, 1);
9798	VERIFY_OFFSET(reply_queue, 2);
9799	/* VERIFY_OFFSET(reserved1, 3);  */
9800	VERIFY_OFFSET(scsi_nexus, 4);
9801	VERIFY_OFFSET(Tag, 8);
9802	VERIFY_OFFSET(cdb, 16);
9803	VERIFY_OFFSET(cciss_lun, 32);
9804	VERIFY_OFFSET(data_len, 40);
9805	VERIFY_OFFSET(cmd_priority_task_attr, 44);
9806	VERIFY_OFFSET(sg_count, 45);
9807	/* VERIFY_OFFSET(reserved3 */
9808	VERIFY_OFFSET(err_ptr, 48);
9809	VERIFY_OFFSET(err_len, 56);
9810	/* VERIFY_OFFSET(reserved4  */
9811	VERIFY_OFFSET(sg, 64);
9812
9813#undef VERIFY_OFFSET
9814
9815#define VERIFY_OFFSET(member, offset) \
9816	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9817
9818	VERIFY_OFFSET(dev_handle, 0x00);
9819	VERIFY_OFFSET(reserved1, 0x02);
9820	VERIFY_OFFSET(function, 0x03);
9821	VERIFY_OFFSET(reserved2, 0x04);
9822	VERIFY_OFFSET(err_info, 0x0C);
9823	VERIFY_OFFSET(reserved3, 0x10);
9824	VERIFY_OFFSET(err_info_len, 0x12);
9825	VERIFY_OFFSET(reserved4, 0x13);
9826	VERIFY_OFFSET(sgl_offset, 0x14);
9827	VERIFY_OFFSET(reserved5, 0x15);
9828	VERIFY_OFFSET(transfer_len, 0x1C);
9829	VERIFY_OFFSET(reserved6, 0x20);
9830	VERIFY_OFFSET(io_flags, 0x24);
9831	VERIFY_OFFSET(reserved7, 0x26);
9832	VERIFY_OFFSET(LUN, 0x34);
9833	VERIFY_OFFSET(control, 0x3C);
9834	VERIFY_OFFSET(CDB, 0x40);
9835	VERIFY_OFFSET(reserved8, 0x50);
9836	VERIFY_OFFSET(host_context_flags, 0x60);
9837	VERIFY_OFFSET(timeout_sec, 0x62);
9838	VERIFY_OFFSET(ReplyQueue, 0x64);
9839	VERIFY_OFFSET(reserved9, 0x65);
9840	VERIFY_OFFSET(tag, 0x68);
9841	VERIFY_OFFSET(host_addr, 0x70);
9842	VERIFY_OFFSET(CISS_LUN, 0x78);
9843	VERIFY_OFFSET(SG, 0x78 + 8);
9844#undef VERIFY_OFFSET
9845}
9846
9847module_init(hpsa_init);
9848module_exit(hpsa_cleanup);