Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5 * Copyright (c) 2018 The Linux Foundation. All rights reserved.
   6 * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include "hif.h"
  10#include "ce.h"
  11#include "debug.h"
  12
  13/*
  14 * Support for Copy Engine hardware, which is mainly used for
  15 * communication between Host and Target over a PCIe interconnect.
  16 */
  17
  18/*
  19 * A single CopyEngine (CE) comprises two "rings":
  20 *   a source ring
  21 *   a destination ring
  22 *
  23 * Each ring consists of a number of descriptors which specify
  24 * an address, length, and meta-data.
  25 *
  26 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
  27 * controls one ring and the other side controls the other ring.
  28 * The source side chooses when to initiate a transfer and it
  29 * chooses what to send (buffer address, length). The destination
  30 * side keeps a supply of "anonymous receive buffers" available and
  31 * it handles incoming data as it arrives (when the destination
  32 * receives an interrupt).
  33 *
  34 * The sender may send a simple buffer (address/length) or it may
  35 * send a small list of buffers.  When a small list is sent, hardware
  36 * "gathers" these and they end up in a single destination buffer
  37 * with a single interrupt.
  38 *
  39 * There are several "contexts" managed by this layer -- more, it
  40 * may seem -- than should be needed. These are provided mainly for
  41 * maximum flexibility and especially to facilitate a simpler HIF
  42 * implementation. There are per-CopyEngine recv, send, and watermark
  43 * contexts. These are supplied by the caller when a recv, send,
  44 * or watermark handler is established and they are echoed back to
  45 * the caller when the respective callbacks are invoked. There is
  46 * also a per-transfer context supplied by the caller when a buffer
  47 * (or sendlist) is sent and when a buffer is enqueued for recv.
  48 * These per-transfer contexts are echoed back to the caller when
  49 * the buffer is sent/received.
  50 */
  51
  52static inline u32 shadow_sr_wr_ind_addr(struct ath10k *ar,
  53					struct ath10k_ce_pipe *ce_state)
 
  54{
  55	u32 ce_id = ce_state->id;
  56	u32 addr = 0;
  57
  58	switch (ce_id) {
  59	case 0:
  60		addr = 0x00032000;
  61		break;
  62	case 3:
  63		addr = 0x0003200C;
  64		break;
  65	case 4:
  66		addr = 0x00032010;
  67		break;
  68	case 5:
  69		addr = 0x00032014;
  70		break;
  71	case 7:
  72		addr = 0x0003201C;
  73		break;
  74	default:
  75		ath10k_warn(ar, "invalid CE id: %d", ce_id);
  76		break;
  77	}
  78	return addr;
  79}
  80
  81static inline unsigned int
  82ath10k_set_ring_byte(unsigned int offset,
  83		     struct ath10k_hw_ce_regs_addr_map *addr_map)
  84{
  85	return ((offset << addr_map->lsb) & addr_map->mask);
  86}
  87
  88static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
  89{
  90	struct ath10k_ce *ce = ath10k_ce_priv(ar);
  91
  92	return ce->bus_ops->read32(ar, offset);
  93}
  94
  95static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
  96{
  97	struct ath10k_ce *ce = ath10k_ce_priv(ar);
  98
  99	ce->bus_ops->write32(ar, offset, value);
 100}
 101
 102static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
 103						       u32 ce_ctrl_addr,
 104						       unsigned int n)
 105{
 106	ath10k_ce_write32(ar, ce_ctrl_addr +
 107			  ar->hw_ce_regs->dst_wr_index_addr, n);
 108}
 109
 110static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
 111						      u32 ce_ctrl_addr)
 112{
 113	return ath10k_ce_read32(ar, ce_ctrl_addr +
 114				ar->hw_ce_regs->dst_wr_index_addr);
 115}
 116
 117static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
 118						      u32 ce_ctrl_addr,
 119						      unsigned int n)
 120{
 121	ath10k_ce_write32(ar, ce_ctrl_addr +
 122			  ar->hw_ce_regs->sr_wr_index_addr, n);
 123}
 124
 125static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
 126						     u32 ce_ctrl_addr)
 127{
 128	return ath10k_ce_read32(ar, ce_ctrl_addr +
 129				ar->hw_ce_regs->sr_wr_index_addr);
 130}
 131
 132static inline u32 ath10k_ce_src_ring_read_index_from_ddr(struct ath10k *ar,
 133							 u32 ce_id)
 134{
 135	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 136
 137	return ce->vaddr_rri[ce_id] & CE_DDR_RRI_MASK;
 138}
 139
 140static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
 141						    u32 ce_ctrl_addr)
 142{
 143	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 144	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
 145	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
 146	u32 index;
 147
 148	if (ar->hw_params.rri_on_ddr &&
 149	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
 150		index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_id);
 151	else
 152		index = ath10k_ce_read32(ar, ce_ctrl_addr +
 153					 ar->hw_ce_regs->current_srri_addr);
 154
 155	return index;
 156}
 157
 158static inline void
 159ath10k_ce_shadow_src_ring_write_index_set(struct ath10k *ar,
 160					  struct ath10k_ce_pipe *ce_state,
 161					  unsigned int value)
 162{
 163	ath10k_ce_write32(ar, shadow_sr_wr_ind_addr(ar, ce_state), value);
 164}
 165
 166static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
 167						    u32 ce_id,
 168						    u64 addr)
 169{
 170	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 171	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
 172	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 173	u32 addr_lo = lower_32_bits(addr);
 174
 175	ath10k_ce_write32(ar, ce_ctrl_addr +
 176			  ar->hw_ce_regs->sr_base_addr_lo, addr_lo);
 177
 178	if (ce_state->ops->ce_set_src_ring_base_addr_hi) {
 179		ce_state->ops->ce_set_src_ring_base_addr_hi(ar, ce_ctrl_addr,
 180							    addr);
 181	}
 182}
 183
 184static void ath10k_ce_set_src_ring_base_addr_hi(struct ath10k *ar,
 185						u32 ce_ctrl_addr,
 186						u64 addr)
 187{
 188	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
 189
 190	ath10k_ce_write32(ar, ce_ctrl_addr +
 191			  ar->hw_ce_regs->sr_base_addr_hi, addr_hi);
 192}
 193
 194static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
 195					       u32 ce_ctrl_addr,
 196					       unsigned int n)
 197{
 198	ath10k_ce_write32(ar, ce_ctrl_addr +
 199			  ar->hw_ce_regs->sr_size_addr, n);
 200}
 201
 202static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
 203					       u32 ce_ctrl_addr,
 204					       unsigned int n)
 205{
 206	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 207
 208	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 209					  ctrl_regs->addr);
 210
 211	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 212			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
 213			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
 214}
 215
 216static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
 217						    u32 ce_ctrl_addr,
 218						    unsigned int n)
 219{
 220	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 221
 222	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 223					  ctrl_regs->addr);
 224
 225	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 226			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
 227			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
 228}
 229
 230static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
 231						     u32 ce_ctrl_addr,
 232						     unsigned int n)
 233{
 234	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 235
 236	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 237					  ctrl_regs->addr);
 238
 239	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 240			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
 241			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
 242}
 243
 244static inline
 245	u32 ath10k_ce_dest_ring_read_index_from_ddr(struct ath10k *ar, u32 ce_id)
 246{
 247	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 248
 249	return (ce->vaddr_rri[ce_id] >> CE_DDR_DRRI_SHIFT) &
 250		CE_DDR_RRI_MASK;
 251}
 252
 253static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
 254						     u32 ce_ctrl_addr)
 255{
 256	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 257	u32 ce_id = COPY_ENGINE_ID(ce_ctrl_addr);
 258	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
 259	u32 index;
 260
 261	if (ar->hw_params.rri_on_ddr &&
 262	    (ce_state->attr_flags & CE_ATTR_DIS_INTR))
 263		index = ath10k_ce_dest_ring_read_index_from_ddr(ar, ce_id);
 264	else
 265		index = ath10k_ce_read32(ar, ce_ctrl_addr +
 266					 ar->hw_ce_regs->current_drri_addr);
 267
 268	return index;
 269}
 270
 271static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
 272						     u32 ce_id,
 273						     u64 addr)
 274{
 275	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 276	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
 277	u32 ce_ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 278	u32 addr_lo = lower_32_bits(addr);
 279
 280	ath10k_ce_write32(ar, ce_ctrl_addr +
 281			  ar->hw_ce_regs->dr_base_addr_lo, addr_lo);
 282
 283	if (ce_state->ops->ce_set_dest_ring_base_addr_hi) {
 284		ce_state->ops->ce_set_dest_ring_base_addr_hi(ar, ce_ctrl_addr,
 285							     addr);
 286	}
 287}
 288
 289static void ath10k_ce_set_dest_ring_base_addr_hi(struct ath10k *ar,
 290						 u32 ce_ctrl_addr,
 291						 u64 addr)
 292{
 293	u32 addr_hi = upper_32_bits(addr) & CE_DESC_ADDR_HI_MASK;
 294	u32 reg_value;
 295
 296	reg_value = ath10k_ce_read32(ar, ce_ctrl_addr +
 297				     ar->hw_ce_regs->dr_base_addr_hi);
 298	reg_value &= ~CE_DESC_ADDR_HI_MASK;
 299	reg_value |= addr_hi;
 300	ath10k_ce_write32(ar, ce_ctrl_addr +
 301			  ar->hw_ce_regs->dr_base_addr_hi, reg_value);
 302}
 303
 304static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
 305						u32 ce_ctrl_addr,
 306						unsigned int n)
 307{
 308	ath10k_ce_write32(ar, ce_ctrl_addr +
 309			  ar->hw_ce_regs->dr_size_addr, n);
 310}
 311
 312static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
 313						   u32 ce_ctrl_addr,
 314						   unsigned int n)
 315{
 316	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
 317	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
 318
 319	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
 320			  (addr & ~(srcr_wm->wm_high->mask)) |
 321			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
 322}
 323
 324static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
 325						  u32 ce_ctrl_addr,
 326						  unsigned int n)
 327{
 328	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
 329	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
 330
 331	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
 332			  (addr & ~(srcr_wm->wm_low->mask)) |
 333			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
 334}
 335
 336static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
 337						    u32 ce_ctrl_addr,
 338						    unsigned int n)
 339{
 340	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
 341	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
 342
 343	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
 344			  (addr & ~(dstr_wm->wm_high->mask)) |
 345			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
 346}
 347
 348static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
 349						   u32 ce_ctrl_addr,
 350						   unsigned int n)
 351{
 352	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
 353	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
 354
 355	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
 356			  (addr & ~(dstr_wm->wm_low->mask)) |
 357			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
 358}
 359
 360static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
 361							u32 ce_ctrl_addr)
 362{
 363	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
 364
 365	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 366					    ar->hw_ce_regs->host_ie_addr);
 367
 368	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 369			  host_ie_addr | host_ie->copy_complete->mask);
 370}
 371
 372static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
 373							u32 ce_ctrl_addr)
 374{
 375	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
 376
 377	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 378					    ar->hw_ce_regs->host_ie_addr);
 379
 380	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 381			  host_ie_addr & ~(host_ie->copy_complete->mask));
 382}
 383
 384static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
 385						    u32 ce_ctrl_addr)
 386{
 387	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
 388
 389	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 390					    ar->hw_ce_regs->host_ie_addr);
 391
 392	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 393			  host_ie_addr & ~(wm_regs->wm_mask));
 394}
 395
 
 
 
 
 
 
 
 
 
 
 
 
 
