Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
 
 
 
 
   9 */
  10#include <linux/err.h>
  11#include <linux/kernel.h>
  12#include <linux/reboot.h>
  13#include <linux/platform_data/emif_plat.h>
  14#include <linux/io.h>
  15#include <linux/device.h>
  16#include <linux/platform_device.h>
  17#include <linux/interrupt.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20#include <linux/debugfs.h>
  21#include <linux/seq_file.h>
  22#include <linux/module.h>
  23#include <linux/list.h>
  24#include <linux/spinlock.h>
  25#include <linux/pm.h>
  26
  27#include "emif.h"
  28#include "jedec_ddr.h"
  29#include "of_memory.h"
  30
  31/**
  32 * struct emif_data - Per device static data for driver's use
  33 * @duplicate:			Whether the DDR devices attached to this EMIF
  34 *				instance are exactly same as that on EMIF1. In
  35 *				this case we can save some memory and processing
  36 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  37 *				to this EMIF - read from MR4 register. If there
  38 *				are two devices attached to this EMIF, this
  39 *				value is the maximum of the two temperature
  40 *				levels.
  41 * @node:			node in the device list
  42 * @base:			base address of memory-mapped IO registers.
  43 * @dev:			device pointer.
 
  44 * @regs_cache:			An array of 'struct emif_regs' that stores
  45 *				calculated register values for different
  46 *				frequencies, to avoid re-calculating them on
  47 *				each DVFS transition.
  48 * @curr_regs:			The set of register values used in the last
  49 *				frequency change (i.e. corresponding to the
  50 *				frequency in effect at the moment)
  51 * @plat_data:			Pointer to saved platform data.
  52 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  53 * @np_ddr:			Pointer to ddr device tree node
  54 */
  55struct emif_data {
  56	u8				duplicate;
  57	u8				temperature_level;
  58	u8				lpmode;
  59	struct list_head		node;
  60	unsigned long			irq_state;
  61	void __iomem			*base;
  62	struct device			*dev;
 
  63	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  64	struct emif_regs		*curr_regs;
  65	struct emif_platform_data	*plat_data;
  66	struct dentry			*debugfs_root;
  67	struct device_node		*np_ddr;
  68};
  69
  70static struct emif_data *emif1;
  71static DEFINE_SPINLOCK(emif_lock);
  72static unsigned long	irq_state;
 
  73static LIST_HEAD(device_list);
  74
  75#ifdef CONFIG_DEBUG_FS
  76static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  77	struct emif_regs *regs)
  78{
  79	u32 type = emif->plat_data->device_info->type;
  80	u32 ip_rev = emif->plat_data->ip_rev;
  81
  82	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  83		regs->freq/1000000);
  84
  85	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  86	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  87	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  88	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  89
  90	if (ip_rev == EMIF_4D) {
  91		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  92			regs->read_idle_ctrl_shdw_normal);
  93		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  94			regs->read_idle_ctrl_shdw_volt_ramp);
  95	} else if (ip_rev == EMIF_4D5) {
  96		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
  97			regs->dll_calib_ctrl_shdw_normal);
  98		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  99			regs->dll_calib_ctrl_shdw_volt_ramp);
 100	}
 101
 102	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 103		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 104			regs->ref_ctrl_shdw_derated);
 105		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 106			regs->sdram_tim1_shdw_derated);
 107		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 108			regs->sdram_tim3_shdw_derated);
 109	}
 110}
 111
 112static int emif_regdump_show(struct seq_file *s, void *unused)
 113{
 114	struct emif_data	*emif	= s->private;
 115	struct emif_regs	**regs_cache;
 116	int			i;
 117
 118	if (emif->duplicate)
 119		regs_cache = emif1->regs_cache;
 120	else
 121		regs_cache = emif->regs_cache;
 122
 123	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 124		do_emif_regdump_show(s, emif, regs_cache[i]);
 125		seq_putc(s, '\n');
 126	}
 127
 128	return 0;
 129}
 130
 131DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 
 
