Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
 
 
 
 
 
 
 
 
 
 
 
 
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
 
 
 
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45/* Macros to define the context of vf registration */
  46#define VF_REG_IN_PROBE		1
  47#define VF_REG_IN_NOTIFIER	2
  48
  49static unsigned int ring_size __ro_after_init = 128;
  50module_param(ring_size, uint, 0444);
  51MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
  52unsigned int netvsc_ring_bytes __ro_after_init;
 
  53
  54static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  55				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  56				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  57				NETIF_MSG_TX_ERR;
  58
  59static int debug = -1;
  60module_param(debug, int, 0444);
  61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  62
  63static LIST_HEAD(netvsc_dev_list);
  64
  65static void netvsc_change_rx_flags(struct net_device *net, int change)
  66{
  67	struct net_device_context *ndev_ctx = netdev_priv(net);
  68	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  69	int inc;
  70
  71	if (!vf_netdev)
  72		return;
  73
  74	if (change & IFF_PROMISC) {
  75		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  76		dev_set_promiscuity(vf_netdev, inc);
  77	}
  78
  79	if (change & IFF_ALLMULTI) {
  80		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  81		dev_set_allmulti(vf_netdev, inc);
  82	}
  83}
  84
  85static void netvsc_set_rx_mode(struct net_device *net)
  86{
  87	struct net_device_context *ndev_ctx = netdev_priv(net);
  88	struct net_device *vf_netdev;
  89	struct netvsc_device *nvdev;
  90
  91	rcu_read_lock();
  92	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  93	if (vf_netdev) {
  94		dev_uc_sync(vf_netdev, net);
  95		dev_mc_sync(vf_netdev, net);
  96	}
  97
  98	nvdev = rcu_dereference(ndev_ctx->nvdev);
  99	if (nvdev)
 100		rndis_filter_update(nvdev);
 101	rcu_read_unlock();
 102}
 103
 104static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 105			     struct net_device *ndev)
 106{
 107	nvscdev->tx_disable = false;
 108	virt_wmb(); /* ensure queue wake up mechanism is on */
 109
 110	netif_tx_wake_all_queues(ndev);
 111}
 112
 113static int netvsc_open(struct net_device *net)
 114{
 115	struct net_device_context *ndev_ctx = netdev_priv(net);
 116	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 117	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 118	struct rndis_device *rdev;
 119	int ret = 0;
 120
 121	netif_carrier_off(net);
 122
 123	/* Open up the device */
 124	ret = rndis_filter_open(nvdev);
 125	if (ret != 0) {
 126		netdev_err(net, "unable to open device (ret %d).\n", ret);
 127		return ret;
 128	}
 129
 130	rdev = nvdev->extension;
 131	if (!rdev->link_state) {
 132		netif_carrier_on(net);
 133		netvsc_tx_enable(nvdev, net);
 134	}
 135
 136	if (vf_netdev) {
 137		/* Setting synthetic device up transparently sets
 138		 * slave as up. If open fails, then slave will be
 139		 * still be offline (and not used).
 140		 */
 141		ret = dev_open(vf_netdev, NULL);
 142		if (ret)
 143			netdev_warn(net,
 144				    "unable to open slave: %s: %d\n",
 145				    vf_netdev->name, ret);
 146	}
 147	return 0;
 148}
 149
 150static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 151{
 152	unsigned int retry = 0;
 153	int i;
 154
 155	/* Ensure pending bytes in ring are read */
 156	for (;;) {
 157		u32 aread = 0;
 158
 159		for (i = 0; i < nvdev->num_chn; i++) {
 160			struct vmbus_channel *chn
 161				= nvdev->chan_table[i].channel;
 162
 163			if (!chn)
 164				continue;
 165
 166			/* make sure receive not running now */
 167			napi_synchronize(&nvdev->chan_table[i].napi);
 168
 169			aread = hv_get_bytes_to_read(&chn->inbound);
 170			if (aread)
 171				break;
 172
 173			aread = hv_get_bytes_to_read(&chn->outbound);
 174			if (aread)
 175				break;
 176		}
 177
 178		if (aread == 0)
 179			return 0;
 180
 181		if (++retry > RETRY_MAX)
 182			return -ETIMEDOUT;
 183
 184		usleep_range(RETRY_US_LO, RETRY_US_HI);
 185	}
 186}
 187
 188static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 189			      struct net_device *ndev)
 190{
 191	if (nvscdev) {
 192		nvscdev->tx_disable = true;
 193		virt_wmb(); /* ensure txq will not wake up after stop */
 194	}
 195
 196	netif_tx_disable(ndev);
 197}
 198
 199static int netvsc_close(struct net_device *net)
 200{
 201	struct net_device_context *net_device_ctx = netdev_priv(net);
 202	struct net_device *vf_netdev
 203		= rtnl_dereference(net_device_ctx->vf_netdev);
 204	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 205	int ret;
 206
 207	netvsc_tx_disable(nvdev, net);
 208
 209	/* No need to close rndis filter if it is removed already */
 210	if (!nvdev)
 211		return 0;
 212
 213	ret = rndis_filter_close(nvdev);
 214	if (ret != 0) {
 215		netdev_err(net, "unable to close device (ret %d).\n", ret);
 216		return ret;
 217	}
 218
 219	ret = netvsc_wait_until_empty(nvdev);
 220	if (ret)
 221		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 222
 223	if (vf_netdev)
 224		dev_close(vf_netdev);
 225
 226	return ret;
 227}
 228
 229static inline void *init_ppi_data(struct rndis_message *msg,
 230				  u32 ppi_size, u32 pkt_type)
 231{
 232	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 233	struct rndis_per_packet_info *ppi;
 234
 235	rndis_pkt->data_offset += ppi_size;
 236	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 237		+ rndis_pkt->per_pkt_info_len;
 238
 239	ppi->size = ppi_size;
 240	ppi->type = pkt_type;
 241	ppi->internal = 0;
 242	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 243
 244	rndis_pkt->per_pkt_info_len += ppi_size;
 245
 246	return ppi + 1;
 247}
 248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 249static inline int netvsc_get_tx_queue(struct net_device *ndev,
 250				      struct sk_buff *skb, int old_idx)
 251{
 252	const struct net_device_context *ndc = netdev_priv(ndev);
 253	struct sock *sk = skb->sk;
 254	int q_idx;
 255
 256	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 257			      (VRSS_SEND_TAB_SIZE - 1)];
 258
 259	/* If queue index changed record the new value */
 260	if (q_idx != old_idx &&
 261	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 262		sk_tx_queue_set(sk, q_idx);
 263
 264	return q_idx;
 265}
 266
 267/*
 268 * Select queue for transmit.
 269 *
 270 * If a valid queue has already been assigned, then use that.
 271 * Otherwise compute tx queue based on hash and the send table.
 272 *
 273 * This is basically similar to default (netdev_pick_tx) with the added step
 274 * of using the host send_table when no other queue has been assigned.
 275 *
 276 * TODO support XPS - but get_xps_queue not exported
 277 */
 278static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 279{
 280	int q_idx = sk_tx_queue_get(skb->sk);
 281
 282	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 283		/* If forwarding a packet, we use the recorded queue when
 284		 * available for better cache locality.
 285		 */
 286		if (skb_rx_queue_recorded(skb))
 287			q_idx = skb_get_rx_queue(skb);
 288		else
 289			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 290	}
 291
 292	return q_idx;
 293}
 294
 295static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 296			       struct net_device *sb_dev)
 
 297{
 298	struct net_device_context *ndc = netdev_priv(ndev);
 299	struct net_device *vf_netdev;
 300	u16 txq;
 301
 302	rcu_read_lock();
 303	vf_netdev = rcu_dereference(ndc->vf_netdev);
 304	if (vf_netdev) {
 305		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 306
 307		if (vf_ops->ndo_select_queue)
 308			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 
 309		else
 310			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 311
 312		/* Record the queue selected by VF so that it can be
 313		 * used for common case where VF has more queues than
 314		 * the synthetic device.
 315		 */
 316		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 317	} else {
 318		txq = netvsc_pick_tx(ndev, skb);
 319	}
 320	rcu_read_unlock();
 321
 322	while (txq >= ndev->real_num_tx_queues)
 323		txq -= ndev->real_num_tx_queues;
 324
 325	return txq;
 326}
 327
 328static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 329		       struct hv_page_buffer *pb)
 330{
 331	int j = 0;
 332
 333	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 334	offset = offset & ~HV_HYP_PAGE_MASK;
 
 
 
 335
 336	while (len > 0) {
 337		unsigned long bytes;
 338
 339		bytes = HV_HYP_PAGE_SIZE - offset;
 340		if (bytes > len)
 341			bytes = len;
 342		pb[j].pfn = hvpfn;
 343		pb[j].offset = offset;
 344		pb[j].len = bytes;
 345
 346		offset += bytes;
 347		len -= bytes;
 348
 349		if (offset == HV_HYP_PAGE_SIZE && len) {
 350			hvpfn++;
 351			offset = 0;
 352			j++;
 353		}
 354	}
 355
 356	return j + 1;
 357}
 358
 359static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 360			   struct hv_netvsc_packet *packet,
 361			   struct hv_page_buffer *pb)
 362{
 363	u32 slots_used = 0;
 364	char *data = skb->data;
 365	int frags = skb_shinfo(skb)->nr_frags;
 366	int i;
 367
 368	/* The packet is laid out thus:
 369	 * 1. hdr: RNDIS header and PPI
 370	 * 2. skb linear data
 371	 * 3. skb fragment data
 372	 */
 373	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 374				  offset_in_hvpage(hdr),
 375				  len,
 376				  &pb[slots_used]);
 377
 378	packet->rmsg_size = len;
 379	packet->rmsg_pgcnt = slots_used;
 380
 381	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 382				  offset_in_hvpage(data),
 383				  skb_headlen(skb),
 384				  &pb[slots_used]);
 385
 386	for (i = 0; i < frags; i++) {
 387		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 388
 389		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 390					  skb_frag_off(frag),
 391					  skb_frag_size(frag),
 392					  &pb[slots_used]);
 393	}
 394	return slots_used;
 395}
 396
 397static int count_skb_frag_slots(struct sk_buff *skb)
 398{
 399	int i, frags = skb_shinfo(skb)->nr_frags;
 400	int pages = 0;
 401
 402	for (i = 0; i < frags; i++) {
 403		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 404		unsigned long size = skb_frag_size(frag);
 405		unsigned long offset = skb_frag_off(frag);
 406
 407		/* Skip unused frames from start of page */
 408		offset &= ~HV_HYP_PAGE_MASK;
 409		pages += HVPFN_UP(offset + size);
 410	}
 411	return pages;
 412}
 413
 414static int netvsc_get_slots(struct sk_buff *skb)
 415{
 416	char *data = skb->data;
 417	unsigned int offset = offset_in_hvpage(data);
 418	unsigned int len = skb_headlen(skb);
 419	int slots;
 420	int frag_slots;
 421
 422	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 423	frag_slots = count_skb_frag_slots(skb);
 424	return slots + frag_slots;
 425}
 426
 427static u32 net_checksum_info(struct sk_buff *skb)
 428{
 429	if (skb->protocol == htons(ETH_P_IP)) {
 430		struct iphdr *ip = ip_hdr(skb);
 431
 432		if (ip->protocol == IPPROTO_TCP)
 433			return TRANSPORT_INFO_IPV4_TCP;
 434		else if (ip->protocol == IPPROTO_UDP)
 435			return TRANSPORT_INFO_IPV4_UDP;
 436	} else {
 437		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 438
 439		if (ip6->nexthdr == IPPROTO_TCP)
 440			return TRANSPORT_INFO_IPV6_TCP;
 441		else if (ip6->nexthdr == IPPROTO_UDP)
 442			return TRANSPORT_INFO_IPV6_UDP;
 443	}
 444
 445	return TRANSPORT_INFO_NOT_IP;
 446}
 447
 448/* Send skb on the slave VF device. */
 449static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 450			  struct sk_buff *skb)
 451{
 452	struct net_device_context *ndev_ctx = netdev_priv(net);
 453	unsigned int len = skb->len;
 454	int rc;
 455
 456	skb->dev = vf_netdev;
 457	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 458
 459	rc = dev_queue_xmit(skb);
 460	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 461		struct netvsc_vf_pcpu_stats *pcpu_stats
 462			= this_cpu_ptr(ndev_ctx->vf_stats);
 463
 464		u64_stats_update_begin(&pcpu_stats->syncp);
 465		pcpu_stats->tx_packets++;
 466		pcpu_stats->tx_bytes += len;
 467		u64_stats_update_end(&pcpu_stats->syncp);
 468	} else {
 469		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 470	}
 471
 472	return rc;
 473}
 474
 475static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 476{
 477	struct net_device_context *net_device_ctx = netdev_priv(net);
 478	struct hv_netvsc_packet *packet = NULL;
 479	int ret;
 480	unsigned int num_data_pgs;
 481	struct rndis_message *rndis_msg;
 482	struct net_device *vf_netdev;
 483	u32 rndis_msg_size;
 484	u32 hash;
 485	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 486
 487	/* If VF is present and up then redirect packets to it.
 488	 * Skip the VF if it is marked down or has no carrier.
 489	 * If netpoll is in uses, then VF can not be used either.
 490	 */
 491	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 492	if (vf_netdev && netif_running(vf_netdev) &&
 493	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 494	    net_device_ctx->data_path_is_vf)
 495		return netvsc_vf_xmit(net, vf_netdev, skb);
 496
 497	/* We will atmost need two pages to describe the rndis
 498	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 499	 * of pages in a single packet. If skb is scattered around
 500	 * more pages we try linearizing it.
 501	 */
 502
 503	num_data_pgs = netvsc_get_slots(skb) + 2;
 504
 505	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 506		++net_device_ctx->eth_stats.tx_scattered;
 507
 508		if (skb_linearize(skb))
 509			goto no_memory;
 510
 511		num_data_pgs = netvsc_get_slots(skb) + 2;
 512		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 513			++net_device_ctx->eth_stats.tx_too_big;
 514			goto drop;
 515		}
 516	}
 517
 518	/*
 519	 * Place the rndis header in the skb head room and
 520	 * the skb->cb will be used for hv_netvsc_packet
 521	 * structure.
 522	 */
 523	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 524	if (ret)
 525		goto no_memory;
 526
 527	/* Use the skb control buffer for building up the packet */
 528	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 529			sizeof_field(struct sk_buff, cb));
 530	packet = (struct hv_netvsc_packet *)skb->cb;
 531
 532	packet->q_idx = skb_get_queue_mapping(skb);
 533
 534	packet->total_data_buflen = skb->len;
 535	packet->total_bytes = skb->len;
 536	packet->total_packets = 1;
 537
 538	rndis_msg = (struct rndis_message *)skb->head;
 539
 540	/* Add the rndis header */
 541	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 542	rndis_msg->msg_len = packet->total_data_buflen;
 543
 544	rndis_msg->msg.pkt = (struct rndis_packet) {
 545		.data_offset = sizeof(struct rndis_packet),
 546		.data_len = packet->total_data_buflen,
 547		.per_pkt_info_offset = sizeof(struct rndis_packet),
 548	};
 549
 550	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 551
 552	hash = skb_get_hash_raw(skb);
 553	if (hash != 0 && net->real_num_tx_queues > 1) {
 554		u32 *hash_info;
 555
 556		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 557		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 558					  NBL_HASH_VALUE);
 559		*hash_info = hash;
 560	}
 561
 562	/* When using AF_PACKET we need to drop VLAN header from
 563	 * the frame and update the SKB to allow the HOST OS
 564	 * to transmit the 802.1Q packet
 565	 */
 566	if (skb->protocol == htons(ETH_P_8021Q)) {
 567		u16 vlan_tci;
 568
 569		skb_reset_mac_header(skb);
 570		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 571			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 572				++net_device_ctx->eth_stats.vlan_error;
 573				goto drop;
 574			}
 575
 576			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 577			/* Update the NDIS header pkt lengths */
 578			packet->total_data_buflen -= VLAN_HLEN;
 579			packet->total_bytes -= VLAN_HLEN;
 580			rndis_msg->msg_len = packet->total_data_buflen;
 581			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 582		}
 583	}
 584
 585	if (skb_vlan_tag_present(skb)) {
 586		struct ndis_pkt_8021q_info *vlan;
 587
 588		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 589		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 590				     IEEE_8021Q_INFO);
 591
 592		vlan->value = 0;
 593		vlan->vlanid = skb_vlan_tag_get_id(skb);
 594		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 595		vlan->pri = skb_vlan_tag_get_prio(skb);
 596	}
 597
 598	if (skb_is_gso(skb)) {
 599		struct ndis_tcp_lso_info *lso_info;
 600
 601		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 602		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 603					 TCP_LARGESEND_PKTINFO);
 604
 605		lso_info->value = 0;
 606		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 607		if (skb->protocol == htons(ETH_P_IP)) {
 608			lso_info->lso_v2_transmit.ip_version =
 609				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 610			ip_hdr(skb)->tot_len = 0;
 611			ip_hdr(skb)->check = 0;
 612			tcp_hdr(skb)->check =
 613				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 614						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 615		} else {
 616			lso_info->lso_v2_transmit.ip_version =
 617				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 618			tcp_v6_gso_csum_prep(skb);
 
 
 
