Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4 *
5 * Largely derived from at91_dataflash.c:
6 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7*/
8#include <linux/module.h>
9#include <linux/slab.h>
10#include <linux/delay.h>
11#include <linux/device.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/math64.h>
15#include <linux/of.h>
16
17#include <linux/spi/spi.h>
18#include <linux/spi/flash.h>
19
20#include <linux/mtd/mtd.h>
21#include <linux/mtd/partitions.h>
22
23/*
24 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
25 * each chip, which may be used for double buffered I/O; but this driver
26 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
27 *
28 * Sometimes DataFlash is packaged in MMC-format cards, although the
29 * MMC stack can't (yet?) distinguish between MMC and DataFlash
30 * protocols during enumeration.
31 */
32
33/* reads can bypass the buffers */
34#define OP_READ_CONTINUOUS 0xE8
35#define OP_READ_PAGE 0xD2
36
37/* group B requests can run even while status reports "busy" */
38#define OP_READ_STATUS 0xD7 /* group B */
39
40/* move data between host and buffer */
41#define OP_READ_BUFFER1 0xD4 /* group B */
42#define OP_READ_BUFFER2 0xD6 /* group B */
43#define OP_WRITE_BUFFER1 0x84 /* group B */
44#define OP_WRITE_BUFFER2 0x87 /* group B */
45
46/* erasing flash */
47#define OP_ERASE_PAGE 0x81
48#define OP_ERASE_BLOCK 0x50
49
50/* move data between buffer and flash */
51#define OP_TRANSFER_BUF1 0x53
52#define OP_TRANSFER_BUF2 0x55
53#define OP_MREAD_BUFFER1 0xD4
54#define OP_MREAD_BUFFER2 0xD6
55#define OP_MWERASE_BUFFER1 0x83
56#define OP_MWERASE_BUFFER2 0x86
57#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
58#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
59
60/* write to buffer, then write-erase to flash */
61#define OP_PROGRAM_VIA_BUF1 0x82
62#define OP_PROGRAM_VIA_BUF2 0x85
63
64/* compare buffer to flash */
65#define OP_COMPARE_BUF1 0x60
66#define OP_COMPARE_BUF2 0x61
67
68/* read flash to buffer, then write-erase to flash */
69#define OP_REWRITE_VIA_BUF1 0x58
70#define OP_REWRITE_VIA_BUF2 0x59
71
72/* newer chips report JEDEC manufacturer and device IDs; chip
73 * serial number and OTP bits; and per-sector writeprotect.
74 */
75#define OP_READ_ID 0x9F
76#define OP_READ_SECURITY 0x77
77#define OP_WRITE_SECURITY_REVC 0x9A
78#define OP_WRITE_SECURITY 0x9B /* revision D */
79
80#define CFI_MFR_ATMEL 0x1F
81
82#define DATAFLASH_SHIFT_EXTID 24
83#define DATAFLASH_SHIFT_ID 40
84
85struct dataflash {
86 u8 command[4];
87 char name[24];
88
89 unsigned short page_offset; /* offset in flash address */
90 unsigned int page_size; /* of bytes per page */
91
92 struct mutex lock;
93 struct spi_device *spi;
94
95 struct mtd_info mtd;
96};
97
98#ifdef CONFIG_OF
99static const struct of_device_id dataflash_dt_ids[] = {
100 { .compatible = "atmel,at45", },
101 { .compatible = "atmel,dataflash", },
102 { /* sentinel */ }
103};
104MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
105#endif
106
107static const struct spi_device_id dataflash_spi_ids[] = {
108 { .name = "at45", },
109 { .name = "dataflash", },
110 { /* sentinel */ }
111};
112MODULE_DEVICE_TABLE(spi, dataflash_spi_ids);
113
114/* ......................................................................... */
115
116/*
117 * Return the status of the DataFlash device.
118 */
119static inline int dataflash_status(struct spi_device *spi)
120{
121 /* NOTE: at45db321c over 25 MHz wants to write
122 * a dummy byte after the opcode...
123 */
124 return spi_w8r8(spi, OP_READ_STATUS);
125}
126
127/*
128 * Poll the DataFlash device until it is READY.
129 * This usually takes 5-20 msec or so; more for sector erase.
130 */
131static int dataflash_waitready(struct spi_device *spi)
132{
133 int status;
134
135 for (;;) {
136 status = dataflash_status(spi);
137 if (status < 0) {
138 dev_dbg(&spi->dev, "status %d?\n", status);
139 status = 0;
140 }
141
142 if (status & (1 << 7)) /* RDY/nBSY */
143 return status;
144
145 usleep_range(3000, 4000);
146 }
147}
148
149/* ......................................................................... */
150
151/*
152 * Erase pages of flash.
153 */
154static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
155{
156 struct dataflash *priv = mtd->priv;
157 struct spi_device *spi = priv->spi;
158 struct spi_transfer x = { };
159 struct spi_message msg;
160 unsigned blocksize = priv->page_size << 3;
161 u8 *command;
162 u32 rem;
163
164 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
165 (long long)instr->addr, (long long)instr->len);
166
167 div_u64_rem(instr->len, priv->page_size, &rem);
168 if (rem)
169 return -EINVAL;
170 div_u64_rem(instr->addr, priv->page_size, &rem);
171 if (rem)
172 return -EINVAL;
173
174 spi_message_init(&msg);
175
176 x.tx_buf = command = priv->command;
177 x.len = 4;
178 spi_message_add_tail(&x, &msg);
179
180 mutex_lock(&priv->lock);
181 while (instr->len > 0) {
182 unsigned int pageaddr;
183 int status;
184 int do_block;
185
186 /* Calculate flash page address; use block erase (for speed) if
187 * we're at a block boundary and need to erase the whole block.
188 */
189 pageaddr = div_u64(instr->addr, priv->page_size);
190 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
191 pageaddr = pageaddr << priv->page_offset;
192
193 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
194 command[1] = (u8)(pageaddr >> 16);
195 command[2] = (u8)(pageaddr >> 8);
196 command[3] = 0;
197
198 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
199 do_block ? "block" : "page",
200 command[0], command[1], command[2], command[3],
201 pageaddr);
202
203 status = spi_sync(spi, &msg);
204 (void) dataflash_waitready(spi);
205
206 if (status < 0) {
207 dev_err(&spi->dev, "erase %x, err %d\n",
208 pageaddr, status);
209 /* REVISIT: can retry instr->retries times; or
210 * giveup and instr->fail_addr = instr->addr;
211 */
212 continue;
213 }
214
215 if (do_block) {
216 instr->addr += blocksize;
217 instr->len -= blocksize;
218 } else {
219 instr->addr += priv->page_size;
220 instr->len -= priv->page_size;
221 }
222 }
223 mutex_unlock(&priv->lock);
224
225 return 0;
226}
227
228/*
229 * Read from the DataFlash device.