 396static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
 397						u32 ce_ctrl_addr)
 398{
 399	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
 400
 401	u32 misc_ie_addr = ath10k_ce_read32(ar,
 402			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
 403
 404	ath10k_ce_write32(ar,
 405			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
 406			  misc_ie_addr & ~(misc_regs->err_mask));
 407}
 408
 409static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
 410						     u32 ce_ctrl_addr,
 411						     unsigned int mask)
 412{
 413	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
 414
 415	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
 416}
 417
 418/*
 419 * Guts of ath10k_ce_send.
 420 * The caller takes responsibility for any needed locking.
 421 */
 422static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
 423				  void *per_transfer_context,
 424				  dma_addr_t buffer,
 425				  unsigned int nbytes,
 426				  unsigned int transfer_id,
 427				  unsigned int flags)
 428{
 429	struct ath10k *ar = ce_state->ar;
 430	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 431	struct ce_desc *desc, sdesc;
 432	unsigned int nentries_mask = src_ring->nentries_mask;
 433	unsigned int sw_index = src_ring->sw_index;
 434	unsigned int write_index = src_ring->write_index;
 435	u32 ctrl_addr = ce_state->ctrl_addr;
 436	u32 desc_flags = 0;
 437	int ret = 0;
 438
 439	if (nbytes > ce_state->src_sz_max)
 440		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
 441			    __func__, nbytes, ce_state->src_sz_max);
 442
 443	if (unlikely(CE_RING_DELTA(nentries_mask,
 444				   write_index, sw_index - 1) <= 0)) {
 445		ret = -ENOSR;
 446		goto exit;
 447	}
 448
 449	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
 450				   write_index);
 451
 452	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
 453
 454	if (flags & CE_SEND_FLAG_GATHER)
 455		desc_flags |= CE_DESC_FLAGS_GATHER;
 456	if (flags & CE_SEND_FLAG_BYTE_SWAP)
 457		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
 458
 459	sdesc.addr   = __cpu_to_le32(buffer);
 460	sdesc.nbytes = __cpu_to_le16(nbytes);
 461	sdesc.flags  = __cpu_to_le16(desc_flags);
 462
 463	*desc = sdesc;
 464
 465	src_ring->per_transfer_context[write_index] = per_transfer_context;
 466
 467	/* Update Source Ring Write Index */
 468	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 469
 470	/* WORKAROUND */
 471	if (!(flags & CE_SEND_FLAG_GATHER))
 472		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
 473
 474	src_ring->write_index = write_index;
 475exit:
 476	return ret;
 477}
 478
 479static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
 480				     void *per_transfer_context,
 481				     dma_addr_t buffer,
 482				     unsigned int nbytes,
 483				     unsigned int transfer_id,
 484				     unsigned int flags)
 485{
 486	struct ath10k *ar = ce_state->ar;
 487	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 488	struct ce_desc_64 *desc, sdesc;
 489	unsigned int nentries_mask = src_ring->nentries_mask;
 490	unsigned int sw_index;
 491	unsigned int write_index = src_ring->write_index;
 492	u32 ctrl_addr = ce_state->ctrl_addr;
 493	__le32 *addr;
 494	u32 desc_flags = 0;
 495	int ret = 0;
 496
 497	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
 498		return -ESHUTDOWN;
 499
 500	if (nbytes > ce_state->src_sz_max)
 501		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
 502			    __func__, nbytes, ce_state->src_sz_max);
 503
 504	if (ar->hw_params.rri_on_ddr)
 505		sw_index = ath10k_ce_src_ring_read_index_from_ddr(ar, ce_state->id);
 506	else
 507		sw_index = src_ring->sw_index;
 508
 509	if (unlikely(CE_RING_DELTA(nentries_mask,
 510				   write_index, sw_index - 1) <= 0)) {
 511		ret = -ENOSR;
 512		goto exit;
 513	}
 514
 515	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
 516				      write_index);
 517
 518	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
 519
 520	if (flags & CE_SEND_FLAG_GATHER)
 521		desc_flags |= CE_DESC_FLAGS_GATHER;
 522
 523	if (flags & CE_SEND_FLAG_BYTE_SWAP)
 524		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
 525
 526	addr = (__le32 *)&sdesc.addr;
 527
 528	flags |= upper_32_bits(buffer) & CE_DESC_ADDR_HI_MASK;
 529	addr[0] = __cpu_to_le32(buffer);
 530	addr[1] = __cpu_to_le32(flags);
 531	if (flags & CE_SEND_FLAG_GATHER)
 532		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
 533	else
 534		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
 535
 536	sdesc.nbytes = __cpu_to_le16(nbytes);
 537	sdesc.flags  = __cpu_to_le16(desc_flags);
 538
 539	*desc = sdesc;
 540
 541	src_ring->per_transfer_context[write_index] = per_transfer_context;
 542
 543	/* Update Source Ring Write Index */
 544	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 545
 546	if (!(flags & CE_SEND_FLAG_GATHER)) {
 547		if (ar->hw_params.shadow_reg_support)
 548			ath10k_ce_shadow_src_ring_write_index_set(ar, ce_state,
 549								  write_index);
 550		else
 551			ath10k_ce_src_ring_write_index_set(ar, ctrl_addr,
 552							   write_index);
 553	}
 554
 555	src_ring->write_index = write_index;
 556exit:
 557	return ret;
 558}
 559
 560int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
 561			  void *per_transfer_context,
 562			  dma_addr_t buffer,
 563			  unsigned int nbytes,
 564			  unsigned int transfer_id,
 565			  unsigned int flags)
 566{
 567	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
 568				    buffer, nbytes, transfer_id, flags);
 569}
 570EXPORT_SYMBOL(ath10k_ce_send_nolock);
 571
 572void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
 573{
 574	struct ath10k *ar = pipe->ar;
 575	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 576	struct ath10k_ce_ring *src_ring = pipe->src_ring;
 577	u32 ctrl_addr = pipe->ctrl_addr;
 578
 579	lockdep_assert_held(&ce->ce_lock);
 580
 581	/*
 582	 * This function must be called only if there is an incomplete
 583	 * scatter-gather transfer (before index register is updated)
 584	 * that needs to be cleaned up.
 585	 */
 586	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
 587		return;
 588
 589	if (WARN_ON_ONCE(src_ring->write_index ==
 590			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
 591		return;
 592
 593	src_ring->write_index--;
 594	src_ring->write_index &= src_ring->nentries_mask;
 595
 596	src_ring->per_transfer_context[src_ring->write_index] = NULL;
 597}
 598EXPORT_SYMBOL(__ath10k_ce_send_revert);
 599
 600int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
 601		   void *per_transfer_context,
 602		   dma_addr_t buffer,
 603		   unsigned int nbytes,
 604		   unsigned int transfer_id,
 605		   unsigned int flags)
 606{
 607	struct ath10k *ar = ce_state->ar;
 608	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 609	int ret;
 610
 611	spin_lock_bh(&ce->ce_lock);
 612	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
 613				    buffer, nbytes, transfer_id, flags);
 614	spin_unlock_bh(&ce->ce_lock);
 615
 616	return ret;
 617}
 618EXPORT_SYMBOL(ath10k_ce_send);
 619
 620int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
 621{
 622	struct ath10k *ar = pipe->ar;
 623	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 624	int delta;
 625
 626	spin_lock_bh(&ce->ce_lock);
 627	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
 628			      pipe->src_ring->write_index,
 629			      pipe->src_ring->sw_index - 1);
 630	spin_unlock_bh(&ce->ce_lock);
 631
 632	return delta;
 633}
 634EXPORT_SYMBOL(ath10k_ce_num_free_src_entries);
 635
 636int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
 637{
 638	struct ath10k *ar = pipe->ar;
 639	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 640	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 641	unsigned int nentries_mask = dest_ring->nentries_mask;
 642	unsigned int write_index = dest_ring->write_index;
 643	unsigned int sw_index = dest_ring->sw_index;
 644
 645	lockdep_assert_held(&ce->ce_lock);
 646
 647	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
 648}
 649EXPORT_SYMBOL(__ath10k_ce_rx_num_free_bufs);
 650
 651static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
 652				   dma_addr_t paddr)
 653{
 654	struct ath10k *ar = pipe->ar;
 655	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 656	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 657	unsigned int nentries_mask = dest_ring->nentries_mask;
 658	unsigned int write_index = dest_ring->write_index;
 659	unsigned int sw_index = dest_ring->sw_index;
 660	struct ce_desc *base = dest_ring->base_addr_owner_space;
 661	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
 662	u32 ctrl_addr = pipe->ctrl_addr;
 663
 664	lockdep_assert_held(&ce->ce_lock);
 665
 666	if ((pipe->id != 5) &&
 667	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
 668		return -ENOSPC;
 669
 670	desc->addr = __cpu_to_le32(paddr);
 671	desc->nbytes = 0;
 672
 673	dest_ring->per_transfer_context[write_index] = ctx;
 674	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 675	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 676	dest_ring->write_index = write_index;
 677
 678	return 0;
 679}
 680
 681static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
 682				      void *ctx,
 683				      dma_addr_t paddr)
 684{
 685	struct ath10k *ar = pipe->ar;
 686	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 687	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 688	unsigned int nentries_mask = dest_ring->nentries_mask;
 689	unsigned int write_index = dest_ring->write_index;
 690	unsigned int sw_index = dest_ring->sw_index;
 691	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 692	struct ce_desc_64 *desc =
 693			CE_DEST_RING_TO_DESC_64(base, write_index);
 694	u32 ctrl_addr = pipe->ctrl_addr;
 695
 696	lockdep_assert_held(&ce->ce_lock);
 697
 698	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
 699		return -ENOSPC;
 700
 701	desc->addr = __cpu_to_le64(paddr);
 702	desc->addr &= __cpu_to_le64(CE_DESC_ADDR_MASK);
 703
 704	desc->nbytes = 0;
 705
 706	dest_ring->per_transfer_context[write_index] = ctx;
 707	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 708	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 709	dest_ring->write_index = write_index;
 710
 711	return 0;
 712}
 713
 714void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
 715{
 716	struct ath10k *ar = pipe->ar;
 717	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 718	unsigned int nentries_mask = dest_ring->nentries_mask;
 719	unsigned int write_index = dest_ring->write_index;
 720	u32 ctrl_addr = pipe->ctrl_addr;
 721	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
 722
 723	/* Prevent CE ring stuck issue that will occur when ring is full.
 724	 * Make sure that write index is 1 less than read index.
 725	 */
 726	if (((cur_write_idx + nentries) & nentries_mask) == dest_ring->sw_index)
 727		nentries -= 1;
 728
 729	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
 730	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 731	dest_ring->write_index = write_index;
 732}
 733EXPORT_SYMBOL(ath10k_ce_rx_update_write_idx);
 734
 735int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
 736			  dma_addr_t paddr)
 737{
 738	struct ath10k *ar = pipe->ar;
 739	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 740	int ret;
 741
 742	spin_lock_bh(&ce->ce_lock);
 743	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
 744	spin_unlock_bh(&ce->ce_lock);
 745
 746	return ret;
 747}
 748EXPORT_SYMBOL(ath10k_ce_rx_post_buf);
 749
 750/*
 751 * Guts of ath10k_ce_completed_recv_next.
 752 * The caller takes responsibility for any necessary locking.
 753 */
 754static int
 755	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
 756					       void **per_transfer_contextp,
 757					       unsigned int *nbytesp)
 758{
 759	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 760	unsigned int nentries_mask = dest_ring->nentries_mask;
 761	unsigned int sw_index = dest_ring->sw_index;
 762
 763	struct ce_desc *base = dest_ring->base_addr_owner_space;
 764	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 765	struct ce_desc sdesc;
 766	u16 nbytes;
 767
 768	/* Copy in one go for performance reasons */
 769	sdesc = *desc;
 770
 771	nbytes = __le16_to_cpu(sdesc.nbytes);
 772	if (nbytes == 0) {
 773		/*
 774		 * This closes a relatively unusual race where the Host
 775		 * sees the updated DRRI before the update to the
 776		 * corresponding descriptor has completed. We treat this
 777		 * as a descriptor that is not yet done.
 778		 */
 779		return -EIO;
 780	}
 781
 782	desc->nbytes = 0;
 783
 784	/* Return data from completed destination descriptor */
 785	*nbytesp = nbytes;
 786
 787	if (per_transfer_contextp)
 788		*per_transfer_contextp =
 789			dest_ring->per_transfer_context[sw_index];
 790
 791	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
 792	 * So update transfer context all CEs except CE5.
 793	 */
 794	if (ce_state->id != 5)
 795		dest_ring->per_transfer_context[sw_index] = NULL;
 796
 797	/* Update sw_index */
 798	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 799	dest_ring->sw_index = sw_index;
 800
 801	return 0;
 802}
 803
 804static int
 805_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
 806					 void **per_transfer_contextp,
 807					 unsigned int *nbytesp)
 808{
 809	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 810	unsigned int nentries_mask = dest_ring->nentries_mask;
 811	unsigned int sw_index = dest_ring->sw_index;
 812	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 813	struct ce_desc_64 *desc =
 814		CE_DEST_RING_TO_DESC_64(base, sw_index);
 815	struct ce_desc_64 sdesc;
 816	u16 nbytes;
 817
 818	/* Copy in one go for performance reasons */
 819	sdesc = *desc;
 820
 821	nbytes = __le16_to_cpu(sdesc.nbytes);
 822	if (nbytes == 0) {
 823		/* This closes a relatively unusual race where the Host
 824		 * sees the updated DRRI before the update to the
 825		 * corresponding descriptor has completed. We treat this
 826		 * as a descriptor that is not yet done.
 827		 */
 828		return -EIO;
 829	}
 830
 831	desc->nbytes = 0;
 832
 833	/* Return data from completed destination descriptor */
 834	*nbytesp = nbytes;
 835
 836	if (per_transfer_contextp)
 837		*per_transfer_contextp =
 838			dest_ring->per_transfer_context[sw_index];
 839
 840	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
 841	 * So update transfer context all CEs except CE5.
 842	 */
 843	if (ce_state->id != 5)
 844		dest_ring->per_transfer_context[sw_index] = NULL;
 845
 846	/* Update sw_index */
 847	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 848	dest_ring->sw_index = sw_index;
 849
 850	return 0;
 851}
 852
 853int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
 854					 void **per_transfer_ctx,
 855					 unsigned int *nbytesp)
 856{
 857	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
 858							    per_transfer_ctx,
 859							    nbytesp);
 860}
 861EXPORT_SYMBOL(ath10k_ce_completed_recv_next_nolock);
 862
 863int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
 864				  void **per_transfer_contextp,
 865				  unsigned int *nbytesp)
 866{
 867	struct ath10k *ar = ce_state->ar;
 868	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 869	int ret;
 870
 871	spin_lock_bh(&ce->ce_lock);
 872	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
 873						   per_transfer_contextp,
 874						   nbytesp);
 875
 876	spin_unlock_bh(&ce->ce_lock);
 877
 878	return ret;
 879}
 880EXPORT_SYMBOL(ath10k_ce_completed_recv_next);
 881
 882static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
 883				       void **per_transfer_contextp,
 884				       dma_addr_t *bufferp)
 885{
 886	struct ath10k_ce_ring *dest_ring;
 887	unsigned int nentries_mask;
 888	unsigned int sw_index;
 889	unsigned int write_index;
 890	int ret;
 891	struct ath10k *ar;
 892	struct ath10k_ce *ce;
 893
 894	dest_ring = ce_state->dest_ring;
 895
 896	if (!dest_ring)
 897		return -EIO;
 898
 899	ar = ce_state->ar;
 900	ce = ath10k_ce_priv(ar);
 901
 902	spin_lock_bh(&ce->ce_lock);
 903
 904	nentries_mask = dest_ring->nentries_mask;
 905	sw_index = dest_ring->sw_index;
 906	write_index = dest_ring->write_index;
 907	if (write_index != sw_index) {
 908		struct ce_desc *base = dest_ring->base_addr_owner_space;
 909		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 910
 911		/* Return data from completed destination descriptor */
 912		*bufferp = __le32_to_cpu(desc->addr);
 913
 914		if (per_transfer_contextp)
 915			*per_transfer_contextp =
 916				dest_ring->per_transfer_context[sw_index];
 917
 918		/* sanity */
 919		dest_ring->per_transfer_context[sw_index] = NULL;
 920		desc->nbytes = 0;
 921
 922		/* Update sw_index */
 923		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 924		dest_ring->sw_index = sw_index;
 925		ret = 0;
 926	} else {
 927		ret = -EIO;
 928	}
 929
 930	spin_unlock_bh(&ce->ce_lock);
 931
 932	return ret;
 933}
 934
 935static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
 936					  void **per_transfer_contextp,
 937					  dma_addr_t *bufferp)
 938{
 939	struct ath10k_ce_ring *dest_ring;
 940	unsigned int nentries_mask;
 941	unsigned int sw_index;
 942	unsigned int write_index;
 943	int ret;
 944	struct ath10k *ar;
 945	struct ath10k_ce *ce;
 946
 947	dest_ring = ce_state->dest_ring;
 948
 949	if (!dest_ring)
 950		return -EIO;
 951
 952	ar = ce_state->ar;
 953	ce = ath10k_ce_priv(ar);
 954
 955	spin_lock_bh(&ce->ce_lock);
 956
 957	nentries_mask = dest_ring->nentries_mask;
 958	sw_index = dest_ring->sw_index;
 959	write_index = dest_ring->write_index;
 960	if (write_index != sw_index) {
 961		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 962		struct ce_desc_64 *desc =
 963			CE_DEST_RING_TO_DESC_64(base, sw_index);
 964
 965		/* Return data from completed destination descriptor */
 966		*bufferp = __le64_to_cpu(desc->addr);
 967
 968		if (per_transfer_contextp)
 969			*per_transfer_contextp =
 970				dest_ring->per_transfer_context[sw_index];
 971
 972		/* sanity */
 973		dest_ring->per_transfer_context[sw_index] = NULL;
 974		desc->nbytes = 0;
 975
 976		/* Update sw_index */
 977		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 978		dest_ring->sw_index = sw_index;
 979		ret = 0;
 980	} else {
 981		ret = -EIO;
 982	}
 983
 984	spin_unlock_bh(&ce->ce_lock);
 985
 986	return ret;
 987}
 988
 989int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
 990			       void **per_transfer_contextp,
 991			       dma_addr_t *bufferp)
 992{
 993	return ce_state->ops->ce_revoke_recv_next(ce_state,
 994						  per_transfer_contextp,
 995						  bufferp);
 996}
 997EXPORT_SYMBOL(ath10k_ce_revoke_recv_next);
 998
 999/*
1000 * Guts of ath10k_ce_completed_send_next.
1001 * The caller takes responsibility for any necessary locking.
1002 */
1003static int _ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1004						 void **per_transfer_contextp)
1005{
1006	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1007	u32 ctrl_addr = ce_state->ctrl_addr;
1008	struct ath10k *ar = ce_state->ar;
1009	unsigned int nentries_mask = src_ring->nentries_mask;
1010	unsigned int sw_index = src_ring->sw_index;
1011	unsigned int read_index;
1012	struct ce_desc *desc;
1013
1014	if (src_ring->hw_index == sw_index) {
1015		/*
1016		 * The SW completion index has caught up with the cached
1017		 * version of the HW completion index.
1018		 * Update the cached HW completion index to see whether
1019		 * the SW has really caught up to the HW, or if the cached
1020		 * value of the HW index has become stale.
1021		 */
1022
1023		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1024		if (read_index == 0xffffffff)
1025			return -ENODEV;
1026
1027		read_index &= nentries_mask;
1028		src_ring->hw_index = read_index;
1029	}
1030
1031	if (ar->hw_params.rri_on_ddr)
1032		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1033	else
1034		read_index = src_ring->hw_index;
1035
1036	if (read_index == sw_index)
1037		return -EIO;
1038
1039	if (per_transfer_contextp)
1040		*per_transfer_contextp =
1041			src_ring->per_transfer_context[sw_index];
1042
1043	/* sanity */
1044	src_ring->per_transfer_context[sw_index] = NULL;
1045	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
1046				   sw_index);
1047	desc->nbytes = 0;
1048
1049	/* Update sw_index */
1050	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1051	src_ring->sw_index = sw_index;
1052
1053	return 0;
1054}
1055
1056static int _ath10k_ce_completed_send_next_nolock_64(struct ath10k_ce_pipe *ce_state,
1057						    void **per_transfer_contextp)
1058{
1059	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1060	u32 ctrl_addr = ce_state->ctrl_addr;
1061	struct ath10k *ar = ce_state->ar;
1062	unsigned int nentries_mask = src_ring->nentries_mask;
1063	unsigned int sw_index = src_ring->sw_index;
1064	unsigned int read_index;
1065	struct ce_desc_64 *desc;
1066
1067	if (src_ring->hw_index == sw_index) {
1068		/*
1069		 * The SW completion index has caught up with the cached
1070		 * version of the HW completion index.
1071		 * Update the cached HW completion index to see whether
1072		 * the SW has really caught up to the HW, or if the cached
1073		 * value of the HW index has become stale.
1074		 */
1075
1076		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1077		if (read_index == 0xffffffff)
1078			return -ENODEV;
1079
1080		read_index &= nentries_mask;
1081		src_ring->hw_index = read_index;
1082	}
1083
1084	if (ar->hw_params.rri_on_ddr)
1085		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1086	else
1087		read_index = src_ring->hw_index;
1088
1089	if (read_index == sw_index)
1090		return -EIO;
1091
1092	if (per_transfer_contextp)
1093		*per_transfer_contextp =
1094			src_ring->per_transfer_context[sw_index];
1095
1096	/* sanity */
1097	src_ring->per_transfer_context[sw_index] = NULL;
1098	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
1099				      sw_index);
1100	desc->nbytes = 0;
1101
1102	/* Update sw_index */
1103	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1104	src_ring->sw_index = sw_index;
1105
1106	return 0;
1107}
1108
1109int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
1110					 void **per_transfer_contextp)
1111{
1112	return ce_state->ops->ce_completed_send_next_nolock(ce_state,
1113							    per_transfer_contextp);
1114}
1115EXPORT_SYMBOL(ath10k_ce_completed_send_next_nolock);
1116
1117static void ath10k_ce_extract_desc_data(struct ath10k *ar,
1118					struct ath10k_ce_ring *src_ring,
1119					u32 sw_index,
1120					dma_addr_t *bufferp,
1121					u32 *nbytesp,
1122					u32 *transfer_idp)
1123{
1124		struct ce_desc *base = src_ring->base_addr_owner_space;
1125		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
1126
1127		/* Return data from completed source descriptor */
1128		*bufferp = __le32_to_cpu(desc->addr);
1129		*nbytesp = __le16_to_cpu(desc->nbytes);
1130		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1131				   CE_DESC_FLAGS_META_DATA);
1132}
1133
1134static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
1135					   struct ath10k_ce_ring *src_ring,
1136					   u32 sw_index,
1137					   dma_addr_t *bufferp,
1138					   u32 *nbytesp,
1139					   u32 *transfer_idp)
1140{
1141		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
1142		struct ce_desc_64 *desc =
1143			CE_SRC_RING_TO_DESC_64(base, sw_index);
1144
1145		/* Return data from completed source descriptor */
1146		*bufferp = __le64_to_cpu(desc->addr);
1147		*nbytesp = __le16_to_cpu(desc->nbytes);
1148		*transfer_idp = MS(__le16_to_cpu(desc->flags),
1149				   CE_DESC_FLAGS_META_DATA);
1150}
1151
1152/* NB: Modeled after ath10k_ce_completed_send_next */
1153int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
1154			       void **per_transfer_contextp,
1155			       dma_addr_t *bufferp,
1156			       unsigned int *nbytesp,
1157			       unsigned int *transfer_idp)
1158{
1159	struct ath10k_ce_ring *src_ring;
1160	unsigned int nentries_mask;
1161	unsigned int sw_index;
1162	unsigned int write_index;
1163	int ret;
1164	struct ath10k *ar;
1165	struct ath10k_ce *ce;
1166
1167	src_ring = ce_state->src_ring;
1168
1169	if (!src_ring)
1170		return -EIO;
1171
1172	ar = ce_state->ar;
1173	ce = ath10k_ce_priv(ar);
1174
1175	spin_lock_bh(&ce->ce_lock);
1176
1177	nentries_mask = src_ring->nentries_mask;
1178	sw_index = src_ring->sw_index;
1179	write_index = src_ring->write_index;
1180
1181	if (write_index != sw_index) {
1182		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1183						    bufferp, nbytesp,
1184						    transfer_idp);
1185
1186		if (per_transfer_contextp)
1187			*per_transfer_contextp =
1188				src_ring->per_transfer_context[sw_index];
1189
1190		/* sanity */
1191		src_ring->per_transfer_context[sw_index] = NULL;
1192
1193		/* Update sw_index */
1194		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1195		src_ring->sw_index = sw_index;
1196		ret = 0;
1197	} else {
1198		ret = -EIO;
1199	}
1200
1201	spin_unlock_bh(&ce->ce_lock);
1202
1203	return ret;
1204}
1205EXPORT_SYMBOL(ath10k_ce_cancel_send_next);
1206
1207int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1208				  void **per_transfer_contextp)
1209{
1210	struct ath10k *ar = ce_state->ar;
1211	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1212	int ret;
1213
1214	spin_lock_bh(&ce->ce_lock);
1215	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1216						   per_transfer_contextp);
1217	spin_unlock_bh(&ce->ce_lock);
1218
1219	return ret;
1220}
1221EXPORT_SYMBOL(ath10k_ce_completed_send_next);
1222
1223/*
1224 * Guts of interrupt handler for per-engine interrupts on a particular CE.
1225 *
1226 * Invokes registered callbacks for recv_complete,
1227 * send_complete, and watermarks.
1228 */
1229void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1230{
1231	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1232	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1233	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1234	u32 ctrl_addr = ce_state->ctrl_addr;
1235
1236	/*
1237	 * Clear before handling
1238	 *
1239	 * Misc CE interrupts are not being handled, but still need
1240	 * to be cleared.
1241	 *
1242	 * NOTE: When the last copy engine interrupt is cleared the
1243	 * hardware will go to sleep.  Once this happens any access to
1244	 * the CE registers can cause a hardware fault.
1245	 */
1246	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1247					  wm_regs->cc_mask | wm_regs->wm_mask);
 