 619		}
 620		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 621		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 622	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 623		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 624			struct ndis_tcp_ip_checksum_info *csum_info;
 625
 626			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 627			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 628						  TCPIP_CHKSUM_PKTINFO);
 629
 630			csum_info->value = 0;
 631			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 632
 633			if (skb->protocol == htons(ETH_P_IP)) {
 634				csum_info->transmit.is_ipv4 = 1;
 635
 636				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 637					csum_info->transmit.tcp_checksum = 1;
 638				else
 639					csum_info->transmit.udp_checksum = 1;
 640			} else {
 641				csum_info->transmit.is_ipv6 = 1;
 642
 643				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 644					csum_info->transmit.tcp_checksum = 1;
 645				else
 646					csum_info->transmit.udp_checksum = 1;
 647			}
 648		} else {
 649			/* Can't do offload of this type of checksum */
 650			if (skb_checksum_help(skb))
 651				goto drop;
 652		}
 653	}
 654
 655	/* Start filling in the page buffers with the rndis hdr */
 656	rndis_msg->msg_len += rndis_msg_size;
 657	packet->total_data_buflen = rndis_msg->msg_len;
 658	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 659					       skb, packet, pb);
 660
 661	/* timestamp packet in software */
 662	skb_tx_timestamp(skb);
 663
 664	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 665	if (likely(ret == 0))
 666		return NETDEV_TX_OK;
 667
 668	if (ret == -EAGAIN) {
 669		++net_device_ctx->eth_stats.tx_busy;
 670		return NETDEV_TX_BUSY;
 671	}
 672
 673	if (ret == -ENOSPC)
 674		++net_device_ctx->eth_stats.tx_no_space;
 675
 676drop:
 677	dev_kfree_skb_any(skb);
 678	net->stats.tx_dropped++;
 679
 680	return NETDEV_TX_OK;
 681
 682no_memory:
 683	++net_device_ctx->eth_stats.tx_no_memory;
 684	goto drop;
 685}
 686
 687static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 688				     struct net_device *ndev)
 689{
 690	return netvsc_xmit(skb, ndev, false);
 691}
 692
 693/*
 694 * netvsc_linkstatus_callback - Link up/down notification
 695 */
 696void netvsc_linkstatus_callback(struct net_device *net,
 697				struct rndis_message *resp,
 698				void *data, u32 data_buflen)
 699{
 700	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 701	struct net_device_context *ndev_ctx = netdev_priv(net);
 702	struct netvsc_reconfig *event;
 703	unsigned long flags;
 704
 705	/* Ensure the packet is big enough to access its fields */
 706	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 707		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 708			   resp->msg_len);
 709		return;
 710	}
 711
 712	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 713	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 714
 715	/* Update the physical link speed when changing to another vSwitch */
 716	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 717		u32 speed;
 718
 719		/* Validate status_buf_offset and status_buflen.
 720		 *
 721		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 722		 * for the status buffer field in resp->msg_len; perform the validation
 723		 * using data_buflen (>= resp->msg_len).
 724		 */
 725		if (indicate->status_buflen < sizeof(speed) ||
 726		    indicate->status_buf_offset < sizeof(*indicate) ||
 727		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 728		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 729				< indicate->status_buflen) {
 730			netdev_err(net, "invalid rndis_indicate_status packet\n");
 731			return;
 732		}
 733
 734		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 735		ndev_ctx->speed = speed;
 736		return;
 737	}
 738
 739	/* Handle these link change statuses below */
 740	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 741	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 742	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 743		return;
 744
 745	if (net->reg_state != NETREG_REGISTERED)
 746		return;
 747
 748	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 749	if (!event)
 750		return;
 751	event->event = indicate->status;
 752
 753	spin_lock_irqsave(&ndev_ctx->lock, flags);
 754	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 755	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 756
 757	schedule_delayed_work(&ndev_ctx->dwork, 0);
 758}
 759
 760/* This function should only be called after skb_record_rx_queue() */
 761void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 762{
 763	int rc;
 764
 765	skb->queue_mapping = skb_get_rx_queue(skb);
 766	__skb_push(skb, ETH_HLEN);
 767
 768	rc = netvsc_xmit(skb, ndev, true);
 769
 770	if (dev_xmit_complete(rc))
 771		return;
 772
 773	dev_kfree_skb_any(skb);
 774	ndev->stats.tx_dropped++;
 775}
 776
 777static void netvsc_comp_ipcsum(struct sk_buff *skb)
 778{
 779	struct iphdr *iph = (struct iphdr *)skb->data;
 780
 781	iph->check = 0;
 782	iph->check = ip_fast_csum(iph, iph->ihl);
 783}
 784
 785static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 786					     struct netvsc_channel *nvchan,
 787					     struct xdp_buff *xdp)
 
 
 788{
 789	struct napi_struct *napi = &nvchan->napi;
 790	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 791	const struct ndis_tcp_ip_checksum_info *csum_info =
 792						&nvchan->rsc.csum_info;
 793	const u32 *hash_info = &nvchan->rsc.hash_info;
 794	u8 ppi_flags = nvchan->rsc.ppi_flags;
 795	struct sk_buff *skb;
 796	void *xbuf = xdp->data_hard_start;
 797	int i;
 798
 799	if (xbuf) {
 800		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 801		unsigned int xlen = xdp->data_end - xdp->data;
 802		unsigned int frag_size = xdp->frame_sz;
 803
 804		skb = build_skb(xbuf, frag_size);
 805
 806		if (!skb) {
 807			__free_page(virt_to_page(xbuf));
 808			return NULL;
 809		}
 810
 811		skb_reserve(skb, hdroom);
 812		skb_put(skb, xlen);
 813		skb->dev = napi->dev;
 814	} else {
 815		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 816
 817		if (!skb)
 818			return NULL;
 
 819
 820		/* Copy to skb. This copy is needed here since the memory
 821		 * pointed by hv_netvsc_packet cannot be deallocated.
 822		 */
 823		for (i = 0; i < nvchan->rsc.cnt; i++)
 824			skb_put_data(skb, nvchan->rsc.data[i],
 825				     nvchan->rsc.len[i]);
 826	}
 827
 828	skb->protocol = eth_type_trans(skb, net);
 829
 830	/* skb is already created with CHECKSUM_NONE */
 831	skb_checksum_none_assert(skb);
 832
 833	/* Incoming packets may have IP header checksum verified by the host.
 834	 * They may not have IP header checksum computed after coalescing.
 835	 * We compute it here if the flags are set, because on Linux, the IP
 836	 * checksum is always checked.
 837	 */
 838	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 839	    csum_info->receive.ip_checksum_succeeded &&
 840	    skb->protocol == htons(ETH_P_IP)) {
 841		/* Check that there is enough space to hold the IP header. */
 842		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 843			kfree_skb(skb);
 844			return NULL;
 845		}
 846		netvsc_comp_ipcsum(skb);
 847	}
 848
 849	/* Do L4 checksum offload if enabled and present. */
 850	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 851		if (csum_info->receive.tcp_checksum_succeeded ||
 852		    csum_info->receive.udp_checksum_succeeded)
 853			skb->ip_summed = CHECKSUM_UNNECESSARY;
 854	}
 855
 856	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 857		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 858
 859	if (ppi_flags & NVSC_RSC_VLAN) {
 860		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 861			(vlan->cfi ? VLAN_CFI_MASK : 0);
 862
 863		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 864				       vlan_tci);
 865	}
 866
 867	return skb;
 868}
 869
 870/*
 871 * netvsc_recv_callback -  Callback when we receive a packet from the
 872 * "wire" on the specified device.
 873 */
 874int netvsc_recv_callback(struct net_device *net,
 875			 struct netvsc_device *net_device,
 876			 struct netvsc_channel *nvchan)
 
 
 
 877{
 878	struct net_device_context *net_device_ctx = netdev_priv(net);
 879	struct vmbus_channel *channel = nvchan->channel;
 880	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 
 881	struct sk_buff *skb;
 882	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 883	struct xdp_buff xdp;
 884	u32 act;
 885
 886	if (net->reg_state != NETREG_REGISTERED)
 887		return NVSP_STAT_FAIL;
 888
 889	act = netvsc_run_xdp(net, nvchan, &xdp);
 890
 891	if (act == XDP_REDIRECT)
 892		return NVSP_STAT_SUCCESS;
 893
 894	if (act != XDP_PASS && act != XDP_TX) {
 895		u64_stats_update_begin(&rx_stats->syncp);
 896		rx_stats->xdp_drop++;
 897		u64_stats_update_end(&rx_stats->syncp);
 898
 899		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 900	}
 901
 902	/* Allocate a skb - TODO direct I/O to pages? */
 903	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 904
 905	if (unlikely(!skb)) {
 906		++net_device_ctx->eth_stats.rx_no_memory;
 
 907		return NVSP_STAT_FAIL;
 908	}
 909
 910	skb_record_rx_queue(skb, q_idx);
 911
 912	/*
 913	 * Even if injecting the packet, record the statistics
 914	 * on the synthetic device because modifying the VF device
 915	 * statistics will not work correctly.
 916	 */
 
 917	u64_stats_update_begin(&rx_stats->syncp);
 918	if (act == XDP_TX)
 919		rx_stats->xdp_tx++;
 920
 921	rx_stats->packets++;
 922	rx_stats->bytes += nvchan->rsc.pktlen;
 923
 924	if (skb->pkt_type == PACKET_BROADCAST)
 925		++rx_stats->broadcast;
 926	else if (skb->pkt_type == PACKET_MULTICAST)
 927		++rx_stats->multicast;
 928	u64_stats_update_end(&rx_stats->syncp);
 929
 930	if (act == XDP_TX) {
 931		netvsc_xdp_xmit(skb, net);
 932		return NVSP_STAT_SUCCESS;
 933	}
 934
 935	napi_gro_receive(&nvchan->napi, skb);
 936	return NVSP_STAT_SUCCESS;
 937}
 938
 939static void netvsc_get_drvinfo(struct net_device *net,
 940			       struct ethtool_drvinfo *info)
 941{
 942	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 943	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 944}
 945
 946static void netvsc_get_channels(struct net_device *net,
 947				struct ethtool_channels *channel)
 948{
 949	struct net_device_context *net_device_ctx = netdev_priv(net);
 950	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 951
 952	if (nvdev) {
 953		channel->max_combined	= nvdev->max_chn;
 954		channel->combined_count = nvdev->num_chn;
 955	}
 956}
 957
 958/* Alloc struct netvsc_device_info, and initialize it from either existing
 959 * struct netvsc_device, or from default values.
 960 */
 961static
 962struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 963{
 964	struct netvsc_device_info *dev_info;
 965	struct bpf_prog *prog;
 966
 967	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 968
 969	if (!dev_info)
 970		return NULL;
 971
 972	if (nvdev) {
 973		ASSERT_RTNL();
 974
 975		dev_info->num_chn = nvdev->num_chn;
 976		dev_info->send_sections = nvdev->send_section_cnt;
 977		dev_info->send_section_size = nvdev->send_section_size;
 978		dev_info->recv_sections = nvdev->recv_section_cnt;
 979		dev_info->recv_section_size = nvdev->recv_section_size;
 980
 981		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 982		       NETVSC_HASH_KEYLEN);
 983
 984		prog = netvsc_xdp_get(nvdev);
 985		if (prog) {
 986			bpf_prog_inc(prog);
 987			dev_info->bprog = prog;
 988		}
 989	} else {
 990		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 991		dev_info->send_sections = NETVSC_DEFAULT_TX;
 992		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 993		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 994		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 995	}
 996
 997	return dev_info;
 998}
 999
1000/* Free struct netvsc_device_info */
1001static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1002{
1003	if (dev_info->bprog) {
1004		ASSERT_RTNL();
1005		bpf_prog_put(dev_info->bprog);
1006	}
1007
1008	kfree(dev_info);
1009}
1010
1011static int netvsc_detach(struct net_device *ndev,
1012			 struct netvsc_device *nvdev)
1013{
1014	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1015	struct hv_device *hdev = ndev_ctx->device_ctx;
1016	int ret;
1017
1018	/* Don't try continuing to try and setup sub channels */
1019	if (cancel_work_sync(&nvdev->subchan_work))
1020		nvdev->num_chn = 1;
1021
1022	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1023
1024	/* If device was up (receiving) then shutdown */
1025	if (netif_running(ndev)) {
1026		netvsc_tx_disable(nvdev, ndev);
1027
1028		ret = rndis_filter_close(nvdev);
1029		if (ret) {
1030			netdev_err(ndev,
1031				   "unable to close device (ret %d).\n", ret);
1032			return ret;
1033		}
1034
1035		ret = netvsc_wait_until_empty(nvdev);
1036		if (ret) {
1037			netdev_err(ndev,
1038				   "Ring buffer not empty after closing rndis\n");
1039			return ret;
1040		}
1041	}
1042
1043	netif_device_detach(ndev);
1044
1045	rndis_filter_device_remove(hdev, nvdev);
1046
1047	return 0;
1048}
1049
1050static int netvsc_attach(struct net_device *ndev,
1051			 struct netvsc_device_info *dev_info)
1052{
1053	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054	struct hv_device *hdev = ndev_ctx->device_ctx;
1055	struct netvsc_device *nvdev;
1056	struct rndis_device *rdev;
1057	struct bpf_prog *prog;
1058	int ret = 0;
1059
1060	nvdev = rndis_filter_device_add(hdev, dev_info);
1061	if (IS_ERR(nvdev))
1062		return PTR_ERR(nvdev);
1063
1064	if (nvdev->num_chn > 1) {
1065		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1066
1067		/* if unavailable, just proceed with one queue */
1068		if (ret) {
1069			nvdev->max_chn = 1;
1070			nvdev->num_chn = 1;
1071		}
1072	}
1073
1074	prog = dev_info->bprog;
1075	if (prog) {
1076		bpf_prog_inc(prog);
1077		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1078		if (ret) {
1079			bpf_prog_put(prog);
1080			goto err1;
1081		}
1082	}
1083
1084	/* In any case device is now ready */
1085	nvdev->tx_disable = false;
1086	netif_device_attach(ndev);
1087
1088	/* Note: enable and attach happen when sub-channels setup */
 
1089	netif_carrier_off(ndev);
1090
1091	if (netif_running(ndev)) {
1092		ret = rndis_filter_open(nvdev);
1093		if (ret)
1094			goto err2;
1095
1096		rdev = nvdev->extension;
1097		if (!rdev->link_state)
1098			netif_carrier_on(ndev);
1099	}
1100
1101	return 0;
1102
1103err2:
1104	netif_device_detach(ndev);
1105
1106err1:
1107	rndis_filter_device_remove(hdev, nvdev);
1108
1109	return ret;
1110}
1111
1112static int netvsc_set_channels(struct net_device *net,
1113			       struct ethtool_channels *channels)
1114{
1115	struct net_device_context *net_device_ctx = netdev_priv(net);
1116	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1117	unsigned int orig, count = channels->combined_count;
1118	struct netvsc_device_info *device_info;
1119	int ret;
1120
1121	/* We do not support separate count for rx, tx, or other */
1122	if (count == 0 ||
1123	    channels->rx_count || channels->tx_count || channels->other_count)
1124		return -EINVAL;
1125
1126	if (!nvdev || nvdev->destroy)
1127		return -ENODEV;
1128
1129	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1130		return -EINVAL;
1131
1132	if (count > nvdev->max_chn)
1133		return -EINVAL;
1134
1135	orig = nvdev->num_chn;
1136
1137	device_info = netvsc_devinfo_get(nvdev);
1138
1139	if (!device_info)
1140		return -ENOMEM;
1141
1142	device_info->num_chn = count;
1143
1144	ret = netvsc_detach(net, nvdev);
1145	if (ret)
1146		goto out;
1147
1148	ret = netvsc_attach(net, device_info);
1149	if (ret) {
1150		device_info->num_chn = orig;
1151		if (netvsc_attach(net, device_info))
1152			netdev_err(net, "restoring channel setting failed\n");
1153	}
1154
1155out:
1156	netvsc_devinfo_put(device_info);
1157	return ret;
1158}
1159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160static void netvsc_init_settings(struct net_device *dev)
1161{
1162	struct net_device_context *ndc = netdev_priv(dev);
1163
1164	ndc->l4_hash = HV_DEFAULT_L4HASH;
1165
1166	ndc->speed = SPEED_UNKNOWN;
1167	ndc->duplex = DUPLEX_FULL;
1168
1169	dev->features = NETIF_F_LRO;
1170}
1171
1172static int netvsc_get_link_ksettings(struct net_device *dev,
1173				     struct ethtool_link_ksettings *cmd)
1174{
1175	struct net_device_context *ndc = netdev_priv(dev);
1176	struct net_device *vf_netdev;
1177
1178	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1179
1180	if (vf_netdev)
1181		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1182
1183	cmd->base.speed = ndc->speed;
1184	cmd->base.duplex = ndc->duplex;
1185	cmd->base.port = PORT_OTHER;
1186
1187	return 0;
1188}
1189
1190static int netvsc_set_link_ksettings(struct net_device *dev,
1191				     const struct ethtool_link_ksettings *cmd)
1192{
1193	struct net_device_context *ndc = netdev_priv(dev);
1194	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1195
1196	if (vf_netdev) {
1197		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1198			return -EOPNOTSUPP;
 
 
1199
1200		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1201								  cmd);
1202	}
1203
1204	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1205						  &ndc->speed, &ndc->duplex);
1206}
1207
1208static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1209{
1210	struct net_device_context *ndevctx = netdev_priv(ndev);
1211	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1212	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1213	int orig_mtu = ndev->mtu;
1214	struct netvsc_device_info *device_info;
1215	int ret = 0;
1216
1217	if (!nvdev || nvdev->destroy)
1218		return -ENODEV;
1219
1220	device_info = netvsc_devinfo_get(nvdev);
1221
1222	if (!device_info)
1223		return -ENOMEM;
1224
1225	/* Change MTU of underlying VF netdev first. */
1226	if (vf_netdev) {
1227		ret = dev_set_mtu(vf_netdev, mtu);
1228		if (ret)
1229			goto out;
1230	}
1231
 
 
 
 
 
 
 
1232	ret = netvsc_detach(ndev, nvdev);
1233	if (ret)
1234		goto rollback_vf;
1235
1236	ndev->mtu = mtu;
1237
1238	ret = netvsc_attach(ndev, device_info);
1239	if (!ret)
1240		goto out;
 
