Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/random.h>
  27#include <linux/slab.h>
  28#include <linux/reboot.h>
  29#include <linux/leds.h>
  30#include <linux/debugfs.h>
  31#include <linux/nvmem-provider.h>
  32#include <linux/root_dev.h>
  33#include <linux/error-injection.h>
  34
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/partitions.h>
  37
  38#include "mtdcore.h"
  39
  40struct backing_dev_info *mtd_bdi;
  41
  42#ifdef CONFIG_PM_SLEEP
  43
  44static int mtd_cls_suspend(struct device *dev)
  45{
  46	struct mtd_info *mtd = dev_get_drvdata(dev);
  47
  48	return mtd ? mtd_suspend(mtd) : 0;
  49}
  50
  51static int mtd_cls_resume(struct device *dev)
  52{
  53	struct mtd_info *mtd = dev_get_drvdata(dev);
  54
  55	if (mtd)
  56		mtd_resume(mtd);
  57	return 0;
  58}
  59
  60static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  61#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  62#else
  63#define MTD_CLS_PM_OPS NULL
  64#endif
  65
  66static struct class mtd_class = {
  67	.name = "mtd",
 
  68	.pm = MTD_CLS_PM_OPS,
  69};
  70
  71static DEFINE_IDR(mtd_idr);
  72
  73/* These are exported solely for the purpose of mtd_blkdevs.c. You
  74   should not use them for _anything_ else */
  75DEFINE_MUTEX(mtd_table_mutex);
  76EXPORT_SYMBOL_GPL(mtd_table_mutex);
  77
  78struct mtd_info *__mtd_next_device(int i)
  79{
  80	return idr_get_next(&mtd_idr, &i);
  81}
  82EXPORT_SYMBOL_GPL(__mtd_next_device);
  83
  84static LIST_HEAD(mtd_notifiers);
  85
  86
  87#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  88
  89/* REVISIT once MTD uses the driver model better, whoever allocates
  90 * the mtd_info will probably want to use the release() hook...
  91 */
  92static void mtd_release(struct device *dev)
  93{
  94	struct mtd_info *mtd = dev_get_drvdata(dev);
  95	dev_t index = MTD_DEVT(mtd->index);
  96
  97	idr_remove(&mtd_idr, mtd->index);
  98	of_node_put(mtd_get_of_node(mtd));
  99
 100	if (mtd_is_partition(mtd))
 101		release_mtd_partition(mtd);
 102
 103	/* remove /dev/mtdXro node */
 104	device_destroy(&mtd_class, index + 1);
 105}
 106
 107static void mtd_device_release(struct kref *kref)
 108{
 109	struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
 110	bool is_partition = mtd_is_partition(mtd);
 111
 112	debugfs_remove_recursive(mtd->dbg.dfs_dir);
 113
 114	/* Try to remove the NVMEM provider */
 115	nvmem_unregister(mtd->nvmem);
 116
 117	device_unregister(&mtd->dev);
 118
 119	/*
 120	 *  Clear dev so mtd can be safely re-registered later if desired.
 121	 *  Should not be done for partition,
 122	 *  as it was already destroyed in device_unregister().
 123	 */
 124	if (!is_partition)
 125		memset(&mtd->dev, 0, sizeof(mtd->dev));
 126
 127	module_put(THIS_MODULE);
 128}
 129
 130#define MTD_DEVICE_ATTR_RO(name) \
 131static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
 132
 133#define MTD_DEVICE_ATTR_RW(name) \
 134static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
 135
 136static ssize_t mtd_type_show(struct device *dev,
 137		struct device_attribute *attr, char *buf)
 138{
 139	struct mtd_info *mtd = dev_get_drvdata(dev);
 140	char *type;
 141
 142	switch (mtd->type) {
 143	case MTD_ABSENT:
 144		type = "absent";
 145		break;
 146	case MTD_RAM:
 147		type = "ram";
 148		break;
 149	case MTD_ROM:
 150		type = "rom";
 151		break;
 152	case MTD_NORFLASH:
 153		type = "nor";
 154		break;
 155	case MTD_NANDFLASH:
 156		type = "nand";
 157		break;
 158	case MTD_DATAFLASH:
 159		type = "dataflash";
 160		break;
 161	case MTD_UBIVOLUME:
 162		type = "ubi";
 163		break;
 164	case MTD_MLCNANDFLASH:
 165		type = "mlc-nand";
 166		break;
 167	default:
 168		type = "unknown";
 169	}
 170
 171	return sysfs_emit(buf, "%s\n", type);
 172}
 173MTD_DEVICE_ATTR_RO(type);
 174
 175static ssize_t mtd_flags_show(struct device *dev,
 176		struct device_attribute *attr, char *buf)
 177{
 178	struct mtd_info *mtd = dev_get_drvdata(dev);
 179
 180	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
 
 181}
 182MTD_DEVICE_ATTR_RO(flags);
 183
 184static ssize_t mtd_size_show(struct device *dev,
 185		struct device_attribute *attr, char *buf)
 186{
 187	struct mtd_info *mtd = dev_get_drvdata(dev);
 188
 189	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
 
 
 190}
 191MTD_DEVICE_ATTR_RO(size);
 192
 193static ssize_t mtd_erasesize_show(struct device *dev,
 194		struct device_attribute *attr, char *buf)
 195{
 196	struct mtd_info *mtd = dev_get_drvdata(dev);
 197
 198	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
 
 199}
 200MTD_DEVICE_ATTR_RO(erasesize);
 201
 202static ssize_t mtd_writesize_show(struct device *dev,
 203		struct device_attribute *attr, char *buf)
 204{
 205	struct mtd_info *mtd = dev_get_drvdata(dev);
 206
 207	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
 
 208}
 209MTD_DEVICE_ATTR_RO(writesize);
 210
 211static ssize_t mtd_subpagesize_show(struct device *dev,
 212		struct device_attribute *attr, char *buf)
 213{
 214	struct mtd_info *mtd = dev_get_drvdata(dev);
 215	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 216
 217	return sysfs_emit(buf, "%u\n", subpagesize);
 
 218}
 219MTD_DEVICE_ATTR_RO(subpagesize);
 220
 221static ssize_t mtd_oobsize_show(struct device *dev,
 222		struct device_attribute *attr, char *buf)
 223{
 224	struct mtd_info *mtd = dev_get_drvdata(dev);
 225
 226	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
 227}
 228MTD_DEVICE_ATTR_RO(oobsize);
 229
 230static ssize_t mtd_oobavail_show(struct device *dev,
 231				 struct device_attribute *attr, char *buf)
 232{
 233	struct mtd_info *mtd = dev_get_drvdata(dev);
 234
 235	return sysfs_emit(buf, "%u\n", mtd->oobavail);
 236}
 237MTD_DEVICE_ATTR_RO(oobavail);
 238
 239static ssize_t mtd_numeraseregions_show(struct device *dev,
 240		struct device_attribute *attr, char *buf)
 241{
 242	struct mtd_info *mtd = dev_get_drvdata(dev);
 243
 244	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
 
 245}
 246MTD_DEVICE_ATTR_RO(numeraseregions);
 
 247
 248static ssize_t mtd_name_show(struct device *dev,
 249		struct device_attribute *attr, char *buf)
 250{
 251	struct mtd_info *mtd = dev_get_drvdata(dev);
 252
 253	return sysfs_emit(buf, "%s\n", mtd->name);
 
 254}
 255MTD_DEVICE_ATTR_RO(name);
 256
 257static ssize_t mtd_ecc_strength_show(struct device *dev,
 258				     struct device_attribute *attr, char *buf)
 259{
 260	struct mtd_info *mtd = dev_get_drvdata(dev);
 261
 262	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
 263}
 264MTD_DEVICE_ATTR_RO(ecc_strength);
 265
 266static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 267					  struct device_attribute *attr,
 268					  char *buf)
 269{
 270	struct mtd_info *mtd = dev_get_drvdata(dev);
 271
 272	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
 273}
 274
 275static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 276					   struct device_attribute *attr,
 277					   const char *buf, size_t count)
 278{
 279	struct mtd_info *mtd = dev_get_drvdata(dev);
 280	unsigned int bitflip_threshold;
 281	int retval;
 282
 283	retval = kstrtouint(buf, 0, &bitflip_threshold);
 284	if (retval)
 285		return retval;
 286
 287	mtd->bitflip_threshold = bitflip_threshold;
 288	return count;
 289}
 290MTD_DEVICE_ATTR_RW(bitflip_threshold);
 
 
 291
 292static ssize_t mtd_ecc_step_size_show(struct device *dev,
 293		struct device_attribute *attr, char *buf)
 294{
 295	struct mtd_info *mtd = dev_get_drvdata(dev);
 296
 297	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
 298
 299}
 300MTD_DEVICE_ATTR_RO(ecc_step_size);
 301
 302static ssize_t mtd_corrected_bits_show(struct device *dev,
 303		struct device_attribute *attr, char *buf)
 304{
 305	struct mtd_info *mtd = dev_get_drvdata(dev);
 306	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 307
 308	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
 309}
 310MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
 
 311
 312static ssize_t mtd_ecc_failures_show(struct device *dev,
 313		struct device_attribute *attr, char *buf)
 314{
 315	struct mtd_info *mtd = dev_get_drvdata(dev);
 316	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 317
 318	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
 319}
 320MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
 321
 322static ssize_t mtd_bad_blocks_show(struct device *dev,
 323		struct device_attribute *attr, char *buf)
 324{
 325	struct mtd_info *mtd = dev_get_drvdata(dev);
 326	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 327
 328	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
 329}
 330MTD_DEVICE_ATTR_RO(bad_blocks);
 331
 332static ssize_t mtd_bbt_blocks_show(struct device *dev,
 333		struct device_attribute *attr, char *buf)
 334{
 335	struct mtd_info *mtd = dev_get_drvdata(dev);
 336	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 337
 338	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
 339}
 340MTD_DEVICE_ATTR_RO(bbt_blocks);
 341
 342static struct attribute *mtd_attrs[] = {
 343	&dev_attr_type.attr,
 344	&dev_attr_flags.attr,
 345	&dev_attr_size.attr,
 346	&dev_attr_erasesize.attr,
 347	&dev_attr_writesize.attr,
 348	&dev_attr_subpagesize.attr,
 349	&dev_attr_oobsize.attr,
 350	&dev_attr_oobavail.attr,
 351	&dev_attr_numeraseregions.attr,
 352	&dev_attr_name.attr,
 353	&dev_attr_ecc_strength.attr,
 354	&dev_attr_ecc_step_size.attr,
 355	&dev_attr_corrected_bits.attr,
 356	&dev_attr_ecc_failures.attr,
 357	&dev_attr_bad_blocks.attr,
 358	&dev_attr_bbt_blocks.attr,
 359	&dev_attr_bitflip_threshold.attr,
 360	NULL,
 361};
 362ATTRIBUTE_GROUPS(mtd);
 363
 364static const struct device_type mtd_devtype = {
 365	.name		= "mtd",
 366	.groups		= mtd_groups,
 367	.release	= mtd_release,
 368};
 369
 370static bool mtd_expert_analysis_mode;
 371
 372#ifdef CONFIG_DEBUG_FS
 373bool mtd_check_expert_analysis_mode(void)
 374{
 375	const char *mtd_expert_analysis_warning =
 376		"Bad block checks have been entirely disabled.\n"
 377		"This is only reserved for post-mortem forensics and debug purposes.\n"
 378		"Never enable this mode if you do not know what you are doing!\n";
 379
 380	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
 381}
 382EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
 383#endif
 384
 385static struct dentry *dfs_dir_mtd;
 386
 387static void mtd_debugfs_populate(struct mtd_info *mtd)
 388{
 389	struct device *dev = &mtd->dev;
 390
 391	if (IS_ERR_OR_NULL(dfs_dir_mtd))
 392		return;
 393
 394	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 395}
 396
 397#ifndef CONFIG_MMU
 398unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 399{
 400	switch (mtd->type) {
 401	case MTD_RAM:
 402		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 403			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 404	case MTD_ROM:
 405		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 406			NOMMU_MAP_READ;
 407	default:
 408		return NOMMU_MAP_COPY;
 409	}
 410}
 411EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 412#endif
 413
 414static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 415			       void *cmd)
 416{
 417	struct mtd_info *mtd;
 418
 419	mtd = container_of(n, struct mtd_info, reboot_notifier);
 420	mtd->_reboot(mtd);
 421
 422	return NOTIFY_DONE;
 423}
 424
 425/**
 426 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 427 * @mtd: pointer to new MTD device info structure
 428 * @wunit: write unit we are interested in
 429 * @info: returned pairing information
 430 *
 431 * Retrieve pairing information associated to the wunit.
 432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 433 * paired together, and where programming a page may influence the page it is
 434 * paired with.
 435 * The notion of page is replaced by the term wunit (write-unit) to stay
 436 * consistent with the ->writesize field.
 437 *
 438 * The @wunit argument can be extracted from an absolute offset using
 439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 440 * to @wunit.
 441 *
 442 * From the pairing info the MTD user can find all the wunits paired with
 443 * @wunit using the following loop:
 444 *
 445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 446 *	info.pair = i;
 447 *	mtd_pairing_info_to_wunit(mtd, &info);
 448 *	...
 449 * }
 450 */
 451int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 452			      struct mtd_pairing_info *info)
 453{
 454	struct mtd_info *master = mtd_get_master(mtd);
 455	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 456
 457	if (wunit < 0 || wunit >= npairs)
 458		return -EINVAL;
 459
 460	if (master->pairing && master->pairing->get_info)
 461		return master->pairing->get_info(master, wunit, info);
 462
 463	info->group = 0;
 464	info->pair = wunit;
 465
 466	return 0;
 467}
 468EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 469
 470/**
 471 * mtd_pairing_info_to_wunit - get wunit from pairing information
 472 * @mtd: pointer to new MTD device info structure
 473 * @info: pairing information struct
 474 *
 475 * Returns a positive number representing the wunit associated to the info
 476 * struct, or a negative error code.
 477 *
 478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 480 * doc).
 481 *
 482 * It can also be used to only program the first page of each pair (i.e.
 483 * page attached to group 0), which allows one to use an MLC NAND in
 484 * software-emulated SLC mode:
 485 *
 486 * info.group = 0;
 487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 488 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 489 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 490 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 491 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 492 * }
 493 */
 494int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 495			      const struct mtd_pairing_info *info)
 496{
 497	struct mtd_info *master = mtd_get_master(mtd);
 498	int ngroups = mtd_pairing_groups(master);
 499	int npairs = mtd_wunit_per_eb(master) / ngroups;
 500
 501	if (!info || info->pair < 0 || info->pair >= npairs ||
 502	    info->group < 0 || info->group >= ngroups)
 503		return -EINVAL;
 504
 505	if (master->pairing && master->pairing->get_wunit)
 506		return mtd->pairing->get_wunit(master, info);
 507
 508	return info->pair;
 509}
 510EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 511
 512/**
 513 * mtd_pairing_groups - get the number of pairing groups
 514 * @mtd: pointer to new MTD device info structure
 515 *
 516 * Returns the number of pairing groups.
 517 *
 518 * This number is usually equal to the number of bits exposed by a single
 519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 520 * to iterate over all pages of a given pair.
 521 */
 522int mtd_pairing_groups(struct mtd_info *mtd)
 523{
 524	struct mtd_info *master = mtd_get_master(mtd);
 525
 526	if (!master->pairing || !master->pairing->ngroups)
 527		return 1;
 528
 529	return master->pairing->ngroups;
 530}
 531EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 532
 533static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 534			      void *val, size_t bytes)
 535{
 536	struct mtd_info *mtd = priv;
 537	size_t retlen;
 538	int err;
 539
 540	err = mtd_read(mtd, offset, bytes, &retlen, val);
 541	if (err && err != -EUCLEAN)
 542		return err;
 543
 544	return retlen == bytes ? 0 : -EIO;
 545}
 546
 547static int mtd_nvmem_add(struct mtd_info *mtd)
 548{
 549	struct device_node *node = mtd_get_of_node(mtd);
 550	struct nvmem_config config = {};
 551
 552	config.id = NVMEM_DEVID_NONE;
 553	config.dev = &mtd->dev;
 554	config.name = dev_name(&mtd->dev);
 555	config.owner = THIS_MODULE;
 556	config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
 557	config.reg_read = mtd_nvmem_reg_read;
 558	config.size = mtd->size;
 559	config.word_size = 1;
 560	config.stride = 1;
 561	config.read_only = true;
 562	config.root_only = true;
 563	config.ignore_wp = true;
 564	config.priv = mtd;
 565
 566	mtd->nvmem = nvmem_register(&config);
 567	if (IS_ERR(mtd->nvmem)) {
 568		/* Just ignore if there is no NVMEM support in the kernel */
 569		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
 570			mtd->nvmem = NULL;
 571		else
 572			return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
 573					     "Failed to register NVMEM device\n");
 574	}
 575
 576	return 0;
 577}
 578
 579static void mtd_check_of_node(struct mtd_info *mtd)
 580{
 581	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
 582	const char *pname, *prefix = "partition-";
 583	int plen, mtd_name_len, offset, prefix_len;
 584
 585	/* Check if MTD already has a device node */
 586	if (mtd_get_of_node(mtd))
 587		return;
 588
 589	if (!mtd_is_partition(mtd))
 590		return;
 591
 592	parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
 593	if (!parent_dn)
 594		return;
 595
 596	if (mtd_is_partition(mtd->parent))
 597		partitions = of_node_get(parent_dn);
 598	else
 599		partitions = of_get_child_by_name(parent_dn, "partitions");
 600	if (!partitions)
 601		goto exit_parent;
 602
 603	prefix_len = strlen(prefix);
 604	mtd_name_len = strlen(mtd->name);
 605
 606	/* Search if a partition is defined with the same name */
 607	for_each_child_of_node(partitions, mtd_dn) {
 608		/* Skip partition with no/wrong prefix */
 609		if (!of_node_name_prefix(mtd_dn, prefix))
 610			continue;
 611
 612		/* Label have priority. Check that first */
 613		if (!of_property_read_string(mtd_dn, "label", &pname)) {
 614			offset = 0;
 615		} else {
 616			pname = mtd_dn->name;
 617			offset = prefix_len;
 618		}
 619
 620		plen = strlen(pname) - offset;
 621		if (plen == mtd_name_len &&
 622		    !strncmp(mtd->name, pname + offset, plen)) {
 623			mtd_set_of_node(mtd, mtd_dn);
 624			of_node_put(mtd_dn);
 625			break;
 626		}
 627	}
 628
 629	of_node_put(partitions);
 630exit_parent:
 631	of_node_put(parent_dn);
 632}
 633
 634/**
 635 *	add_mtd_device - register an MTD device
 636 *	@mtd: pointer to new MTD device info structure
 637 *
 638 *	Add a device to the list of MTD devices present in the system, and
 639 *	notify each currently active MTD 'user' of its arrival. Returns
 640 *	zero on success or non-zero on failure.
 641 */
 642
 643int add_mtd_device(struct mtd_info *mtd)
 644{
 645	struct device_node *np = mtd_get_of_node(mtd);
 646	struct mtd_info *master = mtd_get_master(mtd);
 647	struct mtd_notifier *not;
 648	int i, error, ofidx;
 649
 650	/*
 651	 * May occur, for instance, on buggy drivers which call
 652	 * mtd_device_parse_register() multiple times on the same master MTD,
 653	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 654	 */
 655	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 656		return -EEXIST;
 657
 658	BUG_ON(mtd->writesize == 0);
 659
 660	/*
 661	 * MTD drivers should implement ->_{write,read}() or
 662	 * ->_{write,read}_oob(), but not both.
 663	 */
 664	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 665		    (mtd->_read && mtd->_read_oob)))
 666		return -EINVAL;
 667
 668	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 669		    !(mtd->flags & MTD_NO_ERASE)))
 670		return -EINVAL;
 671
 672	/*
 673	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 674	 * master is an MLC NAND and has a proper pairing scheme defined.
 675	 * We also reject masters that implement ->_writev() for now, because
 676	 * NAND controller drivers don't implement this hook, and adding the
 677	 * SLC -> MLC address/length conversion to this path is useless if we
 678	 * don't have a user.
 679	 */
 680	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 681	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 682	     !master->pairing || master->_writev))
 683		return -EINVAL;
 684
 685	mutex_lock(&mtd_table_mutex);
 686
 687	ofidx = -1;
 688	if (np)
 689		ofidx = of_alias_get_id(np, "mtd");
 690	if (ofidx >= 0)
 691		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
 692	else
 693		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 694	if (i < 0) {
 695		error = i;
 696		goto fail_locked;
 697	}
 698
 699	mtd->index = i;
 700	kref_init(&mtd->refcnt);
 701
 702	/* default value if not set by driver */
 703	if (mtd->bitflip_threshold == 0)
 704		mtd->bitflip_threshold = mtd->ecc_strength;
 705
 706	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 707		int ngroups = mtd_pairing_groups(master);
 708
 709		mtd->erasesize /= ngroups;
 710		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 711			    mtd->erasesize;
 712	}
 713
 714	if (is_power_of_2(mtd->erasesize))
 715		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 716	else
 717		mtd->erasesize_shift = 0;
 718
 719	if (is_power_of_2(mtd->writesize))
 720		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 721	else
 722		mtd->writesize_shift = 0;
 723
 724	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 725	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 726
 727	/* Some chips always power up locked. Unlock them now */
 728	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 729		error = mtd_unlock(mtd, 0, mtd->size);
 730		if (error && error != -EOPNOTSUPP)
 731			printk(KERN_WARNING
 732			       "%s: unlock failed, writes may not work\n",
 733			       mtd->name);
 734		/* Ignore unlock failures? */
 735		error = 0;
 736	}
 737
 738	/* Caller should have set dev.parent to match the
 739	 * physical device, if appropriate.
 740	 */
 741	mtd->dev.type = &mtd_devtype;
 742	mtd->dev.class = &mtd_class;
 743	mtd->dev.devt = MTD_DEVT(i);
 744	dev_set_name(&mtd->dev, "mtd%d", i);
 745	dev_set_drvdata(&mtd->dev, mtd);
 746	mtd_check_of_node(mtd);
 747	of_node_get(mtd_get_of_node(mtd));
 748	error = device_register(&mtd->dev);
 749	if (error) {
 750		put_device(&mtd->dev);
 751		goto fail_added;
 752	}
 753
 754	/* Add the nvmem provider */
 755	error = mtd_nvmem_add(mtd);
 756	if (error)
 757		goto fail_nvmem_add;
 758
 759	mtd_debugfs_populate(mtd);
 
