Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * RTC driver for the Armada 38x Marvell SoCs
  4 *
  5 * Copyright (C) 2015 Marvell
  6 *
  7 * Gregory Clement <gregory.clement@free-electrons.com>
 
 
 
 
 
 
  8 */
  9
 10#include <linux/delay.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/of.h>
 
 14#include <linux/platform_device.h>
 15#include <linux/rtc.h>
 16
 17#define RTC_STATUS	    0x0
 18#define RTC_STATUS_ALARM1	    BIT(0)
 19#define RTC_STATUS_ALARM2	    BIT(1)
 20#define RTC_IRQ1_CONF	    0x4
 21#define RTC_IRQ2_CONF	    0x8
 22#define RTC_IRQ_AL_EN		    BIT(0)
 23#define RTC_IRQ_FREQ_EN		    BIT(1)
 24#define RTC_IRQ_FREQ_1HZ	    BIT(2)
 25#define RTC_CCR		    0x18
 26#define RTC_CCR_MODE		    BIT(15)
 27#define RTC_CONF_TEST	    0x1C
 28#define RTC_NOMINAL_TIMING	    BIT(13)
 29
 30#define RTC_TIME	    0xC
 31#define RTC_ALARM1	    0x10
 32#define RTC_ALARM2	    0x14
 33
 34/* Armada38x SoC registers  */
 35#define RTC_38X_BRIDGE_TIMING_CTL   0x0
 36#define RTC_38X_PERIOD_OFFS		0
 37#define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
 38#define RTC_38X_READ_DELAY_OFFS		26
 39#define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
 40
 41/* Armada 7K/8K registers  */
 42#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
 43#define RTC_8K_WRCLK_PERIOD_OFFS	0
 44#define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
 45#define RTC_8K_WRCLK_SETUP_OFFS		16
 46#define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
 47#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
 48#define RTC_8K_READ_DELAY_OFFS		0
 49#define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
 50
 51#define RTC_8K_ISR		    0x10
 52#define RTC_8K_IMR		    0x14
 53#define RTC_8K_ALARM2			BIT(0)
 54
 55#define SOC_RTC_INTERRUPT	    0x8
 56#define SOC_RTC_ALARM1			BIT(0)
 57#define SOC_RTC_ALARM2			BIT(1)
 58#define SOC_RTC_ALARM1_MASK		BIT(2)
 59#define SOC_RTC_ALARM2_MASK		BIT(3)
 60
 61#define SAMPLE_NR 100
 62
 63struct value_to_freq {
 64	u32 value;
 65	u8 freq;
 66};
 67
 68struct armada38x_rtc {
 69	struct rtc_device   *rtc_dev;
 70	void __iomem	    *regs;
 71	void __iomem	    *regs_soc;
 72	spinlock_t	    lock;
 73	int		    irq;
 74	bool		    initialized;
 75	struct value_to_freq *val_to_freq;
 76	const struct armada38x_rtc_data *data;
 77};
 78
 79#define ALARM1	0
 80#define ALARM2	1
 81
 82#define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
 83
 84struct armada38x_rtc_data {
 85	/* Initialize the RTC-MBUS bridge timing */
 86	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
 87	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
 88	void (*clear_isr)(struct armada38x_rtc *rtc);
 89	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
 90	u32 alarm;
 91};
 92
 93/*
 94 * According to the datasheet, the OS should wait 5us after every
 95 * register write to the RTC hard macro so that the required update
 96 * can occur without holding off the system bus
 97 * According to errata RES-3124064, Write to any RTC register
 98 * may fail. As a workaround, before writing to RTC
 99 * register, issue a dummy write of 0x0 twice to RTC Status
100 * register.
101 */
102
103static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
104{
105	writel(0, rtc->regs + RTC_STATUS);
106	writel(0, rtc->regs + RTC_STATUS);
107	writel(val, rtc->regs + offset);
108	udelay(5);
109}
110
111/* Update RTC-MBUS bridge timing parameters */
112static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
113{
114	u32 reg;
115
116	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
117	reg &= ~RTC_38X_PERIOD_MASK;
118	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
119	reg &= ~RTC_38X_READ_DELAY_MASK;
120	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
121	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
122}
123
124static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
125{
126	u32 reg;
127
128	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
129	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
130	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
131	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
132	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
133	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
134
135	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
136	reg &= ~RTC_8K_READ_DELAY_MASK;
137	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
138	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
139}
140
141static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
142{
143	return readl(rtc->regs + rtc_reg);
144}
145
146static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
147{
148	int i, index_max = 0, max = 0;
149
150	for (i = 0; i < SAMPLE_NR; i++) {
151		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
152		rtc->val_to_freq[i].freq = 0;
153	}
154
155	for (i = 0; i < SAMPLE_NR; i++) {
156		int j = 0;
157		u32 value = rtc->val_to_freq[i].value;
158
159		while (rtc->val_to_freq[j].freq) {
160			if (rtc->val_to_freq[j].value == value) {
161				rtc->val_to_freq[j].freq++;
162				break;
163			}
164			j++;
165		}
166
167		if (!rtc->val_to_freq[j].freq) {
168			rtc->val_to_freq[j].value = value;
169			rtc->val_to_freq[j].freq = 1;
170		}
171
172		if (rtc->val_to_freq[j].freq > max) {
173			index_max = j;
174			max = rtc->val_to_freq[j].freq;
175		}
176
177		/*
178		 * If a value already has half of the sample this is the most
179		 * frequent one and we can stop the research right now
180		 */
181		if (max > SAMPLE_NR / 2)
182			break;
183	}
184
185	return rtc->val_to_freq[index_max].value;
186}
187
188static void armada38x_clear_isr(struct armada38x_rtc *rtc)
189{
190	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
191
192	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
193}
194
195static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
196{
197	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
198
199	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
200}
201
202static void armada8k_clear_isr(struct armada38x_rtc *rtc)
203{
204	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
205}
206
207static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
208{
209	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
210}
211
212static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
213{
214	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
215	unsigned long time, flags;
216
217	spin_lock_irqsave(&rtc->lock, flags);
218	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
219	spin_unlock_irqrestore(&rtc->lock, flags);
220
221	rtc_time64_to_tm(time, tm);
222
223	return 0;
224}
225
226static void armada38x_rtc_reset(struct armada38x_rtc *rtc)
227{
228	u32 reg;
229
230	reg = rtc->data->read_rtc_reg(rtc, RTC_CONF_TEST);
231	/* If bits [7:0] are non-zero, assume RTC was uninitialized */
232	if (reg & 0xff) {
233		rtc_delayed_write(0, rtc, RTC_CONF_TEST);
234		msleep(500); /* Oscillator startup time */
235		rtc_delayed_write(0, rtc, RTC_TIME);
236		rtc_delayed_write(SOC_RTC_ALARM1 | SOC_RTC_ALARM2, rtc,
237				  RTC_STATUS);
238		rtc_delayed_write(RTC_NOMINAL_TIMING, rtc, RTC_CCR);
239	}
240	rtc->initialized = true;
241}
242
243static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
244{
245	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
 