 
1241
 
1242	/* Attempt rollback to original MTU */
1243	ndev->mtu = orig_mtu;
1244
1245	if (netvsc_attach(ndev, device_info))
1246		netdev_err(ndev, "restoring mtu failed\n");
1247rollback_vf:
1248	if (vf_netdev)
1249		dev_set_mtu(vf_netdev, orig_mtu);
1250
1251out:
1252	netvsc_devinfo_put(device_info);
1253	return ret;
1254}
1255
1256static void netvsc_get_vf_stats(struct net_device *net,
1257				struct netvsc_vf_pcpu_stats *tot)
1258{
1259	struct net_device_context *ndev_ctx = netdev_priv(net);
1260	int i;
1261
1262	memset(tot, 0, sizeof(*tot));
1263
1264	for_each_possible_cpu(i) {
1265		const struct netvsc_vf_pcpu_stats *stats
1266			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1267		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1268		unsigned int start;
1269
1270		do {
1271			start = u64_stats_fetch_begin(&stats->syncp);
1272			rx_packets = stats->rx_packets;
1273			tx_packets = stats->tx_packets;
1274			rx_bytes = stats->rx_bytes;
1275			tx_bytes = stats->tx_bytes;
1276		} while (u64_stats_fetch_retry(&stats->syncp, start));
1277
1278		tot->rx_packets += rx_packets;
1279		tot->tx_packets += tx_packets;
1280		tot->rx_bytes   += rx_bytes;
1281		tot->tx_bytes   += tx_bytes;
1282		tot->tx_dropped += stats->tx_dropped;
1283	}
1284}
1285
1286static void netvsc_get_pcpu_stats(struct net_device *net,
1287				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1288{
1289	struct net_device_context *ndev_ctx = netdev_priv(net);
1290	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1291	int i;
1292
1293	/* fetch percpu stats of vf */
1294	for_each_possible_cpu(i) {
1295		const struct netvsc_vf_pcpu_stats *stats =
1296			per_cpu_ptr(ndev_ctx->vf_stats, i);
1297		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1298		unsigned int start;
1299
1300		do {
1301			start = u64_stats_fetch_begin(&stats->syncp);
1302			this_tot->vf_rx_packets = stats->rx_packets;
1303			this_tot->vf_tx_packets = stats->tx_packets;
1304			this_tot->vf_rx_bytes = stats->rx_bytes;
1305			this_tot->vf_tx_bytes = stats->tx_bytes;
1306		} while (u64_stats_fetch_retry(&stats->syncp, start));
1307		this_tot->rx_packets = this_tot->vf_rx_packets;
1308		this_tot->tx_packets = this_tot->vf_tx_packets;
1309		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1310		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1311	}
1312
1313	/* fetch percpu stats of netvsc */
1314	for (i = 0; i < nvdev->num_chn; i++) {
1315		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1316		const struct netvsc_stats_tx *tx_stats;
1317		const struct netvsc_stats_rx *rx_stats;
1318		struct netvsc_ethtool_pcpu_stats *this_tot =
1319			&pcpu_tot[nvchan->channel->target_cpu];
1320		u64 packets, bytes;
1321		unsigned int start;
1322
1323		tx_stats = &nvchan->tx_stats;
1324		do {
1325			start = u64_stats_fetch_begin(&tx_stats->syncp);
1326			packets = tx_stats->packets;
1327			bytes = tx_stats->bytes;
1328		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1329
1330		this_tot->tx_bytes	+= bytes;
1331		this_tot->tx_packets	+= packets;
1332
1333		rx_stats = &nvchan->rx_stats;
1334		do {
1335			start = u64_stats_fetch_begin(&rx_stats->syncp);
1336			packets = rx_stats->packets;
1337			bytes = rx_stats->bytes;
1338		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1339
1340		this_tot->rx_bytes	+= bytes;
1341		this_tot->rx_packets	+= packets;
1342	}
1343}
1344
1345static void netvsc_get_stats64(struct net_device *net,
1346			       struct rtnl_link_stats64 *t)
1347{
1348	struct net_device_context *ndev_ctx = netdev_priv(net);
1349	struct netvsc_device *nvdev;
1350	struct netvsc_vf_pcpu_stats vf_tot;
1351	int i;
1352
1353	rcu_read_lock();
1354
1355	nvdev = rcu_dereference(ndev_ctx->nvdev);
1356	if (!nvdev)
1357		goto out;
1358
1359	netdev_stats_to_stats64(t, &net->stats);
1360
1361	netvsc_get_vf_stats(net, &vf_tot);
1362	t->rx_packets += vf_tot.rx_packets;
1363	t->tx_packets += vf_tot.tx_packets;
1364	t->rx_bytes   += vf_tot.rx_bytes;
1365	t->tx_bytes   += vf_tot.tx_bytes;
1366	t->tx_dropped += vf_tot.tx_dropped;
1367
1368	for (i = 0; i < nvdev->num_chn; i++) {
1369		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1370		const struct netvsc_stats_tx *tx_stats;
1371		const struct netvsc_stats_rx *rx_stats;
1372		u64 packets, bytes, multicast;
1373		unsigned int start;
1374
1375		tx_stats = &nvchan->tx_stats;
1376		do {
1377			start = u64_stats_fetch_begin(&tx_stats->syncp);
1378			packets = tx_stats->packets;
1379			bytes = tx_stats->bytes;
1380		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1381
1382		t->tx_bytes	+= bytes;
1383		t->tx_packets	+= packets;
1384
1385		rx_stats = &nvchan->rx_stats;
1386		do {
1387			start = u64_stats_fetch_begin(&rx_stats->syncp);
1388			packets = rx_stats->packets;
1389			bytes = rx_stats->bytes;
1390			multicast = rx_stats->multicast + rx_stats->broadcast;
1391		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1392
1393		t->rx_bytes	+= bytes;
1394		t->rx_packets	+= packets;
1395		t->multicast	+= multicast;
1396	}
1397out:
1398	rcu_read_unlock();
1399}
1400
1401static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1402{
1403	struct net_device_context *ndc = netdev_priv(ndev);
1404	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1405	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1406	struct sockaddr *addr = p;
1407	int err;
1408
1409	err = eth_prepare_mac_addr_change(ndev, p);
1410	if (err)
1411		return err;
1412
1413	if (!nvdev)
1414		return -ENODEV;
1415
1416	if (vf_netdev) {
1417		err = dev_set_mac_address(vf_netdev, addr, NULL);
1418		if (err)
1419			return err;
1420	}
1421
1422	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1423	if (!err) {
1424		eth_commit_mac_addr_change(ndev, p);
1425	} else if (vf_netdev) {
1426		/* rollback change on VF */
1427		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1428		dev_set_mac_address(vf_netdev, addr, NULL);
1429	}
1430
1431	return err;
1432}
1433
1434static const struct {
1435	char name[ETH_GSTRING_LEN];
1436	u16 offset;
1437} netvsc_stats[] = {
1438	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1439	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1440	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1441	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1442	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1443	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1444	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1445	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1446	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1447	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1448	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1449}, pcpu_stats[] = {
1450	{ "cpu%u_rx_packets",
1451		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1452	{ "cpu%u_rx_bytes",
1453		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1454	{ "cpu%u_tx_packets",
1455		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1456	{ "cpu%u_tx_bytes",
1457		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1458	{ "cpu%u_vf_rx_packets",
1459		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1460	{ "cpu%u_vf_rx_bytes",
1461		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1462	{ "cpu%u_vf_tx_packets",
1463		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1464	{ "cpu%u_vf_tx_bytes",
1465		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1466}, vf_stats[] = {
1467	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1468	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1469	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1470	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1471	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1472};
1473
1474#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1475#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1476
1477/* statistics per queue (rx/tx packets/bytes) */
1478#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1479
1480/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1481#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1482
1483static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1484{
1485	struct net_device_context *ndc = netdev_priv(dev);
1486	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1487
1488	if (!nvdev)
1489		return -ENODEV;
1490
1491	switch (string_set) {
1492	case ETH_SS_STATS:
1493		return NETVSC_GLOBAL_STATS_LEN
1494			+ NETVSC_VF_STATS_LEN
1495			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1496			+ NETVSC_PCPU_STATS_LEN;
1497	default:
1498		return -EINVAL;
1499	}
1500}
1501
1502static void netvsc_get_ethtool_stats(struct net_device *dev,
1503				     struct ethtool_stats *stats, u64 *data)
1504{
1505	struct net_device_context *ndc = netdev_priv(dev);
1506	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1507	const void *nds = &ndc->eth_stats;
1508	const struct netvsc_stats_tx *tx_stats;
1509	const struct netvsc_stats_rx *rx_stats;
1510	struct netvsc_vf_pcpu_stats sum;
1511	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1512	unsigned int start;
1513	u64 packets, bytes;
1514	u64 xdp_drop;
1515	u64 xdp_redirect;
1516	u64 xdp_tx;
1517	u64 xdp_xmit;
1518	int i, j, cpu;
1519
1520	if (!nvdev)
1521		return;
1522
1523	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1524		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1525
1526	netvsc_get_vf_stats(dev, &sum);
1527	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1528		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1529
1530	for (j = 0; j < nvdev->num_chn; j++) {
1531		tx_stats = &nvdev->chan_table[j].tx_stats;
1532
1533		do {
1534			start = u64_stats_fetch_begin(&tx_stats->syncp);
1535			packets = tx_stats->packets;
1536			bytes = tx_stats->bytes;
1537			xdp_xmit = tx_stats->xdp_xmit;
1538		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1539		data[i++] = packets;
1540		data[i++] = bytes;
1541		data[i++] = xdp_xmit;
1542
1543		rx_stats = &nvdev->chan_table[j].rx_stats;
1544		do {
1545			start = u64_stats_fetch_begin(&rx_stats->syncp);
1546			packets = rx_stats->packets;
1547			bytes = rx_stats->bytes;
1548			xdp_drop = rx_stats->xdp_drop;
1549			xdp_redirect = rx_stats->xdp_redirect;
1550			xdp_tx = rx_stats->xdp_tx;
1551		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1552		data[i++] = packets;
1553		data[i++] = bytes;
1554		data[i++] = xdp_drop;
1555		data[i++] = xdp_redirect;
1556		data[i++] = xdp_tx;
1557	}
1558
1559	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1560				  sizeof(struct netvsc_ethtool_pcpu_stats),
1561				  GFP_KERNEL);
1562	if (!pcpu_sum)
1563		return;
1564
1565	netvsc_get_pcpu_stats(dev, pcpu_sum);
1566	for_each_present_cpu(cpu) {
1567		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570			data[i++] = *(u64 *)((void *)this_sum
1571					     + pcpu_stats[j].offset);
1572	}
1573	kvfree(pcpu_sum);
1574}
1575
1576static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577{
1578	struct net_device_context *ndc = netdev_priv(dev);
1579	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580	u8 *p = data;
1581	int i, cpu;
1582
1583	if (!nvdev)
1584		return;
1585
1586	switch (stringset) {
1587	case ETH_SS_STATS:
1588		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1589			ethtool_puts(&p, netvsc_stats[i].name);
1590
1591		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1592			ethtool_puts(&p, vf_stats[i].name);
1593
1594		for (i = 0; i < nvdev->num_chn; i++) {
1595			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1596			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1597			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1598			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1599			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1600			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1601			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1602			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1603		}
1604
1605		for_each_present_cpu(cpu) {
1606			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1607				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
 
 
 
 
 
 
1608		}
1609
1610		break;
1611	}
1612}
1613
1614static int
1615netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1616			 struct ethtool_rxnfc *info)
1617{
1618	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1619
1620	info->data = RXH_IP_SRC | RXH_IP_DST;
1621
1622	switch (info->flow_type) {
1623	case TCP_V4_FLOW:
1624		if (ndc->l4_hash & HV_TCP4_L4HASH)
1625			info->data |= l4_flag;
1626
1627		break;
1628
1629	case TCP_V6_FLOW:
1630		if (ndc->l4_hash & HV_TCP6_L4HASH)
1631			info->data |= l4_flag;
1632
1633		break;
1634
1635	case UDP_V4_FLOW:
1636		if (ndc->l4_hash & HV_UDP4_L4HASH)
1637			info->data |= l4_flag;
1638
1639		break;
1640
1641	case UDP_V6_FLOW:
1642		if (ndc->l4_hash & HV_UDP6_L4HASH)
1643			info->data |= l4_flag;
1644
1645		break;
1646
1647	case IPV4_FLOW:
1648	case IPV6_FLOW:
1649		break;
1650	default:
1651		info->data = 0;
1652		break;
1653	}
1654
1655	return 0;
1656}
1657
1658static int
1659netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1660		 u32 *rules)
1661{
1662	struct net_device_context *ndc = netdev_priv(dev);
1663	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1664
1665	if (!nvdev)
1666		return -ENODEV;
1667
1668	switch (info->cmd) {
1669	case ETHTOOL_GRXRINGS:
1670		info->data = nvdev->num_chn;
1671		return 0;
1672
1673	case ETHTOOL_GRXFH:
1674		return netvsc_get_rss_hash_opts(ndc, info);
1675	}
1676	return -EOPNOTSUPP;
1677}
1678
1679static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1680				    struct ethtool_rxnfc *info)
1681{
1682	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1683			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1684		switch (info->flow_type) {
1685		case TCP_V4_FLOW:
1686			ndc->l4_hash |= HV_TCP4_L4HASH;
1687			break;
1688
1689		case TCP_V6_FLOW:
1690			ndc->l4_hash |= HV_TCP6_L4HASH;
1691			break;
1692
1693		case UDP_V4_FLOW:
1694			ndc->l4_hash |= HV_UDP4_L4HASH;
1695			break;
1696
1697		case UDP_V6_FLOW:
1698			ndc->l4_hash |= HV_UDP6_L4HASH;
1699			break;
1700
1701		default:
1702			return -EOPNOTSUPP;
1703		}
1704
1705		return 0;
1706	}
1707
1708	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1709		switch (info->flow_type) {
1710		case TCP_V4_FLOW:
1711			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1712			break;
1713
1714		case TCP_V6_FLOW:
1715			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1716			break;
1717
1718		case UDP_V4_FLOW:
1719			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1720			break;
1721
1722		case UDP_V6_FLOW:
1723			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1724			break;
1725
1726		default:
1727			return -EOPNOTSUPP;
1728		}
1729
1730		return 0;
1731	}
1732
1733	return -EOPNOTSUPP;
1734}
1735
1736static int
1737netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1738{
1739	struct net_device_context *ndc = netdev_priv(ndev);
1740
1741	if (info->cmd == ETHTOOL_SRXFH)
1742		return netvsc_set_rss_hash_opts(ndc, info);
1743
1744	return -EOPNOTSUPP;
1745}
1746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1748{
1749	return NETVSC_HASH_KEYLEN;
1750}
1751
1752static u32 netvsc_rss_indir_size(struct net_device *dev)
1753{
1754	struct net_device_context *ndc = netdev_priv(dev);
1755
1756	return ndc->rx_table_sz;
1757}
1758
1759static int netvsc_get_rxfh(struct net_device *dev,
1760			   struct ethtool_rxfh_param *rxfh)
1761{
1762	struct net_device_context *ndc = netdev_priv(dev);
1763	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1764	struct rndis_device *rndis_dev;
1765	int i;
1766
1767	if (!ndev)
1768		return -ENODEV;
1769
1770	rxfh->hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
 