 
 
 
 
 
 760
 761	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 762		      "mtd%dro", i);
 763
 764	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 765	/* No need to get a refcount on the module containing
 766	   the notifier, since we hold the mtd_table_mutex */
 767	list_for_each_entry(not, &mtd_notifiers, list)
 768		not->add(mtd);
 769
 770	mutex_unlock(&mtd_table_mutex);
 771
 772	if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
 773		if (IS_BUILTIN(CONFIG_MTD)) {
 774			pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
 775			ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
 776		} else {
 777			pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
 778				mtd->index, mtd->name);
 779		}
 780	}
 781
 782	/* We _know_ we aren't being removed, because
 783	   our caller is still holding us here. So none
 784	   of this try_ nonsense, and no bitching about it
 785	   either. :) */
 786	__module_get(THIS_MODULE);
 787	return 0;
 788
 789fail_nvmem_add:
 790	device_unregister(&mtd->dev);
 791fail_added:
 792	of_node_put(mtd_get_of_node(mtd));
 793	idr_remove(&mtd_idr, i);
 794fail_locked:
 795	mutex_unlock(&mtd_table_mutex);
 796	return error;
 797}
 798
 799/**
 800 *	del_mtd_device - unregister an MTD device
 801 *	@mtd: pointer to MTD device info structure
 802 *
 803 *	Remove a device from the list of MTD devices present in the system,
 804 *	and notify each currently active MTD 'user' of its departure.
 805 *	Returns zero on success or 1 on failure, which currently will happen
 806 *	if the requested device does not appear to be present in the list.
 807 */
 808
 809int del_mtd_device(struct mtd_info *mtd)
 810{
 811	int ret;
 812	struct mtd_notifier *not;
 813
 814	mutex_lock(&mtd_table_mutex);
 815
 
 
 816	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 817		ret = -ENODEV;
 818		goto out_error;
 819	}
 820
 821	/* No need to get a refcount on the module containing
 822		the notifier, since we hold the mtd_table_mutex */
 823	list_for_each_entry(not, &mtd_notifiers, list)
 824		not->remove(mtd);
 825
 826	kref_put(&mtd->refcnt, mtd_device_release);
 827	ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 828
 829out_error:
 830	mutex_unlock(&mtd_table_mutex);
 831	return ret;
 832}
 833
 834/*
 835 * Set a few defaults based on the parent devices, if not provided by the
 836 * driver
 837 */
 838static void mtd_set_dev_defaults(struct mtd_info *mtd)
 839{
 840	if (mtd->dev.parent) {
 841		if (!mtd->owner && mtd->dev.parent->driver)
 842			mtd->owner = mtd->dev.parent->driver->owner;
 843		if (!mtd->name)
 844			mtd->name = dev_name(mtd->dev.parent);
 845	} else {
 846		pr_debug("mtd device won't show a device symlink in sysfs\n");
 847	}
 848
 849	INIT_LIST_HEAD(&mtd->partitions);
 850	mutex_init(&mtd->master.partitions_lock);
 851	mutex_init(&mtd->master.chrdev_lock);
 852}
 853
 854static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
 855{
 856	struct otp_info *info;
 857	ssize_t size = 0;
 858	unsigned int i;
 859	size_t retlen;
 860	int ret;
 861
 862	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
 863	if (!info)
 864		return -ENOMEM;
 865
 866	if (is_user)
 867		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
 868	else
 869		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
 870	if (ret)
 871		goto err;
 872
 873	for (i = 0; i < retlen / sizeof(*info); i++)
 874		size += info[i].length;
 875
 876	kfree(info);
 877	return size;
 878
 879err:
 880	kfree(info);
 881
 882	/* ENODATA means there is no OTP region. */
 883	return ret == -ENODATA ? 0 : ret;
 884}
 885
 886static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
 887						   const char *compatible,
 888						   int size,
 889						   nvmem_reg_read_t reg_read)
 890{
 891	struct nvmem_device *nvmem = NULL;
 892	struct nvmem_config config = {};
 893	struct device_node *np;
 894
 895	/* DT binding is optional */
 896	np = of_get_compatible_child(mtd->dev.of_node, compatible);
 897
 898	/* OTP nvmem will be registered on the physical device */
 899	config.dev = mtd->dev.parent;
 900	config.name = compatible;
 901	config.id = NVMEM_DEVID_AUTO;
 902	config.owner = THIS_MODULE;
 903	config.add_legacy_fixed_of_cells = true;
 904	config.type = NVMEM_TYPE_OTP;
 905	config.root_only = true;
 906	config.ignore_wp = true;
 907	config.reg_read = reg_read;
 908	config.size = size;
 909	config.of_node = np;
 910	config.priv = mtd;
 911
 912	nvmem = nvmem_register(&config);
 913	/* Just ignore if there is no NVMEM support in the kernel */
 914	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
 915		nvmem = NULL;
 916
 917	of_node_put(np);
 918
 919	return nvmem;
 920}
 921
 922static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
 923				       void *val, size_t bytes)
 924{
 925	struct mtd_info *mtd = priv;
 926	size_t retlen;
 927	int ret;
 928
 929	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
 930	if (ret)
 931		return ret;
 932
 933	return retlen == bytes ? 0 : -EIO;
 934}
 935
 936static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
 937				       void *val, size_t bytes)
 938{
 939	struct mtd_info *mtd = priv;
 940	size_t retlen;
 941	int ret;
 942
 943	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
 944	if (ret)
 945		return ret;
 946
 947	return retlen == bytes ? 0 : -EIO;
 948}
 949
 950static int mtd_otp_nvmem_add(struct mtd_info *mtd)
 951{
 952	struct device *dev = mtd->dev.parent;
 953	struct nvmem_device *nvmem;
 954	ssize_t size;
 955	int err;
 956
 957	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
 958		size = mtd_otp_size(mtd, true);
 959		if (size < 0)
 960			return size;
 961
 962		if (size > 0) {
 963			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
 964						       mtd_nvmem_user_otp_reg_read);
 965			if (IS_ERR(nvmem)) {
 966				err = PTR_ERR(nvmem);
 967				goto err;
 968			}
 969			mtd->otp_user_nvmem = nvmem;
 970		}
 971	}
 972
 973	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
 974		size = mtd_otp_size(mtd, false);
 975		if (size < 0) {
 976			err = size;
 977			goto err;
 978		}
 979
 980		if (size > 0) {
 981			/*
 982			 * The factory OTP contains thing such as a unique serial
 983			 * number and is small, so let's read it out and put it
 984			 * into the entropy pool.
 985			 */
 986			void *otp;
 987
 988			otp = kmalloc(size, GFP_KERNEL);
 989			if (!otp) {
 990				err = -ENOMEM;
 991				goto err;
 992			}
 993			err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
 994			if (err < 0) {
 995				kfree(otp);
 996				goto err;
 997			}
 998			add_device_randomness(otp, err);
 999			kfree(otp);
1000
1001			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1002						       mtd_nvmem_fact_otp_reg_read);
1003			if (IS_ERR(nvmem)) {
1004				err = PTR_ERR(nvmem);
1005				goto err;
1006			}
1007			mtd->otp_factory_nvmem = nvmem;
1008		}
1009	}
1010
1011	return 0;
1012
1013err:
1014	nvmem_unregister(mtd->otp_user_nvmem);
1015	return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1016}
1017
1018/**
1019 * mtd_device_parse_register - parse partitions and register an MTD device.
1020 *
1021 * @mtd: the MTD device to register
1022 * @types: the list of MTD partition probes to try, see
1023 *         'parse_mtd_partitions()' for more information
1024 * @parser_data: MTD partition parser-specific data
1025 * @parts: fallback partition information to register, if parsing fails;
1026 *         only valid if %nr_parts > %0
1027 * @nr_parts: the number of partitions in parts, if zero then the full
1028 *            MTD device is registered if no partition info is found
1029 *
1030 * This function aggregates MTD partitions parsing (done by
1031 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1032 * basically follows the most common pattern found in many MTD drivers:
1033 *
1034 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1035 *   registered first.
1036 * * Then It tries to probe partitions on MTD device @mtd using parsers
1037 *   specified in @types (if @types is %NULL, then the default list of parsers
1038 *   is used, see 'parse_mtd_partitions()' for more information). If none are
1039 *   found this functions tries to fallback to information specified in
1040 *   @parts/@nr_parts.
1041 * * If no partitions were found this function just registers the MTD device
1042 *   @mtd and exits.
1043 *
1044 * Returns zero in case of success and a negative error code in case of failure.
1045 */
1046int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1047			      struct mtd_part_parser_data *parser_data,
1048			      const struct mtd_partition *parts,
1049			      int nr_parts)
1050{
 
1051	int ret;
1052
1053	mtd_set_dev_defaults(mtd);
1054
1055	ret = mtd_otp_nvmem_add(mtd);
1056	if (ret)
1057		goto out;
1058
1059	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1060		ret = add_mtd_device(mtd);
1061		if (ret)
1062			goto out;
1063	}
1064
1065	/* Prefer parsed partitions over driver-provided fallback */
1066	ret = parse_mtd_partitions(mtd, types, parser_data);
1067	if (ret == -EPROBE_DEFER)
1068		goto out;
 