246	unsigned long time, flags;
247
248	time = rtc_tm_to_time64(tm);
249
250	if (!rtc->initialized)
251		armada38x_rtc_reset(rtc);
252
253	spin_lock_irqsave(&rtc->lock, flags);
254	rtc_delayed_write(time, rtc, RTC_TIME);
255	spin_unlock_irqrestore(&rtc->lock, flags);
256
257	return 0;
 
258}
259
260static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
261{
262	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
263	unsigned long time, flags;
264	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
265	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
266	u32 val;
267
268	spin_lock_irqsave(&rtc->lock, flags);
269
270	time = rtc->data->read_rtc_reg(rtc, reg);
271	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
272
273	spin_unlock_irqrestore(&rtc->lock, flags);
274
275	alrm->enabled = val ? 1 : 0;
276	rtc_time64_to_tm(time,  &alrm->time);
277
278	return 0;
279}
280
281static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
282{
283	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
284	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
285	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
286	unsigned long time, flags;
 
287
288	time = rtc_tm_to_time64(&alrm->time);
 
 
 
289
290	spin_lock_irqsave(&rtc->lock, flags);
291
292	rtc_delayed_write(time, rtc, reg);
293
294	if (alrm->enabled) {
295		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
296		rtc->data->unmask_interrupt(rtc);
297	}
298
299	spin_unlock_irqrestore(&rtc->lock, flags);
300
301	return 0;
 