 
1248
1249	if (ce_state->recv_cb)
1250		ce_state->recv_cb(ce_state);
1251
1252	if (ce_state->send_cb)
1253		ce_state->send_cb(ce_state);
 
 
 
 
 
 
 
 
 
 
1254}
1255EXPORT_SYMBOL(ath10k_ce_per_engine_service);
1256
1257/*
1258 * Handler for per-engine interrupts on ALL active CEs.
1259 * This is used in cases where the system is sharing a
1260 * single interrupt for all CEs
1261 */
1262
1263void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1264{
1265	int ce_id;
1266	u32 intr_summary;
1267
1268	intr_summary = ath10k_ce_interrupt_summary(ar);
1269
1270	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1271		if (intr_summary & (1 << ce_id))
1272			intr_summary &= ~(1 << ce_id);
1273		else
1274			/* no intr pending on this CE */
1275			continue;
1276
1277		ath10k_ce_per_engine_service(ar, ce_id);
1278	}
1279}
1280EXPORT_SYMBOL(ath10k_ce_per_engine_service_any);
1281
1282/*
1283 * Adjust interrupts for the copy complete handler.
1284 * If it's needed for either send or recv, then unmask
1285 * this interrupt; otherwise, mask it.
1286 *
1287 * Called with ce_lock held.
1288 */
1289static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1290{
1291	u32 ctrl_addr = ce_state->ctrl_addr;
1292	struct ath10k *ar = ce_state->ar;
1293	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1294
1295	if ((!disable_copy_compl_intr) &&
1296	    (ce_state->send_cb || ce_state->recv_cb))
1297		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1298	else
1299		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1300
1301	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1302}
1303
1304void ath10k_ce_disable_interrupt(struct ath10k *ar, int ce_id)
1305{
1306	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1307	struct ath10k_ce_pipe *ce_state;
1308	u32 ctrl_addr;
1309
1310	ce_state  = &ce->ce_states[ce_id];
1311	if (ce_state->attr_flags & CE_ATTR_POLL)
1312		return;
1313
1314	ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1315
1316	ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1317	ath10k_ce_error_intr_disable(ar, ctrl_addr);
1318	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1319}
1320EXPORT_SYMBOL(ath10k_ce_disable_interrupt);
1321
1322void ath10k_ce_disable_interrupts(struct ath10k *ar)
1323{
1324	int ce_id;
1325
1326	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1327		ath10k_ce_disable_interrupt(ar, ce_id);
1328}
1329EXPORT_SYMBOL(ath10k_ce_disable_interrupts);
1330
1331void ath10k_ce_enable_interrupt(struct ath10k *ar, int ce_id)
1332{
1333	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1334	struct ath10k_ce_pipe *ce_state;
1335
1336	ce_state  = &ce->ce_states[ce_id];
1337	if (ce_state->attr_flags & CE_ATTR_POLL)
1338		return;
1339
1340	ath10k_ce_per_engine_handler_adjust(ce_state);
1341}
1342EXPORT_SYMBOL(ath10k_ce_enable_interrupt);
1343
1344void ath10k_ce_enable_interrupts(struct ath10k *ar)
1345{
 
1346	int ce_id;
 
1347
1348	/* Enable interrupts for copy engine that
1349	 * are not using polling mode.
1350	 */
1351	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1352		ath10k_ce_enable_interrupt(ar, ce_id);
 
 
1353}
1354EXPORT_SYMBOL(ath10k_ce_enable_interrupts);
1355
1356static int ath10k_ce_init_src_ring(struct ath10k *ar,
1357				   unsigned int ce_id,
1358				   const struct ce_attr *attr)
1359{
1360	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1361	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1362	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1363	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1364
1365	nentries = roundup_pow_of_two(attr->src_nentries);
1366
1367	if (ar->hw_params.target_64bit)
1368		memset(src_ring->base_addr_owner_space, 0,
1369		       nentries * sizeof(struct ce_desc_64));
1370	else
1371		memset(src_ring->base_addr_owner_space, 0,
1372		       nentries * sizeof(struct ce_desc));
1373
1374	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1375	src_ring->sw_index &= src_ring->nentries_mask;
1376	src_ring->hw_index = src_ring->sw_index;
1377
1378	src_ring->write_index =
1379		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1380	src_ring->write_index &= src_ring->nentries_mask;
1381
1382	ath10k_ce_src_ring_base_addr_set(ar, ce_id,
1383					 src_ring->base_addr_ce_space);
1384	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1385	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1386	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1387	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1388	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1389
1390	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1391		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1392		   ce_id, nentries, src_ring->base_addr_owner_space);
1393
1394	return 0;
1395}
1396
1397static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1398				    unsigned int ce_id,
1399				    const struct ce_attr *attr)
1400{
1401	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1402	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1403	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1404	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1405
1406	nentries = roundup_pow_of_two(attr->dest_nentries);
1407
1408	if (ar->hw_params.target_64bit)
1409		memset(dest_ring->base_addr_owner_space, 0,
1410		       nentries * sizeof(struct ce_desc_64));
1411	else
1412		memset(dest_ring->base_addr_owner_space, 0,
1413		       nentries * sizeof(struct ce_desc));
1414
1415	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1416	dest_ring->sw_index &= dest_ring->nentries_mask;
1417	dest_ring->write_index =
1418		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1419	dest_ring->write_index &= dest_ring->nentries_mask;
1420
1421	ath10k_ce_dest_ring_base_addr_set(ar, ce_id,
1422					  dest_ring->base_addr_ce_space);
1423	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1424	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1425	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1426	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1427
1428	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1429		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1430		   ce_id, nentries, dest_ring->base_addr_owner_space);
1431
1432	return 0;
1433}
1434
1435static int ath10k_ce_alloc_shadow_base(struct ath10k *ar,
1436				       struct ath10k_ce_ring *src_ring,
1437				       u32 nentries)
1438{
1439	src_ring->shadow_base_unaligned = kcalloc(nentries,
1440						  sizeof(struct ce_desc_64),
1441						  GFP_KERNEL);
1442	if (!src_ring->shadow_base_unaligned)
1443		return -ENOMEM;
1444
1445	src_ring->shadow_base = (struct ce_desc_64 *)
1446			PTR_ALIGN(src_ring->shadow_base_unaligned,
1447				  CE_DESC_RING_ALIGN);
1448	return 0;
1449}
1450
1451static struct ath10k_ce_ring *
1452ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1453			 const struct ce_attr *attr)
1454{
1455	struct ath10k_ce_ring *src_ring;
1456	u32 nentries = attr->src_nentries;
1457	dma_addr_t base_addr;
1458	int ret;
1459
1460	nentries = roundup_pow_of_two(nentries);
1461
1462	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1463				       nentries), GFP_KERNEL);
 