 
1069
1070	if (ret > 0)
1071		ret = 0;
1072	else if (nr_parts)
1073		ret = add_mtd_partitions(mtd, parts, nr_parts);
1074	else if (!device_is_registered(&mtd->dev))
1075		ret = add_mtd_device(mtd);
1076	else
1077		ret = 0;
1078
1079	if (ret)
1080		goto out;
1081
1082	/*
1083	 * FIXME: some drivers unfortunately call this function more than once.
1084	 * So we have to check if we've already assigned the reboot notifier.
1085	 *
1086	 * Generally, we can make multiple calls work for most cases, but it
1087	 * does cause problems with parse_mtd_partitions() above (e.g.,
1088	 * cmdlineparts will register partitions more than once).
1089	 */
1090	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1091		  "MTD already registered\n");
1092	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1093		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1094		register_reboot_notifier(&mtd->reboot_notifier);
1095	}
1096
1097out:
1098	if (ret) {
1099		nvmem_unregister(mtd->otp_user_nvmem);
1100		nvmem_unregister(mtd->otp_factory_nvmem);
1101	}
1102
1103	if (ret && device_is_registered(&mtd->dev))
1104		del_mtd_device(mtd);
1105
1106	return ret;
1107}
1108EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1109
1110/**
1111 * mtd_device_unregister - unregister an existing MTD device.
1112 *
1113 * @master: the MTD device to unregister.  This will unregister both the master
1114 *          and any partitions if registered.
1115 */
1116int mtd_device_unregister(struct mtd_info *master)
1117{
1118	int err;
1119
1120	if (master->_reboot) {
1121		unregister_reboot_notifier(&master->reboot_notifier);
1122		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1123	}
1124
1125	nvmem_unregister(master->otp_user_nvmem);
1126	nvmem_unregister(master->otp_factory_nvmem);
1127
1128	err = del_mtd_partitions(master);
1129	if (err)
1130		return err;
1131
1132	if (!device_is_registered(&master->dev))
1133		return 0;
1134
1135	return del_mtd_device(master);
1136}
1137EXPORT_SYMBOL_GPL(mtd_device_unregister);
1138
1139/**
1140 *	register_mtd_user - register a 'user' of MTD devices.
1141 *	@new: pointer to notifier info structure
1142 *
1143 *	Registers a pair of callbacks function to be called upon addition
1144 *	or removal of MTD devices. Causes the 'add' callback to be immediately
1145 *	invoked for each MTD device currently present in the system.
1146 */
1147void register_mtd_user (struct mtd_notifier *new)
1148{
1149	struct mtd_info *mtd;
1150
1151	mutex_lock(&mtd_table_mutex);
1152
1153	list_add(&new->list, &mtd_notifiers);
1154
1155	__module_get(THIS_MODULE);
1156
1157	mtd_for_each_device(mtd)
1158		new->add(mtd);
1159
1160	mutex_unlock(&mtd_table_mutex);
1161}
1162EXPORT_SYMBOL_GPL(register_mtd_user);
1163
1164/**
1165 *	unregister_mtd_user - unregister a 'user' of MTD devices.
1166 *	@old: pointer to notifier info structure
1167 *
1168 *	Removes a callback function pair from the list of 'users' to be
1169 *	notified upon addition or removal of MTD devices. Causes the
1170 *	'remove' callback to be immediately invoked for each MTD device
1171 *	currently present in the system.
1172 */
1173int unregister_mtd_user (struct mtd_notifier *old)
1174{
1175	struct mtd_info *mtd;
1176
1177	mutex_lock(&mtd_table_mutex);
1178
1179	module_put(THIS_MODULE);
1180
1181	mtd_for_each_device(mtd)
1182		old->remove(mtd);
1183
1184	list_del(&old->list);
1185	mutex_unlock(&mtd_table_mutex);
1186	return 0;
1187}
1188EXPORT_SYMBOL_GPL(unregister_mtd_user);
1189
1190/**
1191 *	get_mtd_device - obtain a validated handle for an MTD device
1192 *	@mtd: last known address of the required MTD device
1193 *	@num: internal device number of the required MTD device
1194 *
1195 *	Given a number and NULL address, return the num'th entry in the device
1196 *	table, if any.	Given an address and num == -1, search the device table
1197 *	for a device with that address and return if it's still present. Given
1198 *	both, return the num'th driver only if its address matches. Return
1199 *	error code if not.
1200 */
1201struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1202{
1203	struct mtd_info *ret = NULL, *other;
1204	int err = -ENODEV;
1205
1206	mutex_lock(&mtd_table_mutex);
1207
1208	if (num == -1) {
1209		mtd_for_each_device(other) {
1210			if (other == mtd) {
1211				ret = mtd;
1212				break;
1213			}
1214		}
1215	} else if (num >= 0) {
1216		ret = idr_find(&mtd_idr, num);
1217		if (mtd && mtd != ret)
1218			ret = NULL;
1219	}
1220
1221	if (!ret) {
1222		ret = ERR_PTR(err);
1223		goto out;
1224	}
1225
1226	err = __get_mtd_device(ret);
1227	if (err)
1228		ret = ERR_PTR(err);
1229out:
1230	mutex_unlock(&mtd_table_mutex);
1231	return ret;
1232}
1233EXPORT_SYMBOL_GPL(get_mtd_device);
1234
1235
1236int __get_mtd_device(struct mtd_info *mtd)
1237{
1238	struct mtd_info *master = mtd_get_master(mtd);
1239	int err;
1240
1241	if (master->_get_device) {
1242		err = master->_get_device(mtd);
1243		if (err)
1244			return err;
1245	}
1246
1247	if (!try_module_get(master->owner)) {
1248		if (master->_put_device)
1249			master->_put_device(master);
1250		return -ENODEV;
1251	}
1252
1253	while (mtd) {
1254		if (mtd != master)
1255			kref_get(&mtd->refcnt);
1256		mtd = mtd->parent;
1257	}
1258
1259	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1260		kref_get(&master->refcnt);
1261
1262	return 0;
1263}
1264EXPORT_SYMBOL_GPL(__get_mtd_device);
1265
1266/**
1267 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1268 *
1269 * @np: device tree node
1270 */
1271struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1272{
1273	struct mtd_info *mtd = NULL;
1274	struct mtd_info *tmp;
1275	int err;
1276
1277	mutex_lock(&mtd_table_mutex);
 
1278
1279	err = -EPROBE_DEFER;
1280	mtd_for_each_device(tmp) {
1281		if (mtd_get_of_node(tmp) == np) {
1282			mtd = tmp;
1283			err = __get_mtd_device(mtd);
1284			break;
1285		}
1286	}
1287
1288	mutex_unlock(&mtd_table_mutex);
1289
1290	return err ? ERR_PTR(err) : mtd;
1291}
1292EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1293
1294/**
1295 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1296 *	device name
1297 *	@name: MTD device name to open
1298 *
1299 * 	This function returns MTD device description structure in case of
1300 * 	success and an error code in case of failure.
1301 */
1302struct mtd_info *get_mtd_device_nm(const char *name)
1303{
1304	int err = -ENODEV;
1305	struct mtd_info *mtd = NULL, *other;
1306
1307	mutex_lock(&mtd_table_mutex);
1308
1309	mtd_for_each_device(other) {
1310		if (!strcmp(name, other->name)) {
1311			mtd = other;
1312			break;
1313		}
1314	}
1315
1316	if (!mtd)
1317		goto out_unlock;
1318
1319	err = __get_mtd_device(mtd);
1320	if (err)
1321		goto out_unlock;
1322
1323	mutex_unlock(&mtd_table_mutex);
1324	return mtd;
1325
1326out_unlock:
1327	mutex_unlock(&mtd_table_mutex);
1328	return ERR_PTR(err);
1329}
1330EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1331
1332void put_mtd_device(struct mtd_info *mtd)
1333{
1334	mutex_lock(&mtd_table_mutex);
1335	__put_mtd_device(mtd);
1336	mutex_unlock(&mtd_table_mutex);
1337
1338}
1339EXPORT_SYMBOL_GPL(put_mtd_device);
1340
1341void __put_mtd_device(struct mtd_info *mtd)
1342{
1343	struct mtd_info *master = mtd_get_master(mtd);
1344
1345	while (mtd) {
1346		/* kref_put() can relese mtd, so keep a reference mtd->parent */
1347		struct mtd_info *parent = mtd->parent;
1348
1349		if (mtd != master)
1350			kref_put(&mtd->refcnt, mtd_device_release);
1351		mtd = parent;
1352	}
1353
1354	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1355		kref_put(&master->refcnt, mtd_device_release);
1356
1357	module_put(master->owner);
 
1358
1359	/* must be the last as master can be freed in the _put_device */
1360	if (master->_put_device)
1361		master->_put_device(master);
1362}
1363EXPORT_SYMBOL_GPL(__put_mtd_device);
1364
1365/*
1366 * Erase is an synchronous operation. Device drivers are epected to return a
1367 * negative error code if the operation failed and update instr->fail_addr
1368 * to point the portion that was not properly erased.
1369 */
1370int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1371{
1372	struct mtd_info *master = mtd_get_master(mtd);
1373	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1374	struct erase_info adjinstr;
1375	int ret;
1376
1377	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1378	adjinstr = *instr;
1379
1380	if (!mtd->erasesize || !master->_erase)
1381		return -ENOTSUPP;
1382
1383	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1384		return -EINVAL;
1385	if (!(mtd->flags & MTD_WRITEABLE))
1386		return -EROFS;
1387
1388	if (!instr->len)
1389		return 0;
1390
1391	ledtrig_mtd_activity();
1392
1393	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1394		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1395				master->erasesize;
1396		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1397				master->erasesize) -
1398			       adjinstr.addr;
1399	}
1400
1401	adjinstr.addr += mst_ofs;
1402
1403	ret = master->_erase(master, &adjinstr);
1404
1405	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1406		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1407		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1408			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1409							 master);
1410			instr->fail_addr *= mtd->erasesize;
1411		}
1412	}
1413
1414	return ret;
1415}
1416EXPORT_SYMBOL_GPL(mtd_erase);
1417ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1418
1419/*
1420 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1421 */
1422int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1423	      void **virt, resource_size_t *phys)
1424{
1425	struct mtd_info *master = mtd_get_master(mtd);
1426
1427	*retlen = 0;
1428	*virt = NULL;
1429	if (phys)
1430		*phys = 0;
1431	if (!master->_point)
1432		return -EOPNOTSUPP;
1433	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1434		return -EINVAL;
1435	if (!len)
1436		return 0;
1437
1438	from = mtd_get_master_ofs(mtd, from);
1439	return master->_point(master, from, len, retlen, virt, phys);
1440}
1441EXPORT_SYMBOL_GPL(mtd_point);
1442
1443/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1444int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1445{
1446	struct mtd_info *master = mtd_get_master(mtd);
1447
1448	if (!master->_unpoint)
1449		return -EOPNOTSUPP;
1450	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1451		return -EINVAL;
1452	if (!len)
1453		return 0;
1454	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1455}
1456EXPORT_SYMBOL_GPL(mtd_unpoint);
1457
1458/*
1459 * Allow NOMMU mmap() to directly map the device (if not NULL)
1460 * - return the address to which the offset maps
1461 * - return -ENOSYS to indicate refusal to do the mapping
1462 */
1463unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1464				    unsigned long offset, unsigned long flags)
1465{
1466	size_t retlen;
1467	void *virt;
1468	int ret;
1469
1470	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1471	if (ret)
1472		return ret;
1473	if (retlen != len) {
1474		mtd_unpoint(mtd, offset, retlen);
1475		return -ENOSYS;
1476	}
1477	return (unsigned long)virt;
1478}
1479EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1480
1481static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1482				 const struct mtd_ecc_stats *old_stats)
1483{
1484	struct mtd_ecc_stats diff;
1485
1486	if (master == mtd)
1487		return;
1488
1489	diff = master->ecc_stats;
1490	diff.failed -= old_stats->failed;
1491	diff.corrected -= old_stats->corrected;
1492
1493	while (mtd->parent) {
1494		mtd->ecc_stats.failed += diff.failed;
1495		mtd->ecc_stats.corrected += diff.corrected;
1496		mtd = mtd->parent;
1497	}
1498}
1499
1500int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1501	     u_char *buf)
1502{
1503	struct mtd_oob_ops ops = {
1504		.len = len,
1505		.datbuf = buf,
1506	};
1507	int ret;
 
1508
1509	ret = mtd_read_oob(mtd, from, &ops);
1510	*retlen = ops.retlen;
 
 
 
 
 
 
 
 
 
 
 
1511
1512	WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
 
 
 
 
1513
1514	return ret;
 
 
 
 
1515}
1516EXPORT_SYMBOL_GPL(mtd_read);
1517ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1518
1519int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1520	      const u_char *buf)
1521{
1522	struct mtd_oob_ops ops = {
1523		.len = len,
1524		.datbuf = (u8 *)buf,
1525	};
1526	int ret;
 
 
 
 
1527
1528	ret = mtd_write_oob(mtd, to, &ops);
1529	*retlen = ops.retlen;
 
 
 
 
1530
1531	return ret;
 
 
 
 
 
1532}
1533EXPORT_SYMBOL_GPL(mtd_write);
1534ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1535
1536/*
1537 * In blackbox flight recorder like scenarios we want to make successful writes
1538 * in interrupt context. panic_write() is only intended to be called when its
1539 * known the kernel is about to panic and we need the write to succeed. Since
1540 * the kernel is not going to be running for much longer, this function can
1541 * break locks and delay to ensure the write succeeds (but not sleep).
1542 */
1543int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1544		    const u_char *buf)
1545{
1546	struct mtd_info *master = mtd_get_master(mtd);
1547
1548	*retlen = 0;
1549	if (!master->_panic_write)
1550		return -EOPNOTSUPP;
1551	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1552		return -EINVAL;
1553	if (!(mtd->flags & MTD_WRITEABLE))
1554		return -EROFS;
1555	if (!len)
1556		return 0;
1557	if (!master->oops_panic_write)
1558		master->oops_panic_write = true;
1559
1560	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1561				    retlen, buf);
1562}
1563EXPORT_SYMBOL_GPL(mtd_panic_write);
1564
1565static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1566			     struct mtd_oob_ops *ops)
1567{
1568	/*
1569	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1570	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1571	 *  this case.
1572	 */
1573	if (!ops->datbuf)
1574		ops->len = 0;
1575
1576	if (!ops->oobbuf)
1577		ops->ooblen = 0;
1578
1579	if (offs < 0 || offs + ops->len > mtd->size)
1580		return -EINVAL;
1581
1582	if (ops->ooblen) {
1583		size_t maxooblen;
1584
1585		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1586			return -EINVAL;
1587
1588		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1589				      mtd_div_by_ws(offs, mtd)) *
1590			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1591		if (ops->ooblen > maxooblen)
1592			return -EINVAL;
1593	}
1594
1595	return 0;
1596}
1597
1598static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1599			    struct mtd_oob_ops *ops)
1600{
1601	struct mtd_info *master = mtd_get_master(mtd);
1602	int ret;
1603
1604	from = mtd_get_master_ofs(mtd, from);
1605	if (master->_read_oob)
1606		ret = master->_read_oob(master, from, ops);
1607	else
1608		ret = master->_read(master, from, ops->len, &ops->retlen,
1609				    ops->datbuf);
1610
1611	return ret;
1612}
1613
1614static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1615			     struct mtd_oob_ops *ops)
1616{
1617	struct mtd_info *master = mtd_get_master(mtd);
1618	int ret;
1619
1620	to = mtd_get_master_ofs(mtd, to);
1621	if (master->_write_oob)
1622		ret = master->_write_oob(master, to, ops);
1623	else
1624		ret = master->_write(master, to, ops->len, &ops->retlen,
1625				     ops->datbuf);
1626
1627	return ret;
1628}
1629
1630static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1631			       struct mtd_oob_ops *ops)
1632{
1633	struct mtd_info *master = mtd_get_master(mtd);
1634	int ngroups = mtd_pairing_groups(master);
1635	int npairs = mtd_wunit_per_eb(master) / ngroups;
1636	struct mtd_oob_ops adjops = *ops;
1637	unsigned int wunit, oobavail;
1638	struct mtd_pairing_info info;
1639	int max_bitflips = 0;
1640	u32 ebofs, pageofs;
1641	loff_t base, pos;
1642
1643	ebofs = mtd_mod_by_eb(start, mtd);
1644	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1645	info.group = 0;
1646	info.pair = mtd_div_by_ws(ebofs, mtd);
1647	pageofs = mtd_mod_by_ws(ebofs, mtd);
1648	oobavail = mtd_oobavail(mtd, ops);
1649
1650	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1651		int ret;
1652
1653		if (info.pair >= npairs) {
1654			info.pair = 0;
1655			base += master->erasesize;
1656		}
1657
1658		wunit = mtd_pairing_info_to_wunit(master, &info);
1659		pos = mtd_wunit_to_offset(mtd, base, wunit);
1660
1661		adjops.len = ops->len - ops->retlen;
1662		if (adjops.len > mtd->writesize - pageofs)
1663			adjops.len = mtd->writesize - pageofs;
1664
1665		adjops.ooblen = ops->ooblen - ops->oobretlen;
1666		if (adjops.ooblen > oobavail - adjops.ooboffs)
1667			adjops.ooblen = oobavail - adjops.ooboffs;
1668
1669		if (read) {
1670			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1671			if (ret > 0)
1672				max_bitflips = max(max_bitflips, ret);
1673		} else {
1674			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1675		}
1676
1677		if (ret < 0)
1678			return ret;
1679
1680		max_bitflips = max(max_bitflips, ret);
1681		ops->retlen += adjops.retlen;
1682		ops->oobretlen += adjops.oobretlen;
1683		adjops.datbuf += adjops.retlen;
1684		adjops.oobbuf += adjops.oobretlen;
1685		adjops.ooboffs = 0;
1686		pageofs = 0;
1687		info.pair++;
1688	}
1689
1690	return max_bitflips;
1691}
1692
1693int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1694{
1695	struct mtd_info *master = mtd_get_master(mtd);
1696	struct mtd_ecc_stats old_stats = master->ecc_stats;
1697	int ret_code;
1698
1699	ops->retlen = ops->oobretlen = 0;
 