302}
303
304static int armada38x_rtc_alarm_irq_enable(struct device *dev,
305					 unsigned int enabled)
306{
307	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
308	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
309	unsigned long flags;
310
311	spin_lock_irqsave(&rtc->lock, flags);
312
313	if (enabled)
314		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
315	else
316		rtc_delayed_write(0, rtc, reg_irq);
317
318	spin_unlock_irqrestore(&rtc->lock, flags);
319
320	return 0;
321}
322
323static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
324{
325	struct armada38x_rtc *rtc = data;
326	u32 val;
327	int event = RTC_IRQF | RTC_AF;
328	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
329
330	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
331
332	spin_lock(&rtc->lock);
333
334	rtc->data->clear_isr(rtc);
335	val = rtc->data->read_rtc_reg(rtc, reg_irq);
336	/* disable all the interrupts for alarm*/
337	rtc_delayed_write(0, rtc, reg_irq);
338	/* Ack the event */
339	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
340
341	spin_unlock(&rtc->lock);
342
343	if (val & RTC_IRQ_FREQ_EN) {
344		if (val & RTC_IRQ_FREQ_1HZ)
345			event |= RTC_UF;
346		else
347			event |= RTC_PF;
348	}
349
350	rtc_update_irq(rtc->rtc_dev, 1, event);
351
352	return IRQ_HANDLED;
353}
354
355/*
356 * The information given in the Armada 388 functional spec is complex.
357 * They give two different formulas for calculating the offset value,
358 * but when considering "Offset" as an 8-bit signed integer, they both
359 * reduce down to (we shall rename "Offset" as "val" here):
360 *
361 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
362 *
363 * Converting to time, f = 1/t:
364 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
365 *
366 *   =>  t_measured / t_ideal = val * resolution + 1
367 *
368 * "offset" in the RTC interface is defined as:
369 *   t = t0 * (1 + offset * 1e-9)
370 * where t is the desired period, t0 is the measured period with a zero
371 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
372 *   offset = (t_ideal / t_measured - 1) / 1e-9
373 *
374 *   => t_ideal / t_measured = offset * 1e-9 + 1
375 *
376 * so:
377 *
378 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
379 *
380 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
381 *   offset = 1e18 / (val * R + 1e9) - 1e9
382 *   val = (1e18 / (offset + 1e9) - 1e9) / R
383 * with a common transformation:
384 *   f(x) = 1e18 / (x + 1e9) - 1e9
385 *   offset = f(val * R)
386 *   val = f(offset) / R
387 *
388 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
389 */
390static long armada38x_ppb_convert(long ppb)
391{
392	long div = ppb + 1000000000L;
393
394	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
395}
396
397static int armada38x_rtc_read_offset(struct device *dev, long *offset)
398{
399	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
400	unsigned long ccr, flags;
401	long ppb_cor;
402
403	spin_lock_irqsave(&rtc->lock, flags);
404	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
405	spin_unlock_irqrestore(&rtc->lock, flags);
406
407	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
408	/* ppb_cor + 1000000000L can never be zero */
409	*offset = armada38x_ppb_convert(ppb_cor);
410
411	return 0;
412}
413
414static int armada38x_rtc_set_offset(struct device *dev, long offset)
415{
416	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
417	unsigned long ccr = 0;
418	long ppb_cor, off;
419
420	/*
421	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
422	 * need to clamp the input.  This equates to -484270 .. 488558.
423	 * Not only is this to stop out of range "off" but also to
424	 * avoid the division by zero in armada38x_ppb_convert().
425	 */
426	offset = clamp(offset, -484270L, 488558L);
427
428	ppb_cor = armada38x_ppb_convert(offset);
429
430	/*
431	 * Use low update mode where possible, which gives a better
432	 * resolution of correction.
433	 */
434	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
435	if (off > 127 || off < -128) {
436		ccr = RTC_CCR_MODE;
437		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
438	}
439
440	/*
441	 * Armada 388 requires a bit pattern in bits 14..8 depending on
442	 * the sign bit: { 0, ~S, S, S, S, S, S }
443	 */
444	ccr |= (off & 0x3fff) ^ 0x2000;
445	rtc_delayed_write(ccr, rtc, RTC_CCR);
446
447	return 0;
448}
449
450static const struct rtc_class_ops armada38x_rtc_ops = {
451	.read_time = armada38x_rtc_read_time,
452	.set_time = armada38x_rtc_set_time,
453	.read_alarm = armada38x_rtc_read_alarm,
454	.set_alarm = armada38x_rtc_set_alarm,
455	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
456	.read_offset = armada38x_rtc_read_offset,
457	.set_offset = armada38x_rtc_set_offset,
458};
459
 
 
 
 
 
 
 
 
460static const struct armada38x_rtc_data armada38x_data = {
461	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
462	.read_rtc_reg = read_rtc_register_38x_wa,
463	.clear_isr = armada38x_clear_isr,
464	.unmask_interrupt = armada38x_unmask_interrupt,
465	.alarm = ALARM1,
466};
467
468static const struct armada38x_rtc_data armada8k_data = {
469	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
470	.read_rtc_reg = read_rtc_register,
471	.clear_isr = armada8k_clear_isr,
472	.unmask_interrupt = armada8k_unmask_interrupt,
473	.alarm = ALARM2,
474};
475
 