230 * from : Start offset in flash device
231 * len : Amount to read
232 * retlen : About of data actually read
233 * buf : Buffer containing the data
234 */
235static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
236 size_t *retlen, u_char *buf)
237{
238 struct dataflash *priv = mtd->priv;
239 struct spi_transfer x[2] = { };
240 struct spi_message msg;
241 unsigned int addr;
242 u8 *command;
243 int status;
244
245 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
246 (unsigned int)from, (unsigned int)(from + len));
247
248 /* Calculate flash page/byte address */
249 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
250 + ((unsigned)from % priv->page_size);
251
252 command = priv->command;
253
254 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
255 command[0], command[1], command[2], command[3]);
256
257 spi_message_init(&msg);
258
259 x[0].tx_buf = command;
260 x[0].len = 8;
261 spi_message_add_tail(&x[0], &msg);
262
263 x[1].rx_buf = buf;
264 x[1].len = len;
265 spi_message_add_tail(&x[1], &msg);
266
267 mutex_lock(&priv->lock);
268
269 /* Continuous read, max clock = f(car) which may be less than
270 * the peak rate available. Some chips support commands with
271 * fewer "don't care" bytes. Both buffers stay unchanged.
272 */
273 command[0] = OP_READ_CONTINUOUS;
274 command[1] = (u8)(addr >> 16);
275 command[2] = (u8)(addr >> 8);
276 command[3] = (u8)(addr >> 0);
277 /* plus 4 "don't care" bytes */
278
279 status = spi_sync(priv->spi, &msg);
280 mutex_unlock(&priv->lock);
281
282 if (status >= 0) {
283 *retlen = msg.actual_length - 8;
284 status = 0;
285 } else
286 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
287 (unsigned)from, (unsigned)(from + len),
288 status);
289 return status;
290}
291
292/*
293 * Write to the DataFlash device.
294 * to : Start offset in flash device
295 * len : Amount to write
296 * retlen : Amount of data actually written
297 * buf : Buffer containing the data
298 */
299static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
300 size_t * retlen, const u_char * buf)
301{
302 struct dataflash *priv = mtd->priv;
303 struct spi_device *spi = priv->spi;
304 struct spi_transfer x[2] = { };
305 struct spi_message msg;
306 unsigned int pageaddr, addr, offset, writelen;
307 size_t remaining = len;
308 u_char *writebuf = (u_char *) buf;
309 int status = -EINVAL;
310 u8 *command;
311
312 dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
313 (unsigned int)to, (unsigned int)(to + len));
314
315 spi_message_init(&msg);
316
317 x[0].tx_buf = command = priv->command;
318 x[0].len = 4;
319 spi_message_add_tail(&x[0], &msg);
320
321 pageaddr = ((unsigned)to / priv->page_size);
322 offset = ((unsigned)to % priv->page_size);
323 if (offset + len > priv->page_size)
324 writelen = priv->page_size - offset;
325 else
326 writelen = len;
327
328 mutex_lock(&priv->lock);
329 while (remaining > 0) {
330 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
331 pageaddr, offset, writelen);
332
333 /* REVISIT:
334 * (a) each page in a sector must be rewritten at least
335 * once every 10K sibling erase/program operations.
336 * (b) for pages that are already erased, we could
337 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
338 * (c) WRITE to buffer could be done while waiting for
339 * a previous MWRITE/MWERASE to complete ...
340 * (d) error handling here seems to be mostly missing.
341 *
342 * Two persistent bits per page, plus a per-sector counter,
343 * could support (a) and (b) ... we might consider using
344 * the second half of sector zero, which is just one block,
345 * to track that state. (On AT91, that sector should also
346 * support boot-from-DataFlash.)
347 */
348
349 addr = pageaddr << priv->page_offset;
350
351 /* (1) Maybe transfer partial page to Buffer1 */
352 if (writelen != priv->page_size) {
353 command[0] = OP_TRANSFER_BUF1;
354 command[1] = (addr & 0x00FF0000) >> 16;
355 command[2] = (addr & 0x0000FF00) >> 8;
356 command[3] = 0;
357
358 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
359 command[0], command[1], command[2], command[3]);
360
361 status = spi_sync(spi, &msg);
362 if (status < 0)
363 dev_dbg(&spi->dev, "xfer %u -> %d\n",
364 addr, status);
365
366 (void) dataflash_waitready(priv->spi);
367 }
368
369 /* (2) Program full page via Buffer1 */
370 addr += offset;
371 command[0] = OP_PROGRAM_VIA_BUF1;
372 command[1] = (addr & 0x00FF0000) >> 16;
373 command[2] = (addr & 0x0000FF00) >> 8;
374 command[3] = (addr & 0x000000FF);
375
376 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
377 command[0], command[1], command[2], command[3]);
378
379 x[1].tx_buf = writebuf;
380 x[1].len = writelen;
381 spi_message_add_tail(x + 1, &msg);
382 status = spi_sync(spi, &msg);
383 spi_transfer_del(x + 1);
384 if (status < 0)
385 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
386 addr, writelen, status);
387
388 (void) dataflash_waitready(priv->spi);
389
390
391#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
392
393 /* (3) Compare to Buffer1 */
394 addr = pageaddr << priv->page_offset;
395 command[0] = OP_COMPARE_BUF1;
396 command[1] = (addr & 0x00FF0000) >> 16;
397 command[2] = (addr & 0x0000FF00) >> 8;
398 command[3] = 0;
399
400 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
401 command[0], command[1], command[2], command[3]);
402
403 status = spi_sync(spi, &msg);
404 if (status < 0)
405 dev_dbg(&spi->dev, "compare %u -> %d\n",
406 addr, status);
407
408 status = dataflash_waitready(priv->spi);
409
410 /* Check result of the compare operation */
411 if (status & (1 << 6)) {
412 dev_err(&spi->dev, "compare page %u, err %d\n",
413 pageaddr, status);
414 remaining = 0;
415 status = -EIO;
416 break;
417 } else
418 status = 0;
419
420#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
421
422 remaining = remaining - writelen;
423 pageaddr++;
424 offset = 0;
425 writebuf += writelen;
426 *retlen += writelen;
427
428 if (remaining > priv->page_size)
429 writelen = priv->page_size;
430 else
431 writelen = remaining;
432 }
433 mutex_unlock(&priv->lock);
434
435 return status;
436}
437
438/* ......................................................................... */
439
440#ifdef CONFIG_MTD_DATAFLASH_OTP
441
442static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
443 size_t *retlen, struct otp_info *info)
444{
445 /* Report both blocks as identical: bytes 0..64, locked.
446 * Unless the user block changed from all-ones, we can't
447 * tell whether it's still writable; so we assume it isn't.