 
1700
1701	ret_code = mtd_check_oob_ops(mtd, from, ops);
1702	if (ret_code)
1703		return ret_code;
1704
1705	ledtrig_mtd_activity();
1706
1707	/* Check the validity of a potential fallback on mtd->_read */
1708	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1709		return -EOPNOTSUPP;
1710
1711	if (ops->stats)
1712		memset(ops->stats, 0, sizeof(*ops->stats));
1713
1714	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1716	else
1717		ret_code = mtd_read_oob_std(mtd, from, ops);
1718
1719	mtd_update_ecc_stats(mtd, master, &old_stats);
1720
1721	/*
1722	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1723	 * similar to mtd->_read(), returning a non-negative integer
1724	 * representing max bitflips. In other cases, mtd->_read_oob() may
1725	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1726	 */
 
1727	if (unlikely(ret_code < 0))
1728		return ret_code;
1729	if (mtd->ecc_strength == 0)
1730		return 0;	/* device lacks ecc */
1731	if (ops->stats)
1732		ops->stats->max_bitflips = ret_code;
1733	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1734}
1735EXPORT_SYMBOL_GPL(mtd_read_oob);
1736
1737int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1738				struct mtd_oob_ops *ops)
1739{
1740	struct mtd_info *master = mtd_get_master(mtd);
1741	int ret;
1742
1743	ops->retlen = ops->oobretlen = 0;
1744
 
1745	if (!(mtd->flags & MTD_WRITEABLE))
1746		return -EROFS;
1747
1748	ret = mtd_check_oob_ops(mtd, to, ops);
1749	if (ret)
1750		return ret;
1751
1752	ledtrig_mtd_activity();
1753
1754	/* Check the validity of a potential fallback on mtd->_write */
1755	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1756		return -EOPNOTSUPP;
1757
1758	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1759		return mtd_io_emulated_slc(mtd, to, false, ops);
1760
1761	return mtd_write_oob_std(mtd, to, ops);
1762}
1763EXPORT_SYMBOL_GPL(mtd_write_oob);
1764
1765/**
1766 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1767 * @mtd: MTD device structure
1768 * @section: ECC section. Depending on the layout you may have all the ECC
1769 *	     bytes stored in a single contiguous section, or one section
1770 *	     per ECC chunk (and sometime several sections for a single ECC
1771 *	     ECC chunk)
1772 * @oobecc: OOB region struct filled with the appropriate ECC position
1773 *	    information
1774 *
1775 * This function returns ECC section information in the OOB area. If you want
1776 * to get all the ECC bytes information, then you should call
1777 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1778 *
1779 * Returns zero on success, a negative error code otherwise.
1780 */
1781int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1782		      struct mtd_oob_region *oobecc)
1783{
1784	struct mtd_info *master = mtd_get_master(mtd);
1785
1786	memset(oobecc, 0, sizeof(*oobecc));
1787
1788	if (!master || section < 0)
1789		return -EINVAL;
1790
1791	if (!master->ooblayout || !master->ooblayout->ecc)
1792		return -ENOTSUPP;
1793
1794	return master->ooblayout->ecc(master, section, oobecc);
1795}
1796EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1797
1798/**
1799 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1800 *			section
1801 * @mtd: MTD device structure
1802 * @section: Free section you are interested in. Depending on the layout
1803 *	     you may have all the free bytes stored in a single contiguous
1804 *	     section, or one section per ECC chunk plus an extra section
1805 *	     for the remaining bytes (or other funky layout).
1806 * @oobfree: OOB region struct filled with the appropriate free position
1807 *	     information
1808 *
1809 * This function returns free bytes position in the OOB area. If you want
1810 * to get all the free bytes information, then you should call
1811 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1812 *
1813 * Returns zero on success, a negative error code otherwise.
1814 */
1815int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1816		       struct mtd_oob_region *oobfree)
1817{
1818	struct mtd_info *master = mtd_get_master(mtd);
1819
1820	memset(oobfree, 0, sizeof(*oobfree));
1821
1822	if (!master || section < 0)
1823		return -EINVAL;
1824
1825	if (!master->ooblayout || !master->ooblayout->free)
1826		return -ENOTSUPP;
1827
1828	return master->ooblayout->free(master, section, oobfree);
1829}
1830EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1831
1832/**
1833 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1834 * @mtd: mtd info structure
1835 * @byte: the byte we are searching for
1836 * @sectionp: pointer where the section id will be stored
1837 * @oobregion: used to retrieve the ECC position
1838 * @iter: iterator function. Should be either mtd_ooblayout_free or
1839 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1840 *
1841 * This function returns the section id and oobregion information of a
1842 * specific byte. For example, say you want to know where the 4th ECC byte is
1843 * stored, you'll use:
1844 *
1845 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1846 *
1847 * Returns zero on success, a negative error code otherwise.
1848 */
1849static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1850				int *sectionp, struct mtd_oob_region *oobregion,
1851				int (*iter)(struct mtd_info *,
1852					    int section,
1853					    struct mtd_oob_region *oobregion))
1854{
1855	int pos = 0, ret, section = 0;
1856
1857	memset(oobregion, 0, sizeof(*oobregion));
1858
1859	while (1) {
1860		ret = iter(mtd, section, oobregion);
1861		if (ret)
1862			return ret;
1863
1864		if (pos + oobregion->length > byte)
1865			break;
1866
1867		pos += oobregion->length;
1868		section++;
1869	}
1870
1871	/*
1872	 * Adjust region info to make it start at the beginning at the
1873	 * 'start' ECC byte.
1874	 */
1875	oobregion->offset += byte - pos;
1876	oobregion->length -= byte - pos;
1877	*sectionp = section;
1878
1879	return 0;
1880}
1881
1882/**
1883 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1884 *				  ECC byte
1885 * @mtd: mtd info structure
1886 * @eccbyte: the byte we are searching for
1887 * @section: pointer where the section id will be stored
1888 * @oobregion: OOB region information
1889 *
1890 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1891 * byte.
1892 *
1893 * Returns zero on success, a negative error code otherwise.
1894 */
1895int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1896				 int *section,
1897				 struct mtd_oob_region *oobregion)
1898{
1899	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1900					 mtd_ooblayout_ecc);
1901}
1902EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1903
1904/**
1905 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1906 * @mtd: mtd info structure
1907 * @buf: destination buffer to store OOB bytes
1908 * @oobbuf: OOB buffer
1909 * @start: first byte to retrieve
1910 * @nbytes: number of bytes to retrieve
1911 * @iter: section iterator
1912 *
1913 * Extract bytes attached to a specific category (ECC or free)
1914 * from the OOB buffer and copy them into buf.
1915 *
1916 * Returns zero on success, a negative error code otherwise.
1917 */
1918static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1919				const u8 *oobbuf, int start, int nbytes,
1920				int (*iter)(struct mtd_info *,
1921					    int section,
1922					    struct mtd_oob_region *oobregion))
1923{
1924	struct mtd_oob_region oobregion;
1925	int section, ret;
1926
1927	ret = mtd_ooblayout_find_region(mtd, start, &section,
1928					&oobregion, iter);
1929
1930	while (!ret) {
1931		int cnt;
1932
1933		cnt = min_t(int, nbytes, oobregion.length);
1934		memcpy(buf, oobbuf + oobregion.offset, cnt);
1935		buf += cnt;
1936		nbytes -= cnt;
1937
1938		if (!nbytes)
1939			break;
1940
1941		ret = iter(mtd, ++section, &oobregion);
1942	}
1943
1944	return ret;
1945}
1946
1947/**
1948 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1949 * @mtd: mtd info structure
1950 * @buf: source buffer to get OOB bytes from
1951 * @oobbuf: OOB buffer
1952 * @start: first OOB byte to set
1953 * @nbytes: number of OOB bytes to set
1954 * @iter: section iterator
1955 *
1956 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1957 * is selected by passing the appropriate iterator.
1958 *
1959 * Returns zero on success, a negative error code otherwise.
1960 */
1961static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1962				u8 *oobbuf, int start, int nbytes,
1963				int (*iter)(struct mtd_info *,
1964					    int section,
1965					    struct mtd_oob_region *oobregion))
1966{
1967	struct mtd_oob_region oobregion;
1968	int section, ret;
1969
1970	ret = mtd_ooblayout_find_region(mtd, start, &section,
1971					&oobregion, iter);
1972
1973	while (!ret) {
1974		int cnt;
1975
1976		cnt = min_t(int, nbytes, oobregion.length);
1977		memcpy(oobbuf + oobregion.offset, buf, cnt);
1978		buf += cnt;
1979		nbytes -= cnt;
1980
1981		if (!nbytes)
1982			break;
1983
1984		ret = iter(mtd, ++section, &oobregion);
1985	}
1986
1987	return ret;
1988}
1989
1990/**
1991 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1992 * @mtd: mtd info structure
1993 * @iter: category iterator
1994 *
1995 * Count the number of bytes in a given category.
1996 *
1997 * Returns a positive value on success, a negative error code otherwise.
1998 */
1999static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2000				int (*iter)(struct mtd_info *,
2001					    int section,
2002					    struct mtd_oob_region *oobregion))
2003{
2004	struct mtd_oob_region oobregion;
2005	int section = 0, ret, nbytes = 0;
2006
2007	while (1) {
2008		ret = iter(mtd, section++, &oobregion);
2009		if (ret) {
2010			if (ret == -ERANGE)
2011				ret = nbytes;
2012			break;
2013		}
2014
2015		nbytes += oobregion.length;
2016	}
2017
2018	return ret;
2019}
2020
2021/**
2022 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2023 * @mtd: mtd info structure
2024 * @eccbuf: destination buffer to store ECC bytes
2025 * @oobbuf: OOB buffer
2026 * @start: first ECC byte to retrieve
2027 * @nbytes: number of ECC bytes to retrieve
2028 *
2029 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2030 *
2031 * Returns zero on success, a negative error code otherwise.
2032 */
2033int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2034			       const u8 *oobbuf, int start, int nbytes)
2035{
2036	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2037				       mtd_ooblayout_ecc);
2038}
2039EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2040
2041/**
2042 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2043 * @mtd: mtd info structure
2044 * @eccbuf: source buffer to get ECC bytes from
2045 * @oobbuf: OOB buffer
2046 * @start: first ECC byte to set
2047 * @nbytes: number of ECC bytes to set
2048 *
2049 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2050 *
2051 * Returns zero on success, a negative error code otherwise.
2052 */
2053int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2054			       u8 *oobbuf, int start, int nbytes)
2055{
2056	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2057				       mtd_ooblayout_ecc);
2058}
2059EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2060
2061/**
2062 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2063 * @mtd: mtd info structure
2064 * @databuf: destination buffer to store ECC bytes
2065 * @oobbuf: OOB buffer
2066 * @start: first ECC byte to retrieve
2067 * @nbytes: number of ECC bytes to retrieve
2068 *
2069 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2070 *
2071 * Returns zero on success, a negative error code otherwise.
2072 */
2073int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2074				const u8 *oobbuf, int start, int nbytes)
2075{
2076	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2077				       mtd_ooblayout_free);
2078}
2079EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2080
2081/**
2082 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2083 * @mtd: mtd info structure
2084 * @databuf: source buffer to get data bytes from
2085 * @oobbuf: OOB buffer
2086 * @start: first ECC byte to set
2087 * @nbytes: number of ECC bytes to set
2088 *
2089 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2090 *
2091 * Returns zero on success, a negative error code otherwise.
2092 */
2093int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2094				u8 *oobbuf, int start, int nbytes)
2095{
2096	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2097				       mtd_ooblayout_free);
2098}
2099EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2100
2101/**
2102 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2103 * @mtd: mtd info structure
2104 *
2105 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2106 *
2107 * Returns zero on success, a negative error code otherwise.
2108 */
2109int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2110{
2111	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2112}
2113EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2114
2115/**
2116 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2117 * @mtd: mtd info structure
2118 *
2119 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2120 *
2121 * Returns zero on success, a negative error code otherwise.
2122 */
2123int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2124{
2125	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2126}
2127EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2128
2129/*
2130 * Method to access the protection register area, present in some flash
2131 * devices. The user data is one time programmable but the factory data is read
2132 * only.
2133 */
2134int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2135			   struct otp_info *buf)
2136{
2137	struct mtd_info *master = mtd_get_master(mtd);
2138
2139	if (!master->_get_fact_prot_info)
2140		return -EOPNOTSUPP;
2141	if (!len)
2142		return 0;
2143	return master->_get_fact_prot_info(master, len, retlen, buf);
2144}
2145EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2146
2147int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2148			   size_t *retlen, u_char *buf)
2149{
2150	struct mtd_info *master = mtd_get_master(mtd);
2151
2152	*retlen = 0;
2153	if (!master->_read_fact_prot_reg)
2154		return -EOPNOTSUPP;
2155	if (!len)
2156		return 0;
2157	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2158}
2159EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2160
2161int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2162			   struct otp_info *buf)
2163{
2164	struct mtd_info *master = mtd_get_master(mtd);
2165
2166	if (!master->_get_user_prot_info)
2167		return -EOPNOTSUPP;
2168	if (!len)
2169		return 0;
2170	return master->_get_user_prot_info(master, len, retlen, buf);
2171}
2172EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2173
2174int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2175			   size_t *retlen, u_char *buf)
2176{
2177	struct mtd_info *master = mtd_get_master(mtd);
2178
2179	*retlen = 0;
2180	if (!master->_read_user_prot_reg)
2181		return -EOPNOTSUPP;
2182	if (!len)
2183		return 0;
2184	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2185}
2186EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2187
2188int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2189			    size_t *retlen, const u_char *buf)
2190{
2191	struct mtd_info *master = mtd_get_master(mtd);
2192	int ret;
2193
2194	*retlen = 0;
2195	if (!master->_write_user_prot_reg)
2196		return -EOPNOTSUPP;
2197	if (!len)
2198		return 0;
2199	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2200	if (ret)
2201		return ret;
2202
2203	/*
2204	 * If no data could be written at all, we are out of memory and
2205	 * must return -ENOSPC.
2206	 */
2207	return (*retlen) ? 0 : -ENOSPC;
2208}
2209EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2210
2211int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2212{
2213	struct mtd_info *master = mtd_get_master(mtd);
2214
2215	if (!master->_lock_user_prot_reg)
2216		return -EOPNOTSUPP;
2217	if (!len)
2218		return 0;
2219	return master->_lock_user_prot_reg(master, from, len);
2220}
2221EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2222
2223int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2224{
2225	struct mtd_info *master = mtd_get_master(mtd);
2226
2227	if (!master->_erase_user_prot_reg)
2228		return -EOPNOTSUPP;
2229	if (!len)
2230		return 0;
2231	return master->_erase_user_prot_reg(master, from, len);
2232}
2233EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2234
2235/* Chip-supported device locking */
2236int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2237{
2238	struct mtd_info *master = mtd_get_master(mtd);
2239
2240	if (!master->_lock)
2241		return -EOPNOTSUPP;
2242	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2243		return -EINVAL;
2244	if (!len)
2245		return 0;
2246
2247	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2248		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2249		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2250	}
2251
2252	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2253}
2254EXPORT_SYMBOL_GPL(mtd_lock);
2255
2256int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2257{
2258	struct mtd_info *master = mtd_get_master(mtd);
2259
2260	if (!master->_unlock)
2261		return -EOPNOTSUPP;
2262	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2263		return -EINVAL;
2264	if (!len)
2265		return 0;
2266
2267	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2268		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2269		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2270	}
2271
2272	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2273}
2274EXPORT_SYMBOL_GPL(mtd_unlock);
2275
2276int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2277{
2278	struct mtd_info *master = mtd_get_master(mtd);
2279
2280	if (!master->_is_locked)
2281		return -EOPNOTSUPP;
2282	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2283		return -EINVAL;
2284	if (!len)
2285		return 0;
2286
2287	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2288		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2289		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2290	}
2291
2292	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2293}
2294EXPORT_SYMBOL_GPL(mtd_is_locked);
2295
2296int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2297{
2298	struct mtd_info *master = mtd_get_master(mtd);
2299
2300	if (ofs < 0 || ofs >= mtd->size)
2301		return -EINVAL;
2302	if (!master->_block_isreserved)
2303		return 0;
2304
2305	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2306		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2307
2308	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2309}
2310EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2311
2312int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2313{
2314	struct mtd_info *master = mtd_get_master(mtd);
2315
2316	if (ofs < 0 || ofs >= mtd->size)
2317		return -EINVAL;
2318	if (!master->_block_isbad)
2319		return 0;
2320
2321	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2322		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2323
2324	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2325}
2326EXPORT_SYMBOL_GPL(mtd_block_isbad);
2327
2328int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2329{
2330	struct mtd_info *master = mtd_get_master(mtd);
2331	int ret;
2332
2333	if (!master->_block_markbad)
2334		return -EOPNOTSUPP;
2335	if (ofs < 0 || ofs >= mtd->size)
2336		return -EINVAL;
2337	if (!(mtd->flags & MTD_WRITEABLE))
2338		return -EROFS;
2339
2340	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2341		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2342
2343	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2344	if (ret)
2345		return ret;
2346
2347	while (mtd->parent) {
2348		mtd->ecc_stats.badblocks++;
2349		mtd = mtd->parent;
2350	}
2351
2352	return 0;
2353}
2354EXPORT_SYMBOL_GPL(mtd_block_markbad);
2355ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2356
2357/*
2358 * default_mtd_writev - the default writev method
2359 * @mtd: mtd device description object pointer
2360 * @vecs: the vectors to write
2361 * @count: count of vectors in @vecs
2362 * @to: the MTD device offset to write to
2363 * @retlen: on exit contains the count of bytes written to the MTD device.
2364 *
2365 * This function returns zero in case of success and a negative error code in
2366 * case of failure.
2367 */
2368static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2369			      unsigned long count, loff_t to, size_t *retlen)
2370{
2371	unsigned long i;
2372	size_t totlen = 0, thislen;
2373	int ret = 0;
2374
2375	for (i = 0; i < count; i++) {
2376		if (!vecs[i].iov_len)
2377			continue;
2378		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2379				vecs[i].iov_base);
2380		totlen += thislen;
2381		if (ret || thislen != vecs[i].iov_len)
2382			break;
2383		to += vecs[i].iov_len;
2384	}
2385	*retlen = totlen;
2386	return ret;
2387}
2388
2389/*
2390 * mtd_writev - the vector-based MTD write method
2391 * @mtd: mtd device description object pointer
2392 * @vecs: the vectors to write
2393 * @count: count of vectors in @vecs
2394 * @to: the MTD device offset to write to
2395 * @retlen: on exit contains the count of bytes written to the MTD device.
2396 *
2397 * This function returns zero in case of success and a negative error code in
2398 * case of failure.
2399 */
2400int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2401	       unsigned long count, loff_t to, size_t *retlen)
2402{
2403	struct mtd_info *master = mtd_get_master(mtd);
2404
2405	*retlen = 0;
2406	if (!(mtd->flags & MTD_WRITEABLE))
2407		return -EROFS;
2408
2409	if (!master->_writev)
2410		return default_mtd_writev(mtd, vecs, count, to, retlen);
2411
2412	return master->_writev(master, vecs, count,
2413			       mtd_get_master_ofs(mtd, to), retlen);
2414}
2415EXPORT_SYMBOL_GPL(mtd_writev);
2416
2417/**
2418 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2419 * @mtd: mtd device description object pointer
2420 * @size: a pointer to the ideal or maximum size of the allocation, points
2421 *        to the actual allocation size on success.
2422 *
2423 * This routine attempts to allocate a contiguous kernel buffer up to
2424 * the specified size, backing off the size of the request exponentially
2425 * until the request succeeds or until the allocation size falls below
2426 * the system page size. This attempts to make sure it does not adversely
2427 * impact system performance, so when allocating more than one page, we
2428 * ask the memory allocator to avoid re-trying, swapping, writing back
2429 * or performing I/O.
2430 *
2431 * Note, this function also makes sure that the allocated buffer is aligned to
2432 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2433 *
2434 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2435 * to handle smaller (i.e. degraded) buffer allocations under low- or
2436 * fragmented-memory situations where such reduced allocations, from a
2437 * requested ideal, are allowed.
2438 *
2439 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2440 */
2441void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2442{
2443	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2444	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2445	void *kbuf;
2446
2447	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2448
2449	while (*size > min_alloc) {
2450		kbuf = kmalloc(*size, flags);
2451		if (kbuf)
2452			return kbuf;
2453
2454		*size >>= 1;
2455		*size = ALIGN(*size, mtd->writesize);
2456	}
2457
2458	/*
2459	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2460	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2461	 */
2462	return kmalloc(*size, GFP_KERNEL);
2463}
2464EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2465
2466#ifdef CONFIG_PROC_FS
2467
2468/*====================================================================*/
2469/* Support for /proc/mtd */
2470
2471static int mtd_proc_show(struct seq_file *m, void *v)
2472{
2473	struct mtd_info *mtd;
2474
2475	seq_puts(m, "dev:    size   erasesize  name\n");
2476	mutex_lock(&mtd_table_mutex);
2477	mtd_for_each_device(mtd) {
2478		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2479			   mtd->index, (unsigned long long)mtd->size,
2480			   mtd->erasesize, mtd->name);
2481	}
2482	mutex_unlock(&mtd_table_mutex);
2483	return 0;
2484}
 
