Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Simple MTD partitioning layer
  4 *
  5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/slab.h>
 14#include <linux/list.h>
 15#include <linux/kmod.h>
 16#include <linux/mtd/mtd.h>
 17#include <linux/mtd/partitions.h>
 18#include <linux/err.h>
 19#include <linux/of.h>
 20#include <linux/of_platform.h>
 21
 22#include "mtdcore.h"
 23
 24/*
 25 * MTD methods which simply translate the effective address and pass through
 26 * to the _real_ device.
 27 */
 28
 29static inline void free_partition(struct mtd_info *mtd)
 30{
 31	kfree(mtd->name);
 32	kfree(mtd);
 33}
 34
 35void release_mtd_partition(struct mtd_info *mtd)
 36{
 37	WARN_ON(!list_empty(&mtd->part.node));
 38	free_partition(mtd);
 39}
 40
 41static struct mtd_info *allocate_partition(struct mtd_info *parent,
 42					   const struct mtd_partition *part,
 43					   int partno, uint64_t cur_offset)
 44{
 45	struct mtd_info *master = mtd_get_master(parent);
 46	int wr_alignment = (parent->flags & MTD_NO_ERASE) ?
 47			   master->writesize : master->erasesize;
 48	u64 parent_size = mtd_is_partition(parent) ?
 49			  parent->part.size : parent->size;
 50	struct mtd_info *child;
 51	u32 remainder;
 52	char *name;
 53	u64 tmp;
 54
 55	/* allocate the partition structure */
 56	child = kzalloc(sizeof(*child), GFP_KERNEL);
 57	name = kstrdup(part->name, GFP_KERNEL);
 58	if (!name || !child) {
 59		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 60		       parent->name);
 61		kfree(name);
 62		kfree(child);
 63		return ERR_PTR(-ENOMEM);
 64	}
 65
 66	/* set up the MTD object for this partition */
 67	child->type = parent->type;
 68	child->part.flags = parent->flags & ~part->mask_flags;
 69	child->part.flags |= part->add_flags;
 70	child->flags = child->part.flags;
 71	child->part.size = part->size;
 72	child->writesize = parent->writesize;
 73	child->writebufsize = parent->writebufsize;
 74	child->oobsize = parent->oobsize;
 75	child->oobavail = parent->oobavail;
 76	child->subpage_sft = parent->subpage_sft;
 77
 78	child->name = name;
 79	child->owner = parent->owner;
 80
 81	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
 82	 * concern for showing the same data in multiple partitions.
 83	 * However, it is very useful to have the master node present,
 84	 * so the MTD_PARTITIONED_MASTER option allows that. The master
 85	 * will have device nodes etc only if this is set, so make the
 86	 * parent conditional on that option. Note, this is a way to
 87	 * distinguish between the parent and its partitions in sysfs.
 88	 */
 89	child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
 90			    &parent->dev : parent->dev.parent;
 91	child->dev.of_node = part->of_node;
 92	child->parent = parent;
 93	child->part.offset = part->offset;
 94	INIT_LIST_HEAD(&child->partitions);
 95
 96	if (child->part.offset == MTDPART_OFS_APPEND)
 97		child->part.offset = cur_offset;
 98	if (child->part.offset == MTDPART_OFS_NXTBLK) {
 99		tmp = cur_offset;
100		child->part.offset = cur_offset;
101		remainder = do_div(tmp, wr_alignment);
102		if (remainder) {
103			child->part.offset += wr_alignment - remainder;
104			printk(KERN_NOTICE "Moving partition %d: "
105			       "0x%012llx -> 0x%012llx\n", partno,
106			       (unsigned long long)cur_offset,
107			       child->part.offset);
108		}
109	}
110	if (child->part.offset == MTDPART_OFS_RETAIN) {
111		child->part.offset = cur_offset;
112		if (parent_size - child->part.offset >= child->part.size) {
113			child->part.size = parent_size - child->part.offset -
114					   child->part.size;
115		} else {
116			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
117				part->name, parent_size - child->part.offset,
118				child->part.size);
119			/* register to preserve ordering */
120			goto out_register;
121		}
122	}
123	if (child->part.size == MTDPART_SIZ_FULL)
124		child->part.size = parent_size - child->part.offset;
125
126	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
127	       child->part.offset, child->part.offset + child->part.size,
128	       child->name);
129
130	/* let's do some sanity checks */
131	if (child->part.offset >= parent_size) {
132		/* let's register it anyway to preserve ordering */
133		child->part.offset = 0;
134		child->part.size = 0;
135
136		/* Initialize ->erasesize to make add_mtd_device() happy. */
137		child->erasesize = parent->erasesize;
138		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
139			part->name);
140		goto out_register;
141	}
142	if (child->part.offset + child->part.size > parent->size) {
143		child->part.size = parent_size - child->part.offset;
144		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
145			part->name, parent->name, child->part.size);
146	}
147
148	if (parent->numeraseregions > 1) {
149		/* Deal with variable erase size stuff */
150		int i, max = parent->numeraseregions;
151		u64 end = child->part.offset + child->part.size;
152		struct mtd_erase_region_info *regions = parent->eraseregions;
153
154		/* Find the first erase regions which is part of this
155		 * partition. */
156		for (i = 0; i < max && regions[i].offset <= child->part.offset;
157		     i++)
158			;
159		/* The loop searched for the region _behind_ the first one */
160		if (i > 0)
161			i--;
162
163		/* Pick biggest erasesize */
164		for (; i < max && regions[i].offset < end; i++) {
165			if (child->erasesize < regions[i].erasesize)
166				child->erasesize = regions[i].erasesize;
167		}
168		BUG_ON(child->erasesize == 0);
169	} else {
170		/* Single erase size */
171		child->erasesize = master->erasesize;
172	}
173
174	/*
175	 * Child erasesize might differ from the parent one if the parent
176	 * exposes several regions with different erasesize. Adjust
177	 * wr_alignment accordingly.