 
1464	if (src_ring == NULL)
1465		return ERR_PTR(-ENOMEM);
1466
1467	src_ring->nentries = nentries;
1468	src_ring->nentries_mask = nentries - 1;
1469
1470	/*
1471	 * Legacy platforms that do not support cache
1472	 * coherent DMA are unsupported
1473	 */
1474	src_ring->base_addr_owner_space_unaligned =
1475		dma_alloc_coherent(ar->dev,
1476				   (nentries * sizeof(struct ce_desc) +
1477				    CE_DESC_RING_ALIGN),
1478				   &base_addr, GFP_KERNEL);
1479	if (!src_ring->base_addr_owner_space_unaligned) {
1480		kfree(src_ring);
1481		return ERR_PTR(-ENOMEM);
1482	}
1483
1484	src_ring->base_addr_ce_space_unaligned = base_addr;
1485
1486	src_ring->base_addr_owner_space =
1487			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1488				  CE_DESC_RING_ALIGN);
1489	src_ring->base_addr_ce_space =
1490			ALIGN(src_ring->base_addr_ce_space_unaligned,
1491			      CE_DESC_RING_ALIGN);
1492
1493	if (ar->hw_params.shadow_reg_support) {
1494		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1495		if (ret) {
1496			dma_free_coherent(ar->dev,
1497					  (nentries * sizeof(struct ce_desc) +
1498					   CE_DESC_RING_ALIGN),
1499					  src_ring->base_addr_owner_space_unaligned,
1500					  base_addr);
1501			kfree(src_ring);
1502			return ERR_PTR(ret);
1503		}
1504	}
1505
1506	return src_ring;
1507}
1508
1509static struct ath10k_ce_ring *
1510ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1511			    const struct ce_attr *attr)
1512{
1513	struct ath10k_ce_ring *src_ring;
1514	u32 nentries = attr->src_nentries;
1515	dma_addr_t base_addr;
1516	int ret;
1517
1518	nentries = roundup_pow_of_two(nentries);
1519
1520	src_ring = kzalloc(struct_size(src_ring, per_transfer_context,
1521				       nentries), GFP_KERNEL);
 
 
1522	if (!src_ring)
1523		return ERR_PTR(-ENOMEM);
1524
1525	src_ring->nentries = nentries;
1526	src_ring->nentries_mask = nentries - 1;
1527
1528	/* Legacy platforms that do not support cache
1529	 * coherent DMA are unsupported
1530	 */
1531	src_ring->base_addr_owner_space_unaligned =
1532		dma_alloc_coherent(ar->dev,
1533				   (nentries * sizeof(struct ce_desc_64) +
1534				    CE_DESC_RING_ALIGN),
1535				   &base_addr, GFP_KERNEL);
1536	if (!src_ring->base_addr_owner_space_unaligned) {
1537		kfree(src_ring);
1538		return ERR_PTR(-ENOMEM);
1539	}
1540
1541	src_ring->base_addr_ce_space_unaligned = base_addr;
1542
1543	src_ring->base_addr_owner_space =
1544			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1545				  CE_DESC_RING_ALIGN);
1546	src_ring->base_addr_ce_space =
1547			ALIGN(src_ring->base_addr_ce_space_unaligned,
1548			      CE_DESC_RING_ALIGN);
1549
1550	if (ar->hw_params.shadow_reg_support) {
1551		ret = ath10k_ce_alloc_shadow_base(ar, src_ring, nentries);
1552		if (ret) {
1553			dma_free_coherent(ar->dev,
1554					  (nentries * sizeof(struct ce_desc_64) +
1555					   CE_DESC_RING_ALIGN),
1556					  src_ring->base_addr_owner_space_unaligned,
1557					  base_addr);
1558			kfree(src_ring);
1559			return ERR_PTR(ret);
1560		}
1561	}
1562
1563	return src_ring;
1564}
1565
1566static struct ath10k_ce_ring *
1567ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1568			  const struct ce_attr *attr)
1569{
1570	struct ath10k_ce_ring *dest_ring;
1571	u32 nentries;
1572	dma_addr_t base_addr;
1573
1574	nentries = roundup_pow_of_two(attr->dest_nentries);
1575
1576	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1577					nentries), GFP_KERNEL);
 
 
1578	if (dest_ring == NULL)
1579		return ERR_PTR(-ENOMEM);
1580
1581	dest_ring->nentries = nentries;
1582	dest_ring->nentries_mask = nentries - 1;
1583
1584	/*
1585	 * Legacy platforms that do not support cache
1586	 * coherent DMA are unsupported
1587	 */
1588	dest_ring->base_addr_owner_space_unaligned =
1589		dma_alloc_coherent(ar->dev,
1590				   (nentries * sizeof(struct ce_desc) +
1591				    CE_DESC_RING_ALIGN),
1592				   &base_addr, GFP_KERNEL);
1593	if (!dest_ring->base_addr_owner_space_unaligned) {
1594		kfree(dest_ring);
1595		return ERR_PTR(-ENOMEM);
1596	}
1597
1598	dest_ring->base_addr_ce_space_unaligned = base_addr;
1599
1600	dest_ring->base_addr_owner_space =
1601			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1602				  CE_DESC_RING_ALIGN);
1603	dest_ring->base_addr_ce_space =
1604				ALIGN(dest_ring->base_addr_ce_space_unaligned,
1605				      CE_DESC_RING_ALIGN);
1606
1607	return dest_ring;
1608}
1609
1610static struct ath10k_ce_ring *
1611ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1612			     const struct ce_attr *attr)
1613{
1614	struct ath10k_ce_ring *dest_ring;
1615	u32 nentries;
1616	dma_addr_t base_addr;
1617
1618	nentries = roundup_pow_of_two(attr->dest_nentries);
1619
1620	dest_ring = kzalloc(struct_size(dest_ring, per_transfer_context,
1621					nentries), GFP_KERNEL);
 
 
1622	if (!dest_ring)
1623		return ERR_PTR(-ENOMEM);
1624
1625	dest_ring->nentries = nentries;
1626	dest_ring->nentries_mask = nentries - 1;
1627
1628	/* Legacy platforms that do not support cache
1629	 * coherent DMA are unsupported
1630	 */
1631	dest_ring->base_addr_owner_space_unaligned =
1632		dma_alloc_coherent(ar->dev,
1633				   (nentries * sizeof(struct ce_desc_64) +
1634				    CE_DESC_RING_ALIGN),
1635				   &base_addr, GFP_KERNEL);
1636	if (!dest_ring->base_addr_owner_space_unaligned) {
1637		kfree(dest_ring);
1638		return ERR_PTR(-ENOMEM);
1639	}
1640
1641	dest_ring->base_addr_ce_space_unaligned = base_addr;
1642
1643	/* Correctly initialize memory to 0 to prevent garbage
1644	 * data crashing system when download firmware
1645	 */
 
 
 
1646	dest_ring->base_addr_owner_space =
1647			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1648				  CE_DESC_RING_ALIGN);
1649	dest_ring->base_addr_ce_space =
1650			ALIGN(dest_ring->base_addr_ce_space_unaligned,
1651			      CE_DESC_RING_ALIGN);
1652
1653	return dest_ring;
1654}
1655
1656/*
1657 * Initialize a Copy Engine based on caller-supplied attributes.
1658 * This may be called once to initialize both source and destination
1659 * rings or it may be called twice for separate source and destination
1660 * initialization. It may be that only one side or the other is
1661 * initialized by software/firmware.
1662 */
1663int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1664			const struct ce_attr *attr)
1665{
1666	int ret;
1667
1668	if (attr->src_nentries) {
1669		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1670		if (ret) {
1671			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1672				   ce_id, ret);
1673			return ret;
1674		}
1675	}
1676
1677	if (attr->dest_nentries) {
1678		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1679		if (ret) {
1680			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1681				   ce_id, ret);
1682			return ret;
1683		}
1684	}
1685
1686	return 0;
1687}
1688EXPORT_SYMBOL(ath10k_ce_init_pipe);
1689
1690static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1691{
1692	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1693
1694	ath10k_ce_src_ring_base_addr_set(ar, ce_id, 0);
1695	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1696	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1697	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1698}
1699
1700static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1701{
1702	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1703
1704	ath10k_ce_dest_ring_base_addr_set(ar, ce_id, 0);
1705	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1706	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1707}
1708
1709void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1710{
1711	ath10k_ce_deinit_src_ring(ar, ce_id);
1712	ath10k_ce_deinit_dest_ring(ar, ce_id);
1713}
1714EXPORT_SYMBOL(ath10k_ce_deinit_pipe);
1715
1716static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1717{
1718	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1719	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1720
1721	if (ce_state->src_ring) {
1722		if (ar->hw_params.shadow_reg_support)
1723			kfree(ce_state->src_ring->shadow_base_unaligned);
1724		dma_free_coherent(ar->dev,
1725				  (ce_state->src_ring->nentries *
1726				   sizeof(struct ce_desc) +
1727				   CE_DESC_RING_ALIGN),
1728				  ce_state->src_ring->base_addr_owner_space,
1729				  ce_state->src_ring->base_addr_ce_space);
1730		kfree(ce_state->src_ring);
1731	}
1732
1733	if (ce_state->dest_ring) {
1734		dma_free_coherent(ar->dev,
1735				  (ce_state->dest_ring->nentries *
1736				   sizeof(struct ce_desc) +
1737				   CE_DESC_RING_ALIGN),
1738				  ce_state->dest_ring->base_addr_owner_space,
1739				  ce_state->dest_ring->base_addr_ce_space);
1740		kfree(ce_state->dest_ring);
1741	}
1742
1743	ce_state->src_ring = NULL;
1744	ce_state->dest_ring = NULL;
1745}
1746
1747static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1748{
1749	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1750	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1751
1752	if (ce_state->src_ring) {
1753		if (ar->hw_params.shadow_reg_support)
1754			kfree(ce_state->src_ring->shadow_base_unaligned);
1755		dma_free_coherent(ar->dev,
1756				  (ce_state->src_ring->nentries *
1757				   sizeof(struct ce_desc_64) +
1758				   CE_DESC_RING_ALIGN),
1759				  ce_state->src_ring->base_addr_owner_space,
1760				  ce_state->src_ring->base_addr_ce_space);
1761		kfree(ce_state->src_ring);
1762	}
1763
1764	if (ce_state->dest_ring) {
1765		dma_free_coherent(ar->dev,
1766				  (ce_state->dest_ring->nentries *
1767				   sizeof(struct ce_desc_64) +
1768				   CE_DESC_RING_ALIGN),
1769				  ce_state->dest_ring->base_addr_owner_space,
1770				  ce_state->dest_ring->base_addr_ce_space);
1771		kfree(ce_state->dest_ring);
1772	}
1773
1774	ce_state->src_ring = NULL;
1775	ce_state->dest_ring = NULL;
1776}
1777
1778void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1779{
1780	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1781	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1782
1783	ce_state->ops->ce_free_pipe(ar, ce_id);
1784}
1785EXPORT_SYMBOL(ath10k_ce_free_pipe);
1786
1787void ath10k_ce_dump_registers(struct ath10k *ar,
1788			      struct ath10k_fw_crash_data *crash_data)
1789{
1790	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1791	struct ath10k_ce_crash_data ce_data;
1792	u32 addr, id;
1793
1794	lockdep_assert_held(&ar->dump_mutex);
1795
1796	ath10k_err(ar, "Copy Engine register dump:\n");
1797
1798	spin_lock_bh(&ce->ce_lock);
1799	for (id = 0; id < CE_COUNT; id++) {
1800		addr = ath10k_ce_base_address(ar, id);
1801		ce_data.base_addr = cpu_to_le32(addr);
1802
1803		ce_data.src_wr_idx =
1804			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1805		ce_data.src_r_idx =
1806			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1807		ce_data.dst_wr_idx =
1808			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1809		ce_data.dst_r_idx =
1810			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1811
1812		if (crash_data)
1813			crash_data->ce_crash_data[id] = ce_data;
1814
1815		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1816			   le32_to_cpu(ce_data.base_addr),
1817			   le32_to_cpu(ce_data.src_wr_idx),
1818			   le32_to_cpu(ce_data.src_r_idx),
1819			   le32_to_cpu(ce_data.dst_wr_idx),
1820			   le32_to_cpu(ce_data.dst_r_idx));
1821	}
1822
1823	spin_unlock_bh(&ce->ce_lock);
1824}
1825EXPORT_SYMBOL(ath10k_ce_dump_registers);
1826
1827static const struct ath10k_ce_ops ce_ops = {
1828	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1829	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1830	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1831	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1832	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1833	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
1834	.ce_free_pipe = _ath10k_ce_free_pipe,
1835	.ce_send_nolock = _ath10k_ce_send_nolock,
1836	.ce_set_src_ring_base_addr_hi = NULL,
1837	.ce_set_dest_ring_base_addr_hi = NULL,
1838	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock,
1839};
1840
1841static const struct ath10k_ce_ops ce_64_ops = {
1842	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1843	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1844	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1845	.ce_completed_recv_next_nolock =
1846				_ath10k_ce_completed_recv_next_nolock_64,
1847	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1848	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1849	.ce_free_pipe = _ath10k_ce_free_pipe_64,
1850	.ce_send_nolock = _ath10k_ce_send_nolock_64,
1851	.ce_set_src_ring_base_addr_hi = ath10k_ce_set_src_ring_base_addr_hi,
1852	.ce_set_dest_ring_base_addr_hi = ath10k_ce_set_dest_ring_base_addr_hi,
1853	.ce_completed_send_next_nolock = _ath10k_ce_completed_send_next_nolock_64,
1854};
1855
1856static void ath10k_ce_set_ops(struct ath10k *ar,
1857			      struct ath10k_ce_pipe *ce_state)
1858{
1859	switch (ar->hw_rev) {
1860	case ATH10K_HW_WCN3990:
1861		ce_state->ops = &ce_64_ops;
1862		break;
1863	default:
1864		ce_state->ops = &ce_ops;
1865		break;
1866	}
1867}
1868
1869int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1870			 const struct ce_attr *attr)
1871{
1872	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1873	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1874	int ret;
1875
1876	ath10k_ce_set_ops(ar, ce_state);
1877	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1878	 * additional TX locking checks.
1879	 *
1880	 * For the lack of a better place do the check here.
1881	 */
1882	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1883		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1884	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1885		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1886	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1887		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1888
1889	ce_state->ar = ar;
1890	ce_state->id = ce_id;
1891	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1892	ce_state->attr_flags = attr->flags;
1893	ce_state->src_sz_max = attr->src_sz_max;
1894
1895	if (attr->src_nentries)
1896		ce_state->send_cb = attr->send_cb;
1897
1898	if (attr->dest_nentries)
1899		ce_state->recv_cb = attr->recv_cb;
1900
1901	if (attr->src_nentries) {
1902		ce_state->src_ring =
1903			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1904		if (IS_ERR(ce_state->src_ring)) {
1905			ret = PTR_ERR(ce_state->src_ring);
1906			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1907				   ce_id, ret);
1908			ce_state->src_ring = NULL;
1909			return ret;
1910		}
1911	}
1912
1913	if (attr->dest_nentries) {
1914		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1915									ce_id,
1916									attr);
1917		if (IS_ERR(ce_state->dest_ring)) {
1918			ret = PTR_ERR(ce_state->dest_ring);
1919			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1920				   ce_id, ret);
1921			ce_state->dest_ring = NULL;
1922			return ret;
1923		}
1924	}
1925
1926	return 0;
1927}
1928EXPORT_SYMBOL(ath10k_ce_alloc_pipe);
1929
1930void ath10k_ce_alloc_rri(struct ath10k *ar)
1931{
1932	int i;
1933	u32 value;
1934	u32 ctrl1_regs;
1935	u32 ce_base_addr;
1936	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1937
1938	ce->vaddr_rri = dma_alloc_coherent(ar->dev,
1939					   (CE_COUNT * sizeof(u32)),
1940					   &ce->paddr_rri, GFP_KERNEL);
1941
1942	if (!ce->vaddr_rri)
1943		return;
1944
1945	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_low,
1946			  lower_32_bits(ce->paddr_rri));
1947	ath10k_ce_write32(ar, ar->hw_ce_regs->ce_rri_high,
1948			  (upper_32_bits(ce->paddr_rri) &
1949			  CE_DESC_ADDR_HI_MASK));
1950
1951	for (i = 0; i < CE_COUNT; i++) {
1952		ctrl1_regs = ar->hw_ce_regs->ctrl1_regs->addr;
1953		ce_base_addr = ath10k_ce_base_address(ar, i);
1954		value = ath10k_ce_read32(ar, ce_base_addr + ctrl1_regs);
1955		value |= ar->hw_ce_regs->upd->mask;
1956		ath10k_ce_write32(ar, ce_base_addr + ctrl1_regs, value);
1957	}
1958}
1959EXPORT_SYMBOL(ath10k_ce_alloc_rri);
1960
1961void ath10k_ce_free_rri(struct ath10k *ar)
1962{
1963	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1964
1965	dma_free_coherent(ar->dev, (CE_COUNT * sizeof(u32)),
1966			  ce->vaddr_rri,
1967			  ce->paddr_rri);
1968}
1969EXPORT_SYMBOL(ath10k_ce_free_rri);
v4.17
 