1771
1772	rndis_dev = ndev->extension;
1773	if (rxfh->indir) {
1774		for (i = 0; i < ndc->rx_table_sz; i++)
1775			rxfh->indir[i] = ndc->rx_table[i];
1776	}
1777
1778	if (rxfh->key)
1779		memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1780
1781	return 0;
1782}
1783
1784static int netvsc_set_rxfh(struct net_device *dev,
1785			   struct ethtool_rxfh_param *rxfh,
1786			   struct netlink_ext_ack *extack)
1787{
1788	struct net_device_context *ndc = netdev_priv(dev);
1789	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1790	struct rndis_device *rndis_dev;
1791	u8 *key = rxfh->key;
1792	int i;
1793
1794	if (!ndev)
1795		return -ENODEV;
1796
1797	if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1798	    rxfh->hfunc != ETH_RSS_HASH_TOP)
1799		return -EOPNOTSUPP;
1800
1801	rndis_dev = ndev->extension;
1802	if (rxfh->indir) {
1803		for (i = 0; i < ndc->rx_table_sz; i++)
1804			if (rxfh->indir[i] >= ndev->num_chn)
1805				return -EINVAL;
1806
1807		for (i = 0; i < ndc->rx_table_sz; i++)
1808			ndc->rx_table[i] = rxfh->indir[i];
1809	}
1810
1811	if (!key) {
1812		if (!rxfh->indir)
1813			return 0;
1814
1815		key = rndis_dev->rss_key;
1816	}
1817
1818	return rndis_filter_set_rss_param(rndis_dev, key);
1819}
1820
1821/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1822 * It does have pre-allocated receive area which is divided into sections.
1823 */
1824static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1825				   struct ethtool_ringparam *ring)
1826{
1827	u32 max_buf_size;
1828
1829	ring->rx_pending = nvdev->recv_section_cnt;
1830	ring->tx_pending = nvdev->send_section_cnt;
1831
1832	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1833		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1834	else
1835		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1836
1837	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1838	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1839		/ nvdev->send_section_size;
1840}
1841
1842static void netvsc_get_ringparam(struct net_device *ndev,
1843				 struct ethtool_ringparam *ring,
1844				 struct kernel_ethtool_ringparam *kernel_ring,
1845				 struct netlink_ext_ack *extack)
1846{
1847	struct net_device_context *ndevctx = netdev_priv(ndev);
1848	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1849
1850	if (!nvdev)
1851		return;
1852
1853	__netvsc_get_ringparam(nvdev, ring);
1854}
1855
1856static int netvsc_set_ringparam(struct net_device *ndev,
1857				struct ethtool_ringparam *ring,
1858				struct kernel_ethtool_ringparam *kernel_ring,
1859				struct netlink_ext_ack *extack)
1860{
1861	struct net_device_context *ndevctx = netdev_priv(ndev);
1862	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863	struct netvsc_device_info *device_info;
1864	struct ethtool_ringparam orig;
1865	u32 new_tx, new_rx;
1866	int ret = 0;
1867
1868	if (!nvdev || nvdev->destroy)
1869		return -ENODEV;
1870
1871	memset(&orig, 0, sizeof(orig));
1872	__netvsc_get_ringparam(nvdev, &orig);
1873
1874	new_tx = clamp_t(u32, ring->tx_pending,
1875			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876	new_rx = clamp_t(u32, ring->rx_pending,
1877			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879	if (new_tx == orig.tx_pending &&
1880	    new_rx == orig.rx_pending)
1881		return 0;	 /* no change */
1882
1883	device_info = netvsc_devinfo_get(nvdev);
1884
1885	if (!device_info)
1886		return -ENOMEM;
1887
1888	device_info->send_sections = new_tx;
1889	device_info->recv_sections = new_rx;
1890
1891	ret = netvsc_detach(ndev, nvdev);
1892	if (ret)
1893		goto out;
1894
1895	ret = netvsc_attach(ndev, device_info);
1896	if (ret) {
1897		device_info->send_sections = orig.tx_pending;
1898		device_info->recv_sections = orig.rx_pending;
1899
1900		if (netvsc_attach(ndev, device_info))
1901			netdev_err(ndev, "restoring ringparam failed");
1902	}
1903
1904out:
1905	netvsc_devinfo_put(device_info);
1906	return ret;
1907}
1908
1909static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910					     netdev_features_t features)
1911{
1912	struct net_device_context *ndevctx = netdev_priv(ndev);
1913	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915	if (!nvdev || nvdev->destroy)
1916		return features;
1917
1918	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919		features ^= NETIF_F_LRO;
1920		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921	}
1922
1923	return features;
1924}
1925
1926static int netvsc_set_features(struct net_device *ndev,
1927			       netdev_features_t features)
1928{
1929	netdev_features_t change = features ^ ndev->features;
1930	struct net_device_context *ndevctx = netdev_priv(ndev);
1931	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933	struct ndis_offload_params offloads;
1934	int ret = 0;
1935
1936	if (!nvdev || nvdev->destroy)
1937		return -ENODEV;
1938
1939	if (!(change & NETIF_F_LRO))
1940		goto syncvf;
1941
1942	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944	if (features & NETIF_F_LRO) {
1945		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947	} else {
1948		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950	}
1951
1952	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954	if (ret) {
1955		features ^= NETIF_F_LRO;
1956		ndev->features = features;
1957	}
1958
1959syncvf:
1960	if (!vf_netdev)
1961		return ret;
1962
1963	vf_netdev->wanted_features = features;
1964	netdev_update_features(vf_netdev);
1965
1966	return ret;
1967}
1968
1969static int netvsc_get_regs_len(struct net_device *netdev)
1970{
1971	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972}
1973
1974static void netvsc_get_regs(struct net_device *netdev,
1975			    struct ethtool_regs *regs, void *p)
1976{
1977	struct net_device_context *ndc = netdev_priv(netdev);
1978	u32 *regs_buff = p;
1979
1980	/* increase the version, if buffer format is changed. */
1981	regs->version = 1;
1982
1983	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984}
1985
1986static u32 netvsc_get_msglevel(struct net_device *ndev)
1987{
1988	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990	return ndev_ctx->msg_enable;
1991}
1992
1993static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994{
1995	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997	ndev_ctx->msg_enable = val;
1998}
1999
2000static const struct ethtool_ops ethtool_ops = {
2001	.get_drvinfo	= netvsc_get_drvinfo,
2002	.get_regs_len	= netvsc_get_regs_len,
2003	.get_regs	= netvsc_get_regs,
2004	.get_msglevel	= netvsc_get_msglevel,
2005	.set_msglevel	= netvsc_set_msglevel,
2006	.get_link	= ethtool_op_get_link,
2007	.get_ethtool_stats = netvsc_get_ethtool_stats,
2008	.get_sset_count = netvsc_get_sset_count,
2009	.get_strings	= netvsc_get_strings,
2010	.get_channels   = netvsc_get_channels,
2011	.set_channels   = netvsc_set_channels,
2012	.get_ts_info	= ethtool_op_get_ts_info,
2013	.get_rxnfc	= netvsc_get_rxnfc,
2014	.set_rxnfc	= netvsc_set_rxnfc,
2015	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016	.get_rxfh_indir_size = netvsc_rss_indir_size,
2017	.get_rxfh	= netvsc_get_rxfh,
2018	.set_rxfh	= netvsc_set_rxfh,
2019	.get_link_ksettings = netvsc_get_link_ksettings,
2020	.set_link_ksettings = netvsc_set_link_ksettings,
2021	.get_ringparam	= netvsc_get_ringparam,
2022	.set_ringparam	= netvsc_set_ringparam,
2023};
2024
2025static const struct net_device_ops device_ops = {
2026	.ndo_open =			netvsc_open,
2027	.ndo_stop =			netvsc_close,
2028	.ndo_start_xmit =		netvsc_start_xmit,
2029	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2030	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2031	.ndo_fix_features =		netvsc_fix_features,
2032	.ndo_set_features =		netvsc_set_features,
2033	.ndo_change_mtu =		netvsc_change_mtu,
2034	.ndo_validate_addr =		eth_validate_addr,
2035	.ndo_set_mac_address =		netvsc_set_mac_addr,
2036	.ndo_select_queue =		netvsc_select_queue,
2037	.ndo_get_stats64 =		netvsc_get_stats64,
2038	.ndo_bpf =			netvsc_bpf,
2039	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
 
2040};
2041
2042/*
2043 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2044 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2045 * present send GARP packet to network peers with netif_notify_peers().
2046 */
2047static void netvsc_link_change(struct work_struct *w)
2048{
2049	struct net_device_context *ndev_ctx =
2050		container_of(w, struct net_device_context, dwork.work);
2051	struct hv_device *device_obj = ndev_ctx->device_ctx;
2052	struct net_device *net = hv_get_drvdata(device_obj);
2053	unsigned long flags, next_reconfig, delay;
2054	struct netvsc_reconfig *event = NULL;
2055	struct netvsc_device *net_device;
2056	struct rndis_device *rdev;
2057	bool reschedule = false;
 
 
2058
2059	/* if changes are happening, comeback later */
2060	if (!rtnl_trylock()) {
2061		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2062		return;
2063	}
2064
2065	net_device = rtnl_dereference(ndev_ctx->nvdev);
2066	if (!net_device)
2067		goto out_unlock;
2068
2069	rdev = net_device->extension;
2070
2071	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2072	if (time_is_after_jiffies(next_reconfig)) {
2073		/* link_watch only sends one notification with current state
2074		 * per second, avoid doing reconfig more frequently. Handle
2075		 * wrap around.
2076		 */
2077		delay = next_reconfig - jiffies;
2078		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2079		schedule_delayed_work(&ndev_ctx->dwork, delay);
2080		goto out_unlock;
2081	}
2082	ndev_ctx->last_reconfig = jiffies;
2083
2084	spin_lock_irqsave(&ndev_ctx->lock, flags);
2085	if (!list_empty(&ndev_ctx->reconfig_events)) {
2086		event = list_first_entry(&ndev_ctx->reconfig_events,
2087					 struct netvsc_reconfig, list);
2088		list_del(&event->list);
2089		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2090	}
2091	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2092
2093	if (!event)
2094		goto out_unlock;
2095
2096	switch (event->event) {
2097		/* Only the following events are possible due to the check in
2098		 * netvsc_linkstatus_callback()
2099		 */
2100	case RNDIS_STATUS_MEDIA_CONNECT:
2101		if (rdev->link_state) {
2102			rdev->link_state = false;
2103			netif_carrier_on(net);
2104			netvsc_tx_enable(net_device, net);
2105		} else {
2106			__netdev_notify_peers(net);
2107		}
2108		kfree(event);
2109		break;
2110	case RNDIS_STATUS_MEDIA_DISCONNECT:
2111		if (!rdev->link_state) {
2112			rdev->link_state = true;
2113			netif_carrier_off(net);
2114			netvsc_tx_disable(net_device, net);
2115		}
2116		kfree(event);
2117		break;
2118	case RNDIS_STATUS_NETWORK_CHANGE:
2119		/* Only makes sense if carrier is present */
2120		if (!rdev->link_state) {
2121			rdev->link_state = true;
2122			netif_carrier_off(net);
2123			netvsc_tx_disable(net_device, net);
2124			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2125			spin_lock_irqsave(&ndev_ctx->lock, flags);
2126			list_add(&event->list, &ndev_ctx->reconfig_events);
2127			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2128			reschedule = true;
2129		}
2130		break;
2131	}
2132
2133	rtnl_unlock();
2134
 
 
 
2135	/* link_watch only sends one notification with current state per
2136	 * second, handle next reconfig event in 2 seconds.
2137	 */
2138	if (reschedule)
2139		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2140
2141	return;
2142
2143out_unlock:
2144	rtnl_unlock();
2145}
2146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2148{
2149	struct net_device_context *net_device_ctx;
2150	struct net_device *dev;
2151
2152	dev = netdev_master_upper_dev_get(vf_netdev);
2153	if (!dev || dev->netdev_ops != &device_ops)
2154		return NULL;	/* not a netvsc device */
2155
2156	net_device_ctx = netdev_priv(dev);
2157	if (!rtnl_dereference(net_device_ctx->nvdev))
2158		return NULL;	/* device is removed */
 
 
 
 
2159
2160	return dev;
 
 
 
 
2161}
2162
2163/* Called when VF is injecting data into network stack.
2164 * Change the associated network device from VF to netvsc.
2165 * note: already called with rcu_read_lock
2166 */
2167static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2168{
2169	struct sk_buff *skb = *pskb;
2170	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2171	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2172	struct netvsc_vf_pcpu_stats *pcpu_stats
2173		 = this_cpu_ptr(ndev_ctx->vf_stats);
2174
2175	skb = skb_share_check(skb, GFP_ATOMIC);
2176	if (unlikely(!skb))
2177		return RX_HANDLER_CONSUMED;
2178
2179	*pskb = skb;
2180
2181	skb->dev = ndev;
2182
2183	u64_stats_update_begin(&pcpu_stats->syncp);
2184	pcpu_stats->rx_packets++;
2185	pcpu_stats->rx_bytes += skb->len;
2186	u64_stats_update_end(&pcpu_stats->syncp);
2187
2188	return RX_HANDLER_ANOTHER;
2189}
2190
2191static int netvsc_vf_join(struct net_device *vf_netdev,
2192			  struct net_device *ndev, int context)
2193{
2194	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2195	int ret;
2196
2197	ret = netdev_rx_handler_register(vf_netdev,
2198					 netvsc_vf_handle_frame, ndev);
2199	if (ret != 0) {
2200		netdev_err(vf_netdev,
2201			   "can not register netvsc VF receive handler (err = %d)\n",
2202			   ret);
2203		goto rx_handler_failed;
2204	}
2205
2206	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2207					   NULL, NULL, NULL);
2208	if (ret != 0) {
2209		netdev_err(vf_netdev,
2210			   "can not set master device %s (err = %d)\n",
2211			   ndev->name, ret);
2212		goto upper_link_failed;
2213	}
2214
2215	/* If this registration is called from probe context vf_takeover
2216	 * is taken care of later in probe itself.
2217	 */
2218	if (context == VF_REG_IN_NOTIFIER)
2219		schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2220
2221	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2222
2223	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2224	return 0;
2225
2226upper_link_failed:
2227	netdev_rx_handler_unregister(vf_netdev);
2228rx_handler_failed:
2229	return ret;
2230}
2231
2232static void __netvsc_vf_setup(struct net_device *ndev,
2233			      struct net_device *vf_netdev)
2234{
2235	int ret;
2236
2237	/* Align MTU of VF with master */
2238	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2239	if (ret)
2240		netdev_warn(vf_netdev,
2241			    "unable to change mtu to %u\n", ndev->mtu);
2242
2243	/* set multicast etc flags on VF */
2244	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2245
2246	/* sync address list from ndev to VF */
2247	netif_addr_lock_bh(ndev);
2248	dev_uc_sync(vf_netdev, ndev);
2249	dev_mc_sync(vf_netdev, ndev);
2250	netif_addr_unlock_bh(ndev);
2251
2252	if (netif_running(ndev)) {
2253		ret = dev_open(vf_netdev, NULL);
2254		if (ret)
2255			netdev_warn(vf_netdev,
2256				    "unable to open: %d\n", ret);
2257	}
2258}
2259
2260/* Setup VF as slave of the synthetic device.
2261 * Runs in workqueue to avoid recursion in netlink callbacks.
2262 */
2263static void netvsc_vf_setup(struct work_struct *w)
2264{
2265	struct net_device_context *ndev_ctx
2266		= container_of(w, struct net_device_context, vf_takeover.work);
2267	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2268	struct net_device *vf_netdev;
2269
2270	if (!rtnl_trylock()) {
2271		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2272		return;
2273	}
2274
2275	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2276	if (vf_netdev)
2277		__netvsc_vf_setup(ndev, vf_netdev);
2278
2279	rtnl_unlock();
2280}
2281
2282/* Find netvsc by VF serial number.
2283 * The PCI hyperv controller records the serial number as the slot kobj name.
2284 */
2285static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2286{
2287	struct device *parent = vf_netdev->dev.parent;
2288	struct net_device_context *ndev_ctx;
2289	struct net_device *ndev;
2290	struct pci_dev *pdev;
2291	u32 serial;
2292
2293	if (!parent || !dev_is_pci(parent))
2294		return NULL; /* not a PCI device */
2295
2296	pdev = to_pci_dev(parent);
2297	if (!pdev->slot) {
2298		netdev_notice(vf_netdev, "no PCI slot information\n");
2299		return NULL;
2300	}
2301
2302	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304			      pci_slot_name(pdev->slot));
2305		return NULL;
2306	}
2307
2308	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309		if (!ndev_ctx->vf_alloc)
2310			continue;
2311
2312		if (ndev_ctx->vf_serial != serial)
2313			continue;
2314
2315		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2316		if (ndev->addr_len != vf_netdev->addr_len ||
2317		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2318			   ndev->addr_len) != 0)
2319			continue;
2320
2321		return ndev;
2322
2323	}
2324
2325	/* Fallback path to check synthetic vf with help of mac addr.
2326	 * Because this function can be called before vf_netdev is
2327	 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2328	 * from dev_addr, also try to match to its dev_addr.
2329	 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2330	 * on a VF that matches to the MAC of a unrelated NETVSC device.
2331	 */
2332	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2333		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2334		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2335		    ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2336			return ndev;
2337	}
2338
2339	netdev_notice(vf_netdev,
2340		      "no netdev found for vf serial:%u\n", serial);
2341	return NULL;
2342}
2343
2344static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2345{
2346	struct net_device *ndev;
2347
2348	ndev = get_netvsc_byslot(vf_netdev);
2349	if (!ndev)
2350		return NOTIFY_DONE;
2351
2352	/* set slave flag before open to prevent IPv6 addrconf */
2353	vf_netdev->flags |= IFF_SLAVE;
2354	return NOTIFY_DONE;
2355}
2356
2357static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2358{
2359	struct net_device_context *net_device_ctx;
2360	struct netvsc_device *netvsc_dev;
2361	struct bpf_prog *prog;
2362	struct net_device *ndev;
2363	int ret;
2364
2365	if (vf_netdev->addr_len != ETH_ALEN)
2366		return NOTIFY_DONE;
2367
2368	ndev = get_netvsc_byslot(vf_netdev);
 
 
 
 
 