178	 */
179	if (!(child->flags & MTD_NO_ERASE))
180		wr_alignment = child->erasesize;
181
182	tmp = mtd_get_master_ofs(child, 0);
183	remainder = do_div(tmp, wr_alignment);
184	if ((child->flags & MTD_WRITEABLE) && remainder) {
185		/* Doesn't start on a boundary of major erase size */
186		/* FIXME: Let it be writable if it is on a boundary of
187		 * _minor_ erase size though */
188		child->flags &= ~MTD_WRITEABLE;
189		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
190			part->name);
191	}
192
193	tmp = mtd_get_master_ofs(child, 0) + child->part.size;
194	remainder = do_div(tmp, wr_alignment);
195	if ((child->flags & MTD_WRITEABLE) && remainder) {
196		child->flags &= ~MTD_WRITEABLE;
197		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
198			part->name);
199	}
200
201	child->size = child->part.size;
202	child->ecc_step_size = parent->ecc_step_size;
203	child->ecc_strength = parent->ecc_strength;
204	child->bitflip_threshold = parent->bitflip_threshold;
205
206	if (master->_block_isbad) {
207		uint64_t offs = 0;
208
209		while (offs < child->part.size) {
210			if (mtd_block_isreserved(child, offs))
211				child->ecc_stats.bbtblocks++;
212			else if (mtd_block_isbad(child, offs))
213				child->ecc_stats.badblocks++;
214			offs += child->erasesize;
215		}
216	}
217
218out_register:
219	return child;
220}
221
222static ssize_t offset_show(struct device *dev,
223			   struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return sysfs_emit(buf, "%lld\n", mtd->part.offset);
228}
229static DEVICE_ATTR_RO(offset);	/* mtd partition offset */
230
231static const struct attribute *mtd_partition_attrs[] = {
232	&dev_attr_offset.attr,
233	NULL
234};
235
236static int mtd_add_partition_attrs(struct mtd_info *new)
237{
238	int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
239	if (ret)
240		printk(KERN_WARNING
241		       "mtd: failed to create partition attrs, err=%d\n", ret);
242	return ret;
243}
244
245int mtd_add_partition(struct mtd_info *parent, const char *name,
246		      long long offset, long long length)
247{
248	struct mtd_info *master = mtd_get_master(parent);
249	u64 parent_size = mtd_is_partition(parent) ?
250			  parent->part.size : parent->size;
251	struct mtd_partition part;
252	struct mtd_info *child;
253	int ret = 0;
254
255	/* the direct offset is expected */
256	if (offset == MTDPART_OFS_APPEND ||
257	    offset == MTDPART_OFS_NXTBLK)
258		return -EINVAL;
259
260	if (length == MTDPART_SIZ_FULL)
261		length = parent_size - offset;
262
263	if (length <= 0)
264		return -EINVAL;
265
266	memset(&part, 0, sizeof(part));
267	part.name = name;
268	part.size = length;
269	part.offset = offset;
270
271	child = allocate_partition(parent, &part, -1, offset);
272	if (IS_ERR(child))
273		return PTR_ERR(child);
274
275	mutex_lock(&master->master.partitions_lock);
276	list_add_tail(&child->part.node, &parent->partitions);
277	mutex_unlock(&master->master.partitions_lock);
278
279	ret = add_mtd_device(child);
280	if (ret)
281		goto err_remove_part;
282
283	mtd_add_partition_attrs(child);
284
285	return 0;
286
287err_remove_part:
288	mutex_lock(&master->master.partitions_lock);
289	list_del(&child->part.node);
290	mutex_unlock(&master->master.partitions_lock);
291
292	free_partition(child);
293
294	return ret;
295}
296EXPORT_SYMBOL_GPL(mtd_add_partition);
297
298/**
299 * __mtd_del_partition - delete MTD partition
300 *
301 * @mtd: MTD structure to be deleted
302 *
303 * This function must be called with the partitions mutex locked.
304 */
305static int __mtd_del_partition(struct mtd_info *mtd)
306{
307	struct mtd_info *child, *next;
308	int err;
309
310	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
311		err = __mtd_del_partition(child);
312		if (err)
313			return err;
314	}
315
316	sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
317
318	list_del_init(&mtd->part.node);
319	err = del_mtd_device(mtd);
320	if (err)
321		return err;
322
323	return 0;
324}
325
326/*
327 * This function unregisters and destroy all slave MTD objects which are
328 * attached to the given MTD object, recursively.
329 */
330static int __del_mtd_partitions(struct mtd_info *mtd)
331{
332	struct mtd_info *child, *next;
333	int ret, err = 0;
334
335	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
336		if (mtd_has_partitions(child))
337			__del_mtd_partitions(child);
338
339		pr_info("Deleting %s MTD partition\n", child->name);
340		list_del_init(&child->part.node);
341		ret = del_mtd_device(child);
342		if (ret < 0) {
343			pr_err("Error when deleting partition \"%s\" (%d)\n",
344			       child->name, ret);
345			err = ret;
346			continue;
347		}
348	}
349
350	return err;
351}
352
353int del_mtd_partitions(struct mtd_info *mtd)
354{
355	struct mtd_info *master = mtd_get_master(mtd);
356	int ret;
357
358	pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
359
360	mutex_lock(&master->master.partitions_lock);
361	ret = __del_mtd_partitions(mtd);
362	mutex_unlock(&master->master.partitions_lock);
363
364	return ret;
365}
366
367int mtd_del_partition(struct mtd_info *mtd, int partno)
368{
369	struct mtd_info *child, *master = mtd_get_master(mtd);
370	int ret = -EINVAL;
371
372	mutex_lock(&master->master.partitions_lock);
373	list_for_each_entry(child, &mtd->partitions, part.node) {
374		if (child->index == partno) {
375			ret = __mtd_del_partition(child);
376			break;
377		}
378	}
379	mutex_unlock(&master->master.partitions_lock);
380
381	return ret;
382}
383EXPORT_SYMBOL_GPL(mtd_del_partition);
384
385/*
386 * This function, given a parent MTD object and a partition table, creates
387 * and registers the child MTD objects which are bound to the parent according
388 * to the partition definitions.
389 *
390 * For historical reasons, this function's caller only registers the parent
391 * if the MTD_PARTITIONED_MASTER config option is set.
392 */
393
394int add_mtd_partitions(struct mtd_info *parent,
395		       const struct mtd_partition *parts,
396		       int nbparts)
397{
398	struct mtd_info *child, *master = mtd_get_master(parent);
399	uint64_t cur_offset = 0;
400	int i, ret;
401
402	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
403	       nbparts, parent->name);
404
405	for (i = 0; i < nbparts; i++) {
406		child = allocate_partition(parent, parts + i, i, cur_offset);
407		if (IS_ERR(child)) {
408			ret = PTR_ERR(child);
409			goto err_del_partitions;
410		}
411
412		mutex_lock(&master->master.partitions_lock);
413		list_add_tail(&child->part.node, &parent->partitions);
414		mutex_unlock(&master->master.partitions_lock);
415
416		ret = add_mtd_device(child);
417		if (ret) {
418			mutex_lock(&master->master.partitions_lock);
419			list_del(&child->part.node);
420			mutex_unlock(&master->master.partitions_lock);
421
422			free_partition(child);
423			goto err_del_partitions;
424		}
425
426		mtd_add_partition_attrs(child);
427
428		/* Look for subpartitions */
429		ret = parse_mtd_partitions(child, parts[i].types, NULL);
430		if (ret < 0) {
431			pr_err("Failed to parse subpartitions: %d\n", ret);
432			goto err_del_partitions;
433		}
434
435		cur_offset = child->part.offset + child->part.size;
436	}
437
438	return 0;
439
440err_del_partitions:
441	del_mtd_partitions(master);
442
443	return ret;
444}
445
446static DEFINE_SPINLOCK(part_parser_lock);
447static LIST_HEAD(part_parsers);
448
449static struct mtd_part_parser *mtd_part_parser_get(const char *name)
450{
451	struct mtd_part_parser *p, *ret = NULL;
452
453	spin_lock(&part_parser_lock);
454
455	list_for_each_entry(p, &part_parsers, list)
456		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
457			ret = p;
458			break;
459		}
460
461	spin_unlock(&part_parser_lock);
462
463	return ret;
464}
465
466static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
467{
468	module_put(p->owner);
469}
470
471/*
472 * Many partition parsers just expected the core to kfree() all their data in
473 * one chunk. Do that by default.