448 */
449 info->start = 0;
450 info->length = 64;
451 info->locked = 1;
452 *retlen = sizeof(*info);
453 return 0;
454}
455
456static ssize_t otp_read(struct spi_device *spi, unsigned base,
457 u8 *buf, loff_t off, size_t len)
458{
459 struct spi_message m;
460 size_t l;
461 u8 *scratch;
462 struct spi_transfer t;
463 int status;
464
465 if (off > 64)
466 return -EINVAL;
467
468 if ((off + len) > 64)
469 len = 64 - off;
470
471 spi_message_init(&m);
472
473 l = 4 + base + off + len;
474 scratch = kzalloc(l, GFP_KERNEL);
475 if (!scratch)
476 return -ENOMEM;
477
478 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
479 * IN: ignore 4 bytes, data bytes 0..N (max 127)
480 */
481 scratch[0] = OP_READ_SECURITY;
482
483 memset(&t, 0, sizeof t);
484 t.tx_buf = scratch;
485 t.rx_buf = scratch;
486 t.len = l;
487 spi_message_add_tail(&t, &m);
488
489 dataflash_waitready(spi);
490
491 status = spi_sync(spi, &m);
492 if (status >= 0) {
493 memcpy(buf, scratch + 4 + base + off, len);
494 status = len;
495 }
496
497 kfree(scratch);
498 return status;
499}
500
501static int dataflash_read_fact_otp(struct mtd_info *mtd,
502 loff_t from, size_t len, size_t *retlen, u_char *buf)
503{
504 struct dataflash *priv = mtd->priv;
505 int status;
506
507 /* 64 bytes, from 0..63 ... start at 64 on-chip */
508 mutex_lock(&priv->lock);
509 status = otp_read(priv->spi, 64, buf, from, len);
510 mutex_unlock(&priv->lock);
511
512 if (status < 0)
513 return status;
514 *retlen = status;
515 return 0;
516}
517
518static int dataflash_read_user_otp(struct mtd_info *mtd,
519 loff_t from, size_t len, size_t *retlen, u_char *buf)
520{
521 struct dataflash *priv = mtd->priv;
522 int status;
523
524 /* 64 bytes, from 0..63 ... start at 0 on-chip */
525 mutex_lock(&priv->lock);
526 status = otp_read(priv->spi, 0, buf, from, len);
527 mutex_unlock(&priv->lock);
528
529 if (status < 0)
530 return status;
531 *retlen = status;
532 return 0;
533}
534
535static int dataflash_write_user_otp(struct mtd_info *mtd,
536 loff_t from, size_t len, size_t *retlen, const u_char *buf)
537{
538 struct spi_message m;
539 const size_t l = 4 + 64;
540 u8 *scratch;
541 struct spi_transfer t;
542 struct dataflash *priv = mtd->priv;
543 int status;
544
545 if (from >= 64) {
546 /*
547 * Attempting to write beyond the end of OTP memory,
548 * no data can be written.
549 */
550 *retlen = 0;
551 return 0;
552 }
553
554 /* Truncate the write to fit into OTP memory. */
555 if ((from + len) > 64)
556 len = 64 - from;
557
558 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
559 * IN: ignore all
560 */
561 scratch = kzalloc(l, GFP_KERNEL);
562 if (!scratch)
563 return -ENOMEM;
564 scratch[0] = OP_WRITE_SECURITY;
565 memcpy(scratch + 4 + from, buf, len);
566
567 spi_message_init(&m);
568
569 memset(&t, 0, sizeof t);
570 t.tx_buf = scratch;
571 t.len = l;
572 spi_message_add_tail(&t, &m);
573
574 /* Write the OTP bits, if they've not yet been written.
575 * This modifies SRAM buffer1.
576 */
577 mutex_lock(&priv->lock);
578 dataflash_waitready(priv->spi);
579 status = spi_sync(priv->spi, &m);
580 mutex_unlock(&priv->lock);
581
582 kfree(scratch);
583
584 if (status >= 0) {
585 status = 0;
586 *retlen = len;
587 }
588 return status;
589}
590
591static char *otp_setup(struct mtd_info *device, char revision)
592{
593 device->_get_fact_prot_info = dataflash_get_otp_info;
594 device->_read_fact_prot_reg = dataflash_read_fact_otp;
595 device->_get_user_prot_info = dataflash_get_otp_info;
596 device->_read_user_prot_reg = dataflash_read_user_otp;
597
598 /* rev c parts (at45db321c and at45db1281 only!) use a
599 * different write procedure; not (yet?) implemented.
600 */
601 if (revision > 'c')
602 device->_write_user_prot_reg = dataflash_write_user_otp;
603
604 return ", OTP";
605}
606
607#else
608
609static char *otp_setup(struct mtd_info *device, char revision)
610{
611 return " (OTP)";
612}
613
614#endif
615
616/* ......................................................................... */
617
618/*
619 * Register DataFlash device with MTD subsystem.
620 */
621static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
622 int pagesize, int pageoffset, char revision)
623{
624 struct dataflash *priv;
625 struct mtd_info *device;
626 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
627 char *otp_tag = "";
628 int err = 0;
629
630 priv = kzalloc(sizeof *priv, GFP_KERNEL);
631 if (!priv)
632 return -ENOMEM;
633
634 mutex_init(&priv->lock);
635 priv->spi = spi;
636 priv->page_size = pagesize;
637 priv->page_offset = pageoffset;
638
639 /* name must be usable with cmdlinepart */
640 sprintf(priv->name, "spi%d.%d-%s",
641 spi->master->bus_num, spi_get_chipselect(spi, 0),
642 name);
643
644 device = &priv->mtd;
645 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
646 device->size = nr_pages * pagesize;
647 device->erasesize = pagesize;
648 device->writesize = pagesize;
649 device->type = MTD_DATAFLASH;
650 device->flags = MTD_WRITEABLE;
651 device->_erase = dataflash_erase;
652 device->_read = dataflash_read;
653 device->_write = dataflash_write;
654 device->priv = priv;
655
656 device->dev.parent = &spi->dev;
657 mtd_set_of_node(device, spi->dev.of_node);
658
659 if (revision >= 'c')
660 otp_tag = otp_setup(device, revision);
661
662 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
663 name, (long long)((device->size + 1023) >> 10),
664 pagesize, otp_tag);
665 spi_set_drvdata(spi, priv);
666
667 err = mtd_device_register(device,
668 pdata ? pdata->parts : NULL,
669 pdata ? pdata->nr_parts : 0);
670
671 if (!err)
672 return 0;
673
674 kfree(priv);
675 return err;
676}
677
678static inline int add_dataflash(struct spi_device *spi, char *name,
679 int nr_pages, int pagesize, int pageoffset)
680{
681 return add_dataflash_otp(spi, name, nr_pages, pagesize,
682 pageoffset, 0);
683}
684
685struct flash_info {
686 char *name;
687
688 /* JEDEC id has a high byte of zero plus three data bytes:
689 * the manufacturer id, then a two byte device id.