   1/*
   2 * Copyright (c) 2005-2011 Atheros Communications Inc.
   3 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   4 *
   5 * Permission to use, copy, modify, and/or distribute this software for any
   6 * purpose with or without fee is hereby granted, provided that the above
   7 * copyright notice and this permission notice appear in all copies.
   8 *
   9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16 */
  17
  18#include "hif.h"
  19#include "ce.h"
  20#include "debug.h"
  21
  22/*
  23 * Support for Copy Engine hardware, which is mainly used for
  24 * communication between Host and Target over a PCIe interconnect.
  25 */
  26
  27/*
  28 * A single CopyEngine (CE) comprises two "rings":
  29 *   a source ring
  30 *   a destination ring
  31 *
  32 * Each ring consists of a number of descriptors which specify
  33 * an address, length, and meta-data.
  34 *
  35 * Typically, one side of the PCIe/AHB/SNOC interconnect (Host or Target)
  36 * controls one ring and the other side controls the other ring.
  37 * The source side chooses when to initiate a transfer and it
  38 * chooses what to send (buffer address, length). The destination
  39 * side keeps a supply of "anonymous receive buffers" available and
  40 * it handles incoming data as it arrives (when the destination
  41 * receives an interrupt).
  42 *
  43 * The sender may send a simple buffer (address/length) or it may
  44 * send a small list of buffers.  When a small list is sent, hardware
  45 * "gathers" these and they end up in a single destination buffer
  46 * with a single interrupt.
  47 *
  48 * There are several "contexts" managed by this layer -- more, it
  49 * may seem -- than should be needed. These are provided mainly for
  50 * maximum flexibility and especially to facilitate a simpler HIF
  51 * implementation. There are per-CopyEngine recv, send, and watermark
  52 * contexts. These are supplied by the caller when a recv, send,
  53 * or watermark handler is established and they are echoed back to
  54 * the caller when the respective callbacks are invoked. There is
  55 * also a per-transfer context supplied by the caller when a buffer
  56 * (or sendlist) is sent and when a buffer is enqueued for recv.
  57 * These per-transfer contexts are echoed back to the caller when
  58 * the buffer is sent/received.
  59 */
  60
  61static inline unsigned int
  62ath10k_set_ring_byte(unsigned int offset,
  63		     struct ath10k_hw_ce_regs_addr_map *addr_map)
  64{
  65	return ((offset << addr_map->lsb) & addr_map->mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66}
  67
  68static inline unsigned int
  69ath10k_get_ring_byte(unsigned int offset,
  70		     struct ath10k_hw_ce_regs_addr_map *addr_map)
  71{
  72	return ((offset & addr_map->mask) >> (addr_map->lsb));
  73}
  74
  75static inline u32 ath10k_ce_read32(struct ath10k *ar, u32 offset)
  76{
  77	struct ath10k_ce *ce = ath10k_ce_priv(ar);
  78
  79	return ce->bus_ops->read32(ar, offset);
  80}
  81
  82static inline void ath10k_ce_write32(struct ath10k *ar, u32 offset, u32 value)
  83{
  84	struct ath10k_ce *ce = ath10k_ce_priv(ar);
  85
  86	ce->bus_ops->write32(ar, offset, value);
  87}
  88
  89static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
  90						       u32 ce_ctrl_addr,
  91						       unsigned int n)
  92{
  93	ath10k_ce_write32(ar, ce_ctrl_addr +
  94			  ar->hw_ce_regs->dst_wr_index_addr, n);
  95}
  96
  97static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
  98						      u32 ce_ctrl_addr)
  99{
 100	return ath10k_ce_read32(ar, ce_ctrl_addr +
 101				ar->hw_ce_regs->dst_wr_index_addr);
 102}
 103
 104static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
 105						      u32 ce_ctrl_addr,
 106						      unsigned int n)
 107{
 108	ath10k_ce_write32(ar, ce_ctrl_addr +
 109			  ar->hw_ce_regs->sr_wr_index_addr, n);
 110}
 111
 112static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
 113						     u32 ce_ctrl_addr)
 114{
 115	return ath10k_ce_read32(ar, ce_ctrl_addr +
 116				ar->hw_ce_regs->sr_wr_index_addr);
 117}
 118
 
 
 
 
 
 
 
 
 119static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
 120						    u32 ce_ctrl_addr)
 121{
 122	return ath10k_ce_read32(ar, ce_ctrl_addr +
 123				ar->hw_ce_regs->current_srri_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 124}
 125
 126static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
 127						    u32 ce_ctrl_addr,
 128						    unsigned int addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129{
 
 
 130	ath10k_ce_write32(ar, ce_ctrl_addr +
 131			  ar->hw_ce_regs->sr_base_addr, addr);
 132}
 133
 134static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
 135					       u32 ce_ctrl_addr,
 136					       unsigned int n)
 137{
 138	ath10k_ce_write32(ar, ce_ctrl_addr +
 139			  ar->hw_ce_regs->sr_size_addr, n);
 140}
 141
 142static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
 143					       u32 ce_ctrl_addr,
 144					       unsigned int n)
 145{
 146	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 147
 148	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 149					  ctrl_regs->addr);
 150
 151	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 152			  (ctrl1_addr &  ~(ctrl_regs->dmax->mask)) |
 153			  ath10k_set_ring_byte(n, ctrl_regs->dmax));
 154}
 155
 156static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
 157						    u32 ce_ctrl_addr,
 158						    unsigned int n)
 159{
 160	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 161
 162	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 163					  ctrl_regs->addr);
 164
 165	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 166			  (ctrl1_addr & ~(ctrl_regs->src_ring->mask)) |
 167			  ath10k_set_ring_byte(n, ctrl_regs->src_ring));
 168}
 169
 170static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
 171						     u32 ce_ctrl_addr,
 172						     unsigned int n)
 173{
 174	struct ath10k_hw_ce_ctrl1 *ctrl_regs = ar->hw_ce_regs->ctrl1_regs;
 175
 176	u32 ctrl1_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 177					  ctrl_regs->addr);
 178
 179	ath10k_ce_write32(ar, ce_ctrl_addr + ctrl_regs->addr,
 180			  (ctrl1_addr & ~(ctrl_regs->dst_ring->mask)) |
 181			  ath10k_set_ring_byte(n, ctrl_regs->dst_ring));
 182}
 183
 
 
 
 
 
 
 
 
 
 184static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
 185						     u32 ce_ctrl_addr)
 186{
 187	return ath10k_ce_read32(ar, ce_ctrl_addr +
 188				ar->hw_ce_regs->current_drri_addr);
 
 
 
 
 
 
 
 
 
 
 
 189}
 190
 191static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
 192						     u32 ce_ctrl_addr,
 193						     u32 addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194{
 
 
 
 
 
 
 
 195	ath10k_ce_write32(ar, ce_ctrl_addr +
 196			  ar->hw_ce_regs->dr_base_addr, addr);
 197}
 198
 199static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
 200						u32 ce_ctrl_addr,
 201						unsigned int n)
 202{
 203	ath10k_ce_write32(ar, ce_ctrl_addr +
 204			  ar->hw_ce_regs->dr_size_addr, n);
 205}
 206
 207static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
 208						   u32 ce_ctrl_addr,
 209						   unsigned int n)
 210{
 211	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
 212	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
 213
 214	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
 215			  (addr & ~(srcr_wm->wm_high->mask)) |
 216			  (ath10k_set_ring_byte(n, srcr_wm->wm_high)));
 217}
 218
 219static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
 220						  u32 ce_ctrl_addr,
 221						  unsigned int n)
 222{
 223	struct ath10k_hw_ce_dst_src_wm_regs *srcr_wm = ar->hw_ce_regs->wm_srcr;
 224	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + srcr_wm->addr);
 225
 226	ath10k_ce_write32(ar, ce_ctrl_addr + srcr_wm->addr,
 227			  (addr & ~(srcr_wm->wm_low->mask)) |
 228			  (ath10k_set_ring_byte(n, srcr_wm->wm_low)));
 229}
 230
 231static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
 232						    u32 ce_ctrl_addr,
 233						    unsigned int n)
 234{
 235	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
 236	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
 237
 238	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
 239			  (addr & ~(dstr_wm->wm_high->mask)) |
 240			  (ath10k_set_ring_byte(n, dstr_wm->wm_high)));
 241}
 242
 243static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
 244						   u32 ce_ctrl_addr,
 245						   unsigned int n)
 246{
 247	struct ath10k_hw_ce_dst_src_wm_regs *dstr_wm = ar->hw_ce_regs->wm_dstr;
 248	u32 addr = ath10k_ce_read32(ar, ce_ctrl_addr + dstr_wm->addr);
 249
 250	ath10k_ce_write32(ar, ce_ctrl_addr + dstr_wm->addr,
 251			  (addr & ~(dstr_wm->wm_low->mask)) |
 252			  (ath10k_set_ring_byte(n, dstr_wm->wm_low)));
 253}
 254
 255static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
 256							u32 ce_ctrl_addr)
 257{
 258	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
 259
 260	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 261					    ar->hw_ce_regs->host_ie_addr);
 262
 263	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 264			  host_ie_addr | host_ie->copy_complete->mask);
 265}
 266
 267static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
 268							u32 ce_ctrl_addr)
 269{
 270	struct ath10k_hw_ce_host_ie *host_ie = ar->hw_ce_regs->host_ie;
 271
 272	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 273					    ar->hw_ce_regs->host_ie_addr);
 274
 275	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 276			  host_ie_addr & ~(host_ie->copy_complete->mask));
 277}
 278
 279static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
 280						    u32 ce_ctrl_addr)
 281{
 282	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
 283
 284	u32 host_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 285					    ar->hw_ce_regs->host_ie_addr);
 286
 287	ath10k_ce_write32(ar, ce_ctrl_addr + ar->hw_ce_regs->host_ie_addr,
 288			  host_ie_addr & ~(wm_regs->wm_mask));
 289}
 290
 291static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
 292					       u32 ce_ctrl_addr)
 293{
 294	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
 295
 296	u32 misc_ie_addr = ath10k_ce_read32(ar, ce_ctrl_addr +
 297					    ar->hw_ce_regs->misc_ie_addr);
 298
 299	ath10k_ce_write32(ar,
 300			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
 301			  misc_ie_addr | misc_regs->err_mask);
 302}
 303
 304static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
 305						u32 ce_ctrl_addr)
 306{
 307	struct ath10k_hw_ce_misc_regs *misc_regs = ar->hw_ce_regs->misc_regs;
 308
 309	u32 misc_ie_addr = ath10k_ce_read32(ar,
 310			ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr);
 311
 312	ath10k_ce_write32(ar,
 313			  ce_ctrl_addr + ar->hw_ce_regs->misc_ie_addr,
 314			  misc_ie_addr & ~(misc_regs->err_mask));
 315}
 316
 317static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
 318						     u32 ce_ctrl_addr,
 319						     unsigned int mask)
 320{
 321	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
 322
 323	ath10k_ce_write32(ar, ce_ctrl_addr + wm_regs->addr, mask);
 324}
 325
 326/*
 327 * Guts of ath10k_ce_send.
 328 * The caller takes responsibility for any needed locking.
 329 */
 330static int _ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
 331				  void *per_transfer_context,
 332				  dma_addr_t buffer,
 333				  unsigned int nbytes,
 334				  unsigned int transfer_id,
 335				  unsigned int flags)
 336{
 337	struct ath10k *ar = ce_state->ar;
 338	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 339	struct ce_desc *desc, sdesc;
 340	unsigned int nentries_mask = src_ring->nentries_mask;
 341	unsigned int sw_index = src_ring->sw_index;
 342	unsigned int write_index = src_ring->write_index;
 343	u32 ctrl_addr = ce_state->ctrl_addr;
 344	u32 desc_flags = 0;
 345	int ret = 0;
 346
 347	if (nbytes > ce_state->src_sz_max)
 348		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
 349			    __func__, nbytes, ce_state->src_sz_max);
 350
 351	if (unlikely(CE_RING_DELTA(nentries_mask,
 352				   write_index, sw_index - 1) <= 0)) {
 353		ret = -ENOSR;
 354		goto exit;
 355	}
 356
 357	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
 358				   write_index);
 359
 360	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
 361
 362	if (flags & CE_SEND_FLAG_GATHER)
 363		desc_flags |= CE_DESC_FLAGS_GATHER;
 364	if (flags & CE_SEND_FLAG_BYTE_SWAP)
 365		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
 366
 367	sdesc.addr   = __cpu_to_le32(buffer);
 368	sdesc.nbytes = __cpu_to_le16(nbytes);
 369	sdesc.flags  = __cpu_to_le16(desc_flags);
 370
 371	*desc = sdesc;
 372
 373	src_ring->per_transfer_context[write_index] = per_transfer_context;
 374
 375	/* Update Source Ring Write Index */
 376	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 377
 378	/* WORKAROUND */
 379	if (!(flags & CE_SEND_FLAG_GATHER))
 380		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
 381
 382	src_ring->write_index = write_index;
 383exit:
 384	return ret;
 385}
 386
 387static int _ath10k_ce_send_nolock_64(struct ath10k_ce_pipe *ce_state,
 388				     void *per_transfer_context,
 389				     dma_addr_t buffer,
 390				     unsigned int nbytes,
 391				     unsigned int transfer_id,
 392				     unsigned int flags)
 393{
 394	struct ath10k *ar = ce_state->ar;
 395	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 396	struct ce_desc_64 *desc, sdesc;
 397	unsigned int nentries_mask = src_ring->nentries_mask;
 398	unsigned int sw_index = src_ring->sw_index;
 399	unsigned int write_index = src_ring->write_index;
 400	u32 ctrl_addr = ce_state->ctrl_addr;
 401	__le32 *addr;
 402	u32 desc_flags = 0;
 403	int ret = 0;
 404
 405	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
 406		return -ESHUTDOWN;
 407
 408	if (nbytes > ce_state->src_sz_max)
 409		ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
 410			    __func__, nbytes, ce_state->src_sz_max);
 411
 
