Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/ethtool.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/device.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/netdevice.h>
20#include <linux/inetdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/pci.h>
23#include <linux/skbuff.h>
24#include <linux/if_vlan.h>
25#include <linux/in.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/netpoll.h>
29#include <linux/bpf.h>
30
31#include <net/arp.h>
32#include <net/route.h>
33#include <net/sock.h>
34#include <net/pkt_sched.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37
38#include "hyperv_net.h"
39
40#define RING_SIZE_MIN 64
41
42#define LINKCHANGE_INT (2 * HZ)
43#define VF_TAKEOVER_INT (HZ / 10)
44
45/* Macros to define the context of vf registration */
46#define VF_REG_IN_PROBE 1
47#define VF_REG_IN_NOTIFIER 2
48
49static unsigned int ring_size __ro_after_init = 128;
50module_param(ring_size, uint, 0444);
51MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52unsigned int netvsc_ring_bytes __ro_after_init;
53
54static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57 NETIF_MSG_TX_ERR;
58
59static int debug = -1;
60module_param(debug, int, 0444);
61MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63static LIST_HEAD(netvsc_dev_list);
64
65static void netvsc_change_rx_flags(struct net_device *net, int change)
66{
67 struct net_device_context *ndev_ctx = netdev_priv(net);
68 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69 int inc;
70
71 if (!vf_netdev)
72 return;
73
74 if (change & IFF_PROMISC) {
75 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76 dev_set_promiscuity(vf_netdev, inc);
77 }
78
79 if (change & IFF_ALLMULTI) {
80 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81 dev_set_allmulti(vf_netdev, inc);
82 }
83}
84
85static void netvsc_set_rx_mode(struct net_device *net)
86{
87 struct net_device_context *ndev_ctx = netdev_priv(net);
88 struct net_device *vf_netdev;
89 struct netvsc_device *nvdev;
90
91 rcu_read_lock();
92 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93 if (vf_netdev) {
94 dev_uc_sync(vf_netdev, net);
95 dev_mc_sync(vf_netdev, net);
96 }
97
98 nvdev = rcu_dereference(ndev_ctx->nvdev);
99 if (nvdev)
100 rndis_filter_update(nvdev);
101 rcu_read_unlock();
102}
103
104static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105 struct net_device *ndev)
106{
107 nvscdev->tx_disable = false;
108 virt_wmb(); /* ensure queue wake up mechanism is on */
109
110 netif_tx_wake_all_queues(ndev);
111}
112
113static int netvsc_open(struct net_device *net)
114{
115 struct net_device_context *ndev_ctx = netdev_priv(net);
116 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118 struct rndis_device *rdev;
119 int ret = 0;
120
121 netif_carrier_off(net);
122
123 /* Open up the device */
124 ret = rndis_filter_open(nvdev);
125 if (ret != 0) {
126 netdev_err(net, "unable to open device (ret %d).\n", ret);
127 return ret;
128 }
129
130 rdev = nvdev->extension;
131 if (!rdev->link_state) {
132 netif_carrier_on(net);
133 netvsc_tx_enable(nvdev, net);
134 }
135
136 if (vf_netdev) {
137 /* Setting synthetic device up transparently sets
138 * slave as up. If open fails, then slave will be
139 * still be offline (and not used).
140 */
141 ret = dev_open(vf_netdev, NULL);
142 if (ret)
143 netdev_warn(net,
144 "unable to open slave: %s: %d\n",
145 vf_netdev->name, ret);
146 }
147 return 0;
148}
149
150static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151{
152 unsigned int retry = 0;
153 int i;
154
155 /* Ensure pending bytes in ring are read */
156 for (;;) {
157 u32 aread = 0;
158
159 for (i = 0; i < nvdev->num_chn; i++) {
160 struct vmbus_channel *chn
161 = nvdev->chan_table[i].channel;
162
163 if (!chn)
164 continue;
165
166 /* make sure receive not running now */
167 napi_synchronize(&nvdev->chan_table[i].napi);
168
169 aread = hv_get_bytes_to_read(&chn->inbound);
170 if (aread)
171 break;
172
173 aread = hv_get_bytes_to_read(&chn->outbound);
174 if (aread)
175 break;
176 }
177
178 if (aread == 0)
179 return 0;
180
181 if (++retry > RETRY_MAX)
182 return -ETIMEDOUT;
183
184 usleep_range(RETRY_US_LO, RETRY_US_HI);
185 }
186}
187
188static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189 struct net_device *ndev)
190{
191 if (nvscdev) {
192 nvscdev->tx_disable = true;
193 virt_wmb(); /* ensure txq will not wake up after stop */
194 }
195
196 netif_tx_disable(ndev);
197}
198
199static int netvsc_close(struct net_device *net)
200{
201 struct net_device_context *net_device_ctx = netdev_priv(net);
202 struct net_device *vf_netdev
203 = rtnl_dereference(net_device_ctx->vf_netdev);
204 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205 int ret;
206
207 netvsc_tx_disable(nvdev, net);
208
209 /* No need to close rndis filter if it is removed already */
210 if (!nvdev)
211 return 0;
212
213 ret = rndis_filter_close(nvdev);
214 if (ret != 0) {
215 netdev_err(net, "unable to close device (ret %d).\n", ret);
216 return ret;
217 }
218
219 ret = netvsc_wait_until_empty(nvdev);
220 if (ret)
221 netdev_err(net, "Ring buffer not empty after closing rndis\n");
222
223 if (vf_netdev)
224 dev_close(vf_netdev);
225
226 return ret;
227}
228
229static inline void *init_ppi_data(struct rndis_message *msg,
230 u32 ppi_size, u32 pkt_type)
231{
232 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233 struct rndis_per_packet_info *ppi;
234
235 rndis_pkt->data_offset += ppi_size;
236 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237 + rndis_pkt->per_pkt_info_len;
238
239 ppi->size = ppi_size;
240 ppi->type = pkt_type;
241 ppi->internal = 0;
242 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243
244 rndis_pkt->per_pkt_info_len += ppi_size;
245
246 return ppi + 1;
247}
248
249static inline int netvsc_get_tx_queue(struct net_device *ndev,
250 struct sk_buff *skb, int old_idx)
251{
252 const struct net_device_context *ndc = netdev_priv(ndev);
253 struct sock *sk = skb->sk;
254 int q_idx;
255
256 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257 (VRSS_SEND_TAB_SIZE - 1)];
258
259 /* If queue index changed record the new value */
260 if (q_idx != old_idx &&
261 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262 sk_tx_queue_set(sk, q_idx);
263
264 return q_idx;
265}
266
267/*
268 * Select queue for transmit.
269 *
270 * If a valid queue has already been assigned, then use that.
271 * Otherwise compute tx queue based on hash and the send table.
272 *
273 * This is basically similar to default (netdev_pick_tx) with the added step
274 * of using the host send_table when no other queue has been assigned.
275 *
276 * TODO support XPS - but get_xps_queue not exported
277 */
278static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279{
280 int q_idx = sk_tx_queue_get(skb->sk);
281
282 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283 /* If forwarding a packet, we use the recorded queue when
284 * available for better cache locality.
285 */
286 if (skb_rx_queue_recorded(skb))
287 q_idx = skb_get_rx_queue(skb);
288 else
289 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290 }
291
292 return q_idx;
293}
294
295static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296 struct net_device *sb_dev)
297{
298 struct net_device_context *ndc = netdev_priv(ndev);
299 struct net_device *vf_netdev;
300 u16 txq;
301
302 rcu_read_lock();
303 vf_netdev = rcu_dereference(ndc->vf_netdev);
304 if (vf_netdev) {
305 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306
307 if (vf_ops->ndo_select_queue)
308 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309 else
310 txq = netdev_pick_tx(vf_netdev, skb, NULL);
311
312 /* Record the queue selected by VF so that it can be
313 * used for common case where VF has more queues than
314 * the synthetic device.
315 */
316 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317 } else {
318 txq = netvsc_pick_tx(ndev, skb);
319 }
320 rcu_read_unlock();
321
322 while (txq >= ndev->real_num_tx_queues)
323 txq -= ndev->real_num_tx_queues;
324
325 return txq;
326}
327
328static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329 struct hv_page_buffer *pb)
330{
331 int j = 0;
332
333 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334 offset = offset & ~HV_HYP_PAGE_MASK;
335
336 while (len > 0) {
337 unsigned long bytes;
338
339 bytes = HV_HYP_PAGE_SIZE - offset;
340 if (bytes > len)
341 bytes = len;
342 pb[j].pfn = hvpfn;
343 pb[j].offset = offset;
344 pb[j].len = bytes;
345
346 offset += bytes;
347 len -= bytes;
348
349 if (offset == HV_HYP_PAGE_SIZE && len) {
350 hvpfn++;
351 offset = 0;
352 j++;
353 }
354 }
355
356 return j + 1;
357}
358
359static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360 struct hv_netvsc_packet *packet,
361 struct hv_page_buffer *pb)
362{
363 u32 slots_used = 0;
364 char *data = skb->data;
365 int frags = skb_shinfo(skb)->nr_frags;
366 int i;
367
368 /* The packet is laid out thus:
369 * 1. hdr: RNDIS header and PPI
370 * 2. skb linear data
371 * 3. skb fragment data
372 */
373 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374 offset_in_hvpage(hdr),
375 len,
376 &pb[slots_used]);
377
378 packet->rmsg_size = len;
379 packet->rmsg_pgcnt = slots_used;
380
381 slots_used += fill_pg_buf(virt_to_hvpfn(data),
382 offset_in_hvpage(data),
383 skb_headlen(skb),
384 &pb[slots_used]);
385
386 for (i = 0; i < frags; i++) {
387 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
388
389 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
390 skb_frag_off(frag),
391 skb_frag_size(frag),
392 &pb[slots_used]);
393 }
394 return slots_used;
395}
396
397static int count_skb_frag_slots(struct sk_buff *skb)
398{
399 int i, frags = skb_shinfo(skb)->nr_frags;
400 int pages = 0;
401
402 for (i = 0; i < frags; i++) {
403 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404 unsigned long size = skb_frag_size(frag);
405 unsigned long offset = skb_frag_off(frag);
406
407 /* Skip unused frames from start of page */
408 offset &= ~HV_HYP_PAGE_MASK;
409 pages += HVPFN_UP(offset + size);
410 }
411 return pages;
412}
413
414static int netvsc_get_slots(struct sk_buff *skb)
415{
416 char *data = skb->data;
417 unsigned int offset = offset_in_hvpage(data);
418 unsigned int len = skb_headlen(skb);
419 int slots;
420 int frag_slots;
421
422 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423 frag_slots = count_skb_frag_slots(skb);
424 return slots + frag_slots;
425}
426
427static u32 net_checksum_info(struct sk_buff *skb)
428{
429 if (skb->protocol == htons(ETH_P_IP)) {
430 struct iphdr *ip = ip_hdr(skb);
431
432 if (ip->protocol == IPPROTO_TCP)
433 return TRANSPORT_INFO_IPV4_TCP;
434 else if (ip->protocol == IPPROTO_UDP)
435 return TRANSPORT_INFO_IPV4_UDP;
436 } else {
437 struct ipv6hdr *ip6 = ipv6_hdr(skb);
438
439 if (ip6->nexthdr == IPPROTO_TCP)
440 return TRANSPORT_INFO_IPV6_TCP;
441 else if (ip6->nexthdr == IPPROTO_UDP)
442 return TRANSPORT_INFO_IPV6_UDP;
443 }
444
445 return TRANSPORT_INFO_NOT_IP;
446}
447
448/* Send skb on the slave VF device. */
449static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
450 struct sk_buff *skb)
451{
452 struct net_device_context *ndev_ctx = netdev_priv(net);
453 unsigned int len = skb->len;
454 int rc;
455
456 skb->dev = vf_netdev;
457 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
458
459 rc = dev_queue_xmit(skb);
460 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461 struct netvsc_vf_pcpu_stats *pcpu_stats
462 = this_cpu_ptr(ndev_ctx->vf_stats);
463
464 u64_stats_update_begin(&pcpu_stats->syncp);
465 pcpu_stats->tx_packets++;
466 pcpu_stats->tx_bytes += len;
467 u64_stats_update_end(&pcpu_stats->syncp);
468 } else {
469 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
470 }
471
472 return rc;
473}
474
475static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
476{
477 struct net_device_context *net_device_ctx = netdev_priv(net);
478 struct hv_netvsc_packet *packet = NULL;
479 int ret;
480 unsigned int num_data_pgs;
481 struct rndis_message *rndis_msg;
482 struct net_device *vf_netdev;
483 u32 rndis_msg_size;
484 u32 hash;
485 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
486
487 /* If VF is present and up then redirect packets to it.
488 * Skip the VF if it is marked down or has no carrier.
489 * If netpoll is in uses, then VF can not be used either.
490 */
491 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492 if (vf_netdev && netif_running(vf_netdev) &&
493 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494 net_device_ctx->data_path_is_vf)
495 return netvsc_vf_xmit(net, vf_netdev, skb);
496
497 /* We will atmost need two pages to describe the rndis
498 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499 * of pages in a single packet. If skb is scattered around
500 * more pages we try linearizing it.
501 */
502
503 num_data_pgs = netvsc_get_slots(skb) + 2;
504
505 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506 ++net_device_ctx->eth_stats.tx_scattered;
507
508 if (skb_linearize(skb))
509 goto no_memory;
510
511 num_data_pgs = netvsc_get_slots(skb) + 2;
512 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513 ++net_device_ctx->eth_stats.tx_too_big;
514 goto drop;
515 }
516 }
517
518 /*
519 * Place the rndis header in the skb head room and
520 * the skb->cb will be used for hv_netvsc_packet
521 * structure.
522 */
523 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
524 if (ret)
525 goto no_memory;
526
527 /* Use the skb control buffer for building up the packet */
528 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529 sizeof_field(struct sk_buff, cb));
530 packet = (struct hv_netvsc_packet *)skb->cb;
531
532 packet->q_idx = skb_get_queue_mapping(skb);
533
534 packet->total_data_buflen = skb->len;
535 packet->total_bytes = skb->len;
536 packet->total_packets = 1;
537
538 rndis_msg = (struct rndis_message *)skb->head;
539
540 /* Add the rndis header */
541 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542 rndis_msg->msg_len = packet->total_data_buflen;
543
544 rndis_msg->msg.pkt = (struct rndis_packet) {
545 .data_offset = sizeof(struct rndis_packet),
546 .data_len = packet->total_data_buflen,
547 .per_pkt_info_offset = sizeof(struct rndis_packet),
548 };
549
550 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
551
552 hash = skb_get_hash_raw(skb);
553 if (hash != 0 && net->real_num_tx_queues > 1) {
554 u32 *hash_info;
555
556 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
558 NBL_HASH_VALUE);
559 *hash_info = hash;
560 }
561
562 /* When using AF_PACKET we need to drop VLAN header from
563 * the frame and update the SKB to allow the HOST OS
564 * to transmit the 802.1Q packet
565 */
566 if (skb->protocol == htons(ETH_P_8021Q)) {
567 u16 vlan_tci;
568
569 skb_reset_mac_header(skb);
570 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572 ++net_device_ctx->eth_stats.vlan_error;
573 goto drop;
574 }
575
576 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577 /* Update the NDIS header pkt lengths */
578 packet->total_data_buflen -= VLAN_HLEN;
579 packet->total_bytes -= VLAN_HLEN;
580 rndis_msg->msg_len = packet->total_data_buflen;
581 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
582 }
583 }
584
585 if (skb_vlan_tag_present(skb)) {
586 struct ndis_pkt_8021q_info *vlan;
587
588 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
590 IEEE_8021Q_INFO);
591
592 vlan->value = 0;
593 vlan->vlanid = skb_vlan_tag_get_id(skb);
594 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595 vlan->pri = skb_vlan_tag_get_prio(skb);
596 }
597
598 if (skb_is_gso(skb)) {
599 struct ndis_tcp_lso_info *lso_info;
600
601 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603 TCP_LARGESEND_PKTINFO);
604
605 lso_info->value = 0;
606 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607 if (skb->protocol == htons(ETH_P_IP)) {
608 lso_info->lso_v2_transmit.ip_version =
609 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610 ip_hdr(skb)->tot_len = 0;
611 ip_hdr(skb)->check = 0;
612 tcp_hdr(skb)->check =
613 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
615 } else {
616 lso_info->lso_v2_transmit.ip_version =
617 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618 tcp_v6_gso_csum_prep(skb);
619 }
620 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624 struct ndis_tcp_ip_checksum_info *csum_info;
625
626 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628 TCPIP_CHKSUM_PKTINFO);
629
630 csum_info->value = 0;
631 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
632
633 if (skb->protocol == htons(ETH_P_IP)) {
634 csum_info->transmit.is_ipv4 = 1;
635
636 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637 csum_info->transmit.tcp_checksum = 1;
638 else
639 csum_info->transmit.udp_checksum = 1;
640 } else {
641 csum_info->transmit.is_ipv6 = 1;
642
643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644 csum_info->transmit.tcp_checksum = 1;
645 else
646 csum_info->transmit.udp_checksum = 1;
647 }
648 } else {
649 /* Can't do offload of this type of checksum */
650 if (skb_checksum_help(skb))
651 goto drop;
652 }
653 }
654
655 /* Start filling in the page buffers with the rndis hdr */
656 rndis_msg->msg_len += rndis_msg_size;
657 packet->total_data_buflen = rndis_msg->msg_len;
658 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
659 skb, packet, pb);
660
661 /* timestamp packet in software */
662 skb_tx_timestamp(skb);
663
664 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665 if (likely(ret == 0))
666 return NETDEV_TX_OK;
667
668 if (ret == -EAGAIN) {
669 ++net_device_ctx->eth_stats.tx_busy;
670 return NETDEV_TX_BUSY;
671 }
672
673 if (ret == -ENOSPC)
674 ++net_device_ctx->eth_stats.tx_no_space;
675
676drop:
677 dev_kfree_skb_any(skb);
678 net->stats.tx_dropped++;
679
680 return NETDEV_TX_OK;
681
682no_memory:
683 ++net_device_ctx->eth_stats.tx_no_memory;
684 goto drop;
685}
686
687static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688 struct net_device *ndev)
689{
690 return netvsc_xmit(skb, ndev, false);
691}
692
693/*
694 * netvsc_linkstatus_callback - Link up/down notification
695 */
696void netvsc_linkstatus_callback(struct net_device *net,
697 struct rndis_message *resp,
698 void *data, u32 data_buflen)
699{
700 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701 struct net_device_context *ndev_ctx = netdev_priv(net);
702 struct netvsc_reconfig *event;
703 unsigned long flags;
704
705 /* Ensure the packet is big enough to access its fields */
706 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
708 resp->msg_len);
709 return;
710 }
711
712 /* Copy the RNDIS indicate status into nvchan->recv_buf */
713 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
714
715 /* Update the physical link speed when changing to another vSwitch */
716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717 u32 speed;
718
719 /* Validate status_buf_offset and status_buflen.