476static const struct of_device_id armada38x_rtc_of_match_table[] = {
477	{
478		.compatible = "marvell,armada-380-rtc",
479		.data = &armada38x_data,
480	},
481	{
482		.compatible = "marvell,armada-8k-rtc",
483		.data = &armada8k_data,
484	},
485	{}
486};
487MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
 
488
489static __init int armada38x_rtc_probe(struct platform_device *pdev)
490{
 
 
491	struct armada38x_rtc *rtc;
 
 
 
 
 
 
492
493	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
494			    GFP_KERNEL);
495	if (!rtc)
496		return -ENOMEM;
497
498	rtc->data = of_device_get_match_data(&pdev->dev);
499
500	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
501				sizeof(struct value_to_freq), GFP_KERNEL);
502	if (!rtc->val_to_freq)
503		return -ENOMEM;
504
505	spin_lock_init(&rtc->lock);
506
507	rtc->regs = devm_platform_ioremap_resource_byname(pdev, "rtc");
 
508	if (IS_ERR(rtc->regs))
509		return PTR_ERR(rtc->regs);
510	rtc->regs_soc = devm_platform_ioremap_resource_byname(pdev, "rtc-soc");
 
511	if (IS_ERR(rtc->regs_soc))
512		return PTR_ERR(rtc->regs_soc);
513
514	rtc->irq = platform_get_irq(pdev, 0);
515	if (rtc->irq < 0)
516		return rtc->irq;
517
518	rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
519	if (IS_ERR(rtc->rtc_dev))
520		return PTR_ERR(rtc->rtc_dev);
521
 
 
 
 
522	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
523				0, pdev->name, rtc) < 0) {
524		dev_warn(&pdev->dev, "Interrupt not available.\n");
525		rtc->irq = -1;
526	}
527	platform_set_drvdata(pdev, rtc);
528
529	if (rtc->irq != -1)
530		device_init_wakeup(&pdev->dev, 1);
531	else
532		clear_bit(RTC_FEATURE_ALARM, rtc->rtc_dev->features);
 
 
 
 
 
 
 
 
533
534	/* Update RTC-MBUS bridge timing parameters */
535	rtc->data->update_mbus_timing(rtc);
536
537	rtc->rtc_dev->ops = &armada38x_rtc_ops;
538	rtc->rtc_dev->range_max = U32_MAX;
539
540	return devm_rtc_register_device(rtc->rtc_dev);
 
 
 
 
541}
542
543#ifdef CONFIG_PM_SLEEP
544static int armada38x_rtc_suspend(struct device *dev)
545{
546	if (device_may_wakeup(dev)) {
547		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
548
549		return enable_irq_wake(rtc->irq);
550	}
551
552	return 0;
553}
554
555static int armada38x_rtc_resume(struct device *dev)
556{
557	if (device_may_wakeup(dev)) {
558		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
559
560		/* Update RTC-MBUS bridge timing parameters */
561		rtc->data->update_mbus_timing(rtc);
562
563		return disable_irq_wake(rtc->irq);
564	}
565
566	return 0;
567}
568#endif
569
570static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
571			 armada38x_rtc_suspend, armada38x_rtc_resume);
572
573static struct platform_driver armada38x_rtc_driver = {
574	.driver		= {
575		.name	= "armada38x-rtc",
576		.pm	= &armada38x_rtc_pm_ops,
577		.of_match_table = armada38x_rtc_of_match_table,
578	},
579};
580
581module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
582
583MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
584MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
585MODULE_LICENSE("GPL");
v4.17
 
  1/*
  2 * RTC driver for the Armada 38x Marvell SoCs
  3 *
  4 * Copyright (C) 2015 Marvell
  5 *
  6 * Gregory Clement <gregory.clement@free-electrons.com>
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License as
 10 * published by the Free Software Foundation; either version 2 of the
 11 * License, or (at your option) any later version.
 12 *
 13 */
 14
 15#include <linux/delay.h>
 16#include <linux/io.h>
 17#include <linux/module.h>
 18#include <linux/of.h>
 19#include <linux/of_device.h>
 20#include <linux/platform_device.h>
 21#include <linux/rtc.h>
 22
 23#define RTC_STATUS	    0x0
 24#define RTC_STATUS_ALARM1	    BIT(0)
 25#define RTC_STATUS_ALARM2	    BIT(1)
 26#define RTC_IRQ1_CONF	    0x4
 27#define RTC_IRQ2_CONF	    0x8
 28#define RTC_IRQ_AL_EN		    BIT(0)
 29#define RTC_IRQ_FREQ_EN		    BIT(1)
 30#define RTC_IRQ_FREQ_1HZ	    BIT(2)
 31#define RTC_CCR		    0x18
 32#define RTC_CCR_MODE		    BIT(15)
 