 
 
 
 
 412	if (unlikely(CE_RING_DELTA(nentries_mask,
 413				   write_index, sw_index - 1) <= 0)) {
 414		ret = -ENOSR;
 415		goto exit;
 416	}
 417
 418	desc = CE_SRC_RING_TO_DESC_64(src_ring->base_addr_owner_space,
 419				      write_index);
 420
 421	desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
 422
 423	if (flags & CE_SEND_FLAG_GATHER)
 424		desc_flags |= CE_DESC_FLAGS_GATHER;
 425
 426	if (flags & CE_SEND_FLAG_BYTE_SWAP)
 427		desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
 428
 429	addr = (__le32 *)&sdesc.addr;
 430
 431	flags |= upper_32_bits(buffer) & CE_DESC_FLAGS_GET_MASK;
 432	addr[0] = __cpu_to_le32(buffer);
 433	addr[1] = __cpu_to_le32(flags);
 434	if (flags & CE_SEND_FLAG_GATHER)
 435		addr[1] |= __cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER);
 436	else
 437		addr[1] &= ~(__cpu_to_le32(CE_WCN3990_DESC_FLAGS_GATHER));
 438
 439	sdesc.nbytes = __cpu_to_le16(nbytes);
 440	sdesc.flags  = __cpu_to_le16(desc_flags);
 441
 442	*desc = sdesc;
 443
 444	src_ring->per_transfer_context[write_index] = per_transfer_context;
 445
 446	/* Update Source Ring Write Index */
 447	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 448
 449	if (!(flags & CE_SEND_FLAG_GATHER))
 450		ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
 
 
 
 
 
 
 451
 452	src_ring->write_index = write_index;
 453exit:
 454	return ret;
 455}
 456
 457int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
 458			  void *per_transfer_context,
 459			  dma_addr_t buffer,
 460			  unsigned int nbytes,
 461			  unsigned int transfer_id,
 462			  unsigned int flags)
 463{
 464	return ce_state->ops->ce_send_nolock(ce_state, per_transfer_context,
 465				    buffer, nbytes, transfer_id, flags);
 466}
 
 467
 468void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
 469{
 470	struct ath10k *ar = pipe->ar;
 471	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 472	struct ath10k_ce_ring *src_ring = pipe->src_ring;
 473	u32 ctrl_addr = pipe->ctrl_addr;
 474
 475	lockdep_assert_held(&ce->ce_lock);
 476
 477	/*
 478	 * This function must be called only if there is an incomplete
 479	 * scatter-gather transfer (before index register is updated)
 480	 * that needs to be cleaned up.
 481	 */
 482	if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
 483		return;
 484
 485	if (WARN_ON_ONCE(src_ring->write_index ==
 486			 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
 487		return;
 488
 489	src_ring->write_index--;
 490	src_ring->write_index &= src_ring->nentries_mask;
 491
 492	src_ring->per_transfer_context[src_ring->write_index] = NULL;
 493}
 
 494
 495int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
 496		   void *per_transfer_context,
 497		   dma_addr_t buffer,
 498		   unsigned int nbytes,
 499		   unsigned int transfer_id,
 500		   unsigned int flags)
 501{
 502	struct ath10k *ar = ce_state->ar;
 503	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 504	int ret;
 505
 506	spin_lock_bh(&ce->ce_lock);
 507	ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
 508				    buffer, nbytes, transfer_id, flags);
 509	spin_unlock_bh(&ce->ce_lock);
 510
 511	return ret;
 512}
 
 513
 514int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
 515{
 516	struct ath10k *ar = pipe->ar;
 517	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 518	int delta;
 519
 520	spin_lock_bh(&ce->ce_lock);
 521	delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
 522			      pipe->src_ring->write_index,
 523			      pipe->src_ring->sw_index - 1);
 524	spin_unlock_bh(&ce->ce_lock);
 525
 526	return delta;
 527}
 
 528
 529int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
 530{
 531	struct ath10k *ar = pipe->ar;
 532	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 533	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 534	unsigned int nentries_mask = dest_ring->nentries_mask;
 535	unsigned int write_index = dest_ring->write_index;
 536	unsigned int sw_index = dest_ring->sw_index;
 537
 538	lockdep_assert_held(&ce->ce_lock);
 539
 540	return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
 541}
 
 542
 543static int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
 544				   dma_addr_t paddr)
 545{
 546	struct ath10k *ar = pipe->ar;
 547	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 548	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 549	unsigned int nentries_mask = dest_ring->nentries_mask;
 550	unsigned int write_index = dest_ring->write_index;
 551	unsigned int sw_index = dest_ring->sw_index;
 552	struct ce_desc *base = dest_ring->base_addr_owner_space;
 553	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
 554	u32 ctrl_addr = pipe->ctrl_addr;
 555
 556	lockdep_assert_held(&ce->ce_lock);
 557
 558	if ((pipe->id != 5) &&
 559	    CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
 560		return -ENOSPC;
 561
 562	desc->addr = __cpu_to_le32(paddr);
 563	desc->nbytes = 0;
 564
 565	dest_ring->per_transfer_context[write_index] = ctx;
 566	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 567	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 568	dest_ring->write_index = write_index;
 569
 570	return 0;
 571}
 572
 573static int __ath10k_ce_rx_post_buf_64(struct ath10k_ce_pipe *pipe,
 574				      void *ctx,
 575				      dma_addr_t paddr)
 576{
 577	struct ath10k *ar = pipe->ar;
 578	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 579	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 580	unsigned int nentries_mask = dest_ring->nentries_mask;
 581	unsigned int write_index = dest_ring->write_index;
 582	unsigned int sw_index = dest_ring->sw_index;
 583	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 584	struct ce_desc_64 *desc =
 585			CE_DEST_RING_TO_DESC_64(base, write_index);
 586	u32 ctrl_addr = pipe->ctrl_addr;
 587
 588	lockdep_assert_held(&ce->ce_lock);
 589
 590	if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
 591		return -ENOSPC;
 592
 593	desc->addr = __cpu_to_le64(paddr);
 594	desc->addr &= __cpu_to_le64(CE_DESC_37BIT_ADDR_MASK);
 595
 596	desc->nbytes = 0;
 597
 598	dest_ring->per_transfer_context[write_index] = ctx;
 599	write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
 600	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 601	dest_ring->write_index = write_index;
 602
 603	return 0;
 604}
 605
 606void ath10k_ce_rx_update_write_idx(struct ath10k_ce_pipe *pipe, u32 nentries)
 607{
 608	struct ath10k *ar = pipe->ar;
 609	struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
 610	unsigned int nentries_mask = dest_ring->nentries_mask;
 611	unsigned int write_index = dest_ring->write_index;
 612	u32 ctrl_addr = pipe->ctrl_addr;
 613	u32 cur_write_idx = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
 614
 615	/* Prevent CE ring stuck issue that will occur when ring is full.
 616	 * Make sure that write index is 1 less than read index.
 617	 */
 618	if ((cur_write_idx + nentries)  == dest_ring->sw_index)
 619		nentries -= 1;
 620
 621	write_index = CE_RING_IDX_ADD(nentries_mask, write_index, nentries);
 622	ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
 623	dest_ring->write_index = write_index;
 624}
 
 625
 626int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx,
 627			  dma_addr_t paddr)
 628{
 629	struct ath10k *ar = pipe->ar;
 630	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 631	int ret;
 632
 633	spin_lock_bh(&ce->ce_lock);
 634	ret = pipe->ops->ce_rx_post_buf(pipe, ctx, paddr);
 635	spin_unlock_bh(&ce->ce_lock);
 636
 637	return ret;
 638}
 
 639
 640/*
 641 * Guts of ath10k_ce_completed_recv_next.
 642 * The caller takes responsibility for any necessary locking.
 643 */
 644static int
 645	 _ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
 646					       void **per_transfer_contextp,
 647					       unsigned int *nbytesp)
 648{
 649	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 650	unsigned int nentries_mask = dest_ring->nentries_mask;
 651	unsigned int sw_index = dest_ring->sw_index;
 652
 653	struct ce_desc *base = dest_ring->base_addr_owner_space;
 654	struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 655	struct ce_desc sdesc;
 656	u16 nbytes;
 657
 658	/* Copy in one go for performance reasons */
 659	sdesc = *desc;
 660
 661	nbytes = __le16_to_cpu(sdesc.nbytes);
 662	if (nbytes == 0) {
 663		/*
 664		 * This closes a relatively unusual race where the Host
 665		 * sees the updated DRRI before the update to the
 666		 * corresponding descriptor has completed. We treat this
 667		 * as a descriptor that is not yet done.
 668		 */
 669		return -EIO;
 670	}
 671
 672	desc->nbytes = 0;
 673
 674	/* Return data from completed destination descriptor */
 675	*nbytesp = nbytes;
 676
 677	if (per_transfer_contextp)
 678		*per_transfer_contextp =
 679			dest_ring->per_transfer_context[sw_index];
 680
 681	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
 682	 * So update transfer context all CEs except CE5.
 683	 */
 684	if (ce_state->id != 5)
 685		dest_ring->per_transfer_context[sw_index] = NULL;
 686
 687	/* Update sw_index */
 688	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 689	dest_ring->sw_index = sw_index;
 690
 691	return 0;
 692}
 693
 694static int
 695_ath10k_ce_completed_recv_next_nolock_64(struct ath10k_ce_pipe *ce_state,
 696					 void **per_transfer_contextp,
 697					 unsigned int *nbytesp)
 698{
 699	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
 700	unsigned int nentries_mask = dest_ring->nentries_mask;
 701	unsigned int sw_index = dest_ring->sw_index;
 702	struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 703	struct ce_desc_64 *desc =
 704		CE_DEST_RING_TO_DESC_64(base, sw_index);
 705	struct ce_desc_64 sdesc;
 706	u16 nbytes;
 707
 708	/* Copy in one go for performance reasons */
 709	sdesc = *desc;
 710
 711	nbytes = __le16_to_cpu(sdesc.nbytes);
 712	if (nbytes == 0) {
 713		/* This closes a relatively unusual race where the Host
 714		 * sees the updated DRRI before the update to the
 715		 * corresponding descriptor has completed. We treat this
 716		 * as a descriptor that is not yet done.
 717		 */
 718		return -EIO;
 719	}
 720
 721	desc->nbytes = 0;
 722
 723	/* Return data from completed destination descriptor */
 724	*nbytesp = nbytes;
 725
 726	if (per_transfer_contextp)
 727		*per_transfer_contextp =
 728			dest_ring->per_transfer_context[sw_index];
 729
 730	/* Copy engine 5 (HTT Rx) will reuse the same transfer context.
 731	 * So update transfer context all CEs except CE5.
 732	 */
 733	if (ce_state->id != 5)
 734		dest_ring->per_transfer_context[sw_index] = NULL;
 735
 736	/* Update sw_index */
 737	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 738	dest_ring->sw_index = sw_index;
 739
 740	return 0;
 741}
 742
 743int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
 744					 void **per_transfer_ctx,
 745					 unsigned int *nbytesp)
 746{
 747	return ce_state->ops->ce_completed_recv_next_nolock(ce_state,
 748							    per_transfer_ctx,
 749							    nbytesp);
 750}
 
 751
 752int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
 753				  void **per_transfer_contextp,
 754				  unsigned int *nbytesp)
 755{
 756	struct ath10k *ar = ce_state->ar;
 757	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 758	int ret;
 759
 760	spin_lock_bh(&ce->ce_lock);
 761	ret = ce_state->ops->ce_completed_recv_next_nolock(ce_state,
 762						   per_transfer_contextp,
 763						   nbytesp);
 764
 765	spin_unlock_bh(&ce->ce_lock);
 766
 767	return ret;
 768}
 