690 */
691 u64 jedec_id;
692
693 /* The size listed here is what works with OP_ERASE_PAGE. */
694 unsigned nr_pages;
695 u16 pagesize;
696 u16 pageoffset;
697
698 u16 flags;
699#define SUP_EXTID 0x0004 /* supports extended ID data */
700#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
701#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
702};
703
704static struct flash_info dataflash_data[] = {
705
706 /*
707 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
708 * one with IS_POW2PS and the other without. The entry with the
709 * non-2^N byte page size can't name exact chip revisions without
710 * losing backwards compatibility for cmdlinepart.
711 *
712 * These newer chips also support 128-byte security registers (with
713 * 64 bytes one-time-programmable) and software write-protection.
714 */
715 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
716 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
717
718 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
719 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
720
721 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
722 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
723
724 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
725 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
726
727 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
728 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
729
730 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
731
732 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
733 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
734
735 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
736 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
737
738 { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
739 { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
740};
741
742static struct flash_info *jedec_lookup(struct spi_device *spi,
743 u64 jedec, bool use_extid)
744{
745 struct flash_info *info;
746 int status;
747
748 for (info = dataflash_data;
749 info < dataflash_data + ARRAY_SIZE(dataflash_data);
750 info++) {
751 if (use_extid && !(info->flags & SUP_EXTID))
752 continue;
753
754 if (info->jedec_id == jedec) {
755 dev_dbg(&spi->dev, "OTP, sector protect%s\n",
756 (info->flags & SUP_POW2PS) ?
757 ", binary pagesize" : "");
758 if (info->flags & SUP_POW2PS) {
759 status = dataflash_status(spi);
760 if (status < 0) {
761 dev_dbg(&spi->dev, "status error %d\n",
762 status);
763 return ERR_PTR(status);
764 }
765 if (status & 0x1) {
766 if (info->flags & IS_POW2PS)
767 return info;
768 } else {
769 if (!(info->flags & IS_POW2PS))
770 return info;
771 }
772 } else
773 return info;
774 }
775 }
776
777 return ERR_PTR(-ENODEV);
778}
779
780static struct flash_info *jedec_probe(struct spi_device *spi)
781{
782 int ret;
783 u8 code = OP_READ_ID;
784 u64 jedec;
785 u8 id[sizeof(jedec)] = {0};
786 const unsigned int id_size = 5;
787 struct flash_info *info;
788
789 /*
790 * JEDEC also defines an optional "extended device information"
791 * string for after vendor-specific data, after the three bytes
792 * we use here. Supporting some chips might require using it.
793 *
794 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
795 * That's not an error; only rev C and newer chips handle it, and
796 * only Atmel sells these chips.
797 */
798 ret = spi_write_then_read(spi, &code, 1, id, id_size);
799 if (ret < 0) {
800 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
801 return ERR_PTR(ret);
802 }
803
804 if (id[0] != CFI_MFR_ATMEL)
805 return NULL;
806
807 jedec = be64_to_cpup((__be64 *)id);
808
809 /*
810 * First, try to match device using extended device
811 * information
812 */
813 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
814 if (!IS_ERR(info))
815 return info;
816 /*
817 * If that fails, make another pass using regular ID
818 * information
819 */
820 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
821 if (!IS_ERR(info))
822 return info;
823 /*
824 * Treat other chips as errors ... we won't know the right page
825 * size (it might be binary) even when we can tell which density
826 * class is involved (legacy chip id scheme).
827 */
828 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
829 return ERR_PTR(-ENODEV);
830}
831
832/*
833 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
834 * or else the ID code embedded in the status bits:
835 *
836 * Device Density ID code #Pages PageSize Offset
837 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
838 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
839 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
840 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
841 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
842 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
843 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
844 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
845 */
846static int dataflash_probe(struct spi_device *spi)
847{
848 int status;
849 struct flash_info *info;
850
851 /*
852 * Try to detect dataflash by JEDEC ID.
853 * If it succeeds we know we have either a C or D part.
854 * D will support power of 2 pagesize option.
855 * Both support the security register, though with different
856 * write procedures.
857 */
858 info = jedec_probe(spi);
859 if (IS_ERR(info))
860 return PTR_ERR(info);
861 if (info != NULL)
862 return add_dataflash_otp(spi, info->name, info->nr_pages,
863 info->pagesize, info->pageoffset,
864 (info->flags & SUP_POW2PS) ? 'd' : 'c');
865
866 /*
867 * Older chips support only legacy commands, identifing
868 * capacity using bits in the status byte.
869 */
870 status = dataflash_status(spi);
871 if (status <= 0 || status == 0xff) {
872 dev_dbg(&spi->dev, "status error %d\n", status);
873 if (status == 0 || status == 0xff)
874 status = -ENODEV;
875 return status;
876 }
877
878 /* if there's a device there, assume it's dataflash.
879 * board setup should have set spi->max_speed_max to
880 * match f(car) for continuous reads, mode 0 or 3.
881 */
882 switch (status & 0x3c) {
883 case 0x0c: /* 0 0 1 1 x x */
884 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
885 break;
886 case 0x14: /* 0 1 0 1 x x */
887 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
888 break;
889 case 0x1c: /* 0 1 1 1 x x */
890 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
891 break;
892 case 0x24: /* 1 0 0 1 x x */
893 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
894 break;
895 case 0x2c: /* 1 0 1 1 x x */
896 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
897 break;
898 case 0x34: /* 1 1 0 1 x x */
899 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
900 break;
901 case 0x38: /* 1 1 1 x x x */
902 case 0x3c:
903 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
904 break;
905 /* obsolete AT45DB1282 not (yet?) supported */
906 default:
907 dev_info(&spi->dev, "unsupported device (%x)\n",
908 status & 0x3c);
909 status = -ENODEV;
910 }
911
912 if (status < 0)
913 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
914
915 return status;
916}
917
918static void dataflash_remove(struct spi_device *spi)
919{
920 struct dataflash *flash = spi_get_drvdata(spi);
921
922 dev_dbg(&spi->dev, "remove\n");
923
924 WARN_ON(mtd_device_unregister(&flash->mtd));
925
926 kfree(flash);
927}
928
929static struct spi_driver dataflash_driver = {
930 .driver = {
931 .name = "mtd_dataflash",
932 .of_match_table = of_match_ptr(dataflash_dt_ids),
933 },
934 .probe = dataflash_probe,
935 .remove = dataflash_remove,
936 .id_table = dataflash_spi_ids,
937
938 /* FIXME: investigate suspend and resume... */
939};
940
941module_spi_driver(dataflash_driver);
942
943MODULE_LICENSE("GPL");
944MODULE_AUTHOR("Andrew Victor, David Brownell");
945MODULE_DESCRIPTION("MTD DataFlash driver");
946MODULE_ALIAS("spi:mtd_dataflash");
1/*
2 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3 *
4 * Largely derived from at91_dataflash.c:
5 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11*/
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15#include <linux/device.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/math64.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21
22#include <linux/spi/spi.h>
23#include <linux/spi/flash.h>
24
25#include <linux/mtd/mtd.h>
26#include <linux/mtd/partitions.h>
27
28/*
29 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
30 * each chip, which may be used for double buffered I/O; but this driver
31 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32 *
33 * Sometimes DataFlash is packaged in MMC-format cards, although the
34 * MMC stack can't (yet?) distinguish between MMC and DataFlash
35 * protocols during enumeration.
