Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2015 Broadcom Corporation
  4 */
  5
  6#include <linux/interrupt.h>
  7#include <linux/irqchip/chained_irq.h>
  8#include <linux/irqdomain.h>
  9#include <linux/msi.h>
 10#include <linux/of_irq.h>
 11#include <linux/of_pci.h>
 12#include <linux/pci.h>
 13
 14#include "pcie-iproc.h"
 15
 16#define IPROC_MSI_INTR_EN_SHIFT        11
 17#define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
 18#define IPROC_MSI_INT_N_EVENT_SHIFT    1
 19#define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
 20#define IPROC_MSI_EQ_EN_SHIFT          0
 21#define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
 22
 23#define IPROC_MSI_EQ_MASK              0x3f
 24
 25/* Max number of GIC interrupts */
 26#define NR_HW_IRQS                     6
 27
 28/* Number of entries in each event queue */
 29#define EQ_LEN                         64
 30
 31/* Size of each event queue memory region */
 32#define EQ_MEM_REGION_SIZE             SZ_4K
 33
 34/* Size of each MSI address region */
 35#define MSI_MEM_REGION_SIZE            SZ_4K
 36
 37enum iproc_msi_reg {
 38	IPROC_MSI_EQ_PAGE = 0,
 39	IPROC_MSI_EQ_PAGE_UPPER,
 40	IPROC_MSI_PAGE,
 41	IPROC_MSI_PAGE_UPPER,
 42	IPROC_MSI_CTRL,
 43	IPROC_MSI_EQ_HEAD,
 44	IPROC_MSI_EQ_TAIL,
 45	IPROC_MSI_INTS_EN,
 46	IPROC_MSI_REG_SIZE,
 47};
 48
 49struct iproc_msi;
 50
 51/**
 52 * struct iproc_msi_grp - iProc MSI group
 53 *
 54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
 55 * event queue.
 56 *
 57 * @msi: pointer to iProc MSI data
 58 * @gic_irq: GIC interrupt
 59 * @eq: Event queue number
 60 */
 61struct iproc_msi_grp {
 62	struct iproc_msi *msi;
 63	int gic_irq;
 64	unsigned int eq;
 65};
 66
 67/**
 68 * struct iproc_msi - iProc event queue based MSI
 69 *
 70 * Only meant to be used on platforms without MSI support integrated into the
 71 * GIC.
 72 *
 73 * @pcie: pointer to iProc PCIe data
 74 * @reg_offsets: MSI register offsets
 75 * @grps: MSI groups
 76 * @nr_irqs: number of total interrupts connected to GIC
 77 * @nr_cpus: number of toal CPUs
 78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
 79 * set explicitly (required for some legacy platforms)
 80 * @bitmap: MSI vector bitmap
 81 * @bitmap_lock: lock to protect access to the MSI bitmap
 82 * @nr_msi_vecs: total number of MSI vectors
 83 * @inner_domain: inner IRQ domain
 84 * @msi_domain: MSI IRQ domain
 85 * @nr_eq_region: required number of 4K aligned memory region for MSI event
 86 * queues
 87 * @nr_msi_region: required number of 4K aligned address region for MSI posted
 88 * writes
 89 * @eq_cpu: pointer to allocated memory region for MSI event queues
 90 * @eq_dma: DMA address of MSI event queues
 91 * @msi_addr: MSI address
 92 */
 93struct iproc_msi {
 94	struct iproc_pcie *pcie;
 95	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
 96	struct iproc_msi_grp *grps;
 97	int nr_irqs;
 98	int nr_cpus;
 99	bool has_inten_reg;
100	unsigned long *bitmap;
101	struct mutex bitmap_lock;
102	unsigned int nr_msi_vecs;
103	struct irq_domain *inner_domain;
104	struct irq_domain *msi_domain;
105	unsigned int nr_eq_region;
106	unsigned int nr_msi_region;
107	void *eq_cpu;
108	dma_addr_t eq_dma;
109	phys_addr_t msi_addr;
110};
111
112static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
113	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
114	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
115	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
116	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
117	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
118	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
119};
120
121static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
122	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
123	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
124	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
125	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
126};
127
128static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
129				     enum iproc_msi_reg reg,
130				     unsigned int eq)
131{
132	struct iproc_pcie *pcie = msi->pcie;
133
134	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
