Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
 
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
 
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
  62			_get_opp_table_kref(opp_table);
 
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table)
 105{
 106	return !WARN_ON(opp_table->clk_count > 1);
 107}
 108
 109/**
 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 111 * @opp:	opp for which voltage has to be returned for
 112 *
 113 * Return: voltage in micro volt corresponding to the opp, else
 114 * return 0
 115 *
 116 * This is useful only for devices with single power supply.
 117 */
 118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 119{
 120	if (IS_ERR_OR_NULL(opp)) {
 121		pr_err("%s: Invalid parameters\n", __func__);
 122		return 0;
 123	}
 124
 125	return opp->supplies[0].u_volt;
 126}
 127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 128
 129/**
 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 131 * @opp:	opp for which voltage has to be returned for
 132 * @supplies:	Placeholder for copying the supply information.
 133 *
 134 * Return: negative error number on failure, 0 otherwise on success after
 135 * setting @supplies.
 136 *
 137 * This can be used for devices with any number of power supplies. The caller
 138 * must ensure the @supplies array must contain space for each regulator.
 139 */
 140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 141			    struct dev_pm_opp_supply *supplies)
 142{
 143	if (IS_ERR_OR_NULL(opp) || !supplies) {
 144		pr_err("%s: Invalid parameters\n", __func__);
 145		return -EINVAL;
 146	}
 147
 148	memcpy(supplies, opp->supplies,
 149	       sizeof(*supplies) * opp->opp_table->regulator_count);
 150	return 0;
 151}
 152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 153
 154/**
 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 156 * @opp:	opp for which power has to be returned for
 157 *
 158 * Return: power in micro watt corresponding to the opp, else
 159 * return 0
 160 *
 161 * This is useful only for devices with single power supply.
 162 */
 163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 164{
 165	unsigned long opp_power = 0;
 166	int i;
 167
 168	if (IS_ERR_OR_NULL(opp)) {
 169		pr_err("%s: Invalid parameters\n", __func__);
 170		return 0;
 171	}
 172	for (i = 0; i < opp->opp_table->regulator_count; i++)
 173		opp_power += opp->supplies[i].u_watt;
 174
 175	return opp_power;
 176}
 177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 178
 179/**
 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 181 *				   available opp with specified index
 182 * @opp: opp for which frequency has to be returned for
 183 * @index: index of the frequency within the required opp
 184 *
 185 * Return: frequency in hertz corresponding to the opp with specified index,
 186 * else return 0
 187 */
 188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 189{
 190	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 191		pr_err("%s: Invalid parameters\n", __func__);
 192		return 0;
 193	}
 194
 195	return opp->rates[index];
 196}
 197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 198
 199/**
 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 201 * @opp:	opp for which level value has to be returned for
 202 *
 203 * Return: level read from device tree corresponding to the opp, else
 204 * return U32_MAX.
 205 */
 206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 207{
 208	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 209		pr_err("%s: Invalid parameters\n", __func__);
 210		return 0;
 211	}
 212
 213	return opp->level;
 214}
 215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 216
 217/**
 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 219 *                                    corresponding to an available opp
 220 * @opp:	opp for which performance state has to be returned for
 221 * @index:	index of the required opp
 222 *
 223 * Return: performance state read from device tree corresponding to the
 224 * required opp, else return U32_MAX.
 225 */
 226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 227					    unsigned int index)
 228{
 229	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 230	    index >= opp->opp_table->required_opp_count) {
 231		pr_err("%s: Invalid parameters\n", __func__);
 232		return 0;
 233	}
 234
 235	/* required-opps not fully initialized yet */
 236	if (lazy_linking_pending(opp->opp_table))
 237		return 0;
 238
 239	/* The required OPP table must belong to a genpd */
 240	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 241		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 242		return 0;
 243	}
 244
 245	return opp->required_opps[index]->level;
 246}
 247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 248
 249/**
 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 251 * @opp: opp for which turbo mode is being verified
 252 *
 253 * Turbo OPPs are not for normal use, and can be enabled (under certain
 254 * conditions) for short duration of times to finish high throughput work
 255 * quickly. Running on them for longer times may overheat the chip.
 256 *
 257 * Return: true if opp is turbo opp, else false.
 258 */
 259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 260{
 261	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 262		pr_err("%s: Invalid parameters\n", __func__);
 263		return false;
 264	}
 265
 266	return opp->turbo;
 267}
 268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 269
 270/**
 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 272 * @dev:	device for which we do this operation
 273 *
 274 * Return: This function returns the max clock latency in nanoseconds.
 275 */
 276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 277{
 278	struct opp_table *opp_table;
 279	unsigned long clock_latency_ns;
 280
 281	opp_table = _find_opp_table(dev);
 282	if (IS_ERR(opp_table))
 283		return 0;
 284
 285	clock_latency_ns = opp_table->clock_latency_ns_max;
 286
 287	dev_pm_opp_put_opp_table(opp_table);
 288
 289	return clock_latency_ns;
 290}
 291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 292
 293/**
 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 295 * @dev: device for which we do this operation
 296 *
 297 * Return: This function returns the max voltage latency in nanoseconds.
 298 */
 299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 300{
 301	struct opp_table *opp_table;
 302	struct dev_pm_opp *opp;
 303	struct regulator *reg;
 304	unsigned long latency_ns = 0;
 305	int ret, i, count;
 306	struct {
 307		unsigned long min;
 308		unsigned long max;
 309	} *uV;
 310
 311	opp_table = _find_opp_table(dev);
 312	if (IS_ERR(opp_table))
 313		return 0;
 314
 
 
 315	/* Regulator may not be required for the device */
 316	if (!opp_table->regulators)
 317		goto put_opp_table;
 318
 319	count = opp_table->regulator_count;
 320
 321	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 322	if (!uV)
 323		goto put_opp_table;
 324
 325	mutex_lock(&opp_table->lock);
 326
 327	for (i = 0; i < count; i++) {
 328		uV[i].min = ~0;
 329		uV[i].max = 0;
 330
 331		list_for_each_entry(opp, &opp_table->opp_list, node) {
 332			if (!opp->available)
 333				continue;
 334
 335			if (opp->supplies[i].u_volt_min < uV[i].min)
 336				uV[i].min = opp->supplies[i].u_volt_min;
 337			if (opp->supplies[i].u_volt_max > uV[i].max)
 338				uV[i].max = opp->supplies[i].u_volt_max;
 339		}
 340	}
 341
 342	mutex_unlock(&opp_table->lock);
 343
 344	/*
 345	 * The caller needs to ensure that opp_table (and hence the regulator)
 346	 * isn't freed, while we are executing this routine.
 347	 */
 348	for (i = 0; i < count; i++) {
 349		reg = opp_table->regulators[i];
 350		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 351		if (ret > 0)
 352			latency_ns += ret * 1000;
 353	}
 354
 355	kfree(uV);
 356put_opp_table:
 357	dev_pm_opp_put_opp_table(opp_table);
 358
 359	return latency_ns;
 360}
 361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 362
 363/**
 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 365 *					     nanoseconds
 366 * @dev: device for which we do this operation
 367 *
 368 * Return: This function returns the max transition latency, in nanoseconds, to
 369 * switch from one OPP to other.
 370 */
 371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 372{
 373	return dev_pm_opp_get_max_volt_latency(dev) +
 374		dev_pm_opp_get_max_clock_latency(dev);
 375}
 376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 377
 378/**
 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 380 * @dev:	device for which we do this operation
 381 *
 382 * Return: This function returns the frequency of the OPP marked as suspend_opp
 383 * if one is available, else returns 0;
 384 */
 385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 386{
 387	struct opp_table *opp_table;
 388	unsigned long freq = 0;
 389
 390	opp_table = _find_opp_table(dev);
 391	if (IS_ERR(opp_table))
 392		return 0;
 393
 394	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 395		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 396
 397	dev_pm_opp_put_opp_table(opp_table);
 398
 399	return freq;
 400}
 401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 402
 403int _get_opp_count(struct opp_table *opp_table)
 404{
 405	struct dev_pm_opp *opp;
 406	int count = 0;
 407
 408	mutex_lock(&opp_table->lock);
 409
 410	list_for_each_entry(opp, &opp_table->opp_list, node) {
 411		if (opp->available)
 412			count++;
 413	}
 414
 415	mutex_unlock(&opp_table->lock);
 416
 417	return count;
 418}
 419
 420/**
 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 422 * @dev:	device for which we do this operation
 423 *
 424 * Return: This function returns the number of available opps if there are any,
 425 * else returns 0 if none or the corresponding error value.
 426 */
 427int dev_pm_opp_get_opp_count(struct device *dev)
 428{
 429	struct opp_table *opp_table;
 430	int count;
 
 431
 432	opp_table = _find_opp_table(dev);
 433	if (IS_ERR(opp_table)) {
 434		count = PTR_ERR(opp_table);
 435		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 436			__func__, count);
 437		return count;
 438	}
 439
 440	count = _get_opp_count(opp_table);
 441	dev_pm_opp_put_opp_table(opp_table);
 442
 443	return count;
 444}
 445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 446
 447/* Helpers to read keys */
 448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 449{
 450	return opp->rates[index];
 451}
 452
 453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 454{
 455	return opp->level;
 456}
 457
 458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 459{
 460	return opp->bandwidth[index].peak;
 461}
 462
 463/* Generic comparison helpers */
 464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 465			   unsigned long opp_key, unsigned long key)
 466{
 467	if (opp_key == key) {
 468		*opp = temp_opp;
 469		return true;
 470	}
 471
 472	return false;
 473}
 474
 475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 476			  unsigned long opp_key, unsigned long key)
 477{
 478	if (opp_key >= key) {
 479		*opp = temp_opp;
 480		return true;
 481	}
 482
 483	return false;
 484}
 485
 486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 487			   unsigned long opp_key, unsigned long key)
 488{
 489	if (opp_key > key)
 490		return true;
 491
 492	*opp = temp_opp;
 493	return false;
 494}
 495
 496/* Generic key finding helpers */
 497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 498		unsigned long *key, int index, bool available,
 499		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 500		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 501				unsigned long opp_key, unsigned long key),
 502		bool (*assert)(struct opp_table *opp_table))
 503{
 504	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 505
 506	/* Assert that the requirement is met */
 507	if (assert && !assert(opp_table))
 508		return ERR_PTR(-EINVAL);
 509
 510	mutex_lock(&opp_table->lock);
 511
 512	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 513		if (temp_opp->available == available) {
 514			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 515				break;
 516		}
 517	}
 518
 519	/* Increment the reference count of OPP */
 520	if (!IS_ERR(opp)) {
 521		*key = read(opp, index);
 522		dev_pm_opp_get(opp);
 523	}
 524
 525	mutex_unlock(&opp_table->lock);
 526
 527	return opp;
 528}
 529
 530static struct dev_pm_opp *
 531_find_key(struct device *dev, unsigned long *key, int index, bool available,
 532	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 533	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 534			  unsigned long opp_key, unsigned long key),
 535	  bool (*assert)(struct opp_table *opp_table))
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *opp;
 539
 540	opp_table = _find_opp_table(dev);
 541	if (IS_ERR(opp_table)) {
 542		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 543			PTR_ERR(opp_table));
 544		return ERR_CAST(opp_table);
 545	}
 546
 547	opp = _opp_table_find_key(opp_table, key, index, available, read,
 548				  compare, assert);
 549
 550	dev_pm_opp_put_opp_table(opp_table);
 551
 552	return opp;
 553}
 554
 555static struct dev_pm_opp *_find_key_exact(struct device *dev,
 556		unsigned long key, int index, bool available,
 557		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 558		bool (*assert)(struct opp_table *opp_table))
 559{
 560	/*
 561	 * The value of key will be updated here, but will be ignored as the
 562	 * caller doesn't need it.
 563	 */
 564	return _find_key(dev, &key, index, available, read, _compare_exact,
 565			 assert);
 566}
 567
 568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 569		unsigned long *key, int index, bool available,
 570		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 571		bool (*assert)(struct opp_table *opp_table))
 572{
 573	return _opp_table_find_key(opp_table, key, index, available, read,
 574				   _compare_ceil, assert);
 575}
 576
 577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 578		int index, bool available,
 579		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 580		bool (*assert)(struct opp_table *opp_table))
 581{
 582	return _find_key(dev, key, index, available, read, _compare_ceil,
 583			 assert);
 584}
 585
 586static struct dev_pm_opp *_find_key_floor(struct device *dev,
 587		unsigned long *key, int index, bool available,
 588		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 589		bool (*assert)(struct opp_table *opp_table))
 590{
 591	return _find_key(dev, key, index, available, read, _compare_floor,
 592			 assert);
 593}
 
 594
 595/**
 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 597 * @dev:		device for which we do this operation
 598 * @freq:		frequency to search for
 599 * @available:		true/false - match for available opp
 600 *
 601 * Return: Searches for exact match in the opp table and returns pointer to the
 602 * matching opp if found, else returns ERR_PTR in case of error and should
 603 * be handled using IS_ERR. Error return values can be:
 604 * EINVAL:	for bad pointer
 605 * ERANGE:	no match found for search
 606 * ENODEV:	if device not found in list of registered devices
 607 *
 608 * Note: available is a modifier for the search. if available=true, then the
 609 * match is for exact matching frequency and is available in the stored OPP
 610 * table. if false, the match is for exact frequency which is not available.
 611 *
 612 * This provides a mechanism to enable an opp which is not available currently
 613 * or the opposite as well.
 614 *
 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 616 * use.
 617 */
 618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 619		unsigned long freq, bool available)
 