 
 
 
 
 
 
 
 132
 133static int emif_mr4_show(struct seq_file *s, void *unused)
 134{
 135	struct emif_data *emif = s->private;
 136
 137	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 138	return 0;
 139}
 140
 141DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 
 
 
 
 
 
 
 
 
 142
 143static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 144{
 145	emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 146	debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 147			    &emif_regdump_fops);
 148	debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 149			    &emif_mr4_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150	return 0;
 
 
 
 
 151}
 152
 153static void __exit emif_debugfs_exit(struct emif_data *emif)
 154{
 155	debugfs_remove_recursive(emif->debugfs_root);
 156	emif->debugfs_root = NULL;
 157}
 158#else
 159static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 160{
 161	return 0;
 162}
 163
 164static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 165{
 166}
 167#endif
 168
 169/*
 
 
 
 
 
 
 
 
 
 170 * Get bus width used by EMIF. Note that this may be different from the
 171 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 172 * may be connected to a given CS of EMIF. In this case bus width as far
 173 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 174 */
 175static u32 get_emif_bus_width(struct emif_data *emif)
 176{
 177	u32		width;
 178	void __iomem	*base = emif->base;
 179
 180	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 181			>> NARROW_MODE_SHIFT;
 182	width = width == 0 ? 32 : 16;
 183
 184	return width;
 185}
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 187static void set_lpmode(struct emif_data *emif, u8 lpmode)
 188{
 189	u32 temp;
 190	void __iomem *base = emif->base;
 191
 192	/*
 193	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 194	 * Efficient
 195	 *
 196	 * i743 DESCRIPTION:
 197	 * The EMIF supports power-down state for low power. The EMIF
 198	 * automatically puts the SDRAM into power-down after the memory is
 199	 * not accessed for a defined number of cycles and the
 200	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 201	 * As the EMIF supports automatic output impedance calibration, a ZQ
 202	 * calibration long command is issued every time it exits active
 203	 * power-down and precharge power-down modes. The EMIF waits and
 204	 * blocks any other command during this calibration.
 205	 * The EMIF does not allow selective disabling of ZQ calibration upon
 206	 * exit of power-down mode. Due to very short periods of power-down
 207	 * cycles, ZQ calibration overhead creates bandwidth issues and
 208	 * increases overall system power consumption. On the other hand,
 209	 * issuing ZQ calibration long commands when exiting self-refresh is
 210	 * still required.
 211	 *
 212	 * WORKAROUND
 213	 * Because there is no power consumption benefit of the power-down due
 214	 * to the calibration and there is a performance risk, the guideline
 215	 * is to not allow power-down state and, therefore, to not have set
 216	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 217	 */
 218	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 219	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
 220		WARN_ONCE(1,
 221			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 
 222		/* rollback LP_MODE to Self-refresh mode */
 223		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 224	}
 225
 226	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 227	temp &= ~LP_MODE_MASK;
 228	temp |= (lpmode << LP_MODE_SHIFT);
 229	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 230}
 231
 232static void do_freq_update(void)
 233{
 234	struct emif_data *emif;
 235
 236	/*
 237	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 238	 *
 239	 * i728 DESCRIPTION:
 240	 * The EMIF automatically puts the SDRAM into self-refresh mode
 241	 * after the EMIF has not performed accesses during
 242	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 243	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 244	 * to 0x2. If during a small window the following three events
 245	 * occur:
 246	 * - The SR_TIMING counter expires
 247	 * - And frequency change is requested
 248	 * - And OCP access is requested
 249	 * Then it causes instable clock on the DDR interface.
 250	 *
 251	 * WORKAROUND
 252	 * To avoid the occurrence of the three events, the workaround
 253	 * is to disable the self-refresh when requesting a frequency
 254	 * change. Before requesting a frequency change the software must