135}
136
137static inline void iproc_msi_write_reg(struct iproc_msi *msi,
138				       enum iproc_msi_reg reg,
139				       int eq, u32 val)
140{
141	struct iproc_pcie *pcie = msi->pcie;
142
143	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
144}
145
146static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
147{
148	return (hwirq % msi->nr_irqs);
149}
150
151static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
152						 unsigned long hwirq)
153{
154	if (msi->nr_msi_region > 1)
155		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
156	else
157		return hwirq_to_group(msi, hwirq) * sizeof(u32);
158}
159
160static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
161{
162	if (msi->nr_eq_region > 1)
163		return eq * EQ_MEM_REGION_SIZE;
164	else
165		return eq * EQ_LEN * sizeof(u32);
166}
167
168static struct irq_chip iproc_msi_irq_chip = {
169	.name = "iProc-MSI",
170};
171
172static struct msi_domain_info iproc_msi_domain_info = {
173	.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
174		MSI_FLAG_PCI_MSIX,
175	.chip = &iproc_msi_irq_chip,
176};
177
178/*
179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
180 * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
181 *
182 * The number of MSI groups varies between different iProc SoCs.  The total
183 * number of CPU cores also varies.  To support MSI IRQ affinity, we
184 * distribute GIC interrupts across all available CPUs.  MSI vector is moved
185 * from one GIC interrupt to another to steer to the target CPU.
186 *
187 * Assuming:
188 * - the number of MSI groups is M
189 * - the number of CPU cores is N
190 * - M is always a multiple of N
191 *
192 * Total number of raw MSI vectors = M * 64
193 * Total number of supported MSI vectors = (M * 64) / N
194 */
195static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
196{
197	return (hwirq % msi->nr_cpus);
198}
199
200static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
201						     unsigned long hwirq)
202{
203	return (hwirq - hwirq_to_cpu(msi, hwirq));
204}
205
206static int iproc_msi_irq_set_affinity(struct irq_data *data,
207				      const struct cpumask *mask, bool force)
208{
209	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
210	int target_cpu = cpumask_first(mask);
211	int curr_cpu;
212	int ret;
213
214	curr_cpu = hwirq_to_cpu(msi, data->hwirq);
215	if (curr_cpu == target_cpu)
216		ret = IRQ_SET_MASK_OK_DONE;
217	else {
218		/* steer MSI to the target CPU */
219		data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
220		ret = IRQ_SET_MASK_OK;
221	}
222
223	irq_data_update_effective_affinity(data, cpumask_of(target_cpu));
224
225	return ret;
226}
227
228static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
229					  struct msi_msg *msg)
230{
231	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
232	dma_addr_t addr;
233
234	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
235	msg->address_lo = lower_32_bits(addr);
236	msg->address_hi = upper_32_bits(addr);
237	msg->data = data->hwirq << 5;
238}
239
240static struct irq_chip iproc_msi_bottom_irq_chip = {
241	.name = "MSI",
242	.irq_set_affinity = iproc_msi_irq_set_affinity,
243	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
244};
245
246static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
247				      unsigned int virq, unsigned int nr_irqs,
248				      void *args)
249{
250	struct iproc_msi *msi = domain->host_data;
251	int hwirq, i;
252
253	if (msi->nr_cpus > 1 && nr_irqs > 1)
254		return -EINVAL;
255
256	mutex_lock(&msi->bitmap_lock);
257
258	/*
259	 * Allocate 'nr_irqs' multiplied by 'nr_cpus' number of MSI vectors
260	 * each time
261	 */
262	hwirq = bitmap_find_free_region(msi->bitmap, msi->nr_msi_vecs,
263					order_base_2(msi->nr_cpus * nr_irqs));
264
265	mutex_unlock(&msi->bitmap_lock);
266
267	if (hwirq < 0)
268		return -ENOSPC;
269
270	for (i = 0; i < nr_irqs; i++) {
271		irq_domain_set_info(domain, virq + i, hwirq + i,
272				    &iproc_msi_bottom_irq_chip,
273				    domain->host_data, handle_simple_irq,
274				    NULL, NULL);
275	}
276
277	return 0;
278}
279
280static void iproc_msi_irq_domain_free(struct irq_domain *domain,
281				      unsigned int virq, unsigned int nr_irqs)