720 *
721 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722 * for the status buffer field in resp->msg_len; perform the validation
723 * using data_buflen (>= resp->msg_len).
724 */
725 if (indicate->status_buflen < sizeof(speed) ||
726 indicate->status_buf_offset < sizeof(*indicate) ||
727 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729 < indicate->status_buflen) {
730 netdev_err(net, "invalid rndis_indicate_status packet\n");
731 return;
732 }
733
734 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735 ndev_ctx->speed = speed;
736 return;
737 }
738
739 /* Handle these link change statuses below */
740 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743 return;
744
745 if (net->reg_state != NETREG_REGISTERED)
746 return;
747
748 event = kzalloc(sizeof(*event), GFP_ATOMIC);
749 if (!event)
750 return;
751 event->event = indicate->status;
752
753 spin_lock_irqsave(&ndev_ctx->lock, flags);
754 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757 schedule_delayed_work(&ndev_ctx->dwork, 0);
758}
759
760/* This function should only be called after skb_record_rx_queue() */
761void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
762{
763 int rc;
764
765 skb->queue_mapping = skb_get_rx_queue(skb);
766 __skb_push(skb, ETH_HLEN);
767
768 rc = netvsc_xmit(skb, ndev, true);
769
770 if (dev_xmit_complete(rc))
771 return;
772
773 dev_kfree_skb_any(skb);
774 ndev->stats.tx_dropped++;
775}
776
777static void netvsc_comp_ipcsum(struct sk_buff *skb)
778{
779 struct iphdr *iph = (struct iphdr *)skb->data;
780
781 iph->check = 0;
782 iph->check = ip_fast_csum(iph, iph->ihl);
783}
784
785static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786 struct netvsc_channel *nvchan,
787 struct xdp_buff *xdp)
788{
789 struct napi_struct *napi = &nvchan->napi;
790 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791 const struct ndis_tcp_ip_checksum_info *csum_info =
792 &nvchan->rsc.csum_info;
793 const u32 *hash_info = &nvchan->rsc.hash_info;
794 u8 ppi_flags = nvchan->rsc.ppi_flags;
795 struct sk_buff *skb;
796 void *xbuf = xdp->data_hard_start;
797 int i;
798
799 if (xbuf) {
800 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801 unsigned int xlen = xdp->data_end - xdp->data;
802 unsigned int frag_size = xdp->frame_sz;
803
804 skb = build_skb(xbuf, frag_size);
805
806 if (!skb) {
807 __free_page(virt_to_page(xbuf));
808 return NULL;
809 }
810
811 skb_reserve(skb, hdroom);
812 skb_put(skb, xlen);
813 skb->dev = napi->dev;
814 } else {
815 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
816
817 if (!skb)
818 return NULL;
819
820 /* Copy to skb. This copy is needed here since the memory
821 * pointed by hv_netvsc_packet cannot be deallocated.
822 */
823 for (i = 0; i < nvchan->rsc.cnt; i++)
824 skb_put_data(skb, nvchan->rsc.data[i],
825 nvchan->rsc.len[i]);
826 }
827
828 skb->protocol = eth_type_trans(skb, net);
829
830 /* skb is already created with CHECKSUM_NONE */
831 skb_checksum_none_assert(skb);
832
833 /* Incoming packets may have IP header checksum verified by the host.
834 * They may not have IP header checksum computed after coalescing.
835 * We compute it here if the flags are set, because on Linux, the IP
836 * checksum is always checked.
837 */
838 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839 csum_info->receive.ip_checksum_succeeded &&
840 skb->protocol == htons(ETH_P_IP)) {
841 /* Check that there is enough space to hold the IP header. */
842 if (skb_headlen(skb) < sizeof(struct iphdr)) {
843 kfree_skb(skb);
844 return NULL;
845 }
846 netvsc_comp_ipcsum(skb);
847 }
848
849 /* Do L4 checksum offload if enabled and present. */
850 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851 if (csum_info->receive.tcp_checksum_succeeded ||
852 csum_info->receive.udp_checksum_succeeded)
853 skb->ip_summed = CHECKSUM_UNNECESSARY;
854 }
855
856 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
858
859 if (ppi_flags & NVSC_RSC_VLAN) {
860 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861 (vlan->cfi ? VLAN_CFI_MASK : 0);
862
863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864 vlan_tci);
865 }
866
867 return skb;
868}
869
870/*
871 * netvsc_recv_callback - Callback when we receive a packet from the
872 * "wire" on the specified device.
873 */
874int netvsc_recv_callback(struct net_device *net,
875 struct netvsc_device *net_device,
876 struct netvsc_channel *nvchan)
877{
878 struct net_device_context *net_device_ctx = netdev_priv(net);
879 struct vmbus_channel *channel = nvchan->channel;
880 u16 q_idx = channel->offermsg.offer.sub_channel_index;
881 struct sk_buff *skb;
882 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
883 struct xdp_buff xdp;
884 u32 act;
885
886 if (net->reg_state != NETREG_REGISTERED)
887 return NVSP_STAT_FAIL;
888
889 act = netvsc_run_xdp(net, nvchan, &xdp);
890
891 if (act == XDP_REDIRECT)
892 return NVSP_STAT_SUCCESS;
893
894 if (act != XDP_PASS && act != XDP_TX) {
895 u64_stats_update_begin(&rx_stats->syncp);
896 rx_stats->xdp_drop++;
897 u64_stats_update_end(&rx_stats->syncp);
898
899 return NVSP_STAT_SUCCESS; /* consumed by XDP */
900 }
901
902 /* Allocate a skb - TODO direct I/O to pages? */
903 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
904
905 if (unlikely(!skb)) {
906 ++net_device_ctx->eth_stats.rx_no_memory;
907 return NVSP_STAT_FAIL;
908 }
909
910 skb_record_rx_queue(skb, q_idx);
911
912 /*
913 * Even if injecting the packet, record the statistics
914 * on the synthetic device because modifying the VF device
915 * statistics will not work correctly.
916 */
917 u64_stats_update_begin(&rx_stats->syncp);
918 if (act == XDP_TX)
919 rx_stats->xdp_tx++;
920
921 rx_stats->packets++;
922 rx_stats->bytes += nvchan->rsc.pktlen;
923
924 if (skb->pkt_type == PACKET_BROADCAST)
925 ++rx_stats->broadcast;
926 else if (skb->pkt_type == PACKET_MULTICAST)
927 ++rx_stats->multicast;
928 u64_stats_update_end(&rx_stats->syncp);
929
930 if (act == XDP_TX) {
931 netvsc_xdp_xmit(skb, net);
932 return NVSP_STAT_SUCCESS;
933 }
934
935 napi_gro_receive(&nvchan->napi, skb);
936 return NVSP_STAT_SUCCESS;
937}
938
939static void netvsc_get_drvinfo(struct net_device *net,
940 struct ethtool_drvinfo *info)
941{
942 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
944}
945
946static void netvsc_get_channels(struct net_device *net,
947 struct ethtool_channels *channel)
948{
949 struct net_device_context *net_device_ctx = netdev_priv(net);
950 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
951
952 if (nvdev) {
953 channel->max_combined = nvdev->max_chn;
954 channel->combined_count = nvdev->num_chn;
955 }
956}
957
958/* Alloc struct netvsc_device_info, and initialize it from either existing
959 * struct netvsc_device, or from default values.
960 */
961static
962struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
963{
964 struct netvsc_device_info *dev_info;
965 struct bpf_prog *prog;
966
967 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
968
969 if (!dev_info)
970 return NULL;
971
972 if (nvdev) {
973 ASSERT_RTNL();
974
975 dev_info->num_chn = nvdev->num_chn;
976 dev_info->send_sections = nvdev->send_section_cnt;
977 dev_info->send_section_size = nvdev->send_section_size;
978 dev_info->recv_sections = nvdev->recv_section_cnt;
979 dev_info->recv_section_size = nvdev->recv_section_size;
980
981 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
982 NETVSC_HASH_KEYLEN);
983
984 prog = netvsc_xdp_get(nvdev);
985 if (prog) {
986 bpf_prog_inc(prog);
987 dev_info->bprog = prog;
988 }
989 } else {
990 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
991 dev_info->send_sections = NETVSC_DEFAULT_TX;
992 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
993 dev_info->recv_sections = NETVSC_DEFAULT_RX;
994 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
995 }
996
997 return dev_info;
998}
999
1000/* Free struct netvsc_device_info */
1001static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1002{
1003 if (dev_info->bprog) {
1004 ASSERT_RTNL();
1005 bpf_prog_put(dev_info->bprog);
1006 }
1007
1008 kfree(dev_info);
1009}
1010
1011static int netvsc_detach(struct net_device *ndev,
1012 struct netvsc_device *nvdev)
1013{
1014 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1015 struct hv_device *hdev = ndev_ctx->device_ctx;
1016 int ret;
1017
1018 /* Don't try continuing to try and setup sub channels */
1019 if (cancel_work_sync(&nvdev->subchan_work))
1020 nvdev->num_chn = 1;
1021
1022 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1023
1024 /* If device was up (receiving) then shutdown */
1025 if (netif_running(ndev)) {
1026 netvsc_tx_disable(nvdev, ndev);
1027
1028 ret = rndis_filter_close(nvdev);
1029 if (ret) {
1030 netdev_err(ndev,
1031 "unable to close device (ret %d).\n", ret);
1032 return ret;
1033 }
1034
1035 ret = netvsc_wait_until_empty(nvdev);
1036 if (ret) {
1037 netdev_err(ndev,
1038 "Ring buffer not empty after closing rndis\n");
1039 return ret;
1040 }
1041 }
1042
1043 netif_device_detach(ndev);
1044
1045 rndis_filter_device_remove(hdev, nvdev);
1046
1047 return 0;
1048}
1049
1050static int netvsc_attach(struct net_device *ndev,
1051 struct netvsc_device_info *dev_info)
1052{
1053 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054 struct hv_device *hdev = ndev_ctx->device_ctx;
1055 struct netvsc_device *nvdev;
1056 struct rndis_device *rdev;
1057 struct bpf_prog *prog;
1058 int ret = 0;
1059
1060 nvdev = rndis_filter_device_add(hdev, dev_info);
1061 if (IS_ERR(nvdev))
1062 return PTR_ERR(nvdev);
1063
1064 if (nvdev->num_chn > 1) {
1065 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1066
1067 /* if unavailable, just proceed with one queue */
1068 if (ret) {
1069 nvdev->max_chn = 1;
1070 nvdev->num_chn = 1;
1071 }
1072 }
1073
1074 prog = dev_info->bprog;
1075 if (prog) {
1076 bpf_prog_inc(prog);
1077 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1078 if (ret) {
1079 bpf_prog_put(prog);
1080 goto err1;
1081 }
1082 }
1083
1084 /* In any case device is now ready */
1085 nvdev->tx_disable = false;
1086 netif_device_attach(ndev);
1087
1088 /* Note: enable and attach happen when sub-channels setup */
1089 netif_carrier_off(ndev);
1090
1091 if (netif_running(ndev)) {
1092 ret = rndis_filter_open(nvdev);
1093 if (ret)
1094 goto err2;
1095
1096 rdev = nvdev->extension;
1097 if (!rdev->link_state)
1098 netif_carrier_on(ndev);
1099 }
1100
1101 return 0;
1102
1103err2:
1104 netif_device_detach(ndev);
1105
1106err1:
1107 rndis_filter_device_remove(hdev, nvdev);
1108
1109 return ret;
1110}
1111
1112static int netvsc_set_channels(struct net_device *net,
1113 struct ethtool_channels *channels)
1114{
1115 struct net_device_context *net_device_ctx = netdev_priv(net);
1116 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1117 unsigned int orig, count = channels->combined_count;
1118 struct netvsc_device_info *device_info;
1119 int ret;
1120
1121 /* We do not support separate count for rx, tx, or other */
1122 if (count == 0 ||
1123 channels->rx_count || channels->tx_count || channels->other_count)
1124 return -EINVAL;
1125
1126 if (!nvdev || nvdev->destroy)
1127 return -ENODEV;
1128
1129 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1130 return -EINVAL;
1131
1132 if (count > nvdev->max_chn)
1133 return -EINVAL;
1134
1135 orig = nvdev->num_chn;
1136
1137 device_info = netvsc_devinfo_get(nvdev);
1138
1139 if (!device_info)
1140 return -ENOMEM;
1141
1142 device_info->num_chn = count;
1143
1144 ret = netvsc_detach(net, nvdev);
1145 if (ret)
1146 goto out;
1147
1148 ret = netvsc_attach(net, device_info);
1149 if (ret) {
1150 device_info->num_chn = orig;
1151 if (netvsc_attach(net, device_info))
1152 netdev_err(net, "restoring channel setting failed\n");
1153 }
1154
1155out:
1156 netvsc_devinfo_put(device_info);
1157 return ret;
1158}
1159
1160static void netvsc_init_settings(struct net_device *dev)
1161{
1162 struct net_device_context *ndc = netdev_priv(dev);
1163
1164 ndc->l4_hash = HV_DEFAULT_L4HASH;
1165
1166 ndc->speed = SPEED_UNKNOWN;
1167 ndc->duplex = DUPLEX_FULL;
1168
1169 dev->features = NETIF_F_LRO;
1170}
1171
1172static int netvsc_get_link_ksettings(struct net_device *dev,
1173 struct ethtool_link_ksettings *cmd)
1174{
1175 struct net_device_context *ndc = netdev_priv(dev);
1176 struct net_device *vf_netdev;
1177
1178 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1179
1180 if (vf_netdev)
1181 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1182
1183 cmd->base.speed = ndc->speed;
1184 cmd->base.duplex = ndc->duplex;
1185 cmd->base.port = PORT_OTHER;
1186
1187 return 0;
1188}
1189
1190static int netvsc_set_link_ksettings(struct net_device *dev,
1191 const struct ethtool_link_ksettings *cmd)
1192{
1193 struct net_device_context *ndc = netdev_priv(dev);
1194 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1195
1196 if (vf_netdev) {
1197 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1198 return -EOPNOTSUPP;
1199
1200 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1201 cmd);
1202 }
1203
1204 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1205 &ndc->speed, &ndc->duplex);
1206}
1207
1208static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1209{
1210 struct net_device_context *ndevctx = netdev_priv(ndev);
1211 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1212 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1213 int orig_mtu = ndev->mtu;
1214 struct netvsc_device_info *device_info;
1215 int ret = 0;
1216
1217 if (!nvdev || nvdev->destroy)
1218 return -ENODEV;
1219
1220 device_info = netvsc_devinfo_get(nvdev);
1221
1222 if (!device_info)
1223 return -ENOMEM;
1224
1225 /* Change MTU of underlying VF netdev first. */
1226 if (vf_netdev) {
1227 ret = dev_set_mtu(vf_netdev, mtu);
1228 if (ret)
1229 goto out;
1230 }
1231
1232 ret = netvsc_detach(ndev, nvdev);
1233 if (ret)
1234 goto rollback_vf;
1235
1236 ndev->mtu = mtu;
1237
1238 ret = netvsc_attach(ndev, device_info);
1239 if (!ret)
1240 goto out;
1241
1242 /* Attempt rollback to original MTU */
1243 ndev->mtu = orig_mtu;
1244
1245 if (netvsc_attach(ndev, device_info))
1246 netdev_err(ndev, "restoring mtu failed\n");
1247rollback_vf:
1248 if (vf_netdev)
1249 dev_set_mtu(vf_netdev, orig_mtu);
1250
1251out:
1252 netvsc_devinfo_put(device_info);
1253 return ret;
1254}
1255
1256static void netvsc_get_vf_stats(struct net_device *net,
1257 struct netvsc_vf_pcpu_stats *tot)
1258{
1259 struct net_device_context *ndev_ctx = netdev_priv(net);
1260 int i;
1261
1262 memset(tot, 0, sizeof(*tot));
1263
1264 for_each_possible_cpu(i) {
1265 const struct netvsc_vf_pcpu_stats *stats
1266 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1267 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1268 unsigned int start;
1269
1270 do {
1271 start = u64_stats_fetch_begin(&stats->syncp);
1272 rx_packets = stats->rx_packets;
1273 tx_packets = stats->tx_packets;
1274 rx_bytes = stats->rx_bytes;
1275 tx_bytes = stats->tx_bytes;
1276 } while (u64_stats_fetch_retry(&stats->syncp, start));
1277
1278 tot->rx_packets += rx_packets;
1279 tot->tx_packets += tx_packets;
1280 tot->rx_bytes += rx_bytes;
1281 tot->tx_bytes += tx_bytes;
1282 tot->tx_dropped += stats->tx_dropped;
1283 }
1284}
1285
1286static void netvsc_get_pcpu_stats(struct net_device *net,
1287 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1288{
1289 struct net_device_context *ndev_ctx = netdev_priv(net);
1290 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1291 int i;
1292
1293 /* fetch percpu stats of vf */
1294 for_each_possible_cpu(i) {
1295 const struct netvsc_vf_pcpu_stats *stats =
1296 per_cpu_ptr(ndev_ctx->vf_stats, i);
1297 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1298 unsigned int start;
1299
1300 do {
1301 start = u64_stats_fetch_begin(&stats->syncp);
1302 this_tot->vf_rx_packets = stats->rx_packets;
1303 this_tot->vf_tx_packets = stats->tx_packets;
1304 this_tot->vf_rx_bytes = stats->rx_bytes;
1305 this_tot->vf_tx_bytes = stats->tx_bytes;
1306 } while (u64_stats_fetch_retry(&stats->syncp, start));
1307 this_tot->rx_packets = this_tot->vf_rx_packets;
1308 this_tot->tx_packets = this_tot->vf_tx_packets;
1309 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1310 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1311 }
1312
1313 /* fetch percpu stats of netvsc */
1314 for (i = 0; i < nvdev->num_chn; i++) {
1315 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1316 const struct netvsc_stats_tx *tx_stats;
1317 const struct netvsc_stats_rx *rx_stats;
1318 struct netvsc_ethtool_pcpu_stats *this_tot =
1319 &pcpu_tot[nvchan->channel->target_cpu];
1320 u64 packets, bytes;
1321 unsigned int start;
1322
1323 tx_stats = &nvchan->tx_stats;
1324 do {
1325 start = u64_stats_fetch_begin(&tx_stats->syncp);
1326 packets = tx_stats->packets;
1327 bytes = tx_stats->bytes;
1328 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1329
1330 this_tot->tx_bytes += bytes;
1331 this_tot->tx_packets += packets;
1332
1333 rx_stats = &nvchan->rx_stats;
1334 do {
1335 start = u64_stats_fetch_begin(&rx_stats->syncp);
1336 packets = rx_stats->packets;
1337 bytes = rx_stats->bytes;
1338 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1339
1340 this_tot->rx_bytes += bytes;
1341 this_tot->rx_packets += packets;
1342 }
1343}
1344
1345static void netvsc_get_stats64(struct net_device *net,
1346 struct rtnl_link_stats64 *t)
1347{
1348 struct net_device_context *ndev_ctx = netdev_priv(net);
1349 struct netvsc_device *nvdev;
1350 struct netvsc_vf_pcpu_stats vf_tot;
1351 int i;
1352
1353 rcu_read_lock();
1354
1355 nvdev = rcu_dereference(ndev_ctx->nvdev);
1356 if (!nvdev)
1357 goto out;
1358
1359 netdev_stats_to_stats64(t, &net->stats);
1360
1361 netvsc_get_vf_stats(net, &vf_tot);
1362 t->rx_packets += vf_tot.rx_packets;
1363 t->tx_packets += vf_tot.tx_packets;
1364 t->rx_bytes += vf_tot.rx_bytes;
1365 t->tx_bytes += vf_tot.tx_bytes;
1366 t->tx_dropped += vf_tot.tx_dropped;
1367
1368 for (i = 0; i < nvdev->num_chn; i++) {
1369 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1370 const struct netvsc_stats_tx *tx_stats;
1371 const struct netvsc_stats_rx *rx_stats;
1372 u64 packets, bytes, multicast;
1373 unsigned int start;
1374
1375 tx_stats = &nvchan->tx_stats;
1376 do {
1377 start = u64_stats_fetch_begin(&tx_stats->syncp);
1378 packets = tx_stats->packets;
1379 bytes = tx_stats->bytes;
1380 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1381
1382 t->tx_bytes += bytes;
1383 t->tx_packets += packets;
1384
1385 rx_stats = &nvchan->rx_stats;
1386 do {
1387 start = u64_stats_fetch_begin(&rx_stats->syncp);
1388 packets = rx_stats->packets;
1389 bytes = rx_stats->bytes;
1390 multicast = rx_stats->multicast + rx_stats->broadcast;