 255	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 256	 * frequency change has been done, the software can reprogram
 257	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 258	 */
 259	list_for_each_entry(emif, &device_list, node) {
 260		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 261			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 262	}
 263
 264	/*
 265	 * TODO: Do FREQ_UPDATE here when an API
 266	 * is available for this as part of the new
 267	 * clock framework
 268	 */
 269
 270	list_for_each_entry(emif, &device_list, node) {
 271		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 272			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 273	}
 274}
 275
 276/* Find addressing table entry based on the device's type and density */
 277static const struct lpddr2_addressing *get_addressing_table(
 278	const struct ddr_device_info *device_info)
 279{
 280	u32		index, type, density;
 281
 282	type = device_info->type;
 283	density = device_info->density;
 284
 285	switch (type) {
 286	case DDR_TYPE_LPDDR2_S4:
 287		index = density - 1;
 288		break;
 289	case DDR_TYPE_LPDDR2_S2:
 290		switch (density) {
 291		case DDR_DENSITY_1Gb:
 292		case DDR_DENSITY_2Gb:
 293			index = density + 3;
 294			break;
 295		default:
 296			index = density - 1;
 297		}
 298		break;
 299	default:
 300		return NULL;
 301	}
 302
 303	return &lpddr2_jedec_addressing_table[index];
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 307		bool cs1_used, bool cal_resistors_per_cs)
 308{
 309	u32 zq = 0, val = 0;
 310
 311	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 312	zq |= val << ZQ_REFINTERVAL_SHIFT;
 313
 314	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 315	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 316
 317	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 318	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 319
 320	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 321
 322	if (cal_resistors_per_cs)
 323		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 324	else
 325		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 326
 327	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 328
 329	val = cs1_used ? 1 : 0;
 330	zq |= val << ZQ_CS1EN_SHIFT;
 331
 332	return zq;
 333}
 334
 335static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 336		const struct emif_custom_configs *custom_configs, bool cs1_used,
 337		u32 sdram_io_width, u32 emif_bus_width)
 338{
 339	u32 alert = 0, interval, devcnt;
 340
 341	if (custom_configs && (custom_configs->mask &
 342				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 343		interval = custom_configs->temp_alert_poll_interval_ms;
 344	else
 345		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 346
 347	interval *= 1000000;			/* Convert to ns */
 348	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 349	alert |= (interval << TA_REFINTERVAL_SHIFT);
 350
 351	/*
 352	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 353	 * also to this form and subtract to get TA_DEVCNT, which is
 354	 * in log2(x) form.
 355	 */
 356	emif_bus_width = __fls(emif_bus_width) - 1;
 357	devcnt = emif_bus_width - sdram_io_width;
 358	alert |= devcnt << TA_DEVCNT_SHIFT;
 359
 360	/* DEVWDT is in 'log2(x) - 3' form */
 361	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 362
 363	alert |= 1 << TA_SFEXITEN_SHIFT;
 364	alert |= 1 << TA_CS0EN_SHIFT;
 365	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 366
 367	return alert;
 368}
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 371{
 372	u32 pwr_mgmt_ctrl	= 0, timeout;
 373	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 374	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 375	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 376	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 377	u32 mask;
 378	u8 shift;
 379
 380	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 381
 382	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 383		lpmode		= cust_cfgs->lpmode;
 384		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 385		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 386		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 387	}
 388
 389	/* Timeout based on DDR frequency */
 390	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 391
 392	/*
 393	 * The value to be set in register is "log2(timeout) - 3"
 394	 * if timeout < 16 load 0 in register
 395	 * if timeout is not a power of 2, round to next highest power of 2
 396	 */
 397	if (timeout < 16) {
 398		timeout = 0;
 399	} else {
 400		if (timeout & (timeout - 1))
 401			timeout <<= 1;