282{
283	struct irq_data *data = irq_domain_get_irq_data(domain, virq);
284	struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
285	unsigned int hwirq;
286
287	mutex_lock(&msi->bitmap_lock);
288
289	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
290	bitmap_release_region(msi->bitmap, hwirq,
291			      order_base_2(msi->nr_cpus * nr_irqs));
292
293	mutex_unlock(&msi->bitmap_lock);
294
295	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
296}
297
298static const struct irq_domain_ops msi_domain_ops = {
299	.alloc = iproc_msi_irq_domain_alloc,
300	.free = iproc_msi_irq_domain_free,
301};
302
303static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
304{
305	u32 __iomem *msg;
306	u32 hwirq;
307	unsigned int offs;
308
309	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
310	msg = (u32 __iomem *)(msi->eq_cpu + offs);
311	hwirq = readl(msg);
312	hwirq = (hwirq >> 5) + (hwirq & 0x1f);
313
314	/*
315	 * Since we have multiple hwirq mapped to a single MSI vector,
316	 * now we need to derive the hwirq at CPU0.  It can then be used to
317	 * mapped back to virq.
318	 */
319	return hwirq_to_canonical_hwirq(msi, hwirq);
320}
321
322static void iproc_msi_handler(struct irq_desc *desc)
323{
324	struct irq_chip *chip = irq_desc_get_chip(desc);
325	struct iproc_msi_grp *grp;
326	struct iproc_msi *msi;
327	u32 eq, head, tail, nr_events;
328	unsigned long hwirq;
329
330	chained_irq_enter(chip, desc);
331
332	grp = irq_desc_get_handler_data(desc);
333	msi = grp->msi;
334	eq = grp->eq;
335
336	/*
337	 * iProc MSI event queue is tracked by head and tail pointers.  Head
338	 * pointer indicates the next entry (MSI data) to be consumed by SW in
339	 * the queue and needs to be updated by SW.  iProc MSI core uses the
340	 * tail pointer as the next data insertion point.
341	 *
342	 * Entries between head and tail pointers contain valid MSI data.  MSI
343	 * data is guaranteed to be in the event queue memory before the tail
344	 * pointer is updated by the iProc MSI core.
345	 */
346	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
347				  eq) & IPROC_MSI_EQ_MASK;
348	do {
349		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
350					  eq) & IPROC_MSI_EQ_MASK;
351
352		/*
353		 * Figure out total number of events (MSI data) to be
354		 * processed.
355		 */
356		nr_events = (tail < head) ?
357			(EQ_LEN - (head - tail)) : (tail - head);
358		if (!nr_events)
359			break;
360
361		/* process all outstanding events */
362		while (nr_events--) {
363			hwirq = decode_msi_hwirq(msi, eq, head);
364			generic_handle_domain_irq(msi->inner_domain, hwirq);
365
366			head++;
367			head %= EQ_LEN;
368		}
369
370		/*
371		 * Now all outstanding events have been processed.  Update the
372		 * head pointer.
373		 */
374		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
375
376		/*
377		 * Now go read the tail pointer again to see if there are new
378		 * outstanding events that came in during the above window.
379		 */
380	} while (true);
381
382	chained_irq_exit(chip, desc);
383}
384
385static void iproc_msi_enable(struct iproc_msi *msi)
386{
387	int i, eq;
388	u32 val;
389
390	/* Program memory region for each event queue */
391	for (i = 0; i < msi->nr_eq_region; i++) {
392		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
393
394		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
395				    lower_32_bits(addr));
396		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
397				    upper_32_bits(addr));
398	}
399
400	/* Program address region for MSI posted writes */
401	for (i = 0; i < msi->nr_msi_region; i++) {
402		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
403
404		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
405				    lower_32_bits(addr));
406		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
407				    upper_32_bits(addr));
408	}
409
410	for (eq = 0; eq < msi->nr_irqs; eq++) {
411		/* Enable MSI event queue */
412		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
413			IPROC_MSI_EQ_EN;
414		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
415
416		/*
417		 * Some legacy platforms require the MSI interrupt enable
418		 * register to be set explicitly.