 
 33
 34#define RTC_TIME	    0xC
 35#define RTC_ALARM1	    0x10
 36#define RTC_ALARM2	    0x14
 37
 38/* Armada38x SoC registers  */
 39#define RTC_38X_BRIDGE_TIMING_CTL   0x0
 40#define RTC_38X_PERIOD_OFFS		0
 41#define RTC_38X_PERIOD_MASK		(0x3FF << RTC_38X_PERIOD_OFFS)
 42#define RTC_38X_READ_DELAY_OFFS		26
 43#define RTC_38X_READ_DELAY_MASK		(0x1F << RTC_38X_READ_DELAY_OFFS)
 44
 45/* Armada 7K/8K registers  */
 46#define RTC_8K_BRIDGE_TIMING_CTL0    0x0
 47#define RTC_8K_WRCLK_PERIOD_OFFS	0
 48#define RTC_8K_WRCLK_PERIOD_MASK	(0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
 49#define RTC_8K_WRCLK_SETUP_OFFS		16
 50#define RTC_8K_WRCLK_SETUP_MASK		(0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
 51#define RTC_8K_BRIDGE_TIMING_CTL1   0x4
 52#define RTC_8K_READ_DELAY_OFFS		0
 53#define RTC_8K_READ_DELAY_MASK		(0xFFFF << RTC_8K_READ_DELAY_OFFS)
 54
 55#define RTC_8K_ISR		    0x10
 56#define RTC_8K_IMR		    0x14
 57#define RTC_8K_ALARM2			BIT(0)
 58
 59#define SOC_RTC_INTERRUPT	    0x8
 60#define SOC_RTC_ALARM1			BIT(0)
 61#define SOC_RTC_ALARM2			BIT(1)
 62#define SOC_RTC_ALARM1_MASK		BIT(2)
 63#define SOC_RTC_ALARM2_MASK		BIT(3)
 64
 65#define SAMPLE_NR 100
 66
 67struct value_to_freq {
 68	u32 value;
 69	u8 freq;
 70};
 71
 72struct armada38x_rtc {
 73	struct rtc_device   *rtc_dev;
 74	void __iomem	    *regs;
 75	void __iomem	    *regs_soc;
 76	spinlock_t	    lock;
 77	int		    irq;
 