474 */
475static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
476					    int nr_parts)
477{
478	kfree(pparts);
479}
480
481int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
482{
483	p->owner = owner;
484
485	if (!p->cleanup)
486		p->cleanup = &mtd_part_parser_cleanup_default;
487
488	spin_lock(&part_parser_lock);
489	list_add(&p->list, &part_parsers);
490	spin_unlock(&part_parser_lock);
491
492	return 0;
493}
494EXPORT_SYMBOL_GPL(__register_mtd_parser);
495
496void deregister_mtd_parser(struct mtd_part_parser *p)
497{
498	spin_lock(&part_parser_lock);
499	list_del(&p->list);
500	spin_unlock(&part_parser_lock);
501}
502EXPORT_SYMBOL_GPL(deregister_mtd_parser);
503
504/*
505 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
506 * are changing this array!
507 */
508static const char * const default_mtd_part_types[] = {
509	"cmdlinepart",
510	"ofpart",
511	NULL
512};
513
514/* Check DT only when looking for subpartitions. */
515static const char * const default_subpartition_types[] = {
516	"ofpart",
517	NULL
518};
519
520static int mtd_part_do_parse(struct mtd_part_parser *parser,
521			     struct mtd_info *master,
522			     struct mtd_partitions *pparts,
523			     struct mtd_part_parser_data *data)
524{
525	int ret;
526
527	ret = (*parser->parse_fn)(master, &pparts->parts, data);
528	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
529	if (ret <= 0)
530		return ret;
531
532	pr_notice("%d %s partitions found on MTD device %s\n", ret,
533		  parser->name, master->name);
534
535	pparts->nr_parts = ret;
536	pparts->parser = parser;
537
538	return ret;
539}
540
541/**
542 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
543 *
544 * @compat: compatible string describing partitions in a device tree
545 *
546 * MTD parsers can specify supported partitions by providing a table of
547 * compatibility strings. This function finds a parser that advertises support
548 * for a passed value of "compatible".
549 */
550static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
551{
552	struct mtd_part_parser *p, *ret = NULL;
553
554	spin_lock(&part_parser_lock);
555
556	list_for_each_entry(p, &part_parsers, list) {
557		const struct of_device_id *matches;
558
559		matches = p->of_match_table;
560		if (!matches)
561			continue;
562
563		for (; matches->compatible[0]; matches++) {
564			if (!strcmp(matches->compatible, compat) &&
565			    try_module_get(p->owner)) {
566				ret = p;
567				break;
568			}
569		}
570
571		if (ret)
572			break;
573	}
574
575	spin_unlock(&part_parser_lock);
576
577	return ret;
578}
579
580static int mtd_part_of_parse(struct mtd_info *master,
581			     struct mtd_partitions *pparts)
582{
583	struct mtd_part_parser *parser;
584	struct device_node *np;
585	struct device_node *child;
586	struct property *prop;
587	struct device *dev;
588	const char *compat;
589	const char *fixed = "fixed-partitions";
590	int ret, err = 0;
591
592	dev = &master->dev;
593	/* Use parent device (controller) if the top level MTD is not registered */
594	if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) && !mtd_is_partition(master))
595		dev = master->dev.parent;
596
597	np = mtd_get_of_node(master);
598	if (mtd_is_partition(master))
599		of_node_get(np);
600	else
601		np = of_get_child_by_name(np, "partitions");
602
603	/*
604	 * Don't create devices that are added to a bus but will never get
605	 * probed. That'll cause fw_devlink to block probing of consumers of
606	 * this partition until the partition device is probed.
607	 */
608	for_each_child_of_node(np, child)
609		if (of_device_is_compatible(child, "nvmem-cells"))
610			of_node_set_flag(child, OF_POPULATED);
611
612	of_property_for_each_string(np, "compatible", prop, compat) {
613		parser = mtd_part_get_compatible_parser(compat);
614		if (!parser)
615			continue;
616		ret = mtd_part_do_parse(parser, master, pparts, NULL);
617		if (ret > 0) {
618			of_platform_populate(np, NULL, NULL, dev);
619			of_node_put(np);
620			return ret;
621		}
622		mtd_part_parser_put(parser);
623		if (ret < 0 && !err)
624			err = ret;
625	}
626	of_platform_populate(np, NULL, NULL, dev);
627	of_node_put(np);
628
629	/*
630	 * For backward compatibility we have to try the "fixed-partitions"
631	 * parser. It supports old DT format with partitions specified as a
632	 * direct subnodes of a flash device DT node without any compatibility
633	 * specified we could match.
634	 */
635	parser = mtd_part_parser_get(fixed);
636	if (!parser && !request_module("%s", fixed))
637		parser = mtd_part_parser_get(fixed);
638	if (parser) {
639		ret = mtd_part_do_parse(parser, master, pparts, NULL);
640		if (ret > 0)
641			return ret;
642		mtd_part_parser_put(parser);
643		if (ret < 0 && !err)
644			err = ret;
645	}
646
647	return err;
648}
649
650/**
651 * parse_mtd_partitions - parse and register MTD partitions
652 *
653 * @master: the master partition (describes whole MTD device)
654 * @types: names of partition parsers to try or %NULL
655 * @data: MTD partition parser-specific data
656 *
657 * This function tries to find & register partitions on MTD device @master. It
658 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
659 * then the default list of parsers is used. The default list contains only the
660 * "cmdlinepart" and "ofpart" parsers ATM.
661 * Note: If there are more then one parser in @types, the kernel only takes the
662 * partitions parsed out by the first parser.
663 *
664 * This function may return:
665 * o a negative error code in case of failure
666 * o number of found partitions otherwise
667 */
668int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
669			 struct mtd_part_parser_data *data)
670{
671	struct mtd_partitions pparts = { };
672	struct mtd_part_parser *parser;
673	int ret, err = 0;
674
675	if (!types)
676		types = mtd_is_partition(master) ? default_subpartition_types :
677			default_mtd_part_types;
678
679	for ( ; *types; types++) {
680		/*
681		 * ofpart is a special type that means OF partitioning info
682		 * should be used. It requires a bit different logic so it is
683		 * handled in a separated function.