 620{
 621	return _find_key_exact(dev, freq, 0, available, _read_freq,
 622			       assert_single_clk);
 623}
 624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 625
 626/**
 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 628 *					 clock corresponding to the index
 629 * @dev:	Device for which we do this operation
 630 * @freq:	frequency to search for
 631 * @index:	Clock index
 632 * @available:	true/false - match for available opp
 633 *
 634 * Search for the matching exact OPP for the clock corresponding to the
 635 * specified index from a starting freq for a device.
 636 *
 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 638 * handled using IS_ERR. Error return values can be:
 639 * EINVAL:	for bad pointer
 640 * ERANGE:	no match found for search
 641 * ENODEV:	if device not found in list of registered devices
 642 *
 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 644 * use.
 645 */
 646struct dev_pm_opp *
 647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 648				   u32 index, bool available)
 649{
 650	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
 651}
 652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 653
 654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 655						   unsigned long *freq)
 656{
 657	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 658					assert_single_clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659}
 660
 661/**
 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 663 * @dev:	device for which we do this operation
 664 * @freq:	Start frequency
 665 *
 666 * Search for the matching ceil *available* OPP from a starting freq
 667 * for a device.
 668 *
 669 * Return: matching *opp and refreshes *freq accordingly, else returns
 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 671 * values can be:
 672 * EINVAL:	for bad pointer
 673 * ERANGE:	no match found for search
 674 * ENODEV:	if device not found in list of registered devices
 675 *
 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 677 * use.
 678 */
 679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 680					     unsigned long *freq)
 681{
 682	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 683}
 684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 685
 686/**
 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 688 *					 clock corresponding to the index
 689 * @dev:	Device for which we do this operation
 690 * @freq:	Start frequency
 691 * @index:	Clock index
 692 *
 693 * Search for the matching ceil *available* OPP for the clock corresponding to
 694 * the specified index from a starting freq for a device.
 695 *
 696 * Return: matching *opp and refreshes *freq accordingly, else returns
 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 698 * values can be:
 699 * EINVAL:	for bad pointer
 700 * ERANGE:	no match found for search
 701 * ENODEV:	if device not found in list of registered devices
 702 *
 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 704 * use.
 705 */
 706struct dev_pm_opp *
 707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 708				  u32 index)
 709{
 710	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
 711}
 712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 713
 714/**
 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 716 * @dev:	device for which we do this operation
 717 * @freq:	Start frequency
 718 *
 719 * Search for the matching floor *available* OPP from a starting freq
 720 * for a device.
 721 *
 722 * Return: matching *opp and refreshes *freq accordingly, else returns
 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 724 * values can be:
 725 * EINVAL:	for bad pointer
 726 * ERANGE:	no match found for search
 727 * ENODEV:	if device not found in list of registered devices
 728 *
 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 730 * use.
 731 */
 732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 733					      unsigned long *freq)
 734{
 735	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 736}
 737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 738
 739/**
 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 741 *					  clock corresponding to the index
 742 * @dev:	Device for which we do this operation
 743 * @freq:	Start frequency
 744 * @index:	Clock index
 745 *
 746 * Search for the matching floor *available* OPP for the clock corresponding to
 747 * the specified index from a starting freq for a device.
 748 *
 749 * Return: matching *opp and refreshes *freq accordingly, else returns
 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 751 * values can be:
 752 * EINVAL:	for bad pointer
 753 * ERANGE:	no match found for search
 754 * ENODEV:	if device not found in list of registered devices
 755 *
 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 757 * use.
 758 */
 759struct dev_pm_opp *
 760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 761				   u32 index)
 762{
 763	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
 764}
 765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 766
 767/**
 768 * dev_pm_opp_find_level_exact() - search for an exact level
 769 * @dev:		device for which we do this operation
 770 * @level:		level to search for
 771 *
 772 * Return: Searches for exact match in the opp table and returns pointer to the
 773 * matching opp if found, else returns ERR_PTR in case of error and should
 774 * be handled using IS_ERR. Error return values can be:
 775 * EINVAL:	for bad pointer
 776 * ERANGE:	no match found for search
 777 * ENODEV:	if device not found in list of registered devices
 778 *
 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 780 * use.
 781 */
 782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 783					       unsigned int level)
 784{
 785	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 786}
 787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 788
 789/**
 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 791 * @dev:		device for which we do this operation
 792 * @level:		level to search for
 793 *
 794 * Return: Searches for rounded up match in the opp table and returns pointer
 795 * to the  matching opp if found, else returns ERR_PTR in case of error and
 796 * should be handled using IS_ERR. Error return values can be:
 797 * EINVAL:	for bad pointer
 798 * ERANGE:	no match found for search
 799 * ENODEV:	if device not found in list of registered devices
 800 *
 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 802 * use.
 803 */
 804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 805					      unsigned int *level)
 806{
 807	unsigned long temp = *level;
 808	struct dev_pm_opp *opp;
 809
 810	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 811	if (IS_ERR(opp))
 812		return opp;
 813
 814	/* False match */
 815	if (temp == OPP_LEVEL_UNSET) {
 816		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 817		dev_pm_opp_put(opp);
 818		return ERR_PTR(-ENODEV);
 819	}
 820
 821	*level = temp;
 822	return opp;
 823}
 824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 825
 826/**
 827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 828 * @dev:	device for which we do this operation
 829 * @level:	Start level
 830 *
 831 * Search for the matching floor *available* OPP from a starting level
 832 * for a device.
 833 *
 834 * Return: matching *opp and refreshes *level accordingly, else returns
 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 836 * values can be:
 837 * EINVAL:	for bad pointer
 838 * ERANGE:	no match found for search
 839 * ENODEV:	if device not found in list of registered devices
 840 *
 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 842 * use.
 843 */
 844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 845					       unsigned int *level)
 846{
 847	unsigned long temp = *level;
 848	struct dev_pm_opp *opp;
 849
 850	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 851	*level = temp;
 852	return opp;
 853}
 854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 855
 856/**
 857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 858 * @dev:	device for which we do this operation
 859 * @bw:	start bandwidth
 860 * @index:	which bandwidth to compare, in case of OPPs with several values
 861 *
 862 * Search for the matching floor *available* OPP from a starting bandwidth
 863 * for a device.
 864 *
 865 * Return: matching *opp and refreshes *bw accordingly, else returns
 866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 867 * values can be:
 868 * EINVAL:	for bad pointer
 869 * ERANGE:	no match found for search
 870 * ENODEV:	if device not found in list of registered devices
 871 *
 872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 873 * use.
 874 */
 875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 876					   int index)
 877{
 878	unsigned long temp = *bw;
 879	struct dev_pm_opp *opp;
 880
 881	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
 882	*bw = temp;
 883	return opp;
 884}
 885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 886
 887/**
 888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 889 * @dev:	device for which we do this operation
 890 * @bw:	start bandwidth
 891 * @index:	which bandwidth to compare, in case of OPPs with several values
 892 *
 893 * Search for the matching floor *available* OPP from a starting bandwidth
 894 * for a device.
 895 *
 896 * Return: matching *opp and refreshes *bw accordingly, else returns
 897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 898 * values can be:
 899 * EINVAL:	for bad pointer
 900 * ERANGE:	no match found for search
 901 * ENODEV:	if device not found in list of registered devices
 902 *
 903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 904 * use.
 905 */
 906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 907					    unsigned int *bw, int index)
 908{
 909	unsigned long temp = *bw;
 910	struct dev_pm_opp *opp;
 911
 912	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
 913	*bw = temp;
 914	return opp;
 915}
 916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 917
 918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 919			    struct dev_pm_opp_supply *supply)
 920{
 921	int ret;
 922
 923	/* Regulator not available for device */
 924	if (IS_ERR(reg)) {
 925		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 926			PTR_ERR(reg));
 927		return 0;
 928	}
 929
 930	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 931		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 932
 933	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 934					    supply->u_volt, supply->u_volt_max);
 935	if (ret)
 936		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 937			__func__, supply->u_volt_min, supply->u_volt,
 938			supply->u_volt_max, ret);
 939
 940	return ret;
 941}
 942
 943static int
 944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 945		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 946{
 947	unsigned long *target = data;
 948	unsigned long freq;
 949	int ret;
 950
 951	/* One of target and opp must be available */
 952	if (target) {
 953		freq = *target;
 954	} else if (opp) {
 955		freq = opp->rates[0];
 956	} else {
 957		WARN_ON(1);
 958		return -EINVAL;
 959	}
 960
 961	ret = clk_set_rate(opp_table->clk, freq);
 962	if (ret) {
 963		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 964			ret);
 965	} else {
 966		opp_table->current_rate_single_clk = freq;
 967	}
 968
 969	return ret;
 970}
 971
 972/*
 973 * Simple implementation for configuring multiple clocks. Configure clocks in
 974 * the order in which they are present in the array while scaling up.
 975 */
 976int dev_pm_opp_config_clks_simple(struct device *dev,
 977		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
 978		bool scaling_down)
 979{
 980	int ret, i;
 981
 982	if (scaling_down) {
 983		for (i = opp_table->clk_count - 1; i >= 0; i--) {
 984			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 985			if (ret) {
 986				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987					ret);
 988				return ret;
 989			}
 990		}
 991	} else {
 992		for (i = 0; i < opp_table->clk_count; i++) {
 993			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 994			if (ret) {
 995				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 996					ret);
 997				return ret;
 998			}
 999		}
1000	}
1001
1002	return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008			struct regulator **regulators, unsigned int count)
1009{
1010	struct regulator *reg = regulators[0];
1011	int ret;
1012
1013	/* This function only supports single regulator per device */
1014	if (WARN_ON(count > 1)) {
1015		dev_err(dev, "multiple regulators are not supported\n");
1016		return -EINVAL;
1017	}
1018
1019	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020	if (ret)
1021		return ret;
1022
1023	/*
1024	 * Enable the regulator after setting its voltages, otherwise it breaks
1025	 * some boot-enabled regulators.
1026	 */
1027	if (unlikely(!new_opp->opp_table->enabled)) {
1028		ret = regulator_enable(reg);
1029		if (ret < 0)
1030			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031	}
1032
1033	return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037		       struct dev_pm_opp *opp, struct device *dev)
1038{
1039	u32 avg, peak;
1040	int i, ret;
1041
1042	if (!opp_table->paths)
1043		return 0;
1044
1045	for (i = 0; i < opp_table->path_count; i++) {
1046		if (!opp) {
1047			avg = 0;
1048			peak = 0;
1049		} else {
1050			avg = opp->bandwidth[i].avg;
1051			peak = opp->bandwidth[i].peak;
1052		}
1053		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054		if (ret) {
1055			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056				opp ? "set" : "remove", i, ret);
1057			return ret;
1058		}
1059	}
1060
1061	return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066			      struct dev_pm_opp *opp, bool up)
1067{
1068	struct device **devs = opp_table->required_devs;
1069	struct dev_pm_opp *required_opp;
1070	int index, target, delta, ret;
1071
1072	if (!devs)
1073		return 0;
1074
1075	/* required-opps not fully initialized yet */
1076	if (lazy_linking_pending(opp_table))
1077		return -EBUSY;
1078
1079	/* Scaling up? Set required OPPs in normal order, else reverse */
1080	if (up) {
1081		index = 0;
1082		target = opp_table->required_opp_count;
1083		delta = 1;
1084	} else {
1085		index = opp_table->required_opp_count - 1;
1086		target = -1;
1087		delta = -1;
1088	}
1089
1090	while (index != target) {
1091		if (devs[index]) {
1092			required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095			if (ret)
1096				return ret;
1097		}
1098
1099		index += delta;
 
 
 
 
1100	}
1101
1102	return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106			  struct dev_pm_opp *opp)
1107{
1108	unsigned int level = 0;
1109	int ret = 0;
1110
1111	if (opp) {
1112		if (opp->level == OPP_LEVEL_UNSET)
1113			return 0;
1114
1115		level = opp->level;
1116	}
1117
1118	/* Request a new performance state through the device's PM domain. */
1119	ret = dev_pm_domain_set_performance_state(dev, level);
1120	if (ret)
1121		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122			ret);
1123
1124	return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130	unsigned long freq;
1131
1132	if (!IS_ERR(opp_table->clk)) {
1133		freq = clk_get_rate(opp_table->clk);
1134		opp = _find_freq_ceil(opp_table, &freq);
1135	}
1136
1137	/*
1138	 * Unable to find the current OPP ? Pick the first from the list since
1139	 * it is in ascending order, otherwise rest of the code will need to
1140	 * make special checks to validate current_opp.
1141	 */
1142	if (IS_ERR(opp)) {
1143		mutex_lock(&opp_table->lock);
1144		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145		dev_pm_opp_get(opp);
1146		mutex_unlock(&opp_table->lock);
1147	}
1148
1149	opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
 
1154	int ret;
1155
1156	if (!opp_table->enabled)
1157		return 0;
1158
1159	/*
1160	 * Some drivers need to support cases where some platforms may
1161	 * have OPP table for the device, while others don't and
1162	 * opp_set_rate() just needs to behave like clk_set_rate().
1163	 */
1164	if (!_get_opp_count(opp_table))
1165		return 0;
1166
1167	ret = _set_opp_bw(opp_table, NULL, dev);
1168	if (ret)
1169		return ret;
1170
1171	if (opp_table->regulators)
1172		regulator_disable(opp_table->regulators[0]);
1173
1174	ret = _set_opp_level(dev, opp_table, NULL);
1175	if (ret)
1176		goto out;
1177
1178	ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181	opp_table->enabled = false;
1182	return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188	struct dev_pm_opp *old_opp;
1189	int scaling_down, ret;
1190
1191	if (unlikely(!opp))
1192		return _disable_opp_table(dev, opp_table);
1193
1194	/* Find the currently set OPP if we don't know already */
1195	if (unlikely(!opp_table->current_opp))
1196		_find_current_opp(dev, opp_table);
1197
1198	old_opp = opp_table->current_opp;
1199
1200	/* Return early if nothing to do */
1201	if (!forced && old_opp == opp && opp_table->enabled) {
1202		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203		return 0;
1204	}
1205
1206	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212	if (scaling_down == -1)
1213		scaling_down = 0;
1214
1215	/* Scaling up? Configure required OPPs before frequency */
1216	if (!scaling_down) {
1217		ret = _set_required_opps(dev, opp_table, opp, true);
1218		if (ret) {
1219			dev_err(dev, "Failed to set required opps: %d\n", ret);
1220			return ret;
1221		}
1222
1223		ret = _set_opp_level(dev, opp_table, opp);
1224		if (ret)
1225			return ret;
1226
1227		ret = _set_opp_bw(opp_table, opp, dev);
1228		if (ret) {
1229			dev_err(dev, "Failed to set bw: %d\n", ret);
1230			return ret;
1231		}
1232
1233		if (opp_table->config_regulators) {
1234			ret = opp_table->config_regulators(dev, old_opp, opp,
1235							   opp_table->regulators,
1236							   opp_table->regulator_count);
1237			if (ret) {
1238				dev_err(dev, "Failed to set regulator voltages: %d\n",
1239					ret);
1240				return ret;
1241			}
1242		}
1243	}
1244
1245	if (opp_table->config_clks) {
1246		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
 
1247		if (ret)
1248			return ret;
1249	}
1250
1251	/* Scaling down? Configure required OPPs after frequency */
1252	if (scaling_down) {
1253		if (opp_table->config_regulators) {
1254			ret = opp_table->config_regulators(dev, old_opp, opp,
1255							   opp_table->regulators,
1256							   opp_table->regulator_count);
1257			if (ret) {
1258				dev_err(dev, "Failed to set regulator voltages: %d\n",
1259					ret);
1260				return ret;
1261			}
1262		}
1263
1264		ret = _set_opp_bw(opp_table, opp, dev);
1265		if (ret) {
1266			dev_err(dev, "Failed to set bw: %d\n", ret);
1267			return ret;
1268		}
1269
1270		ret = _set_opp_level(dev, opp_table, opp);
 
 
1271		if (ret)
1272			return ret;
1273
1274		ret = _set_required_opps(dev, opp_table, opp, false);
1275		if (ret) {
1276			dev_err(dev, "Failed to set required opps: %d\n", ret);
1277			return ret;
1278		}
1279	}
1280
1281	opp_table->enabled = true;
1282	dev_pm_opp_put(old_opp);
1283
1284	/* Make sure current_opp doesn't get freed */
1285	dev_pm_opp_get(opp);
1286	opp_table->current_opp = opp;
 
 
 
 
 
1287
1288	return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev:	 device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304	struct opp_table *opp_table;
1305	unsigned long freq = 0, temp_freq;
1306	struct dev_pm_opp *opp = NULL;
1307	bool forced = false;
1308	int ret;
 
 
 
 
 
 
1309
1310	opp_table = _find_opp_table(dev);
1311	if (IS_ERR(opp_table)) {
1312		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313		return PTR_ERR(opp_table);
1314	}
1315
1316	if (target_freq) {
1317		/*
1318		 * For IO devices which require an OPP on some platforms/SoCs
1319		 * while just needing to scale the clock on some others
1320		 * we look for empty OPP tables with just a clock handle and
1321		 * scale only the clk. This makes dev_pm_opp_set_rate()
1322		 * equivalent to a clk_set_rate()
1323		 */
1324		if (!_get_opp_count(opp_table)) {
1325			ret = opp_table->config_clks(dev, opp_table, NULL,
1326						     &target_freq, false);
1327			goto put_opp_table;
1328		}
1329
1330		freq = clk_round_rate(opp_table->clk, target_freq);
1331		if ((long)freq <= 0)
1332			freq = target_freq;
1333
1334		/*
1335		 * The clock driver may support finer resolution of the
1336		 * frequencies than the OPP table, don't update the frequency we
1337		 * pass to clk_set_rate() here.
1338		 */
1339		temp_freq = freq;
1340		opp = _find_freq_ceil(opp_table, &temp_freq);
1341		if (IS_ERR(opp)) {
1342			ret = PTR_ERR(opp);
1343			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344				__func__, freq, ret);
1345			goto put_opp_table;
1346		}
1347
1348		/*
1349		 * An OPP entry specifies the highest frequency at which other
1350		 * properties of the OPP entry apply. Even if the new OPP is
1351		 * same as the old one, we may still reach here for a different
1352		 * value of the frequency. In such a case, do not abort but
1353		 * configure the hardware to the desired frequency forcefully.
1354		 */
1355		forced = opp_table->current_rate_single_clk != freq;
1356	}
1357
1358	ret = _set_opp(dev, opp_table, opp, &freq, forced);
 
 
 
 
1359
1360	if (freq)
1361		dev_pm_opp_put(opp);
 
 
 
 
 
1362
1363put_opp_table:
1364	dev_pm_opp_put_opp_table(opp_table);
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381	struct opp_table *opp_table;
1382	int ret;
 
 
 
 
1383
1384	opp_table = _find_opp_table(dev);
1385	if (IS_ERR(opp_table)) {
1386		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387		return PTR_ERR(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
1388	}
1389
1390	ret = _set_opp(dev, opp_table, opp, NULL, false);
 
 
 
 
1391	dev_pm_opp_put_opp_table(opp_table);
1392
1393	return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399			    struct opp_table *opp_table)
1400{
1401	opp_debug_unregister(opp_dev, opp_table);
1402	list_del(&opp_dev->node);
1403	kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407				struct opp_table *opp_table)
1408{
1409	struct opp_device *opp_dev;
 
1410
1411	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412	if (!opp_dev)
1413		return NULL;
1414
1415	/* Initialize opp-dev */
1416	opp_dev->dev = dev;
1417
1418	mutex_lock(&opp_table->lock);
1419	list_add(&opp_dev->node, &opp_table->dev_list);
1420	mutex_unlock(&opp_table->lock);
1421
1422	/* Create debugfs entries for the opp_table */
1423	opp_debug_register(opp_dev, opp_table);
 
 
 