 402		timeout = __fls(timeout) - 3;
 403	}
 404
 405	switch (lpmode) {
 406	case EMIF_LP_MODE_CLOCK_STOP:
 407		shift = CS_TIM_SHIFT;
 408		mask = CS_TIM_MASK;
 409		break;
 410	case EMIF_LP_MODE_SELF_REFRESH:
 411		/* Workaround for errata i735 */
 412		if (timeout < 6)
 413			timeout = 6;
 414
 415		shift = SR_TIM_SHIFT;
 416		mask = SR_TIM_MASK;
 417		break;
 418	case EMIF_LP_MODE_PWR_DN:
 419		shift = PD_TIM_SHIFT;
 420		mask = PD_TIM_MASK;
 421		break;
 422	case EMIF_LP_MODE_DISABLE:
 423	default:
 424		mask = 0;
 425		shift = 0;
 426		break;
 427	}
 428	/* Round to maximum in case of overflow, BUT warn! */
 429	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 430		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 431		       lpmode,
 432		       timeout_perf,
 433		       timeout_pwr,
 434		       freq_threshold);
 435		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 436		     timeout, mask >> shift);
 437		timeout = mask >> shift;
 438	}
 439
 440	/* Setup required timing */
 441	pwr_mgmt_ctrl = (timeout << shift) & mask;
 442	/* setup a default mask for rest of the modes */
 443	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 444			  ~mask;
 445
 446	/* No CS_TIM in EMIF_4D5 */
 447	if (ip_rev == EMIF_4D5)
 448		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 449
 450	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 451
 452	return pwr_mgmt_ctrl;
 453}
 454
 455/*
 456 * Get the temperature level of the EMIF instance:
 457 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 458 * level. If there are two parts attached(one on each CS), then the temperature
 459 * level for the EMIF instance is the higher of the two temperatures.
 460 */
 461static void get_temperature_level(struct emif_data *emif)
 462{
 463	u32		temp, temperature_level;
 464	void __iomem	*base;
 465
 466	base = emif->base;
 467
 468	/* Read mode register 4 */
 469	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 470	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 471	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 472				MR4_SDRAM_REF_RATE_SHIFT;
 473
 474	if (emif->plat_data->device_info->cs1_used) {
 475		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 476		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 477		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 478				>> MR4_SDRAM_REF_RATE_SHIFT;
 479		temperature_level = max(temp, temperature_level);
 480	}
 481
 482	/* treat everything less than nominal(3) in MR4 as nominal */
 483	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 484		temperature_level = SDRAM_TEMP_NOMINAL;
 485
 486	/* if we get reserved value in MR4 persist with the existing value */
 487	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 488		emif->temperature_level = temperature_level;
 489}
 490
 491/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492 * setup_temperature_sensitive_regs() - set the timings for temperature
 493 * sensitive registers. This happens once at initialisation time based
 494 * on the temperature at boot time and subsequently based on the temperature
 495 * alert interrupt. Temperature alert can happen when the temperature
 496 * increases or drops. So this function can have the effect of either
 497 * derating the timings or going back to nominal values.
 498 */
 499static void setup_temperature_sensitive_regs(struct emif_data *emif,
 500		struct emif_regs *regs)
 501{
 502	u32		tim1, tim3, ref_ctrl, type;
 503	void __iomem	*base = emif->base;
 504	u32		temperature;
 505
 506	type = emif->plat_data->device_info->type;
 507
 508	tim1 = regs->sdram_tim1_shdw;
 509	tim3 = regs->sdram_tim3_shdw;
 510	ref_ctrl = regs->ref_ctrl_shdw;
 511
 512	/* No de-rating for non-lpddr2 devices */
 513	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 514		goto out;
 515
 516	temperature = emif->temperature_level;
 517	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 518		ref_ctrl = regs->ref_ctrl_shdw_derated;
 519	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 520		tim1 = regs->sdram_tim1_shdw_derated;
 521		tim3 = regs->sdram_tim3_shdw_derated;
 522		ref_ctrl = regs->ref_ctrl_shdw_derated;
 523	}
 524
 525out:
 526	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 527	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 528	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 529}
 530
 531static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 532{
 533	u32		old_temp_level;
 534	irqreturn_t	ret = IRQ_HANDLED;
 535	struct emif_custom_configs *custom_configs;
 536
 537	spin_lock_irqsave(&emif_lock, irq_state);