 769
 770static int _ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
 771				       void **per_transfer_contextp,
 772				       dma_addr_t *bufferp)
 773{
 774	struct ath10k_ce_ring *dest_ring;
 775	unsigned int nentries_mask;
 776	unsigned int sw_index;
 777	unsigned int write_index;
 778	int ret;
 779	struct ath10k *ar;
 780	struct ath10k_ce *ce;
 781
 782	dest_ring = ce_state->dest_ring;
 783
 784	if (!dest_ring)
 785		return -EIO;
 786
 787	ar = ce_state->ar;
 788	ce = ath10k_ce_priv(ar);
 789
 790	spin_lock_bh(&ce->ce_lock);
 791
 792	nentries_mask = dest_ring->nentries_mask;
 793	sw_index = dest_ring->sw_index;
 794	write_index = dest_ring->write_index;
 795	if (write_index != sw_index) {
 796		struct ce_desc *base = dest_ring->base_addr_owner_space;
 797		struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
 798
 799		/* Return data from completed destination descriptor */
 800		*bufferp = __le32_to_cpu(desc->addr);
 801
 802		if (per_transfer_contextp)
 803			*per_transfer_contextp =
 804				dest_ring->per_transfer_context[sw_index];
 805
 806		/* sanity */
 807		dest_ring->per_transfer_context[sw_index] = NULL;
 808		desc->nbytes = 0;
 809
 810		/* Update sw_index */
 811		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 812		dest_ring->sw_index = sw_index;
 813		ret = 0;
 814	} else {
 815		ret = -EIO;
 816	}
 817
 818	spin_unlock_bh(&ce->ce_lock);
 819
 820	return ret;
 821}
 822
 823static int _ath10k_ce_revoke_recv_next_64(struct ath10k_ce_pipe *ce_state,
 824					  void **per_transfer_contextp,
 825					  dma_addr_t *bufferp)
 826{
 827	struct ath10k_ce_ring *dest_ring;
 828	unsigned int nentries_mask;
 829	unsigned int sw_index;
 830	unsigned int write_index;
 831	int ret;
 832	struct ath10k *ar;
 833	struct ath10k_ce *ce;
 834
 835	dest_ring = ce_state->dest_ring;
 836
 837	if (!dest_ring)
 838		return -EIO;
 839
 840	ar = ce_state->ar;
 841	ce = ath10k_ce_priv(ar);
 842
 843	spin_lock_bh(&ce->ce_lock);
 844
 845	nentries_mask = dest_ring->nentries_mask;
 846	sw_index = dest_ring->sw_index;
 847	write_index = dest_ring->write_index;
 848	if (write_index != sw_index) {
 849		struct ce_desc_64 *base = dest_ring->base_addr_owner_space;
 850		struct ce_desc_64 *desc =
 851			CE_DEST_RING_TO_DESC_64(base, sw_index);
 852
 853		/* Return data from completed destination descriptor */
 854		*bufferp = __le64_to_cpu(desc->addr);
 855
 856		if (per_transfer_contextp)
 857			*per_transfer_contextp =
 858				dest_ring->per_transfer_context[sw_index];
 859
 860		/* sanity */
 861		dest_ring->per_transfer_context[sw_index] = NULL;
 862		desc->nbytes = 0;
 863
 864		/* Update sw_index */
 865		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 866		dest_ring->sw_index = sw_index;
 867		ret = 0;
 868	} else {
 869		ret = -EIO;
 870	}
 871
 872	spin_unlock_bh(&ce->ce_lock);
 873
 874	return ret;
 875}
 876
 877int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
 878			       void **per_transfer_contextp,
 879			       dma_addr_t *bufferp)
 880{
 881	return ce_state->ops->ce_revoke_recv_next(ce_state,
 882						  per_transfer_contextp,
 883						  bufferp);
 884}
 
 885
 886/*
 887 * Guts of ath10k_ce_completed_send_next.
 888 * The caller takes responsibility for any necessary locking.
 889 */
 890int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
 891					 void **per_transfer_contextp)
 892{
 893	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
 894	u32 ctrl_addr = ce_state->ctrl_addr;
 895	struct ath10k *ar = ce_state->ar;
 896	unsigned int nentries_mask = src_ring->nentries_mask;
 897	unsigned int sw_index = src_ring->sw_index;
 898	unsigned int read_index;
 899	struct ce_desc *desc;
 900
 901	if (src_ring->hw_index == sw_index) {
 902		/*
 903		 * The SW completion index has caught up with the cached
 904		 * version of the HW completion index.
 905		 * Update the cached HW completion index to see whether
 906		 * the SW has really caught up to the HW, or if the cached
 907		 * value of the HW index has become stale.
 908		 */
 909
 910		read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
 911		if (read_index == 0xffffffff)
 912			return -ENODEV;
 913
 914		read_index &= nentries_mask;
 915		src_ring->hw_index = read_index;
 916	}
 917
 918	read_index = src_ring->hw_index;
 
 
 
 919
 920	if (read_index == sw_index)
 921		return -EIO;
 922
 923	if (per_transfer_contextp)
 924		*per_transfer_contextp =
 925			src_ring->per_transfer_context[sw_index];
 926
 927	/* sanity */
 928	src_ring->per_transfer_context[sw_index] = NULL;
 929	desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
 930				   sw_index);
 931	desc->nbytes = 0;
 932
 933	/* Update sw_index */
 934	sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
 935	src_ring->sw_index = sw_index;
 936
 937	return 0;
 938}
 939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940static void ath10k_ce_extract_desc_data(struct ath10k *ar,
 941					struct ath10k_ce_ring *src_ring,
 942					u32 sw_index,
 943					dma_addr_t *bufferp,
 944					u32 *nbytesp,
 945					u32 *transfer_idp)
 946{
 947		struct ce_desc *base = src_ring->base_addr_owner_space;
 948		struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
 949
 950		/* Return data from completed source descriptor */
 951		*bufferp = __le32_to_cpu(desc->addr);
 952		*nbytesp = __le16_to_cpu(desc->nbytes);
 953		*transfer_idp = MS(__le16_to_cpu(desc->flags),
 954				   CE_DESC_FLAGS_META_DATA);
 955}
 956
 957static void ath10k_ce_extract_desc_data_64(struct ath10k *ar,
 958					   struct ath10k_ce_ring *src_ring,
 959					   u32 sw_index,
 960					   dma_addr_t *bufferp,
 961					   u32 *nbytesp,
 962					   u32 *transfer_idp)
 963{
 964		struct ce_desc_64 *base = src_ring->base_addr_owner_space;
 965		struct ce_desc_64 *desc =
 966			CE_SRC_RING_TO_DESC_64(base, sw_index);
 967
 968		/* Return data from completed source descriptor */
 969		*bufferp = __le64_to_cpu(desc->addr);
 970		*nbytesp = __le16_to_cpu(desc->nbytes);
 971		*transfer_idp = MS(__le16_to_cpu(desc->flags),
 972				   CE_DESC_FLAGS_META_DATA);
 973}
 974
 975/* NB: Modeled after ath10k_ce_completed_send_next */
 976int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
 977			       void **per_transfer_contextp,
 978			       dma_addr_t *bufferp,
 979			       unsigned int *nbytesp,
 980			       unsigned int *transfer_idp)
 981{
 982	struct ath10k_ce_ring *src_ring;
 983	unsigned int nentries_mask;
 984	unsigned int sw_index;
 985	unsigned int write_index;
 986	int ret;
 987	struct ath10k *ar;
 988	struct ath10k_ce *ce;
 989
 990	src_ring = ce_state->src_ring;
 991
 992	if (!src_ring)
 993		return -EIO;
 994
 995	ar = ce_state->ar;
 996	ce = ath10k_ce_priv(ar);
 997
 998	spin_lock_bh(&ce->ce_lock);
 999
1000	nentries_mask = src_ring->nentries_mask;
1001	sw_index = src_ring->sw_index;
1002	write_index = src_ring->write_index;
1003
1004	if (write_index != sw_index) {
1005		ce_state->ops->ce_extract_desc_data(ar, src_ring, sw_index,
1006						    bufferp, nbytesp,
1007						    transfer_idp);
1008
1009		if (per_transfer_contextp)
1010			*per_transfer_contextp =
1011				src_ring->per_transfer_context[sw_index];
1012
1013		/* sanity */
1014		src_ring->per_transfer_context[sw_index] = NULL;
1015
1016		/* Update sw_index */
1017		sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
1018		src_ring->sw_index = sw_index;
1019		ret = 0;
1020	} else {
1021		ret = -EIO;
1022	}
1023
1024	spin_unlock_bh(&ce->ce_lock);
1025
1026	return ret;
1027}
 
1028
1029int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
1030				  void **per_transfer_contextp)
1031{
1032	struct ath10k *ar = ce_state->ar;
1033	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1034	int ret;
1035
1036	spin_lock_bh(&ce->ce_lock);
1037	ret = ath10k_ce_completed_send_next_nolock(ce_state,
1038						   per_transfer_contextp);
1039	spin_unlock_bh(&ce->ce_lock);
1040
1041	return ret;
1042}
 
1043
1044/*
1045 * Guts of interrupt handler for per-engine interrupts on a particular CE.
1046 *
1047 * Invokes registered callbacks for recv_complete,
1048 * send_complete, and watermarks.
1049 */
1050void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
1051{
1052	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1053	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1054	struct ath10k_hw_ce_host_wm_regs *wm_regs = ar->hw_ce_regs->wm_regs;
1055	u32 ctrl_addr = ce_state->ctrl_addr;
1056
1057	spin_lock_bh(&ce->ce_lock);
1058
1059	/* Clear the copy-complete interrupts that will be handled here. */
 
 
 
 
 
 
 
1060	ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
1061					  wm_regs->cc_mask);
1062
1063	spin_unlock_bh(&ce->ce_lock);
1064
1065	if (ce_state->recv_cb)
1066		ce_state->recv_cb(ce_state);
1067
1068	if (ce_state->send_cb)
1069		ce_state->send_cb(ce_state);
1070
1071	spin_lock_bh(&ce->ce_lock);
1072
1073	/*
1074	 * Misc CE interrupts are not being handled, but still need
1075	 * to be cleared.
1076	 */
1077	ath10k_ce_engine_int_status_clear(ar, ctrl_addr, wm_regs->wm_mask);
1078
1079	spin_unlock_bh(&ce->ce_lock);
1080}
 
1081
1082/*
1083 * Handler for per-engine interrupts on ALL active CEs.
1084 * This is used in cases where the system is sharing a
1085 * single interrput for all CEs
1086 */
1087
1088void ath10k_ce_per_engine_service_any(struct ath10k *ar)
1089{
1090	int ce_id;
1091	u32 intr_summary;
1092
1093	intr_summary = ath10k_ce_interrupt_summary(ar);
1094
1095	for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
1096		if (intr_summary & (1 << ce_id))
1097			intr_summary &= ~(1 << ce_id);
1098		else
1099			/* no intr pending on this CE */
1100			continue;
1101
1102		ath10k_ce_per_engine_service(ar, ce_id);
1103	}
1104}
 
1105
1106/*
1107 * Adjust interrupts for the copy complete handler.
1108 * If it's needed for either send or recv, then unmask
1109 * this interrupt; otherwise, mask it.
1110 *
1111 * Called with ce_lock held.
1112 */
1113static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
1114{
1115	u32 ctrl_addr = ce_state->ctrl_addr;
1116	struct ath10k *ar = ce_state->ar;
1117	bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
1118
1119	if ((!disable_copy_compl_intr) &&
1120	    (ce_state->send_cb || ce_state->recv_cb))
1121		ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
1122	else
1123		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1124
1125	ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1126}
1127
1128int ath10k_ce_disable_interrupts(struct ath10k *ar)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129{
1130	int ce_id;
1131
1132	for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
1133		u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
 
 
1134
1135		ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
1136		ath10k_ce_error_intr_disable(ar, ctrl_addr);
1137		ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
1138	}
 
 
 
 
1139
1140	return 0;
1141}
 
1142
1143void ath10k_ce_enable_interrupts(struct ath10k *ar)
1144{
1145	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1146	int ce_id;
1147	struct ath10k_ce_pipe *ce_state;
1148
1149	/* Skip the last copy engine, CE7 the diagnostic window, as that
1150	 * uses polling and isn't initialized for interrupts.
1151	 */
1152	for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++) {
1153		ce_state  = &ce->ce_states[ce_id];
1154		ath10k_ce_per_engine_handler_adjust(ce_state);
1155	}
1156}
 
1157
1158static int ath10k_ce_init_src_ring(struct ath10k *ar,
1159				   unsigned int ce_id,
1160				   const struct ce_attr *attr)
1161{
1162	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1163	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1164	struct ath10k_ce_ring *src_ring = ce_state->src_ring;
1165	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1166
1167	nentries = roundup_pow_of_two(attr->src_nentries);
1168
1169	if (ar->hw_params.target_64bit)
1170		memset(src_ring->base_addr_owner_space, 0,
1171		       nentries * sizeof(struct ce_desc_64));
1172	else
1173		memset(src_ring->base_addr_owner_space, 0,
1174		       nentries * sizeof(struct ce_desc));
1175
1176	src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
1177	src_ring->sw_index &= src_ring->nentries_mask;
1178	src_ring->hw_index = src_ring->sw_index;
1179
1180	src_ring->write_index =
1181		ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
1182	src_ring->write_index &= src_ring->nentries_mask;
1183
1184	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
1185					 src_ring->base_addr_ce_space);
1186	ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
1187	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
1188	ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
1189	ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
1190	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
1191
1192	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1193		   "boot init ce src ring id %d entries %d base_addr %pK\n",
1194		   ce_id, nentries, src_ring->base_addr_owner_space);
1195
1196	return 0;
1197}
1198
1199static int ath10k_ce_init_dest_ring(struct ath10k *ar,
1200				    unsigned int ce_id,
1201				    const struct ce_attr *attr)
1202{
1203	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1204	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1205	struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
1206	u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1207
1208	nentries = roundup_pow_of_two(attr->dest_nentries);
1209
1210	if (ar->hw_params.target_64bit)
1211		memset(dest_ring->base_addr_owner_space, 0,
1212		       nentries * sizeof(struct ce_desc_64));
1213	else
1214		memset(dest_ring->base_addr_owner_space, 0,
1215		       nentries * sizeof(struct ce_desc));
1216
1217	dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
1218	dest_ring->sw_index &= dest_ring->nentries_mask;
1219	dest_ring->write_index =
1220		ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
1221	dest_ring->write_index &= dest_ring->nentries_mask;
1222
1223	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
1224					  dest_ring->base_addr_ce_space);
1225	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
1226	ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
1227	ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
1228	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
1229
1230	ath10k_dbg(ar, ATH10K_DBG_BOOT,
1231		   "boot ce dest ring id %d entries %d base_addr %pK\n",
1232		   ce_id, nentries, dest_ring->base_addr_owner_space);
1233
1234	return 0;
1235}
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237static struct ath10k_ce_ring *
1238ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
1239			 const struct ce_attr *attr)
1240{
1241	struct ath10k_ce_ring *src_ring;
1242	u32 nentries = attr->src_nentries;
1243	dma_addr_t base_addr;
 
1244
1245	nentries = roundup_pow_of_two(nentries);
1246
1247	src_ring = kzalloc(sizeof(*src_ring) +
1248			   (nentries *
1249			    sizeof(*src_ring->per_transfer_context)),
1250			   GFP_KERNEL);
1251	if (src_ring == NULL)
1252		return ERR_PTR(-ENOMEM);
1253
1254	src_ring->nentries = nentries;
1255	src_ring->nentries_mask = nentries - 1;
1256
1257	/*
1258	 * Legacy platforms that do not support cache
1259	 * coherent DMA are unsupported
1260	 */
1261	src_ring->base_addr_owner_space_unaligned =
1262		dma_alloc_coherent(ar->dev,
1263				   (nentries * sizeof(struct ce_desc) +
1264				    CE_DESC_RING_ALIGN),
1265				   &base_addr, GFP_KERNEL);
1266	if (!src_ring->base_addr_owner_space_unaligned) {
1267		kfree(src_ring);
1268		return ERR_PTR(-ENOMEM);
1269	}
1270
1271	src_ring->base_addr_ce_space_unaligned = base_addr;
1272
1273	src_ring->base_addr_owner_space =
1274			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1275				  CE_DESC_RING_ALIGN);
1276	src_ring->base_addr_ce_space =
1277			ALIGN(src_ring->base_addr_ce_space_unaligned,
1278			      CE_DESC_RING_ALIGN);
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
1280	return src_ring;
1281}
1282
1283static struct ath10k_ce_ring *
1284ath10k_ce_alloc_src_ring_64(struct ath10k *ar, unsigned int ce_id,
1285			    const struct ce_attr *attr)
1286{
1287	struct ath10k_ce_ring *src_ring;
1288	u32 nentries = attr->src_nentries;
1289	dma_addr_t base_addr;
 