1424
1425	return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430	struct opp_table *opp_table;
1431	struct opp_device *opp_dev;
1432	int ret;
1433
1434	/*
1435	 * Allocate a new OPP table. In the infrequent case where a new
1436	 * device is needed to be added, we pay this penalty.
1437	 */
1438	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439	if (!opp_table)
1440		return ERR_PTR(-ENOMEM);
1441
1442	mutex_init(&opp_table->lock);
1443	INIT_LIST_HEAD(&opp_table->dev_list);
1444	INIT_LIST_HEAD(&opp_table->lazy);
1445
1446	opp_table->clk = ERR_PTR(-ENODEV);
1447
1448	/* Mark regulator count uninitialized */
1449	opp_table->regulator_count = -1;
1450
1451	opp_dev = _add_opp_dev(dev, opp_table);
1452	if (!opp_dev) {
1453		ret = -ENOMEM;
1454		goto err;
1455	}
1456
1457	_of_init_opp_table(opp_table, dev, index);
1458
1459	/* Find interconnect path(s) for the device */
1460	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461	if (ret) {
1462		if (ret == -EPROBE_DEFER)
1463			goto remove_opp_dev;
1464
1465		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466			 __func__, ret);
1467	}
1468
1469	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470	INIT_LIST_HEAD(&opp_table->opp_list);
 
1471	kref_init(&opp_table->kref);
1472
 
 
1473	return opp_table;
1474
1475remove_opp_dev:
1476	_of_clear_opp_table(opp_table);
1477	_remove_opp_dev(opp_dev, opp_table);
1478	mutex_destroy(&opp_table->lock);
1479err:
1480	kfree(opp_table);
1481	return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486	kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490					       struct opp_table *opp_table,
1491					       bool getclk)
1492{
1493	int ret;
1494
1495	/*
1496	 * Return early if we don't need to get clk or we have already done it
1497	 * earlier.
1498	 */
1499	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500	    opp_table->clks)
1501		return opp_table;
1502
1503	/* Find clk for the device */
1504	opp_table->clk = clk_get(dev, NULL);
1505
1506	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507	if (!ret) {
1508		opp_table->config_clks = _opp_config_clk_single;
1509		opp_table->clk_count = 1;
1510		return opp_table;
1511	}
1512
1513	if (ret == -ENOENT) {
1514		/*
1515		 * There are few platforms which don't want the OPP core to
1516		 * manage device's clock settings. In such cases neither the
1517		 * platform provides the clks explicitly to us, nor the DT
1518		 * contains a valid clk entry. The OPP nodes in DT may still
1519		 * contain "opp-hz" property though, which we need to parse and
1520		 * allow the platform to find an OPP based on freq later on.
1521		 *
1522		 * This is a simple solution to take care of such corner cases,
1523		 * i.e. make the clk_count 1, which lets us allocate space for
1524		 * frequency in opp->rates and also parse the entries in DT.
1525		 */
1526		opp_table->clk_count = 1;
1527
1528		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529		return opp_table;
1530	}
1531
1532	dev_pm_opp_put_opp_table(opp_table);
1533	dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535	return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554					 bool getclk)
1555{
1556	struct opp_table *opp_table;
1557
1558again:
1559	mutex_lock(&opp_table_lock);
1560
1561	opp_table = _find_opp_table_unlocked(dev);
1562	if (!IS_ERR(opp_table))
1563		goto unlock;
1564
1565	/*
1566	 * The opp_tables list or an OPP table's dev_list is getting updated by
1567	 * another user, wait for it to finish.
1568	 */
1569	if (unlikely(opp_tables_busy)) {
1570		mutex_unlock(&opp_table_lock);
1571		cpu_relax();
1572		goto again;
1573	}
1574
1575	opp_tables_busy = true;
1576	opp_table = _managed_opp(dev, index);
1577
1578	/* Drop the lock to reduce the size of critical section */
1579	mutex_unlock(&opp_table_lock);
1580
1581	if (opp_table) {
1582		if (!_add_opp_dev(dev, opp_table)) {
1583			dev_pm_opp_put_opp_table(opp_table);
1584			opp_table = ERR_PTR(-ENOMEM);
1585		}
1586
1587		mutex_lock(&opp_table_lock);
1588	} else {
1589		opp_table = _allocate_opp_table(dev, index);
1590
1591		mutex_lock(&opp_table_lock);
1592		if (!IS_ERR(opp_table))
1593			list_add(&opp_table->node, &opp_tables);
1594	}
1595
1596	opp_tables_busy = false;
1597
1598unlock:
1599	mutex_unlock(&opp_table_lock);
1600
1601	return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606	return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611	return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618	struct opp_device *opp_dev, *temp;
1619	int i;
1620
1621	/* Drop the lock as soon as we can */
1622	list_del(&opp_table->node);
1623	mutex_unlock(&opp_table_lock);
1624
1625	if (opp_table->current_opp)
1626		dev_pm_opp_put(opp_table->current_opp);
1627
1628	_of_clear_opp_table(opp_table);
1629
1630	/* Release automatically acquired single clk */
1631	if (!IS_ERR(opp_table->clk))
1632		clk_put(opp_table->clk);
1633
1634	if (opp_table->paths) {
1635		for (i = 0; i < opp_table->path_count; i++)
1636			icc_put(opp_table->paths[i]);
1637		kfree(opp_table->paths);
1638	}
1639
1640	WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643		_remove_opp_dev(opp_dev, opp_table);
1644
1645	mutex_destroy(&opp_table->lock);
 
1646	kfree(opp_table);
 
 
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652		       &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658	kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664	struct opp_table *opp_table = opp->opp_table;
1665
1666	list_del(&opp->node);
1667	mutex_unlock(&opp_table->lock);
1668
1669	/*
1670	 * Notify the changes in the availability of the operable
1671	 * frequency/voltage list.
1672	 */
1673	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674	_of_clear_opp(opp_table, opp);
1675	opp_debug_remove_one(opp);
 
1676	kfree(opp);
 
 
 
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681	kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1692 * @dev:	device for which we do this operation
1693 * @freq:	OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699	struct dev_pm_opp *opp = NULL, *iter;
1700	struct opp_table *opp_table;
 
1701
1702	opp_table = _find_opp_table(dev);
1703	if (IS_ERR(opp_table))
1704		return;
1705
1706	if (!assert_single_clk(opp_table))
1707		goto put_table;
1708
1709	mutex_lock(&opp_table->lock);
1710
1711	list_for_each_entry(iter, &opp_table->opp_list, node) {
1712		if (iter->rates[0] == freq) {
1713			opp = iter;
1714			break;
1715		}
1716	}
1717
1718	mutex_unlock(&opp_table->lock);
1719
1720	if (opp) {
1721		dev_pm_opp_put(opp);
1722
1723		/* Drop the reference taken by dev_pm_opp_add() */
1724		dev_pm_opp_put_opp_table(opp_table);
1725	} else {
1726		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727			 __func__, freq);
1728	}
1729
1730put_table:
1731	/* Drop the reference taken by _find_opp_table() */
1732	dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737					bool dynamic)
1738{
1739	struct dev_pm_opp *opp = NULL, *temp;
1740
1741	mutex_lock(&opp_table->lock);
1742	list_for_each_entry(temp, &opp_table->opp_list, node) {
1743		/*
1744		 * Refcount must be dropped only once for each OPP by OPP core,
1745		 * do that with help of "removed" flag.
1746		 */
1747		if (!temp->removed && dynamic == temp->dynamic) {
1748			opp = temp;
1749			break;
1750		}
1751	}
1752
1753	mutex_unlock(&opp_table->lock);
1754	return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764	struct dev_pm_opp *opp;
1765
1766	while ((opp = _opp_get_next(opp_table, dynamic))) {
1767		opp->removed = true;
1768		dev_pm_opp_put(opp);
1769
1770		/* Drop the references taken by dev_pm_opp_add() */
1771		if (dynamic)
1772			dev_pm_opp_put_opp_table(opp_table);
1773	}
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778	mutex_lock(&opp_table->lock);
1779
1780	if (!opp_table->parsed_static_opps) {
1781		mutex_unlock(&opp_table->lock);
1782		return false;
1783	}
1784
1785	if (--opp_table->parsed_static_opps) {
1786		mutex_unlock(&opp_table->lock);
1787		return true;
1788	}
1789
1790	mutex_unlock(&opp_table->lock);
1791
1792	_opp_remove_all(opp_table, false);
1793	return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev:	device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804	struct opp_table *opp_table;
1805
1806	opp_table = _find_opp_table(dev);
1807	if (IS_ERR(opp_table))
1808		return;
1809
1810	_opp_remove_all(opp_table, true);
1811
1812	/* Drop the reference taken by _find_opp_table() */
1813	dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819	struct dev_pm_opp *opp;
1820	int supply_count, supply_size, icc_size, clk_size;
1821
1822	/* Allocate space for at least one supply */
1823	supply_count = opp_table->regulator_count > 0 ?
1824			opp_table->regulator_count : 1;
1825	supply_size = sizeof(*opp->supplies) * supply_count;
1826	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829	/* allocate new OPP node and supplies structures */
1830	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831	if (!opp)
1832		return NULL;
1833
1834	/* Put the supplies, bw and clock at the end of the OPP structure */
1835	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839	if (icc_size)
1840		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842	INIT_LIST_HEAD(&opp->node);
1843
1844	opp->level = OPP_LEVEL_UNSET;
1845
1846	return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850					 struct opp_table *opp_table)
1851{
1852	struct regulator *reg;
1853	int i;
1854
1855	if (!opp_table->regulators)
1856		return true;
1857
1858	for (i = 0; i < opp_table->regulator_count; i++) {
1859		reg = opp_table->regulators[i];
1860
1861		if (!regulator_is_supported_voltage(reg,
1862					opp->supplies[i].u_volt_min,
1863					opp->supplies[i].u_volt_max)) {
1864			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865				__func__, opp->supplies[i].u_volt_min,
1866				opp->supplies[i].u_volt_max);
1867			return false;
1868		}
1869	}
1870
1871	return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877	int i;
1878
1879	for (i = 0; i < opp_table->clk_count; i++) {
1880		if (opp1->rates[i] != opp2->rates[i])
1881			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882	}
1883
1884	/* Same rates for both OPPs */
1885	return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889			   struct dev_pm_opp *opp2)
1890{
1891	int i;
1892
1893	for (i = 0; i < opp_table->path_count; i++) {
1894		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896	}
1897
1898	/* Same bw for both OPPs */
1899	return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
 
 
 
 
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909		     struct dev_pm_opp *opp2)
1910{
1911	int ret;
1912
1913	ret = _opp_compare_rate(opp_table, opp1, opp2);
1914	if (ret)
1915		return ret;
1916
1917	ret = _opp_compare_bw(opp_table, opp1, opp2);
1918	if (ret)
1919		return ret;
1920
1921	if (opp1->level != opp2->level)
1922		return opp1->level < opp2->level ? -1 : 1;
1923
1924	/* Duplicate OPPs */
1925	return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929			     struct opp_table *opp_table,
1930			     struct list_head **head)
1931{
1932	struct dev_pm_opp *opp;
1933	int opp_cmp;
 
1934
1935	/*
1936	 * Insert new OPP in order of increasing frequency and discard if
1937	 * already present.
1938	 *
1939	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940	 * loop, don't replace it with head otherwise it will become an infinite
1941	 * loop.
1942	 */
 
 
 
1943	list_for_each_entry(opp, &opp_table->opp_list, node) {
1944		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945		if (opp_cmp > 0) {
1946			*head = &opp->node;
1947			continue;
1948		}
1949
1950		if (opp_cmp < 0)
1951			return 0;
1952
1953		/* Duplicate OPPs */
1954		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956			 opp->available, new_opp->rates[0],
1957			 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959		/* Should we compare voltages for all regulators here ? */
1960		return opp->available &&
1961		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962	}
1963
1964	return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969	int i;
1970
1971	for (i = 0; i < count; i++) {
1972		if (opp->required_opps[i]->available)
1973			continue;
1974
1975		opp->available = false;
1976		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978		return;
1979	}
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 *  sure we don't print error messages unnecessarily if different parts of
1988 *  kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 *  should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993	     struct opp_table *opp_table)
1994{
1995	struct list_head *head;
1996	int ret;
1997
1998	mutex_lock(&opp_table->lock);
1999	head = &opp_table->opp_list;
2000
2001	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002	if (ret) {
2003		mutex_unlock(&opp_table->lock);
2004		return ret;
2005	}
2006
 
 
 
2007	list_add(&new_opp->node, head);
2008	mutex_unlock(&opp_table->lock);
2009
2010	new_opp->opp_table = opp_table;
2011	kref_init(&new_opp->kref);
2012
2013	opp_debug_create_one(new_opp, opp_table);
 
 
 
 
 
 
2014
2015	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016		new_opp->available = false;
2017		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018			 __func__, new_opp->rates[0]);
2019	}
2020
2021	/* required-opps not fully initialized yet */
2022	if (lazy_linking_pending(opp_table))
2023		return 0;
2024
2025	_required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027	return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table:	OPP table
2033 * @dev:	device for which we do this operation
2034 * @data:	The OPP data for the OPP to add
 
2035 * @dynamic:	Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0		On success OR
2046 *		Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST	Freq are same and volt are different OR
2048 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM	Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052		struct dev_pm_opp_data *data, bool dynamic)
2053{
2054	struct dev_pm_opp *new_opp;
2055	unsigned long tol, u_volt = data->u_volt;
2056	int ret;
2057
2058	if (!assert_single_clk(opp_table))
2059		return -EINVAL;
2060
2061	new_opp = _opp_allocate(opp_table);
2062	if (!new_opp)
2063		return -ENOMEM;
2064
2065	/* populate the opp table */
2066	new_opp->rates[0] = data->freq;
2067	new_opp->level = data->level;
2068	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069	new_opp->supplies[0].u_volt = u_volt;
2070	new_opp->supplies[0].u_volt_min = u_volt - tol;
2071	new_opp->supplies[0].u_volt_max = u_volt + tol;
2072	new_opp->available = true;
2073	new_opp->dynamic = dynamic;
2074
2075	ret = _opp_add(dev, new_opp, opp_table);
2076	if (ret) {
2077		/* Don't return error for duplicate OPPs */
2078		if (ret == -EBUSY)
2079			ret = 0;
2080		goto free_opp;
2081	}
2082
2083	/*
2084	 * Notify the changes in the availability of the operable
2085	 * frequency/voltage list.
2086	 */
2087	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088	return 0;
2089
2090free_opp:
2091	_opp_free(new_opp);
2092
2093	return ret;
2094}
2095
2096/*
 
 
 
 
 
2097 * This is required only for the V2 bindings, and it enables a platform to
2098 * specify the hierarchy of versions it supports. OPP layer will then enable
2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100 * property.
2101 */
2102static int _opp_set_supported_hw(struct opp_table *opp_table,
2103				 const u32 *versions, unsigned int count)
2104{
2105	/* Another CPU that shares the OPP table has set the property ? */
2106	if (opp_table->supported_hw)
2107		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108
2109	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110					GFP_KERNEL);
2111	if (!opp_table->supported_hw)
2112		return -ENOMEM;
 
 
2113
2114	opp_table->supported_hw_count = count;
2115
2116	return 0;
 
 
 
 
 
2117}
 
2118
2119static void _opp_put_supported_hw(struct opp_table *opp_table)
 
 
 
 
 
 
 
 
2120{
2121	if (opp_table->supported_hw) {
2122		kfree(opp_table->supported_hw);
2123		opp_table->supported_hw = NULL;
2124		opp_table->supported_hw_count = 0;
 
 
 
2125	}
 
 
 
 
 
 
2126}
 
2127
2128/*
 
 
 
 
2129 * This is required only for the V2 bindings, and it enables a platform to
2130 * specify the extn to be used for certain property names. The properties to
2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132 * should postfix the property name with -<name> while looking for them.
2133 */
2134static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135{
2136	/* Another CPU that shares the OPP table has set the property ? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2137	if (!opp_table->prop_name) {
2138		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139		if (!opp_table->prop_name)
2140			return -ENOMEM;
2141	}
2142
2143	return 0;
 
 
 
 
 
2144}
 
2145
2146static void _opp_put_prop_name(struct opp_table *opp_table)
 
 
 
 
 
 
 
 
2147{
2148	if (opp_table->prop_name) {
2149		kfree(opp_table->prop_name);
2150		opp_table->prop_name = NULL;
 
 
 
2151	}
 
 
 
 
 
2152}
 
2153
2154/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155 * In order to support OPP switching, OPP layer needs to know the name of the
2156 * device's regulators, as the core would be required to switch voltages as
2157 * well.
2158 *
2159 * This must be called before any OPPs are initialized for the device.
2160 */
2161static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162			       const char * const names[])
 
2163{
2164	const char * const *temp = names;
2165	struct regulator *reg;
2166	int count = 0, ret, i;
2167
2168	/* Count number of regulators */
2169	while (*temp++)
2170		count++;
2171
2172	if (!count)
2173		return -EINVAL;
 
 
 