 538	old_temp_level = emif->temperature_level;
 539	get_temperature_level(emif);
 540
 541	if (unlikely(emif->temperature_level == old_temp_level)) {
 542		goto out;
 543	} else if (!emif->curr_regs) {
 544		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 545		goto out;
 546	}
 547
 548	custom_configs = emif->plat_data->custom_configs;
 549
 550	/*
 551	 * IF we detect higher than "nominal rating" from DDR sensor
 552	 * on an unsupported DDR part, shutdown system
 553	 */
 554	if (custom_configs && !(custom_configs->mask &
 555				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 556		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 557			dev_err(emif->dev,
 558				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 
 559				__func__, emif->temperature_level);
 560			/*
 561			 * Temperature far too high - do kernel_power_off()
 562			 * from thread context
 563			 */
 564			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 565			ret = IRQ_WAKE_THREAD;
 566			goto out;
 567		}
 568	}
 569
 570	if (emif->temperature_level < old_temp_level ||
 571		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 572		/*
 573		 * Temperature coming down - defer handling to thread OR
 574		 * Temperature far too high - do kernel_power_off() from
 575		 * thread context
 576		 */
 577		ret = IRQ_WAKE_THREAD;
 578	} else {
 579		/* Temperature is going up - handle immediately */
 580		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 581		do_freq_update();
 582	}
 583
 584out:
 585	spin_unlock_irqrestore(&emif_lock, irq_state);
 586	return ret;
 587}
 588
 589static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 590{
 591	u32			interrupts;
 592	struct emif_data	*emif = dev_id;
 593	void __iomem		*base = emif->base;
 594	struct device		*dev = emif->dev;
 595	irqreturn_t		ret = IRQ_HANDLED;
 596
 597	/* Save the status and clear it */
 598	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 599	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 600
 601	/*
 602	 * Handle temperature alert
 603	 * Temperature alert should be same for all ports
 604	 * So, it's enough to process it only for one of the ports
 605	 */
 606	if (interrupts & TA_SYS_MASK)
 607		ret = handle_temp_alert(base, emif);
 608
 609	if (interrupts & ERR_SYS_MASK)
 610		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 611
 612	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 613		/* Save the status and clear it */
 614		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 615		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 616
 617		if (interrupts & ERR_LL_MASK)
 618			dev_err(dev, "Access error from LL port - %x\n",
 619				interrupts);
 620	}
 621
 622	return ret;
 623}
 624
 625static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 626{
 627	struct emif_data	*emif = dev_id;
 628
 629	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 630		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 631
 632		/* If we have Power OFF ability, use it, else try restarting */
 633		if (kernel_can_power_off()) {
 634			kernel_power_off();
 635		} else {
 636			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 637			kernel_restart("SDRAM Over-temp Emergency restart");
 638		}
 639		return IRQ_HANDLED;
 640	}
 641
 642	spin_lock_irqsave(&emif_lock, irq_state);
 643
 644	if (emif->curr_regs) {
 645		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 646		do_freq_update();
 647	} else {
 648		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 649	}
 650
 651	spin_unlock_irqrestore(&emif_lock, irq_state);
 652
 653	return IRQ_HANDLED;
 654}
 655
 656static void clear_all_interrupts(struct emif_data *emif)
 657{
 658	void __iomem	*base = emif->base;
 659
 660	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 661		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 662	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 663		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 664			base + EMIF_LL_OCP_INTERRUPT_STATUS);
 665}
 666
 667static void disable_and_clear_all_interrupts(struct emif_data *emif)
 668{
 669	void __iomem		*base = emif->base;
 670
 671	/* Disable all interrupts */
 672	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 673		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 674	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 675		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 676			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 677
 678	/* Clear all interrupts */
 679	clear_all_interrupts(emif);
 680}
 681
 682static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