2369	if (!ndev)
2370		return NOTIFY_DONE;
2371
2372	net_device_ctx = netdev_priv(ndev);
2373	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2374	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2375		return NOTIFY_DONE;
2376
2377	/* if synthetic interface is a different namespace,
2378	 * then move the VF to that namespace; join will be
2379	 * done again in that context.
2380	 */
2381	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2382		ret = dev_change_net_namespace(vf_netdev,
2383					       dev_net(ndev), "eth%d");
2384		if (ret)
2385			netdev_err(vf_netdev,
2386				   "could not move to same namespace as %s: %d\n",
2387				   ndev->name, ret);
2388		else
2389			netdev_info(vf_netdev,
2390				    "VF moved to namespace with: %s\n",
2391				    ndev->name);
2392		return NOTIFY_DONE;
2393	}
2394
2395	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2396
2397	if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2398		return NOTIFY_DONE;
2399
2400	dev_hold(vf_netdev);
2401	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2402
2403	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2404		ndev->needed_headroom = vf_netdev->needed_headroom;
2405
2406	vf_netdev->wanted_features = ndev->features;
2407	netdev_update_features(vf_netdev);
2408
2409	prog = netvsc_xdp_get(netvsc_dev);
2410	netvsc_vf_setxdp(vf_netdev, prog);
2411
2412	return NOTIFY_OK;
2413}
2414
2415/* Change the data path when VF UP/DOWN/CHANGE are detected.
2416 *
2417 * Typically a UP or DOWN event is followed by a CHANGE event, so
2418 * net_device_ctx->data_path_is_vf is used to cache the current data path
2419 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2420 * message.
2421 *
2422 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2423 * interface, there is only the CHANGE event and no UP or DOWN event.
2424 */
2425static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2426{
2427	struct net_device_context *net_device_ctx;
2428	struct netvsc_device *netvsc_dev;
2429	struct net_device *ndev;
2430	bool vf_is_up = false;
2431	int ret;
2432
2433	if (event != NETDEV_GOING_DOWN)
2434		vf_is_up = netif_running(vf_netdev);
2435
2436	ndev = get_netvsc_byref(vf_netdev);
2437	if (!ndev)
2438		return NOTIFY_DONE;
2439
2440	net_device_ctx = netdev_priv(ndev);
2441	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2442	if (!netvsc_dev)
2443		return NOTIFY_DONE;
2444
2445	if (net_device_ctx->data_path_is_vf == vf_is_up)
2446		return NOTIFY_OK;
2447
2448	if (vf_is_up && !net_device_ctx->vf_alloc) {
2449		netdev_info(ndev, "Waiting for the VF association from host\n");
2450		wait_for_completion(&net_device_ctx->vf_add);
2451	}
2452
2453	ret = netvsc_switch_datapath(ndev, vf_is_up);
2454
2455	if (ret) {
2456		netdev_err(ndev,
2457			   "Data path failed to switch %s VF: %s, err: %d\n",
2458			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2459		return NOTIFY_DONE;
2460	} else {
2461		netdev_info(ndev, "Data path switched %s VF: %s\n",
2462			    vf_is_up ? "to" : "from", vf_netdev->name);
2463	}
2464
2465	return NOTIFY_OK;
2466}
2467
2468static int netvsc_unregister_vf(struct net_device *vf_netdev)
2469{
2470	struct net_device *ndev;
2471	struct net_device_context *net_device_ctx;
2472
2473	ndev = get_netvsc_byref(vf_netdev);
2474	if (!ndev)
2475		return NOTIFY_DONE;
2476
2477	net_device_ctx = netdev_priv(ndev);
2478	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2479
2480	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2481
2482	netvsc_vf_setxdp(vf_netdev, NULL);
2483
2484	reinit_completion(&net_device_ctx->vf_add);
2485	netdev_rx_handler_unregister(vf_netdev);
2486	netdev_upper_dev_unlink(vf_netdev, ndev);
2487	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2488	dev_put(vf_netdev);
2489
2490	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2491
2492	return NOTIFY_OK;
2493}
2494
2495static int check_dev_is_matching_vf(struct net_device *event_ndev)
2496{
2497	/* Skip NetVSC interfaces */
2498	if (event_ndev->netdev_ops == &device_ops)
2499		return -ENODEV;
2500
2501	/* Avoid non-Ethernet type devices */
2502	if (event_ndev->type != ARPHRD_ETHER)
2503		return -ENODEV;
2504
2505	/* Avoid Vlan dev with same MAC registering as VF */
2506	if (is_vlan_dev(event_ndev))
2507		return -ENODEV;
2508
2509	/* Avoid Bonding master dev with same MAC registering as VF */
2510	if (netif_is_bond_master(event_ndev))
2511		return -ENODEV;
2512
2513	return 0;
2514}
2515
2516static int netvsc_probe(struct hv_device *dev,
2517			const struct hv_vmbus_device_id *dev_id)
2518{
2519	struct net_device *net = NULL, *vf_netdev;
2520	struct net_device_context *net_device_ctx;
2521	struct netvsc_device_info *device_info = NULL;
2522	struct netvsc_device *nvdev;
2523	int ret = -ENOMEM;
2524
2525	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2526				VRSS_CHANNEL_MAX);
2527	if (!net)
2528		goto no_net;
2529
2530	netif_carrier_off(net);
2531
2532	netvsc_init_settings(net);
2533
2534	net_device_ctx = netdev_priv(net);
2535	net_device_ctx->device_ctx = dev;
2536	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2537	if (netif_msg_probe(net_device_ctx))
2538		netdev_dbg(net, "netvsc msg_enable: %d\n",
2539			   net_device_ctx->msg_enable);
2540
2541	hv_set_drvdata(dev, net);
2542
2543	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2544
2545	init_completion(&net_device_ctx->vf_add);
2546	spin_lock_init(&net_device_ctx->lock);
2547	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2548	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2549
2550	net_device_ctx->vf_stats
2551		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2552	if (!net_device_ctx->vf_stats)
2553		goto no_stats;
2554
2555	net->netdev_ops = &device_ops;
2556	net->ethtool_ops = &ethtool_ops;
2557	SET_NETDEV_DEV(net, &dev->device);
2558	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2559
2560	/* We always need headroom for rndis header */
2561	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2562
2563	/* Initialize the number of queues to be 1, we may change it if more
2564	 * channels are offered later.
2565	 */
2566	netif_set_real_num_tx_queues(net, 1);
2567	netif_set_real_num_rx_queues(net, 1);
2568
2569	/* Notify the netvsc driver of the new device */
2570	device_info = netvsc_devinfo_get(NULL);
2571
2572	if (!device_info) {
2573		ret = -ENOMEM;
2574		goto devinfo_failed;
2575	}
2576
2577	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2578	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2579	 * all subchannels to show up, but that may not happen because
2580	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2581	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2582	 * the device lock, so all the subchannels can't be processed --
2583	 * finally netvsc_subchan_work() hangs forever.
2584	 *
2585	 * The rtnl lock also needs to be held before rndis_filter_device_add()
2586	 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2587	 * VF NIC offering and registering. If VF NIC finished register_netdev()
2588	 * earlier it may cause name based config failure.
2589	 */
2590	rtnl_lock();
2591
2592	nvdev = rndis_filter_device_add(dev, device_info);
2593	if (IS_ERR(nvdev)) {
2594		ret = PTR_ERR(nvdev);
2595		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2596		goto rndis_failed;
2597	}
2598
2599	eth_hw_addr_set(net, device_info->mac_adr);
2600
2601	if (nvdev->num_chn > 1)
2602		schedule_work(&nvdev->subchan_work);
2603
2604	/* hw_features computed in rndis_netdev_set_hwcaps() */
2605	net->features = net->hw_features |
2606		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2607		NETIF_F_HW_VLAN_CTAG_RX;
2608	net->vlan_features = net->features;
2609
2610	netdev_lockdep_set_classes(net);
2611
2612	net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2613			    NETDEV_XDP_ACT_NDO_XMIT;
2614
2615	/* MTU range: 68 - 1500 or 65521 */
2616	net->min_mtu = NETVSC_MTU_MIN;
2617	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2618		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2619	else
2620		net->max_mtu = ETH_DATA_LEN;
2621
2622	nvdev->tx_disable = false;
2623
2624	ret = register_netdevice(net);
2625	if (ret != 0) {
2626		pr_err("Unable to register netdev.\n");
2627		goto register_failed;
2628	}
2629
2630	list_add(&net_device_ctx->list, &netvsc_dev_list);
2631
2632	/* When the hv_netvsc driver is unloaded and reloaded, the
2633	 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2634	 * is complete. This is because register_netdevice_notifier() gets
2635	 * registered before vmbus_driver_register() so that callback func
2636	 * is set before probe and we don't miss events like NETDEV_POST_INIT
2637	 * So, in this section we try to register the matching vf device that
2638	 * is present as a netdevice, knowing that its register call is not
2639	 * processed in the netvsc_netdev_notifier(as probing is progress and
2640	 * get_netvsc_byslot fails).
2641	 */
2642	for_each_netdev(dev_net(net), vf_netdev) {
2643		ret = check_dev_is_matching_vf(vf_netdev);
2644		if (ret != 0)
2645			continue;
2646
2647		if (net != get_netvsc_byslot(vf_netdev))
2648			continue;
2649
2650		netvsc_prepare_bonding(vf_netdev);
2651		netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2652		__netvsc_vf_setup(net, vf_netdev);
2653		break;
2654	}
2655	rtnl_unlock();
2656
2657	netvsc_devinfo_put(device_info);
2658	return 0;
2659
2660register_failed:
2661	rndis_filter_device_remove(dev, nvdev);
2662rndis_failed:
2663	rtnl_unlock();
2664	netvsc_devinfo_put(device_info);
2665devinfo_failed:
2666	free_percpu(net_device_ctx->vf_stats);
2667no_stats:
2668	hv_set_drvdata(dev, NULL);
2669	free_netdev(net);
2670no_net:
2671	return ret;
2672}
2673
2674static void netvsc_remove(struct hv_device *dev)
2675{
2676	struct net_device_context *ndev_ctx;
2677	struct net_device *vf_netdev, *net;
2678	struct netvsc_device *nvdev;
2679
2680	net = hv_get_drvdata(dev);
2681	if (net == NULL) {
2682		dev_err(&dev->device, "No net device to remove\n");
2683		return;
2684	}
2685
2686	ndev_ctx = netdev_priv(net);
2687
2688	cancel_delayed_work_sync(&ndev_ctx->dwork);
2689
2690	rtnl_lock();
2691	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2692	if (nvdev) {
 
2693		cancel_work_sync(&nvdev->subchan_work);
2694		netvsc_xdp_set(net, NULL, NULL, nvdev);
2695	}
2696
2697	/*
2698	 * Call to the vsc driver to let it know that the device is being
2699	 * removed. Also blocks mtu and channel changes.
2700	 */
 
2701	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2702	if (vf_netdev)
2703		netvsc_unregister_vf(vf_netdev);
2704
2705	if (nvdev)
2706		rndis_filter_device_remove(dev, nvdev);
2707
2708	unregister_netdevice(net);
2709	list_del(&ndev_ctx->list);
2710
2711	rtnl_unlock();
 
2712
2713	hv_set_drvdata(dev, NULL);
2714
2715	free_percpu(ndev_ctx->vf_stats);
2716	free_netdev(net);
 
2717}
2718
2719static int netvsc_suspend(struct hv_device *dev)
2720{
2721	struct net_device_context *ndev_ctx;
2722	struct netvsc_device *nvdev;
2723	struct net_device *net;
2724	int ret;
2725
2726	net = hv_get_drvdata(dev);
2727
2728	ndev_ctx = netdev_priv(net);
2729	cancel_delayed_work_sync(&ndev_ctx->dwork);
2730
2731	rtnl_lock();
2732
2733	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2734	if (nvdev == NULL) {
2735		ret = -ENODEV;
2736		goto out;
2737	}
2738
2739	/* Save the current config info */
2740	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2741	if (!ndev_ctx->saved_netvsc_dev_info) {
2742		ret = -ENOMEM;
2743		goto out;
2744	}
2745	ret = netvsc_detach(net, nvdev);
2746out:
2747	rtnl_unlock();
2748
2749	return ret;
2750}
2751
2752static int netvsc_resume(struct hv_device *dev)
2753{
2754	struct net_device *net = hv_get_drvdata(dev);
2755	struct net_device_context *net_device_ctx;
2756	struct netvsc_device_info *device_info;
2757	int ret;
2758
2759	rtnl_lock();
2760
2761	net_device_ctx = netdev_priv(net);
2762
2763	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2764	 * channel. Later netvsc_netdev_event() will switch the data path to
2765	 * the VF upon the UP or CHANGE event.
2766	 */
2767	net_device_ctx->data_path_is_vf = false;
2768	device_info = net_device_ctx->saved_netvsc_dev_info;
2769
2770	ret = netvsc_attach(net, device_info);
2771
2772	netvsc_devinfo_put(device_info);
2773	net_device_ctx->saved_netvsc_dev_info = NULL;
2774
2775	rtnl_unlock();
2776
2777	return ret;
2778}
2779static const struct hv_vmbus_device_id id_table[] = {
2780	/* Network guid */
2781	{ HV_NIC_GUID, },
2782	{ },
2783};
2784
2785MODULE_DEVICE_TABLE(vmbus, id_table);
2786
2787/* The one and only one */
2788static struct  hv_driver netvsc_drv = {
2789	.name = KBUILD_MODNAME,
2790	.id_table = id_table,
2791	.probe = netvsc_probe,
2792	.remove = netvsc_remove,
2793	.suspend = netvsc_suspend,
2794	.resume = netvsc_resume,
2795	.driver = {
2796		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2797	},
2798};
2799
2800/*
2801 * On Hyper-V, every VF interface is matched with a corresponding
2802 * synthetic interface. The synthetic interface is presented first
2803 * to the guest. When the corresponding VF instance is registered,
2804 * we will take care of switching the data path.
2805 */
2806static int netvsc_netdev_event(struct notifier_block *this,
2807			       unsigned long event, void *ptr)
2808{
2809	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2810	int ret = 0;
2811
2812	ret = check_dev_is_matching_vf(event_dev);
2813	if (ret != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
2814		return NOTIFY_DONE;
2815
2816	switch (event) {
2817	case NETDEV_POST_INIT:
2818		return netvsc_prepare_bonding(event_dev);
2819	case NETDEV_REGISTER:
2820		return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2821	case NETDEV_UNREGISTER:
2822		return netvsc_unregister_vf(event_dev);
2823	case NETDEV_UP:
2824	case NETDEV_DOWN:
2825	case NETDEV_CHANGE:
2826	case NETDEV_GOING_DOWN:
2827		return netvsc_vf_changed(event_dev, event);
2828	default:
2829		return NOTIFY_DONE;
2830	}
2831}
2832
2833static struct notifier_block netvsc_netdev_notifier = {
2834	.notifier_call = netvsc_netdev_event,
2835};
2836
2837static void __exit netvsc_drv_exit(void)
2838{
2839	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2840	vmbus_driver_unregister(&netvsc_drv);
2841}
2842
2843static int __init netvsc_drv_init(void)
2844{
2845	int ret;
2846
2847	if (ring_size < RING_SIZE_MIN) {
2848		ring_size = RING_SIZE_MIN;
2849		pr_info("Increased ring_size to %u (min allowed)\n",
2850			ring_size);
2851	}
2852	netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2853
2854	register_netdevice_notifier(&netvsc_netdev_notifier);
2855
2856	ret = vmbus_driver_register(&netvsc_drv);
2857	if (ret)
2858		goto err_vmbus_reg;
2859
 
2860	return 0;
2861
2862err_vmbus_reg:
2863	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2864	return ret;
2865}
2866
2867MODULE_LICENSE("GPL");
2868MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2869
2870module_init(netvsc_drv_init);
2871module_exit(netvsc_drv_exit);
v4.17
 
   1/*
   2 * Copyright (c) 2009, Microsoft Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * You should have received a copy of the GNU General Public License along with
  14 * this program; if not, see <http://www.gnu.org/licenses/>.
  15 *
  16 * Authors:
  17 *   Haiyang Zhang <haiyangz@microsoft.com>
  18 *   Hank Janssen  <hjanssen@microsoft.com>
  19 */
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/init.h>
  23#include <linux/atomic.h>
 
  24#include <linux/module.h>
  25#include <linux/highmem.h>
  26#include <linux/device.h>
  27#include <linux/io.h>
  28#include <linux/delay.h>
  29#include <linux/netdevice.h>
  30#include <linux/inetdevice.h>
  31#include <linux/etherdevice.h>
 
  32#include <linux/skbuff.h>
  33#include <linux/if_vlan.h>
  34#include <linux/in.h>
  35#include <linux/slab.h>
  36#include <linux/rtnetlink.h>
  37#include <linux/netpoll.h>
  38#include <linux/reciprocal_div.h>
  39
  40#include <net/arp.h>
  41#include <net/route.h>
  42#include <net/sock.h>
  43#include <net/pkt_sched.h>
  44#include <net/checksum.h>
  45#include <net/ip6_checksum.h>
  46
  47#include "hyperv_net.h"
  48
  49#define RING_SIZE_MIN	64
  50#define RETRY_US_LO	5000
  51#define RETRY_US_HI	10000
  52#define RETRY_MAX	2000	/* >10 sec */
  53
  54#define LINKCHANGE_INT (2 * HZ)
  55#define VF_TAKEOVER_INT (HZ / 10)
  56
 
 
 
 
  57static unsigned int ring_size __ro_after_init = 128;
  58module_param(ring_size, uint, 0444);
  59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  60unsigned int netvsc_ring_bytes __ro_after_init;
  61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
  62
  63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  64				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  65				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  66				NETIF_MSG_TX_ERR;
  67
  68static int debug = -1;
  69module_param(debug, int, 0444);
  70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71
 
 
  72static void netvsc_change_rx_flags(struct net_device *net, int change)
  73{
  74	struct net_device_context *ndev_ctx = netdev_priv(net);
  75	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  76	int inc;
  77
  78	if (!vf_netdev)
  79		return;
  80
  81	if (change & IFF_PROMISC) {
  82		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  83		dev_set_promiscuity(vf_netdev, inc);
  84	}
  85
  86	if (change & IFF_ALLMULTI) {
  87		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  88		dev_set_allmulti(vf_netdev, inc);
  89	}
  90}
  91
  92static void netvsc_set_rx_mode(struct net_device *net)
  93{
  94	struct net_device_context *ndev_ctx = netdev_priv(net);
  95	struct net_device *vf_netdev;
  96	struct netvsc_device *nvdev;
  97
  98	rcu_read_lock();
  99	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
 100	if (vf_netdev) {
 101		dev_uc_sync(vf_netdev, net);
 102		dev_mc_sync(vf_netdev, net);
 103	}
 104
 105	nvdev = rcu_dereference(ndev_ctx->nvdev);
 106	if (nvdev)
 107		rndis_filter_update(nvdev);
 108	rcu_read_unlock();
 109}
 110
 
 
 
 
 
 
 
 
 
 111static int netvsc_open(struct net_device *net)
 112{
 113	struct net_device_context *ndev_ctx = netdev_priv(net);
 114	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 115	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 116	struct rndis_device *rdev;
 117	int ret = 0;
 118
 119	netif_carrier_off(net);
 120
 121	/* Open up the device */
 122	ret = rndis_filter_open(nvdev);
 123	if (ret != 0) {
 124		netdev_err(net, "unable to open device (ret %d).\n", ret);
 125		return ret;
 126	}
 127
 128	rdev = nvdev->extension;
 129	if (!rdev->link_state)
 130		netif_carrier_on(net);
 
 
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 
 
 
 
 
 
 
 
 
 
 
 184static int netvsc_close(struct net_device *net)
 185{
 186	struct net_device_context *net_device_ctx = netdev_priv(net);
 187	struct net_device *vf_netdev
 188		= rtnl_dereference(net_device_ctx->vf_netdev);
 189	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 190	int ret;
 191
 192	netif_tx_disable(net);
 193
 194	/* No need to close rndis filter if it is removed already */
 195	if (!nvdev)
 196		return 0;
 197
 198	ret = rndis_filter_close(nvdev);
 199	if (ret != 0) {
 200		netdev_err(net, "unable to close device (ret %d).\n", ret);
 201		return ret;
 202	}
 203
 204	ret = netvsc_wait_until_empty(nvdev);
 205	if (ret)
 206		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 207
 208	if (vf_netdev)
 209		dev_close(vf_netdev);
 210
 211	return ret;
 212}
 213
 214static inline void *init_ppi_data(struct rndis_message *msg,
 215				  u32 ppi_size, u32 pkt_type)
 216{
 217	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 218	struct rndis_per_packet_info *ppi;
 219
 220	rndis_pkt->data_offset += ppi_size;
 221	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 222		+ rndis_pkt->per_pkt_info_len;
 223
 224	ppi->size = ppi_size;
 225	ppi->type = pkt_type;
 