36 */
37
38/* reads can bypass the buffers */
39#define OP_READ_CONTINUOUS 0xE8
40#define OP_READ_PAGE 0xD2
41
42/* group B requests can run even while status reports "busy" */
43#define OP_READ_STATUS 0xD7 /* group B */
44
45/* move data between host and buffer */
46#define OP_READ_BUFFER1 0xD4 /* group B */
47#define OP_READ_BUFFER2 0xD6 /* group B */
48#define OP_WRITE_BUFFER1 0x84 /* group B */
49#define OP_WRITE_BUFFER2 0x87 /* group B */
50
51/* erasing flash */
52#define OP_ERASE_PAGE 0x81
53#define OP_ERASE_BLOCK 0x50
54
55/* move data between buffer and flash */
56#define OP_TRANSFER_BUF1 0x53
57#define OP_TRANSFER_BUF2 0x55
58#define OP_MREAD_BUFFER1 0xD4
59#define OP_MREAD_BUFFER2 0xD6
60#define OP_MWERASE_BUFFER1 0x83
61#define OP_MWERASE_BUFFER2 0x86
62#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
63#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
64
65/* write to buffer, then write-erase to flash */
66#define OP_PROGRAM_VIA_BUF1 0x82
67#define OP_PROGRAM_VIA_BUF2 0x85
68
69/* compare buffer to flash */
70#define OP_COMPARE_BUF1 0x60
71#define OP_COMPARE_BUF2 0x61
72
73/* read flash to buffer, then write-erase to flash */
74#define OP_REWRITE_VIA_BUF1 0x58
75#define OP_REWRITE_VIA_BUF2 0x59
76
77/* newer chips report JEDEC manufacturer and device IDs; chip
78 * serial number and OTP bits; and per-sector writeprotect.
79 */
80#define OP_READ_ID 0x9F
81#define OP_READ_SECURITY 0x77
82#define OP_WRITE_SECURITY_REVC 0x9A
83#define OP_WRITE_SECURITY 0x9B /* revision D */
84
85#define CFI_MFR_ATMEL 0x1F
86
87#define DATAFLASH_SHIFT_EXTID 24
88#define DATAFLASH_SHIFT_ID 40
89
90struct dataflash {
91 u8 command[4];
92 char name[24];
93
94 unsigned short page_offset; /* offset in flash address */
95 unsigned int page_size; /* of bytes per page */
96
97 struct mutex lock;
98 struct spi_device *spi;
99
100 struct mtd_info mtd;
101};
102
103#ifdef CONFIG_OF
104static const struct of_device_id dataflash_dt_ids[] = {
105 { .compatible = "atmel,at45", },
106 { .compatible = "atmel,dataflash", },
107 { /* sentinel */ }
108};
109MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
110#endif
111
112/* ......................................................................... */
113
114/*
115 * Return the status of the DataFlash device.
116 */
117static inline int dataflash_status(struct spi_device *spi)
118{
119 /* NOTE: at45db321c over 25 MHz wants to write
120 * a dummy byte after the opcode...
121 */
122 return spi_w8r8(spi, OP_READ_STATUS);
123}
124
125/*
126 * Poll the DataFlash device until it is READY.
127 * This usually takes 5-20 msec or so; more for sector erase.
128 */
129static int dataflash_waitready(struct spi_device *spi)
130{
131 int status;
132
133 for (;;) {
134 status = dataflash_status(spi);
135 if (status < 0) {
136 dev_dbg(&spi->dev, "status %d?\n", status);
137 status = 0;
138 }
139
140 if (status & (1 << 7)) /* RDY/nBSY */
141 return status;
142
143 msleep(3);
144 }
145}
146
147/* ......................................................................... */
148
149/*
150 * Erase pages of flash.
151 */
152static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
153{
154 struct dataflash *priv = mtd->priv;
155 struct spi_device *spi = priv->spi;
156 struct spi_transfer x = { };
157 struct spi_message msg;
158 unsigned blocksize = priv->page_size << 3;
159 u8 *command;
160 u32 rem;
161
162 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
163 (long long)instr->addr, (long long)instr->len);
164
165 div_u64_rem(instr->len, priv->page_size, &rem);
166 if (rem)
167 return -EINVAL;
168 div_u64_rem(instr->addr, priv->page_size, &rem);
169 if (rem)
170 return -EINVAL;
171
172 spi_message_init(&msg);
173
174 x.tx_buf = command = priv->command;
175 x.len = 4;
176 spi_message_add_tail(&x, &msg);
177
178 mutex_lock(&priv->lock);
179 while (instr->len > 0) {
180 unsigned int pageaddr;
181 int status;
182 int do_block;
183
184 /* Calculate flash page address; use block erase (for speed) if
185 * we're at a block boundary and need to erase the whole block.
186 */
187 pageaddr = div_u64(instr->addr, priv->page_size);
188 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
189 pageaddr = pageaddr << priv->page_offset;
190
191 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
192 command[1] = (u8)(pageaddr >> 16);
193 command[2] = (u8)(pageaddr >> 8);
194 command[3] = 0;
195
196 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
197 do_block ? "block" : "page",
198 command[0], command[1], command[2], command[3],
199 pageaddr);
200
201 status = spi_sync(spi, &msg);
202 (void) dataflash_waitready(spi);
203
204 if (status < 0) {
205 dev_err(&spi->dev, "erase %x, err %d\n",
206 pageaddr, status);
207 /* REVISIT: can retry instr->retries times; or
208 * giveup and instr->fail_addr = instr->addr;
209 */
210 continue;
211 }
212
213 if (do_block) {
214 instr->addr += blocksize;
215 instr->len -= blocksize;
216 } else {
217 instr->addr += priv->page_size;
218 instr->len -= priv->page_size;
219 }
220 }
221 mutex_unlock(&priv->lock);
222
223 return 0;
224}
225
226/*
227 * Read from the DataFlash device.