1391 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1392
1393 t->rx_bytes += bytes;
1394 t->rx_packets += packets;
1395 t->multicast += multicast;
1396 }
1397out:
1398 rcu_read_unlock();
1399}
1400
1401static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1402{
1403 struct net_device_context *ndc = netdev_priv(ndev);
1404 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1405 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1406 struct sockaddr *addr = p;
1407 int err;
1408
1409 err = eth_prepare_mac_addr_change(ndev, p);
1410 if (err)
1411 return err;
1412
1413 if (!nvdev)
1414 return -ENODEV;
1415
1416 if (vf_netdev) {
1417 err = dev_set_mac_address(vf_netdev, addr, NULL);
1418 if (err)
1419 return err;
1420 }
1421
1422 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1423 if (!err) {
1424 eth_commit_mac_addr_change(ndev, p);
1425 } else if (vf_netdev) {
1426 /* rollback change on VF */
1427 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1428 dev_set_mac_address(vf_netdev, addr, NULL);
1429 }
1430
1431 return err;
1432}
1433
1434static const struct {
1435 char name[ETH_GSTRING_LEN];
1436 u16 offset;
1437} netvsc_stats[] = {
1438 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1439 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1440 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1441 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1442 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1443 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1444 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1445 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1446 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1447 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1448 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1449}, pcpu_stats[] = {
1450 { "cpu%u_rx_packets",
1451 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1452 { "cpu%u_rx_bytes",
1453 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1454 { "cpu%u_tx_packets",
1455 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1456 { "cpu%u_tx_bytes",
1457 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1458 { "cpu%u_vf_rx_packets",
1459 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1460 { "cpu%u_vf_rx_bytes",
1461 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1462 { "cpu%u_vf_tx_packets",
1463 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1464 { "cpu%u_vf_tx_bytes",
1465 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1466}, vf_stats[] = {
1467 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1468 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1469 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1470 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1471 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1472};
1473
1474#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1475#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1476
1477/* statistics per queue (rx/tx packets/bytes) */
1478#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1479
1480/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1481#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1482
1483static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1484{
1485 struct net_device_context *ndc = netdev_priv(dev);
1486 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1487
1488 if (!nvdev)
1489 return -ENODEV;
1490
1491 switch (string_set) {
1492 case ETH_SS_STATS:
1493 return NETVSC_GLOBAL_STATS_LEN
1494 + NETVSC_VF_STATS_LEN
1495 + NETVSC_QUEUE_STATS_LEN(nvdev)
1496 + NETVSC_PCPU_STATS_LEN;
1497 default:
1498 return -EINVAL;
1499 }
1500}
1501
1502static void netvsc_get_ethtool_stats(struct net_device *dev,
1503 struct ethtool_stats *stats, u64 *data)
1504{
1505 struct net_device_context *ndc = netdev_priv(dev);
1506 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1507 const void *nds = &ndc->eth_stats;
1508 const struct netvsc_stats_tx *tx_stats;
1509 const struct netvsc_stats_rx *rx_stats;
1510 struct netvsc_vf_pcpu_stats sum;
1511 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1512 unsigned int start;
1513 u64 packets, bytes;
1514 u64 xdp_drop;
1515 u64 xdp_redirect;
1516 u64 xdp_tx;
1517 u64 xdp_xmit;
1518 int i, j, cpu;
1519
1520 if (!nvdev)
1521 return;
1522
1523 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1524 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1525
1526 netvsc_get_vf_stats(dev, &sum);
1527 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1528 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1529
1530 for (j = 0; j < nvdev->num_chn; j++) {
1531 tx_stats = &nvdev->chan_table[j].tx_stats;
1532
1533 do {
1534 start = u64_stats_fetch_begin(&tx_stats->syncp);
1535 packets = tx_stats->packets;
1536 bytes = tx_stats->bytes;
1537 xdp_xmit = tx_stats->xdp_xmit;
1538 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1539 data[i++] = packets;
1540 data[i++] = bytes;
1541 data[i++] = xdp_xmit;
1542
1543 rx_stats = &nvdev->chan_table[j].rx_stats;
1544 do {
1545 start = u64_stats_fetch_begin(&rx_stats->syncp);
1546 packets = rx_stats->packets;
1547 bytes = rx_stats->bytes;
1548 xdp_drop = rx_stats->xdp_drop;
1549 xdp_redirect = rx_stats->xdp_redirect;
1550 xdp_tx = rx_stats->xdp_tx;
1551 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1552 data[i++] = packets;
1553 data[i++] = bytes;
1554 data[i++] = xdp_drop;
1555 data[i++] = xdp_redirect;
1556 data[i++] = xdp_tx;
1557 }
1558
1559 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1560 sizeof(struct netvsc_ethtool_pcpu_stats),
1561 GFP_KERNEL);
1562 if (!pcpu_sum)
1563 return;
1564
1565 netvsc_get_pcpu_stats(dev, pcpu_sum);
1566 for_each_present_cpu(cpu) {
1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570 data[i++] = *(u64 *)((void *)this_sum
1571 + pcpu_stats[j].offset);
1572 }
1573 kvfree(pcpu_sum);
1574}
1575
1576static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577{
1578 struct net_device_context *ndc = netdev_priv(dev);
1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580 u8 *p = data;
1581 int i, cpu;
1582
1583 if (!nvdev)
1584 return;
1585
1586 switch (stringset) {
1587 case ETH_SS_STATS:
1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1589 ethtool_puts(&p, netvsc_stats[i].name);
1590
1591 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1592 ethtool_puts(&p, vf_stats[i].name);
1593
1594 for (i = 0; i < nvdev->num_chn; i++) {
1595 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1596 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1597 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1598 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1599 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1600 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1601 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1602 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1603 }
1604
1605 for_each_present_cpu(cpu) {
1606 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1607 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1608 }
1609
1610 break;
1611 }
1612}
1613
1614static int
1615netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1616 struct ethtool_rxnfc *info)
1617{
1618 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1619
1620 info->data = RXH_IP_SRC | RXH_IP_DST;
1621
1622 switch (info->flow_type) {
1623 case TCP_V4_FLOW:
1624 if (ndc->l4_hash & HV_TCP4_L4HASH)
1625 info->data |= l4_flag;
1626
1627 break;
1628
1629 case TCP_V6_FLOW:
1630 if (ndc->l4_hash & HV_TCP6_L4HASH)
1631 info->data |= l4_flag;
1632
1633 break;
1634
1635 case UDP_V4_FLOW:
1636 if (ndc->l4_hash & HV_UDP4_L4HASH)
1637 info->data |= l4_flag;
1638
1639 break;
1640
1641 case UDP_V6_FLOW:
1642 if (ndc->l4_hash & HV_UDP6_L4HASH)
1643 info->data |= l4_flag;
1644
1645 break;
1646
1647 case IPV4_FLOW:
1648 case IPV6_FLOW:
1649 break;
1650 default:
1651 info->data = 0;
1652 break;
1653 }
1654
1655 return 0;
1656}
1657
1658static int
1659netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1660 u32 *rules)
1661{
1662 struct net_device_context *ndc = netdev_priv(dev);
1663 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1664
1665 if (!nvdev)
1666 return -ENODEV;
1667
1668 switch (info->cmd) {
1669 case ETHTOOL_GRXRINGS:
1670 info->data = nvdev->num_chn;
1671 return 0;
1672
1673 case ETHTOOL_GRXFH:
1674 return netvsc_get_rss_hash_opts(ndc, info);
1675 }
1676 return -EOPNOTSUPP;
1677}
1678
1679static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1680 struct ethtool_rxnfc *info)
1681{
1682 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1683 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1684 switch (info->flow_type) {
1685 case TCP_V4_FLOW:
1686 ndc->l4_hash |= HV_TCP4_L4HASH;
1687 break;
1688
1689 case TCP_V6_FLOW:
1690 ndc->l4_hash |= HV_TCP6_L4HASH;
1691 break;
1692
1693 case UDP_V4_FLOW:
1694 ndc->l4_hash |= HV_UDP4_L4HASH;
1695 break;
1696
1697 case UDP_V6_FLOW:
1698 ndc->l4_hash |= HV_UDP6_L4HASH;
1699 break;
1700
1701 default:
1702 return -EOPNOTSUPP;
1703 }
1704
1705 return 0;
1706 }
1707
1708 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1709 switch (info->flow_type) {
1710 case TCP_V4_FLOW:
1711 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1712 break;
1713
1714 case TCP_V6_FLOW:
1715 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1716 break;
1717
1718 case UDP_V4_FLOW:
1719 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1720 break;
1721
1722 case UDP_V6_FLOW:
1723 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1724 break;
1725
1726 default:
1727 return -EOPNOTSUPP;
1728 }
1729
1730 return 0;
1731 }
1732
1733 return -EOPNOTSUPP;
1734}
1735
1736static int
1737netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1738{
1739 struct net_device_context *ndc = netdev_priv(ndev);
1740
1741 if (info->cmd == ETHTOOL_SRXFH)
1742 return netvsc_set_rss_hash_opts(ndc, info);
1743
1744 return -EOPNOTSUPP;
1745}
1746
1747static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1748{
1749 return NETVSC_HASH_KEYLEN;
1750}
1751
1752static u32 netvsc_rss_indir_size(struct net_device *dev)
1753{
1754 struct net_device_context *ndc = netdev_priv(dev);
1755
1756 return ndc->rx_table_sz;
1757}
1758
1759static int netvsc_get_rxfh(struct net_device *dev,
1760 struct ethtool_rxfh_param *rxfh)
1761{
1762 struct net_device_context *ndc = netdev_priv(dev);
1763 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1764 struct rndis_device *rndis_dev;
1765 int i;
1766
1767 if (!ndev)
1768 return -ENODEV;
1769
1770 rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1771
1772 rndis_dev = ndev->extension;
1773 if (rxfh->indir) {
1774 for (i = 0; i < ndc->rx_table_sz; i++)
1775 rxfh->indir[i] = ndc->rx_table[i];
1776 }
1777
1778 if (rxfh->key)
1779 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1780
1781 return 0;
1782}
1783
1784static int netvsc_set_rxfh(struct net_device *dev,
1785 struct ethtool_rxfh_param *rxfh,
1786 struct netlink_ext_ack *extack)
1787{
1788 struct net_device_context *ndc = netdev_priv(dev);
1789 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1790 struct rndis_device *rndis_dev;
1791 u8 *key = rxfh->key;
1792 int i;
1793
1794 if (!ndev)
1795 return -ENODEV;
1796
1797 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1798 rxfh->hfunc != ETH_RSS_HASH_TOP)
1799 return -EOPNOTSUPP;
1800
1801 rndis_dev = ndev->extension;
1802 if (rxfh->indir) {
1803 for (i = 0; i < ndc->rx_table_sz; i++)
1804 if (rxfh->indir[i] >= ndev->num_chn)
1805 return -EINVAL;
1806
1807 for (i = 0; i < ndc->rx_table_sz; i++)
1808 ndc->rx_table[i] = rxfh->indir[i];
1809 }
1810
1811 if (!key) {
1812 if (!rxfh->indir)
1813 return 0;
1814
1815 key = rndis_dev->rss_key;
1816 }
1817
1818 return rndis_filter_set_rss_param(rndis_dev, key);
1819}
1820
1821/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1822 * It does have pre-allocated receive area which is divided into sections.
1823 */
1824static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1825 struct ethtool_ringparam *ring)
1826{
1827 u32 max_buf_size;
1828
1829 ring->rx_pending = nvdev->recv_section_cnt;
1830 ring->tx_pending = nvdev->send_section_cnt;
1831
1832 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1833 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1834 else
1835 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1836
1837 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1838 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1839 / nvdev->send_section_size;
1840}
1841
1842static void netvsc_get_ringparam(struct net_device *ndev,
1843 struct ethtool_ringparam *ring,
1844 struct kernel_ethtool_ringparam *kernel_ring,
1845 struct netlink_ext_ack *extack)
1846{
1847 struct net_device_context *ndevctx = netdev_priv(ndev);
1848 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1849
1850 if (!nvdev)
1851 return;
1852
1853 __netvsc_get_ringparam(nvdev, ring);
1854}
1855
1856static int netvsc_set_ringparam(struct net_device *ndev,
1857 struct ethtool_ringparam *ring,
1858 struct kernel_ethtool_ringparam *kernel_ring,
1859 struct netlink_ext_ack *extack)
1860{
1861 struct net_device_context *ndevctx = netdev_priv(ndev);
1862 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863 struct netvsc_device_info *device_info;
1864 struct ethtool_ringparam orig;
1865 u32 new_tx, new_rx;
1866 int ret = 0;
1867
1868 if (!nvdev || nvdev->destroy)
1869 return -ENODEV;
1870
1871 memset(&orig, 0, sizeof(orig));
1872 __netvsc_get_ringparam(nvdev, &orig);
1873
1874 new_tx = clamp_t(u32, ring->tx_pending,
1875 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876 new_rx = clamp_t(u32, ring->rx_pending,
1877 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879 if (new_tx == orig.tx_pending &&
1880 new_rx == orig.rx_pending)
1881 return 0; /* no change */
1882
1883 device_info = netvsc_devinfo_get(nvdev);
1884
1885 if (!device_info)
1886 return -ENOMEM;
1887
1888 device_info->send_sections = new_tx;
1889 device_info->recv_sections = new_rx;
1890
1891 ret = netvsc_detach(ndev, nvdev);
1892 if (ret)
1893 goto out;
1894
1895 ret = netvsc_attach(ndev, device_info);
1896 if (ret) {
1897 device_info->send_sections = orig.tx_pending;
1898 device_info->recv_sections = orig.rx_pending;
1899
1900 if (netvsc_attach(ndev, device_info))
1901 netdev_err(ndev, "restoring ringparam failed");
1902 }
1903
1904out:
1905 netvsc_devinfo_put(device_info);
1906 return ret;
1907}
1908
1909static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910 netdev_features_t features)
1911{
1912 struct net_device_context *ndevctx = netdev_priv(ndev);
1913 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915 if (!nvdev || nvdev->destroy)
1916 return features;
1917
1918 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919 features ^= NETIF_F_LRO;
1920 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921 }
1922
1923 return features;
1924}
1925
1926static int netvsc_set_features(struct net_device *ndev,
1927 netdev_features_t features)
1928{
1929 netdev_features_t change = features ^ ndev->features;
1930 struct net_device_context *ndevctx = netdev_priv(ndev);
1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933 struct ndis_offload_params offloads;
1934 int ret = 0;
1935
1936 if (!nvdev || nvdev->destroy)
1937 return -ENODEV;
1938
1939 if (!(change & NETIF_F_LRO))
1940 goto syncvf;
1941
1942 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944 if (features & NETIF_F_LRO) {
1945 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 } else {
1948 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 }
1951
1952 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954 if (ret) {
1955 features ^= NETIF_F_LRO;
1956 ndev->features = features;
1957 }
1958
1959syncvf:
1960 if (!vf_netdev)
1961 return ret;
1962
1963 vf_netdev->wanted_features = features;
1964 netdev_update_features(vf_netdev);
1965
1966 return ret;
1967}
1968
1969static int netvsc_get_regs_len(struct net_device *netdev)
1970{
1971 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972}
1973
1974static void netvsc_get_regs(struct net_device *netdev,
1975 struct ethtool_regs *regs, void *p)
1976{
1977 struct net_device_context *ndc = netdev_priv(netdev);
1978 u32 *regs_buff = p;
1979
1980 /* increase the version, if buffer format is changed. */
1981 regs->version = 1;
1982
1983 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984}
1985
1986static u32 netvsc_get_msglevel(struct net_device *ndev)
1987{
1988 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990 return ndev_ctx->msg_enable;
1991}
1992
1993static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994{
1995 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997 ndev_ctx->msg_enable = val;
1998}
1999
2000static const struct ethtool_ops ethtool_ops = {
2001 .get_drvinfo = netvsc_get_drvinfo,
2002 .get_regs_len = netvsc_get_regs_len,
2003 .get_regs = netvsc_get_regs,
2004 .get_msglevel = netvsc_get_msglevel,
2005 .set_msglevel = netvsc_set_msglevel,
2006 .get_link = ethtool_op_get_link,
2007 .get_ethtool_stats = netvsc_get_ethtool_stats,
2008 .get_sset_count = netvsc_get_sset_count,
2009 .get_strings = netvsc_get_strings,
2010 .get_channels = netvsc_get_channels,
2011 .set_channels = netvsc_set_channels,
2012 .get_ts_info = ethtool_op_get_ts_info,
2013 .get_rxnfc = netvsc_get_rxnfc,
2014 .set_rxnfc = netvsc_set_rxnfc,
2015 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016 .get_rxfh_indir_size = netvsc_rss_indir_size,
2017 .get_rxfh = netvsc_get_rxfh,
2018 .set_rxfh = netvsc_set_rxfh,
2019 .get_link_ksettings = netvsc_get_link_ksettings,
2020 .set_link_ksettings = netvsc_set_link_ksettings,
2021 .get_ringparam = netvsc_get_ringparam,
2022 .set_ringparam = netvsc_set_ringparam,
2023};
2024
2025static const struct net_device_ops device_ops = {
2026 .ndo_open = netvsc_open,
2027 .ndo_stop = netvsc_close,
2028 .ndo_start_xmit = netvsc_start_xmit,
2029 .ndo_change_rx_flags = netvsc_change_rx_flags,
2030 .ndo_set_rx_mode = netvsc_set_rx_mode,
2031 .ndo_fix_features = netvsc_fix_features,
2032 .ndo_set_features = netvsc_set_features,
2033 .ndo_change_mtu = netvsc_change_mtu,
2034 .ndo_validate_addr = eth_validate_addr,
2035 .ndo_set_mac_address = netvsc_set_mac_addr,
2036 .ndo_select_queue = netvsc_select_queue,
2037 .ndo_get_stats64 = netvsc_get_stats64,
2038 .ndo_bpf = netvsc_bpf,
2039 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2040};
2041
2042/*
2043 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2044 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2045 * present send GARP packet to network peers with netif_notify_peers().