 226	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 227
 228	rndis_pkt->per_pkt_info_len += ppi_size;
 229
 230	return ppi + 1;
 231}
 232
 233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 234 * packets. We can use ethtool to change UDP hash level when necessary.
 235 */
 236static inline u32 netvsc_get_hash(
 237	struct sk_buff *skb,
 238	const struct net_device_context *ndc)
 239{
 240	struct flow_keys flow;
 241	u32 hash, pkt_proto = 0;
 242	static u32 hashrnd __read_mostly;
 243
 244	net_get_random_once(&hashrnd, sizeof(hashrnd));
 245
 246	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 247		return 0;
 248
 249	switch (flow.basic.ip_proto) {
 250	case IPPROTO_TCP:
 251		if (flow.basic.n_proto == htons(ETH_P_IP))
 252			pkt_proto = HV_TCP4_L4HASH;
 253		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 254			pkt_proto = HV_TCP6_L4HASH;
 255
 256		break;
 257
 258	case IPPROTO_UDP:
 259		if (flow.basic.n_proto == htons(ETH_P_IP))
 260			pkt_proto = HV_UDP4_L4HASH;
 261		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 262			pkt_proto = HV_UDP6_L4HASH;
 263
 264		break;
 265	}
 266
 267	if (pkt_proto & ndc->l4_hash) {
 268		return skb_get_hash(skb);
 269	} else {
 270		if (flow.basic.n_proto == htons(ETH_P_IP))
 271			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 272		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 273			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 274		else
 275			hash = 0;
 276
 277		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
 278	}
 279
 280	return hash;
 281}
 282
 283static inline int netvsc_get_tx_queue(struct net_device *ndev,
 284				      struct sk_buff *skb, int old_idx)
 285{
 286	const struct net_device_context *ndc = netdev_priv(ndev);
 287	struct sock *sk = skb->sk;
 288	int q_idx;
 289
 290	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 291			      (VRSS_SEND_TAB_SIZE - 1)];
 292
 293	/* If queue index changed record the new value */
 294	if (q_idx != old_idx &&
 295	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 296		sk_tx_queue_set(sk, q_idx);
 297
 298	return q_idx;
 299}
 300
 301/*
 302 * Select queue for transmit.
 303 *
 304 * If a valid queue has already been assigned, then use that.
 305 * Otherwise compute tx queue based on hash and the send table.
 306 *
 307 * This is basically similar to default (__netdev_pick_tx) with the added step
 308 * of using the host send_table when no other queue has been assigned.
 309 *
 310 * TODO support XPS - but get_xps_queue not exported
 311 */
 312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 313{
 314	int q_idx = sk_tx_queue_get(skb->sk);
 315
 316	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 317		/* If forwarding a packet, we use the recorded queue when
 318		 * available for better cache locality.
 319		 */
 320		if (skb_rx_queue_recorded(skb))
 321			q_idx = skb_get_rx_queue(skb);
 322		else
 323			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 324	}
 325
 326	return q_idx;
 327}
 328
 329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 330			       void *accel_priv,
 331			       select_queue_fallback_t fallback)
 332{
 333	struct net_device_context *ndc = netdev_priv(ndev);
 334	struct net_device *vf_netdev;
 335	u16 txq;
 336
 337	rcu_read_lock();
 338	vf_netdev = rcu_dereference(ndc->vf_netdev);
 339	if (vf_netdev) {
 340		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 341
 342		if (vf_ops->ndo_select_queue)
 343			txq = vf_ops->ndo_select_queue(vf_netdev, skb,
 344						       accel_priv, fallback);
 345		else
 346			txq = fallback(vf_netdev, skb);
 347
 348		/* Record the queue selected by VF so that it can be
 349		 * used for common case where VF has more queues than
 350		 * the synthetic device.
 351		 */
 352		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 353	} else {
 354		txq = netvsc_pick_tx(ndev, skb);
 355	}
 356	rcu_read_unlock();
 357
 358	while (unlikely(txq >= ndev->real_num_tx_queues))
 359		txq -= ndev->real_num_tx_queues;
 360
 361	return txq;
 362}
 363
 364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 365		       struct hv_page_buffer *pb)
 366{
 367	int j = 0;
 368
 369	/* Deal with compund pages by ignoring unused part
 370	 * of the page.
 371	 */
 372	page += (offset >> PAGE_SHIFT);
 373	offset &= ~PAGE_MASK;
 374
 375	while (len > 0) {
 376		unsigned long bytes;
 377
 378		bytes = PAGE_SIZE - offset;
 379		if (bytes > len)
 380			bytes = len;
 381		pb[j].pfn = page_to_pfn(page);
 382		pb[j].offset = offset;
 383		pb[j].len = bytes;
 384
 385		offset += bytes;
 386		len -= bytes;
 387
 388		if (offset == PAGE_SIZE && len) {
 389			page++;
 390			offset = 0;
 391			j++;
 392		}
 393	}
 394
 395	return j + 1;
 396}
 397
 398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 399			   struct hv_netvsc_packet *packet,
 400			   struct hv_page_buffer *pb)
 401{
 402	u32 slots_used = 0;
 403	char *data = skb->data;
 404	int frags = skb_shinfo(skb)->nr_frags;
 405	int i;
 406
 407	/* The packet is laid out thus:
 408	 * 1. hdr: RNDIS header and PPI
 409	 * 2. skb linear data
 410	 * 3. skb fragment data
 411	 */
 412	slots_used += fill_pg_buf(virt_to_page(hdr),
 413				  offset_in_page(hdr),
 414				  len, &pb[slots_used]);
 
 415
 416	packet->rmsg_size = len;
 417	packet->rmsg_pgcnt = slots_used;
 418
 419	slots_used += fill_pg_buf(virt_to_page(data),
 420				offset_in_page(data),
 421				skb_headlen(skb), &pb[slots_used]);
 
 422
 423	for (i = 0; i < frags; i++) {
 424		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 425
 426		slots_used += fill_pg_buf(skb_frag_page(frag),
 427					frag->page_offset,
 428					skb_frag_size(frag), &pb[slots_used]);
 
 429	}
 430	return slots_used;
 431}
 432
 433static int count_skb_frag_slots(struct sk_buff *skb)
 434{
 435	int i, frags = skb_shinfo(skb)->nr_frags;
 436	int pages = 0;
 437
 438	for (i = 0; i < frags; i++) {
 439		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 440		unsigned long size = skb_frag_size(frag);
 441		unsigned long offset = frag->page_offset;
 442
 443		/* Skip unused frames from start of page */
 444		offset &= ~PAGE_MASK;
 445		pages += PFN_UP(offset + size);
 446	}
 447	return pages;
 448}
 449
 450static int netvsc_get_slots(struct sk_buff *skb)
 451{
 452	char *data = skb->data;
 453	unsigned int offset = offset_in_page(data);
 454	unsigned int len = skb_headlen(skb);
 455	int slots;
 456	int frag_slots;
 457
 458	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 459	frag_slots = count_skb_frag_slots(skb);
 460	return slots + frag_slots;
 461}
 462
 463static u32 net_checksum_info(struct sk_buff *skb)
 464{
 465	if (skb->protocol == htons(ETH_P_IP)) {
 466		struct iphdr *ip = ip_hdr(skb);
 467
 468		if (ip->protocol == IPPROTO_TCP)
 469			return TRANSPORT_INFO_IPV4_TCP;
 470		else if (ip->protocol == IPPROTO_UDP)
 471			return TRANSPORT_INFO_IPV4_UDP;
 472	} else {
 473		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 474
 475		if (ip6->nexthdr == IPPROTO_TCP)
 476			return TRANSPORT_INFO_IPV6_TCP;
 477		else if (ip6->nexthdr == IPPROTO_UDP)
 478			return TRANSPORT_INFO_IPV6_UDP;
 479	}
 480
 481	return TRANSPORT_INFO_NOT_IP;
 482}
 483
 484/* Send skb on the slave VF device. */
 485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 486			  struct sk_buff *skb)
 487{
 488	struct net_device_context *ndev_ctx = netdev_priv(net);
 489	unsigned int len = skb->len;
 490	int rc;
 491
 492	skb->dev = vf_netdev;
 493	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 494
 495	rc = dev_queue_xmit(skb);
 496	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 497		struct netvsc_vf_pcpu_stats *pcpu_stats
 498			= this_cpu_ptr(ndev_ctx->vf_stats);
 499
 500		u64_stats_update_begin(&pcpu_stats->syncp);
 501		pcpu_stats->tx_packets++;
 502		pcpu_stats->tx_bytes += len;
 503		u64_stats_update_end(&pcpu_stats->syncp);
 504	} else {
 505		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 506	}
 507
 508	return rc;
 509}
 510
 511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 512{
 513	struct net_device_context *net_device_ctx = netdev_priv(net);
 514	struct hv_netvsc_packet *packet = NULL;
 515	int ret;
 516	unsigned int num_data_pgs;
 517	struct rndis_message *rndis_msg;
 518	struct net_device *vf_netdev;
 519	u32 rndis_msg_size;
 520	u32 hash;
 521	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 522
 523	/* if VF is present and up then redirect packets
 524	 * already called with rcu_read_lock_bh
 
 525	 */
 526	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 527	if (vf_netdev && netif_running(vf_netdev) &&
 528	    !netpoll_tx_running(net))
 
 529		return netvsc_vf_xmit(net, vf_netdev, skb);
 530
 531	/* We will atmost need two pages to describe the rndis
 532	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 533	 * of pages in a single packet. If skb is scattered around
 534	 * more pages we try linearizing it.
 535	 */
 536
 537	num_data_pgs = netvsc_get_slots(skb) + 2;
 538
 539	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 540		++net_device_ctx->eth_stats.tx_scattered;
 541
 542		if (skb_linearize(skb))
 543			goto no_memory;
 544
 545		num_data_pgs = netvsc_get_slots(skb) + 2;
 546		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 547			++net_device_ctx->eth_stats.tx_too_big;
 548			goto drop;
 549		}
 550	}
 551
 552	/*
 553	 * Place the rndis header in the skb head room and
 554	 * the skb->cb will be used for hv_netvsc_packet
 555	 * structure.
 556	 */
 557	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 558	if (ret)
 559		goto no_memory;
 560
 561	/* Use the skb control buffer for building up the packet */
 562	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 563			FIELD_SIZEOF(struct sk_buff, cb));
 564	packet = (struct hv_netvsc_packet *)skb->cb;
 565
 566	packet->q_idx = skb_get_queue_mapping(skb);
 567
 568	packet->total_data_buflen = skb->len;
 569	packet->total_bytes = skb->len;
 570	packet->total_packets = 1;
 571
 572	rndis_msg = (struct rndis_message *)skb->head;
 573
 574	/* Add the rndis header */
 575	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 576	rndis_msg->msg_len = packet->total_data_buflen;
 577
 578	rndis_msg->msg.pkt = (struct rndis_packet) {
 579		.data_offset = sizeof(struct rndis_packet),
 580		.data_len = packet->total_data_buflen,
 581		.per_pkt_info_offset = sizeof(struct rndis_packet),
 582	};
 583
 584	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 585
 586	hash = skb_get_hash_raw(skb);
 587	if (hash != 0 && net->real_num_tx_queues > 1) {
 588		u32 *hash_info;
 589
 590		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 591		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 592					  NBL_HASH_VALUE);
 593		*hash_info = hash;
 594	}
 595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596	if (skb_vlan_tag_present(skb)) {
 597		struct ndis_pkt_8021q_info *vlan;
 598
 599		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 600		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 601				     IEEE_8021Q_INFO);
 602
 603		vlan->value = 0;
 604		vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
 605		vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
 606				VLAN_PRIO_SHIFT;
 607	}
 608
 609	if (skb_is_gso(skb)) {
 610		struct ndis_tcp_lso_info *lso_info;
 611
 612		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 613		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 614					 TCP_LARGESEND_PKTINFO);
 615
 616		lso_info->value = 0;
 617		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 618		if (skb->protocol == htons(ETH_P_IP)) {
 619			lso_info->lso_v2_transmit.ip_version =
 620				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 621			ip_hdr(skb)->tot_len = 0;
 622			ip_hdr(skb)->check = 0;
 623			tcp_hdr(skb)->check =
 624				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 625						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 626		} else {
 627			lso_info->lso_v2_transmit.ip_version =
 628				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 629			ipv6_hdr(skb)->payload_len = 0;
 630			tcp_hdr(skb)->check =
 631				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 632						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 633		}
 634		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 635		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 636	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 637		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 638			struct ndis_tcp_ip_checksum_info *csum_info;
 639
 640			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 641			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 642						  TCPIP_CHKSUM_PKTINFO);
 643
 644			csum_info->value = 0;
 645			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 646
 647			if (skb->protocol == htons(ETH_P_IP)) {
 648				csum_info->transmit.is_ipv4 = 1;
 649
 650				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 651					csum_info->transmit.tcp_checksum = 1;
 652				else
 653					csum_info->transmit.udp_checksum = 1;
 654			} else {
 655				csum_info->transmit.is_ipv6 = 1;
 656
 657				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 658					csum_info->transmit.tcp_checksum = 1;
 659				else
 660					csum_info->transmit.udp_checksum = 1;
 661			}
 662		} else {
 663			/* Can't do offload of this type of checksum */
 664			if (skb_checksum_help(skb))
 665				goto drop;
 666		}
 667	}
 668
 669	/* Start filling in the page buffers with the rndis hdr */
 670	rndis_msg->msg_len += rndis_msg_size;
 671	packet->total_data_buflen = rndis_msg->msg_len;
 672	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 673					       skb, packet, pb);
 674
 675	/* timestamp packet in software */
 676	skb_tx_timestamp(skb);
 677
 678	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 679	if (likely(ret == 0))
 680		return NETDEV_TX_OK;
 681
 682	if (ret == -EAGAIN) {
 683		++net_device_ctx->eth_stats.tx_busy;
 684		return NETDEV_TX_BUSY;
 685	}
 686
 687	if (ret == -ENOSPC)
 688		++net_device_ctx->eth_stats.tx_no_space;
 689
 690drop:
 691	dev_kfree_skb_any(skb);
 692	net->stats.tx_dropped++;
 693
 694	return NETDEV_TX_OK;
 695
 696no_memory:
 697	++net_device_ctx->eth_stats.tx_no_memory;
 698	goto drop;
 699}
 700
 
 
 
 
 
 
 701/*
 702 * netvsc_linkstatus_callback - Link up/down notification
 703 */
 704void netvsc_linkstatus_callback(struct net_device *net,
 705				struct rndis_message *resp)
 
 706{
 707	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 708	struct net_device_context *ndev_ctx = netdev_priv(net);
 709	struct netvsc_reconfig *event;
 710	unsigned long flags;
 711
 
 
 
 
 
 
 
 
 
 
 712	/* Update the physical link speed when changing to another vSwitch */
 713	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 714		u32 speed;
 715
 716		speed = *(u32 *)((void *)indicate
 717				 + indicate->status_buf_offset) / 10000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718		ndev_ctx->speed = speed;
 719		return;
 720	}
 721
 722	/* Handle these link change statuses below */
 723	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 724	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 725	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 726		return;
 727
 728	if (net->reg_state != NETREG_REGISTERED)
 729		return;
 730
 731	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 732	if (!event)
 733		return;
 734	event->event = indicate->status;
 735
 736	spin_lock_irqsave(&ndev_ctx->lock, flags);
 737	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 738	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 739
 740	schedule_delayed_work(&ndev_ctx->dwork, 0);
 741}
 742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 744					     struct napi_struct *napi,
 745					     const struct ndis_tcp_ip_checksum_info *csum_info,
 746					     const struct ndis_pkt_8021q_info *vlan,
 747					     void *data, u32 buflen)
 748{
 
 
 
 
 
 
 749	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751	skb = napi_alloc_skb(napi, buflen);
 752	if (!skb)
 753		return skb;
 754
 755	/*
 756	 * Copy to skb. This copy is needed here since the memory pointed by
 757	 * hv_netvsc_packet cannot be deallocated
 758	 */
 759	skb_put_data(skb, data, buflen);
 
 
 760
 761	skb->protocol = eth_type_trans(skb, net);
 762
 763	/* skb is already created with CHECKSUM_NONE */
 764	skb_checksum_none_assert(skb);
 765
 766	/*
 767	 * In Linux, the IP checksum is always checked.
 768	 * Do L4 checksum offload if enabled and present.
 
 769	 */
 770	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 
 
 
 
 
 
 
 
 
 
 
 
 771		if (csum_info->receive.tcp_checksum_succeeded ||
 772		    csum_info->receive.udp_checksum_succeeded)
 773			skb->ip_summed = CHECKSUM_UNNECESSARY;
 774	}
 775
 776	if (vlan) {
 777		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
 
 
 
 
 778
 779		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 780				       vlan_tci);
 781	}
 782
 783	return skb;
 784}
 785
 786/*
 787 * netvsc_recv_callback -  Callback when we receive a packet from the
 788 * "wire" on the specified device.
 789 */
 790int netvsc_recv_callback(struct net_device *net,
 791			 struct netvsc_device *net_device,
 792			 struct vmbus_channel *channel,
 793			 void  *data, u32 len,
 794			 const struct ndis_tcp_ip_checksum_info *csum_info,
 795			 const struct ndis_pkt_8021q_info *vlan)
 796{
 797	struct net_device_context *net_device_ctx = netdev_priv(net);
 
 798	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 799	struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
 800	struct sk_buff *skb;
 801	struct netvsc_stats *rx_stats;
 
 
 802
 803	if (net->reg_state != NETREG_REGISTERED)
 804		return NVSP_STAT_FAIL;
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	/* Allocate a skb - TODO direct I/O to pages? */
 807	skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
 808				    csum_info, vlan, data, len);
 809	if (unlikely(!skb)) {
 810		++net_device_ctx->eth_stats.rx_no_memory;
 811		rcu_read_unlock();
 812		return NVSP_STAT_FAIL;
 813	}
 814
 815	skb_record_rx_queue(skb, q_idx);
 816
 817	/*
 818	 * Even if injecting the packet, record the statistics
 819	 * on the synthetic device because modifying the VF device
 820	 * statistics will not work correctly.
 821	 */
 822	rx_stats = &nvchan->rx_stats;
 823	u64_stats_update_begin(&rx_stats->syncp);
 
 
 
 824	rx_stats->packets++;
 825	rx_stats->bytes += len;
 826
 827	if (skb->pkt_type == PACKET_BROADCAST)
 828		++rx_stats->broadcast;
 829	else if (skb->pkt_type == PACKET_MULTICAST)
 830		++rx_stats->multicast;
 831	u64_stats_update_end(&rx_stats->syncp);
 832
 
 
 
 
 
 833	napi_gro_receive(&nvchan->napi, skb);
 834	return NVSP_STAT_SUCCESS;
 835}
 836
 837static void netvsc_get_drvinfo(struct net_device *net,
 838			       struct ethtool_drvinfo *info)
 839{
 840	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 841	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 842}
 843
 844static void netvsc_get_channels(struct net_device *net,
 845				struct ethtool_channels *channel)
 846{
 847	struct net_device_context *net_device_ctx = netdev_priv(net);
 848	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 849
 850	if (nvdev) {
 851		channel->max_combined	= nvdev->max_chn;
 852		channel->combined_count = nvdev->num_chn;
 853	}
 854}
 855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856static int netvsc_detach(struct net_device *ndev,
 857			 struct netvsc_device *nvdev)
 858{
 859	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 860	struct hv_device *hdev = ndev_ctx->device_ctx;
 861	int ret;
 862
 863	/* Don't try continuing to try and setup sub channels */
 864	if (cancel_work_sync(&nvdev->subchan_work))
 865		nvdev->num_chn = 1;
 866
 