 683{
 684	u32		interrupts, type;
 685	void __iomem	*base = emif->base;
 686
 687	type = emif->plat_data->device_info->type;
 688
 689	clear_all_interrupts(emif);
 690
 691	/* Enable interrupts for SYS interface */
 692	interrupts = EN_ERR_SYS_MASK;
 693	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 694		interrupts |= EN_TA_SYS_MASK;
 695	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 696
 697	/* Enable interrupts for LL interface */
 698	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 699		/* TA need not be enabled for LL */
 700		interrupts = EN_ERR_LL_MASK;
 701		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 702	}
 703
 704	/* setup IRQ handlers */
 705	return devm_request_threaded_irq(emif->dev, irq,
 706				    emif_interrupt_handler,
 707				    emif_threaded_isr,
 708				    0, dev_name(emif->dev),
 709				    emif);
 710
 711}
 712
 713static void __init_or_module emif_onetime_settings(struct emif_data *emif)
 714{
 715	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
 716	void __iomem			*base = emif->base;
 717	const struct lpddr2_addressing	*addressing;
 718	const struct ddr_device_info	*device_info;
 719
 720	device_info = emif->plat_data->device_info;
 721	addressing = get_addressing_table(device_info);
 722
 723	/*
 724	 * Init power management settings
 725	 * We don't know the frequency yet. Use a high frequency
 726	 * value for a conservative timeout setting
 727	 */
 728	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 729			emif->plat_data->ip_rev);
 730	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 731	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 732
 733	/* Init ZQ calibration settings */
 734	zq = get_zq_config_reg(addressing, device_info->cs1_used,
 735		device_info->cal_resistors_per_cs);
 736	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 737
 738	/* Check temperature level temperature level*/
 739	get_temperature_level(emif);
 740	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 741		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 742
 743	/* Init temperature polling */
 744	temp_alert_cfg = get_temp_alert_config(addressing,
 745		emif->plat_data->custom_configs, device_info->cs1_used,
 746		device_info->io_width, get_emif_bus_width(emif));
 747	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 748
 749	/*
 750	 * Program external PHY control registers that are not frequency
 751	 * dependent
 752	 */
 753	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 754		return;
 755	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 756	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 757	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 758	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 759	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 760	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 761	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 762	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 763	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 764	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 765	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 766	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 767	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 768	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 769	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 770	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 771	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 772	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 773	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 774	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 775	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 776}
 777
 778static void get_default_timings(struct emif_data *emif)
 779{
 780	struct emif_platform_data *pd = emif->plat_data;
 781
 782	pd->timings		= lpddr2_jedec_timings;
 783	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
 784
 785	dev_warn(emif->dev, "%s: using default timings\n", __func__);
 786}
 787
 788static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 789		u32 ip_rev, struct device *dev)
 790{
 791	int valid;
 792
 793	valid = (type == DDR_TYPE_LPDDR2_S4 ||
 794			type == DDR_TYPE_LPDDR2_S2)
 795		&& (density >= DDR_DENSITY_64Mb
 796			&& density <= DDR_DENSITY_8Gb)
 797		&& (io_width >= DDR_IO_WIDTH_8
 798			&& io_width <= DDR_IO_WIDTH_32);
 799
 800	/* Combinations of EMIF and PHY revisions that we support today */
 801	switch (ip_rev) {
 802	case EMIF_4D:
 803		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 804		break;