 
 
 
 
 
 
 
 
 
 
 
2485#endif /* CONFIG_PROC_FS */
2486
2487/*====================================================================*/
2488/* Init code */
2489
2490static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2491{
2492	struct backing_dev_info *bdi;
2493	int ret;
2494
2495	bdi = bdi_alloc(NUMA_NO_NODE);
2496	if (!bdi)
2497		return ERR_PTR(-ENOMEM);
2498	bdi->ra_pages = 0;
2499	bdi->io_pages = 0;
2500
 
2501	/*
2502	 * We put '-0' suffix to the name to get the same name format as we
2503	 * used to get. Since this is called only once, we get a unique name. 
2504	 */
2505	ret = bdi_register(bdi, "%.28s-0", name);
2506	if (ret)
2507		bdi_put(bdi);
2508
2509	return ret ? ERR_PTR(ret) : bdi;
2510}
2511
2512static struct proc_dir_entry *proc_mtd;
2513
2514static int __init init_mtd(void)
2515{
2516	int ret;
2517
2518	ret = class_register(&mtd_class);
2519	if (ret)
2520		goto err_reg;
2521
2522	mtd_bdi = mtd_bdi_init("mtd");
2523	if (IS_ERR(mtd_bdi)) {
2524		ret = PTR_ERR(mtd_bdi);
2525		goto err_bdi;
2526	}
2527
2528	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2529
2530	ret = init_mtdchar();
2531	if (ret)
2532		goto out_procfs;
2533
2534	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2535	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2536			    &mtd_expert_analysis_mode);
2537
2538	return 0;
2539
2540out_procfs:
2541	if (proc_mtd)
2542		remove_proc_entry("mtd", NULL);
2543	bdi_unregister(mtd_bdi);
2544	bdi_put(mtd_bdi);
2545err_bdi:
2546	class_unregister(&mtd_class);
2547err_reg:
2548	pr_err("Error registering mtd class or bdi: %d\n", ret);
2549	return ret;
2550}
2551
2552static void __exit cleanup_mtd(void)
2553{
2554	debugfs_remove_recursive(dfs_dir_mtd);
2555	cleanup_mtdchar();
2556	if (proc_mtd)
2557		remove_proc_entry("mtd", NULL);
2558	class_unregister(&mtd_class);
2559	bdi_unregister(mtd_bdi);
2560	bdi_put(mtd_bdi);
2561	idr_destroy(&mtd_idr);
2562}
2563
2564module_init(init_mtd);
2565module_exit(cleanup_mtd);
2566
2567MODULE_LICENSE("GPL");
2568MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2569MODULE_DESCRIPTION("Core MTD registration and access routines");
v4.17
 
   1/*
   2 * Core registration and callback routines for MTD
   3 * drivers and users.
   4 *
   5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   6 * Copyright © 2006      Red Hat UK Limited 
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/ptrace.h>
  27#include <linux/seq_file.h>
  28#include <linux/string.h>
  29#include <linux/timer.h>
  30#include <linux/major.h>
  31#include <linux/fs.h>
  32#include <linux/err.h>
  33#include <linux/ioctl.h>
  34#include <linux/init.h>
  35#include <linux/of.h>
  36#include <linux/proc_fs.h>
  37#include <linux/idr.h>
  38#include <linux/backing-dev.h>
  39#include <linux/gfp.h>
 
  40#include <linux/slab.h>
  41#include <linux/reboot.h>
  42#include <linux/leds.h>
  43#include <linux/debugfs.h>
 
 
 
  44
  45#include <linux/mtd/mtd.h>
  46#include <linux/mtd/partitions.h>
  47
  48#include "mtdcore.h"
  49
  50struct backing_dev_info *mtd_bdi;
  51
  52#ifdef CONFIG_PM_SLEEP
  53
  54static int mtd_cls_suspend(struct device *dev)
  55{
  56	struct mtd_info *mtd = dev_get_drvdata(dev);
  57
  58	return mtd ? mtd_suspend(mtd) : 0;
  59}
  60
  61static int mtd_cls_resume(struct device *dev)
  62{
  63	struct mtd_info *mtd = dev_get_drvdata(dev);
  64
  65	if (mtd)
  66		mtd_resume(mtd);
  67	return 0;
  68}
  69
  70static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  71#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  72#else
  73#define MTD_CLS_PM_OPS NULL
  74#endif
  75
  76static struct class mtd_class = {
  77	.name = "mtd",
  78	.owner = THIS_MODULE,
  79	.pm = MTD_CLS_PM_OPS,
  80};
  81
  82static DEFINE_IDR(mtd_idr);
  83
  84/* These are exported solely for the purpose of mtd_blkdevs.c. You
  85   should not use them for _anything_ else */
  86DEFINE_MUTEX(mtd_table_mutex);
  87EXPORT_SYMBOL_GPL(mtd_table_mutex);
  88
  89struct mtd_info *__mtd_next_device(int i)
  90{
  91	return idr_get_next(&mtd_idr, &i);
  92}
  93EXPORT_SYMBOL_GPL(__mtd_next_device);
  94
  95static LIST_HEAD(mtd_notifiers);
  96
  97
  98#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  99
 100/* REVISIT once MTD uses the driver model better, whoever allocates
 101 * the mtd_info will probably want to use the release() hook...
 102 */
 103static void mtd_release(struct device *dev)
 104{
 105	struct mtd_info *mtd = dev_get_drvdata(dev);
 106	dev_t index = MTD_DEVT(mtd->index);
 107
 
 
 
 
 
 
 108	/* remove /dev/mtdXro node */
 109	device_destroy(&mtd_class, index + 1);
 110}
 111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112static ssize_t mtd_type_show(struct device *dev,
 113		struct device_attribute *attr, char *buf)
 114{
 115	struct mtd_info *mtd = dev_get_drvdata(dev);
 116	char *type;
 117
 118	switch (mtd->type) {
 119	case MTD_ABSENT:
 120		type = "absent";
 121		break;
 122	case MTD_RAM:
 123		type = "ram";
 124		break;
 125	case MTD_ROM:
 126		type = "rom";
 127		break;
 128	case MTD_NORFLASH:
 129		type = "nor";
 130		break;
 131	case MTD_NANDFLASH:
 132		type = "nand";
 133		break;
 134	case MTD_DATAFLASH:
 135		type = "dataflash";
 136		break;
 137	case MTD_UBIVOLUME:
 138		type = "ubi";
 139		break;
 140	case MTD_MLCNANDFLASH:
 141		type = "mlc-nand";
 142		break;
 143	default:
 144		type = "unknown";
 145	}
 146
 147	return snprintf(buf, PAGE_SIZE, "%s\n", type);
 148}
 149static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 150
 151static ssize_t mtd_flags_show(struct device *dev,
 152		struct device_attribute *attr, char *buf)
 153{
 154	struct mtd_info *mtd = dev_get_drvdata(dev);
 155
 156	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 157
 158}
 159static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 160
 161static ssize_t mtd_size_show(struct device *dev,
 162		struct device_attribute *attr, char *buf)
 163{
 164	struct mtd_info *mtd = dev_get_drvdata(dev);
 165
 166	return snprintf(buf, PAGE_SIZE, "%llu\n",
 167		(unsigned long long)mtd->size);
 168
 169}
 170static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 171
 172static ssize_t mtd_erasesize_show(struct device *dev,
 173		struct device_attribute *attr, char *buf)
 174{
 175	struct mtd_info *mtd = dev_get_drvdata(dev);
 176
 177	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 178
 179}
 180static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 181
 182static ssize_t mtd_writesize_show(struct device *dev,
 183		struct device_attribute *attr, char *buf)
 184{
 185	struct mtd_info *mtd = dev_get_drvdata(dev);
 186
 187	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 188
 189}
 190static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 191
 192static ssize_t mtd_subpagesize_show(struct device *dev,
 193		struct device_attribute *attr, char *buf)
 194{
 195	struct mtd_info *mtd = dev_get_drvdata(dev);
 196	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 197
 198	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 199
 200}
 201static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 202
 203static ssize_t mtd_oobsize_show(struct device *dev,
 204		struct device_attribute *attr, char *buf)
 205{
 206	struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 
 
 
 
 
 
 
 209
 
 210}
 211static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 212
 213static ssize_t mtd_numeraseregions_show(struct device *dev,
 214		struct device_attribute *attr, char *buf)
 215{
 216	struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 219
 220}
 221static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 222	NULL);
 223
 224static ssize_t mtd_name_show(struct device *dev,
 225		struct device_attribute *attr, char *buf)
 226{
 227	struct mtd_info *mtd = dev_get_drvdata(dev);
 228
 229	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 230
 231}
 232static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 233
 234static ssize_t mtd_ecc_strength_show(struct device *dev,
 235				     struct device_attribute *attr, char *buf)
 236{
 237	struct mtd_info *mtd = dev_get_drvdata(dev);
 238
 239	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 240}
 241static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 242
 243static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 244					  struct device_attribute *attr,
 245					  char *buf)
 246{
 247	struct mtd_info *mtd = dev_get_drvdata(dev);
 248
 249	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 250}
 251
 252static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 253					   struct device_attribute *attr,
 254					   const char *buf, size_t count)
 255{
 256	struct mtd_info *mtd = dev_get_drvdata(dev);
 257	unsigned int bitflip_threshold;
 258	int retval;
 259
 260	retval = kstrtouint(buf, 0, &bitflip_threshold);
 261	if (retval)
 262		return retval;
 263
 264	mtd->bitflip_threshold = bitflip_threshold;
 265	return count;
 266}
 267static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 268		   mtd_bitflip_threshold_show,
 269		   mtd_bitflip_threshold_store);
 270
 271static ssize_t mtd_ecc_step_size_show(struct device *dev,
 272		struct device_attribute *attr, char *buf)
 273{
 274	struct mtd_info *mtd = dev_get_drvdata(dev);
 275
 276	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 277
 278}
 279static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 280
 281static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 282		struct device_attribute *attr, char *buf)
 283{
 284	struct mtd_info *mtd = dev_get_drvdata(dev);
 285	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 286
 287	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 288}
 289static DEVICE_ATTR(corrected_bits, S_IRUGO,
 290		   mtd_ecc_stats_corrected_show, NULL);
 291
 292static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 293		struct device_attribute *attr, char *buf)
 294{
 295	struct mtd_info *mtd = dev_get_drvdata(dev);
 296	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 297
 298	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 299}
 300static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 301
 302static ssize_t mtd_badblocks_show(struct device *dev,
 303		struct device_attribute *attr, char *buf)
 304{
 305	struct mtd_info *mtd = dev_get_drvdata(dev);
 306	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 307
 308	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 309}
 310static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 311
 312static ssize_t mtd_bbtblocks_show(struct device *dev,
 313		struct device_attribute *attr, char *buf)
 314{
 315	struct mtd_info *mtd = dev_get_drvdata(dev);
 316	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 317
 318	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 319}
 320static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 321
 322static struct attribute *mtd_attrs[] = {
 323	&dev_attr_type.attr,
 324	&dev_attr_flags.attr,
 325	&dev_attr_size.attr,
 326	&dev_attr_erasesize.attr,
 327	&dev_attr_writesize.attr,
 328	&dev_attr_subpagesize.attr,
 329	&dev_attr_oobsize.attr,
 