684		 */
685		if (!strcmp(*types, "ofpart")) {
686			ret = mtd_part_of_parse(master, &pparts);
687		} else {
688			pr_debug("%s: parsing partitions %s\n", master->name,
689				 *types);
690			parser = mtd_part_parser_get(*types);
691			if (!parser && !request_module("%s", *types))
692				parser = mtd_part_parser_get(*types);
693			pr_debug("%s: got parser %s\n", master->name,
694				parser ? parser->name : NULL);
695			if (!parser)
696				continue;
697			ret = mtd_part_do_parse(parser, master, &pparts, data);
698			if (ret <= 0)
699				mtd_part_parser_put(parser);
700		}
701		/* Found partitions! */
702		if (ret > 0) {
703			err = add_mtd_partitions(master, pparts.parts,
704						 pparts.nr_parts);
705			mtd_part_parser_cleanup(&pparts);
706			return err ? err : pparts.nr_parts;
707		}
708		/*
709		 * Stash the first error we see; only report it if no parser
710		 * succeeds
711		 */
712		if (ret < 0 && !err)
713			err = ret;
714	}
715	return err;
716}
717
718void mtd_part_parser_cleanup(struct mtd_partitions *parts)
719{
720	const struct mtd_part_parser *parser;
721
722	if (!parts)
723		return;
724
725	parser = parts->parser;
726	if (parser) {
727		if (parser->cleanup)
728			parser->cleanup(parts->parts, parts->nr_parts);
729
730		mtd_part_parser_put(parser);
731	}
732}
733
734/* Returns the size of the entire flash chip */
735uint64_t mtd_get_device_size(const struct mtd_info *mtd)
736{
737	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
738
739	return master->size;
740}
741EXPORT_SYMBOL_GPL(mtd_get_device_size);
   1/*
   2 * Simple MTD partitioning layer
   3 *
   4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
   5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
   6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/list.h>
  29#include <linux/kmod.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/partitions.h>
  32#include <linux/err.h>
  33#include <linux/of.h>
  34
  35#include "mtdcore.h"
  36
  37/* Our partition linked list */
  38static LIST_HEAD(mtd_partitions);
  39static DEFINE_MUTEX(mtd_partitions_mutex);
  40
  41/**
  42 * struct mtd_part - our partition node structure
  43 *
  44 * @mtd: struct holding partition details
  45 * @parent: parent mtd - flash device or another partition
  46 * @offset: partition offset relative to the *flash device*
  47 */
  48struct mtd_part {
  49	struct mtd_info mtd;
  50	struct mtd_info *parent;
  51	uint64_t offset;
  52	struct list_head list;
  53};
  54
  55/*
  56 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  57 * the pointer to that structure.
  58 */
  59static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  60{
  61	return container_of(mtd, struct mtd_part, mtd);
  62}
  63
  64
  65/*
  66 * MTD methods which simply translate the effective address and pass through
  67 * to the _real_ device.
  68 */
  69
  70static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  71		size_t *retlen, u_char *buf)
  72{
  73	struct mtd_part *part = mtd_to_part(mtd);
  74	struct mtd_ecc_stats stats;
  75	int res;
  76
  77	stats = part->parent->ecc_stats;
  78	res = part->parent->_read(part->parent, from + part->offset, len,
  79				  retlen, buf);
  80	if (unlikely(mtd_is_eccerr(res)))
  81		mtd->ecc_stats.failed +=
  82			part->parent->ecc_stats.failed - stats.failed;
  83	else
  84		mtd->ecc_stats.corrected +=
  85			part->parent->ecc_stats.corrected - stats.corrected;
  86	return res;
  87}
  88
  89static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  90		size_t *retlen, void **virt, resource_size_t *phys)
  91{
  92	struct mtd_part *part = mtd_to_part(mtd);
  93
  94	return part->parent->_point(part->parent, from + part->offset, len,
  95				    retlen, virt, phys);
  96}
  97
  98static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  99{
 100	struct mtd_part *part = mtd_to_part(mtd);
 101
 102	return part->parent->_unpoint(part->parent, from + part->offset, len);
 103}
 104
 105static int part_read_oob(struct mtd_info *mtd, loff_t from,
 106		struct mtd_oob_ops *ops)
 107{
 108	struct mtd_part *part = mtd_to_part(mtd);
 109	struct mtd_ecc_stats stats;
 110	int res;
 111
 112	stats = part->parent->ecc_stats;
 113	res = part->parent->_read_oob(part->parent, from + part->offset, ops);
 114	if (unlikely(mtd_is_eccerr(res)))
 115		mtd->ecc_stats.failed +=
 116			part->parent->ecc_stats.failed - stats.failed;
 117	else
 118		mtd->ecc_stats.corrected +=
 119			part->parent->ecc_stats.corrected - stats.corrected;
 120	return res;
 121}
 122
 123static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
 124		size_t len, size_t *retlen, u_char *buf)
 125{
 126	struct mtd_part *part = mtd_to_part(mtd);
 127	return part->parent->_read_user_prot_reg(part->parent, from, len,
 128						 retlen, buf);
 129}
 130
 131static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
 132				   size_t *retlen, struct otp_info *buf)
 133{
 134	struct mtd_part *part = mtd_to_part(mtd);
 135	return part->parent->_get_user_prot_info(part->parent, len, retlen,
 136						 buf);
 137}
 138
 139static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
 140		size_t len, size_t *retlen, u_char *buf)
 141{
 142	struct mtd_part *part = mtd_to_part(mtd);
 143	return part->parent->_read_fact_prot_reg(part->parent, from, len,
 144						 retlen, buf);
 145}
 146
 147static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
 148				   size_t *retlen, struct otp_info *buf)
 149{
 150	struct mtd_part *part = mtd_to_part(mtd);
 151	return part->parent->_get_fact_prot_info(part->parent, len, retlen,
 152						 buf);
 153}
 154
 155static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
 156		size_t *retlen, const u_char *buf)
 157{
 158	struct mtd_part *part = mtd_to_part(mtd);
 159	return part->parent->_write(part->parent, to + part->offset, len,
 160				    retlen, buf);
 161}
 162
 163static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
 164		size_t *retlen, const u_char *buf)
 165{
 166	struct mtd_part *part = mtd_to_part(mtd);
 167	return part->parent->_panic_write(part->parent, to + part->offset, len,
 168					  retlen, buf);
 169}
 170
 171static int part_write_oob(struct mtd_info *mtd, loff_t to,
 172		struct mtd_oob_ops *ops)
 173{
 174	struct mtd_part *part = mtd_to_part(mtd);
 175
 176	return part->parent->_write_oob(part->parent, to + part->offset, ops);
 177}
 178
 179static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
 180		size_t len, size_t *retlen, u_char *buf)
 181{
 182	struct mtd_part *part = mtd_to_part(mtd);
 183	return part->parent->_write_user_prot_reg(part->parent, from, len,
 184						  retlen, buf);
 185}
 186