228 * from : Start offset in flash device
229 * len : Amount to read
230 * retlen : About of data actually read
231 * buf : Buffer containing the data
232 */
233static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
234 size_t *retlen, u_char *buf)
235{
236 struct dataflash *priv = mtd->priv;
237 struct spi_transfer x[2] = { };
238 struct spi_message msg;
239 unsigned int addr;
240 u8 *command;
241 int status;
242
243 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
244 (unsigned int)from, (unsigned int)(from + len));
245
246 /* Calculate flash page/byte address */
247 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
248 + ((unsigned)from % priv->page_size);
249
250 command = priv->command;
251
252 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
253 command[0], command[1], command[2], command[3]);
254
255 spi_message_init(&msg);
256
257 x[0].tx_buf = command;
258 x[0].len = 8;
259 spi_message_add_tail(&x[0], &msg);
260
261 x[1].rx_buf = buf;
262 x[1].len = len;
263 spi_message_add_tail(&x[1], &msg);
264
265 mutex_lock(&priv->lock);
266
267 /* Continuous read, max clock = f(car) which may be less than
268 * the peak rate available. Some chips support commands with
269 * fewer "don't care" bytes. Both buffers stay unchanged.
270 */
271 command[0] = OP_READ_CONTINUOUS;
272 command[1] = (u8)(addr >> 16);
273 command[2] = (u8)(addr >> 8);
274 command[3] = (u8)(addr >> 0);
275 /* plus 4 "don't care" bytes */
276
277 status = spi_sync(priv->spi, &msg);
278 mutex_unlock(&priv->lock);
279
280 if (status >= 0) {
281 *retlen = msg.actual_length - 8;
282 status = 0;
283 } else
284 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
285 (unsigned)from, (unsigned)(from + len),
286 status);
287 return status;
288}
289
290/*
291 * Write to the DataFlash device.
292 * to : Start offset in flash device
293 * len : Amount to write
294 * retlen : Amount of data actually written
295 * buf : Buffer containing the data
296 */
297static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
298 size_t * retlen, const u_char * buf)
299{
300 struct dataflash *priv = mtd->priv;
301 struct spi_device *spi = priv->spi;
302 struct spi_transfer x[2] = { };
303 struct spi_message msg;
304 unsigned int pageaddr, addr, offset, writelen;
305 size_t remaining = len;
306 u_char *writebuf = (u_char *) buf;
307 int status = -EINVAL;
308 u8 *command;
309
310 dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
311 (unsigned int)to, (unsigned int)(to + len));
312
313 spi_message_init(&msg);
314
315 x[0].tx_buf = command = priv->command;
316 x[0].len = 4;
317 spi_message_add_tail(&x[0], &msg);
318
319 pageaddr = ((unsigned)to / priv->page_size);
320 offset = ((unsigned)to % priv->page_size);
321 if (offset + len > priv->page_size)
322 writelen = priv->page_size - offset;
323 else
324 writelen = len;
325
326 mutex_lock(&priv->lock);
327 while (remaining > 0) {
328 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
329 pageaddr, offset, writelen);
330
331 /* REVISIT:
332 * (a) each page in a sector must be rewritten at least
333 * once every 10K sibling erase/program operations.
334 * (b) for pages that are already erased, we could
335 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
336 * (c) WRITE to buffer could be done while waiting for
337 * a previous MWRITE/MWERASE to complete ...
338 * (d) error handling here seems to be mostly missing.
339 *
340 * Two persistent bits per page, plus a per-sector counter,
341 * could support (a) and (b) ... we might consider using
342 * the second half of sector zero, which is just one block,
343 * to track that state. (On AT91, that sector should also
344 * support boot-from-DataFlash.)
345 */
346
347 addr = pageaddr << priv->page_offset;
348
349 /* (1) Maybe transfer partial page to Buffer1 */
350 if (writelen != priv->page_size) {
351 command[0] = OP_TRANSFER_BUF1;
352 command[1] = (addr & 0x00FF0000) >> 16;
353 command[2] = (addr & 0x0000FF00) >> 8;
354 command[3] = 0;
355
356 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
357 command[0], command[1], command[2], command[3]);
358
359 status = spi_sync(spi, &msg);
360 if (status < 0)
361 dev_dbg(&spi->dev, "xfer %u -> %d\n",
362 addr, status);
363
364 (void) dataflash_waitready(priv->spi);
365 }
366
367 /* (2) Program full page via Buffer1 */
368 addr += offset;
369 command[0] = OP_PROGRAM_VIA_BUF1;
370 command[1] = (addr & 0x00FF0000) >> 16;
371 command[2] = (addr & 0x0000FF00) >> 8;
372 command[3] = (addr & 0x000000FF);
373
374 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
375 command[0], command[1], command[2], command[3]);
376
377 x[1].tx_buf = writebuf;
378 x[1].len = writelen;
379 spi_message_add_tail(x + 1, &msg);
380 status = spi_sync(spi, &msg);
381 spi_transfer_del(x + 1);
382 if (status < 0)
383 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
384 addr, writelen, status);
385
386 (void) dataflash_waitready(priv->spi);
387
388
389#ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
390
391 /* (3) Compare to Buffer1 */
392 addr = pageaddr << priv->page_offset;
393 command[0] = OP_COMPARE_BUF1;
394 command[1] = (addr & 0x00FF0000) >> 16;
395 command[2] = (addr & 0x0000FF00) >> 8;
396 command[3] = 0;
397
398 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
399 command[0], command[1], command[2], command[3]);
400
401 status = spi_sync(spi, &msg);
402 if (status < 0)
403 dev_dbg(&spi->dev, "compare %u -> %d\n",
404 addr, status);
405
406 status = dataflash_waitready(priv->spi);
407
408 /* Check result of the compare operation */
409 if (status & (1 << 6)) {
410 dev_err(&spi->dev, "compare page %u, err %d\n",
411 pageaddr, status);
412 remaining = 0;
413 status = -EIO;
414 break;
415 } else
416 status = 0;
417
418#endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
419
420 remaining = remaining - writelen;
421 pageaddr++;
422 offset = 0;
423 writebuf += writelen;
424 *retlen += writelen;
425
426 if (remaining > priv->page_size)
427 writelen = priv->page_size;
428 else
429 writelen = remaining;
430 }
431 mutex_unlock(&priv->lock);
432
433 return status;
434}
435
436/* ......................................................................... */
437
438#ifdef CONFIG_MTD_DATAFLASH_OTP
439
440static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
441 size_t *retlen, struct otp_info *info)
442{
443 /* Report both blocks as identical: bytes 0..64, locked.
444 * Unless the user block changed from all-ones, we can't
445 * tell whether it's still writable; so we assume it isn't.