419		 */
420		if (msi->has_inten_reg) {
421			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
422			val |= BIT(eq);
423			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
424		}
425	}
426}
427
428static void iproc_msi_disable(struct iproc_msi *msi)
429{
430	u32 eq, val;
431
432	for (eq = 0; eq < msi->nr_irqs; eq++) {
433		if (msi->has_inten_reg) {
434			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
435			val &= ~BIT(eq);
436			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
437		}
438
439		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
440		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
441			 IPROC_MSI_EQ_EN);
442		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
443	}
444}
445
446static int iproc_msi_alloc_domains(struct device_node *node,
447				   struct iproc_msi *msi)
448{
449	msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
450						  &msi_domain_ops, msi);
451	if (!msi->inner_domain)
452		return -ENOMEM;
453
454	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
455						    &iproc_msi_domain_info,
456						    msi->inner_domain);
457	if (!msi->msi_domain) {
458		irq_domain_remove(msi->inner_domain);
459		return -ENOMEM;
460	}
461
462	return 0;
463}
464
465static void iproc_msi_free_domains(struct iproc_msi *msi)
466{
467	if (msi->msi_domain)
468		irq_domain_remove(msi->msi_domain);
469
470	if (msi->inner_domain)
471		irq_domain_remove(msi->inner_domain);
472}
473
474static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
475{
476	int i;
477
478	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
479		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
480						 NULL, NULL);
481	}
482}
483
484static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
485{
486	int i, ret;
487	cpumask_var_t mask;
488	struct iproc_pcie *pcie = msi->pcie;
489
490	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
491		irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
492						 iproc_msi_handler,
493						 &msi->grps[i]);
494		/* Dedicate GIC interrupt to each CPU core */
495		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
496			cpumask_clear(mask);
497			cpumask_set_cpu(cpu, mask);
498			ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
499			if (ret)
500				dev_err(pcie->dev,
501					"failed to set affinity for IRQ%d\n",
502					msi->grps[i].gic_irq);
503			free_cpumask_var(mask);
504		} else {
505			dev_err(pcie->dev, "failed to alloc CPU mask\n");
506			ret = -EINVAL;
507		}
508
509		if (ret) {
510			/* Free all configured/unconfigured IRQs */
511			iproc_msi_irq_free(msi, cpu);
512			return ret;
513		}
514	}
515
516	return 0;
517}
518
519int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
520{
521	struct iproc_msi *msi;
522	int i, ret;
523	unsigned int cpu;
524
525	if (!of_device_is_compatible(node, "brcm,iproc-msi"))
526		return -ENODEV;
527
528	if (!of_property_read_bool(node, "msi-controller"))
529		return -ENODEV;
530
531	if (pcie->msi)
532		return -EBUSY;
533
534	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
535	if (!msi)
536		return -ENOMEM;
537
538	msi->pcie = pcie;
539	pcie->msi = msi;
540	msi->msi_addr = pcie->base_addr;
541	mutex_init(&msi->bitmap_lock);
542	msi->nr_cpus = num_possible_cpus();
543
544	if (msi->nr_cpus == 1)
545		iproc_msi_domain_info.flags |=  MSI_FLAG_MULTI_PCI_MSI;
546
547	msi->nr_irqs = of_irq_count(node);
548	if (!msi->nr_irqs) {