 187static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
 188		size_t len)
 189{
 190	struct mtd_part *part = mtd_to_part(mtd);
 191	return part->parent->_lock_user_prot_reg(part->parent, from, len);
 192}
 193
 194static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
 195		unsigned long count, loff_t to, size_t *retlen)
 196{
 197	struct mtd_part *part = mtd_to_part(mtd);
 198	return part->parent->_writev(part->parent, vecs, count,
 199				     to + part->offset, retlen);
 200}
 201
 202static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
 203{
 204	struct mtd_part *part = mtd_to_part(mtd);
 205	int ret;
 206
 207	instr->addr += part->offset;
 208	ret = part->parent->_erase(part->parent, instr);
 209	if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 210		instr->fail_addr -= part->offset;
 211	instr->addr -= part->offset;
 212
 213	return ret;
 214}
 215
 216static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 217{
 218	struct mtd_part *part = mtd_to_part(mtd);
 219	return part->parent->_lock(part->parent, ofs + part->offset, len);
 220}
 221
 222static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 223{
 224	struct mtd_part *part = mtd_to_part(mtd);
 225	return part->parent->_unlock(part->parent, ofs + part->offset, len);
 226}
 227
 228static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 229{
 230	struct mtd_part *part = mtd_to_part(mtd);
 231	return part->parent->_is_locked(part->parent, ofs + part->offset, len);
 232}
 233
 234static void part_sync(struct mtd_info *mtd)
 235{
 236	struct mtd_part *part = mtd_to_part(mtd);
 237	part->parent->_sync(part->parent);
 238}
 239
 240static int part_suspend(struct mtd_info *mtd)
 241{
 242	struct mtd_part *part = mtd_to_part(mtd);
 243	return part->parent->_suspend(part->parent);
 244}
 245
 246static void part_resume(struct mtd_info *mtd)
 247{
 248	struct mtd_part *part = mtd_to_part(mtd);
 249	part->parent->_resume(part->parent);
 250}
 251
 252static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
 253{
 254	struct mtd_part *part = mtd_to_part(mtd);
 255	ofs += part->offset;
 256	return part->parent->_block_isreserved(part->parent, ofs);
 257}
 258
 259static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
 260{
 261	struct mtd_part *part = mtd_to_part(mtd);
 262	ofs += part->offset;
 263	return part->parent->_block_isbad(part->parent, ofs);
 264}
 265
 266static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
 267{
 268	struct mtd_part *part = mtd_to_part(mtd);
 269	int res;
 270
 271	ofs += part->offset;
 272	res = part->parent->_block_markbad(part->parent, ofs);
 273	if (!res)
 274		mtd->ecc_stats.badblocks++;
 275	return res;
 276}
 277
 278static int part_get_device(struct mtd_info *mtd)
 279{
 280	struct mtd_part *part = mtd_to_part(mtd);
 281	return part->parent->_get_device(part->parent);
 282}
 283
 284static void part_put_device(struct mtd_info *mtd)
 285{
 286	struct mtd_part *part = mtd_to_part(mtd);
 287	part->parent->_put_device(part->parent);
 288}
 289
 290static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
 291			      struct mtd_oob_region *oobregion)
 292{
 293	struct mtd_part *part = mtd_to_part(mtd);
 294
 295	return mtd_ooblayout_ecc(part->parent, section, oobregion);
 296}
 297
 298static int part_ooblayout_free(struct mtd_info *mtd, int section,
 299			       struct mtd_oob_region *oobregion)
 300{
 301	struct mtd_part *part = mtd_to_part(mtd);
 302
 303	return mtd_ooblayout_free(part->parent, section, oobregion);
 304}
 305
 306static const struct mtd_ooblayout_ops part_ooblayout_ops = {
 307	.ecc = part_ooblayout_ecc,
 308	.free = part_ooblayout_free,
 309};
 310
 311static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
 312{
 313	struct mtd_part *part = mtd_to_part(mtd);
 314
 315	return part->parent->_max_bad_blocks(part->parent,
 316					     ofs + part->offset, len);
 317}
 318
 319static inline void free_partition(struct mtd_part *p)
 320{
 321	kfree(p->mtd.name);
 322	kfree(p);
 323}
 324
 325/**
 326 * mtd_parse_part - parse MTD partition looking for subpartitions
 327 *
 328 * @slave: part that is supposed to be a container and should be parsed
 329 * @types: NULL-terminated array with names of partition parsers to try
 330 *
 331 * Some partitions are kind of containers with extra subpartitions (volumes).
 332 * There can be various formats of such containers. This function tries to use
 333 * specified parsers to analyze given partition and registers found
 334 * subpartitions on success.
 335 */
 336static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
 337{
 338	struct mtd_partitions parsed;
 339	int err;
 340
 341	err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
 342	if (err)
 343		return err;
 344	else if (!parsed.nr_parts)
 345		return -ENOENT;
 346
 347	err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
 348
 349	mtd_part_parser_cleanup(&parsed);
 350
 351	return err;
 352}
 353
 354static struct mtd_part *allocate_partition(struct mtd_info *parent,
 355			const struct mtd_partition *part, int partno,
 356			uint64_t cur_offset)
 357{
 358	int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
 359							    parent->erasesize;
 360	struct mtd_part *slave;
 361	u32 remainder;
 362	char *name;
 363	u64 tmp;
 364
 365	/* allocate the partition structure */
 366	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
 367	name = kstrdup(part->name, GFP_KERNEL);
 368	if (!name || !slave) {
 369		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 370		       parent->name);
 371		kfree(name);
 372		kfree(slave);
 373		return ERR_PTR(-ENOMEM);
 374	}
 375
 376	/* set up the MTD object for this partition */
 377	slave->mtd.type = parent->type;
 378	slave->mtd.flags = parent->flags & ~part->mask_flags;
 379	slave->mtd.size = part->size;
 380	slave->mtd.writesize = parent->writesize;
 381	slave->mtd.writebufsize = parent->writebufsize;
 382	slave->mtd.oobsize = parent->oobsize;
 383	slave->mtd.oobavail = parent->oobavail;
 384	slave->mtd.subpage_sft = parent->subpage_sft;
 385	slave->mtd.pairing = parent->pairing;
 386
 387	slave->mtd.name = name;
 388	slave->mtd.owner = parent->owner;
 389
 390	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
 391	 * concern for showing the same data in multiple partitions.
 392	 * However, it is very useful to have the master node present,
 393	 * so the MTD_PARTITIONED_MASTER option allows that. The master
 394	 * will have device nodes etc only if this is set, so make the
 395	 * parent conditional on that option. Note, this is a way to
 396	 * distinguish between the master and the partition in sysfs.