2174
2175	/* Another CPU that shares the OPP table has set the regulators ? */
2176	if (opp_table->regulators)
2177		return 0;
 
 
2178
2179	opp_table->regulators = kmalloc_array(count,
2180					      sizeof(*opp_table->regulators),
2181					      GFP_KERNEL);
2182	if (!opp_table->regulators)
2183		return -ENOMEM;
 
 
2184
2185	for (i = 0; i < count; i++) {
2186		reg = regulator_get_optional(dev, names[i]);
2187		if (IS_ERR(reg)) {
2188			ret = dev_err_probe(dev, PTR_ERR(reg),
2189					    "%s: no regulator (%s) found\n",
2190					    __func__, names[i]);
 
2191			goto free_regulators;
2192		}
2193
2194		opp_table->regulators[i] = reg;
2195	}
2196
2197	opp_table->regulator_count = count;
2198
2199	/* Set generic config_regulators() for single regulators here */
2200	if (count == 1)
2201		opp_table->config_regulators = _opp_config_regulator_single;
 
2202
2203	return 0;
2204
2205free_regulators:
2206	while (i != 0)
2207		regulator_put(opp_table->regulators[--i]);
2208
2209	kfree(opp_table->regulators);
2210	opp_table->regulators = NULL;
2211	opp_table->regulator_count = -1;
 
 
2212
2213	return ret;
2214}
 
2215
2216static void _opp_put_regulators(struct opp_table *opp_table)
 
 
 
 
2217{
2218	int i;
2219
2220	if (!opp_table->regulators)
 
2221		return;
2222
2223	if (opp_table->enabled) {
2224		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225			regulator_disable(opp_table->regulators[i]);
2226	}
2227
 
 
 
2228	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229		regulator_put(opp_table->regulators[i]);
2230
 
 
2231	kfree(opp_table->regulators);
2232	opp_table->regulators = NULL;
2233	opp_table->regulator_count = -1;
2234}
2235
2236static void _put_clks(struct opp_table *opp_table, int count)
2237{
2238	int i;
2239
2240	for (i = count - 1; i >= 0; i--)
2241		clk_put(opp_table->clks[i]);
2242
2243	kfree(opp_table->clks);
2244	opp_table->clks = NULL;
2245}
 
2246
2247/*
2248 * In order to support OPP switching, OPP layer needs to get pointers to the
2249 * clocks for the device. Simple cases work fine without using this routine
2250 * (i.e. by passing connection-id as NULL), but for a device with multiple
2251 * clocks available, the OPP core needs to know the exact names of the clks to
2252 * use.
2253 *
2254 * This must be called before any OPPs are initialized for the device.
2255 */
2256static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257			     const char * const names[],
2258			     config_clks_t config_clks)
2259{
2260	const char * const *temp = names;
2261	int count = 0, ret, i;
2262	struct clk *clk;
2263
2264	/* Count number of clks */
2265	while (*temp++)
2266		count++;
2267
2268	/*
2269	 * This is a special case where we have a single clock, whose connection
2270	 * id name is NULL, i.e. first two entries are NULL in the array.
2271	 */
2272	if (!count && !names[1])
2273		count = 1;
2274
2275	/* Fail early for invalid configurations */
2276	if (!count || (!config_clks && count > 1))
2277		return -EINVAL;
2278
2279	/* Another CPU that shares the OPP table has set the clkname ? */
2280	if (opp_table->clks)
2281		return 0;
2282
2283	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284					GFP_KERNEL);
2285	if (!opp_table->clks)
2286		return -ENOMEM;
2287
2288	/* Find clks for the device */
2289	for (i = 0; i < count; i++) {
2290		clk = clk_get(dev, names[i]);
2291		if (IS_ERR(clk)) {
2292			ret = dev_err_probe(dev, PTR_ERR(clk),
2293					    "%s: Couldn't find clock with name: %s\n",
2294					    __func__, names[i]);
2295			goto free_clks;
2296		}
2297
2298		opp_table->clks[i] = clk;
2299	}
2300
2301	opp_table->clk_count = count;
2302	opp_table->config_clks = config_clks;
2303
2304	/* Set generic single clk set here */
2305	if (count == 1) {
2306		if (!opp_table->config_clks)
2307			opp_table->config_clks = _opp_config_clk_single;
2308
2309		/*
2310		 * We could have just dropped the "clk" field and used "clks"
2311		 * everywhere. Instead we kept the "clk" field around for
2312		 * following reasons:
2313		 *
2314		 * - avoiding clks[0] everywhere else.
2315		 * - not running single clk helpers for multiple clk usecase by
2316		 *   mistake.
2317		 *
2318		 * Since this is single-clk case, just update the clk pointer
2319		 * too.
2320		 */
2321		opp_table->clk = opp_table->clks[0];
2322	}
2323
2324	return 0;
2325
2326free_clks:
2327	_put_clks(opp_table, i);
2328	return ret;
2329}
2330
2331static void _opp_put_clknames(struct opp_table *opp_table)
2332{
2333	if (!opp_table->clks)
2334		return;
2335
2336	opp_table->config_clks = NULL;
2337	opp_table->clk = ERR_PTR(-ENODEV);
2338
2339	_put_clks(opp_table, opp_table->clk_count);
2340}
2341
2342/*
2343 * This is useful to support platforms with multiple regulators per device.
2344 *
2345 * This must be called before any OPPs are initialized for the device.
2346 */
2347static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348		struct device *dev, config_regulators_t config_regulators)
2349{
2350	/* Another CPU that shares the OPP table has set the helper ? */
2351	if (!opp_table->config_regulators)
2352		opp_table->config_regulators = config_regulators;
2353
2354	return 0;
2355}
2356
2357static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358{
2359	if (opp_table->config_regulators)
2360		opp_table->config_regulators = NULL;
2361}
2362
2363static void _opp_detach_genpd(struct opp_table *opp_table)
2364{
2365	int index;
2366
2367	for (index = 0; index < opp_table->required_opp_count; index++) {
2368		if (!opp_table->required_devs[index])
2369			continue;
2370
2371		dev_pm_domain_detach(opp_table->required_devs[index], false);
2372		opp_table->required_devs[index] = NULL;
2373	}
2374}
2375
2376/*
2377 * Multiple generic power domains for a device are supported with the help of
2378 * virtual genpd devices, which are created for each consumer device - genpd
2379 * pair. These are the device structures which are attached to the power domain
2380 * and are required by the OPP core to set the performance state of the genpd.
2381 * The same API also works for the case where single genpd is available and so
2382 * we don't need to support that separately.
2383 *
2384 * This helper will normally be called by the consumer driver of the device
2385 * "dev", as only that has details of the genpd names.
2386 *
2387 * This helper needs to be called once with a list of all genpd to attach.
2388 * Otherwise the original device structure will be used instead by the OPP core.
2389 *
2390 * The order of entries in the names array must match the order in which
2391 * "required-opps" are added in DT.
2392 */
2393static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2394			const char * const *names, struct device ***virt_devs)
2395{
2396	struct device *virt_dev;
2397	int index = 0, ret = -EINVAL;
2398	const char * const *name = names;
2399
2400	if (!opp_table->required_devs) {
2401		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2402		return -EINVAL;
2403	}
2404
2405	/* Genpd core takes care of propagation to parent genpd */
2406	if (opp_table->is_genpd) {
2407		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2408		return -EOPNOTSUPP;
2409	}
2410
2411	/* Checking only the first one is enough ? */
2412	if (opp_table->required_devs[0])
2413		return 0;
2414
2415	while (*name) {
2416		if (index >= opp_table->required_opp_count) {
2417			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2418				*name, opp_table->required_opp_count, index);
2419			goto err;
2420		}
2421
2422		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2423		if (IS_ERR_OR_NULL(virt_dev)) {
2424			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2425			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2426			goto err;
2427		}
2428
2429		/*
2430		 * Add the virtual genpd device as a user of the OPP table, so
2431		 * we can call dev_pm_opp_set_opp() on it directly.
2432		 *
2433		 * This will be automatically removed when the OPP table is
2434		 * removed, don't need to handle that here.
2435		 */
2436		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2437			ret = -ENOMEM;
2438			goto err;
2439		}
2440
2441		opp_table->required_devs[index] = virt_dev;
2442		index++;
2443		name++;
2444	}
2445
2446	if (virt_devs)
2447		*virt_devs = opp_table->required_devs;
2448
2449	return 0;
2450
2451err:
2452	_opp_detach_genpd(opp_table);
2453	return ret;
2454
2455}
2456
2457static int _opp_set_required_devs(struct opp_table *opp_table,
2458				  struct device *dev,
2459				  struct device **required_devs)
2460{
2461	int i;
2462
2463	if (!opp_table->required_devs) {
2464		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2465		return -EINVAL;
2466	}
2467
2468	/* Another device that shares the OPP table has set the required devs ? */
2469	if (opp_table->required_devs[0])
2470		return 0;
2471
2472	for (i = 0; i < opp_table->required_opp_count; i++) {
2473		/* Genpd core takes care of propagation to parent genpd */
2474		if (required_devs[i] && opp_table->is_genpd &&
2475		    opp_table->required_opp_tables[i]->is_genpd) {
2476			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2477			return -EOPNOTSUPP;
2478		}
2479
2480		opp_table->required_devs[i] = required_devs[i];
2481	}
2482
2483	return 0;
2484}
2485
2486static void _opp_put_required_devs(struct opp_table *opp_table)
2487{
2488	int i;
2489
2490	for (i = 0; i < opp_table->required_opp_count; i++)
2491		opp_table->required_devs[i] = NULL;
2492}
 
2493
2494static void _opp_clear_config(struct opp_config_data *data)
 
 
 
 
2495{
2496	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2497		_opp_put_required_devs(data->opp_table);
2498	else if (data->flags & OPP_CONFIG_GENPD)
2499		_opp_detach_genpd(data->opp_table);
2500
2501	if (data->flags & OPP_CONFIG_REGULATOR)
2502		_opp_put_regulators(data->opp_table);
2503	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2504		_opp_put_supported_hw(data->opp_table);
2505	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2506		_opp_put_config_regulators_helper(data->opp_table);
2507	if (data->flags & OPP_CONFIG_PROP_NAME)
2508		_opp_put_prop_name(data->opp_table);
2509	if (data->flags & OPP_CONFIG_CLK)
2510		_opp_put_clknames(data->opp_table);
2511
2512	dev_pm_opp_put_opp_table(data->opp_table);
2513	kfree(data);
2514}
 
2515
2516/**
2517 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2518 * @dev: Device for which configuration is being set.
2519 * @config: OPP configuration.
2520 *
2521 * This allows all device OPP configurations to be performed at once.
 
2522 *
2523 * This must be called before any OPPs are initialized for the device. This may
2524 * be called multiple times for the same OPP table, for example once for each
2525 * CPU that share the same table. This must be balanced by the same number of
2526 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2527 *
2528 * This returns a token to the caller, which must be passed to
2529 * dev_pm_opp_clear_config() to free the resources later. The value of the
2530 * returned token will be >= 1 for success and negative for errors. The minimum
2531 * value of 1 is chosen here to make it easy for callers to manage the resource.
2532 */
2533int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
 
2534{
2535	struct opp_table *opp_table;
2536	struct opp_config_data *data;
2537	unsigned int id;
2538	int ret;
2539
2540	data = kmalloc(sizeof(*data), GFP_KERNEL);
2541	if (!data)
2542		return -ENOMEM;
2543
2544	opp_table = _add_opp_table(dev, false);
2545	if (IS_ERR(opp_table)) {
2546		kfree(data);
2547		return PTR_ERR(opp_table);
2548	}
2549
2550	data->opp_table = opp_table;
2551	data->flags = 0;
 
2552
2553	/* This should be called before OPPs are initialized */
2554	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2555		ret = -EBUSY;
2556		goto err;
2557	}
2558
2559	/* Configure clocks */
2560	if (config->clk_names) {
2561		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2562					config->config_clks);
2563		if (ret)
2564			goto err;
2565
2566		data->flags |= OPP_CONFIG_CLK;
2567	} else if (config->config_clks) {
2568		/* Don't allow config callback without clocks */
2569		ret = -EINVAL;
2570		goto err;
2571	}
2572
2573	/* Configure property names */
2574	if (config->prop_name) {
2575		ret = _opp_set_prop_name(opp_table, config->prop_name);
2576		if (ret)
2577			goto err;
2578
2579		data->flags |= OPP_CONFIG_PROP_NAME;
2580	}
2581
2582	/* Configure config_regulators helper */
2583	if (config->config_regulators) {
2584		ret = _opp_set_config_regulators_helper(opp_table, dev,
2585						config->config_regulators);
2586		if (ret)
2587			goto err;
2588
2589		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2590	}
2591
2592	/* Configure supported hardware */
2593	if (config->supported_hw) {
2594		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2595					    config->supported_hw_count);
2596		if (ret)
2597			goto err;
2598
2599		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2600	}
2601
2602	/* Configure supplies */
2603	if (config->regulator_names) {
2604		ret = _opp_set_regulators(opp_table, dev,
2605					  config->regulator_names);
2606		if (ret)
2607			goto err;
2608
2609		data->flags |= OPP_CONFIG_REGULATOR;
2610	}
2611
2612	/* Attach genpds */
2613	if (config->genpd_names) {
2614		if (config->required_devs)
2615			goto err;
2616
2617		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2618					config->virt_devs);
2619		if (ret)
2620			goto err;
2621
2622		data->flags |= OPP_CONFIG_GENPD;
2623	} else if (config->required_devs) {
2624		ret = _opp_set_required_devs(opp_table, dev,
2625					     config->required_devs);
2626		if (ret)
2627			goto err;
2628
2629		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2630	}
2631
2632	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2633		       GFP_KERNEL);
2634	if (ret)
2635		goto err;
2636
2637	return id;
2638
2639err:
2640	_opp_clear_config(data);
2641	return ret;
 
2642}
2643EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2644
2645/**
2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2647 * @token: The token returned by dev_pm_opp_set_config() previously.
 
2648 *
2649 * This allows all device OPP configurations to be cleared at once. This must be
2650 * called once for each call made to dev_pm_opp_set_config(), in order to free
2651 * the OPPs properly.
2652 *
2653 * Currently the first call itself ends up freeing all the OPP configurations,
2654 * while the later ones only drop the OPP table reference. This works well for
2655 * now as we would never want to use an half initialized OPP table and want to
2656 * remove the configurations together.
2657 */
2658void dev_pm_opp_clear_config(int token)
2659{
2660	struct opp_config_data *data;
2661
2662	/*
2663	 * This lets the callers call this unconditionally and keep their code
2664	 * simple.
2665	 */
2666	if (unlikely(token <= 0))
2667		return;
 
2668
2669	data = xa_erase(&opp_configs, token);
2670	if (WARN_ON(!data))
2671		return;
2672
2673	_opp_clear_config(data);
2674}
2675EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2676
2677static void devm_pm_opp_config_release(void *token)
2678{
2679	dev_pm_opp_clear_config((unsigned long)token);
2680}
2681
2682/**
2683 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2684 * @dev: Device for which configuration is being set.
2685 * @config: OPP configuration.
2686 *
2687 * This allows all device OPP configurations to be performed at once.
2688 * This is a resource-managed variant of dev_pm_opp_set_config().
2689 *
2690 * Return: 0 on success and errorno otherwise.
2691 */
2692int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2693{
2694	int token = dev_pm_opp_set_config(dev, config);
2695
2696	if (token < 0)
2697		return token;
2698
2699	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2700					(void *) ((unsigned long) token));
2701}
2702EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2703
2704/**
2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2706 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2707 * @dst_table: Required OPP table of the @src_table.
2708 * @src_opp: OPP from the @src_table.
2709 *
2710 * This function returns the OPP (present in @dst_table) pointed out by the
2711 * "required-opps" property of the @src_opp (present in @src_table).
2712 *
2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2714 * use.
2715 *
2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2717 */
2718struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2719						 struct opp_table *dst_table,
2720						 struct dev_pm_opp *src_opp)
2721{
2722	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2723	int i;
2724
2725	if (!src_table || !dst_table || !src_opp ||
2726	    !src_table->required_opp_tables)
2727		return ERR_PTR(-EINVAL);
2728
2729	/* required-opps not fully initialized yet */
2730	if (lazy_linking_pending(src_table))
2731		return ERR_PTR(-EBUSY);
2732
2733	for (i = 0; i < src_table->required_opp_count; i++) {
2734		if (src_table->required_opp_tables[i] == dst_table) {
2735			mutex_lock(&src_table->lock);
2736
2737			list_for_each_entry(opp, &src_table->opp_list, node) {
2738				if (opp == src_opp) {
2739					dest_opp = opp->required_opps[i];
2740					dev_pm_opp_get(dest_opp);
2741					break;
2742				}
2743			}
2744
2745			mutex_unlock(&src_table->lock);
2746			break;
2747		}
 