 78	struct value_to_freq *val_to_freq;
 79	struct armada38x_rtc_data *data;
 80};
 81
 82#define ALARM1	0
 83#define ALARM2	1
 84
 85#define ALARM_REG(base, alarm)	 ((base) + (alarm) * sizeof(u32))
 86
 87struct armada38x_rtc_data {
 88	/* Initialize the RTC-MBUS bridge timing */
 89	void (*update_mbus_timing)(struct armada38x_rtc *rtc);
 90	u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
 91	void (*clear_isr)(struct armada38x_rtc *rtc);
 92	void (*unmask_interrupt)(struct armada38x_rtc *rtc);
 93	u32 alarm;
 94};
 95
 96/*
 97 * According to the datasheet, the OS should wait 5us after every
 98 * register write to the RTC hard macro so that the required update
 99 * can occur without holding off the system bus
100 * According to errata RES-3124064, Write to any RTC register
101 * may fail. As a workaround, before writing to RTC
102 * register, issue a dummy write of 0x0 twice to RTC Status
103 * register.
104 */
105
106static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
107{
108	writel(0, rtc->regs + RTC_STATUS);
109	writel(0, rtc->regs + RTC_STATUS);
110	writel(val, rtc->regs + offset);
111	udelay(5);
112}
113
114/* Update RTC-MBUS bridge timing parameters */
115static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
116{
117	u32 reg;
118
119	reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
120	reg &= ~RTC_38X_PERIOD_MASK;
121	reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
122	reg &= ~RTC_38X_READ_DELAY_MASK;
123	reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
124	writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
125}
126
127static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
128{
129	u32 reg;
130
131	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
132	reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
133	reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
134	reg &= ~RTC_8K_WRCLK_SETUP_MASK;
135	reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
136	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
137
138	reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
139	reg &= ~RTC_8K_READ_DELAY_MASK;
140	reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
141	writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
142}
143
144static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
145{
146	return readl(rtc->regs + rtc_reg);
147}
148
149static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
150{
151	int i, index_max = 0, max = 0;
152
153	for (i = 0; i < SAMPLE_NR; i++) {
154		rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
155		rtc->val_to_freq[i].freq = 0;
156	}
157
158	for (i = 0; i < SAMPLE_NR; i++) {
159		int j = 0;
160		u32 value = rtc->val_to_freq[i].value;
161
162		while (rtc->val_to_freq[j].freq) {
163			if (rtc->val_to_freq[j].value == value) {
164				rtc->val_to_freq[j].freq++;
165				break;
166			}
167			j++;
168		}
169
170		if (!rtc->val_to_freq[j].freq) {
171			rtc->val_to_freq[j].value = value;
172			rtc->val_to_freq[j].freq = 1;
173		}
174
175		if (rtc->val_to_freq[j].freq > max) {
176			index_max = j;
177			max = rtc->val_to_freq[j].freq;
178		}
179
180		/*
181		 * If a value already has half of the sample this is the most
182		 * frequent one and we can stop the research right now
183		 */
184		if (max > SAMPLE_NR / 2)
185			break;
186	}
187
188	return rtc->val_to_freq[index_max].value;
189}
190
191static void armada38x_clear_isr(struct armada38x_rtc *rtc)
192{
193	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
194
195	writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
196}
197
198static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
199{
200	u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
201
202	writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
203}
204
205static void armada8k_clear_isr(struct armada38x_rtc *rtc)
206{
207	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
208}
209
210static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
211{
212	writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
213}
214
215static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
216{
217	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
218	unsigned long time, flags;
219
220	spin_lock_irqsave(&rtc->lock, flags);
221	time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
222	spin_unlock_irqrestore(&rtc->lock, flags);
223
224	rtc_time_to_tm(time, tm);
225
226	return 0;
227}
228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
230{
231	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
232	int ret = 0;
233	unsigned long time, flags;
234
235	ret = rtc_tm_to_time(tm, &time);
236
237	if (ret)
238		goto out;
239
240	spin_lock_irqsave(&rtc->lock, flags);
241	rtc_delayed_write(time, rtc, RTC_TIME);
242	spin_unlock_irqrestore(&rtc->lock, flags);
243
244out:
245	return ret;
246}
247
248static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
249{
250	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
251	unsigned long time, flags;
252	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
253	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
254	u32 val;
255
256	spin_lock_irqsave(&rtc->lock, flags);
257
258	time = rtc->data->read_rtc_reg(rtc, reg);
259	val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
260
261	spin_unlock_irqrestore(&rtc->lock, flags);
262
263	alrm->enabled = val ? 1 : 0;
264	rtc_time_to_tm(time,  &alrm->time);
265
266	return 0;
267}
268
269static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
270{
271	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
272	u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
273	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
274	unsigned long time, flags;
275	int ret = 0;
276
277	ret = rtc_tm_to_time(&alrm->time, &time);
278
279	if (ret)
280		goto out;
281
282	spin_lock_irqsave(&rtc->lock, flags);
283
284	rtc_delayed_write(time, rtc, reg);
285
286	if (alrm->enabled) {
287		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
288		rtc->data->unmask_interrupt(rtc);
289	}
290
291	spin_unlock_irqrestore(&rtc->lock, flags);
292
293out:
294	return ret;
295}
296
297static int armada38x_rtc_alarm_irq_enable(struct device *dev,
298					 unsigned int enabled)
299{
300	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