 330	&dev_attr_numeraseregions.attr,
 331	&dev_attr_name.attr,
 332	&dev_attr_ecc_strength.attr,
 333	&dev_attr_ecc_step_size.attr,
 334	&dev_attr_corrected_bits.attr,
 335	&dev_attr_ecc_failures.attr,
 336	&dev_attr_bad_blocks.attr,
 337	&dev_attr_bbt_blocks.attr,
 338	&dev_attr_bitflip_threshold.attr,
 339	NULL,
 340};
 341ATTRIBUTE_GROUPS(mtd);
 342
 343static const struct device_type mtd_devtype = {
 344	.name		= "mtd",
 345	.groups		= mtd_groups,
 346	.release	= mtd_release,
 347};
 348
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349#ifndef CONFIG_MMU
 350unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 351{
 352	switch (mtd->type) {
 353	case MTD_RAM:
 354		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 355			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 356	case MTD_ROM:
 357		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 358			NOMMU_MAP_READ;
 359	default:
 360		return NOMMU_MAP_COPY;
 361	}
 362}
 363EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 364#endif
 365
 366static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 367			       void *cmd)
 368{
 369	struct mtd_info *mtd;
 370
 371	mtd = container_of(n, struct mtd_info, reboot_notifier);
 372	mtd->_reboot(mtd);
 373
 374	return NOTIFY_DONE;
 375}
 376
 377/**
 378 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 379 * @mtd: pointer to new MTD device info structure
 380 * @wunit: write unit we are interested in
 381 * @info: returned pairing information
 382 *
 383 * Retrieve pairing information associated to the wunit.
 384 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 385 * paired together, and where programming a page may influence the page it is
 386 * paired with.
 387 * The notion of page is replaced by the term wunit (write-unit) to stay
 388 * consistent with the ->writesize field.
 389 *
 390 * The @wunit argument can be extracted from an absolute offset using
 391 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 392 * to @wunit.
 393 *
 394 * From the pairing info the MTD user can find all the wunits paired with
 395 * @wunit using the following loop:
 396 *
 397 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 398 *	info.pair = i;
 399 *	mtd_pairing_info_to_wunit(mtd, &info);
 400 *	...
 401 * }
 402 */
 403int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 404			      struct mtd_pairing_info *info)
 405{
 406	int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 
 407
 408	if (wunit < 0 || wunit >= npairs)
 409		return -EINVAL;
 410
 411	if (mtd->pairing && mtd->pairing->get_info)
 412		return mtd->pairing->get_info(mtd, wunit, info);
 413
 414	info->group = 0;
 415	info->pair = wunit;
 416
 417	return 0;
 418}
 419EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 420
 421/**
 422 * mtd_pairing_info_to_wunit - get wunit from pairing information
 423 * @mtd: pointer to new MTD device info structure
 424 * @info: pairing information struct
 425 *
 426 * Returns a positive number representing the wunit associated to the info
 427 * struct, or a negative error code.
 428 *
 429 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 430 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 431 * doc).
 432 *
 433 * It can also be used to only program the first page of each pair (i.e.
 434 * page attached to group 0), which allows one to use an MLC NAND in
 435 * software-emulated SLC mode:
 436 *
 437 * info.group = 0;
 438 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 439 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 440 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 441 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 442 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 443 * }
 444 */
 445int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 446			      const struct mtd_pairing_info *info)
 447{
 448	int ngroups = mtd_pairing_groups(mtd);
 449	int npairs = mtd_wunit_per_eb(mtd) / ngroups;
 
 450
 451	if (!info || info->pair < 0 || info->pair >= npairs ||
 452	    info->group < 0 || info->group >= ngroups)
 453		return -EINVAL;
 454
 455	if (mtd->pairing && mtd->pairing->get_wunit)
 456		return mtd->pairing->get_wunit(mtd, info);
 457
 458	return info->pair;
 459}
 460EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 461
 462/**
 463 * mtd_pairing_groups - get the number of pairing groups
 464 * @mtd: pointer to new MTD device info structure
 465 *
 466 * Returns the number of pairing groups.
 467 *
 468 * This number is usually equal to the number of bits exposed by a single
 469 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 470 * to iterate over all pages of a given pair.
 471 */
 472int mtd_pairing_groups(struct mtd_info *mtd)
 473{
 474	if (!mtd->pairing || !mtd->pairing->ngroups)
 
 
 475		return 1;
 476
 477	return mtd->pairing->ngroups;
 478}
 479EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 480
 481static struct dentry *dfs_dir_mtd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482
 483/**
 484 *	add_mtd_device - register an MTD device
 485 *	@mtd: pointer to new MTD device info structure
 486 *
 487 *	Add a device to the list of MTD devices present in the system, and
 488 *	notify each currently active MTD 'user' of its arrival. Returns
 489 *	zero on success or non-zero on failure.
 490 */
 491
 492int add_mtd_device(struct mtd_info *mtd)
 493{
 
 
 494	struct mtd_notifier *not;
 495	int i, error;
 496
 497	/*
 498	 * May occur, for instance, on buggy drivers which call
 499	 * mtd_device_parse_register() multiple times on the same master MTD,
 500	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 501	 */
 502	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 503		return -EEXIST;
 504
 505	BUG_ON(mtd->writesize == 0);
 506
 507	if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
 
 
 
 
 
 
 
 
 508		    !(mtd->flags & MTD_NO_ERASE)))
 509		return -EINVAL;
 510
 
 
 
 
 
 
 
 
 
 
 
 
 
 511	mutex_lock(&mtd_table_mutex);
 512
 513	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 
 
 
 
 
 
 514	if (i < 0) {
 515		error = i;
 516		goto fail_locked;
 517	}
 518
 519	mtd->index = i;
 520	mtd->usecount = 0;
 521
 522	/* default value if not set by driver */
 523	if (mtd->bitflip_threshold == 0)
 524		mtd->bitflip_threshold = mtd->ecc_strength;
 525
 
 
 
 
 
 
 
 
 526	if (is_power_of_2(mtd->erasesize))
 527		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 528	else
 529		mtd->erasesize_shift = 0;
 530
 531	if (is_power_of_2(mtd->writesize))
 532		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 533	else
 534		mtd->writesize_shift = 0;
 535
 536	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 537	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 538
 539	/* Some chips always power up locked. Unlock them now */
 540	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 541		error = mtd_unlock(mtd, 0, mtd->size);
 542		if (error && error != -EOPNOTSUPP)
 543			printk(KERN_WARNING
 544			       "%s: unlock failed, writes may not work\n",
 545			       mtd->name);
 546		/* Ignore unlock failures? */
 547		error = 0;
 548	}
 549
 550	/* Caller should have set dev.parent to match the
 551	 * physical device, if appropriate.
 552	 */
 553	mtd->dev.type = &mtd_devtype;
 554	mtd->dev.class = &mtd_class;
 555	mtd->dev.devt = MTD_DEVT(i);
 556	dev_set_name(&mtd->dev, "mtd%d", i);
 557	dev_set_drvdata(&mtd->dev, mtd);
 
 558	of_node_get(mtd_get_of_node(mtd));
 559	error = device_register(&mtd->dev);
 
 
 
 
 
 
 
 560	if (error)
 561		goto fail_added;
 562
 563	if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
 564		mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
 565		if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
 566			pr_debug("mtd device %s won't show data in debugfs\n",
 567				 dev_name(&mtd->dev));
 568		}
 569	}
 570
 571	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 572		      "mtd%dro", i);
 573
 574	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 575	/* No need to get a refcount on the module containing
 576	   the notifier, since we hold the mtd_table_mutex */
 577	list_for_each_entry(not, &mtd_notifiers, list)
 578		not->add(mtd);
 579
 580	mutex_unlock(&mtd_table_mutex);
 
 
 
 
 
 
 
 
 
 
 
 581	/* We _know_ we aren't being removed, because
 582	   our caller is still holding us here. So none
 583	   of this try_ nonsense, and no bitching about it
 584	   either. :) */
 585	__module_get(THIS_MODULE);
 586	return 0;
 587
 
 
 588fail_added:
 589	of_node_put(mtd_get_of_node(mtd));
 590	idr_remove(&mtd_idr, i);
 591fail_locked:
 592	mutex_unlock(&mtd_table_mutex);
 593	return error;
 594}
 595
 596/**
 597 *	del_mtd_device - unregister an MTD device
 598 *	@mtd: pointer to MTD device info structure
 599 *
 600 *	Remove a device from the list of MTD devices present in the system,
 601 *	and notify each currently active MTD 'user' of its departure.
 602 *	Returns zero on success or 1 on failure, which currently will happen
 603 *	if the requested device does not appear to be present in the list.
 604 */
 605
 606int del_mtd_device(struct mtd_info *mtd)
 607{
 608	int ret;
 609	struct mtd_notifier *not;
 610
 611	mutex_lock(&mtd_table_mutex);
 612
 613	debugfs_remove_recursive(mtd->dbg.dfs_dir);
 614
 615	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 616		ret = -ENODEV;
 617		goto out_error;
 618	}
 619
 620	/* No need to get a refcount on the module containing
 621		the notifier, since we hold the mtd_table_mutex */
 622	list_for_each_entry(not, &mtd_notifiers, list)
 623		not->remove(mtd);
 624
 625	if (mtd->usecount) {
 626		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 627		       mtd->index, mtd->name, mtd->usecount);
 628		ret = -EBUSY;
 629	} else {
 630		device_unregister(&mtd->dev);
 631
 632		idr_remove(&mtd_idr, mtd->index);
 633		of_node_put(mtd_get_of_node(mtd));
 634
 635		module_put(THIS_MODULE);
 636		ret = 0;
 637	}
 638
 639out_error:
 640	mutex_unlock(&mtd_table_mutex);
 641	return ret;
 642}
 643
 644/*
 645 * Set a few defaults based on the parent devices, if not provided by the
 646 * driver
 647 */
 648static void mtd_set_dev_defaults(struct mtd_info *mtd)
 649{
 650	if (mtd->dev.parent) {
 651		if (!mtd->owner && mtd->dev.parent->driver)
 652			mtd->owner = mtd->dev.parent->driver->owner;
 653		if (!mtd->name)
 654			mtd->name = dev_name(mtd->dev.parent);
 655	} else {
 656		pr_debug("mtd device won't show a device symlink in sysfs\n");
 657	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 658}
 659
 660/**
 661 * mtd_device_parse_register - parse partitions and register an MTD device.
 662 *
 663 * @mtd: the MTD device to register
 664 * @types: the list of MTD partition probes to try, see
 665 *         'parse_mtd_partitions()' for more information
 666 * @parser_data: MTD partition parser-specific data
 667 * @parts: fallback partition information to register, if parsing fails;
 668 *         only valid if %nr_parts > %0
 669 * @nr_parts: the number of partitions in parts, if zero then the full
 670 *            MTD device is registered if no partition info is found
 671 *
 672 * This function aggregates MTD partitions parsing (done by
 673 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 674 * basically follows the most common pattern found in many MTD drivers:
 675 *
 676 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 677 *   registered first.
 678 * * Then It tries to probe partitions on MTD device @mtd using parsers
 679 *   specified in @types (if @types is %NULL, then the default list of parsers
 680 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 681 *   found this functions tries to fallback to information specified in
 682 *   @parts/@nr_parts.
 683 * * If no partitions were found this function just registers the MTD device
 684 *   @mtd and exits.
 685 *
 686 * Returns zero in case of success and a negative error code in case of failure.
 687 */
 688int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 689			      struct mtd_part_parser_data *parser_data,
 690			      const struct mtd_partition *parts,
 691			      int nr_parts)
 692{
 693	struct mtd_partitions parsed = { };
 694	int ret;
 695
 696	mtd_set_dev_defaults(mtd);
 697
 
 
 
 
 698	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 699		ret = add_mtd_device(mtd);
 700		if (ret)
 701			return ret;
 702	}
 703
 704	/* Prefer parsed partitions over driver-provided fallback */
 705	ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
 706	if (!ret && parsed.nr_parts) {
 707		parts = parsed.parts;
 708		nr_parts = parsed.nr_parts;
 709	}
 710
 711	if (nr_parts)
 
 
 712		ret = add_mtd_partitions(mtd, parts, nr_parts);
 713	else if (!device_is_registered(&mtd->dev))
 714		ret = add_mtd_device(mtd);
 715	else
 716		ret = 0;
 717
 718	if (ret)
 719		goto out;
 720
 721	/*
 722	 * FIXME: some drivers unfortunately call this function more than once.
 723	 * So we have to check if we've already assigned the reboot notifier.
 724	 *
 725	 * Generally, we can make multiple calls work for most cases, but it
 726	 * does cause problems with parse_mtd_partitions() above (e.g.,
 727	 * cmdlineparts will register partitions more than once).
 728	 */
 729	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 730		  "MTD already registered\n");
 731	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 732		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 733		register_reboot_notifier(&mtd->reboot_notifier);
 734	}
 735
 736out:
 737	/* Cleanup any parsed partitions */
 738	mtd_part_parser_cleanup(&parsed);
 
 
 
 739	if (ret && device_is_registered(&mtd->dev))
 740		del_mtd_device(mtd);
 741
 742	return ret;
 743}
 744EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 745
 746/**
 747 * mtd_device_unregister - unregister an existing MTD device.
 748 *
 749 * @master: the MTD device to unregister.  This will unregister both the master
 750 *          and any partitions if registered.
 751 */
 752int mtd_device_unregister(struct mtd_info *master)
 753{
 754	int err;
 755
 756	if (master->_reboot)
 757		unregister_reboot_notifier(&master->reboot_notifier);
 
 
 
 
 