2748	}
2749
2750	if (IS_ERR(dest_opp)) {
2751		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2752		       src_table, dst_table);
 
2753	}
2754
2755	return dest_opp;
 
 
 
 
 
 
 
 
2756}
2757EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2758
2759/**
2760 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2761 * @src_table: OPP table which has dst_table as one of its required OPP table.
2762 * @dst_table: Required OPP table of the src_table.
2763 * @pstate: Current performance state of the src_table.
2764 *
2765 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2766 * "required-opps" property of the OPP (present in @src_table) which has
2767 * performance state set to @pstate.
2768 *
2769 * Return: Zero or positive performance state on success, otherwise negative
2770 * value on errors.
2771 */
2772int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2773				       struct opp_table *dst_table,
2774				       unsigned int pstate)
2775{
2776	struct dev_pm_opp *opp;
2777	int dest_pstate = -EINVAL;
2778	int i;
2779
2780	/*
2781	 * Normally the src_table will have the "required_opps" property set to
2782	 * point to one of the OPPs in the dst_table, but in some cases the
2783	 * genpd and its master have one to one mapping of performance states
2784	 * and so none of them have the "required-opps" property set. Return the
2785	 * pstate of the src_table as it is in such cases.
2786	 */
2787	if (!src_table || !src_table->required_opp_count)
2788		return pstate;
2789
2790	/* Both OPP tables must belong to genpds */
2791	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2792		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2793		return -EINVAL;
2794	}
2795
2796	/* required-opps not fully initialized yet */
2797	if (lazy_linking_pending(src_table))
2798		return -EBUSY;
2799
2800	for (i = 0; i < src_table->required_opp_count; i++) {
2801		if (src_table->required_opp_tables[i]->np == dst_table->np)
2802			break;
2803	}
2804
2805	if (unlikely(i == src_table->required_opp_count)) {
2806		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2807		       __func__, src_table, dst_table);
2808		return -EINVAL;
2809	}
2810
2811	mutex_lock(&src_table->lock);
2812
2813	list_for_each_entry(opp, &src_table->opp_list, node) {
2814		if (opp->level == pstate) {
2815			dest_pstate = opp->required_opps[i]->level;
2816			goto unlock;
2817		}
2818	}
2819
2820	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2821	       dst_table);
2822
2823unlock:
2824	mutex_unlock(&src_table->lock);
2825
2826	return dest_pstate;
2827}
 
2828
2829/**
2830 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2831 * @dev:	The device for which we do this operation
2832 * @data:	The OPP data for the OPP to add
 
2833 *
2834 * This function adds an opp definition to the opp table and returns status.
2835 * The opp is made available by default and it can be controlled using
2836 * dev_pm_opp_enable/disable functions.
2837 *
2838 * Return:
2839 * 0		On success OR
2840 *		Duplicate OPPs (both freq and volt are same) and opp->available
2841 * -EEXIST	Freq are same and volt are different OR
2842 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2843 * -ENOMEM	Memory allocation failure
2844 */
2845int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2846{
2847	struct opp_table *opp_table;
2848	int ret;
2849
2850	opp_table = _add_opp_table(dev, true);
2851	if (IS_ERR(opp_table))
2852		return PTR_ERR(opp_table);
2853
2854	/* Fix regulator count for dynamic OPPs */
2855	opp_table->regulator_count = 1;
2856
2857	ret = _opp_add_v1(opp_table, dev, data, true);
2858	if (ret)
2859		dev_pm_opp_put_opp_table(opp_table);
2860
 
2861	return ret;
2862}
2863EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2864
2865/**
2866 * _opp_set_availability() - helper to set the availability of an opp
2867 * @dev:		device for which we do this operation
2868 * @freq:		OPP frequency to modify availability
2869 * @availability_req:	availability status requested for this opp
2870 *
2871 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2872 * which is isolated here.
2873 *
2874 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2875 * copy operation, returns 0 if no modification was done OR modification was
2876 * successful.
2877 */
2878static int _opp_set_availability(struct device *dev, unsigned long freq,
2879				 bool availability_req)
2880{
2881	struct opp_table *opp_table;
2882	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2883	int r = 0;
2884
2885	/* Find the opp_table */
2886	opp_table = _find_opp_table(dev);
2887	if (IS_ERR(opp_table)) {
2888		r = PTR_ERR(opp_table);
2889		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2890		return r;
2891	}
2892
2893	if (!assert_single_clk(opp_table)) {
2894		r = -EINVAL;
2895		goto put_table;
2896	}
2897
2898	mutex_lock(&opp_table->lock);
2899
2900	/* Do we have the frequency? */
2901	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2902		if (tmp_opp->rates[0] == freq) {
2903			opp = tmp_opp;
2904			break;
2905		}
2906	}
2907
2908	if (IS_ERR(opp)) {
2909		r = PTR_ERR(opp);
2910		goto unlock;
2911	}
2912
2913	/* Is update really needed? */
2914	if (opp->available == availability_req)
2915		goto unlock;
2916
2917	opp->available = availability_req;
2918
2919	dev_pm_opp_get(opp);
2920	mutex_unlock(&opp_table->lock);
2921
2922	/* Notify the change of the OPP availability */
2923	if (availability_req)
2924		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2925					     opp);
2926	else
2927		blocking_notifier_call_chain(&opp_table->head,
2928					     OPP_EVENT_DISABLE, opp);
2929
2930	dev_pm_opp_put(opp);
2931	goto put_table;
2932
2933unlock:
2934	mutex_unlock(&opp_table->lock);
2935put_table:
2936	dev_pm_opp_put_opp_table(opp_table);
2937	return r;
2938}
2939
2940/**
2941 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2942 * @dev:		device for which we do this operation
2943 * @freq:		OPP frequency to adjust voltage of
2944 * @u_volt:		new OPP target voltage
2945 * @u_volt_min:		new OPP min voltage
2946 * @u_volt_max:		new OPP max voltage
2947 *
2948 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2949 * copy operation, returns 0 if no modifcation was done OR modification was
2950 * successful.
2951 */
2952int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2953			      unsigned long u_volt, unsigned long u_volt_min,
2954			      unsigned long u_volt_max)
2955
2956{
2957	struct opp_table *opp_table;
2958	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2959	int r = 0;
2960
2961	/* Find the opp_table */
2962	opp_table = _find_opp_table(dev);
2963	if (IS_ERR(opp_table)) {
2964		r = PTR_ERR(opp_table);
2965		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2966		return r;
2967	}
2968
2969	if (!assert_single_clk(opp_table)) {
2970		r = -EINVAL;
2971		goto put_table;
2972	}
2973
2974	mutex_lock(&opp_table->lock);
2975
2976	/* Do we have the frequency? */
2977	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2978		if (tmp_opp->rates[0] == freq) {
2979			opp = tmp_opp;
2980			break;
2981		}
2982	}
2983
2984	if (IS_ERR(opp)) {
2985		r = PTR_ERR(opp);
2986		goto adjust_unlock;
2987	}
2988
2989	/* Is update really needed? */
2990	if (opp->supplies->u_volt == u_volt)
2991		goto adjust_unlock;
2992
2993	opp->supplies->u_volt = u_volt;
2994	opp->supplies->u_volt_min = u_volt_min;
2995	opp->supplies->u_volt_max = u_volt_max;
2996
2997	dev_pm_opp_get(opp);
2998	mutex_unlock(&opp_table->lock);
2999
3000	/* Notify the voltage change of the OPP */
3001	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3002				     opp);
3003
3004	dev_pm_opp_put(opp);
3005	goto put_table;
3006
3007adjust_unlock:
3008	mutex_unlock(&opp_table->lock);
3009put_table:
3010	dev_pm_opp_put_opp_table(opp_table);
3011	return r;
3012}
3013EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3014
3015/**
3016 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3017 * @dev:	device for which we do this operation
3018 *
3019 * Sync voltage state of the OPP table regulators.
3020 *
3021 * Return: 0 on success or a negative error value.
3022 */
3023int dev_pm_opp_sync_regulators(struct device *dev)
3024{
3025	struct opp_table *opp_table;
3026	struct regulator *reg;
3027	int i, ret = 0;
3028
3029	/* Device may not have OPP table */
3030	opp_table = _find_opp_table(dev);
3031	if (IS_ERR(opp_table))
3032		return 0;
3033
3034	/* Regulator may not be required for the device */
3035	if (unlikely(!opp_table->regulators))
3036		goto put_table;
3037
3038	/* Nothing to sync if voltage wasn't changed */
3039	if (!opp_table->enabled)
3040		goto put_table;
3041
3042	for (i = 0; i < opp_table->regulator_count; i++) {
3043		reg = opp_table->regulators[i];
3044		ret = regulator_sync_voltage(reg);
3045		if (ret)
3046			break;
3047	}
3048put_table:
3049	/* Drop reference taken by _find_opp_table() */
3050	dev_pm_opp_put_opp_table(opp_table);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3055
3056/**
3057 * dev_pm_opp_enable() - Enable a specific OPP
3058 * @dev:	device for which we do this operation
3059 * @freq:	OPP frequency to enable
3060 *
3061 * Enables a provided opp. If the operation is valid, this returns 0, else the
3062 * corresponding error value. It is meant to be used for users an OPP available
3063 * after being temporarily made unavailable with dev_pm_opp_disable.
3064 *
3065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3066 * copy operation, returns 0 if no modification was done OR modification was
3067 * successful.
3068 */
3069int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3070{
3071	return _opp_set_availability(dev, freq, true);
3072}
3073EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3074
3075/**
3076 * dev_pm_opp_disable() - Disable a specific OPP
3077 * @dev:	device for which we do this operation
3078 * @freq:	OPP frequency to disable
3079 *
3080 * Disables a provided opp. If the operation is valid, this returns
3081 * 0, else the corresponding error value. It is meant to be a temporary
3082 * control by users to make this OPP not available until the circumstances are
3083 * right to make it available again (with a call to dev_pm_opp_enable).
3084 *
3085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3086 * copy operation, returns 0 if no modification was done OR modification was
3087 * successful.
3088 */
3089int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3090{
3091	return _opp_set_availability(dev, freq, false);
3092}
3093EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3094
3095/**
3096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3097 * @dev:	Device for which notifier needs to be registered
3098 * @nb:		Notifier block to be registered
3099 *
3100 * Return: 0 on success or a negative error value.
3101 */
3102int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3103{
3104	struct opp_table *opp_table;
3105	int ret;
3106
3107	opp_table = _find_opp_table(dev);
3108	if (IS_ERR(opp_table))
3109		return PTR_ERR(opp_table);
3110
3111	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3112
3113	dev_pm_opp_put_opp_table(opp_table);
3114
3115	return ret;
3116}
3117EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3118
3119/**
3120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3121 * @dev:	Device for which notifier needs to be unregistered
3122 * @nb:		Notifier block to be unregistered
3123 *
3124 * Return: 0 on success or a negative error value.
3125 */
3126int dev_pm_opp_unregister_notifier(struct device *dev,
3127				   struct notifier_block *nb)
3128{
3129	struct opp_table *opp_table;
3130	int ret;
3131
3132	opp_table = _find_opp_table(dev);
3133	if (IS_ERR(opp_table))
3134		return PTR_ERR(opp_table);
3135
3136	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3137
3138	dev_pm_opp_put_opp_table(opp_table);
3139
3140	return ret;
3141}
3142EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3143
3144/**
3145 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3146 * @dev:	device pointer used to lookup OPP table.
3147 *
3148 * Free both OPPs created using static entries present in DT and the
3149 * dynamically added entries.
3150 */
3151void dev_pm_opp_remove_table(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152{
3153	struct opp_table *opp_table;
3154
3155	/* Check for existing table for 'dev' */
3156	opp_table = _find_opp_table(dev);
3157	if (IS_ERR(opp_table)) {
3158		int error = PTR_ERR(opp_table);
3159
3160		if (error != -ENODEV)
3161			WARN(1, "%s: opp_table: %d\n",
3162			     IS_ERR_OR_NULL(dev) ?
3163					"Invalid device" : dev_name(dev),
3164			     error);
3165		return;
3166	}
3167
3168	/*
3169	 * Drop the extra reference only if the OPP table was successfully added
3170	 * with dev_pm_opp_of_add_table() earlier.
3171	 **/
3172	if (_opp_remove_all_static(opp_table))
3173		dev_pm_opp_put_opp_table(opp_table);
3174
3175	/* Drop reference taken by _find_opp_table() */
3176	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
3177}
3178EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
v4.17
 
   1/*
   2 * Generic OPP Interface
   3 *
   4 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   5 *	Nishanth Menon
   6 *	Romit Dasgupta
   7 *	Kevin Hilman
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/clk.h>
  17#include <linux/errno.h>
  18#include <linux/err.h>
  19#include <linux/slab.h>
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/pm_domain.h>
  23#include <linux/regulator/consumer.h>
 
 
  24
  25#include "opp.h"
  26
  27/*
  28 * The root of the list of all opp-tables. All opp_table structures branch off
  29 * from here, with each opp_table containing the list of opps it supports in
  30 * various states of availability.
  31 */
  32LIST_HEAD(opp_tables);
 
  33/* Lock to allow exclusive modification to the device and opp lists */
  34DEFINE_MUTEX(opp_table_lock);
 
 
  35
  36static void dev_pm_opp_get(struct dev_pm_opp *opp);
 
  37
  38static struct opp_device *_find_opp_dev(const struct device *dev,
  39					struct opp_table *opp_table)
  40{
  41	struct opp_device *opp_dev;
 
  42
 
  43	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  44		if (opp_dev->dev == dev)
  45			return opp_dev;
 
 
  46
  47	return NULL;
 
  48}
  49
  50static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  51{
  52	struct opp_table *opp_table;
  53
  54	list_for_each_entry(opp_table, &opp_tables, node) {
  55		if (_find_opp_dev(dev, opp_table)) {
  56			_get_opp_table_kref(opp_table);
  57
  58			return opp_table;
  59		}
  60	}
  61
  62	return ERR_PTR(-ENODEV);
  63}
  64
  65/**
  66 * _find_opp_table() - find opp_table struct using device pointer
  67 * @dev:	device pointer used to lookup OPP table
  68 *
  69 * Search OPP table for one containing matching device.
  70 *
  71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  72 * -EINVAL based on type of error.
  73 *
  74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  75 */
  76struct opp_table *_find_opp_table(struct device *dev)
  77{
  78	struct opp_table *opp_table;
  79
  80	if (IS_ERR_OR_NULL(dev)) {
  81		pr_err("%s: Invalid parameters\n", __func__);
  82		return ERR_PTR(-EINVAL);
  83	}
  84
  85	mutex_lock(&opp_table_lock);
  86	opp_table = _find_opp_table_unlocked(dev);
  87	mutex_unlock(&opp_table_lock);
  88
  89	return opp_table;
  90}
  91
 
 
 
 
 
 
 
 
 
 
 
 
  92/**
  93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  94 * @opp:	opp for which voltage has to be returned for
  95 *
  96 * Return: voltage in micro volt corresponding to the opp, else
  97 * return 0
  98 *
  99 * This is useful only for devices with single power supply.
 100 */
 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 102{
 103	if (IS_ERR_OR_NULL(opp)) {
 104		pr_err("%s: Invalid parameters\n", __func__);
 105		return 0;
 106	}
 107
 108	return opp->supplies[0].u_volt;
 109}
 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 111
 112/**
 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 114 * @opp:	opp for which frequency has to be returned for
 
 115 *
 116 * Return: frequency in hertz corresponding to the opp, else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117 * return 0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118 */
 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 120{
 121	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 122		pr_err("%s: Invalid parameters\n", __func__);
 123		return 0;
 124	}
 125
 126	return opp->rate;
 127}
 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129
 130/**
 131 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 132 * @opp: opp for which turbo mode is being verified
 133 *
 134 * Turbo OPPs are not for normal use, and can be enabled (under certain
 135 * conditions) for short duration of times to finish high throughput work
 136 * quickly. Running on them for longer times may overheat the chip.
 137 *
 138 * Return: true if opp is turbo opp, else false.
 139 */
 140bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 141{
 142	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 143		pr_err("%s: Invalid parameters\n", __func__);
 144		return false;
 145	}
 146
 147	return opp->turbo;
 148}
 149EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 150
 151/**
 152 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 153 * @dev:	device for which we do this operation
 154 *
 155 * Return: This function returns the max clock latency in nanoseconds.
 156 */
 157unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 158{
 159	struct opp_table *opp_table;
 160	unsigned long clock_latency_ns;
 161
 162	opp_table = _find_opp_table(dev);
 163	if (IS_ERR(opp_table))
 164		return 0;
 165
 166	clock_latency_ns = opp_table->clock_latency_ns_max;
 167
 168	dev_pm_opp_put_opp_table(opp_table);
 169
 170	return clock_latency_ns;
 171}
 172EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 173
 174/**
 175 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 176 * @dev: device for which we do this operation
 177 *
 178 * Return: This function returns the max voltage latency in nanoseconds.
 179 */
 180unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 181{
 182	struct opp_table *opp_table;
 183	struct dev_pm_opp *opp;
 184	struct regulator *reg;
 185	unsigned long latency_ns = 0;
 186	int ret, i, count;
 187	struct {
 188		unsigned long min;
 189		unsigned long max;
 190	} *uV;
 191
 192	opp_table = _find_opp_table(dev);
 193	if (IS_ERR(opp_table))
 194		return 0;
 195
 196	count = opp_table->regulator_count;
 197
 198	/* Regulator may not be required for the device */
 199	if (!count)
 200		goto put_opp_table;
 201
 