446 */
447 info->start = 0;
448 info->length = 64;
449 info->locked = 1;
450 *retlen = sizeof(*info);
451 return 0;
452}
453
454static ssize_t otp_read(struct spi_device *spi, unsigned base,
455 u8 *buf, loff_t off, size_t len)
456{
457 struct spi_message m;
458 size_t l;
459 u8 *scratch;
460 struct spi_transfer t;
461 int status;
462
463 if (off > 64)
464 return -EINVAL;
465
466 if ((off + len) > 64)
467 len = 64 - off;
468
469 spi_message_init(&m);
470
471 l = 4 + base + off + len;
472 scratch = kzalloc(l, GFP_KERNEL);
473 if (!scratch)
474 return -ENOMEM;
475
476 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
477 * IN: ignore 4 bytes, data bytes 0..N (max 127)
478 */
479 scratch[0] = OP_READ_SECURITY;
480
481 memset(&t, 0, sizeof t);
482 t.tx_buf = scratch;
483 t.rx_buf = scratch;
484 t.len = l;
485 spi_message_add_tail(&t, &m);
486
487 dataflash_waitready(spi);
488
489 status = spi_sync(spi, &m);
490 if (status >= 0) {
491 memcpy(buf, scratch + 4 + base + off, len);
492 status = len;
493 }
494
495 kfree(scratch);
496 return status;
497}
498
499static int dataflash_read_fact_otp(struct mtd_info *mtd,
500 loff_t from, size_t len, size_t *retlen, u_char *buf)
501{
502 struct dataflash *priv = mtd->priv;
503 int status;
504
505 /* 64 bytes, from 0..63 ... start at 64 on-chip */
506 mutex_lock(&priv->lock);
507 status = otp_read(priv->spi, 64, buf, from, len);
508 mutex_unlock(&priv->lock);
509
510 if (status < 0)
511 return status;
512 *retlen = status;
513 return 0;
514}
515
516static int dataflash_read_user_otp(struct mtd_info *mtd,
517 loff_t from, size_t len, size_t *retlen, u_char *buf)
518{
519 struct dataflash *priv = mtd->priv;
520 int status;
521
522 /* 64 bytes, from 0..63 ... start at 0 on-chip */
523 mutex_lock(&priv->lock);
524 status = otp_read(priv->spi, 0, buf, from, len);
525 mutex_unlock(&priv->lock);
526
527 if (status < 0)
528 return status;
529 *retlen = status;
530 return 0;
531}
532
533static int dataflash_write_user_otp(struct mtd_info *mtd,
534 loff_t from, size_t len, size_t *retlen, u_char *buf)
535{
536 struct spi_message m;
537 const size_t l = 4 + 64;
538 u8 *scratch;
539 struct spi_transfer t;
540 struct dataflash *priv = mtd->priv;
541 int status;
542
543 if (from >= 64) {
544 /*
545 * Attempting to write beyond the end of OTP memory,
546 * no data can be written.
547 */
548 *retlen = 0;
549 return 0;
550 }
551
552 /* Truncate the write to fit into OTP memory. */
553 if ((from + len) > 64)
554 len = 64 - from;
555
556 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
557 * IN: ignore all
558 */
559 scratch = kzalloc(l, GFP_KERNEL);
560 if (!scratch)
561 return -ENOMEM;
562 scratch[0] = OP_WRITE_SECURITY;
563 memcpy(scratch + 4 + from, buf, len);
564
565 spi_message_init(&m);
566
567 memset(&t, 0, sizeof t);
568 t.tx_buf = scratch;
569 t.len = l;
570 spi_message_add_tail(&t, &m);
571
572 /* Write the OTP bits, if they've not yet been written.
573 * This modifies SRAM buffer1.
574 */
575 mutex_lock(&priv->lock);
576 dataflash_waitready(priv->spi);
577 status = spi_sync(priv->spi, &m);
578 mutex_unlock(&priv->lock);
579
580 kfree(scratch);
581
582 if (status >= 0) {
583 status = 0;
584 *retlen = len;
585 }
586 return status;
587}
588
589static char *otp_setup(struct mtd_info *device, char revision)
590{
591 device->_get_fact_prot_info = dataflash_get_otp_info;
592 device->_read_fact_prot_reg = dataflash_read_fact_otp;
593 device->_get_user_prot_info = dataflash_get_otp_info;
594 device->_read_user_prot_reg = dataflash_read_user_otp;
595
596 /* rev c parts (at45db321c and at45db1281 only!) use a
597 * different write procedure; not (yet?) implemented.
598 */
599 if (revision > 'c')
600 device->_write_user_prot_reg = dataflash_write_user_otp;
601
602 return ", OTP";
603}
604
605#else
606
607static char *otp_setup(struct mtd_info *device, char revision)
608{
609 return " (OTP)";
610}
611
612#endif
613
614/* ......................................................................... */
615
616/*
617 * Register DataFlash device with MTD subsystem.
618 */
619static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
620 int pagesize, int pageoffset, char revision)
621{
622 struct dataflash *priv;
623 struct mtd_info *device;
624 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
625 char *otp_tag = "";
626 int err = 0;
627
628 priv = kzalloc(sizeof *priv, GFP_KERNEL);
629 if (!priv)
630 return -ENOMEM;
631
632 mutex_init(&priv->lock);
633 priv->spi = spi;
634 priv->page_size = pagesize;
635 priv->page_offset = pageoffset;
636
637 /* name must be usable with cmdlinepart */
638 sprintf(priv->name, "spi%d.%d-%s",
639 spi->master->bus_num, spi->chip_select,
640 name);
641
642 device = &priv->mtd;
643 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
644 device->size = nr_pages * pagesize;
645 device->erasesize = pagesize;
646 device->writesize = pagesize;
647 device->type = MTD_DATAFLASH;
648 device->flags = MTD_WRITEABLE;
649 device->_erase = dataflash_erase;
650 device->_read = dataflash_read;
651 device->_write = dataflash_write;
652 device->priv = priv;
653
654 device->dev.parent = &spi->dev;
655 mtd_set_of_node(device, spi->dev.of_node);
656
657 if (revision >= 'c')
658 otp_tag = otp_setup(device, revision);
659
660 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
661 name, (long long)((device->size + 1023) >> 10),
662 pagesize, otp_tag);
663 spi_set_drvdata(spi, priv);
664
665 err = mtd_device_register(device,
666 pdata ? pdata->parts : NULL,
667 pdata ? pdata->nr_parts : 0);
668
669 if (!err)
670 return 0;
671
672 kfree(priv);
673 return err;
674}
675
676static inline int add_dataflash(struct spi_device *spi, char *name,
677 int nr_pages, int pagesize, int pageoffset)
678{
679 return add_dataflash_otp(spi, name, nr_pages, pagesize,
680 pageoffset, 0);
681}
682
683struct flash_info {
684 char *name;
685
686 /* JEDEC id has a high byte of zero plus three data bytes:
687 * the manufacturer id, then a two byte device id.