549		dev_err(pcie->dev, "found no MSI GIC interrupt\n");
550		return -ENODEV;
551	}
552
553	if (msi->nr_irqs > NR_HW_IRQS) {
554		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
555			 msi->nr_irqs);
556		msi->nr_irqs = NR_HW_IRQS;
557	}
558
559	if (msi->nr_irqs < msi->nr_cpus) {
560		dev_err(pcie->dev,
561			"not enough GIC interrupts for MSI affinity\n");
562		return -EINVAL;
563	}
564
565	if (msi->nr_irqs % msi->nr_cpus != 0) {
566		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
567		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
568			 msi->nr_irqs);
569	}
570
571	switch (pcie->type) {
572	case IPROC_PCIE_PAXB_BCMA:
573	case IPROC_PCIE_PAXB:
574		msi->reg_offsets = iproc_msi_reg_paxb;
575		msi->nr_eq_region = 1;
576		msi->nr_msi_region = 1;
577		break;
578	case IPROC_PCIE_PAXC:
579		msi->reg_offsets = iproc_msi_reg_paxc;
580		msi->nr_eq_region = msi->nr_irqs;
581		msi->nr_msi_region = msi->nr_irqs;
582		break;
583	default:
584		dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
585		return -EINVAL;
586	}
587
588	msi->has_inten_reg = of_property_read_bool(node, "brcm,pcie-msi-inten");
589
590	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
591	msi->bitmap = devm_bitmap_zalloc(pcie->dev, msi->nr_msi_vecs,
592					 GFP_KERNEL);
593	if (!msi->bitmap)
594		return -ENOMEM;
595
596	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
597				 GFP_KERNEL);
598	if (!msi->grps)
599		return -ENOMEM;
600
601	for (i = 0; i < msi->nr_irqs; i++) {
602		unsigned int irq = irq_of_parse_and_map(node, i);
603
604		if (!irq) {
605			dev_err(pcie->dev, "unable to parse/map interrupt\n");
606			ret = -ENODEV;
607			goto free_irqs;
608		}
609		msi->grps[i].gic_irq = irq;
610		msi->grps[i].msi = msi;
611		msi->grps[i].eq = i;
612	}
613
614	/* Reserve memory for event queue and make sure memories are zeroed */
615	msi->eq_cpu = dma_alloc_coherent(pcie->dev,
616					 msi->nr_eq_region * EQ_MEM_REGION_SIZE,
617					 &msi->eq_dma, GFP_KERNEL);
618	if (!msi->eq_cpu) {
619		ret = -ENOMEM;
620		goto free_irqs;
621	}
622
623	ret = iproc_msi_alloc_domains(node, msi);
624	if (ret) {
625		dev_err(pcie->dev, "failed to create MSI domains\n");
626		goto free_eq_dma;
627	}
628
629	for_each_online_cpu(cpu) {
630		ret = iproc_msi_irq_setup(msi, cpu);
631		if (ret)
632			goto free_msi_irq;
633	}
634
635	iproc_msi_enable(msi);
636
637	return 0;
638
639free_msi_irq:
640	for_each_online_cpu(cpu)
641		iproc_msi_irq_free(msi, cpu);
642	iproc_msi_free_domains(msi);
643
644free_eq_dma:
645	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
646			  msi->eq_cpu, msi->eq_dma);
647
648free_irqs:
649	for (i = 0; i < msi->nr_irqs; i++) {
650		if (msi->grps[i].gic_irq)
651			irq_dispose_mapping(msi->grps[i].gic_irq);
652	}
653	pcie->msi = NULL;
654	return ret;
655}
656EXPORT_SYMBOL(iproc_msi_init);
657
658void iproc_msi_exit(struct iproc_pcie *pcie)
659{
660	struct iproc_msi *msi = pcie->msi;
661	unsigned int i, cpu;
662
663	if (!msi)
664		return;
665
666	iproc_msi_disable(msi);
667
668	for_each_online_cpu(cpu)
669		iproc_msi_irq_free(msi, cpu);
670
671	iproc_msi_free_domains(msi);
672
673	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
674			  msi->eq_cpu, msi->eq_dma);
675
676	for (i = 0; i < msi->nr_irqs; i++) {
677		if (msi->grps[i].gic_irq)
678			irq_dispose_mapping(msi->grps[i].gic_irq);
679	}
680}
681EXPORT_SYMBOL(iproc_msi_exit);