 
 202	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 203	if (!uV)
 204		goto put_opp_table;
 205
 206	mutex_lock(&opp_table->lock);
 207
 208	for (i = 0; i < count; i++) {
 209		uV[i].min = ~0;
 210		uV[i].max = 0;
 211
 212		list_for_each_entry(opp, &opp_table->opp_list, node) {
 213			if (!opp->available)
 214				continue;
 215
 216			if (opp->supplies[i].u_volt_min < uV[i].min)
 217				uV[i].min = opp->supplies[i].u_volt_min;
 218			if (opp->supplies[i].u_volt_max > uV[i].max)
 219				uV[i].max = opp->supplies[i].u_volt_max;
 220		}
 221	}
 222
 223	mutex_unlock(&opp_table->lock);
 224
 225	/*
 226	 * The caller needs to ensure that opp_table (and hence the regulator)
 227	 * isn't freed, while we are executing this routine.
 228	 */
 229	for (i = 0; i < count; i++) {
 230		reg = opp_table->regulators[i];
 231		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 232		if (ret > 0)
 233			latency_ns += ret * 1000;
 234	}
 235
 236	kfree(uV);
 237put_opp_table:
 238	dev_pm_opp_put_opp_table(opp_table);
 239
 240	return latency_ns;
 241}
 242EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 243
 244/**
 245 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 246 *					     nanoseconds
 247 * @dev: device for which we do this operation
 248 *
 249 * Return: This function returns the max transition latency, in nanoseconds, to
 250 * switch from one OPP to other.
 251 */
 252unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 253{
 254	return dev_pm_opp_get_max_volt_latency(dev) +
 255		dev_pm_opp_get_max_clock_latency(dev);
 256}
 257EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 258
 259/**
 260 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 261 * @dev:	device for which we do this operation
 262 *
 263 * Return: This function returns the frequency of the OPP marked as suspend_opp
 264 * if one is available, else returns 0;
 265 */
 266unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 267{
 268	struct opp_table *opp_table;
 269	unsigned long freq = 0;
 270
 271	opp_table = _find_opp_table(dev);
 272	if (IS_ERR(opp_table))
 273		return 0;
 274
 275	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 276		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 277
 278	dev_pm_opp_put_opp_table(opp_table);
 279
 280	return freq;
 281}
 282EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 283
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284/**
 285 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 286 * @dev:	device for which we do this operation
 287 *
 288 * Return: This function returns the number of available opps if there are any,
 289 * else returns 0 if none or the corresponding error value.
 290 */
 291int dev_pm_opp_get_opp_count(struct device *dev)
 292{
 293	struct opp_table *opp_table;
 294	struct dev_pm_opp *temp_opp;
 295	int count = 0;
 296
 297	opp_table = _find_opp_table(dev);
 298	if (IS_ERR(opp_table)) {
 299		count = PTR_ERR(opp_table);
 300		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 301			__func__, count);
 302		return count;
 303	}
 304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305	mutex_lock(&opp_table->lock);
 306
 307	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 308		if (temp_opp->available)
 309			count++;
 
 
 
 
 
 
 
 
 310	}
 311
 312	mutex_unlock(&opp_table->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 313	dev_pm_opp_put_opp_table(opp_table);
 314
 315	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316}
 317EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 318
 319/**
 320 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 321 * @dev:		device for which we do this operation
 322 * @freq:		frequency to search for
 323 * @available:		true/false - match for available opp
 324 *
 325 * Return: Searches for exact match in the opp table and returns pointer to the
 326 * matching opp if found, else returns ERR_PTR in case of error and should
 327 * be handled using IS_ERR. Error return values can be:
 328 * EINVAL:	for bad pointer
 329 * ERANGE:	no match found for search
 330 * ENODEV:	if device not found in list of registered devices
 331 *
 332 * Note: available is a modifier for the search. if available=true, then the
 333 * match is for exact matching frequency and is available in the stored OPP
 334 * table. if false, the match is for exact frequency which is not available.
 335 *
 336 * This provides a mechanism to enable an opp which is not available currently
 337 * or the opposite as well.
 338 *
 339 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 340 * use.
 341 */
 342struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 343					      unsigned long freq,
 344					      bool available)
 345{
 346	struct opp_table *opp_table;
 347	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 
 
 348
 349	opp_table = _find_opp_table(dev);
 350	if (IS_ERR(opp_table)) {
 351		int r = PTR_ERR(opp_table);
 352
 353		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 354		return ERR_PTR(r);
 355	}
 356
 357	mutex_lock(&opp_table->lock);
 358
 359	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 360		if (temp_opp->available == available &&
 361				temp_opp->rate == freq) {
 362			opp = temp_opp;
 363
 364			/* Increment the reference count of OPP */
 365			dev_pm_opp_get(opp);
 366			break;
 367		}
 368	}
 369
 370	mutex_unlock(&opp_table->lock);
 371	dev_pm_opp_put_opp_table(opp_table);
 372
 373	return opp;
 374}
 375EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 376
 377static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 378						   unsigned long *freq)
 379{
 380	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 381
 382	mutex_lock(&opp_table->lock);
 383
 384	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 385		if (temp_opp->available && temp_opp->rate >= *freq) {
 386			opp = temp_opp;
 387			*freq = opp->rate;
 388
 389			/* Increment the reference count of OPP */
 390			dev_pm_opp_get(opp);
 391			break;
 392		}
 393	}
 394
 395	mutex_unlock(&opp_table->lock);
 396
 397	return opp;
 398}
 399
 400/**
 401 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 402 * @dev:	device for which we do this operation
 403 * @freq:	Start frequency
 404 *
 405 * Search for the matching ceil *available* OPP from a starting freq
 406 * for a device.
 407 *
 408 * Return: matching *opp and refreshes *freq accordingly, else returns
 409 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 410 * values can be:
 411 * EINVAL:	for bad pointer
 412 * ERANGE:	no match found for search
 413 * ENODEV:	if device not found in list of registered devices
 414 *
 415 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 416 * use.
 417 */
 418struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 419					     unsigned long *freq)
 420{
 421	struct opp_table *opp_table;
 422	struct dev_pm_opp *opp;
 
 423
 424	if (!dev || !freq) {
 425		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 426		return ERR_PTR(-EINVAL);
 427	}
 428
 429	opp_table = _find_opp_table(dev);
 430	if (IS_ERR(opp_table))
 431		return ERR_CAST(opp_table);
 432
 433	opp = _find_freq_ceil(opp_table, freq);
 434
 435	dev_pm_opp_put_opp_table(opp_table);
 436
 437	return opp;
 
 
 
 
 
 
 
 
 
 
 
 438}
 439EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 440
 441/**
 442 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 443 * @dev:	device for which we do this operation
 444 * @freq:	Start frequency
 445 *
 446 * Search for the matching floor *available* OPP from a starting freq
 447 * for a device.
 448 *
 449 * Return: matching *opp and refreshes *freq accordingly, else returns
 450 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 451 * values can be:
 452 * EINVAL:	for bad pointer
 453 * ERANGE:	no match found for search
 454 * ENODEV:	if device not found in list of registered devices
 455 *
 456 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 457 * use.
 458 */
 459struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 460					      unsigned long *freq)
 461{
 462	struct opp_table *opp_table;
 463	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464
 465	if (!dev || !freq) {
 466		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 467		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 468	}
 469
 470	opp_table = _find_opp_table(dev);
 471	if (IS_ERR(opp_table))
 472		return ERR_CAST(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473
 474	mutex_lock(&opp_table->lock);
 
 
 
 
 475
 476	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 477		if (temp_opp->available) {
 478			/* go to the next node, before choosing prev */
 479			if (temp_opp->rate > *freq)
 480				break;
 481			else
 482				opp = temp_opp;
 483		}
 484	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485
 486	/* Increment the reference count of OPP */
 487	if (!IS_ERR(opp))
 488		dev_pm_opp_get(opp);
 489	mutex_unlock(&opp_table->lock);
 490	dev_pm_opp_put_opp_table(opp_table);
 491
 492	if (!IS_ERR(opp))
 493		*freq = opp->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 
 
 495	return opp;
 496}
 497EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 498
 499static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 500			    struct dev_pm_opp_supply *supply)
 501{
 502	int ret;
 503
 504	/* Regulator not available for device */
 505	if (IS_ERR(reg)) {
 506		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 507			PTR_ERR(reg));
 508		return 0;
 509	}
 510
 511	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 512		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 513
 514	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 515					    supply->u_volt, supply->u_volt_max);
 516	if (ret)
 517		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 518			__func__, supply->u_volt_min, supply->u_volt,
 519			supply->u_volt_max, ret);
 520
 521	return ret;
 522}
 523
 524static inline int
 525_generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 526			  unsigned long old_freq, unsigned long freq)
 527{
 
 
 528	int ret;
 529
 530	ret = clk_set_rate(clk, freq);
 
 
 
 
 
 
 
 
 
 
 531	if (ret) {
 532		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 533			ret);
 
 
 534	}
 535
 536	return ret;
 537}
 538
 539static inline int
 540_generic_set_opp_domain(struct device *dev, struct clk *clk,
 541			unsigned long old_freq, unsigned long freq,
 542			unsigned int old_pstate, unsigned int new_pstate)
 
 
 
 543{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544	int ret;
 545
 546	/* Scaling up? Scale domain performance state before frequency */
 547	if (freq > old_freq) {
 548		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
 549		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551	}
 552
 553	ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
 554	if (ret)
 555		goto restore_domain_state;
 
 
 
 
 
 556
 557	/* Scaling down? Scale domain performance state after frequency */
 558	if (freq < old_freq) {
 559		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
 560		if (ret)
 561			goto restore_freq;
 562	}
 563
 564	return 0;
 
 
 
 
 
 
 
 
 
 
 
 565
 566restore_freq:
 567	if (_generic_set_opp_clk_only(dev, clk, freq, old_freq))
 568		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 569			__func__, old_freq);
 570restore_domain_state:
 571	if (freq > old_freq)
 572		dev_pm_genpd_set_performance_state(dev, old_pstate);
 
 573
 574	return ret;
 575}
 576
 577static int _generic_set_opp_regulator(const struct opp_table *opp_table,
 578				      struct device *dev,
 579				      unsigned long old_freq,
 580				      unsigned long freq,
 581				      struct dev_pm_opp_supply *old_supply,
 582				      struct dev_pm_opp_supply *new_supply)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 583{
 584	struct regulator *reg = opp_table->regulators[0];
 585	int ret;
 586
 587	/* This function only supports single regulator per device */
 588	if (WARN_ON(opp_table->regulator_count > 1)) {
 589		dev_err(dev, "multiple regulators are not supported\n");
 590		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	}
 592
 593	/* Scaling up? Scale voltage before frequency */
 594	if (freq > old_freq) {
 595		ret = _set_opp_voltage(dev, reg, new_supply);
 596		if (ret)
 597			goto restore_voltage;
 598	}
 599
 600	/* Change frequency */
 601	ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq);
 602	if (ret)
 603		goto restore_voltage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604
 605	/* Scaling down? Scale voltage after frequency */
 606	if (freq < old_freq) {
 607		ret = _set_opp_voltage(dev, reg, new_supply);
 608		if (ret)
 609			goto restore_freq;
 
 
 
 
 
 
 610	}
 611
 612	return 0;
 
 613
 614restore_freq:
 615	if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq))
 616		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 617			__func__, old_freq);
 618restore_voltage:
 619	/* This shouldn't harm even if the voltages weren't updated earlier */
 620	if (old_supply)
 621		_set_opp_voltage(dev, reg, old_supply);
 622
 623	return ret;
 624}
 625
 626/**
 627 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 628 * @dev:	 device for which we do this operation
 629 * @target_freq: frequency to achieve
 630 *
 631 * This configures the power-supplies and clock source to the levels specified
 632 * by the OPP corresponding to the target_freq.
 
 
 
 633 */
 634int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
 635{
 636	struct opp_table *opp_table;
 637	unsigned long freq, old_freq;
 638	struct dev_pm_opp *old_opp, *opp;
 639	struct clk *clk;
 640	int ret, size;
 641
 642	if (unlikely(!target_freq)) {
 643		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
 644			target_freq);
 645		return -EINVAL;
 646	}
 647
 648	opp_table = _find_opp_table(dev);
 649	if (IS_ERR(opp_table)) {
 650		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
 651		return PTR_ERR(opp_table);
 652	}
 653
 654	clk = opp_table->clk;
 655	if (IS_ERR(clk)) {
 656		dev_err(dev, "%s: No clock available for the device\n",
 657			__func__);
 658		ret = PTR_ERR(clk);
 659		goto put_opp_table;
 660	}
 
 
 
 
 
 
 661
 662	freq = clk_round_rate(clk, target_freq);
 663	if ((long)freq <= 0)
 664		freq = target_freq;
 665
 666	old_freq = clk_get_rate(clk);
 
 
 
 
 
 
 
 
 
 
 
 
 667
 668	/* Return early if nothing to do */
 669	if (old_freq == freq) {
 670		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
 671			__func__, freq);
 672		ret = 0;
 673		goto put_opp_table;
 
 
 674	}
 675
 676	old_opp = _find_freq_ceil(opp_table, &old_freq);
 677	if (IS_ERR(old_opp)) {
 678		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
 679			__func__, old_freq, PTR_ERR(old_opp));
 680	}
 681
 682	opp = _find_freq_ceil(opp_table, &freq);
 683	if (IS_ERR(opp)) {
 684		ret = PTR_ERR(opp);
 685		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
 686			__func__, freq, ret);
 687		goto put_old_opp;
 688	}
 689
 690	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
 691		old_freq, freq);
 
 
 
 692
 693	/* Only frequency scaling */
 694	if (!opp_table->regulators) {
 695		/*
 696		 * We don't support devices with both regulator and
 697		 * domain performance-state for now.
 698		 */
 699		if (opp_table->genpd_performance_state)
 700			ret = _generic_set_opp_domain(dev, clk, old_freq, freq,
 701						      IS_ERR(old_opp) ? 0 : old_opp->pstate,
 702						      opp->pstate);
 703		else
 704			ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
 705	} else if (!opp_table->set_opp) {
 706		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
 707						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
 708						 opp->supplies);
 709	} else {
 710		struct dev_pm_set_opp_data *data;
 711
 712		data = opp_table->set_opp_data;
 713		data->regulators = opp_table->regulators;
 714		data->regulator_count = opp_table->regulator_count;
 715		data->clk = clk;
 716		data->dev = dev;
 717
 718		data->old_opp.rate = old_freq;
 719		size = sizeof(*opp->supplies) * opp_table->regulator_count;
 720		if (IS_ERR(old_opp))
 721			memset(data->old_opp.supplies, 0, size);
 722		else
 723			memcpy(data->old_opp.supplies, old_opp->supplies, size);
 724
 725		data->new_opp.rate = freq;
 726		memcpy(data->new_opp.supplies, opp->supplies, size);
 727
 728		ret = opp_table->set_opp(data);
 729	}
 730
 731	dev_pm_opp_put(opp);
 732put_old_opp:
 733	if (!IS_ERR(old_opp))
 734		dev_pm_opp_put(old_opp);
 735put_opp_table:
 736	dev_pm_opp_put_opp_table(opp_table);
 
 737	return ret;
 738}
 739EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
 740
 741/* OPP-dev Helpers */
 742static void _remove_opp_dev(struct opp_device *opp_dev,
 743			    struct opp_table *opp_table)
 744{
 745	opp_debug_unregister(opp_dev, opp_table);
 746	list_del(&opp_dev->node);
 747	kfree(opp_dev);
 748}
 749
 750struct opp_device *_add_opp_dev(const struct device *dev,
 751				struct opp_table *opp_table)
 752{
 753	struct opp_device *opp_dev;
 754	int ret;
 755
 756	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
 757	if (!opp_dev)
 758		return NULL;
 759
 760	/* Initialize opp-dev */
 761	opp_dev->dev = dev;
 
 
 762	list_add(&opp_dev->node, &opp_table->dev_list);
 