1290
1291	nentries = roundup_pow_of_two(nentries);
1292
1293	src_ring = kzalloc(sizeof(*src_ring) +
1294			   (nentries *
1295			    sizeof(*src_ring->per_transfer_context)),
1296			   GFP_KERNEL);
1297	if (!src_ring)
1298		return ERR_PTR(-ENOMEM);
1299
1300	src_ring->nentries = nentries;
1301	src_ring->nentries_mask = nentries - 1;
1302
1303	/* Legacy platforms that do not support cache
1304	 * coherent DMA are unsupported
1305	 */
1306	src_ring->base_addr_owner_space_unaligned =
1307		dma_alloc_coherent(ar->dev,
1308				   (nentries * sizeof(struct ce_desc_64) +
1309				    CE_DESC_RING_ALIGN),
1310				   &base_addr, GFP_KERNEL);
1311	if (!src_ring->base_addr_owner_space_unaligned) {
1312		kfree(src_ring);
1313		return ERR_PTR(-ENOMEM);
1314	}
1315
1316	src_ring->base_addr_ce_space_unaligned = base_addr;
1317
1318	src_ring->base_addr_owner_space =
1319			PTR_ALIGN(src_ring->base_addr_owner_space_unaligned,
1320				  CE_DESC_RING_ALIGN);
1321	src_ring->base_addr_ce_space =
1322			ALIGN(src_ring->base_addr_ce_space_unaligned,
1323			      CE_DESC_RING_ALIGN);
1324
 
 
 
 
 
 
 
 
 
 
 
 
 
1325	return src_ring;
1326}
1327
1328static struct ath10k_ce_ring *
1329ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
1330			  const struct ce_attr *attr)
1331{
1332	struct ath10k_ce_ring *dest_ring;
1333	u32 nentries;
1334	dma_addr_t base_addr;
1335
1336	nentries = roundup_pow_of_two(attr->dest_nentries);
1337
1338	dest_ring = kzalloc(sizeof(*dest_ring) +
1339			    (nentries *
1340			     sizeof(*dest_ring->per_transfer_context)),
1341			    GFP_KERNEL);
1342	if (dest_ring == NULL)
1343		return ERR_PTR(-ENOMEM);
1344
1345	dest_ring->nentries = nentries;
1346	dest_ring->nentries_mask = nentries - 1;
1347
1348	/*
1349	 * Legacy platforms that do not support cache
1350	 * coherent DMA are unsupported
1351	 */
1352	dest_ring->base_addr_owner_space_unaligned =
1353		dma_zalloc_coherent(ar->dev,
1354				    (nentries * sizeof(struct ce_desc) +
1355				     CE_DESC_RING_ALIGN),
1356				    &base_addr, GFP_KERNEL);
1357	if (!dest_ring->base_addr_owner_space_unaligned) {
1358		kfree(dest_ring);
1359		return ERR_PTR(-ENOMEM);
1360	}
1361
1362	dest_ring->base_addr_ce_space_unaligned = base_addr;
1363
1364	dest_ring->base_addr_owner_space =
1365			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1366				  CE_DESC_RING_ALIGN);
1367	dest_ring->base_addr_ce_space =
1368				ALIGN(dest_ring->base_addr_ce_space_unaligned,
1369				      CE_DESC_RING_ALIGN);
1370
1371	return dest_ring;
1372}
1373
1374static struct ath10k_ce_ring *
1375ath10k_ce_alloc_dest_ring_64(struct ath10k *ar, unsigned int ce_id,
1376			     const struct ce_attr *attr)
1377{
1378	struct ath10k_ce_ring *dest_ring;
1379	u32 nentries;
1380	dma_addr_t base_addr;
1381
1382	nentries = roundup_pow_of_two(attr->dest_nentries);
1383
1384	dest_ring = kzalloc(sizeof(*dest_ring) +
1385			    (nentries *
1386			     sizeof(*dest_ring->per_transfer_context)),
1387			    GFP_KERNEL);
1388	if (!dest_ring)
1389		return ERR_PTR(-ENOMEM);
1390
1391	dest_ring->nentries = nentries;
1392	dest_ring->nentries_mask = nentries - 1;
1393
1394	/* Legacy platforms that do not support cache
1395	 * coherent DMA are unsupported
1396	 */
1397	dest_ring->base_addr_owner_space_unaligned =
1398		dma_alloc_coherent(ar->dev,
1399				   (nentries * sizeof(struct ce_desc_64) +
1400				    CE_DESC_RING_ALIGN),
1401				   &base_addr, GFP_KERNEL);
1402	if (!dest_ring->base_addr_owner_space_unaligned) {
1403		kfree(dest_ring);
1404		return ERR_PTR(-ENOMEM);
1405	}
1406
1407	dest_ring->base_addr_ce_space_unaligned = base_addr;
1408
1409	/* Correctly initialize memory to 0 to prevent garbage
1410	 * data crashing system when download firmware
1411	 */
1412	memset(dest_ring->base_addr_owner_space_unaligned, 0,
1413	       nentries * sizeof(struct ce_desc_64) + CE_DESC_RING_ALIGN);
1414
1415	dest_ring->base_addr_owner_space =
1416			PTR_ALIGN(dest_ring->base_addr_owner_space_unaligned,
1417				  CE_DESC_RING_ALIGN);
1418	dest_ring->base_addr_ce_space =
1419			ALIGN(dest_ring->base_addr_ce_space_unaligned,
1420			      CE_DESC_RING_ALIGN);
1421
1422	return dest_ring;
1423}
1424
1425/*
1426 * Initialize a Copy Engine based on caller-supplied attributes.
1427 * This may be called once to initialize both source and destination
1428 * rings or it may be called twice for separate source and destination
1429 * initialization. It may be that only one side or the other is
1430 * initialized by software/firmware.
1431 */
1432int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1433			const struct ce_attr *attr)
1434{
1435	int ret;
1436
1437	if (attr->src_nentries) {
1438		ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1439		if (ret) {
1440			ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1441				   ce_id, ret);
1442			return ret;
1443		}
1444	}
1445
1446	if (attr->dest_nentries) {
1447		ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1448		if (ret) {
1449			ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1450				   ce_id, ret);
1451			return ret;
1452		}
1453	}
1454
1455	return 0;
1456}
 
1457
1458static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1459{
1460	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1461
1462	ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1463	ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1464	ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1465	ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1466}
1467
1468static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1469{
1470	u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1471
1472	ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1473	ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1474	ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1475}
1476
1477void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1478{
1479	ath10k_ce_deinit_src_ring(ar, ce_id);
1480	ath10k_ce_deinit_dest_ring(ar, ce_id);
1481}
 
1482
1483static void _ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1484{
1485	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1486	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1487
1488	if (ce_state->src_ring) {
 
 
1489		dma_free_coherent(ar->dev,
1490				  (ce_state->src_ring->nentries *
1491				   sizeof(struct ce_desc) +
1492				   CE_DESC_RING_ALIGN),
1493				  ce_state->src_ring->base_addr_owner_space,
1494				  ce_state->src_ring->base_addr_ce_space);
1495		kfree(ce_state->src_ring);
1496	}
1497
1498	if (ce_state->dest_ring) {
1499		dma_free_coherent(ar->dev,
1500				  (ce_state->dest_ring->nentries *
1501				   sizeof(struct ce_desc) +
1502				   CE_DESC_RING_ALIGN),
1503				  ce_state->dest_ring->base_addr_owner_space,
1504				  ce_state->dest_ring->base_addr_ce_space);
1505		kfree(ce_state->dest_ring);
1506	}
1507
1508	ce_state->src_ring = NULL;
1509	ce_state->dest_ring = NULL;
1510}
1511
1512static void _ath10k_ce_free_pipe_64(struct ath10k *ar, int ce_id)
1513{
1514	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1515	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1516
1517	if (ce_state->src_ring) {
 
 
1518		dma_free_coherent(ar->dev,
1519				  (ce_state->src_ring->nentries *
1520				   sizeof(struct ce_desc_64) +
1521				   CE_DESC_RING_ALIGN),
1522				  ce_state->src_ring->base_addr_owner_space,
1523				  ce_state->src_ring->base_addr_ce_space);
1524		kfree(ce_state->src_ring);
1525	}
1526
1527	if (ce_state->dest_ring) {
1528		dma_free_coherent(ar->dev,
1529				  (ce_state->dest_ring->nentries *
1530				   sizeof(struct ce_desc_64) +
1531				   CE_DESC_RING_ALIGN),
1532				  ce_state->dest_ring->base_addr_owner_space,
1533				  ce_state->dest_ring->base_addr_ce_space);
1534		kfree(ce_state->dest_ring);
1535	}
1536
1537	ce_state->src_ring = NULL;
1538	ce_state->dest_ring = NULL;
1539}
1540
1541void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1542{
1543	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1544	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1545
1546	ce_state->ops->ce_free_pipe(ar, ce_id);
1547}
 
1548
1549void ath10k_ce_dump_registers(struct ath10k *ar,
1550			      struct ath10k_fw_crash_data *crash_data)
1551{
1552	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1553	struct ath10k_ce_crash_data ce_data;
1554	u32 addr, id;
1555
1556	lockdep_assert_held(&ar->data_lock);
1557
1558	ath10k_err(ar, "Copy Engine register dump:\n");
1559
1560	spin_lock_bh(&ce->ce_lock);
1561	for (id = 0; id < CE_COUNT; id++) {
1562		addr = ath10k_ce_base_address(ar, id);
1563		ce_data.base_addr = cpu_to_le32(addr);
1564
1565		ce_data.src_wr_idx =
1566			cpu_to_le32(ath10k_ce_src_ring_write_index_get(ar, addr));
1567		ce_data.src_r_idx =
1568			cpu_to_le32(ath10k_ce_src_ring_read_index_get(ar, addr));
1569		ce_data.dst_wr_idx =
1570			cpu_to_le32(ath10k_ce_dest_ring_write_index_get(ar, addr));
1571		ce_data.dst_r_idx =
1572			cpu_to_le32(ath10k_ce_dest_ring_read_index_get(ar, addr));
1573
1574		if (crash_data)
1575			crash_data->ce_crash_data[id] = ce_data;
1576
1577		ath10k_err(ar, "[%02d]: 0x%08x %3u %3u %3u %3u", id,
1578			   le32_to_cpu(ce_data.base_addr),
1579			   le32_to_cpu(ce_data.src_wr_idx),
1580			   le32_to_cpu(ce_data.src_r_idx),
1581			   le32_to_cpu(ce_data.dst_wr_idx),
1582			   le32_to_cpu(ce_data.dst_r_idx));
1583	}
1584
1585	spin_unlock_bh(&ce->ce_lock);
1586}
 
1587
1588static const struct ath10k_ce_ops ce_ops = {
1589	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring,
1590	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring,
1591	.ce_rx_post_buf = __ath10k_ce_rx_post_buf,
1592	.ce_completed_recv_next_nolock = _ath10k_ce_completed_recv_next_nolock,
1593	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next,
1594	.ce_extract_desc_data = ath10k_ce_extract_desc_data,
1595	.ce_free_pipe = _ath10k_ce_free_pipe,
1596	.ce_send_nolock = _ath10k_ce_send_nolock,
 
 
 
1597};
1598
1599static const struct ath10k_ce_ops ce_64_ops = {
1600	.ce_alloc_src_ring = ath10k_ce_alloc_src_ring_64,
1601	.ce_alloc_dst_ring = ath10k_ce_alloc_dest_ring_64,
1602	.ce_rx_post_buf = __ath10k_ce_rx_post_buf_64,
1603	.ce_completed_recv_next_nolock =
1604				_ath10k_ce_completed_recv_next_nolock_64,
1605	.ce_revoke_recv_next = _ath10k_ce_revoke_recv_next_64,
1606	.ce_extract_desc_data = ath10k_ce_extract_desc_data_64,
1607	.ce_free_pipe = _ath10k_ce_free_pipe_64,
1608	.ce_send_nolock = _ath10k_ce_send_nolock_64,
 
 
 
1609};
1610
1611static void ath10k_ce_set_ops(struct ath10k *ar,
1612			      struct ath10k_ce_pipe *ce_state)
1613{
1614	switch (ar->hw_rev) {
1615	case ATH10K_HW_WCN3990:
1616		ce_state->ops = &ce_64_ops;
1617		break;
1618	default:
1619		ce_state->ops = &ce_ops;
1620		break;
1621	}
1622}
1623
1624int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1625			 const struct ce_attr *attr)
1626{
1627	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1628	struct ath10k_ce_pipe *ce_state = &ce->ce_states[ce_id];
1629	int ret;
1630
1631	ath10k_ce_set_ops(ar, ce_state);
1632	/* Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1633	 * additional TX locking checks.
1634	 *
1635	 * For the lack of a better place do the check here.
1636	 */
1637	BUILD_BUG_ON(2 * TARGET_NUM_MSDU_DESC >
1638		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1639	BUILD_BUG_ON(2 * TARGET_10_4_NUM_MSDU_DESC_PFC >
1640		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1641	BUILD_BUG_ON(2 * TARGET_TLV_NUM_MSDU_DESC >
1642		     (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1643
1644	ce_state->ar = ar;
1645	ce_state->id = ce_id;
1646	ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1647	ce_state->attr_flags = attr->flags;
1648	ce_state->src_sz_max = attr->src_sz_max;
1649
1650	if (attr->src_nentries)
1651		ce_state->send_cb = attr->send_cb;
1652
1653	if (attr->dest_nentries)
1654		ce_state->recv_cb = attr->recv_cb;
1655
1656	if (attr->src_nentries) {
1657		ce_state->src_ring =
1658			ce_state->ops->ce_alloc_src_ring(ar, ce_id, attr);
1659		if (IS_ERR(ce_state->src_ring)) {
1660			ret = PTR_ERR(ce_state->src_ring);
1661			ath10k_err(ar, "failed to alloc CE src ring %d: %d\n",
1662				   ce_id, ret);
1663			ce_state->src_ring = NULL;
1664			return ret;
1665		}
1666	}
1667
1668	if (attr->dest_nentries) {
1669		ce_state->dest_ring = ce_state->ops->ce_alloc_dst_ring(ar,
1670									ce_id,
1671									attr);
1672		if (IS_ERR(ce_state->dest_ring)) {
1673			ret = PTR_ERR(ce_state->dest_ring);
1674			ath10k_err(ar, "failed to alloc CE dest ring %d: %d\n",
1675				   ce_id, ret);
1676			ce_state->dest_ring = NULL;
1677			return ret;
1678		}
1679	}
1680
1681	return 0;
1682}