 
 867	/* If device was up (receiving) then shutdown */
 868	if (netif_running(ndev)) {
 869		netif_tx_disable(ndev);
 870
 871		ret = rndis_filter_close(nvdev);
 872		if (ret) {
 873			netdev_err(ndev,
 874				   "unable to close device (ret %d).\n", ret);
 875			return ret;
 876		}
 877
 878		ret = netvsc_wait_until_empty(nvdev);
 879		if (ret) {
 880			netdev_err(ndev,
 881				   "Ring buffer not empty after closing rndis\n");
 882			return ret;
 883		}
 884	}
 885
 886	netif_device_detach(ndev);
 887
 888	rndis_filter_device_remove(hdev, nvdev);
 889
 890	return 0;
 891}
 892
 893static int netvsc_attach(struct net_device *ndev,
 894			 struct netvsc_device_info *dev_info)
 895{
 896	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 897	struct hv_device *hdev = ndev_ctx->device_ctx;
 898	struct netvsc_device *nvdev;
 899	struct rndis_device *rdev;
 900	int ret;
 
 901
 902	nvdev = rndis_filter_device_add(hdev, dev_info);
 903	if (IS_ERR(nvdev))
 904		return PTR_ERR(nvdev);
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	/* Note: enable and attach happen when sub-channels setup */
 907
 908	netif_carrier_off(ndev);
 909
 910	if (netif_running(ndev)) {
 911		ret = rndis_filter_open(nvdev);
 912		if (ret)
 913			return ret;
 914
 915		rdev = nvdev->extension;
 916		if (!rdev->link_state)
 917			netif_carrier_on(ndev);
 918	}
 919
 920	return 0;
 
 
 
 
 
 
 
 
 921}
 922
 923static int netvsc_set_channels(struct net_device *net,
 924			       struct ethtool_channels *channels)
 925{
 926	struct net_device_context *net_device_ctx = netdev_priv(net);
 927	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 928	unsigned int orig, count = channels->combined_count;
 929	struct netvsc_device_info device_info;
 930	int ret;
 931
 932	/* We do not support separate count for rx, tx, or other */
 933	if (count == 0 ||
 934	    channels->rx_count || channels->tx_count || channels->other_count)
 935		return -EINVAL;
 936
 937	if (!nvdev || nvdev->destroy)
 938		return -ENODEV;
 939
 940	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
 941		return -EINVAL;
 942
 943	if (count > nvdev->max_chn)
 944		return -EINVAL;
 945
 946	orig = nvdev->num_chn;
 947
 948	memset(&device_info, 0, sizeof(device_info));
 949	device_info.num_chn = count;
 950	device_info.send_sections = nvdev->send_section_cnt;
 951	device_info.send_section_size = nvdev->send_section_size;
 952	device_info.recv_sections = nvdev->recv_section_cnt;
 953	device_info.recv_section_size = nvdev->recv_section_size;
 954
 955	ret = netvsc_detach(net, nvdev);
 956	if (ret)
 957		return ret;
 958
 959	ret = netvsc_attach(net, &device_info);
 960	if (ret) {
 961		device_info.num_chn = orig;
 962		if (netvsc_attach(net, &device_info))
 963			netdev_err(net, "restoring channel setting failed\n");
 964	}
 965
 
 
 966	return ret;
 967}
 968
 969static bool
 970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
 971{
 972	struct ethtool_link_ksettings diff1 = *cmd;
 973	struct ethtool_link_ksettings diff2 = {};
 974
 975	diff1.base.speed = 0;
 976	diff1.base.duplex = 0;
 977	/* advertising and cmd are usually set */
 978	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
 979	diff1.base.cmd = 0;
 980	/* We set port to PORT_OTHER */
 981	diff2.base.port = PORT_OTHER;
 982
 983	return !memcmp(&diff1, &diff2, sizeof(diff1));
 984}
 985
 986static void netvsc_init_settings(struct net_device *dev)
 987{
 988	struct net_device_context *ndc = netdev_priv(dev);
 989
 990	ndc->l4_hash = HV_DEFAULT_L4HASH;
 991
 992	ndc->speed = SPEED_UNKNOWN;
 993	ndc->duplex = DUPLEX_FULL;
 
 
 994}
 995
 996static int netvsc_get_link_ksettings(struct net_device *dev,
 997				     struct ethtool_link_ksettings *cmd)
 998{
 999	struct net_device_context *ndc = netdev_priv(dev);
 
 
 
 
 
 
1000
1001	cmd->base.speed = ndc->speed;
1002	cmd->base.duplex = ndc->duplex;
1003	cmd->base.port = PORT_OTHER;
1004
1005	return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009				     const struct ethtool_link_ksettings *cmd)
1010{
1011	struct net_device_context *ndc = netdev_priv(dev);
1012	u32 speed;
1013
1014	speed = cmd->base.speed;
1015	if (!ethtool_validate_speed(speed) ||
1016	    !ethtool_validate_duplex(cmd->base.duplex) ||
1017	    !netvsc_validate_ethtool_ss_cmd(cmd))
1018		return -EINVAL;
1019
1020	ndc->speed = speed;
1021	ndc->duplex = cmd->base.duplex;
 
1022
1023	return 0;
 
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028	struct net_device_context *ndevctx = netdev_priv(ndev);
1029	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031	int orig_mtu = ndev->mtu;
1032	struct netvsc_device_info device_info;
1033	int ret = 0;
1034
1035	if (!nvdev || nvdev->destroy)
1036		return -ENODEV;
1037
 
 
 
 
 
1038	/* Change MTU of underlying VF netdev first. */
1039	if (vf_netdev) {
1040		ret = dev_set_mtu(vf_netdev, mtu);
1041		if (ret)
1042			return ret;
1043	}
1044
1045	memset(&device_info, 0, sizeof(device_info));
1046	device_info.num_chn = nvdev->num_chn;
1047	device_info.send_sections = nvdev->send_section_cnt;
1048	device_info.send_section_size = nvdev->send_section_size;
1049	device_info.recv_sections = nvdev->recv_section_cnt;
1050	device_info.recv_section_size = nvdev->recv_section_size;
1051
1052	ret = netvsc_detach(ndev, nvdev);
1053	if (ret)
1054		goto rollback_vf;
1055
1056	ndev->mtu = mtu;
1057
1058	ret = netvsc_attach(ndev, &device_info);
1059	if (ret)
1060		goto rollback;
1061
1062	return 0;
1063
1064rollback:
1065	/* Attempt rollback to original MTU */
1066	ndev->mtu = orig_mtu;
1067
1068	if (netvsc_attach(ndev, &device_info))
1069		netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071	if (vf_netdev)
1072		dev_set_mtu(vf_netdev, orig_mtu);
1073
 
 
1074	return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078				struct netvsc_vf_pcpu_stats *tot)
1079{
1080	struct net_device_context *ndev_ctx = netdev_priv(net);
1081	int i;
1082
1083	memset(tot, 0, sizeof(*tot));
1084
1085	for_each_possible_cpu(i) {
1086		const struct netvsc_vf_pcpu_stats *stats
1087			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1088		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089		unsigned int start;
1090
1091		do {
1092			start = u64_stats_fetch_begin_irq(&stats->syncp);
1093			rx_packets = stats->rx_packets;
1094			tx_packets = stats->tx_packets;
1095			rx_bytes = stats->rx_bytes;
1096			tx_bytes = stats->tx_bytes;
1097		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099		tot->rx_packets += rx_packets;
1100		tot->tx_packets += tx_packets;
1101		tot->rx_bytes   += rx_bytes;
1102		tot->tx_bytes   += tx_bytes;
1103		tot->tx_dropped += stats->tx_dropped;
1104	}
1105}
1106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107static void netvsc_get_stats64(struct net_device *net,
1108			       struct rtnl_link_stats64 *t)
1109{
1110	struct net_device_context *ndev_ctx = netdev_priv(net);
1111	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112	struct netvsc_vf_pcpu_stats vf_tot;
1113	int i;
1114
 
 
 
1115	if (!nvdev)
1116		return;
1117
1118	netdev_stats_to_stats64(t, &net->stats);
1119
1120	netvsc_get_vf_stats(net, &vf_tot);
1121	t->rx_packets += vf_tot.rx_packets;
1122	t->tx_packets += vf_tot.tx_packets;
1123	t->rx_bytes   += vf_tot.rx_bytes;
1124	t->tx_bytes   += vf_tot.tx_bytes;
1125	t->tx_dropped += vf_tot.tx_dropped;
1126
1127	for (i = 0; i < nvdev->num_chn; i++) {
1128		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129		const struct netvsc_stats *stats;
 
1130		u64 packets, bytes, multicast;
1131		unsigned int start;
1132
1133		stats = &nvchan->tx_stats;
1134		do {
1135			start = u64_stats_fetch_begin_irq(&stats->syncp);
1136			packets = stats->packets;
1137			bytes = stats->bytes;
1138		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140		t->tx_bytes	+= bytes;
1141		t->tx_packets	+= packets;
1142
1143		stats = &nvchan->rx_stats;
1144		do {
1145			start = u64_stats_fetch_begin_irq(&stats->syncp);
1146			packets = stats->packets;
1147			bytes = stats->bytes;
1148			multicast = stats->multicast + stats->broadcast;
1149		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151		t->rx_bytes	+= bytes;
1152		t->rx_packets	+= packets;
1153		t->multicast	+= multicast;
1154	}
 
 
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159	struct net_device_context *ndc = netdev_priv(ndev);
1160	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162	struct sockaddr *addr = p;
1163	int err;
1164
1165	err = eth_prepare_mac_addr_change(ndev, p);
1166	if (err)
1167		return err;
1168
1169	if (!nvdev)
1170		return -ENODEV;
1171
1172	if (vf_netdev) {
1173		err = dev_set_mac_address(vf_netdev, addr);
1174		if (err)
1175			return err;
1176	}
1177
1178	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179	if (!err) {
1180		eth_commit_mac_addr_change(ndev, p);
1181	} else if (vf_netdev) {
1182		/* rollback change on VF */
1183		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184		dev_set_mac_address(vf_netdev, addr);
1185	}
1186
1187	return err;
1188}
1189
1190static const struct {
1191	char name[ETH_GSTRING_LEN];
1192	u16 offset;
1193} netvsc_stats[] = {
1194	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204}, vf_stats[] = {
1205	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
 
 
 
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220	struct net_device_context *ndc = netdev_priv(dev);
1221	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223	if (!nvdev)
1224		return -ENODEV;
1225
1226	switch (string_set) {
1227	case ETH_SS_STATS:
1228		return NETVSC_GLOBAL_STATS_LEN
1229			+ NETVSC_VF_STATS_LEN
1230			+ NETVSC_QUEUE_STATS_LEN(nvdev);
 
1231	default:
1232		return -EINVAL;
1233	}
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237				     struct ethtool_stats *stats, u64 *data)
1238{
1239	struct net_device_context *ndc = netdev_priv(dev);
1240	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241	const void *nds = &ndc->eth_stats;
1242	const struct netvsc_stats *qstats;
 
1243	struct netvsc_vf_pcpu_stats sum;
 
1244	unsigned int start;
1245	u64 packets, bytes;
1246	int i, j;
 
 
 
 
1247
1248	if (!nvdev)
1249		return;
1250
1251	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254	netvsc_get_vf_stats(dev, &sum);
1255	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258	for (j = 0; j < nvdev->num_chn; j++) {
1259		qstats = &nvdev->chan_table[j].tx_stats;
1260
1261		do {
1262			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263			packets = qstats->packets;
1264			bytes = qstats->bytes;
1265		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
1266		data[i++] = packets;
1267		data[i++] = bytes;
 
1268
1269		qstats = &nvdev->chan_table[j].rx_stats;
1270		do {
1271			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272			packets = qstats->packets;
1273			bytes = qstats->bytes;
1274		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
 
 
1275		data[i++] = packets;
1276		data[i++] = bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277	}
 
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282	struct net_device_context *ndc = netdev_priv(dev);
1283	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284	u8 *p = data;
1285	int i;
1286
1287	if (!nvdev)
1288		return;
1289
1290	switch (stringset) {
1291	case ETH_SS_STATS:
1292		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294			p += ETH_GSTRING_LEN;
1295		}
 
1296
1297		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299			p += ETH_GSTRING_LEN;
 
 
 
 
 
 
1300		}
1301
1302		for (i = 0; i < nvdev->num_chn; i++) {
1303			sprintf(p, "tx_queue_%u_packets", i);
1304			p += ETH_GSTRING_LEN;
1305			sprintf(p, "tx_queue_%u_bytes", i);
1306			p += ETH_GSTRING_LEN;
1307			sprintf(p, "rx_queue_%u_packets", i);
1308			p += ETH_GSTRING_LEN;
1309			sprintf(p, "rx_queue_%u_bytes", i);
1310			p += ETH_GSTRING_LEN;
1311		}
1312
1313		break;
1314	}
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319			 struct ethtool_rxnfc *info)
1320{
1321	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323	info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325	switch (info->flow_type) {
1326	case TCP_V4_FLOW:
1327		if (ndc->l4_hash & HV_TCP4_L4HASH)
1328			info->data |= l4_flag;
1329
1330		break;
1331
1332	case TCP_V6_FLOW:
1333		if (ndc->l4_hash & HV_TCP6_L4HASH)
1334			info->data |= l4_flag;
1335
1336		break;
1337
1338	case UDP_V4_FLOW:
1339		if (ndc->l4_hash & HV_UDP4_L4HASH)
1340			info->data |= l4_flag;
1341
1342		break;
1343
1344	case UDP_V6_FLOW:
1345		if (ndc->l4_hash & HV_UDP6_L4HASH)
1346			info->data |= l4_flag;
1347
1348		break;
1349
1350	case IPV4_FLOW:
1351	case IPV6_FLOW:
1352		break;
1353	default:
1354		info->data = 0;
1355		break;
1356	}
1357
1358	return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363		 u32 *rules)
1364{
1365	struct net_device_context *ndc = netdev_priv(dev);
1366	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368	if (!nvdev)
1369		return -ENODEV;
1370
1371	switch (info->cmd) {
1372	case ETHTOOL_GRXRINGS:
1373		info->data = nvdev->num_chn;
1374		return 0;
1375
1376	case ETHTOOL_GRXFH:
1377		return netvsc_get_rss_hash_opts(ndc, info);
1378	}
1379	return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383				    struct ethtool_rxnfc *info)
1384{
1385	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387		switch (info->flow_type) {
1388		case TCP_V4_FLOW:
1389			ndc->l4_hash |= HV_TCP4_L4HASH;
1390			break;
1391
1392		case TCP_V6_FLOW:
1393			ndc->l4_hash |= HV_TCP6_L4HASH;
1394			break;
1395
1396		case UDP_V4_FLOW:
1397			ndc->l4_hash |= HV_UDP4_L4HASH;
1398			break;
1399
1400		case UDP_V6_FLOW:
1401			ndc->l4_hash |= HV_UDP6_L4HASH;
1402			break;
1403
1404		default:
1405			return -EOPNOTSUPP;
1406		}
1407
1408		return 0;
1409	}
1410
1411	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412		switch (info->flow_type) {
1413		case TCP_V4_FLOW:
1414			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415			break;
1416
1417		case TCP_V6_FLOW:
1418			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419			break;
1420
1421		case UDP_V4_FLOW:
1422			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423			break;
1424
1425		case UDP_V6_FLOW:
1426			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427			break;
1428
1429		default:
1430			return -EOPNOTSUPP;
1431		}
1432
1433		return 0;
1434	}
1435
1436	return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442	struct net_device_context *ndc = netdev_priv(ndev);
1443
1444	if (info->cmd == ETHTOOL_SRXFH)
1445		return netvsc_set_rss_hash_opts(ndc, info);
1446
1447	return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453	struct net_device_context *ndc = netdev_priv(dev);
1454	struct netvsc_device *ndev;
1455	int i;
1456
1457	rcu_read_lock();
1458	ndev = rcu_dereference(ndc->nvdev);
1459	if (ndev) {
1460		for (i = 0; i < ndev->num_chn; i++) {
1461			struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463			napi_schedule(&nvchan->napi);
1464		}
1465	}
1466	rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472	return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477	return ITAB_NUM;
 
 
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481			   u8 *hfunc)
1482{
1483	struct net_device_context *ndc = netdev_priv(dev);
1484	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485	struct rndis_device *rndis_dev;
1486	int i;
1487
1488	if (!ndev)
1489		return -ENODEV;
1490
1491	if (hfunc)
1492		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1493
1494	rndis_dev = ndev->extension;
1495	if (indir) {
1496		for (i = 0; i < ITAB_NUM; i++)
1497			indir[i] = rndis_dev->rx_table[i];
1498	}
1499
1500	if (key)
1501		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503	return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507			   const u8 *key, const u8 hfunc)
 
1508{
1509	struct net_device_context *ndc = netdev_priv(dev);
1510	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511	struct rndis_device *rndis_dev;
 
1512	int i;
1513
1514	if (!ndev)
1515		return -ENODEV;
1516
1517	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
 
1518		return -EOPNOTSUPP;
1519
1520	rndis_dev = ndev->extension;
1521	if (indir) {
1522		for (i = 0; i < ITAB_NUM; i++)
1523			if (indir[i] >= ndev->num_chn)
1524				return -EINVAL;
1525
1526		for (i = 0; i < ITAB_NUM; i++)
1527			rndis_dev->rx_table[i] = indir[i];
1528	}
1529
1530	if (!key) {
1531		if (!indir)
1532			return 0;
1533
1534		key = rndis_dev->rss_key;
1535	}
1536
1537	return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544				   struct ethtool_ringparam *ring)
1545{
1546	u32 max_buf_size;
1547
1548	ring->rx_pending = nvdev->recv_section_cnt;
1549	ring->tx_pending = nvdev->send_section_cnt;
1550
1551	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553	else
1554		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558		/ nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562				 struct ethtool_ringparam *ring)
 
 
1563{
1564	struct net_device_context *ndevctx = netdev_priv(ndev);
1565	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567	if (!nvdev)
1568		return;
1569
1570	__netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574				struct ethtool_ringparam *ring)
 