301	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
302	unsigned long flags;
303
304	spin_lock_irqsave(&rtc->lock, flags);
305
306	if (enabled)
307		rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
308	else
309		rtc_delayed_write(0, rtc, reg_irq);
310
311	spin_unlock_irqrestore(&rtc->lock, flags);
312
313	return 0;
314}
315
316static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
317{
318	struct armada38x_rtc *rtc = data;
319	u32 val;
320	int event = RTC_IRQF | RTC_AF;
321	u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
322
323	dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
324
325	spin_lock(&rtc->lock);
326
327	rtc->data->clear_isr(rtc);
328	val = rtc->data->read_rtc_reg(rtc, reg_irq);
329	/* disable all the interrupts for alarm*/
330	rtc_delayed_write(0, rtc, reg_irq);
331	/* Ack the event */
332	rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
333
334	spin_unlock(&rtc->lock);
335
336	if (val & RTC_IRQ_FREQ_EN) {
337		if (val & RTC_IRQ_FREQ_1HZ)
338			event |= RTC_UF;
339		else
340			event |= RTC_PF;
341	}
342
343	rtc_update_irq(rtc->rtc_dev, 1, event);
344
345	return IRQ_HANDLED;
346}
347
348/*
349 * The information given in the Armada 388 functional spec is complex.
350 * They give two different formulas for calculating the offset value,
351 * but when considering "Offset" as an 8-bit signed integer, they both
352 * reduce down to (we shall rename "Offset" as "val" here):
353 *
354 *   val = (f_ideal / f_measured - 1) / resolution   where f_ideal = 32768
355 *
356 * Converting to time, f = 1/t:
357 *   val = (t_measured / t_ideal - 1) / resolution   where t_ideal = 1/32768
358 *
359 *   =>  t_measured / t_ideal = val * resolution + 1
360 *
361 * "offset" in the RTC interface is defined as:
362 *   t = t0 * (1 + offset * 1e-9)
363 * where t is the desired period, t0 is the measured period with a zero
364 * offset, which is t_measured above. With t0 = t_measured and t = t_ideal,
365 *   offset = (t_ideal / t_measured - 1) / 1e-9
366 *
367 *   => t_ideal / t_measured = offset * 1e-9 + 1
368 *
369 * so:
370 *
371 *   offset * 1e-9 + 1 = 1 / (val * resolution + 1)
372 *
373 * We want "resolution" to be an integer, so resolution = R * 1e-9, giving
374 *   offset = 1e18 / (val * R + 1e9) - 1e9
375 *   val = (1e18 / (offset + 1e9) - 1e9) / R
376 * with a common transformation:
377 *   f(x) = 1e18 / (x + 1e9) - 1e9
378 *   offset = f(val * R)
379 *   val = f(offset) / R
380 *
381 * Armada 38x supports two modes, fine mode (954ppb) and coarse mode (3815ppb).
382 */
383static long armada38x_ppb_convert(long ppb)
384{
385	long div = ppb + 1000000000L;
386
387	return div_s64(1000000000000000000LL + div / 2, div) - 1000000000L;
388}
389
390static int armada38x_rtc_read_offset(struct device *dev, long *offset)
391{
392	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
393	unsigned long ccr, flags;
394	long ppb_cor;
395
396	spin_lock_irqsave(&rtc->lock, flags);
397	ccr = rtc->data->read_rtc_reg(rtc, RTC_CCR);
398	spin_unlock_irqrestore(&rtc->lock, flags);
399
400	ppb_cor = (ccr & RTC_CCR_MODE ? 3815 : 954) * (s8)ccr;
401	/* ppb_cor + 1000000000L can never be zero */
402	*offset = armada38x_ppb_convert(ppb_cor);
403
404	return 0;
405}
406
407static int armada38x_rtc_set_offset(struct device *dev, long offset)
408{
409	struct armada38x_rtc *rtc = dev_get_drvdata(dev);
410	unsigned long ccr = 0;
411	long ppb_cor, off;
412
413	/*
414	 * The maximum ppb_cor is -128 * 3815 .. 127 * 3815, but we
415	 * need to clamp the input.  This equates to -484270 .. 488558.
416	 * Not only is this to stop out of range "off" but also to
417	 * avoid the division by zero in armada38x_ppb_convert().
418	 */
419	offset = clamp(offset, -484270L, 488558L);
420
421	ppb_cor = armada38x_ppb_convert(offset);
422
423	/*
424	 * Use low update mode where possible, which gives a better
425	 * resolution of correction.
426	 */
427	off = DIV_ROUND_CLOSEST(ppb_cor, 954);
428	if (off > 127 || off < -128) {
429		ccr = RTC_CCR_MODE;
430		off = DIV_ROUND_CLOSEST(ppb_cor, 3815);
431	}
432
433	/*
434	 * Armada 388 requires a bit pattern in bits 14..8 depending on
435	 * the sign bit: { 0, ~S, S, S, S, S, S }
436	 */
437	ccr |= (off & 0x3fff) ^ 0x2000;
438	rtc_delayed_write(ccr, rtc, RTC_CCR);
439
440	return 0;
441}
442
443static const struct rtc_class_ops armada38x_rtc_ops = {
444	.read_time = armada38x_rtc_read_time,
445	.set_time = armada38x_rtc_set_time,
446	.read_alarm = armada38x_rtc_read_alarm,
447	.set_alarm = armada38x_rtc_set_alarm,
448	.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
449	.read_offset = armada38x_rtc_read_offset,
450	.set_offset = armada38x_rtc_set_offset,
451};
452
453static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
454	.read_time = armada38x_rtc_read_time,
455	.set_time = armada38x_rtc_set_time,
456	.read_alarm = armada38x_rtc_read_alarm,
457	.read_offset = armada38x_rtc_read_offset,
458	.set_offset = armada38x_rtc_set_offset,
459};
460
461static const struct armada38x_rtc_data armada38x_data = {
462	.update_mbus_timing = rtc_update_38x_mbus_timing_params,
463	.read_rtc_reg = read_rtc_register_38x_wa,
464	.clear_isr = armada38x_clear_isr,
465	.unmask_interrupt = armada38x_unmask_interrupt,
466	.alarm = ALARM1,
467};
468
469static const struct armada38x_rtc_data armada8k_data = {
470	.update_mbus_timing = rtc_update_8k_mbus_timing_params,
471	.read_rtc_reg = read_rtc_register,
472	.clear_isr = armada8k_clear_isr,
473	.unmask_interrupt = armada8k_unmask_interrupt,
474	.alarm = ALARM2,
475};
476
477#ifdef CONFIG_OF
478static const struct of_device_id armada38x_rtc_of_match_table[] = {
479	{
480		.compatible = "marvell,armada-380-rtc",
481		.data = &armada38x_data,
482	},
483	{
484		.compatible = "marvell,armada-8k-rtc",
485		.data = &armada8k_data,
486	},
487	{}
488};
489MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
490#endif
491
492static __init int armada38x_rtc_probe(struct platform_device *pdev)
493{
494	const struct rtc_class_ops *ops;
495	struct resource *res;
496	struct armada38x_rtc *rtc;
497	const struct of_device_id *match;
498	int ret;
499
500	match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
501	if (!match)
502		return -ENODEV;
503
504	rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
505			    GFP_KERNEL);
506	if (!rtc)
507		return -ENOMEM;
508
 