2046 */
2047static void netvsc_link_change(struct work_struct *w)
2048{
2049 struct net_device_context *ndev_ctx =
2050 container_of(w, struct net_device_context, dwork.work);
2051 struct hv_device *device_obj = ndev_ctx->device_ctx;
2052 struct net_device *net = hv_get_drvdata(device_obj);
2053 unsigned long flags, next_reconfig, delay;
2054 struct netvsc_reconfig *event = NULL;
2055 struct netvsc_device *net_device;
2056 struct rndis_device *rdev;
2057 bool reschedule = false;
2058
2059 /* if changes are happening, comeback later */
2060 if (!rtnl_trylock()) {
2061 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2062 return;
2063 }
2064
2065 net_device = rtnl_dereference(ndev_ctx->nvdev);
2066 if (!net_device)
2067 goto out_unlock;
2068
2069 rdev = net_device->extension;
2070
2071 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2072 if (time_is_after_jiffies(next_reconfig)) {
2073 /* link_watch only sends one notification with current state
2074 * per second, avoid doing reconfig more frequently. Handle
2075 * wrap around.
2076 */
2077 delay = next_reconfig - jiffies;
2078 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2079 schedule_delayed_work(&ndev_ctx->dwork, delay);
2080 goto out_unlock;
2081 }
2082 ndev_ctx->last_reconfig = jiffies;
2083
2084 spin_lock_irqsave(&ndev_ctx->lock, flags);
2085 if (!list_empty(&ndev_ctx->reconfig_events)) {
2086 event = list_first_entry(&ndev_ctx->reconfig_events,
2087 struct netvsc_reconfig, list);
2088 list_del(&event->list);
2089 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2090 }
2091 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2092
2093 if (!event)
2094 goto out_unlock;
2095
2096 switch (event->event) {
2097 /* Only the following events are possible due to the check in
2098 * netvsc_linkstatus_callback()
2099 */
2100 case RNDIS_STATUS_MEDIA_CONNECT:
2101 if (rdev->link_state) {
2102 rdev->link_state = false;
2103 netif_carrier_on(net);
2104 netvsc_tx_enable(net_device, net);
2105 } else {
2106 __netdev_notify_peers(net);
2107 }
2108 kfree(event);
2109 break;
2110 case RNDIS_STATUS_MEDIA_DISCONNECT:
2111 if (!rdev->link_state) {
2112 rdev->link_state = true;
2113 netif_carrier_off(net);
2114 netvsc_tx_disable(net_device, net);
2115 }
2116 kfree(event);
2117 break;
2118 case RNDIS_STATUS_NETWORK_CHANGE:
2119 /* Only makes sense if carrier is present */
2120 if (!rdev->link_state) {
2121 rdev->link_state = true;
2122 netif_carrier_off(net);
2123 netvsc_tx_disable(net_device, net);
2124 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2125 spin_lock_irqsave(&ndev_ctx->lock, flags);
2126 list_add(&event->list, &ndev_ctx->reconfig_events);
2127 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2128 reschedule = true;
2129 }
2130 break;
2131 }
2132
2133 rtnl_unlock();
2134
2135 /* link_watch only sends one notification with current state per
2136 * second, handle next reconfig event in 2 seconds.
2137 */
2138 if (reschedule)
2139 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2140
2141 return;
2142
2143out_unlock:
2144 rtnl_unlock();
2145}
2146
2147static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2148{
2149 struct net_device_context *net_device_ctx;
2150 struct net_device *dev;
2151
2152 dev = netdev_master_upper_dev_get(vf_netdev);
2153 if (!dev || dev->netdev_ops != &device_ops)
2154 return NULL; /* not a netvsc device */
2155
2156 net_device_ctx = netdev_priv(dev);
2157 if (!rtnl_dereference(net_device_ctx->nvdev))
2158 return NULL; /* device is removed */
2159
2160 return dev;
2161}
2162
2163/* Called when VF is injecting data into network stack.
2164 * Change the associated network device from VF to netvsc.
2165 * note: already called with rcu_read_lock
2166 */
2167static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2168{
2169 struct sk_buff *skb = *pskb;
2170 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2171 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2172 struct netvsc_vf_pcpu_stats *pcpu_stats
2173 = this_cpu_ptr(ndev_ctx->vf_stats);
2174
2175 skb = skb_share_check(skb, GFP_ATOMIC);
2176 if (unlikely(!skb))
2177 return RX_HANDLER_CONSUMED;
2178
2179 *pskb = skb;
2180
2181 skb->dev = ndev;
2182
2183 u64_stats_update_begin(&pcpu_stats->syncp);
2184 pcpu_stats->rx_packets++;
2185 pcpu_stats->rx_bytes += skb->len;
2186 u64_stats_update_end(&pcpu_stats->syncp);
2187
2188 return RX_HANDLER_ANOTHER;
2189}
2190
2191static int netvsc_vf_join(struct net_device *vf_netdev,
2192 struct net_device *ndev, int context)
2193{
2194 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2195 int ret;
2196
2197 ret = netdev_rx_handler_register(vf_netdev,
2198 netvsc_vf_handle_frame, ndev);
2199 if (ret != 0) {
2200 netdev_err(vf_netdev,
2201 "can not register netvsc VF receive handler (err = %d)\n",
2202 ret);
2203 goto rx_handler_failed;
2204 }
2205
2206 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2207 NULL, NULL, NULL);
2208 if (ret != 0) {
2209 netdev_err(vf_netdev,
2210 "can not set master device %s (err = %d)\n",
2211 ndev->name, ret);
2212 goto upper_link_failed;
2213 }
2214
2215 /* If this registration is called from probe context vf_takeover
2216 * is taken care of later in probe itself.
2217 */
2218 if (context == VF_REG_IN_NOTIFIER)
2219 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2220
2221 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2222
2223 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2224 return 0;
2225
2226upper_link_failed:
2227 netdev_rx_handler_unregister(vf_netdev);
2228rx_handler_failed:
2229 return ret;
2230}
2231
2232static void __netvsc_vf_setup(struct net_device *ndev,
2233 struct net_device *vf_netdev)
2234{
2235 int ret;
2236
2237 /* Align MTU of VF with master */
2238 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2239 if (ret)
2240 netdev_warn(vf_netdev,
2241 "unable to change mtu to %u\n", ndev->mtu);
2242
2243 /* set multicast etc flags on VF */
2244 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2245
2246 /* sync address list from ndev to VF */
2247 netif_addr_lock_bh(ndev);
2248 dev_uc_sync(vf_netdev, ndev);
2249 dev_mc_sync(vf_netdev, ndev);
2250 netif_addr_unlock_bh(ndev);
2251
2252 if (netif_running(ndev)) {
2253 ret = dev_open(vf_netdev, NULL);
2254 if (ret)
2255 netdev_warn(vf_netdev,
2256 "unable to open: %d\n", ret);
2257 }
2258}
2259
2260/* Setup VF as slave of the synthetic device.
2261 * Runs in workqueue to avoid recursion in netlink callbacks.
2262 */
2263static void netvsc_vf_setup(struct work_struct *w)
2264{
2265 struct net_device_context *ndev_ctx
2266 = container_of(w, struct net_device_context, vf_takeover.work);
2267 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2268 struct net_device *vf_netdev;
2269
2270 if (!rtnl_trylock()) {
2271 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2272 return;
2273 }
2274
2275 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2276 if (vf_netdev)
2277 __netvsc_vf_setup(ndev, vf_netdev);
2278
2279 rtnl_unlock();
2280}
2281
2282/* Find netvsc by VF serial number.
2283 * The PCI hyperv controller records the serial number as the slot kobj name.
2284 */
2285static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2286{
2287 struct device *parent = vf_netdev->dev.parent;
2288 struct net_device_context *ndev_ctx;
2289 struct net_device *ndev;
2290 struct pci_dev *pdev;
2291 u32 serial;
2292
2293 if (!parent || !dev_is_pci(parent))
2294 return NULL; /* not a PCI device */
2295
2296 pdev = to_pci_dev(parent);
2297 if (!pdev->slot) {
2298 netdev_notice(vf_netdev, "no PCI slot information\n");
2299 return NULL;
2300 }
2301
2302 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304 pci_slot_name(pdev->slot));
2305 return NULL;
2306 }
2307
2308 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309 if (!ndev_ctx->vf_alloc)
2310 continue;
2311
2312 if (ndev_ctx->vf_serial != serial)
2313 continue;
2314
2315 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2316 if (ndev->addr_len != vf_netdev->addr_len ||
2317 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2318 ndev->addr_len) != 0)
2319 continue;
2320
2321 return ndev;
2322
2323 }
2324
2325 /* Fallback path to check synthetic vf with help of mac addr.
2326 * Because this function can be called before vf_netdev is
2327 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2328 * from dev_addr, also try to match to its dev_addr.
2329 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2330 * on a VF that matches to the MAC of a unrelated NETVSC device.
2331 */
2332 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2333 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2334 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2335 ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2336 return ndev;
2337 }
2338
2339 netdev_notice(vf_netdev,
2340 "no netdev found for vf serial:%u\n", serial);
2341 return NULL;
2342}
2343
2344static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2345{
2346 struct net_device *ndev;
2347
2348 ndev = get_netvsc_byslot(vf_netdev);
2349 if (!ndev)
2350 return NOTIFY_DONE;
2351
2352 /* set slave flag before open to prevent IPv6 addrconf */
2353 vf_netdev->flags |= IFF_SLAVE;
2354 return NOTIFY_DONE;
2355}
2356
2357static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2358{
2359 struct net_device_context *net_device_ctx;
2360 struct netvsc_device *netvsc_dev;
2361 struct bpf_prog *prog;
2362 struct net_device *ndev;
2363 int ret;
2364
2365 if (vf_netdev->addr_len != ETH_ALEN)
2366 return NOTIFY_DONE;
2367
2368 ndev = get_netvsc_byslot(vf_netdev);
2369 if (!ndev)
2370 return NOTIFY_DONE;
2371
2372 net_device_ctx = netdev_priv(ndev);
2373 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2374 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2375 return NOTIFY_DONE;
2376
2377 /* if synthetic interface is a different namespace,
2378 * then move the VF to that namespace; join will be
2379 * done again in that context.
2380 */
2381 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2382 ret = dev_change_net_namespace(vf_netdev,
2383 dev_net(ndev), "eth%d");
2384 if (ret)
2385 netdev_err(vf_netdev,
2386 "could not move to same namespace as %s: %d\n",
2387 ndev->name, ret);
2388 else
2389 netdev_info(vf_netdev,
2390 "VF moved to namespace with: %s\n",
2391 ndev->name);
2392 return NOTIFY_DONE;
2393 }
2394
2395 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2396
2397 if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2398 return NOTIFY_DONE;
2399
2400 dev_hold(vf_netdev);
2401 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2402
2403 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2404 ndev->needed_headroom = vf_netdev->needed_headroom;
2405
2406 vf_netdev->wanted_features = ndev->features;
2407 netdev_update_features(vf_netdev);
2408
2409 prog = netvsc_xdp_get(netvsc_dev);
2410 netvsc_vf_setxdp(vf_netdev, prog);
2411
2412 return NOTIFY_OK;
2413}
2414
2415/* Change the data path when VF UP/DOWN/CHANGE are detected.
2416 *
2417 * Typically a UP or DOWN event is followed by a CHANGE event, so
2418 * net_device_ctx->data_path_is_vf is used to cache the current data path
2419 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2420 * message.
2421 *
2422 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2423 * interface, there is only the CHANGE event and no UP or DOWN event.
2424 */
2425static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2426{
2427 struct net_device_context *net_device_ctx;
2428 struct netvsc_device *netvsc_dev;
2429 struct net_device *ndev;
2430 bool vf_is_up = false;
2431 int ret;
2432
2433 if (event != NETDEV_GOING_DOWN)
2434 vf_is_up = netif_running(vf_netdev);
2435
2436 ndev = get_netvsc_byref(vf_netdev);
2437 if (!ndev)
2438 return NOTIFY_DONE;
2439
2440 net_device_ctx = netdev_priv(ndev);
2441 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2442 if (!netvsc_dev)
2443 return NOTIFY_DONE;
2444
2445 if (net_device_ctx->data_path_is_vf == vf_is_up)
2446 return NOTIFY_OK;
2447
2448 if (vf_is_up && !net_device_ctx->vf_alloc) {
2449 netdev_info(ndev, "Waiting for the VF association from host\n");
2450 wait_for_completion(&net_device_ctx->vf_add);
2451 }
2452
2453 ret = netvsc_switch_datapath(ndev, vf_is_up);
2454
2455 if (ret) {
2456 netdev_err(ndev,
2457 "Data path failed to switch %s VF: %s, err: %d\n",
2458 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2459 return NOTIFY_DONE;
2460 } else {
2461 netdev_info(ndev, "Data path switched %s VF: %s\n",
2462 vf_is_up ? "to" : "from", vf_netdev->name);
2463 }
2464
2465 return NOTIFY_OK;
2466}
2467
2468static int netvsc_unregister_vf(struct net_device *vf_netdev)
2469{
2470 struct net_device *ndev;
2471 struct net_device_context *net_device_ctx;
2472
2473 ndev = get_netvsc_byref(vf_netdev);
2474 if (!ndev)
2475 return NOTIFY_DONE;
2476
2477 net_device_ctx = netdev_priv(ndev);
2478 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2479
2480 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2481
2482 netvsc_vf_setxdp(vf_netdev, NULL);
2483
2484 reinit_completion(&net_device_ctx->vf_add);
2485 netdev_rx_handler_unregister(vf_netdev);
2486 netdev_upper_dev_unlink(vf_netdev, ndev);
2487 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2488 dev_put(vf_netdev);
2489
2490 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2491
2492 return NOTIFY_OK;
2493}
2494
2495static int check_dev_is_matching_vf(struct net_device *event_ndev)
2496{
2497 /* Skip NetVSC interfaces */
2498 if (event_ndev->netdev_ops == &device_ops)
2499 return -ENODEV;
2500
2501 /* Avoid non-Ethernet type devices */
2502 if (event_ndev->type != ARPHRD_ETHER)
2503 return -ENODEV;
2504
2505 /* Avoid Vlan dev with same MAC registering as VF */
2506 if (is_vlan_dev(event_ndev))
2507 return -ENODEV;
2508
2509 /* Avoid Bonding master dev with same MAC registering as VF */
2510 if (netif_is_bond_master(event_ndev))
2511 return -ENODEV;
2512
2513 return 0;
2514}
2515
2516static int netvsc_probe(struct hv_device *dev,
2517 const struct hv_vmbus_device_id *dev_id)
2518{
2519 struct net_device *net = NULL, *vf_netdev;
2520 struct net_device_context *net_device_ctx;
2521 struct netvsc_device_info *device_info = NULL;
2522 struct netvsc_device *nvdev;
2523 int ret = -ENOMEM;
2524
2525 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2526 VRSS_CHANNEL_MAX);
2527 if (!net)
2528 goto no_net;
2529
2530 netif_carrier_off(net);
2531
2532 netvsc_init_settings(net);
2533
2534 net_device_ctx = netdev_priv(net);
2535 net_device_ctx->device_ctx = dev;
2536 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2537 if (netif_msg_probe(net_device_ctx))
2538 netdev_dbg(net, "netvsc msg_enable: %d\n",
2539 net_device_ctx->msg_enable);
2540
2541 hv_set_drvdata(dev, net);
2542
2543 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2544
2545 init_completion(&net_device_ctx->vf_add);
2546 spin_lock_init(&net_device_ctx->lock);
2547 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2548 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2549
2550 net_device_ctx->vf_stats
2551 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2552 if (!net_device_ctx->vf_stats)
2553 goto no_stats;
2554
2555 net->netdev_ops = &device_ops;
2556 net->ethtool_ops = ðtool_ops;
2557 SET_NETDEV_DEV(net, &dev->device);
2558 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2559
2560 /* We always need headroom for rndis header */
2561 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2562
2563 /* Initialize the number of queues to be 1, we may change it if more
2564 * channels are offered later.