 397	 */
 398	slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
 399				&parent->dev :
 400				parent->dev.parent;
 401	slave->mtd.dev.of_node = part->of_node;
 402
 403	if (parent->_read)
 404		slave->mtd._read = part_read;
 405	if (parent->_write)
 406		slave->mtd._write = part_write;
 407
 408	if (parent->_panic_write)
 409		slave->mtd._panic_write = part_panic_write;
 410
 411	if (parent->_point && parent->_unpoint) {
 412		slave->mtd._point = part_point;
 413		slave->mtd._unpoint = part_unpoint;
 414	}
 415
 416	if (parent->_read_oob)
 417		slave->mtd._read_oob = part_read_oob;
 418	if (parent->_write_oob)
 419		slave->mtd._write_oob = part_write_oob;
 420	if (parent->_read_user_prot_reg)
 421		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
 422	if (parent->_read_fact_prot_reg)
 423		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
 424	if (parent->_write_user_prot_reg)
 425		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
 426	if (parent->_lock_user_prot_reg)
 427		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
 428	if (parent->_get_user_prot_info)
 429		slave->mtd._get_user_prot_info = part_get_user_prot_info;
 430	if (parent->_get_fact_prot_info)
 431		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
 432	if (parent->_sync)
 433		slave->mtd._sync = part_sync;
 434	if (!partno && !parent->dev.class && parent->_suspend &&
 435	    parent->_resume) {
 436		slave->mtd._suspend = part_suspend;
 437		slave->mtd._resume = part_resume;
 438	}
 439	if (parent->_writev)
 440		slave->mtd._writev = part_writev;
 441	if (parent->_lock)
 442		slave->mtd._lock = part_lock;
 443	if (parent->_unlock)
 444		slave->mtd._unlock = part_unlock;
 445	if (parent->_is_locked)
 446		slave->mtd._is_locked = part_is_locked;
 447	if (parent->_block_isreserved)
 448		slave->mtd._block_isreserved = part_block_isreserved;
 449	if (parent->_block_isbad)
 450		slave->mtd._block_isbad = part_block_isbad;
 451	if (parent->_block_markbad)
 452		slave->mtd._block_markbad = part_block_markbad;
 453	if (parent->_max_bad_blocks)
 454		slave->mtd._max_bad_blocks = part_max_bad_blocks;
 455
 456	if (parent->_get_device)
 457		slave->mtd._get_device = part_get_device;
 458	if (parent->_put_device)
 459		slave->mtd._put_device = part_put_device;
 460
 461	slave->mtd._erase = part_erase;
 462	slave->parent = parent;
 463	slave->offset = part->offset;
 464
 465	if (slave->offset == MTDPART_OFS_APPEND)
 466		slave->offset = cur_offset;
 467	if (slave->offset == MTDPART_OFS_NXTBLK) {
 468		tmp = cur_offset;
 469		slave->offset = cur_offset;
 470		remainder = do_div(tmp, wr_alignment);
 471		if (remainder) {
 472			slave->offset += wr_alignment - remainder;
 473			printk(KERN_NOTICE "Moving partition %d: "
 474			       "0x%012llx -> 0x%012llx\n", partno,
 475			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 476		}
 477	}
 478	if (slave->offset == MTDPART_OFS_RETAIN) {
 479		slave->offset = cur_offset;
 480		if (parent->size - slave->offset >= slave->mtd.size) {
 481			slave->mtd.size = parent->size - slave->offset
 482							- slave->mtd.size;
 483		} else {
 484			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
 485				part->name, parent->size - slave->offset,
 486				slave->mtd.size);
 487			/* register to preserve ordering */
 488			goto out_register;
 489		}
 490	}
 491	if (slave->mtd.size == MTDPART_SIZ_FULL)
 492		slave->mtd.size = parent->size - slave->offset;
 493
 494	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
 495		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 496
 497	/* let's do some sanity checks */
 498	if (slave->offset >= parent->size) {
 499		/* let's register it anyway to preserve ordering */
 500		slave->offset = 0;
 501		slave->mtd.size = 0;
 502		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
 503			part->name);
 504		goto out_register;
 505	}
 506	if (slave->offset + slave->mtd.size > parent->size) {
 507		slave->mtd.size = parent->size - slave->offset;
 508		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
 509			part->name, parent->name, (unsigned long long)slave->mtd.size);
 510	}
 511	if (parent->numeraseregions > 1) {
 512		/* Deal with variable erase size stuff */
 513		int i, max = parent->numeraseregions;
 514		u64 end = slave->offset + slave->mtd.size;
 515		struct mtd_erase_region_info *regions = parent->eraseregions;
 516
 517		/* Find the first erase regions which is part of this
 518		 * partition. */
 519		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 520			;
 521		/* The loop searched for the region _behind_ the first one */
 522		if (i > 0)
 523			i--;
 524
 525		/* Pick biggest erasesize */
 526		for (; i < max && regions[i].offset < end; i++) {
 527			if (slave->mtd.erasesize < regions[i].erasesize) {
 528				slave->mtd.erasesize = regions[i].erasesize;
 529			}
 530		}
 531		BUG_ON(slave->mtd.erasesize == 0);
 532	} else {
 533		/* Single erase size */
 534		slave->mtd.erasesize = parent->erasesize;
 535	}
 536
 537	/*
 538	 * Slave erasesize might differ from the master one if the master
 539	 * exposes several regions with different erasesize. Adjust
 540	 * wr_alignment accordingly.
 541	 */
 542	if (!(slave->mtd.flags & MTD_NO_ERASE))
 543		wr_alignment = slave->mtd.erasesize;
 544
 545	tmp = slave->offset;
 546	remainder = do_div(tmp, wr_alignment);
 547	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
 548		/* Doesn't start on a boundary of major erase size */
 549		/* FIXME: Let it be writable if it is on a boundary of
 550		 * _minor_ erase size though */
 551		slave->mtd.flags &= ~MTD_WRITEABLE;
 552		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
 553			part->name);
 554	}
 555
 556	tmp = slave->mtd.size;
 557	remainder = do_div(tmp, wr_alignment);
 558	if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
 559		slave->mtd.flags &= ~MTD_WRITEABLE;
 560		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
 561			part->name);
 562	}
 563
 564	mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
 565	slave->mtd.ecc_step_size = parent->ecc_step_size;
 566	slave->mtd.ecc_strength = parent->ecc_strength;
 567	slave->mtd.bitflip_threshold = parent->bitflip_threshold;
 568
 569	if (parent->_block_isbad) {
 570		uint64_t offs = 0;
 571
 572		while (offs < slave->mtd.size) {
 573			if (mtd_block_isreserved(parent, offs + slave->offset))
 574				slave->mtd.ecc_stats.bbtblocks++;
 575			else if (mtd_block_isbad(parent, offs + slave->offset))
 576				slave->mtd.ecc_stats.badblocks++;
 577			offs += slave->mtd.erasesize;
 578		}
 579	}
 580
 581out_register:
 582	return slave;
 583}
 584
 585static ssize_t mtd_partition_offset_show(struct device *dev,
 586		struct device_attribute *attr, char *buf)
 587{
 588	struct mtd_info *mtd = dev_get_drvdata(dev);
 589	struct mtd_part *part = mtd_to_part(mtd);
 590	return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
 591}
 592
 593static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
 594
 595static const struct attribute *mtd_partition_attrs[] = {
 596	&dev_attr_offset.attr,
 597	NULL
 598};
 599
 600static int mtd_add_partition_attrs(struct mtd_part *new)
 601{
 602	int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
 603	if (ret)
 604		printk(KERN_WARNING
 605		       "mtd: failed to create partition attrs, err=%d\n", ret);
 606	return ret;
 607}
 608
 609int mtd_add_partition(struct mtd_info *parent, const char *name,
 610		      long long offset, long long length)
 611{
 612	struct mtd_partition part;
 613	struct mtd_part *new;
 614	int ret = 0;
 615
 616	/* the direct offset is expected */
 617	if (offset == MTDPART_OFS_APPEND ||
 618	    offset == MTDPART_OFS_NXTBLK)
 619		return -EINVAL;
 620
 621	if (length == MTDPART_SIZ_FULL)
 622		length = parent->size - offset;
 623
 624	if (length <= 0)
 625		return -EINVAL;
 626
 627	memset(&part, 0, sizeof(part));
 628	part.name = name;
 629	part.size = length;
 630	part.offset = offset;
 631
 632	new = allocate_partition(parent, &part, -1, offset);
 633	if (IS_ERR(new))
 634		return PTR_ERR(new);
 635
 636	mutex_lock(&mtd_partitions_mutex);
 637	list_add(&new->list, &mtd_partitions);
 638	mutex_unlock(&mtd_partitions_mutex);
 639
 640	add_mtd_device(&new->mtd);
 641
 642	mtd_add_partition_attrs(new);
 643
 644	return ret;
 645}
 646EXPORT_SYMBOL_GPL(mtd_add_partition);
 647
 648/**
 649 * __mtd_del_partition - delete MTD partition
 650 *
 651 * @priv: internal MTD struct for partition to be deleted
 652 *
 653 * This function must be called with the partitions mutex locked.