 758
 759	err = del_mtd_partitions(master);
 760	if (err)
 761		return err;
 762
 763	if (!device_is_registered(&master->dev))
 764		return 0;
 765
 766	return del_mtd_device(master);
 767}
 768EXPORT_SYMBOL_GPL(mtd_device_unregister);
 769
 770/**
 771 *	register_mtd_user - register a 'user' of MTD devices.
 772 *	@new: pointer to notifier info structure
 773 *
 774 *	Registers a pair of callbacks function to be called upon addition
 775 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 776 *	invoked for each MTD device currently present in the system.
 777 */
 778void register_mtd_user (struct mtd_notifier *new)
 779{
 780	struct mtd_info *mtd;
 781
 782	mutex_lock(&mtd_table_mutex);
 783
 784	list_add(&new->list, &mtd_notifiers);
 785
 786	__module_get(THIS_MODULE);
 787
 788	mtd_for_each_device(mtd)
 789		new->add(mtd);
 790
 791	mutex_unlock(&mtd_table_mutex);
 792}
 793EXPORT_SYMBOL_GPL(register_mtd_user);
 794
 795/**
 796 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 797 *	@old: pointer to notifier info structure
 798 *
 799 *	Removes a callback function pair from the list of 'users' to be
 800 *	notified upon addition or removal of MTD devices. Causes the
 801 *	'remove' callback to be immediately invoked for each MTD device
 802 *	currently present in the system.
 803 */
 804int unregister_mtd_user (struct mtd_notifier *old)
 805{
 806	struct mtd_info *mtd;
 807
 808	mutex_lock(&mtd_table_mutex);
 809
 810	module_put(THIS_MODULE);
 811
 812	mtd_for_each_device(mtd)
 813		old->remove(mtd);
 814
 815	list_del(&old->list);
 816	mutex_unlock(&mtd_table_mutex);
 817	return 0;
 818}
 819EXPORT_SYMBOL_GPL(unregister_mtd_user);
 820
 821/**
 822 *	get_mtd_device - obtain a validated handle for an MTD device
 823 *	@mtd: last known address of the required MTD device
 824 *	@num: internal device number of the required MTD device
 825 *
 826 *	Given a number and NULL address, return the num'th entry in the device
 827 *	table, if any.	Given an address and num == -1, search the device table
 828 *	for a device with that address and return if it's still present. Given
 829 *	both, return the num'th driver only if its address matches. Return
 830 *	error code if not.
 831 */
 832struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 833{
 834	struct mtd_info *ret = NULL, *other;
 835	int err = -ENODEV;
 836
 837	mutex_lock(&mtd_table_mutex);
 838
 839	if (num == -1) {
 840		mtd_for_each_device(other) {
 841			if (other == mtd) {
 842				ret = mtd;
 843				break;
 844			}
 845		}
 846	} else if (num >= 0) {
 847		ret = idr_find(&mtd_idr, num);
 848		if (mtd && mtd != ret)
 849			ret = NULL;
 850	}
 851
 852	if (!ret) {
 853		ret = ERR_PTR(err);
 854		goto out;
 855	}
 856
 857	err = __get_mtd_device(ret);
 858	if (err)
 859		ret = ERR_PTR(err);
 860out:
 861	mutex_unlock(&mtd_table_mutex);
 862	return ret;
 863}
 864EXPORT_SYMBOL_GPL(get_mtd_device);
 865
 866
 867int __get_mtd_device(struct mtd_info *mtd)
 868{
 
 869	int err;
 870
 871	if (!try_module_get(mtd->owner))
 
 
 
 
 
 
 
 
 872		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874	if (mtd->_get_device) {
 875		err = mtd->_get_device(mtd);
 876
 877		if (err) {
 878			module_put(mtd->owner);
 879			return err;
 
 
 
 880		}
 881	}
 882	mtd->usecount++;
 883	return 0;
 
 
 884}
 885EXPORT_SYMBOL_GPL(__get_mtd_device);
 886
 887/**
 888 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
 889 *	device name
 890 *	@name: MTD device name to open
 891 *
 892 * 	This function returns MTD device description structure in case of
 893 * 	success and an error code in case of failure.
 894 */
 895struct mtd_info *get_mtd_device_nm(const char *name)
 896{
 897	int err = -ENODEV;
 898	struct mtd_info *mtd = NULL, *other;
 899
 900	mutex_lock(&mtd_table_mutex);
 901
 902	mtd_for_each_device(other) {
 903		if (!strcmp(name, other->name)) {
 904			mtd = other;
 905			break;
 906		}
 907	}
 908
 909	if (!mtd)
 910		goto out_unlock;
 911
 912	err = __get_mtd_device(mtd);
 913	if (err)
 914		goto out_unlock;
 915
 916	mutex_unlock(&mtd_table_mutex);
 917	return mtd;
 918
 919out_unlock:
 920	mutex_unlock(&mtd_table_mutex);
 921	return ERR_PTR(err);
 922}
 923EXPORT_SYMBOL_GPL(get_mtd_device_nm);
 924
 925void put_mtd_device(struct mtd_info *mtd)
 926{
 927	mutex_lock(&mtd_table_mutex);
 928	__put_mtd_device(mtd);
 929	mutex_unlock(&mtd_table_mutex);
 930
 931}
 932EXPORT_SYMBOL_GPL(put_mtd_device);
 933
 934void __put_mtd_device(struct mtd_info *mtd)
 935{
 936	--mtd->usecount;
 937	BUG_ON(mtd->usecount < 0);
 
 
 
 
 
 
 
 
 
 
 
 938
 939	if (mtd->_put_device)
 940		mtd->_put_device(mtd);
 941
 942	module_put(mtd->owner);
 
 
 943}
 944EXPORT_SYMBOL_GPL(__put_mtd_device);
 945
 946/*
 947 * Erase is an synchronous operation. Device drivers are epected to return a
 948 * negative error code if the operation failed and update instr->fail_addr
 949 * to point the portion that was not properly erased.
 950 */
 951int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
 952{
 
 
 
 
 
 953	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 
 954
 955	if (!mtd->erasesize || !mtd->_erase)
 956		return -ENOTSUPP;
 957
 958	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
 959		return -EINVAL;
 960	if (!(mtd->flags & MTD_WRITEABLE))
 961		return -EROFS;
 962
 963	if (!instr->len)
 964		return 0;
 965
 966	ledtrig_mtd_activity();
 967	return mtd->_erase(mtd, instr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968}
 969EXPORT_SYMBOL_GPL(mtd_erase);
 
 970
 971/*
 972 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
 973 */
 974int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
 975	      void **virt, resource_size_t *phys)
 976{
 
 
 977	*retlen = 0;
 978	*virt = NULL;
 979	if (phys)
 980		*phys = 0;
 981	if (!mtd->_point)
 982		return -EOPNOTSUPP;
 983	if (from < 0 || from >= mtd->size || len > mtd->size - from)
 984		return -EINVAL;
 985	if (!len)
 986		return 0;
 987	return mtd->_point(mtd, from, len, retlen, virt, phys);
 
 
 988}
 989EXPORT_SYMBOL_GPL(mtd_point);
 990
 991/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
 992int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 993{
 994	if (!mtd->_unpoint)
 
 
 995		return -EOPNOTSUPP;
 996	if (from < 0 || from >= mtd->size || len > mtd->size - from)
 997		return -EINVAL;
 998	if (!len)
 999		return 0;
1000	return mtd->_unpoint(mtd, from, len);
1001}
1002EXPORT_SYMBOL_GPL(mtd_unpoint);
1003
1004/*
1005 * Allow NOMMU mmap() to directly map the device (if not NULL)
1006 * - return the address to which the offset maps
1007 * - return -ENOSYS to indicate refusal to do the mapping
1008 */
1009unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1010				    unsigned long offset, unsigned long flags)
1011{
1012	size_t retlen;
1013	void *virt;
1014	int ret;
1015
1016	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1017	if (ret)
1018		return ret;
1019	if (retlen != len) {
1020		mtd_unpoint(mtd, offset, retlen);
1021		return -ENOSYS;
1022	}
1023	return (unsigned long)virt;
1024}
1025EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1028	     u_char *buf)
1029{
1030	int ret_code;
1031	*retlen = 0;
1032	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1033		return -EINVAL;
1034	if (!len)
1035		return 0;
1036
1037	ledtrig_mtd_activity();
1038	/*
1039	 * In the absence of an error, drivers return a non-negative integer
1040	 * representing the maximum number of bitflips that were corrected on
1041	 * any one ecc region (if applicable; zero otherwise).
1042	 */
1043	if (mtd->_read) {
1044		ret_code = mtd->_read(mtd, from, len, retlen, buf);
1045	} else if (mtd->_read_oob) {
1046		struct mtd_oob_ops ops = {
1047			.len = len,
1048			.datbuf = buf,
1049		};
1050
1051		ret_code = mtd->_read_oob(mtd, from, &ops);
1052		*retlen = ops.retlen;
1053	} else {
1054		return -ENOTSUPP;
1055	}
1056
1057	if (unlikely(ret_code < 0))
1058		return ret_code;
1059	if (mtd->ecc_strength == 0)
1060		return 0;	/* device lacks ecc */
1061	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1062}
1063EXPORT_SYMBOL_GPL(mtd_read);
 
1064
1065int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1066	      const u_char *buf)
1067{
1068	*retlen = 0;
1069	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1070		return -EINVAL;
1071	if ((!mtd->_write && !mtd->_write_oob) ||
1072	    !(mtd->flags & MTD_WRITEABLE))
1073		return -EROFS;
1074	if (!len)
1075		return 0;
1076	ledtrig_mtd_activity();
1077
1078	if (!mtd->_write) {
1079		struct mtd_oob_ops ops = {
1080			.len = len,
1081			.datbuf = (u8 *)buf,
1082		};
1083		int ret;
1084
1085		ret = mtd->_write_oob(mtd, to, &ops);
1086		*retlen = ops.retlen;
1087		return ret;
1088	}
1089
1090	return mtd->_write(mtd, to, len, retlen, buf);
1091}
1092EXPORT_SYMBOL_GPL(mtd_write);
 
1093
1094/*
1095 * In blackbox flight recorder like scenarios we want to make successful writes
1096 * in interrupt context. panic_write() is only intended to be called when its
1097 * known the kernel is about to panic and we need the write to succeed. Since
1098 * the kernel is not going to be running for much longer, this function can
1099 * break locks and delay to ensure the write succeeds (but not sleep).
1100 */
1101int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1102		    const u_char *buf)
1103{
 
 
1104	*retlen = 0;
1105	if (!mtd->_panic_write)
1106		return -EOPNOTSUPP;
1107	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1108		return -EINVAL;
1109	if (!(mtd->flags & MTD_WRITEABLE))
1110		return -EROFS;
1111	if (!len)
1112		return 0;
1113	return mtd->_panic_write(mtd, to, len, retlen, buf);
 
 
 
 
1114}
1115EXPORT_SYMBOL_GPL(mtd_panic_write);
1116
1117static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1118			     struct mtd_oob_ops *ops)
1119{
1120	/*
1121	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1122	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1123	 *  this case.
1124	 */
1125	if (!ops->datbuf)
1126		ops->len = 0;
1127
1128	if (!ops->oobbuf)
1129		ops->ooblen = 0;
1130
1131	if (offs < 0 || offs + ops->len > mtd->size)
1132		return -EINVAL;
1133
1134	if (ops->ooblen) {
1135		u64 maxooblen;
1136
1137		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1138			return -EINVAL;
1139
1140		maxooblen = ((mtd_div_by_ws(mtd->size, mtd) -
1141			      mtd_div_by_ws(offs, mtd)) *
1142			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1143		if (ops->ooblen > maxooblen)
1144			return -EINVAL;
1145	}
1146
1147	return 0;
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1151{
 
 
1152	int ret_code;
 
1153	ops->retlen = ops->oobretlen = 0;
1154	if (!mtd->_read_oob)
1155		return -EOPNOTSUPP;
1156
1157	ret_code = mtd_check_oob_ops(mtd, from, ops);
1158	if (ret_code)
1159		return ret_code;
1160
1161	ledtrig_mtd_activity();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162	/*
1163	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1164	 * similar to mtd->_read(), returning a non-negative integer
1165	 * representing max bitflips. In other cases, mtd->_read_oob() may
1166	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1167	 */
1168	ret_code = mtd->_read_oob(mtd, from, ops);
1169	if (unlikely(ret_code < 0))
1170		return ret_code;
1171	if (mtd->ecc_strength == 0)
1172		return 0;	/* device lacks ecc */
 
 
1173	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1174}
1175EXPORT_SYMBOL_GPL(mtd_read_oob);
1176
1177int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1178				struct mtd_oob_ops *ops)
1179{
 
1180	int ret;
1181
1182	ops->retlen = ops->oobretlen = 0;
1183	if (!mtd->_write_oob)
1184		return -EOPNOTSUPP;
1185	if (!(mtd->flags & MTD_WRITEABLE))
1186		return -EROFS;
1187
1188	ret = mtd_check_oob_ops(mtd, to, ops);
1189	if (ret)
1190		return ret;
1191
1192	ledtrig_mtd_activity();
1193	return mtd->_write_oob(mtd, to, ops);
 
 
 
 
 
 
 
 
1194}
1195EXPORT_SYMBOL_GPL(mtd_write_oob);
1196
1197/**
1198 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1199 * @mtd: MTD device structure
1200 * @section: ECC section. Depending on the layout you may have all the ECC
1201 *	     bytes stored in a single contiguous section, or one section
1202 *	     per ECC chunk (and sometime several sections for a single ECC
1203 *	     ECC chunk)
1204 * @oobecc: OOB region struct filled with the appropriate ECC position
1205 *	    information
1206 *
1207 * This function returns ECC section information in the OOB area. If you want
1208 * to get all the ECC bytes information, then you should call
1209 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1210 *
1211 * Returns zero on success, a negative error code otherwise.
1212 */
1213int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1214		      struct mtd_oob_region *oobecc)
1215{
 
 
1216	memset(oobecc, 0, sizeof(*oobecc));
1217
1218	if (!mtd || section < 0)
1219		return -EINVAL;
1220
1221	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1222		return -ENOTSUPP;
1223
1224	return mtd->ooblayout->ecc(mtd, section, oobecc);
1225}
1226EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1227
1228/**
1229 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1230 *			section
1231 * @mtd: MTD device structure
1232 * @section: Free section you are interested in. Depending on the layout
1233 *	     you may have all the free bytes stored in a single contiguous
1234 *	     section, or one section per ECC chunk plus an extra section
1235 *	     for the remaining bytes (or other funky layout).
1236 * @oobfree: OOB region struct filled with the appropriate free position
1237 *	     information
1238 *
1239 * This function returns free bytes position in the OOB area. If you want
1240 * to get all the free bytes information, then you should call
1241 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1242 *
1243 * Returns zero on success, a negative error code otherwise.
1244 */
1245int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1246		       struct mtd_oob_region *oobfree)
1247{
 