 
509	rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
510				sizeof(struct value_to_freq), GFP_KERNEL);
511	if (!rtc->val_to_freq)
512		return -ENOMEM;
513
514	spin_lock_init(&rtc->lock);
515
516	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
517	rtc->regs = devm_ioremap_resource(&pdev->dev, res);
518	if (IS_ERR(rtc->regs))
519		return PTR_ERR(rtc->regs);
520	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc-soc");
521	rtc->regs_soc = devm_ioremap_resource(&pdev->dev, res);
522	if (IS_ERR(rtc->regs_soc))
523		return PTR_ERR(rtc->regs_soc);
524
525	rtc->irq = platform_get_irq(pdev, 0);
 
 
 
 
 
 
526
527	if (rtc->irq < 0) {
528		dev_err(&pdev->dev, "no irq\n");
529		return rtc->irq;
530	}
531	if (devm_request_irq(&pdev->dev, rtc->irq, armada38x_rtc_alarm_irq,
532				0, pdev->name, rtc) < 0) {
533		dev_warn(&pdev->dev, "Interrupt not available.\n");
534		rtc->irq = -1;
535	}
536	platform_set_drvdata(pdev, rtc);
537
538	if (rtc->irq != -1) {
539		device_init_wakeup(&pdev->dev, 1);
540		ops = &armada38x_rtc_ops;
541	} else {
542		/*
543		 * If there is no interrupt available then we can't
544		 * use the alarm
545		 */
546		ops = &armada38x_rtc_ops_noirq;
547	}
548	rtc->data = (struct armada38x_rtc_data *)match->data;
549
550
551	/* Update RTC-MBUS bridge timing parameters */
552	rtc->data->update_mbus_timing(rtc);
553
554	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
555						ops, THIS_MODULE);
556	if (IS_ERR(rtc->rtc_dev)) {
557		ret = PTR_ERR(rtc->rtc_dev);
558		dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
559		return ret;
560	}
561	return 0;
562}
563
564#ifdef CONFIG_PM_SLEEP
565static int armada38x_rtc_suspend(struct device *dev)
566{
567	if (device_may_wakeup(dev)) {
568		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
569
570		return enable_irq_wake(rtc->irq);
571	}
572
573	return 0;
574}
575
576static int armada38x_rtc_resume(struct device *dev)
577{
578	if (device_may_wakeup(dev)) {
579		struct armada38x_rtc *rtc = dev_get_drvdata(dev);
580
581		/* Update RTC-MBUS bridge timing parameters */
582		rtc->data->update_mbus_timing(rtc);
583
584		return disable_irq_wake(rtc->irq);
585	}
586
587	return 0;
588}
589#endif
590
591static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
592			 armada38x_rtc_suspend, armada38x_rtc_resume);
593
594static struct platform_driver armada38x_rtc_driver = {
595	.driver		= {
596		.name	= "armada38x-rtc",
597		.pm	= &armada38x_rtc_pm_ops,
598		.of_match_table = of_match_ptr(armada38x_rtc_of_match_table),
599	},
600};
601
602module_platform_driver_probe(armada38x_rtc_driver, armada38x_rtc_probe);
603
604MODULE_DESCRIPTION("Marvell Armada 38x RTC driver");
605MODULE_AUTHOR("Gregory CLEMENT <gregory.clement@free-electrons.com>");
606MODULE_LICENSE("GPL");