 654 */
 655static int __mtd_del_partition(struct mtd_part *priv)
 656{
 657	struct mtd_part *child, *next;
 658	int err;
 659
 660	list_for_each_entry_safe(child, next, &mtd_partitions, list) {
 661		if (child->parent == &priv->mtd) {
 662			err = __mtd_del_partition(child);
 663			if (err)
 664				return err;
 665		}
 666	}
 667
 668	sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
 669
 670	err = del_mtd_device(&priv->mtd);
 671	if (err)
 672		return err;
 673
 674	list_del(&priv->list);
 675	free_partition(priv);
 676
 677	return 0;
 678}
 679
 680/*
 681 * This function unregisters and destroy all slave MTD objects which are
 682 * attached to the given MTD object.
 683 */
 684int del_mtd_partitions(struct mtd_info *mtd)
 685{
 686	struct mtd_part *slave, *next;
 687	int ret, err = 0;
 688
 689	mutex_lock(&mtd_partitions_mutex);
 690	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 691		if (slave->parent == mtd) {
 692			ret = __mtd_del_partition(slave);
 693			if (ret < 0)
 694				err = ret;
 695		}
 696	mutex_unlock(&mtd_partitions_mutex);
 697
 698	return err;
 699}
 700
 701int mtd_del_partition(struct mtd_info *mtd, int partno)
 702{
 703	struct mtd_part *slave, *next;
 704	int ret = -EINVAL;
 705
 706	mutex_lock(&mtd_partitions_mutex);
 707	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
 708		if ((slave->parent == mtd) &&
 709		    (slave->mtd.index == partno)) {
 710			ret = __mtd_del_partition(slave);
 711			break;
 712		}
 713	mutex_unlock(&mtd_partitions_mutex);
 714
 715	return ret;
 716}
 717EXPORT_SYMBOL_GPL(mtd_del_partition);
 718
 719/*
 720 * This function, given a master MTD object and a partition table, creates
 721 * and registers slave MTD objects which are bound to the master according to
 722 * the partition definitions.
 723 *
 724 * For historical reasons, this function's caller only registers the master
 725 * if the MTD_PARTITIONED_MASTER config option is set.
 726 */
 727
 728int add_mtd_partitions(struct mtd_info *master,
 729		       const struct mtd_partition *parts,
 730		       int nbparts)
 731{
 732	struct mtd_part *slave;
 733	uint64_t cur_offset = 0;
 734	int i;
 735
 736	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 737
 738	for (i = 0; i < nbparts; i++) {
 739		slave = allocate_partition(master, parts + i, i, cur_offset);
 740		if (IS_ERR(slave)) {
 741			del_mtd_partitions(master);
 742			return PTR_ERR(slave);
 743		}
 744
 745		mutex_lock(&mtd_partitions_mutex);
 746		list_add(&slave->list, &mtd_partitions);
 747		mutex_unlock(&mtd_partitions_mutex);
 748
 749		add_mtd_device(&slave->mtd);
 750		mtd_add_partition_attrs(slave);
 751		if (parts[i].types)
 752			mtd_parse_part(slave, parts[i].types);
 753
 754		cur_offset = slave->offset + slave->mtd.size;
 755	}
 756
 757	return 0;
 758}
 759
 760static DEFINE_SPINLOCK(part_parser_lock);
 761static LIST_HEAD(part_parsers);
 762
 763static struct mtd_part_parser *mtd_part_parser_get(const char *name)
 764{
 765	struct mtd_part_parser *p, *ret = NULL;
 766
 767	spin_lock(&part_parser_lock);
 768
 769	list_for_each_entry(p, &part_parsers, list)
 770		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
 771			ret = p;
 772			break;
 773		}
 774
 775	spin_unlock(&part_parser_lock);
 776
 777	return ret;
 778}
 779
 780static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
 781{
 782	module_put(p->owner);
 783}
 784
 785/*
 786 * Many partition parsers just expected the core to kfree() all their data in
 787 * one chunk. Do that by default.
 788 */
 789static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
 790					    int nr_parts)
 791{
 792	kfree(pparts);
 793}
 794
 795int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
 796{
 797	p->owner = owner;
 798
 799	if (!p->cleanup)
 800		p->cleanup = &mtd_part_parser_cleanup_default;
 801
 802	spin_lock(&part_parser_lock);
 803	list_add(&p->list, &part_parsers);
 804	spin_unlock(&part_parser_lock);
 805
 806	return 0;
 807}
 808EXPORT_SYMBOL_GPL(__register_mtd_parser);
 809
 810void deregister_mtd_parser(struct mtd_part_parser *p)
 811{
 812	spin_lock(&part_parser_lock);
 813	list_del(&p->list);
 814	spin_unlock(&part_parser_lock);
 815}
 816EXPORT_SYMBOL_GPL(deregister_mtd_parser);
 817
 818/*
 819 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
 820 * are changing this array!