 
1248	memset(oobfree, 0, sizeof(*oobfree));
1249
1250	if (!mtd || section < 0)
1251		return -EINVAL;
1252
1253	if (!mtd->ooblayout || !mtd->ooblayout->free)
1254		return -ENOTSUPP;
1255
1256	return mtd->ooblayout->free(mtd, section, oobfree);
1257}
1258EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1259
1260/**
1261 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1262 * @mtd: mtd info structure
1263 * @byte: the byte we are searching for
1264 * @sectionp: pointer where the section id will be stored
1265 * @oobregion: used to retrieve the ECC position
1266 * @iter: iterator function. Should be either mtd_ooblayout_free or
1267 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1268 *
1269 * This function returns the section id and oobregion information of a
1270 * specific byte. For example, say you want to know where the 4th ECC byte is
1271 * stored, you'll use:
1272 *
1273 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1274 *
1275 * Returns zero on success, a negative error code otherwise.
1276 */
1277static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1278				int *sectionp, struct mtd_oob_region *oobregion,
1279				int (*iter)(struct mtd_info *,
1280					    int section,
1281					    struct mtd_oob_region *oobregion))
1282{
1283	int pos = 0, ret, section = 0;
1284
1285	memset(oobregion, 0, sizeof(*oobregion));
1286
1287	while (1) {
1288		ret = iter(mtd, section, oobregion);
1289		if (ret)
1290			return ret;
1291
1292		if (pos + oobregion->length > byte)
1293			break;
1294
1295		pos += oobregion->length;
1296		section++;
1297	}
1298
1299	/*
1300	 * Adjust region info to make it start at the beginning at the
1301	 * 'start' ECC byte.
1302	 */
1303	oobregion->offset += byte - pos;
1304	oobregion->length -= byte - pos;
1305	*sectionp = section;
1306
1307	return 0;
1308}
1309
1310/**
1311 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1312 *				  ECC byte
1313 * @mtd: mtd info structure
1314 * @eccbyte: the byte we are searching for
1315 * @sectionp: pointer where the section id will be stored
1316 * @oobregion: OOB region information
1317 *
1318 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1319 * byte.
1320 *
1321 * Returns zero on success, a negative error code otherwise.
1322 */
1323int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1324				 int *section,
1325				 struct mtd_oob_region *oobregion)
1326{
1327	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1328					 mtd_ooblayout_ecc);
1329}
1330EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1331
1332/**
1333 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1334 * @mtd: mtd info structure
1335 * @buf: destination buffer to store OOB bytes
1336 * @oobbuf: OOB buffer
1337 * @start: first byte to retrieve
1338 * @nbytes: number of bytes to retrieve
1339 * @iter: section iterator
1340 *
1341 * Extract bytes attached to a specific category (ECC or free)
1342 * from the OOB buffer and copy them into buf.
1343 *
1344 * Returns zero on success, a negative error code otherwise.
1345 */
1346static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1347				const u8 *oobbuf, int start, int nbytes,
1348				int (*iter)(struct mtd_info *,
1349					    int section,
1350					    struct mtd_oob_region *oobregion))
1351{
1352	struct mtd_oob_region oobregion;
1353	int section, ret;
1354
1355	ret = mtd_ooblayout_find_region(mtd, start, &section,
1356					&oobregion, iter);
1357
1358	while (!ret) {
1359		int cnt;
1360
1361		cnt = min_t(int, nbytes, oobregion.length);
1362		memcpy(buf, oobbuf + oobregion.offset, cnt);
1363		buf += cnt;
1364		nbytes -= cnt;
1365
1366		if (!nbytes)
1367			break;
1368
1369		ret = iter(mtd, ++section, &oobregion);
1370	}
1371
1372	return ret;
1373}
1374
1375/**
1376 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1377 * @mtd: mtd info structure
1378 * @buf: source buffer to get OOB bytes from
1379 * @oobbuf: OOB buffer
1380 * @start: first OOB byte to set
1381 * @nbytes: number of OOB bytes to set
1382 * @iter: section iterator
1383 *
1384 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1385 * is selected by passing the appropriate iterator.
1386 *
1387 * Returns zero on success, a negative error code otherwise.
1388 */
1389static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1390				u8 *oobbuf, int start, int nbytes,
1391				int (*iter)(struct mtd_info *,
1392					    int section,
1393					    struct mtd_oob_region *oobregion))
1394{
1395	struct mtd_oob_region oobregion;
1396	int section, ret;
1397
1398	ret = mtd_ooblayout_find_region(mtd, start, &section,
1399					&oobregion, iter);
1400
1401	while (!ret) {
1402		int cnt;
1403
1404		cnt = min_t(int, nbytes, oobregion.length);
1405		memcpy(oobbuf + oobregion.offset, buf, cnt);
1406		buf += cnt;
1407		nbytes -= cnt;
1408
1409		if (!nbytes)
1410			break;
1411
1412		ret = iter(mtd, ++section, &oobregion);
1413	}
1414
1415	return ret;
1416}
1417
1418/**
1419 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1420 * @mtd: mtd info structure
1421 * @iter: category iterator
1422 *
1423 * Count the number of bytes in a given category.
1424 *
1425 * Returns a positive value on success, a negative error code otherwise.
1426 */
1427static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1428				int (*iter)(struct mtd_info *,
1429					    int section,
1430					    struct mtd_oob_region *oobregion))
1431{
1432	struct mtd_oob_region oobregion;
1433	int section = 0, ret, nbytes = 0;
1434
1435	while (1) {
1436		ret = iter(mtd, section++, &oobregion);
1437		if (ret) {
1438			if (ret == -ERANGE)
1439				ret = nbytes;
1440			break;
1441		}
1442
1443		nbytes += oobregion.length;
1444	}
1445
1446	return ret;
1447}
1448
1449/**
1450 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1451 * @mtd: mtd info structure
1452 * @eccbuf: destination buffer to store ECC bytes
1453 * @oobbuf: OOB buffer
1454 * @start: first ECC byte to retrieve
1455 * @nbytes: number of ECC bytes to retrieve
1456 *
1457 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1458 *
1459 * Returns zero on success, a negative error code otherwise.
1460 */
1461int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1462			       const u8 *oobbuf, int start, int nbytes)
1463{
1464	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1465				       mtd_ooblayout_ecc);
1466}
1467EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1468
1469/**
1470 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1471 * @mtd: mtd info structure
1472 * @eccbuf: source buffer to get ECC bytes from
1473 * @oobbuf: OOB buffer
1474 * @start: first ECC byte to set
1475 * @nbytes: number of ECC bytes to set
1476 *
1477 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1478 *
1479 * Returns zero on success, a negative error code otherwise.
1480 */
1481int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1482			       u8 *oobbuf, int start, int nbytes)
1483{
1484	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1485				       mtd_ooblayout_ecc);
1486}
1487EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1488
1489/**
1490 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1491 * @mtd: mtd info structure
1492 * @databuf: destination buffer to store ECC bytes
1493 * @oobbuf: OOB buffer
1494 * @start: first ECC byte to retrieve
1495 * @nbytes: number of ECC bytes to retrieve
1496 *
1497 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1498 *
1499 * Returns zero on success, a negative error code otherwise.
1500 */
1501int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1502				const u8 *oobbuf, int start, int nbytes)
1503{
1504	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1505				       mtd_ooblayout_free);
1506}
1507EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1508
1509/**
1510 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1511 * @mtd: mtd info structure
1512 * @databuf: source buffer to get data bytes from
1513 * @oobbuf: OOB buffer
1514 * @start: first ECC byte to set
1515 * @nbytes: number of ECC bytes to set
1516 *
1517 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1518 *
1519 * Returns zero on success, a negative error code otherwise.
1520 */
1521int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1522				u8 *oobbuf, int start, int nbytes)
1523{
1524	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1525				       mtd_ooblayout_free);
1526}
1527EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1528
1529/**
1530 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1531 * @mtd: mtd info structure
1532 *
1533 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1534 *
1535 * Returns zero on success, a negative error code otherwise.
1536 */
1537int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1538{
1539	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1540}
1541EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1542
1543/**
1544 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1545 * @mtd: mtd info structure
1546 *
1547 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1548 *
1549 * Returns zero on success, a negative error code otherwise.
1550 */
1551int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1552{
1553	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1554}
1555EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1556
1557/*
1558 * Method to access the protection register area, present in some flash
1559 * devices. The user data is one time programmable but the factory data is read
1560 * only.
1561 */
1562int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1563			   struct otp_info *buf)
1564{
1565	if (!mtd->_get_fact_prot_info)
 
 
1566		return -EOPNOTSUPP;
1567	if (!len)
1568		return 0;
1569	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1570}
1571EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1572
1573int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1574			   size_t *retlen, u_char *buf)
1575{
 
 
1576	*retlen = 0;
1577	if (!mtd->_read_fact_prot_reg)
1578		return -EOPNOTSUPP;
1579	if (!len)
1580		return 0;
1581	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1582}
1583EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1584
1585int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1586			   struct otp_info *buf)
1587{
1588	if (!mtd->_get_user_prot_info)
 
 
1589		return -EOPNOTSUPP;
1590	if (!len)
1591		return 0;
1592	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1593}
1594EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1595
1596int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1597			   size_t *retlen, u_char *buf)
1598{
 
 
1599	*retlen = 0;
1600	if (!mtd->_read_user_prot_reg)
1601		return -EOPNOTSUPP;
1602	if (!len)
1603		return 0;
1604	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1605}
1606EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1607
1608int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1609			    size_t *retlen, u_char *buf)
1610{
 
1611	int ret;
1612
1613	*retlen = 0;
1614	if (!mtd->_write_user_prot_reg)
1615		return -EOPNOTSUPP;
1616	if (!len)
1617		return 0;
1618	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1619	if (ret)
1620		return ret;
1621
1622	/*
1623	 * If no data could be written at all, we are out of memory and
1624	 * must return -ENOSPC.
1625	 */
1626	return (*retlen) ? 0 : -ENOSPC;
1627}
1628EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1629
1630int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1631{
1632	if (!mtd->_lock_user_prot_reg)
 
 
1633		return -EOPNOTSUPP;
1634	if (!len)
1635		return 0;
1636	return mtd->_lock_user_prot_reg(mtd, from, len);
1637}
1638EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1639
 
 
 
 
 
 
 
 
 
 
 
 
1640/* Chip-supported device locking */
1641int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1642{
1643	if (!mtd->_lock)
 
 
1644		return -EOPNOTSUPP;
1645	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1646		return -EINVAL;
1647	if (!len)
1648		return 0;
1649	return mtd->_lock(mtd, ofs, len);
 
 
 
 
 
 
1650}
1651EXPORT_SYMBOL_GPL(mtd_lock);
1652
1653int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1654{
1655	if (!mtd->_unlock)
 
 
1656		return -EOPNOTSUPP;
1657	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1658		return -EINVAL;
1659	if (!len)
1660		return 0;
1661	return mtd->_unlock(mtd, ofs, len);
 
 
 
 
 
 
1662}
1663EXPORT_SYMBOL_GPL(mtd_unlock);
1664
1665int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1666{
1667	if (!mtd->_is_locked)
 
 
1668		return -EOPNOTSUPP;
1669	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1670		return -EINVAL;
1671	if (!len)
1672		return 0;
1673	return mtd->_is_locked(mtd, ofs, len);
 
 
 
 
 
 
1674}
1675EXPORT_SYMBOL_GPL(mtd_is_locked);
1676
1677int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1678{
 
 
1679	if (ofs < 0 || ofs >= mtd->size)
1680		return -EINVAL;
1681	if (!mtd->_block_isreserved)
1682		return 0;
1683	return mtd->_block_isreserved(mtd, ofs);
 
 
 
 
1684}
1685EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1686
1687int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1688{
 
 
1689	if (ofs < 0 || ofs >= mtd->size)
1690		return -EINVAL;
1691	if (!mtd->_block_isbad)
1692		return 0;
1693	return mtd->_block_isbad(mtd, ofs);
 
 
 
 
1694}
1695EXPORT_SYMBOL_GPL(mtd_block_isbad);
1696
1697int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1698{
1699	if (!mtd->_block_markbad)
 
 
 
1700		return -EOPNOTSUPP;
1701	if (ofs < 0 || ofs >= mtd->size)
1702		return -EINVAL;
1703	if (!(mtd->flags & MTD_WRITEABLE))
1704		return -EROFS;
1705	return mtd->_block_markbad(mtd, ofs);
 
 
 
 
 
 
 
 
 
 
 
 
 
1706}
1707EXPORT_SYMBOL_GPL(mtd_block_markbad);
 
1708
1709/*
1710 * default_mtd_writev - the default writev method
1711 * @mtd: mtd device description object pointer
1712 * @vecs: the vectors to write
1713 * @count: count of vectors in @vecs
1714 * @to: the MTD device offset to write to
1715 * @retlen: on exit contains the count of bytes written to the MTD device.
1716 *
1717 * This function returns zero in case of success and a negative error code in
1718 * case of failure.
1719 */
1720static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1721			      unsigned long count, loff_t to, size_t *retlen)
1722{
1723	unsigned long i;
1724	size_t totlen = 0, thislen;
1725	int ret = 0;
1726
1727	for (i = 0; i < count; i++) {
1728		if (!vecs[i].iov_len)
1729			continue;
1730		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1731				vecs[i].iov_base);
1732		totlen += thislen;
1733		if (ret || thislen != vecs[i].iov_len)
1734			break;
1735		to += vecs[i].iov_len;
1736	}
1737	*retlen = totlen;
1738	return ret;
1739}
1740
1741/*
1742 * mtd_writev - the vector-based MTD write method
1743 * @mtd: mtd device description object pointer
1744 * @vecs: the vectors to write
1745 * @count: count of vectors in @vecs
1746 * @to: the MTD device offset to write to
1747 * @retlen: on exit contains the count of bytes written to the MTD device.
1748 *
1749 * This function returns zero in case of success and a negative error code in
1750 * case of failure.
1751 */
1752int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1753	       unsigned long count, loff_t to, size_t *retlen)
1754{
 
 
1755	*retlen = 0;
1756	if (!(mtd->flags & MTD_WRITEABLE))
1757		return -EROFS;
1758	if (!mtd->_writev)
 
1759		return default_mtd_writev(mtd, vecs, count, to, retlen);
1760	return mtd->_writev(mtd, vecs, count, to, retlen);
 
 
1761}
1762EXPORT_SYMBOL_GPL(mtd_writev);
1763
1764/**
1765 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1766 * @mtd: mtd device description object pointer
1767 * @size: a pointer to the ideal or maximum size of the allocation, points
1768 *        to the actual allocation size on success.
1769 *
1770 * This routine attempts to allocate a contiguous kernel buffer up to
1771 * the specified size, backing off the size of the request exponentially
1772 * until the request succeeds or until the allocation size falls below
1773 * the system page size. This attempts to make sure it does not adversely
1774 * impact system performance, so when allocating more than one page, we
1775 * ask the memory allocator to avoid re-trying, swapping, writing back
1776 * or performing I/O.
1777 *
1778 * Note, this function also makes sure that the allocated buffer is aligned to
1779 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1780 *
1781 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1782 * to handle smaller (i.e. degraded) buffer allocations under low- or
1783 * fragmented-memory situations where such reduced allocations, from a
1784 * requested ideal, are allowed.
1785 *
1786 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1787 */
1788void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1789{
1790	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1791	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1792	void *kbuf;
1793
1794	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1795
1796	while (*size > min_alloc) {
1797		kbuf = kmalloc(*size, flags);
1798		if (kbuf)
1799			return kbuf;
1800
1801		*size >>= 1;
1802		*size = ALIGN(*size, mtd->writesize);
1803	}
1804
1805	/*
1806	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1807	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1808	 */
1809	return kmalloc(*size, GFP_KERNEL);
1810}
1811EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1812
1813#ifdef CONFIG_PROC_FS
1814
1815/*====================================================================*/
1816/* Support for /proc/mtd */
1817
1818static int mtd_proc_show(struct seq_file *m, void *v)
1819{
1820	struct mtd_info *mtd;
1821
1822	seq_puts(m, "dev:    size   erasesize  name\n");
1823	mutex_lock(&mtd_table_mutex);
1824	mtd_for_each_device(mtd) {
1825		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1826			   mtd->index, (unsigned long long)mtd->size,
1827			   mtd->erasesize, mtd->name);
1828	}
1829	mutex_unlock(&mtd_table_mutex);
1830	return 0;
1831}
1832
1833static int mtd_proc_open(struct inode *inode, struct file *file)
1834{
1835	return single_open(file, mtd_proc_show, NULL);
1836}
1837
1838static const struct file_operations mtd_proc_ops = {
1839	.open		= mtd_proc_open,
1840	.read		= seq_read,
1841	.llseek		= seq_lseek,
1842	.release	= single_release,
1843};
1844#endif /* CONFIG_PROC_FS */
1845
1846/*====================================================================*/
1847/* Init code */
1848
1849static struct backing_dev_info * __init mtd_bdi_init(char *name)
1850{
1851	struct backing_dev_info *bdi;
1852	int ret;
1853
1854	bdi = bdi_alloc(GFP_KERNEL);
1855	if (!bdi)
1856		return ERR_PTR(-ENOMEM);
 
 
1857
1858	bdi->name = name;
1859	/*
1860	 * We put '-0' suffix to the name to get the same name format as we
1861	 * used to get. Since this is called only once, we get a unique name. 
1862	 */
1863	ret = bdi_register(bdi, "%.28s-0", name);
1864	if (ret)
1865		bdi_put(bdi);
1866
1867	return ret ? ERR_PTR(ret) : bdi;
1868}
1869
1870static struct proc_dir_entry *proc_mtd;
1871
1872static int __init init_mtd(void)
1873{
1874	int ret;
1875
1876	ret = class_register(&mtd_class);
1877	if (ret)
1878		goto err_reg;
1879
1880	mtd_bdi = mtd_bdi_init("mtd");
1881	if (IS_ERR(mtd_bdi)) {
1882		ret = PTR_ERR(mtd_bdi);
1883		goto err_bdi;
1884	}
1885
1886	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1887
1888	ret = init_mtdchar();
1889	if (ret)
1890		goto out_procfs;
1891
1892	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
 
 
1893
1894	return 0;
1895
1896out_procfs:
1897	if (proc_mtd)
1898		remove_proc_entry("mtd", NULL);
 
1899	bdi_put(mtd_bdi);
1900err_bdi:
1901	class_unregister(&mtd_class);
1902err_reg:
1903	pr_err("Error registering mtd class or bdi: %d\n", ret);
1904	return ret;
1905}
1906
1907static void __exit cleanup_mtd(void)
1908{
1909	debugfs_remove_recursive(dfs_dir_mtd);
1910	cleanup_mtdchar();
1911	if (proc_mtd)
1912		remove_proc_entry("mtd", NULL);
1913	class_unregister(&mtd_class);
 
1914	bdi_put(mtd_bdi);
1915	idr_destroy(&mtd_idr);
1916}
1917
1918module_init(init_mtd);
1919module_exit(cleanup_mtd);
1920
1921MODULE_LICENSE("GPL");
1922MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1923MODULE_DESCRIPTION("Core MTD registration and access routines");