2565 */
2566 netif_set_real_num_tx_queues(net, 1);
2567 netif_set_real_num_rx_queues(net, 1);
2568
2569 /* Notify the netvsc driver of the new device */
2570 device_info = netvsc_devinfo_get(NULL);
2571
2572 if (!device_info) {
2573 ret = -ENOMEM;
2574 goto devinfo_failed;
2575 }
2576
2577 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2578 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2579 * all subchannels to show up, but that may not happen because
2580 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2581 * -> ... -> device_add() -> ... -> __device_attach() can't get
2582 * the device lock, so all the subchannels can't be processed --
2583 * finally netvsc_subchan_work() hangs forever.
2584 *
2585 * The rtnl lock also needs to be held before rndis_filter_device_add()
2586 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2587 * VF NIC offering and registering. If VF NIC finished register_netdev()
2588 * earlier it may cause name based config failure.
2589 */
2590 rtnl_lock();
2591
2592 nvdev = rndis_filter_device_add(dev, device_info);
2593 if (IS_ERR(nvdev)) {
2594 ret = PTR_ERR(nvdev);
2595 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2596 goto rndis_failed;
2597 }
2598
2599 eth_hw_addr_set(net, device_info->mac_adr);
2600
2601 if (nvdev->num_chn > 1)
2602 schedule_work(&nvdev->subchan_work);
2603
2604 /* hw_features computed in rndis_netdev_set_hwcaps() */
2605 net->features = net->hw_features |
2606 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2607 NETIF_F_HW_VLAN_CTAG_RX;
2608 net->vlan_features = net->features;
2609
2610 netdev_lockdep_set_classes(net);
2611
2612 net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2613 NETDEV_XDP_ACT_NDO_XMIT;
2614
2615 /* MTU range: 68 - 1500 or 65521 */
2616 net->min_mtu = NETVSC_MTU_MIN;
2617 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2618 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2619 else
2620 net->max_mtu = ETH_DATA_LEN;
2621
2622 nvdev->tx_disable = false;
2623
2624 ret = register_netdevice(net);
2625 if (ret != 0) {
2626 pr_err("Unable to register netdev.\n");
2627 goto register_failed;
2628 }
2629
2630 list_add(&net_device_ctx->list, &netvsc_dev_list);
2631
2632 /* When the hv_netvsc driver is unloaded and reloaded, the
2633 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2634 * is complete. This is because register_netdevice_notifier() gets
2635 * registered before vmbus_driver_register() so that callback func
2636 * is set before probe and we don't miss events like NETDEV_POST_INIT
2637 * So, in this section we try to register the matching vf device that
2638 * is present as a netdevice, knowing that its register call is not
2639 * processed in the netvsc_netdev_notifier(as probing is progress and
2640 * get_netvsc_byslot fails).
2641 */
2642 for_each_netdev(dev_net(net), vf_netdev) {
2643 ret = check_dev_is_matching_vf(vf_netdev);
2644 if (ret != 0)
2645 continue;
2646
2647 if (net != get_netvsc_byslot(vf_netdev))
2648 continue;
2649
2650 netvsc_prepare_bonding(vf_netdev);
2651 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2652 __netvsc_vf_setup(net, vf_netdev);
2653 break;
2654 }
2655 rtnl_unlock();
2656
2657 netvsc_devinfo_put(device_info);
2658 return 0;
2659
2660register_failed:
2661 rndis_filter_device_remove(dev, nvdev);
2662rndis_failed:
2663 rtnl_unlock();
2664 netvsc_devinfo_put(device_info);
2665devinfo_failed:
2666 free_percpu(net_device_ctx->vf_stats);
2667no_stats:
2668 hv_set_drvdata(dev, NULL);
2669 free_netdev(net);
2670no_net:
2671 return ret;
2672}
2673
2674static void netvsc_remove(struct hv_device *dev)
2675{
2676 struct net_device_context *ndev_ctx;
2677 struct net_device *vf_netdev, *net;
2678 struct netvsc_device *nvdev;
2679
2680 net = hv_get_drvdata(dev);
2681 if (net == NULL) {
2682 dev_err(&dev->device, "No net device to remove\n");
2683 return;
2684 }
2685
2686 ndev_ctx = netdev_priv(net);
2687
2688 cancel_delayed_work_sync(&ndev_ctx->dwork);
2689
2690 rtnl_lock();
2691 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2692 if (nvdev) {
2693 cancel_work_sync(&nvdev->subchan_work);
2694 netvsc_xdp_set(net, NULL, NULL, nvdev);
2695 }
2696
2697 /*
2698 * Call to the vsc driver to let it know that the device is being
2699 * removed. Also blocks mtu and channel changes.
2700 */
2701 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2702 if (vf_netdev)
2703 netvsc_unregister_vf(vf_netdev);
2704
2705 if (nvdev)
2706 rndis_filter_device_remove(dev, nvdev);
2707
2708 unregister_netdevice(net);
2709 list_del(&ndev_ctx->list);
2710
2711 rtnl_unlock();
2712
2713 hv_set_drvdata(dev, NULL);
2714
2715 free_percpu(ndev_ctx->vf_stats);
2716 free_netdev(net);
2717}
2718
2719static int netvsc_suspend(struct hv_device *dev)
2720{
2721 struct net_device_context *ndev_ctx;
2722 struct netvsc_device *nvdev;
2723 struct net_device *net;
2724 int ret;
2725
2726 net = hv_get_drvdata(dev);
2727
2728 ndev_ctx = netdev_priv(net);
2729 cancel_delayed_work_sync(&ndev_ctx->dwork);
2730
2731 rtnl_lock();
2732
2733 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2734 if (nvdev == NULL) {
2735 ret = -ENODEV;
2736 goto out;
2737 }
2738
2739 /* Save the current config info */
2740 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2741 if (!ndev_ctx->saved_netvsc_dev_info) {
2742 ret = -ENOMEM;
2743 goto out;
2744 }
2745 ret = netvsc_detach(net, nvdev);
2746out:
2747 rtnl_unlock();
2748
2749 return ret;
2750}
2751
2752static int netvsc_resume(struct hv_device *dev)
2753{
2754 struct net_device *net = hv_get_drvdata(dev);
2755 struct net_device_context *net_device_ctx;
2756 struct netvsc_device_info *device_info;
2757 int ret;
2758
2759 rtnl_lock();
2760
2761 net_device_ctx = netdev_priv(net);
2762
2763 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2764 * channel. Later netvsc_netdev_event() will switch the data path to
2765 * the VF upon the UP or CHANGE event.
2766 */
2767 net_device_ctx->data_path_is_vf = false;
2768 device_info = net_device_ctx->saved_netvsc_dev_info;
2769
2770 ret = netvsc_attach(net, device_info);
2771
2772 netvsc_devinfo_put(device_info);
2773 net_device_ctx->saved_netvsc_dev_info = NULL;
2774
2775 rtnl_unlock();
2776
2777 return ret;
2778}
2779static const struct hv_vmbus_device_id id_table[] = {
2780 /* Network guid */
2781 { HV_NIC_GUID, },
2782 { },
2783};
2784
2785MODULE_DEVICE_TABLE(vmbus, id_table);
2786
2787/* The one and only one */
2788static struct hv_driver netvsc_drv = {
2789 .name = KBUILD_MODNAME,
2790 .id_table = id_table,
2791 .probe = netvsc_probe,
2792 .remove = netvsc_remove,
2793 .suspend = netvsc_suspend,
2794 .resume = netvsc_resume,
2795 .driver = {
2796 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2797 },
2798};
2799
2800/*
2801 * On Hyper-V, every VF interface is matched with a corresponding
2802 * synthetic interface. The synthetic interface is presented first
2803 * to the guest. When the corresponding VF instance is registered,
2804 * we will take care of switching the data path.
2805 */
2806static int netvsc_netdev_event(struct notifier_block *this,
2807 unsigned long event, void *ptr)
2808{
2809 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2810 int ret = 0;
2811
2812 ret = check_dev_is_matching_vf(event_dev);
2813 if (ret != 0)
2814 return NOTIFY_DONE;
2815
2816 switch (event) {
2817 case NETDEV_POST_INIT:
2818 return netvsc_prepare_bonding(event_dev);
2819 case NETDEV_REGISTER:
2820 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2821 case NETDEV_UNREGISTER:
2822 return netvsc_unregister_vf(event_dev);
2823 case NETDEV_UP:
2824 case NETDEV_DOWN:
2825 case NETDEV_CHANGE:
2826 case NETDEV_GOING_DOWN:
2827 return netvsc_vf_changed(event_dev, event);
2828 default:
2829 return NOTIFY_DONE;
2830 }
2831}
2832
2833static struct notifier_block netvsc_netdev_notifier = {
2834 .notifier_call = netvsc_netdev_event,
2835};
2836
2837static void __exit netvsc_drv_exit(void)
2838{
2839 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2840 vmbus_driver_unregister(&netvsc_drv);
2841}
2842
2843static int __init netvsc_drv_init(void)
2844{
2845 int ret;
2846
2847 if (ring_size < RING_SIZE_MIN) {
2848 ring_size = RING_SIZE_MIN;
2849 pr_info("Increased ring_size to %u (min allowed)\n",
2850 ring_size);
2851 }
2852 netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2853
2854 register_netdevice_notifier(&netvsc_netdev_notifier);
2855
2856 ret = vmbus_driver_register(&netvsc_drv);
2857 if (ret)
2858 goto err_vmbus_reg;
2859
2860 return 0;
2861
2862err_vmbus_reg:
2863 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2864 return ret;
2865}
2866
2867MODULE_LICENSE("GPL");
2868MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2869
2870module_init(netvsc_drv_init);
2871module_exit(netvsc_drv_exit);
1/*
2 * Copyright (c) 2009, Microsoft Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * Authors:
17 * Haiyang Zhang <haiyangz@microsoft.com>
18 * Hank Janssen <hjanssen@microsoft.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include <linux/init.h>
23#include <linux/atomic.h>
24#include <linux/module.h>
25#include <linux/highmem.h>
26#include <linux/device.h>
27#include <linux/io.h>
28#include <linux/delay.h>
29#include <linux/netdevice.h>
30#include <linux/inetdevice.h>
31#include <linux/etherdevice.h>
32#include <linux/skbuff.h>
33#include <linux/if_vlan.h>
34#include <linux/in.h>
35#include <linux/slab.h>
36#include <linux/rtnetlink.h>
37#include <linux/netpoll.h>
38#include <linux/reciprocal_div.h>
39
40#include <net/arp.h>
41#include <net/route.h>
42#include <net/sock.h>
43#include <net/pkt_sched.h>
44#include <net/checksum.h>
45#include <net/ip6_checksum.h>
46
47#include "hyperv_net.h"
48
49#define RING_SIZE_MIN 64
50#define RETRY_US_LO 5000
51#define RETRY_US_HI 10000
52#define RETRY_MAX 2000 /* >10 sec */
53
54#define LINKCHANGE_INT (2 * HZ)
55#define VF_TAKEOVER_INT (HZ / 10)
56
57static unsigned int ring_size __ro_after_init = 128;
58module_param(ring_size, uint, 0444);
59MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60unsigned int netvsc_ring_bytes __ro_after_init;
61struct reciprocal_value netvsc_ring_reciprocal __ro_after_init;
62
63static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
66 NETIF_MSG_TX_ERR;
67
68static int debug = -1;
69module_param(debug, int, 0444);
70MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72static void netvsc_change_rx_flags(struct net_device *net, int change)
73{
74 struct net_device_context *ndev_ctx = netdev_priv(net);
75 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
76 int inc;
77
78 if (!vf_netdev)
79 return;
80
81 if (change & IFF_PROMISC) {
82 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
83 dev_set_promiscuity(vf_netdev, inc);
84 }
85
86 if (change & IFF_ALLMULTI) {
87 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
88 dev_set_allmulti(vf_netdev, inc);
89 }
90}
91
92static void netvsc_set_rx_mode(struct net_device *net)
93{
94 struct net_device_context *ndev_ctx = netdev_priv(net);
95 struct net_device *vf_netdev;
96 struct netvsc_device *nvdev;
97
98 rcu_read_lock();
99 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
100 if (vf_netdev) {
101 dev_uc_sync(vf_netdev, net);
102 dev_mc_sync(vf_netdev, net);
103 }
104
105 nvdev = rcu_dereference(ndev_ctx->nvdev);
106 if (nvdev)
107 rndis_filter_update(nvdev);
108 rcu_read_unlock();
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state)
130 netif_carrier_on(net);
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static int netvsc_close(struct net_device *net)
185{
186 struct net_device_context *net_device_ctx = netdev_priv(net);
187 struct net_device *vf_netdev
188 = rtnl_dereference(net_device_ctx->vf_netdev);
189 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
190 int ret;
191
192 netif_tx_disable(net);
193
194 /* No need to close rndis filter if it is removed already */
195 if (!nvdev)
196 return 0;
197
198 ret = rndis_filter_close(nvdev);
199 if (ret != 0) {
200 netdev_err(net, "unable to close device (ret %d).\n", ret);
201 return ret;
202 }
203
204 ret = netvsc_wait_until_empty(nvdev);
205 if (ret)
206 netdev_err(net, "Ring buffer not empty after closing rndis\n");
207
208 if (vf_netdev)
209 dev_close(vf_netdev);
210
211 return ret;
212}
213
214static inline void *init_ppi_data(struct rndis_message *msg,
215 u32 ppi_size, u32 pkt_type)
216{
217 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
218 struct rndis_per_packet_info *ppi;
219
220 rndis_pkt->data_offset += ppi_size;
221 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
222 + rndis_pkt->per_pkt_info_len;
223
224 ppi->size = ppi_size;
225 ppi->type = pkt_type;
226 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
227
228 rndis_pkt->per_pkt_info_len += ppi_size;
229
230 return ppi + 1;
231}
232
233/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
234 * packets. We can use ethtool to change UDP hash level when necessary.
235 */
236static inline u32 netvsc_get_hash(
237 struct sk_buff *skb,
238 const struct net_device_context *ndc)
239{
240 struct flow_keys flow;
241 u32 hash, pkt_proto = 0;
242 static u32 hashrnd __read_mostly;
243
244 net_get_random_once(&hashrnd, sizeof(hashrnd));
245
246 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
247 return 0;
248
249 switch (flow.basic.ip_proto) {
250 case IPPROTO_TCP:
251 if (flow.basic.n_proto == htons(ETH_P_IP))
252 pkt_proto = HV_TCP4_L4HASH;
253 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
254 pkt_proto = HV_TCP6_L4HASH;
255
256 break;
257
258 case IPPROTO_UDP:
259 if (flow.basic.n_proto == htons(ETH_P_IP))
260 pkt_proto = HV_UDP4_L4HASH;
261 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
262 pkt_proto = HV_UDP6_L4HASH;
263
264 break;
265 }
266
267 if (pkt_proto & ndc->l4_hash) {
268 return skb_get_hash(skb);
269 } else {
270 if (flow.basic.n_proto == htons(ETH_P_IP))
271 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
272 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
273 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
274 else
275 hash = 0;
276
277 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
278 }
279
280 return hash;
281}
282
283static inline int netvsc_get_tx_queue(struct net_device *ndev,
284 struct sk_buff *skb, int old_idx)
285{
286 const struct net_device_context *ndc = netdev_priv(ndev);
287 struct sock *sk = skb->sk;
288 int q_idx;
289
290 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
291 (VRSS_SEND_TAB_SIZE - 1)];
292
293 /* If queue index changed record the new value */
294 if (q_idx != old_idx &&
295 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
296 sk_tx_queue_set(sk, q_idx);
297
298 return q_idx;
299}
300
301/*
302 * Select queue for transmit.
303 *
304 * If a valid queue has already been assigned, then use that.
305 * Otherwise compute tx queue based on hash and the send table.
306 *
307 * This is basically similar to default (__netdev_pick_tx) with the added step
308 * of using the host send_table when no other queue has been assigned.
309 *
310 * TODO support XPS - but get_xps_queue not exported
311 */
312static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
313{
314 int q_idx = sk_tx_queue_get(skb->sk);
315
316 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
317 /* If forwarding a packet, we use the recorded queue when
318 * available for better cache locality.
319 */
320 if (skb_rx_queue_recorded(skb))
321 q_idx = skb_get_rx_queue(skb);
322 else
323 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
324 }
325
326 return q_idx;
327}
328
329static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
330 void *accel_priv,
331 select_queue_fallback_t fallback)
332{
333 struct net_device_context *ndc = netdev_priv(ndev);
334 struct net_device *vf_netdev;
335 u16 txq;
336
337 rcu_read_lock();
338 vf_netdev = rcu_dereference(ndc->vf_netdev);
339 if (vf_netdev) {
340 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
341
342 if (vf_ops->ndo_select_queue)
343 txq = vf_ops->ndo_select_queue(vf_netdev, skb,
344 accel_priv, fallback);
345 else
346 txq = fallback(vf_netdev, skb);
347
348 /* Record the queue selected by VF so that it can be
349 * used for common case where VF has more queues than
350 * the synthetic device.
351 */
352 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
353 } else {
354 txq = netvsc_pick_tx(ndev, skb);
355 }
356 rcu_read_unlock();
357
358 while (unlikely(txq >= ndev->real_num_tx_queues))
359 txq -= ndev->real_num_tx_queues;
360
361 return txq;
362}
363
364static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
365 struct hv_page_buffer *pb)
366{
367 int j = 0;
368
369 /* Deal with compund pages by ignoring unused part
370 * of the page.