 821 */
 822static const char * const default_mtd_part_types[] = {
 823	"cmdlinepart",
 824	"ofpart",
 825	NULL
 826};
 827
 828static int mtd_part_do_parse(struct mtd_part_parser *parser,
 829			     struct mtd_info *master,
 830			     struct mtd_partitions *pparts,
 831			     struct mtd_part_parser_data *data)
 832{
 833	int ret;
 834
 835	ret = (*parser->parse_fn)(master, &pparts->parts, data);
 836	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
 837	if (ret <= 0)
 838		return ret;
 839
 840	pr_notice("%d %s partitions found on MTD device %s\n", ret,
 841		  parser->name, master->name);
 842
 843	pparts->nr_parts = ret;
 844	pparts->parser = parser;
 845
 846	return ret;
 847}
 848
 849/**
 850 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
 851 *
 852 * @compat: compatible string describing partitions in a device tree
 853 *
 854 * MTD parsers can specify supported partitions by providing a table of
 855 * compatibility strings. This function finds a parser that advertises support
 856 * for a passed value of "compatible".
 857 */
 858static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
 859{
 860	struct mtd_part_parser *p, *ret = NULL;
 861
 862	spin_lock(&part_parser_lock);
 863
 864	list_for_each_entry(p, &part_parsers, list) {
 865		const struct of_device_id *matches;
 866
 867		matches = p->of_match_table;
 868		if (!matches)
 869			continue;
 870
 871		for (; matches->compatible[0]; matches++) {
 872			if (!strcmp(matches->compatible, compat) &&
 873			    try_module_get(p->owner)) {
 874				ret = p;
 875				break;
 876			}
 877		}
 878
 879		if (ret)
 880			break;
 881	}
 882
 883	spin_unlock(&part_parser_lock);
 884
 885	return ret;
 886}
 887
 888static int mtd_part_of_parse(struct mtd_info *master,
 889			     struct mtd_partitions *pparts)
 890{
 891	struct mtd_part_parser *parser;
 892	struct device_node *np;
 893	struct property *prop;
 894	const char *compat;
 895	const char *fixed = "fixed-partitions";
 896	int ret, err = 0;
 897
 898	np = of_get_child_by_name(mtd_get_of_node(master), "partitions");
 899	of_property_for_each_string(np, "compatible", prop, compat) {
 900		parser = mtd_part_get_compatible_parser(compat);
 901		if (!parser)
 902			continue;
 903		ret = mtd_part_do_parse(parser, master, pparts, NULL);
 904		if (ret > 0) {
 905			of_node_put(np);
 906			return ret;
 907		}
 908		mtd_part_parser_put(parser);
 909		if (ret < 0 && !err)
 910			err = ret;
 911	}
 912	of_node_put(np);
 913
 914	/*
 915	 * For backward compatibility we have to try the "fixed-partitions"
 916	 * parser. It supports old DT format with partitions specified as a
 917	 * direct subnodes of a flash device DT node without any compatibility
 918	 * specified we could match.
 919	 */
 920	parser = mtd_part_parser_get(fixed);
 921	if (!parser && !request_module("%s", fixed))
 922		parser = mtd_part_parser_get(fixed);
 923	if (parser) {
 924		ret = mtd_part_do_parse(parser, master, pparts, NULL);
 925		if (ret > 0)
 926			return ret;
 927		mtd_part_parser_put(parser);
 928		if (ret < 0 && !err)
 929			err = ret;
 930	}
 931
 932	return err;
 933}
 934
 935/**
 936 * parse_mtd_partitions - parse MTD partitions
 937 * @master: the master partition (describes whole MTD device)
 938 * @types: names of partition parsers to try or %NULL
 939 * @pparts: info about partitions found is returned here
 940 * @data: MTD partition parser-specific data
 941 *
 942 * This function tries to find partition on MTD device @master. It uses MTD
 943 * partition parsers, specified in @types. However, if @types is %NULL, then
 944 * the default list of parsers is used. The default list contains only the
 945 * "cmdlinepart" and "ofpart" parsers ATM.
 946 * Note: If there are more then one parser in @types, the kernel only takes the
 947 * partitions parsed out by the first parser.
 948 *
 949 * This function may return:
 950 * o a negative error code in case of failure
 951 * o zero otherwise, and @pparts will describe the partitions, number of
 952 *   partitions, and the parser which parsed them. Caller must release
 953 *   resources with mtd_part_parser_cleanup() when finished with the returned
 954 *   data.
 955 */
 956int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
 957			 struct mtd_partitions *pparts,
 958			 struct mtd_part_parser_data *data)
 959{
 960	struct mtd_part_parser *parser;
 961	int ret, err = 0;
 962
 963	if (!types)
 964		types = default_mtd_part_types;
 965
 966	for ( ; *types; types++) {
 967		/*
 968		 * ofpart is a special type that means OF partitioning info
 969		 * should be used. It requires a bit different logic so it is
 970		 * handled in a separated function.
 971		 */
 972		if (!strcmp(*types, "ofpart")) {
 973			ret = mtd_part_of_parse(master, pparts);
 974		} else {
 975			pr_debug("%s: parsing partitions %s\n", master->name,
 976				 *types);
 977			parser = mtd_part_parser_get(*types);
 978			if (!parser && !request_module("%s", *types))
 979				parser = mtd_part_parser_get(*types);
 980			pr_debug("%s: got parser %s\n", master->name,
 981				parser ? parser->name : NULL);
 982			if (!parser)
 983				continue;
 984			ret = mtd_part_do_parse(parser, master, pparts, data);
 985			if (ret <= 0)
 986				mtd_part_parser_put(parser);
 987		}
 988		/* Found partitions! */
 989		if (ret > 0)
 990			return 0;
 991		/*
 992		 * Stash the first error we see; only report it if no parser
 993		 * succeeds
 994		 */
 995		if (ret < 0 && !err)
 996			err = ret;
 997	}
 998	return err;
 999}
1000
1001void mtd_part_parser_cleanup(struct mtd_partitions *parts)
1002{
1003	const struct mtd_part_parser *parser;
1004
1005	if (!parts)
1006		return;
1007
1008	parser = parts->parser;
1009	if (parser) {
1010		if (parser->cleanup)
1011			parser->cleanup(parts->parts, parts->nr_parts);
1012
1013		mtd_part_parser_put(parser);
1014	}
1015}
1016
1017int mtd_is_partition(const struct mtd_info *mtd)
1018{
1019	struct mtd_part *part;
1020	int ispart = 0;
1021
1022	mutex_lock(&mtd_partitions_mutex);
1023	list_for_each_entry(part, &mtd_partitions, list)
1024		if (&part->mtd == mtd) {
1025			ispart = 1;
1026			break;
1027		}
1028	mutex_unlock(&mtd_partitions_mutex);
1029
1030	return ispart;
1031}
1032EXPORT_SYMBOL_GPL(mtd_is_partition);
1033
1034/* Returns the size of the entire flash chip */
1035uint64_t mtd_get_device_size(const struct mtd_info *mtd)
1036{
1037	if (!mtd_is_partition(mtd))
1038		return mtd->size;
1039
1040	return mtd_get_device_size(mtd_to_part(mtd)->parent);
1041}
1042EXPORT_SYMBOL_GPL(mtd_get_device_size);