 763
 764	/* Create debugfs entries for the opp_table */
 765	ret = opp_debug_register(opp_dev, opp_table);
 766	if (ret)
 767		dev_err(dev, "%s: Failed to register opp debugfs (%d)\n",
 768			__func__, ret);
 769
 770	return opp_dev;
 771}
 772
 773static struct opp_table *_allocate_opp_table(struct device *dev)
 774{
 775	struct opp_table *opp_table;
 776	struct opp_device *opp_dev;
 777	int ret;
 778
 779	/*
 780	 * Allocate a new OPP table. In the infrequent case where a new
 781	 * device is needed to be added, we pay this penalty.
 782	 */
 783	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
 784	if (!opp_table)
 785		return NULL;
 786
 
 787	INIT_LIST_HEAD(&opp_table->dev_list);
 
 
 
 
 
 
 788
 789	opp_dev = _add_opp_dev(dev, opp_table);
 790	if (!opp_dev) {
 791		kfree(opp_table);
 792		return NULL;
 793	}
 794
 795	_of_init_opp_table(opp_table, dev);
 796
 797	/* Find clk for the device */
 798	opp_table->clk = clk_get(dev, NULL);
 799	if (IS_ERR(opp_table->clk)) {
 800		ret = PTR_ERR(opp_table->clk);
 801		if (ret != -EPROBE_DEFER)
 802			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
 803				ret);
 
 804	}
 805
 806	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
 807	INIT_LIST_HEAD(&opp_table->opp_list);
 808	mutex_init(&opp_table->lock);
 809	kref_init(&opp_table->kref);
 810
 811	/* Secure the device table modification */
 812	list_add(&opp_table->node, &opp_tables);
 813	return opp_table;
 
 
 
 
 
 
 
 
 814}
 815
 816void _get_opp_table_kref(struct opp_table *opp_table)
 817{
 818	kref_get(&opp_table->kref);
 819}
 820
 821struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 822{
 823	struct opp_table *opp_table;
 824
 825	/* Hold our table modification lock here */
 826	mutex_lock(&opp_table_lock);
 827
 828	opp_table = _find_opp_table_unlocked(dev);
 829	if (!IS_ERR(opp_table))
 830		goto unlock;
 831
 832	opp_table = _allocate_opp_table(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834unlock:
 835	mutex_unlock(&opp_table_lock);
 836
 837	return opp_table;
 
 
 
 
 
 
 
 
 
 
 838}
 839EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
 840
 841static void _opp_table_kref_release(struct kref *kref)
 842{
 843	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
 844	struct opp_device *opp_dev;
 
 
 
 
 
 
 
 
 
 
 845
 846	/* Release clk */
 847	if (!IS_ERR(opp_table->clk))
 848		clk_put(opp_table->clk);
 849
 850	opp_dev = list_first_entry(&opp_table->dev_list, struct opp_device,
 851				   node);
 
 
 
 852
 853	_remove_opp_dev(opp_dev, opp_table);
 854
 855	/* dev_list must be empty now */
 856	WARN_ON(!list_empty(&opp_table->dev_list));
 857
 858	mutex_destroy(&opp_table->lock);
 859	list_del(&opp_table->node);
 860	kfree(opp_table);
 861
 862	mutex_unlock(&opp_table_lock);
 863}
 864
 865void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
 866{
 867	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
 868		       &opp_table_lock);
 869}
 870EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
 871
 872void _opp_free(struct dev_pm_opp *opp)
 873{
 874	kfree(opp);
 875}
 876
 877static void _opp_kref_release(struct kref *kref)
 878{
 879	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
 880	struct opp_table *opp_table = opp->opp_table;
 881
 
 
 
 882	/*
 883	 * Notify the changes in the availability of the operable
 884	 * frequency/voltage list.
 885	 */
 886	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
 
 887	opp_debug_remove_one(opp);
 888	list_del(&opp->node);
 889	kfree(opp);
 890
 891	mutex_unlock(&opp_table->lock);
 892	dev_pm_opp_put_opp_table(opp_table);
 893}
 894
 895static void dev_pm_opp_get(struct dev_pm_opp *opp)
 896{
 897	kref_get(&opp->kref);
 898}
 899
 900void dev_pm_opp_put(struct dev_pm_opp *opp)
 901{
 902	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
 903}
 904EXPORT_SYMBOL_GPL(dev_pm_opp_put);
 905
 906/**
 907 * dev_pm_opp_remove()  - Remove an OPP from OPP table
 908 * @dev:	device for which we do this operation
 909 * @freq:	OPP to remove with matching 'freq'
 910 *
 911 * This function removes an opp from the opp table.
 912 */
 913void dev_pm_opp_remove(struct device *dev, unsigned long freq)
 914{
 915	struct dev_pm_opp *opp;
 916	struct opp_table *opp_table;
 917	bool found = false;
 918
 919	opp_table = _find_opp_table(dev);
 920	if (IS_ERR(opp_table))
 921		return;
 922
 
 
 
 923	mutex_lock(&opp_table->lock);
 924
 925	list_for_each_entry(opp, &opp_table->opp_list, node) {
 926		if (opp->rate == freq) {
 927			found = true;
 928			break;
 929		}
 930	}
 931
 932	mutex_unlock(&opp_table->lock);
 933
 934	if (found) {
 935		dev_pm_opp_put(opp);
 
 
 
 936	} else {
 937		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
 938			 __func__, freq);
 939	}
 940
 
 
 941	dev_pm_opp_put_opp_table(opp_table);
 942}
 943EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
 944
 945struct dev_pm_opp *_opp_allocate(struct opp_table *table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946{
 947	struct dev_pm_opp *opp;
 948	int count, supply_size;
 949
 950	/* Allocate space for at least one supply */
 951	count = table->regulator_count ? table->regulator_count : 1;
 952	supply_size = sizeof(*opp->supplies) * count;
 
 
 
 953
 954	/* allocate new OPP node and supplies structures */
 955	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
 956	if (!opp)
 957		return NULL;
 958
 959	/* Put the supplies at the end of the OPP structure as an empty array */
 960	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
 
 
 
 
 
 
 961	INIT_LIST_HEAD(&opp->node);
 962
 
 
 963	return opp;
 964}
 965
 966static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
 967					 struct opp_table *opp_table)
 968{
 969	struct regulator *reg;
 970	int i;
 971
 
 
 
 972	for (i = 0; i < opp_table->regulator_count; i++) {
 973		reg = opp_table->regulators[i];
 974
 975		if (!regulator_is_supported_voltage(reg,
 976					opp->supplies[i].u_volt_min,
 977					opp->supplies[i].u_volt_max)) {
 978			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
 979				__func__, opp->supplies[i].u_volt_min,
 980				opp->supplies[i].u_volt_max);
 981			return false;
 982		}
 983	}
 984
 985	return true;
 986}
 987
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 988/*
 989 * Returns:
 990 * 0: On success. And appropriate error message for duplicate OPPs.
 991 * -EBUSY: For OPP with same freq/volt and is available. The callers of
 992 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
 993 *  sure we don't print error messages unnecessarily if different parts of
 994 *  kernel try to initialize the OPP table.
 995 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
 996 *  should be considered an error by the callers of _opp_add().
 997 */
 998int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
 999	     struct opp_table *opp_table)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000{
1001	struct dev_pm_opp *opp;
1002	struct list_head *head;
1003	int ret;
1004
1005	/*
1006	 * Insert new OPP in order of increasing frequency and discard if
1007	 * already present.
1008	 *
1009	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1010	 * loop, don't replace it with head otherwise it will become an infinite
1011	 * loop.
1012	 */
1013	mutex_lock(&opp_table->lock);
1014	head = &opp_table->opp_list;
1015
1016	list_for_each_entry(opp, &opp_table->opp_list, node) {
1017		if (new_opp->rate > opp->rate) {
1018			head = &opp->node;
 
1019			continue;
1020		}
1021
1022		if (new_opp->rate < opp->rate)
1023			break;
1024
1025		/* Duplicate OPPs */
1026		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1027			 __func__, opp->rate, opp->supplies[0].u_volt,
1028			 opp->available, new_opp->rate,
1029			 new_opp->supplies[0].u_volt, new_opp->available);
1030
1031		/* Should we compare voltages for all regulators here ? */
1032		ret = opp->available &&
1033		      new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
 
1034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035		mutex_unlock(&opp_table->lock);
1036		return ret;
1037	}
1038
1039	if (opp_table->get_pstate)
1040		new_opp->pstate = opp_table->get_pstate(dev, new_opp->rate);
1041
1042	list_add(&new_opp->node, head);
1043	mutex_unlock(&opp_table->lock);
1044
1045	new_opp->opp_table = opp_table;
1046	kref_init(&new_opp->kref);
1047
1048	/* Get a reference to the OPP table */
1049	_get_opp_table_kref(opp_table);
1050
1051	ret = opp_debug_create_one(new_opp, opp_table);
1052	if (ret)
1053		dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n",
1054			__func__, ret);
1055
1056	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1057		new_opp->available = false;
1058		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1059			 __func__, new_opp->rate);
1060	}
1061
 
 
 
 
 
 
1062	return 0;
1063}
1064
1065/**
1066 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1067 * @opp_table:	OPP table
1068 * @dev:	device for which we do this operation
1069 * @freq:	Frequency in Hz for this OPP
1070 * @u_volt:	Voltage in uVolts for this OPP
1071 * @dynamic:	Dynamically added OPPs.
1072 *
1073 * This function adds an opp definition to the opp table and returns status.
1074 * The opp is made available by default and it can be controlled using
1075 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1076 *
1077 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1078 * and freed by dev_pm_opp_of_remove_table.
1079 *
1080 * Return:
1081 * 0		On success OR
1082 *		Duplicate OPPs (both freq and volt are same) and opp->available
1083 * -EEXIST	Freq are same and volt are different OR
1084 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1085 * -ENOMEM	Memory allocation failure
1086 */
1087int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1088		unsigned long freq, long u_volt, bool dynamic)
1089{
1090	struct dev_pm_opp *new_opp;
1091	unsigned long tol;
1092	int ret;
1093
 
 
 
1094	new_opp = _opp_allocate(opp_table);
1095	if (!new_opp)
1096		return -ENOMEM;
1097
1098	/* populate the opp table */
1099	new_opp->rate = freq;
 
1100	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1101	new_opp->supplies[0].u_volt = u_volt;
1102	new_opp->supplies[0].u_volt_min = u_volt - tol;
1103	new_opp->supplies[0].u_volt_max = u_volt + tol;
1104	new_opp->available = true;
1105	new_opp->dynamic = dynamic;
1106
1107	ret = _opp_add(dev, new_opp, opp_table);
1108	if (ret) {
1109		/* Don't return error for duplicate OPPs */
1110		if (ret == -EBUSY)
1111			ret = 0;
1112		goto free_opp;
1113	}
1114
1115	/*
1116	 * Notify the changes in the availability of the operable
1117	 * frequency/voltage list.
1118	 */
1119	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1120	return 0;
1121
1122free_opp:
1123	_opp_free(new_opp);
1124
1125	return ret;
1126}
1127
1128/**
1129 * dev_pm_opp_set_supported_hw() - Set supported platforms
1130 * @dev: Device for which supported-hw has to be set.
1131 * @versions: Array of hierarchy of versions to match.
1132 * @count: Number of elements in the array.
1133 *
1134 * This is required only for the V2 bindings, and it enables a platform to
1135 * specify the hierarchy of versions it supports. OPP layer will then enable
1136 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1137 * property.
1138 */
1139struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1140			const u32 *versions, unsigned int count)
1141{
1142	struct opp_table *opp_table;
1143	int ret;
1144
1145	opp_table = dev_pm_opp_get_opp_table(dev);
1146	if (!opp_table)
1147		return ERR_PTR(-ENOMEM);
1148
1149	/* Make sure there are no concurrent readers while updating opp_table */
1150	WARN_ON(!list_empty(&opp_table->opp_list));
1151
1152	/* Do we already have a version hierarchy associated with opp_table? */
1153	if (opp_table->supported_hw) {
1154		dev_err(dev, "%s: Already have supported hardware list\n",
1155			__func__);
1156		ret = -EBUSY;
1157		goto err;
1158	}
1159
1160	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1161					GFP_KERNEL);
1162	if (!opp_table->supported_hw) {
1163		ret = -ENOMEM;
1164		goto err;
1165	}
1166
1167	opp_table->supported_hw_count = count;
1168
1169	return opp_table;
1170
1171err:
1172	dev_pm_opp_put_opp_table(opp_table);
1173
1174	return ERR_PTR(ret);
1175}
1176EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1177
1178/**
1179 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1180 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1181 *
1182 * This is required only for the V2 bindings, and is called for a matching
1183 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1184 * will not be freed.
1185 */
1186void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1187{
1188	/* Make sure there are no concurrent readers while updating opp_table */
1189	WARN_ON(!list_empty(&opp_table->opp_list));
1190
1191	if (!opp_table->supported_hw) {
1192		pr_err("%s: Doesn't have supported hardware list\n",
1193		       __func__);
1194		return;
1195	}
1196
1197	kfree(opp_table->supported_hw);
1198	opp_table->supported_hw = NULL;
1199	opp_table->supported_hw_count = 0;
1200
1201	dev_pm_opp_put_opp_table(opp_table);
1202}
1203EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1204
1205/**
1206 * dev_pm_opp_set_prop_name() - Set prop-extn name
1207 * @dev: Device for which the prop-name has to be set.
1208 * @name: name to postfix to properties.
1209 *
1210 * This is required only for the V2 bindings, and it enables a platform to
1211 * specify the extn to be used for certain property names. The properties to
1212 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1213 * should postfix the property name with -<name> while looking for them.
1214 */
1215struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1216{
1217	struct opp_table *opp_table;
1218	int ret;
1219
1220	opp_table = dev_pm_opp_get_opp_table(dev);
1221	if (!opp_table)
1222		return ERR_PTR(-ENOMEM);
1223
1224	/* Make sure there are no concurrent readers while updating opp_table */
1225	WARN_ON(!list_empty(&opp_table->opp_list));
1226
1227	/* Do we already have a prop-name associated with opp_table? */
1228	if (opp_table->prop_name) {
1229		dev_err(dev, "%s: Already have prop-name %s\n", __func__,
1230			opp_table->prop_name);
1231		ret = -EBUSY;
1232		goto err;
1233	}
1234
1235	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1236	if (!opp_table->prop_name) {
1237		ret = -ENOMEM;
1238		goto err;
 
1239	}
1240
1241	return opp_table;
1242
1243err:
1244	dev_pm_opp_put_opp_table(opp_table);
1245
1246	return ERR_PTR(ret);
1247}
1248EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1249
1250/**
1251 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1252 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1253 *
1254 * This is required only for the V2 bindings, and is called for a matching
1255 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1256 * will not be freed.
1257 */
1258void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1259{
1260	/* Make sure there are no concurrent readers while updating opp_table */
1261	WARN_ON(!list_empty(&opp_table->opp_list));
1262
1263	if (!opp_table->prop_name) {
1264		pr_err("%s: Doesn't have a prop-name\n", __func__);
1265		return;
1266	}
1267
1268	kfree(opp_table->prop_name);
1269	opp_table->prop_name = NULL;
1270
1271	dev_pm_opp_put_opp_table(opp_table);
1272}
1273EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1274
1275static int _allocate_set_opp_data(struct opp_table *opp_table)
1276{
1277	struct dev_pm_set_opp_data *data;
1278	int len, count = opp_table->regulator_count;
1279
1280	if (WARN_ON(!count))
1281		return -EINVAL;
1282
1283	/* space for set_opp_data */
1284	len = sizeof(*data);
1285
1286	/* space for old_opp.supplies and new_opp.supplies */
1287	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1288
1289	data = kzalloc(len, GFP_KERNEL);
1290	if (!data)
1291		return -ENOMEM;
1292
1293	data->old_opp.supplies = (void *)(data + 1);
1294	data->new_opp.supplies = data->old_opp.supplies + count;
1295
1296	opp_table->set_opp_data = data;
1297
1298	return 0;
1299}
1300
1301static void _free_set_opp_data(struct opp_table *opp_table)
1302{
1303	kfree(opp_table->set_opp_data);
1304	opp_table->set_opp_data = NULL;
1305}
1306
1307/**
1308 * dev_pm_opp_set_regulators() - Set regulator names for the device
1309 * @dev: Device for which regulator name is being set.
1310 * @names: Array of pointers to the names of the regulator.
1311 * @count: Number of regulators.
1312 *
1313 * In order to support OPP switching, OPP layer needs to know the name of the
1314 * device's regulators, as the core would be required to switch voltages as
1315 * well.
1316 *
1317 * This must be called before any OPPs are initialized for the device.
1318 */
1319struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1320					    const char * const names[],
1321					    unsigned int count)
1322{
1323	struct opp_table *opp_table;
1324	struct regulator *reg;
1325	int ret, i;
1326
1327	opp_table = dev_pm_opp_get_opp_table(dev);
1328	if (!opp_table)
1329		return ERR_PTR(-ENOMEM);
1330
1331	/* This should be called before OPPs are initialized */
1332	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1333		ret = -EBUSY;
1334		goto err;
1335	}
1336
1337	/* Already have regulators set */
1338	if (opp_table->regulators) {
1339		ret = -EBUSY;
1340		goto err;
1341	}
1342
1343	opp_table->regulators = kmalloc_array(count,
1344					      sizeof(*opp_table->regulators),
1345					      GFP_KERNEL);
1346	if (!opp_table->regulators) {
1347		ret = -ENOMEM;
1348		goto err;
1349	}
1350
1351	for (i = 0; i < count; i++) {
1352		reg = regulator_get_optional(dev, names[i]);
1353		if (IS_ERR(reg)) {
1354			ret = PTR_ERR(reg);
1355			if (ret != -EPROBE_DEFER)
1356				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1357					__func__, names[i], ret);
1358			goto free_regulators;
1359		}
1360
1361		opp_table->regulators[i] = reg;
1362	}
1363
1364	opp_table->regulator_count = count;
1365
1366	/* Allocate block only once to pass to set_opp() routines */
1367	ret = _allocate_set_opp_data(opp_table);
1368	if (ret)
1369		goto free_regulators;
1370
1371	return opp_table;
1372
1373free_regulators:
1374	while (i != 0)
1375		regulator_put(opp_table->regulators[--i]);
1376
1377	kfree(opp_table->regulators);
1378	opp_table->regulators = NULL;
1379	opp_table->regulator_count = 0;
1380err:
1381	dev_pm_opp_put_opp_table(opp_table);
1382
1383	return ERR_PTR(ret);
1384}
1385EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1386
1387/**
1388 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1389 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1390 */
1391void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1392{
1393	int i;
1394
1395	if (!opp_table->regulators) {
1396		pr_err("%s: Doesn't have regulators set\n", __func__);
1397		return;
 