688 */
689 u64 jedec_id;
690
691 /* The size listed here is what works with OP_ERASE_PAGE. */
692 unsigned nr_pages;
693 u16 pagesize;
694 u16 pageoffset;
695
696 u16 flags;
697#define SUP_EXTID 0x0004 /* supports extended ID data */
698#define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
699#define IS_POW2PS 0x0001 /* uses 2^N byte pages */
700};
701
702static struct flash_info dataflash_data[] = {
703
704 /*
705 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
706 * one with IS_POW2PS and the other without. The entry with the
707 * non-2^N byte page size can't name exact chip revisions without
708 * losing backwards compatibility for cmdlinepart.
709 *
710 * These newer chips also support 128-byte security registers (with
711 * 64 bytes one-time-programmable) and software write-protection.
712 */
713 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
714 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
715
716 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
717 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
718
719 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
720 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
721
722 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
723 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
724
725 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
726 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
727
728 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
729
730 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
731 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
732
733 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
734 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
735
736 { "AT45DB641E", 0x1f28000100, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
737 { "at45db641e", 0x1f28000100, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
738};
739
740static struct flash_info *jedec_lookup(struct spi_device *spi,
741 u64 jedec, bool use_extid)
742{
743 struct flash_info *info;
744 int status;
745
746 for (info = dataflash_data;
747 info < dataflash_data + ARRAY_SIZE(dataflash_data);
748 info++) {
749 if (use_extid && !(info->flags & SUP_EXTID))
750 continue;
751
752 if (info->jedec_id == jedec) {
753 dev_dbg(&spi->dev, "OTP, sector protect%s\n",
754 (info->flags & SUP_POW2PS) ?
755 ", binary pagesize" : "");
756 if (info->flags & SUP_POW2PS) {
757 status = dataflash_status(spi);
758 if (status < 0) {
759 dev_dbg(&spi->dev, "status error %d\n",
760 status);
761 return ERR_PTR(status);
762 }
763 if (status & 0x1) {
764 if (info->flags & IS_POW2PS)
765 return info;
766 } else {
767 if (!(info->flags & IS_POW2PS))
768 return info;
769 }
770 } else
771 return info;
772 }
773 }
774
775 return ERR_PTR(-ENODEV);
776}
777
778static struct flash_info *jedec_probe(struct spi_device *spi)
779{
780 int ret;
781 u8 code = OP_READ_ID;
782 u64 jedec;
783 u8 id[sizeof(jedec)] = {0};
784 const unsigned int id_size = 5;
785 struct flash_info *info;
786
787 /*
788 * JEDEC also defines an optional "extended device information"
789 * string for after vendor-specific data, after the three bytes
790 * we use here. Supporting some chips might require using it.
791 *
792 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
793 * That's not an error; only rev C and newer chips handle it, and
794 * only Atmel sells these chips.
795 */
796 ret = spi_write_then_read(spi, &code, 1, id, id_size);
797 if (ret < 0) {
798 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
799 return ERR_PTR(ret);
800 }
801
802 if (id[0] != CFI_MFR_ATMEL)
803 return NULL;
804
805 jedec = be64_to_cpup((__be64 *)id);
806
807 /*
808 * First, try to match device using extended device
809 * information
810 */
811 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
812 if (!IS_ERR(info))
813 return info;
814 /*
815 * If that fails, make another pass using regular ID
816 * information
817 */
818 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
819 if (!IS_ERR(info))
820 return info;
821 /*
822 * Treat other chips as errors ... we won't know the right page
823 * size (it might be binary) even when we can tell which density
824 * class is involved (legacy chip id scheme).
825 */
826 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
827 return ERR_PTR(-ENODEV);
828}
829
830/*
831 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
832 * or else the ID code embedded in the status bits:
833 *
834 * Device Density ID code #Pages PageSize Offset
835 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
836 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
837 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
838 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
839 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
840 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
841 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
842 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
843 */
844static int dataflash_probe(struct spi_device *spi)
845{
846 int status;
847 struct flash_info *info;
848
849 /*
850 * Try to detect dataflash by JEDEC ID.
851 * If it succeeds we know we have either a C or D part.
852 * D will support power of 2 pagesize option.
853 * Both support the security register, though with different
854 * write procedures.
855 */
856 info = jedec_probe(spi);
857 if (IS_ERR(info))
858 return PTR_ERR(info);
859 if (info != NULL)
860 return add_dataflash_otp(spi, info->name, info->nr_pages,
861 info->pagesize, info->pageoffset,
862 (info->flags & SUP_POW2PS) ? 'd' : 'c');
863
864 /*
865 * Older chips support only legacy commands, identifing
866 * capacity using bits in the status byte.
867 */
868 status = dataflash_status(spi);
869 if (status <= 0 || status == 0xff) {
870 dev_dbg(&spi->dev, "status error %d\n", status);
871 if (status == 0 || status == 0xff)
872 status = -ENODEV;
873 return status;
874 }
875
876 /* if there's a device there, assume it's dataflash.
877 * board setup should have set spi->max_speed_max to
878 * match f(car) for continuous reads, mode 0 or 3.
879 */
880 switch (status & 0x3c) {
881 case 0x0c: /* 0 0 1 1 x x */
882 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
883 break;
884 case 0x14: /* 0 1 0 1 x x */
885 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
886 break;
887 case 0x1c: /* 0 1 1 1 x x */
888 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
889 break;
890 case 0x24: /* 1 0 0 1 x x */
891 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
892 break;
893 case 0x2c: /* 1 0 1 1 x x */
894 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
895 break;
896 case 0x34: /* 1 1 0 1 x x */
897 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
898 break;
899 case 0x38: /* 1 1 1 x x x */
900 case 0x3c:
901 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
902 break;
903 /* obsolete AT45DB1282 not (yet?) supported */
904 default:
905 dev_info(&spi->dev, "unsupported device (%x)\n",
906 status & 0x3c);
907 status = -ENODEV;
908 }
909
910 if (status < 0)
911 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
912
913 return status;
914}
915
916static int dataflash_remove(struct spi_device *spi)
917{
918 struct dataflash *flash = spi_get_drvdata(spi);
919 int status;
920
921 dev_dbg(&spi->dev, "remove\n");
922
923 status = mtd_device_unregister(&flash->mtd);
924 if (status == 0)
925 kfree(flash);
926 return status;
927}
928
929static struct spi_driver dataflash_driver = {
930 .driver = {
931 .name = "mtd_dataflash",
932 .of_match_table = of_match_ptr(dataflash_dt_ids),
933 },
934
935 .probe = dataflash_probe,
936 .remove = dataflash_remove,
937
938 /* FIXME: investigate suspend and resume... */
939};
940
941module_spi_driver(dataflash_driver);
942
943MODULE_LICENSE("GPL");
944MODULE_AUTHOR("Andrew Victor, David Brownell");
945MODULE_DESCRIPTION("MTD DataFlash driver");
946MODULE_ALIAS("spi:mtd_dataflash");