371 */
372 page += (offset >> PAGE_SHIFT);
373 offset &= ~PAGE_MASK;
374
375 while (len > 0) {
376 unsigned long bytes;
377
378 bytes = PAGE_SIZE - offset;
379 if (bytes > len)
380 bytes = len;
381 pb[j].pfn = page_to_pfn(page);
382 pb[j].offset = offset;
383 pb[j].len = bytes;
384
385 offset += bytes;
386 len -= bytes;
387
388 if (offset == PAGE_SIZE && len) {
389 page++;
390 offset = 0;
391 j++;
392 }
393 }
394
395 return j + 1;
396}
397
398static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
399 struct hv_netvsc_packet *packet,
400 struct hv_page_buffer *pb)
401{
402 u32 slots_used = 0;
403 char *data = skb->data;
404 int frags = skb_shinfo(skb)->nr_frags;
405 int i;
406
407 /* The packet is laid out thus:
408 * 1. hdr: RNDIS header and PPI
409 * 2. skb linear data
410 * 3. skb fragment data
411 */
412 slots_used += fill_pg_buf(virt_to_page(hdr),
413 offset_in_page(hdr),
414 len, &pb[slots_used]);
415
416 packet->rmsg_size = len;
417 packet->rmsg_pgcnt = slots_used;
418
419 slots_used += fill_pg_buf(virt_to_page(data),
420 offset_in_page(data),
421 skb_headlen(skb), &pb[slots_used]);
422
423 for (i = 0; i < frags; i++) {
424 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
425
426 slots_used += fill_pg_buf(skb_frag_page(frag),
427 frag->page_offset,
428 skb_frag_size(frag), &pb[slots_used]);
429 }
430 return slots_used;
431}
432
433static int count_skb_frag_slots(struct sk_buff *skb)
434{
435 int i, frags = skb_shinfo(skb)->nr_frags;
436 int pages = 0;
437
438 for (i = 0; i < frags; i++) {
439 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
440 unsigned long size = skb_frag_size(frag);
441 unsigned long offset = frag->page_offset;
442
443 /* Skip unused frames from start of page */
444 offset &= ~PAGE_MASK;
445 pages += PFN_UP(offset + size);
446 }
447 return pages;
448}
449
450static int netvsc_get_slots(struct sk_buff *skb)
451{
452 char *data = skb->data;
453 unsigned int offset = offset_in_page(data);
454 unsigned int len = skb_headlen(skb);
455 int slots;
456 int frag_slots;
457
458 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
459 frag_slots = count_skb_frag_slots(skb);
460 return slots + frag_slots;
461}
462
463static u32 net_checksum_info(struct sk_buff *skb)
464{
465 if (skb->protocol == htons(ETH_P_IP)) {
466 struct iphdr *ip = ip_hdr(skb);
467
468 if (ip->protocol == IPPROTO_TCP)
469 return TRANSPORT_INFO_IPV4_TCP;
470 else if (ip->protocol == IPPROTO_UDP)
471 return TRANSPORT_INFO_IPV4_UDP;
472 } else {
473 struct ipv6hdr *ip6 = ipv6_hdr(skb);
474
475 if (ip6->nexthdr == IPPROTO_TCP)
476 return TRANSPORT_INFO_IPV6_TCP;
477 else if (ip6->nexthdr == IPPROTO_UDP)
478 return TRANSPORT_INFO_IPV6_UDP;
479 }
480
481 return TRANSPORT_INFO_NOT_IP;
482}
483
484/* Send skb on the slave VF device. */
485static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
486 struct sk_buff *skb)
487{
488 struct net_device_context *ndev_ctx = netdev_priv(net);
489 unsigned int len = skb->len;
490 int rc;
491
492 skb->dev = vf_netdev;
493 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
494
495 rc = dev_queue_xmit(skb);
496 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
497 struct netvsc_vf_pcpu_stats *pcpu_stats
498 = this_cpu_ptr(ndev_ctx->vf_stats);
499
500 u64_stats_update_begin(&pcpu_stats->syncp);
501 pcpu_stats->tx_packets++;
502 pcpu_stats->tx_bytes += len;
503 u64_stats_update_end(&pcpu_stats->syncp);
504 } else {
505 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
506 }
507
508 return rc;
509}
510
511static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
512{
513 struct net_device_context *net_device_ctx = netdev_priv(net);
514 struct hv_netvsc_packet *packet = NULL;
515 int ret;
516 unsigned int num_data_pgs;
517 struct rndis_message *rndis_msg;
518 struct net_device *vf_netdev;
519 u32 rndis_msg_size;
520 u32 hash;
521 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
522
523 /* if VF is present and up then redirect packets
524 * already called with rcu_read_lock_bh
525 */
526 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
527 if (vf_netdev && netif_running(vf_netdev) &&
528 !netpoll_tx_running(net))
529 return netvsc_vf_xmit(net, vf_netdev, skb);
530
531 /* We will atmost need two pages to describe the rndis
532 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
533 * of pages in a single packet. If skb is scattered around
534 * more pages we try linearizing it.
535 */
536
537 num_data_pgs = netvsc_get_slots(skb) + 2;
538
539 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
540 ++net_device_ctx->eth_stats.tx_scattered;
541
542 if (skb_linearize(skb))
543 goto no_memory;
544
545 num_data_pgs = netvsc_get_slots(skb) + 2;
546 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
547 ++net_device_ctx->eth_stats.tx_too_big;
548 goto drop;
549 }
550 }
551
552 /*
553 * Place the rndis header in the skb head room and
554 * the skb->cb will be used for hv_netvsc_packet
555 * structure.
556 */
557 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
558 if (ret)
559 goto no_memory;
560
561 /* Use the skb control buffer for building up the packet */
562 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
563 FIELD_SIZEOF(struct sk_buff, cb));
564 packet = (struct hv_netvsc_packet *)skb->cb;
565
566 packet->q_idx = skb_get_queue_mapping(skb);
567
568 packet->total_data_buflen = skb->len;
569 packet->total_bytes = skb->len;
570 packet->total_packets = 1;
571
572 rndis_msg = (struct rndis_message *)skb->head;
573
574 /* Add the rndis header */
575 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
576 rndis_msg->msg_len = packet->total_data_buflen;
577
578 rndis_msg->msg.pkt = (struct rndis_packet) {
579 .data_offset = sizeof(struct rndis_packet),
580 .data_len = packet->total_data_buflen,
581 .per_pkt_info_offset = sizeof(struct rndis_packet),
582 };
583
584 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
585
586 hash = skb_get_hash_raw(skb);
587 if (hash != 0 && net->real_num_tx_queues > 1) {
588 u32 *hash_info;
589
590 rndis_msg_size += NDIS_HASH_PPI_SIZE;
591 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
592 NBL_HASH_VALUE);
593 *hash_info = hash;
594 }
595
596 if (skb_vlan_tag_present(skb)) {
597 struct ndis_pkt_8021q_info *vlan;
598
599 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
600 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
601 IEEE_8021Q_INFO);
602
603 vlan->value = 0;
604 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
605 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
606 VLAN_PRIO_SHIFT;
607 }
608
609 if (skb_is_gso(skb)) {
610 struct ndis_tcp_lso_info *lso_info;
611
612 rndis_msg_size += NDIS_LSO_PPI_SIZE;
613 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
614 TCP_LARGESEND_PKTINFO);
615
616 lso_info->value = 0;
617 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
618 if (skb->protocol == htons(ETH_P_IP)) {
619 lso_info->lso_v2_transmit.ip_version =
620 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
621 ip_hdr(skb)->tot_len = 0;
622 ip_hdr(skb)->check = 0;
623 tcp_hdr(skb)->check =
624 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
625 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
626 } else {
627 lso_info->lso_v2_transmit.ip_version =
628 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
629 ipv6_hdr(skb)->payload_len = 0;
630 tcp_hdr(skb)->check =
631 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
632 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
633 }
634 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
635 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
636 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
637 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
638 struct ndis_tcp_ip_checksum_info *csum_info;
639
640 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
641 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
642 TCPIP_CHKSUM_PKTINFO);
643
644 csum_info->value = 0;
645 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
646
647 if (skb->protocol == htons(ETH_P_IP)) {
648 csum_info->transmit.is_ipv4 = 1;
649
650 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
651 csum_info->transmit.tcp_checksum = 1;
652 else
653 csum_info->transmit.udp_checksum = 1;
654 } else {
655 csum_info->transmit.is_ipv6 = 1;
656
657 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
658 csum_info->transmit.tcp_checksum = 1;
659 else
660 csum_info->transmit.udp_checksum = 1;
661 }
662 } else {
663 /* Can't do offload of this type of checksum */
664 if (skb_checksum_help(skb))
665 goto drop;
666 }
667 }
668
669 /* Start filling in the page buffers with the rndis hdr */
670 rndis_msg->msg_len += rndis_msg_size;
671 packet->total_data_buflen = rndis_msg->msg_len;
672 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
673 skb, packet, pb);
674
675 /* timestamp packet in software */
676 skb_tx_timestamp(skb);
677
678 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
679 if (likely(ret == 0))
680 return NETDEV_TX_OK;
681
682 if (ret == -EAGAIN) {
683 ++net_device_ctx->eth_stats.tx_busy;
684 return NETDEV_TX_BUSY;
685 }
686
687 if (ret == -ENOSPC)
688 ++net_device_ctx->eth_stats.tx_no_space;
689
690drop:
691 dev_kfree_skb_any(skb);
692 net->stats.tx_dropped++;
693
694 return NETDEV_TX_OK;
695
696no_memory:
697 ++net_device_ctx->eth_stats.tx_no_memory;
698 goto drop;
699}
700
701/*
702 * netvsc_linkstatus_callback - Link up/down notification
703 */
704void netvsc_linkstatus_callback(struct net_device *net,
705 struct rndis_message *resp)
706{
707 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
708 struct net_device_context *ndev_ctx = netdev_priv(net);
709 struct netvsc_reconfig *event;
710 unsigned long flags;
711
712 /* Update the physical link speed when changing to another vSwitch */
713 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
714 u32 speed;
715
716 speed = *(u32 *)((void *)indicate
717 + indicate->status_buf_offset) / 10000;
718 ndev_ctx->speed = speed;
719 return;
720 }
721
722 /* Handle these link change statuses below */
723 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
724 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
725 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
726 return;
727
728 if (net->reg_state != NETREG_REGISTERED)
729 return;
730
731 event = kzalloc(sizeof(*event), GFP_ATOMIC);
732 if (!event)
733 return;
734 event->event = indicate->status;
735
736 spin_lock_irqsave(&ndev_ctx->lock, flags);
737 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
738 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
739
740 schedule_delayed_work(&ndev_ctx->dwork, 0);
741}
742
743static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
744 struct napi_struct *napi,
745 const struct ndis_tcp_ip_checksum_info *csum_info,
746 const struct ndis_pkt_8021q_info *vlan,
747 void *data, u32 buflen)
748{
749 struct sk_buff *skb;
750
751 skb = napi_alloc_skb(napi, buflen);
752 if (!skb)
753 return skb;
754
755 /*
756 * Copy to skb. This copy is needed here since the memory pointed by
757 * hv_netvsc_packet cannot be deallocated
758 */
759 skb_put_data(skb, data, buflen);
760
761 skb->protocol = eth_type_trans(skb, net);
762
763 /* skb is already created with CHECKSUM_NONE */
764 skb_checksum_none_assert(skb);
765
766 /*
767 * In Linux, the IP checksum is always checked.
768 * Do L4 checksum offload if enabled and present.
769 */
770 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
771 if (csum_info->receive.tcp_checksum_succeeded ||
772 csum_info->receive.udp_checksum_succeeded)
773 skb->ip_summed = CHECKSUM_UNNECESSARY;
774 }
775
776 if (vlan) {
777 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
778
779 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
780 vlan_tci);
781 }
782
783 return skb;
784}
785
786/*
787 * netvsc_recv_callback - Callback when we receive a packet from the
788 * "wire" on the specified device.
789 */
790int netvsc_recv_callback(struct net_device *net,
791 struct netvsc_device *net_device,
792 struct vmbus_channel *channel,
793 void *data, u32 len,
794 const struct ndis_tcp_ip_checksum_info *csum_info,
795 const struct ndis_pkt_8021q_info *vlan)
796{
797 struct net_device_context *net_device_ctx = netdev_priv(net);
798 u16 q_idx = channel->offermsg.offer.sub_channel_index;
799 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
800 struct sk_buff *skb;
801 struct netvsc_stats *rx_stats;
802
803 if (net->reg_state != NETREG_REGISTERED)
804 return NVSP_STAT_FAIL;
805
806 /* Allocate a skb - TODO direct I/O to pages? */
807 skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
808 csum_info, vlan, data, len);
809 if (unlikely(!skb)) {
810 ++net_device_ctx->eth_stats.rx_no_memory;
811 rcu_read_unlock();
812 return NVSP_STAT_FAIL;
813 }
814
815 skb_record_rx_queue(skb, q_idx);
816
817 /*
818 * Even if injecting the packet, record the statistics
819 * on the synthetic device because modifying the VF device
820 * statistics will not work correctly.
821 */
822 rx_stats = &nvchan->rx_stats;
823 u64_stats_update_begin(&rx_stats->syncp);
824 rx_stats->packets++;
825 rx_stats->bytes += len;
826
827 if (skb->pkt_type == PACKET_BROADCAST)
828 ++rx_stats->broadcast;
829 else if (skb->pkt_type == PACKET_MULTICAST)
830 ++rx_stats->multicast;
831 u64_stats_update_end(&rx_stats->syncp);
832
833 napi_gro_receive(&nvchan->napi, skb);
834 return NVSP_STAT_SUCCESS;
835}
836
837static void netvsc_get_drvinfo(struct net_device *net,
838 struct ethtool_drvinfo *info)
839{
840 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
841 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
842}
843
844static void netvsc_get_channels(struct net_device *net,
845 struct ethtool_channels *channel)
846{
847 struct net_device_context *net_device_ctx = netdev_priv(net);
848 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
849
850 if (nvdev) {
851 channel->max_combined = nvdev->max_chn;
852 channel->combined_count = nvdev->num_chn;
853 }
854}
855
856static int netvsc_detach(struct net_device *ndev,
857 struct netvsc_device *nvdev)
858{
859 struct net_device_context *ndev_ctx = netdev_priv(ndev);
860 struct hv_device *hdev = ndev_ctx->device_ctx;
861 int ret;
862
863 /* Don't try continuing to try and setup sub channels */
864 if (cancel_work_sync(&nvdev->subchan_work))
865 nvdev->num_chn = 1;
866
867 /* If device was up (receiving) then shutdown */
868 if (netif_running(ndev)) {
869 netif_tx_disable(ndev);
870
871 ret = rndis_filter_close(nvdev);
872 if (ret) {
873 netdev_err(ndev,
874 "unable to close device (ret %d).\n", ret);
875 return ret;
876 }
877
878 ret = netvsc_wait_until_empty(nvdev);
879 if (ret) {
880 netdev_err(ndev,
881 "Ring buffer not empty after closing rndis\n");
882 return ret;
883 }
884 }
885
886 netif_device_detach(ndev);
887
888 rndis_filter_device_remove(hdev, nvdev);
889
890 return 0;
891}
892
893static int netvsc_attach(struct net_device *ndev,
894 struct netvsc_device_info *dev_info)
895{
896 struct net_device_context *ndev_ctx = netdev_priv(ndev);
897 struct hv_device *hdev = ndev_ctx->device_ctx;
898 struct netvsc_device *nvdev;
899 struct rndis_device *rdev;
900 int ret;
901
902 nvdev = rndis_filter_device_add(hdev, dev_info);
903 if (IS_ERR(nvdev))
904 return PTR_ERR(nvdev);
905
906 /* Note: enable and attach happen when sub-channels setup */
907
908 netif_carrier_off(ndev);
909
910 if (netif_running(ndev)) {
911 ret = rndis_filter_open(nvdev);
912 if (ret)
913 return ret;
914
915 rdev = nvdev->extension;
916 if (!rdev->link_state)
917 netif_carrier_on(ndev);
918 }
919
920 return 0;
921}
922
923static int netvsc_set_channels(struct net_device *net,
924 struct ethtool_channels *channels)
925{
926 struct net_device_context *net_device_ctx = netdev_priv(net);
927 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
928 unsigned int orig, count = channels->combined_count;
929 struct netvsc_device_info device_info;
930 int ret;
931
932 /* We do not support separate count for rx, tx, or other */
933 if (count == 0 ||
934 channels->rx_count || channels->tx_count || channels->other_count)
935 return -EINVAL;
936
937 if (!nvdev || nvdev->destroy)
938 return -ENODEV;
939
940 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
941 return -EINVAL;
942
943 if (count > nvdev->max_chn)
944 return -EINVAL;
945
946 orig = nvdev->num_chn;
947
948 memset(&device_info, 0, sizeof(device_info));
949 device_info.num_chn = count;
950 device_info.send_sections = nvdev->send_section_cnt;
951 device_info.send_section_size = nvdev->send_section_size;
952 device_info.recv_sections = nvdev->recv_section_cnt;
953 device_info.recv_section_size = nvdev->recv_section_size;
954
955 ret = netvsc_detach(net, nvdev);
956 if (ret)
957 return ret;
958
959 ret = netvsc_attach(net, &device_info);
960 if (ret) {
961 device_info.num_chn = orig;
962 if (netvsc_attach(net, &device_info))
963 netdev_err(net, "restoring channel setting failed\n");
964 }
965
966 return ret;
967}
968
969static bool
970netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
971{
972 struct ethtool_link_ksettings diff1 = *cmd;
973 struct ethtool_link_ksettings diff2 = {};
974
975 diff1.base.speed = 0;
976 diff1.base.duplex = 0;
977 /* advertising and cmd are usually set */
978 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
979 diff1.base.cmd = 0;
980 /* We set port to PORT_OTHER */
981 diff2.base.port = PORT_OTHER;
982
983 return !memcmp(&diff1, &diff2, sizeof(diff1));
984}
985
986static void netvsc_init_settings(struct net_device *dev)
987{
988 struct net_device_context *ndc = netdev_priv(dev);
989
990 ndc->l4_hash = HV_DEFAULT_L4HASH;
991
992 ndc->speed = SPEED_UNKNOWN;
993 ndc->duplex = DUPLEX_FULL;
994}
995
996static int netvsc_get_link_ksettings(struct net_device *dev,
997 struct ethtool_link_ksettings *cmd)
998{
999 struct net_device_context *ndc = netdev_priv(dev);
1000
1001 cmd->base.speed = ndc->speed;
1002 cmd->base.duplex = ndc->duplex;
1003 cmd->base.port = PORT_OTHER;
1004
1005 return 0;
1006}
1007
1008static int netvsc_set_link_ksettings(struct net_device *dev,
1009 const struct ethtool_link_ksettings *cmd)
1010{
1011 struct net_device_context *ndc = netdev_priv(dev);