 
 
 
1398	}
1399
1400	/* Make sure there are no concurrent readers while updating opp_table */
1401	WARN_ON(!list_empty(&opp_table->opp_list));
1402
1403	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1404		regulator_put(opp_table->regulators[i]);
1405
1406	_free_set_opp_data(opp_table);
1407
1408	kfree(opp_table->regulators);
1409	opp_table->regulators = NULL;
1410	opp_table->regulator_count = 0;
 
 
 
 
 
1411
1412	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
1413}
1414EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1415
1416/**
1417 * dev_pm_opp_set_clkname() - Set clk name for the device
1418 * @dev: Device for which clk name is being set.
1419 * @name: Clk name.
 
 
1420 *
1421 * In order to support OPP switching, OPP layer needs to get pointer to the
1422 * clock for the device. Simple cases work fine without using this routine (i.e.
1423 * by passing connection-id as NULL), but for a device with multiple clocks
1424 * available, the OPP core needs to know the exact name of the clk to use.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425 *
1426 * This must be called before any OPPs are initialized for the device.
1427 */
1428struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
 
1429{
1430	struct opp_table *opp_table;
1431	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432
1433	opp_table = dev_pm_opp_get_opp_table(dev);
1434	if (!opp_table)
1435		return ERR_PTR(-ENOMEM);
 
1436
1437	/* This should be called before OPPs are initialized */
1438	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1439		ret = -EBUSY;
1440		goto err;
1441	}
1442
1443	/* Already have default clk set, free it */
1444	if (!IS_ERR(opp_table->clk))
1445		clk_put(opp_table->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447	/* Find clk for the device */
1448	opp_table->clk = clk_get(dev, name);
1449	if (IS_ERR(opp_table->clk)) {
1450		ret = PTR_ERR(opp_table->clk);
1451		if (ret != -EPROBE_DEFER) {
1452			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1453				ret);
 
 
 
1454		}
1455		goto err;
 
 
 
1456	}
1457
1458	return opp_table;
 
 
 
1459
1460err:
1461	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463	return ERR_PTR(ret);
 
1464}
1465EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1466
1467/**
1468 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1469 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1470 */
1471void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1472{
1473	/* Make sure there are no concurrent readers while updating opp_table */
1474	WARN_ON(!list_empty(&opp_table->opp_list));
 
 
1475
1476	clk_put(opp_table->clk);
1477	opp_table->clk = ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
1478
1479	dev_pm_opp_put_opp_table(opp_table);
 
1480}
1481EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1482
1483/**
1484 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1485 * @dev: Device for which the helper is getting registered.
1486 * @set_opp: Custom set OPP helper.
1487 *
1488 * This is useful to support complex platforms (like platforms with multiple
1489 * regulators per device), instead of the generic OPP set rate helper.
1490 *
1491 * This must be called before any OPPs are initialized for the device.
 
 
 
 
 
 
 
 
1492 */
1493struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1494			int (*set_opp)(struct dev_pm_set_opp_data *data))
1495{
1496	struct opp_table *opp_table;
 
 
1497	int ret;
1498
1499	if (!set_opp)
1500		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
1501
1502	opp_table = dev_pm_opp_get_opp_table(dev);
1503	if (!opp_table)
1504		return ERR_PTR(-ENOMEM);
1505
1506	/* This should be called before OPPs are initialized */
1507	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1508		ret = -EBUSY;
1509		goto err;
1510	}
1511
1512	/* Already have custom set_opp helper */
1513	if (WARN_ON(opp_table->set_opp)) {
1514		ret = -EBUSY;
 
 
 
 
 
 
 
 
1515		goto err;
1516	}
1517
1518	opp_table->set_opp = set_opp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520	return opp_table;
 
 
 
 
 
 
 
 
1521
1522err:
1523	dev_pm_opp_put_opp_table(opp_table);
1524
1525	return ERR_PTR(ret);
1526}
1527EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1528
1529/**
1530 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1531 *					   set_opp helper
1532 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1533 *
1534 * Release resources blocked for platform specific set_opp helper.
 
 
 
 
 
 
 
1535 */
1536void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1537{
1538	if (!opp_table->set_opp) {
1539		pr_err("%s: Doesn't have custom set_opp helper set\n",
1540		       __func__);
 
 
 
 
1541		return;
1542	}
1543
1544	/* Make sure there are no concurrent readers while updating opp_table */
1545	WARN_ON(!list_empty(&opp_table->opp_list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1546
1547	opp_table->set_opp = NULL;
 
1548
1549	dev_pm_opp_put_opp_table(opp_table);
 
1550}
1551EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1552
1553/**
1554 * dev_pm_opp_register_get_pstate_helper() - Register get_pstate() helper.
1555 * @dev: Device for which the helper is getting registered.
1556 * @get_pstate: Helper.
 
1557 *
1558 * TODO: Remove this callback after the same information is available via Device
1559 * Tree.
1560 *
1561 * This allows a platform to initialize the performance states of individual
1562 * OPPs for its devices, until we get similar information directly from DT.
1563 *
1564 * This must be called before the OPPs are initialized for the device.
1565 */
1566struct opp_table *dev_pm_opp_register_get_pstate_helper(struct device *dev,
1567		int (*get_pstate)(struct device *dev, unsigned long rate))
 
1568{
1569	struct opp_table *opp_table;
1570	int ret;
1571
1572	if (!get_pstate)
 
1573		return ERR_PTR(-EINVAL);
1574
1575	opp_table = dev_pm_opp_get_opp_table(dev);
1576	if (!opp_table)
1577		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	/* This should be called before OPPs are initialized */
1580	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1581		ret = -EBUSY;
1582		goto err;
1583	}
1584
1585	/* Already have genpd_performance_state set */
1586	if (WARN_ON(opp_table->genpd_performance_state)) {
1587		ret = -EBUSY;
1588		goto err;
1589	}
1590
1591	opp_table->genpd_performance_state = true;
1592	opp_table->get_pstate = get_pstate;
1593
1594	return opp_table;
1595
1596err:
1597	dev_pm_opp_put_opp_table(opp_table);
1598
1599	return ERR_PTR(ret);
1600}
1601EXPORT_SYMBOL_GPL(dev_pm_opp_register_get_pstate_helper);
1602
1603/**
1604 * dev_pm_opp_unregister_get_pstate_helper() - Releases resources blocked for
1605 *					   get_pstate() helper
1606 * @opp_table: OPP table returned from dev_pm_opp_register_get_pstate_helper().
 
1607 *
1608 * Release resources blocked for platform specific get_pstate() helper.
 
 
 
 
 
1609 */
1610void dev_pm_opp_unregister_get_pstate_helper(struct opp_table *opp_table)
 
 
1611{
1612	if (!opp_table->genpd_performance_state) {
1613		pr_err("%s: Doesn't have performance states set\n",
1614		       __func__);
1615		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1616	}
1617
1618	/* Make sure there are no concurrent readers while updating opp_table */
1619	WARN_ON(!list_empty(&opp_table->opp_list));
1620
1621	opp_table->genpd_performance_state = false;
1622	opp_table->get_pstate = NULL;
1623
1624	dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_get_pstate_helper);
1627
1628/**
1629 * dev_pm_opp_add()  - Add an OPP table from a table definitions
1630 * @dev:	device for which we do this operation
1631 * @freq:	Frequency in Hz for this OPP
1632 * @u_volt:	Voltage in uVolts for this OPP
1633 *
1634 * This function adds an opp definition to the opp table and returns status.
1635 * The opp is made available by default and it can be controlled using
1636 * dev_pm_opp_enable/disable functions.
1637 *
1638 * Return:
1639 * 0		On success OR
1640 *		Duplicate OPPs (both freq and volt are same) and opp->available
1641 * -EEXIST	Freq are same and volt are different OR
1642 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1643 * -ENOMEM	Memory allocation failure
1644 */
1645int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1646{
1647	struct opp_table *opp_table;
1648	int ret;
1649
1650	opp_table = dev_pm_opp_get_opp_table(dev);
1651	if (!opp_table)
1652		return -ENOMEM;
 
 
 
1653
1654	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
 
 
1655
1656	dev_pm_opp_put_opp_table(opp_table);
1657	return ret;
1658}
1659EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1660
1661/**
1662 * _opp_set_availability() - helper to set the availability of an opp
1663 * @dev:		device for which we do this operation
1664 * @freq:		OPP frequency to modify availability
1665 * @availability_req:	availability status requested for this opp
1666 *
1667 * Set the availability of an OPP, opp_{enable,disable} share a common logic
1668 * which is isolated here.
1669 *
1670 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1671 * copy operation, returns 0 if no modification was done OR modification was
1672 * successful.
1673 */
1674static int _opp_set_availability(struct device *dev, unsigned long freq,
1675				 bool availability_req)
1676{
1677	struct opp_table *opp_table;
1678	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1679	int r = 0;
1680
1681	/* Find the opp_table */
1682	opp_table = _find_opp_table(dev);
1683	if (IS_ERR(opp_table)) {
1684		r = PTR_ERR(opp_table);
1685		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1686		return r;
1687	}
1688
 
 
 
 
 
1689	mutex_lock(&opp_table->lock);
1690
1691	/* Do we have the frequency? */
1692	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1693		if (tmp_opp->rate == freq) {
1694			opp = tmp_opp;
1695			break;
1696		}
1697	}
1698
1699	if (IS_ERR(opp)) {
1700		r = PTR_ERR(opp);
1701		goto unlock;
1702	}
1703
1704	/* Is update really needed? */
1705	if (opp->available == availability_req)
1706		goto unlock;
1707
1708	opp->available = availability_req;
1709
1710	dev_pm_opp_get(opp);
1711	mutex_unlock(&opp_table->lock);
1712
1713	/* Notify the change of the OPP availability */
1714	if (availability_req)
1715		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1716					     opp);
1717	else
1718		blocking_notifier_call_chain(&opp_table->head,
1719					     OPP_EVENT_DISABLE, opp);
1720
1721	dev_pm_opp_put(opp);
1722	goto put_table;
1723
1724unlock:
1725	mutex_unlock(&opp_table->lock);
1726put_table:
1727	dev_pm_opp_put_opp_table(opp_table);
1728	return r;
1729}
1730
1731/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732 * dev_pm_opp_enable() - Enable a specific OPP
1733 * @dev:	device for which we do this operation
1734 * @freq:	OPP frequency to enable
1735 *
1736 * Enables a provided opp. If the operation is valid, this returns 0, else the
1737 * corresponding error value. It is meant to be used for users an OPP available
1738 * after being temporarily made unavailable with dev_pm_opp_disable.
1739 *
1740 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1741 * copy operation, returns 0 if no modification was done OR modification was
1742 * successful.
1743 */
1744int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1745{
1746	return _opp_set_availability(dev, freq, true);
1747}
1748EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1749
1750/**
1751 * dev_pm_opp_disable() - Disable a specific OPP
1752 * @dev:	device for which we do this operation
1753 * @freq:	OPP frequency to disable
1754 *
1755 * Disables a provided opp. If the operation is valid, this returns
1756 * 0, else the corresponding error value. It is meant to be a temporary
1757 * control by users to make this OPP not available until the circumstances are
1758 * right to make it available again (with a call to dev_pm_opp_enable).
1759 *
1760 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1761 * copy operation, returns 0 if no modification was done OR modification was
1762 * successful.
1763 */
1764int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1765{
1766	return _opp_set_availability(dev, freq, false);
1767}
1768EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1769
1770/**
1771 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1772 * @dev:	Device for which notifier needs to be registered
1773 * @nb:		Notifier block to be registered
1774 *
1775 * Return: 0 on success or a negative error value.
1776 */
1777int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1778{
1779	struct opp_table *opp_table;
1780	int ret;
1781
1782	opp_table = _find_opp_table(dev);
1783	if (IS_ERR(opp_table))
1784		return PTR_ERR(opp_table);
1785
1786	ret = blocking_notifier_chain_register(&opp_table->head, nb);
1787
1788	dev_pm_opp_put_opp_table(opp_table);
1789
1790	return ret;
1791}
1792EXPORT_SYMBOL(dev_pm_opp_register_notifier);
1793
1794/**
1795 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
1796 * @dev:	Device for which notifier needs to be unregistered
1797 * @nb:		Notifier block to be unregistered
1798 *
1799 * Return: 0 on success or a negative error value.
1800 */
1801int dev_pm_opp_unregister_notifier(struct device *dev,
1802				   struct notifier_block *nb)
1803{
1804	struct opp_table *opp_table;
1805	int ret;
1806
1807	opp_table = _find_opp_table(dev);
1808	if (IS_ERR(opp_table))
1809		return PTR_ERR(opp_table);
1810
1811	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
1812
1813	dev_pm_opp_put_opp_table(opp_table);
1814
1815	return ret;
1816}
1817EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
1818
1819/*
1820 * Free OPPs either created using static entries present in DT or even the
1821 * dynamically added entries based on remove_all param.
 
 
 
1822 */
1823void _dev_pm_opp_remove_table(struct opp_table *opp_table, struct device *dev,
1824			      bool remove_all)
1825{
1826	struct dev_pm_opp *opp, *tmp;
1827
1828	/* Find if opp_table manages a single device */
1829	if (list_is_singular(&opp_table->dev_list)) {
1830		/* Free static OPPs */
1831		list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1832			if (remove_all || !opp->dynamic)
1833				dev_pm_opp_put(opp);
1834		}
1835
1836		/*
1837		 * The OPP table is getting removed, drop the performance state
1838		 * constraints.
1839		 */
1840		if (opp_table->genpd_performance_state)
1841			dev_pm_genpd_set_performance_state(dev, 0);
1842	} else {
1843		_remove_opp_dev(_find_opp_dev(dev, opp_table), opp_table);
1844	}
1845}
1846
1847void _dev_pm_opp_find_and_remove_table(struct device *dev, bool remove_all)
1848{
1849	struct opp_table *opp_table;
1850
1851	/* Check for existing table for 'dev' */
1852	opp_table = _find_opp_table(dev);
1853	if (IS_ERR(opp_table)) {
1854		int error = PTR_ERR(opp_table);
1855
1856		if (error != -ENODEV)
1857			WARN(1, "%s: opp_table: %d\n",
1858			     IS_ERR_OR_NULL(dev) ?
1859					"Invalid device" : dev_name(dev),
1860			     error);
1861		return;
1862	}
1863
1864	_dev_pm_opp_remove_table(opp_table, dev, remove_all);
 
 
 
 
 
1865
 
1866	dev_pm_opp_put_opp_table(opp_table);
1867}
1868
1869/**
1870 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
1871 * @dev:	device pointer used to lookup OPP table.
1872 *
1873 * Free both OPPs created using static entries present in DT and the
1874 * dynamically added entries.
1875 */
1876void dev_pm_opp_remove_table(struct device *dev)
1877{
1878	_dev_pm_opp_find_and_remove_table(dev, true);
1879}
1880EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);