 
1575{
1576	struct net_device_context *ndevctx = netdev_priv(ndev);
1577	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578	struct netvsc_device_info device_info;
1579	struct ethtool_ringparam orig;
1580	u32 new_tx, new_rx;
1581	int ret = 0;
1582
1583	if (!nvdev || nvdev->destroy)
1584		return -ENODEV;
1585
1586	memset(&orig, 0, sizeof(orig));
1587	__netvsc_get_ringparam(nvdev, &orig);
1588
1589	new_tx = clamp_t(u32, ring->tx_pending,
1590			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591	new_rx = clamp_t(u32, ring->rx_pending,
1592			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594	if (new_tx == orig.tx_pending &&
1595	    new_rx == orig.rx_pending)
1596		return 0;	 /* no change */
1597
1598	memset(&device_info, 0, sizeof(device_info));
1599	device_info.num_chn = nvdev->num_chn;
1600	device_info.send_sections = new_tx;
1601	device_info.send_section_size = nvdev->send_section_size;
1602	device_info.recv_sections = new_rx;
1603	device_info.recv_section_size = nvdev->recv_section_size;
 
1604
1605	ret = netvsc_detach(ndev, nvdev);
1606	if (ret)
1607		return ret;
1608
1609	ret = netvsc_attach(ndev, &device_info);
1610	if (ret) {
1611		device_info.send_sections = orig.tx_pending;
1612		device_info.recv_sections = orig.rx_pending;
1613
1614		if (netvsc_attach(ndev, &device_info))
1615			netdev_err(ndev, "restoring ringparam failed");
1616	}
1617
 
 
1618	return ret;
1619}
1620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621static const struct ethtool_ops ethtool_ops = {
1622	.get_drvinfo	= netvsc_get_drvinfo,
 
 
 
 
1623	.get_link	= ethtool_op_get_link,
1624	.get_ethtool_stats = netvsc_get_ethtool_stats,
1625	.get_sset_count = netvsc_get_sset_count,
1626	.get_strings	= netvsc_get_strings,
1627	.get_channels   = netvsc_get_channels,
1628	.set_channels   = netvsc_set_channels,
1629	.get_ts_info	= ethtool_op_get_ts_info,
1630	.get_rxnfc	= netvsc_get_rxnfc,
1631	.set_rxnfc	= netvsc_set_rxnfc,
1632	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633	.get_rxfh_indir_size = netvsc_rss_indir_size,
1634	.get_rxfh	= netvsc_get_rxfh,
1635	.set_rxfh	= netvsc_set_rxfh,
1636	.get_link_ksettings = netvsc_get_link_ksettings,
1637	.set_link_ksettings = netvsc_set_link_ksettings,
1638	.get_ringparam	= netvsc_get_ringparam,
1639	.set_ringparam	= netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643	.ndo_open =			netvsc_open,
1644	.ndo_stop =			netvsc_close,
1645	.ndo_start_xmit =		netvsc_start_xmit,
1646	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1647	.ndo_set_rx_mode =		netvsc_set_rx_mode,
 
 
1648	.ndo_change_mtu =		netvsc_change_mtu,
1649	.ndo_validate_addr =		eth_validate_addr,
1650	.ndo_set_mac_address =		netvsc_set_mac_addr,
1651	.ndo_select_queue =		netvsc_select_queue,
1652	.ndo_get_stats64 =		netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654	.ndo_poll_controller =		netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665	struct net_device_context *ndev_ctx =
1666		container_of(w, struct net_device_context, dwork.work);
1667	struct hv_device *device_obj = ndev_ctx->device_ctx;
1668	struct net_device *net = hv_get_drvdata(device_obj);
 
 
1669	struct netvsc_device *net_device;
1670	struct rndis_device *rdev;
1671	struct netvsc_reconfig *event = NULL;
1672	bool notify = false, reschedule = false;
1673	unsigned long flags, next_reconfig, delay;
1674
1675	/* if changes are happening, comeback later */
1676	if (!rtnl_trylock()) {
1677		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678		return;
1679	}
1680
1681	net_device = rtnl_dereference(ndev_ctx->nvdev);
1682	if (!net_device)
1683		goto out_unlock;
1684
1685	rdev = net_device->extension;
1686
1687	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688	if (time_is_after_jiffies(next_reconfig)) {
1689		/* link_watch only sends one notification with current state
1690		 * per second, avoid doing reconfig more frequently. Handle
1691		 * wrap around.
1692		 */
1693		delay = next_reconfig - jiffies;
1694		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695		schedule_delayed_work(&ndev_ctx->dwork, delay);
1696		goto out_unlock;
1697	}
1698	ndev_ctx->last_reconfig = jiffies;
1699
1700	spin_lock_irqsave(&ndev_ctx->lock, flags);
1701	if (!list_empty(&ndev_ctx->reconfig_events)) {
1702		event = list_first_entry(&ndev_ctx->reconfig_events,
1703					 struct netvsc_reconfig, list);
1704		list_del(&event->list);
1705		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706	}
1707	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709	if (!event)
1710		goto out_unlock;
1711
1712	switch (event->event) {
1713		/* Only the following events are possible due to the check in
1714		 * netvsc_linkstatus_callback()
1715		 */
1716	case RNDIS_STATUS_MEDIA_CONNECT:
1717		if (rdev->link_state) {
1718			rdev->link_state = false;
1719			netif_carrier_on(net);
1720			netif_tx_wake_all_queues(net);
1721		} else {
1722			notify = true;
1723		}
1724		kfree(event);
1725		break;
1726	case RNDIS_STATUS_MEDIA_DISCONNECT:
1727		if (!rdev->link_state) {
1728			rdev->link_state = true;
1729			netif_carrier_off(net);
1730			netif_tx_stop_all_queues(net);
1731		}
1732		kfree(event);
1733		break;
1734	case RNDIS_STATUS_NETWORK_CHANGE:
1735		/* Only makes sense if carrier is present */
1736		if (!rdev->link_state) {
1737			rdev->link_state = true;
1738			netif_carrier_off(net);
1739			netif_tx_stop_all_queues(net);
1740			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741			spin_lock_irqsave(&ndev_ctx->lock, flags);
1742			list_add(&event->list, &ndev_ctx->reconfig_events);
1743			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744			reschedule = true;
1745		}
1746		break;
1747	}
1748
1749	rtnl_unlock();
1750
1751	if (notify)
1752		netdev_notify_peers(net);
1753
1754	/* link_watch only sends one notification with current state per
1755	 * second, handle next reconfig event in 2 seconds.
1756	 */
1757	if (reschedule)
1758		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760	return;
1761
1762out_unlock:
1763	rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768	struct net_device *dev;
1769
1770	ASSERT_RTNL();
1771
1772	for_each_netdev(&init_net, dev) {
1773		if (dev->netdev_ops != &device_ops)
1774			continue;	/* not a netvsc device */
1775
1776		if (ether_addr_equal(mac, dev->perm_addr))
1777			return dev;
1778	}
1779
1780	return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
 
1785	struct net_device *dev;
1786
1787	ASSERT_RTNL();
1788
1789	for_each_netdev(&init_net, dev) {
1790		struct net_device_context *net_device_ctx;
1791
1792		if (dev->netdev_ops != &device_ops)
1793			continue;	/* not a netvsc device */
1794
1795		net_device_ctx = netdev_priv(dev);
1796		if (!rtnl_dereference(net_device_ctx->nvdev))
1797			continue;	/* device is removed */
1798
1799		if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800			return dev;	/* a match */
1801	}
1802
1803	return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812	struct sk_buff *skb = *pskb;
1813	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815	struct netvsc_vf_pcpu_stats *pcpu_stats
1816		 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
 
 
 
 
 
 
1818	skb->dev = ndev;
1819
1820	u64_stats_update_begin(&pcpu_stats->syncp);
1821	pcpu_stats->rx_packets++;
1822	pcpu_stats->rx_bytes += skb->len;
1823	u64_stats_update_end(&pcpu_stats->syncp);
1824
1825	return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829			  struct net_device *ndev)
1830{
1831	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832	int ret;
1833
1834	ret = netdev_rx_handler_register(vf_netdev,
1835					 netvsc_vf_handle_frame, ndev);
1836	if (ret != 0) {
1837		netdev_err(vf_netdev,
1838			   "can not register netvsc VF receive handler (err = %d)\n",
1839			   ret);
1840		goto rx_handler_failed;
1841	}
1842
1843	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844					   NULL, NULL, NULL);
1845	if (ret != 0) {
1846		netdev_err(vf_netdev,
1847			   "can not set master device %s (err = %d)\n",
1848			   ndev->name, ret);
1849		goto upper_link_failed;
1850	}
1851
1852	/* set slave flag before open to prevent IPv6 addrconf */
1853	vf_netdev->flags |= IFF_SLAVE;
1854
1855	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
 
1856
1857	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860	return 0;
1861
1862upper_link_failed:
1863	netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865	return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869			      struct net_device *vf_netdev)
1870{
1871	int ret;
1872
1873	/* Align MTU of VF with master */
1874	ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875	if (ret)
1876		netdev_warn(vf_netdev,
1877			    "unable to change mtu to %u\n", ndev->mtu);
1878
1879	/* set multicast etc flags on VF */
1880	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882	/* sync address list from ndev to VF */
1883	netif_addr_lock_bh(ndev);
1884	dev_uc_sync(vf_netdev, ndev);
1885	dev_mc_sync(vf_netdev, ndev);
1886	netif_addr_unlock_bh(ndev);
1887
1888	if (netif_running(ndev)) {
1889		ret = dev_open(vf_netdev);
1890		if (ret)
1891			netdev_warn(vf_netdev,
1892				    "unable to open: %d\n", ret);
1893	}
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901	struct net_device_context *ndev_ctx
1902		= container_of(w, struct net_device_context, vf_takeover.work);
1903	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904	struct net_device *vf_netdev;
1905
1906	if (!rtnl_trylock()) {
1907		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908		return;
1909	}
1910
1911	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912	if (vf_netdev)
1913		__netvsc_vf_setup(ndev, vf_netdev);
1914
1915	rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919{
1920	struct net_device *ndev;
 
 
 
 
 
 
 
 
 
 
 
 
1921	struct net_device_context *net_device_ctx;
1922	struct netvsc_device *netvsc_dev;
 
 
 
1923
1924	if (vf_netdev->addr_len != ETH_ALEN)
1925		return NOTIFY_DONE;
1926
1927	/*
1928	 * We will use the MAC address to locate the synthetic interface to
1929	 * associate with the VF interface. If we don't find a matching
1930	 * synthetic interface, move on.
1931	 */
1932	ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933	if (!ndev)
1934		return NOTIFY_DONE;
1935
1936	net_device_ctx = netdev_priv(ndev);
1937	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939		return NOTIFY_DONE;
1940
1941	if (netvsc_vf_join(vf_netdev, ndev) != 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942		return NOTIFY_DONE;
 
1943
1944	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
 
 
 
1946	dev_hold(vf_netdev);
1947	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
 
 
 
 
 
 
 
 
 
 
1948	return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
1953{
1954	struct net_device_context *net_device_ctx;
1955	struct netvsc_device *netvsc_dev;
1956	struct net_device *ndev;
1957	bool vf_is_up = netif_running(vf_netdev);
 
 
 
 
1958
1959	ndev = get_netvsc_byref(vf_netdev);
1960	if (!ndev)
1961		return NOTIFY_DONE;
1962
1963	net_device_ctx = netdev_priv(ndev);
1964	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965	if (!netvsc_dev)
1966		return NOTIFY_DONE;
1967
1968	netvsc_switch_datapath(ndev, vf_is_up);
1969	netdev_info(ndev, "Data path switched %s VF: %s\n",
1970		    vf_is_up ? "to" : "from", vf_netdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1971
1972	return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977	struct net_device *ndev;
1978	struct net_device_context *net_device_ctx;
1979
1980	ndev = get_netvsc_byref(vf_netdev);
1981	if (!ndev)
1982		return NOTIFY_DONE;
1983
1984	net_device_ctx = netdev_priv(ndev);
1985	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
 
 
 
1989	netdev_rx_handler_unregister(vf_netdev);
1990	netdev_upper_dev_unlink(vf_netdev, ndev);
1991	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992	dev_put(vf_netdev);
1993
 
 
1994	return NOTIFY_OK;
1995}
1996
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997static int netvsc_probe(struct hv_device *dev,
1998			const struct hv_vmbus_device_id *dev_id)
1999{
2000	struct net_device *net = NULL;
2001	struct net_device_context *net_device_ctx;
2002	struct netvsc_device_info device_info;
2003	struct netvsc_device *nvdev;
2004	int ret = -ENOMEM;
2005
2006	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007				VRSS_CHANNEL_MAX);
2008	if (!net)
2009		goto no_net;
2010
2011	netif_carrier_off(net);
2012
2013	netvsc_init_settings(net);
2014
2015	net_device_ctx = netdev_priv(net);
2016	net_device_ctx->device_ctx = dev;
2017	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018	if (netif_msg_probe(net_device_ctx))
2019		netdev_dbg(net, "netvsc msg_enable: %d\n",
2020			   net_device_ctx->msg_enable);
2021
2022	hv_set_drvdata(dev, net);
2023
2024	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
 
2026	spin_lock_init(&net_device_ctx->lock);
2027	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030	net_device_ctx->vf_stats
2031		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032	if (!net_device_ctx->vf_stats)
2033		goto no_stats;
2034
2035	net->netdev_ops = &device_ops;
2036	net->ethtool_ops = &ethtool_ops;
2037	SET_NETDEV_DEV(net, &dev->device);
 
2038
2039	/* We always need headroom for rndis header */
2040	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2041
2042	/* Initialize the number of queues to be 1, we may change it if more
2043	 * channels are offered later.
2044	 */
2045	netif_set_real_num_tx_queues(net, 1);
2046	netif_set_real_num_rx_queues(net, 1);
2047
2048	/* Notify the netvsc driver of the new device */
2049	memset(&device_info, 0, sizeof(device_info));
2050	device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051	device_info.send_sections = NETVSC_DEFAULT_TX;
2052	device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053	device_info.recv_sections = NETVSC_DEFAULT_RX;
2054	device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2055
2056	nvdev = rndis_filter_device_add(dev, &device_info);
2057	if (IS_ERR(nvdev)) {
2058		ret = PTR_ERR(nvdev);
2059		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060		goto rndis_failed;
2061	}
2062
2063	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
 
 
 
2064
2065	/* hw_features computed in rndis_netdev_set_hwcaps() */
2066	net->features = net->hw_features |
2067		NETIF_F_HIGHDMA | NETIF_F_SG |
2068		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069	net->vlan_features = net->features;
2070
2071	netdev_lockdep_set_classes(net);
2072
 
 
 
2073	/* MTU range: 68 - 1500 or 65521 */
2074	net->min_mtu = NETVSC_MTU_MIN;
2075	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077	else
2078		net->max_mtu = ETH_DATA_LEN;
2079
2080	ret = register_netdev(net);
 
 
2081	if (ret != 0) {
2082		pr_err("Unable to register netdev.\n");
2083		goto register_failed;
2084	}
2085
2086	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087
2088register_failed:
2089	rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
 
 
 
2091	free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093	hv_set_drvdata(dev, NULL);
2094	free_netdev(net);
2095no_net:
2096	return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
2101	struct net_device_context *ndev_ctx;
2102	struct net_device *vf_netdev, *net;
2103	struct netvsc_device *nvdev;
2104
2105	net = hv_get_drvdata(dev);
2106	if (net == NULL) {
2107		dev_err(&dev->device, "No net device to remove\n");
2108		return 0;
2109	}
2110
2111	ndev_ctx = netdev_priv(net);
2112
2113	cancel_delayed_work_sync(&ndev_ctx->dwork);
2114
2115	rcu_read_lock();
2116	nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118	if  (nvdev)
2119		cancel_work_sync(&nvdev->subchan_work);
 
 
2120
2121	/*
2122	 * Call to the vsc driver to let it know that the device is being
2123	 * removed. Also blocks mtu and channel changes.
2124	 */
2125	rtnl_lock();
2126	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127	if (vf_netdev)
2128		netvsc_unregister_vf(vf_netdev);
2129
2130	if (nvdev)
2131		rndis_filter_device_remove(dev, nvdev);
2132
2133	unregister_netdevice(net);
 
2134
2135	rtnl_unlock();
2136	rcu_read_unlock();
2137
2138	hv_set_drvdata(dev, NULL);
2139
2140	free_percpu(ndev_ctx->vf_stats);
2141	free_netdev(net);
2142	return 0;
2143}
2144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145static const struct hv_vmbus_device_id id_table[] = {
2146	/* Network guid */
2147	{ HV_NIC_GUID, },
2148	{ },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct  hv_driver netvsc_drv = {
2155	.name = KBUILD_MODNAME,
2156	.id_table = id_table,
2157	.probe = netvsc_probe,
2158	.remove = netvsc_remove,
 
 
 
 
 
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168			       unsigned long event, void *ptr)
2169{
2170	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
 
2171
2172	/* Skip our own events */
2173	if (event_dev->netdev_ops == &device_ops)
2174		return NOTIFY_DONE;
2175
2176	/* Avoid non-Ethernet type devices */
2177	if (event_dev->type != ARPHRD_ETHER)
2178		return NOTIFY_DONE;
2179
2180	/* Avoid Vlan dev with same MAC registering as VF */
2181	if (is_vlan_dev(event_dev))
2182		return NOTIFY_DONE;
2183
2184	/* Avoid Bonding master dev with same MAC registering as VF */
2185	if ((event_dev->priv_flags & IFF_BONDING) &&
2186	    (event_dev->flags & IFF_MASTER))
2187		return NOTIFY_DONE;
2188
2189	switch (event) {
 
 
2190	case NETDEV_REGISTER:
2191		return netvsc_register_vf(event_dev);
2192	case NETDEV_UNREGISTER:
2193		return netvsc_unregister_vf(event_dev);
2194	case NETDEV_UP:
2195	case NETDEV_DOWN:
2196		return netvsc_vf_changed(event_dev);
 
 
2197	default:
2198		return NOTIFY_DONE;
2199	}
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203	.notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209	vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214	int ret;
2215
2216	if (ring_size < RING_SIZE_MIN) {
2217		ring_size = RING_SIZE_MIN;
2218		pr_info("Increased ring_size to %u (min allowed)\n",
2219			ring_size);
2220	}
2221	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222	netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
 
2223
2224	ret = vmbus_driver_register(&netvsc_drv);
2225	if (ret)
2226		return ret;
2227
2228	register_netdevice_notifier(&netvsc_netdev_notifier);
2229	return 0;
 
 
 
 
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);