1012 u32 speed;
1013
1014 speed = cmd->base.speed;
1015 if (!ethtool_validate_speed(speed) ||
1016 !ethtool_validate_duplex(cmd->base.duplex) ||
1017 !netvsc_validate_ethtool_ss_cmd(cmd))
1018 return -EINVAL;
1019
1020 ndc->speed = speed;
1021 ndc->duplex = cmd->base.duplex;
1022
1023 return 0;
1024}
1025
1026static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1027{
1028 struct net_device_context *ndevctx = netdev_priv(ndev);
1029 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1030 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1031 int orig_mtu = ndev->mtu;
1032 struct netvsc_device_info device_info;
1033 int ret = 0;
1034
1035 if (!nvdev || nvdev->destroy)
1036 return -ENODEV;
1037
1038 /* Change MTU of underlying VF netdev first. */
1039 if (vf_netdev) {
1040 ret = dev_set_mtu(vf_netdev, mtu);
1041 if (ret)
1042 return ret;
1043 }
1044
1045 memset(&device_info, 0, sizeof(device_info));
1046 device_info.num_chn = nvdev->num_chn;
1047 device_info.send_sections = nvdev->send_section_cnt;
1048 device_info.send_section_size = nvdev->send_section_size;
1049 device_info.recv_sections = nvdev->recv_section_cnt;
1050 device_info.recv_section_size = nvdev->recv_section_size;
1051
1052 ret = netvsc_detach(ndev, nvdev);
1053 if (ret)
1054 goto rollback_vf;
1055
1056 ndev->mtu = mtu;
1057
1058 ret = netvsc_attach(ndev, &device_info);
1059 if (ret)
1060 goto rollback;
1061
1062 return 0;
1063
1064rollback:
1065 /* Attempt rollback to original MTU */
1066 ndev->mtu = orig_mtu;
1067
1068 if (netvsc_attach(ndev, &device_info))
1069 netdev_err(ndev, "restoring mtu failed\n");
1070rollback_vf:
1071 if (vf_netdev)
1072 dev_set_mtu(vf_netdev, orig_mtu);
1073
1074 return ret;
1075}
1076
1077static void netvsc_get_vf_stats(struct net_device *net,
1078 struct netvsc_vf_pcpu_stats *tot)
1079{
1080 struct net_device_context *ndev_ctx = netdev_priv(net);
1081 int i;
1082
1083 memset(tot, 0, sizeof(*tot));
1084
1085 for_each_possible_cpu(i) {
1086 const struct netvsc_vf_pcpu_stats *stats
1087 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1088 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1089 unsigned int start;
1090
1091 do {
1092 start = u64_stats_fetch_begin_irq(&stats->syncp);
1093 rx_packets = stats->rx_packets;
1094 tx_packets = stats->tx_packets;
1095 rx_bytes = stats->rx_bytes;
1096 tx_bytes = stats->tx_bytes;
1097 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1098
1099 tot->rx_packets += rx_packets;
1100 tot->tx_packets += tx_packets;
1101 tot->rx_bytes += rx_bytes;
1102 tot->tx_bytes += tx_bytes;
1103 tot->tx_dropped += stats->tx_dropped;
1104 }
1105}
1106
1107static void netvsc_get_stats64(struct net_device *net,
1108 struct rtnl_link_stats64 *t)
1109{
1110 struct net_device_context *ndev_ctx = netdev_priv(net);
1111 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1112 struct netvsc_vf_pcpu_stats vf_tot;
1113 int i;
1114
1115 if (!nvdev)
1116 return;
1117
1118 netdev_stats_to_stats64(t, &net->stats);
1119
1120 netvsc_get_vf_stats(net, &vf_tot);
1121 t->rx_packets += vf_tot.rx_packets;
1122 t->tx_packets += vf_tot.tx_packets;
1123 t->rx_bytes += vf_tot.rx_bytes;
1124 t->tx_bytes += vf_tot.tx_bytes;
1125 t->tx_dropped += vf_tot.tx_dropped;
1126
1127 for (i = 0; i < nvdev->num_chn; i++) {
1128 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1129 const struct netvsc_stats *stats;
1130 u64 packets, bytes, multicast;
1131 unsigned int start;
1132
1133 stats = &nvchan->tx_stats;
1134 do {
1135 start = u64_stats_fetch_begin_irq(&stats->syncp);
1136 packets = stats->packets;
1137 bytes = stats->bytes;
1138 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1139
1140 t->tx_bytes += bytes;
1141 t->tx_packets += packets;
1142
1143 stats = &nvchan->rx_stats;
1144 do {
1145 start = u64_stats_fetch_begin_irq(&stats->syncp);
1146 packets = stats->packets;
1147 bytes = stats->bytes;
1148 multicast = stats->multicast + stats->broadcast;
1149 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1150
1151 t->rx_bytes += bytes;
1152 t->rx_packets += packets;
1153 t->multicast += multicast;
1154 }
1155}
1156
1157static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1158{
1159 struct net_device_context *ndc = netdev_priv(ndev);
1160 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1161 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1162 struct sockaddr *addr = p;
1163 int err;
1164
1165 err = eth_prepare_mac_addr_change(ndev, p);
1166 if (err)
1167 return err;
1168
1169 if (!nvdev)
1170 return -ENODEV;
1171
1172 if (vf_netdev) {
1173 err = dev_set_mac_address(vf_netdev, addr);
1174 if (err)
1175 return err;
1176 }
1177
1178 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1179 if (!err) {
1180 eth_commit_mac_addr_change(ndev, p);
1181 } else if (vf_netdev) {
1182 /* rollback change on VF */
1183 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1184 dev_set_mac_address(vf_netdev, addr);
1185 }
1186
1187 return err;
1188}
1189
1190static const struct {
1191 char name[ETH_GSTRING_LEN];
1192 u16 offset;
1193} netvsc_stats[] = {
1194 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1195 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1196 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1197 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1198 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1199 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1200 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1201 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1202 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1203 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1204}, vf_stats[] = {
1205 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1206 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1207 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1208 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1209 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1210};
1211
1212#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1213#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1214
1215/* 4 statistics per queue (rx/tx packets/bytes) */
1216#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1217
1218static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1219{
1220 struct net_device_context *ndc = netdev_priv(dev);
1221 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1222
1223 if (!nvdev)
1224 return -ENODEV;
1225
1226 switch (string_set) {
1227 case ETH_SS_STATS:
1228 return NETVSC_GLOBAL_STATS_LEN
1229 + NETVSC_VF_STATS_LEN
1230 + NETVSC_QUEUE_STATS_LEN(nvdev);
1231 default:
1232 return -EINVAL;
1233 }
1234}
1235
1236static void netvsc_get_ethtool_stats(struct net_device *dev,
1237 struct ethtool_stats *stats, u64 *data)
1238{
1239 struct net_device_context *ndc = netdev_priv(dev);
1240 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1241 const void *nds = &ndc->eth_stats;
1242 const struct netvsc_stats *qstats;
1243 struct netvsc_vf_pcpu_stats sum;
1244 unsigned int start;
1245 u64 packets, bytes;
1246 int i, j;
1247
1248 if (!nvdev)
1249 return;
1250
1251 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1252 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1253
1254 netvsc_get_vf_stats(dev, &sum);
1255 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1256 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1257
1258 for (j = 0; j < nvdev->num_chn; j++) {
1259 qstats = &nvdev->chan_table[j].tx_stats;
1260
1261 do {
1262 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1263 packets = qstats->packets;
1264 bytes = qstats->bytes;
1265 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1266 data[i++] = packets;
1267 data[i++] = bytes;
1268
1269 qstats = &nvdev->chan_table[j].rx_stats;
1270 do {
1271 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1272 packets = qstats->packets;
1273 bytes = qstats->bytes;
1274 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1275 data[i++] = packets;
1276 data[i++] = bytes;
1277 }
1278}
1279
1280static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1281{
1282 struct net_device_context *ndc = netdev_priv(dev);
1283 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1284 u8 *p = data;
1285 int i;
1286
1287 if (!nvdev)
1288 return;
1289
1290 switch (stringset) {
1291 case ETH_SS_STATS:
1292 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1293 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1294 p += ETH_GSTRING_LEN;
1295 }
1296
1297 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1298 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1299 p += ETH_GSTRING_LEN;
1300 }
1301
1302 for (i = 0; i < nvdev->num_chn; i++) {
1303 sprintf(p, "tx_queue_%u_packets", i);
1304 p += ETH_GSTRING_LEN;
1305 sprintf(p, "tx_queue_%u_bytes", i);
1306 p += ETH_GSTRING_LEN;
1307 sprintf(p, "rx_queue_%u_packets", i);
1308 p += ETH_GSTRING_LEN;
1309 sprintf(p, "rx_queue_%u_bytes", i);
1310 p += ETH_GSTRING_LEN;
1311 }
1312
1313 break;
1314 }
1315}
1316
1317static int
1318netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1319 struct ethtool_rxnfc *info)
1320{
1321 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1322
1323 info->data = RXH_IP_SRC | RXH_IP_DST;
1324
1325 switch (info->flow_type) {
1326 case TCP_V4_FLOW:
1327 if (ndc->l4_hash & HV_TCP4_L4HASH)
1328 info->data |= l4_flag;
1329
1330 break;
1331
1332 case TCP_V6_FLOW:
1333 if (ndc->l4_hash & HV_TCP6_L4HASH)
1334 info->data |= l4_flag;
1335
1336 break;
1337
1338 case UDP_V4_FLOW:
1339 if (ndc->l4_hash & HV_UDP4_L4HASH)
1340 info->data |= l4_flag;
1341
1342 break;
1343
1344 case UDP_V6_FLOW:
1345 if (ndc->l4_hash & HV_UDP6_L4HASH)
1346 info->data |= l4_flag;
1347
1348 break;
1349
1350 case IPV4_FLOW:
1351 case IPV6_FLOW:
1352 break;
1353 default:
1354 info->data = 0;
1355 break;
1356 }
1357
1358 return 0;
1359}
1360
1361static int
1362netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1363 u32 *rules)
1364{
1365 struct net_device_context *ndc = netdev_priv(dev);
1366 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1367
1368 if (!nvdev)
1369 return -ENODEV;
1370
1371 switch (info->cmd) {
1372 case ETHTOOL_GRXRINGS:
1373 info->data = nvdev->num_chn;
1374 return 0;
1375
1376 case ETHTOOL_GRXFH:
1377 return netvsc_get_rss_hash_opts(ndc, info);
1378 }
1379 return -EOPNOTSUPP;
1380}
1381
1382static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1383 struct ethtool_rxnfc *info)
1384{
1385 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1386 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1387 switch (info->flow_type) {
1388 case TCP_V4_FLOW:
1389 ndc->l4_hash |= HV_TCP4_L4HASH;
1390 break;
1391
1392 case TCP_V6_FLOW:
1393 ndc->l4_hash |= HV_TCP6_L4HASH;
1394 break;
1395
1396 case UDP_V4_FLOW:
1397 ndc->l4_hash |= HV_UDP4_L4HASH;
1398 break;
1399
1400 case UDP_V6_FLOW:
1401 ndc->l4_hash |= HV_UDP6_L4HASH;
1402 break;
1403
1404 default:
1405 return -EOPNOTSUPP;
1406 }
1407
1408 return 0;
1409 }
1410
1411 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1412 switch (info->flow_type) {
1413 case TCP_V4_FLOW:
1414 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1415 break;
1416
1417 case TCP_V6_FLOW:
1418 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1419 break;
1420
1421 case UDP_V4_FLOW:
1422 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1423 break;
1424
1425 case UDP_V6_FLOW:
1426 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1427 break;
1428
1429 default:
1430 return -EOPNOTSUPP;
1431 }
1432
1433 return 0;
1434 }
1435
1436 return -EOPNOTSUPP;
1437}
1438
1439static int
1440netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1441{
1442 struct net_device_context *ndc = netdev_priv(ndev);
1443
1444 if (info->cmd == ETHTOOL_SRXFH)
1445 return netvsc_set_rss_hash_opts(ndc, info);
1446
1447 return -EOPNOTSUPP;
1448}
1449
1450#ifdef CONFIG_NET_POLL_CONTROLLER
1451static void netvsc_poll_controller(struct net_device *dev)
1452{
1453 struct net_device_context *ndc = netdev_priv(dev);
1454 struct netvsc_device *ndev;
1455 int i;
1456
1457 rcu_read_lock();
1458 ndev = rcu_dereference(ndc->nvdev);
1459 if (ndev) {
1460 for (i = 0; i < ndev->num_chn; i++) {
1461 struct netvsc_channel *nvchan = &ndev->chan_table[i];
1462
1463 napi_schedule(&nvchan->napi);
1464 }
1465 }
1466 rcu_read_unlock();
1467}
1468#endif
1469
1470static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1471{
1472 return NETVSC_HASH_KEYLEN;
1473}
1474
1475static u32 netvsc_rss_indir_size(struct net_device *dev)
1476{
1477 return ITAB_NUM;
1478}
1479
1480static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1481 u8 *hfunc)
1482{
1483 struct net_device_context *ndc = netdev_priv(dev);
1484 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1485 struct rndis_device *rndis_dev;
1486 int i;
1487
1488 if (!ndev)
1489 return -ENODEV;
1490
1491 if (hfunc)
1492 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1493
1494 rndis_dev = ndev->extension;
1495 if (indir) {
1496 for (i = 0; i < ITAB_NUM; i++)
1497 indir[i] = rndis_dev->rx_table[i];
1498 }
1499
1500 if (key)
1501 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1502
1503 return 0;
1504}
1505
1506static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1507 const u8 *key, const u8 hfunc)
1508{
1509 struct net_device_context *ndc = netdev_priv(dev);
1510 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1511 struct rndis_device *rndis_dev;
1512 int i;
1513
1514 if (!ndev)
1515 return -ENODEV;
1516
1517 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1518 return -EOPNOTSUPP;
1519
1520 rndis_dev = ndev->extension;
1521 if (indir) {
1522 for (i = 0; i < ITAB_NUM; i++)
1523 if (indir[i] >= ndev->num_chn)
1524 return -EINVAL;
1525
1526 for (i = 0; i < ITAB_NUM; i++)
1527 rndis_dev->rx_table[i] = indir[i];
1528 }
1529
1530 if (!key) {
1531 if (!indir)
1532 return 0;
1533
1534 key = rndis_dev->rss_key;
1535 }
1536
1537 return rndis_filter_set_rss_param(rndis_dev, key);
1538}
1539
1540/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1541 * It does have pre-allocated receive area which is divided into sections.
1542 */
1543static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1544 struct ethtool_ringparam *ring)
1545{
1546 u32 max_buf_size;
1547
1548 ring->rx_pending = nvdev->recv_section_cnt;
1549 ring->tx_pending = nvdev->send_section_cnt;
1550
1551 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1552 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1553 else
1554 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1555
1556 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1557 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1558 / nvdev->send_section_size;
1559}
1560
1561static void netvsc_get_ringparam(struct net_device *ndev,
1562 struct ethtool_ringparam *ring)
1563{
1564 struct net_device_context *ndevctx = netdev_priv(ndev);
1565 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1566
1567 if (!nvdev)
1568 return;
1569
1570 __netvsc_get_ringparam(nvdev, ring);
1571}
1572
1573static int netvsc_set_ringparam(struct net_device *ndev,
1574 struct ethtool_ringparam *ring)
1575{
1576 struct net_device_context *ndevctx = netdev_priv(ndev);
1577 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1578 struct netvsc_device_info device_info;
1579 struct ethtool_ringparam orig;
1580 u32 new_tx, new_rx;
1581 int ret = 0;
1582
1583 if (!nvdev || nvdev->destroy)
1584 return -ENODEV;
1585
1586 memset(&orig, 0, sizeof(orig));
1587 __netvsc_get_ringparam(nvdev, &orig);
1588
1589 new_tx = clamp_t(u32, ring->tx_pending,
1590 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1591 new_rx = clamp_t(u32, ring->rx_pending,
1592 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1593
1594 if (new_tx == orig.tx_pending &&
1595 new_rx == orig.rx_pending)
1596 return 0; /* no change */
1597
1598 memset(&device_info, 0, sizeof(device_info));
1599 device_info.num_chn = nvdev->num_chn;
1600 device_info.send_sections = new_tx;
1601 device_info.send_section_size = nvdev->send_section_size;
1602 device_info.recv_sections = new_rx;
1603 device_info.recv_section_size = nvdev->recv_section_size;
1604
1605 ret = netvsc_detach(ndev, nvdev);
1606 if (ret)
1607 return ret;
1608
1609 ret = netvsc_attach(ndev, &device_info);
1610 if (ret) {
1611 device_info.send_sections = orig.tx_pending;
1612 device_info.recv_sections = orig.rx_pending;
1613
1614 if (netvsc_attach(ndev, &device_info))
1615 netdev_err(ndev, "restoring ringparam failed");
1616 }
1617
1618 return ret;
1619}
1620
1621static const struct ethtool_ops ethtool_ops = {
1622 .get_drvinfo = netvsc_get_drvinfo,
1623 .get_link = ethtool_op_get_link,
1624 .get_ethtool_stats = netvsc_get_ethtool_stats,
1625 .get_sset_count = netvsc_get_sset_count,
1626 .get_strings = netvsc_get_strings,
1627 .get_channels = netvsc_get_channels,
1628 .set_channels = netvsc_set_channels,
1629 .get_ts_info = ethtool_op_get_ts_info,
1630 .get_rxnfc = netvsc_get_rxnfc,
1631 .set_rxnfc = netvsc_set_rxnfc,
1632 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1633 .get_rxfh_indir_size = netvsc_rss_indir_size,
1634 .get_rxfh = netvsc_get_rxfh,
1635 .set_rxfh = netvsc_set_rxfh,
1636 .get_link_ksettings = netvsc_get_link_ksettings,
1637 .set_link_ksettings = netvsc_set_link_ksettings,
1638 .get_ringparam = netvsc_get_ringparam,
1639 .set_ringparam = netvsc_set_ringparam,
1640};
1641
1642static const struct net_device_ops device_ops = {
1643 .ndo_open = netvsc_open,
1644 .ndo_stop = netvsc_close,
1645 .ndo_start_xmit = netvsc_start_xmit,
1646 .ndo_change_rx_flags = netvsc_change_rx_flags,
1647 .ndo_set_rx_mode = netvsc_set_rx_mode,
1648 .ndo_change_mtu = netvsc_change_mtu,
1649 .ndo_validate_addr = eth_validate_addr,
1650 .ndo_set_mac_address = netvsc_set_mac_addr,
1651 .ndo_select_queue = netvsc_select_queue,
1652 .ndo_get_stats64 = netvsc_get_stats64,
1653#ifdef CONFIG_NET_POLL_CONTROLLER
1654 .ndo_poll_controller = netvsc_poll_controller,
1655#endif
1656};
1657
1658/*
1659 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1660 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1661 * present send GARP packet to network peers with netif_notify_peers().
1662 */
1663static void netvsc_link_change(struct work_struct *w)
1664{
1665 struct net_device_context *ndev_ctx =
1666 container_of(w, struct net_device_context, dwork.work);
1667 struct hv_device *device_obj = ndev_ctx->device_ctx;
1668 struct net_device *net = hv_get_drvdata(device_obj);
1669 struct netvsc_device *net_device;
1670 struct rndis_device *rdev;
1671 struct netvsc_reconfig *event = NULL;
1672 bool notify = false, reschedule = false;
1673 unsigned long flags, next_reconfig, delay;
1674
1675 /* if changes are happening, comeback later */
1676 if (!rtnl_trylock()) {
1677 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1678 return;
1679 }
1680
1681 net_device = rtnl_dereference(ndev_ctx->nvdev);
1682 if (!net_device)
1683 goto out_unlock;
1684
1685 rdev = net_device->extension;
1686
1687 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1688 if (time_is_after_jiffies(next_reconfig)) {
1689 /* link_watch only sends one notification with current state
1690 * per second, avoid doing reconfig more frequently. Handle
1691 * wrap around.
1692 */
1693 delay = next_reconfig - jiffies;
1694 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1695 schedule_delayed_work(&ndev_ctx->dwork, delay);
1696 goto out_unlock;
1697 }
1698 ndev_ctx->last_reconfig = jiffies;
1699
1700 spin_lock_irqsave(&ndev_ctx->lock, flags);
1701 if (!list_empty(&ndev_ctx->reconfig_events)) {
1702 event = list_first_entry(&ndev_ctx->reconfig_events,
1703 struct netvsc_reconfig, list);
1704 list_del(&event->list);
1705 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1706 }
1707 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1708
1709 if (!event)
1710 goto out_unlock;
1711
1712 switch (event->event) {
1713 /* Only the following events are possible due to the check in
1714 * netvsc_linkstatus_callback()
1715 */
1716 case RNDIS_STATUS_MEDIA_CONNECT:
1717 if (rdev->link_state) {
1718 rdev->link_state = false;
1719 netif_carrier_on(net);
1720 netif_tx_wake_all_queues(net);
1721 } else {
1722 notify = true;
1723 }
1724 kfree(event);
1725 break;
1726 case RNDIS_STATUS_MEDIA_DISCONNECT:
1727 if (!rdev->link_state) {
1728 rdev->link_state = true;
1729 netif_carrier_off(net);
1730 netif_tx_stop_all_queues(net);
1731 }
1732 kfree(event);
1733 break;
1734 case RNDIS_STATUS_NETWORK_CHANGE:
1735 /* Only makes sense if carrier is present */
1736 if (!rdev->link_state) {
1737 rdev->link_state = true;
1738 netif_carrier_off(net);
1739 netif_tx_stop_all_queues(net);
1740 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1741 spin_lock_irqsave(&ndev_ctx->lock, flags);
1742 list_add(&event->list, &ndev_ctx->reconfig_events);
1743 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1744 reschedule = true;
1745 }
1746 break;
1747 }
1748
1749 rtnl_unlock();
1750
1751 if (notify)
1752 netdev_notify_peers(net);
1753
1754 /* link_watch only sends one notification with current state per
1755 * second, handle next reconfig event in 2 seconds.
1756 */
1757 if (reschedule)
1758 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1759
1760 return;
1761
1762out_unlock:
1763 rtnl_unlock();
1764}
1765
1766static struct net_device *get_netvsc_bymac(const u8 *mac)
1767{
1768 struct net_device *dev;
1769
1770 ASSERT_RTNL();
1771
1772 for_each_netdev(&init_net, dev) {
1773 if (dev->netdev_ops != &device_ops)
1774 continue; /* not a netvsc device */
1775
1776 if (ether_addr_equal(mac, dev->perm_addr))
1777 return dev;
1778 }
1779
1780 return NULL;
1781}
1782
1783static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1784{
1785 struct net_device *dev;
1786
1787 ASSERT_RTNL();
1788
1789 for_each_netdev(&init_net, dev) {
1790 struct net_device_context *net_device_ctx;
1791
1792 if (dev->netdev_ops != &device_ops)
1793 continue; /* not a netvsc device */
1794
1795 net_device_ctx = netdev_priv(dev);
1796 if (!rtnl_dereference(net_device_ctx->nvdev))
1797 continue; /* device is removed */
1798
1799 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1800 return dev; /* a match */
1801 }
1802
1803 return NULL;
1804}
1805
1806/* Called when VF is injecting data into network stack.
1807 * Change the associated network device from VF to netvsc.
1808 * note: already called with rcu_read_lock
1809 */
1810static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1811{
1812 struct sk_buff *skb = *pskb;
1813 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1814 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1815 struct netvsc_vf_pcpu_stats *pcpu_stats
1816 = this_cpu_ptr(ndev_ctx->vf_stats);
1817
1818 skb->dev = ndev;
1819
1820 u64_stats_update_begin(&pcpu_stats->syncp);
1821 pcpu_stats->rx_packets++;
1822 pcpu_stats->rx_bytes += skb->len;
1823 u64_stats_update_end(&pcpu_stats->syncp);
1824
1825 return RX_HANDLER_ANOTHER;
1826}
1827
1828static int netvsc_vf_join(struct net_device *vf_netdev,
1829 struct net_device *ndev)
1830{
1831 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1832 int ret;
1833
1834 ret = netdev_rx_handler_register(vf_netdev,
1835 netvsc_vf_handle_frame, ndev);
1836 if (ret != 0) {
1837 netdev_err(vf_netdev,
1838 "can not register netvsc VF receive handler (err = %d)\n",
1839 ret);
1840 goto rx_handler_failed;
1841 }
1842
1843 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1844 NULL, NULL, NULL);
1845 if (ret != 0) {
1846 netdev_err(vf_netdev,
1847 "can not set master device %s (err = %d)\n",
1848 ndev->name, ret);
1849 goto upper_link_failed;
1850 }
1851
1852 /* set slave flag before open to prevent IPv6 addrconf */
1853 vf_netdev->flags |= IFF_SLAVE;
1854
1855 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1856
1857 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1858
1859 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1860 return 0;
1861
1862upper_link_failed:
1863 netdev_rx_handler_unregister(vf_netdev);
1864rx_handler_failed:
1865 return ret;
1866}
1867
1868static void __netvsc_vf_setup(struct net_device *ndev,
1869 struct net_device *vf_netdev)
1870{
1871 int ret;
1872
1873 /* Align MTU of VF with master */
1874 ret = dev_set_mtu(vf_netdev, ndev->mtu);
1875 if (ret)
1876 netdev_warn(vf_netdev,
1877 "unable to change mtu to %u\n", ndev->mtu);
1878
1879 /* set multicast etc flags on VF */
1880 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
1881
1882 /* sync address list from ndev to VF */
1883 netif_addr_lock_bh(ndev);
1884 dev_uc_sync(vf_netdev, ndev);
1885 dev_mc_sync(vf_netdev, ndev);
1886 netif_addr_unlock_bh(ndev);
1887
1888 if (netif_running(ndev)) {
1889 ret = dev_open(vf_netdev);
1890 if (ret)
1891 netdev_warn(vf_netdev,
1892 "unable to open: %d\n", ret);
1893 }
1894}
1895
1896/* Setup VF as slave of the synthetic device.
1897 * Runs in workqueue to avoid recursion in netlink callbacks.
1898 */
1899static void netvsc_vf_setup(struct work_struct *w)
1900{
1901 struct net_device_context *ndev_ctx
1902 = container_of(w, struct net_device_context, vf_takeover.work);
1903 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1904 struct net_device *vf_netdev;
1905
1906 if (!rtnl_trylock()) {
1907 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1908 return;
1909 }
1910
1911 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1912 if (vf_netdev)
1913 __netvsc_vf_setup(ndev, vf_netdev);
1914
1915 rtnl_unlock();
1916}
1917
1918static int netvsc_register_vf(struct net_device *vf_netdev)
1919{
1920 struct net_device *ndev;
1921 struct net_device_context *net_device_ctx;
1922 struct netvsc_device *netvsc_dev;
1923
1924 if (vf_netdev->addr_len != ETH_ALEN)
1925 return NOTIFY_DONE;
1926
1927 /*
1928 * We will use the MAC address to locate the synthetic interface to
1929 * associate with the VF interface. If we don't find a matching
1930 * synthetic interface, move on.
1931 */
1932 ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1933 if (!ndev)
1934 return NOTIFY_DONE;
1935
1936 net_device_ctx = netdev_priv(ndev);
1937 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1938 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1939 return NOTIFY_DONE;
1940
1941 if (netvsc_vf_join(vf_netdev, ndev) != 0)
1942 return NOTIFY_DONE;
1943
1944 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1945
1946 dev_hold(vf_netdev);
1947 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1948 return NOTIFY_OK;
1949}
1950
1951/* VF up/down change detected, schedule to change data path */
1952static int netvsc_vf_changed(struct net_device *vf_netdev)
1953{
1954 struct net_device_context *net_device_ctx;
1955 struct netvsc_device *netvsc_dev;
1956 struct net_device *ndev;
1957 bool vf_is_up = netif_running(vf_netdev);
1958
1959 ndev = get_netvsc_byref(vf_netdev);
1960 if (!ndev)
1961 return NOTIFY_DONE;
1962
1963 net_device_ctx = netdev_priv(ndev);
1964 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1965 if (!netvsc_dev)
1966 return NOTIFY_DONE;
1967
1968 netvsc_switch_datapath(ndev, vf_is_up);
1969 netdev_info(ndev, "Data path switched %s VF: %s\n",
1970 vf_is_up ? "to" : "from", vf_netdev->name);
1971
1972 return NOTIFY_OK;
1973}
1974
1975static int netvsc_unregister_vf(struct net_device *vf_netdev)
1976{
1977 struct net_device *ndev;
1978 struct net_device_context *net_device_ctx;
1979
1980 ndev = get_netvsc_byref(vf_netdev);
1981 if (!ndev)
1982 return NOTIFY_DONE;
1983
1984 net_device_ctx = netdev_priv(ndev);
1985 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1986
1987 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1988
1989 netdev_rx_handler_unregister(vf_netdev);
1990 netdev_upper_dev_unlink(vf_netdev, ndev);
1991 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1992 dev_put(vf_netdev);
1993
1994 return NOTIFY_OK;
1995}
1996
1997static int netvsc_probe(struct hv_device *dev,
1998 const struct hv_vmbus_device_id *dev_id)
1999{
2000 struct net_device *net = NULL;
2001 struct net_device_context *net_device_ctx;
2002 struct netvsc_device_info device_info;
2003 struct netvsc_device *nvdev;
2004 int ret = -ENOMEM;
2005
2006 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2007 VRSS_CHANNEL_MAX);
2008 if (!net)
2009 goto no_net;
2010
2011 netif_carrier_off(net);
2012
2013 netvsc_init_settings(net);
2014
2015 net_device_ctx = netdev_priv(net);
2016 net_device_ctx->device_ctx = dev;
2017 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2018 if (netif_msg_probe(net_device_ctx))
2019 netdev_dbg(net, "netvsc msg_enable: %d\n",
2020 net_device_ctx->msg_enable);
2021
2022 hv_set_drvdata(dev, net);
2023
2024 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2025
2026 spin_lock_init(&net_device_ctx->lock);
2027 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2028 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2029
2030 net_device_ctx->vf_stats
2031 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2032 if (!net_device_ctx->vf_stats)
2033 goto no_stats;
2034
2035 net->netdev_ops = &device_ops;
2036 net->ethtool_ops = ðtool_ops;
2037 SET_NETDEV_DEV(net, &dev->device);
2038
2039 /* We always need headroom for rndis header */
2040 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2041
2042 /* Initialize the number of queues to be 1, we may change it if more
2043 * channels are offered later.
2044 */
2045 netif_set_real_num_tx_queues(net, 1);
2046 netif_set_real_num_rx_queues(net, 1);
2047
2048 /* Notify the netvsc driver of the new device */
2049 memset(&device_info, 0, sizeof(device_info));
2050 device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2051 device_info.send_sections = NETVSC_DEFAULT_TX;
2052 device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2053 device_info.recv_sections = NETVSC_DEFAULT_RX;
2054 device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2055
2056 nvdev = rndis_filter_device_add(dev, &device_info);
2057 if (IS_ERR(nvdev)) {
2058 ret = PTR_ERR(nvdev);
2059 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2060 goto rndis_failed;
2061 }
2062
2063 memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2064
2065 /* hw_features computed in rndis_netdev_set_hwcaps() */
2066 net->features = net->hw_features |
2067 NETIF_F_HIGHDMA | NETIF_F_SG |
2068 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2069 net->vlan_features = net->features;
2070
2071 netdev_lockdep_set_classes(net);
2072
2073 /* MTU range: 68 - 1500 or 65521 */
2074 net->min_mtu = NETVSC_MTU_MIN;
2075 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2076 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2077 else
2078 net->max_mtu = ETH_DATA_LEN;
2079
2080 ret = register_netdev(net);
2081 if (ret != 0) {
2082 pr_err("Unable to register netdev.\n");
2083 goto register_failed;
2084 }
2085
2086 return ret;
2087
2088register_failed:
2089 rndis_filter_device_remove(dev, nvdev);
2090rndis_failed:
2091 free_percpu(net_device_ctx->vf_stats);
2092no_stats:
2093 hv_set_drvdata(dev, NULL);
2094 free_netdev(net);
2095no_net:
2096 return ret;
2097}
2098
2099static int netvsc_remove(struct hv_device *dev)
2100{
2101 struct net_device_context *ndev_ctx;
2102 struct net_device *vf_netdev, *net;
2103 struct netvsc_device *nvdev;
2104
2105 net = hv_get_drvdata(dev);
2106 if (net == NULL) {
2107 dev_err(&dev->device, "No net device to remove\n");
2108 return 0;
2109 }
2110
2111 ndev_ctx = netdev_priv(net);
2112
2113 cancel_delayed_work_sync(&ndev_ctx->dwork);
2114
2115 rcu_read_lock();
2116 nvdev = rcu_dereference(ndev_ctx->nvdev);
2117
2118 if (nvdev)
2119 cancel_work_sync(&nvdev->subchan_work);
2120
2121 /*
2122 * Call to the vsc driver to let it know that the device is being
2123 * removed. Also blocks mtu and channel changes.
2124 */
2125 rtnl_lock();
2126 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2127 if (vf_netdev)
2128 netvsc_unregister_vf(vf_netdev);
2129
2130 if (nvdev)
2131 rndis_filter_device_remove(dev, nvdev);
2132
2133 unregister_netdevice(net);
2134
2135 rtnl_unlock();
2136 rcu_read_unlock();
2137
2138 hv_set_drvdata(dev, NULL);
2139
2140 free_percpu(ndev_ctx->vf_stats);
2141 free_netdev(net);
2142 return 0;
2143}
2144
2145static const struct hv_vmbus_device_id id_table[] = {
2146 /* Network guid */
2147 { HV_NIC_GUID, },
2148 { },
2149};
2150
2151MODULE_DEVICE_TABLE(vmbus, id_table);
2152
2153/* The one and only one */
2154static struct hv_driver netvsc_drv = {
2155 .name = KBUILD_MODNAME,
2156 .id_table = id_table,
2157 .probe = netvsc_probe,
2158 .remove = netvsc_remove,
2159};
2160
2161/*
2162 * On Hyper-V, every VF interface is matched with a corresponding
2163 * synthetic interface. The synthetic interface is presented first
2164 * to the guest. When the corresponding VF instance is registered,
2165 * we will take care of switching the data path.
2166 */
2167static int netvsc_netdev_event(struct notifier_block *this,
2168 unsigned long event, void *ptr)
2169{
2170 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2171
2172 /* Skip our own events */
2173 if (event_dev->netdev_ops == &device_ops)
2174 return NOTIFY_DONE;
2175
2176 /* Avoid non-Ethernet type devices */
2177 if (event_dev->type != ARPHRD_ETHER)
2178 return NOTIFY_DONE;
2179
2180 /* Avoid Vlan dev with same MAC registering as VF */
2181 if (is_vlan_dev(event_dev))
2182 return NOTIFY_DONE;
2183
2184 /* Avoid Bonding master dev with same MAC registering as VF */
2185 if ((event_dev->priv_flags & IFF_BONDING) &&
2186 (event_dev->flags & IFF_MASTER))
2187 return NOTIFY_DONE;
2188
2189 switch (event) {
2190 case NETDEV_REGISTER:
2191 return netvsc_register_vf(event_dev);
2192 case NETDEV_UNREGISTER:
2193 return netvsc_unregister_vf(event_dev);
2194 case NETDEV_UP:
2195 case NETDEV_DOWN:
2196 return netvsc_vf_changed(event_dev);
2197 default:
2198 return NOTIFY_DONE;
2199 }
2200}
2201
2202static struct notifier_block netvsc_netdev_notifier = {
2203 .notifier_call = netvsc_netdev_event,
2204};
2205
2206static void __exit netvsc_drv_exit(void)
2207{
2208 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2209 vmbus_driver_unregister(&netvsc_drv);
2210}
2211
2212static int __init netvsc_drv_init(void)
2213{
2214 int ret;
2215
2216 if (ring_size < RING_SIZE_MIN) {
2217 ring_size = RING_SIZE_MIN;
2218 pr_info("Increased ring_size to %u (min allowed)\n",
2219 ring_size);
2220 }
2221 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2222 netvsc_ring_reciprocal = reciprocal_value(netvsc_ring_bytes);
2223
2224 ret = vmbus_driver_register(&netvsc_drv);
2225 if (ret)
2226 return ret;
2227
2228 register_netdevice_notifier(&netvsc_netdev_notifier);
2229 return 0;
2230}
2231
2232MODULE_LICENSE("GPL");
2233MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2234
2235module_init(netvsc_drv_init);
2236module_exit(netvsc_drv_exit);