 805	case EMIF_4D5:
 806		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 807		break;
 808	default:
 809		valid = 0;
 810	}
 811
 812	if (!valid)
 813		dev_err(dev, "%s: invalid DDR details\n", __func__);
 814	return valid;
 815}
 816
 817static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 818		struct device *dev)
 819{
 820	int valid = 1;
 821
 822	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 823		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 824		valid = cust_cfgs->lpmode_freq_threshold &&
 825			cust_cfgs->lpmode_timeout_performance &&
 826			cust_cfgs->lpmode_timeout_power;
 827
 828	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 829		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 830
 831	if (!valid)
 832		dev_warn(dev, "%s: invalid custom configs\n", __func__);
 833
 834	return valid;
 835}
 836
 837#if defined(CONFIG_OF)
 838static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
 839		struct emif_data *emif)
 840{
 841	struct emif_custom_configs	*cust_cfgs = NULL;
 842	int				len;
 843	const __be32			*lpmode, *poll_intvl;
 844
 845	lpmode = of_get_property(np_emif, "low-power-mode", &len);
 846	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 847
 848	if (lpmode || poll_intvl)
 849		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 850			GFP_KERNEL);
 851
 852	if (!cust_cfgs)
 853		return;
 854
 855	if (lpmode) {
 856		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 857		cust_cfgs->lpmode = be32_to_cpup(lpmode);
 858		of_property_read_u32(np_emif,
 859				"low-power-mode-timeout-performance",
 860				&cust_cfgs->lpmode_timeout_performance);
 861		of_property_read_u32(np_emif,
 862				"low-power-mode-timeout-power",
 863				&cust_cfgs->lpmode_timeout_power);
 864		of_property_read_u32(np_emif,
 865				"low-power-mode-freq-threshold",
 866				&cust_cfgs->lpmode_freq_threshold);
 867	}
 868
 869	if (poll_intvl) {
 870		cust_cfgs->mask |=
 871				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 872		cust_cfgs->temp_alert_poll_interval_ms =
 873						be32_to_cpup(poll_intvl);
 874	}
 875
 876	if (of_find_property(np_emif, "extended-temp-part", &len))
 877		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 878
 879	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 880		devm_kfree(emif->dev, cust_cfgs);
 881		return;
 882	}
 883
 884	emif->plat_data->custom_configs = cust_cfgs;
 885}
 886
 887static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
 888		struct device_node *np_ddr,
 889		struct ddr_device_info *dev_info)
 890{
 891	u32 density = 0, io_width = 0;
 892	int len;
 893
 894	if (of_find_property(np_emif, "cs1-used", &len))
 895		dev_info->cs1_used = true;
 896
 897	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
 898		dev_info->cal_resistors_per_cs = true;
 899
 900	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
 901		dev_info->type = DDR_TYPE_LPDDR2_S4;
 902	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
 903		dev_info->type = DDR_TYPE_LPDDR2_S2;
 904
 905	of_property_read_u32(np_ddr, "density", &density);
 906	of_property_read_u32(np_ddr, "io-width", &io_width);
 907
 908	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
 909	if (density & (density - 1))
 910		dev_info->density = 0;
 911	else
 912		dev_info->density = __fls(density) - 5;
 913
 914	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 915	if (io_width & (io_width - 1))
 916		dev_info->io_width = 0;
 917	else
 918		dev_info->io_width = __fls(io_width) - 1;
 919}
 920
 921static struct emif_data * __init_or_module of_get_memory_device_details(
 922		struct device_node *np_emif, struct device *dev)
 923{
 924	struct emif_data		*emif = NULL;
 925	struct ddr_device_info		*dev_info = NULL;
 926	struct emif_platform_data	*pd = NULL;
 927	struct device_node		*np_ddr;
 928	int				len;
 929
 930	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 931	if (!np_ddr)
 932		goto error;
 933	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 934	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 935	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 936
 937	if (!emif || !pd || !dev_info) {
 938		dev_err(dev, "%s: Out of memory!!\n",
 939			__func__);
 940		goto error;
 941	}
 942
 943	emif->plat_data		= pd;
 944	pd->device_info		= dev_info;
 945	emif->dev		= dev;
 946	emif->np_ddr		= np_ddr;
 947	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 948
 949	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 950		emif->plat_data->ip_rev = EMIF_4D;
 951	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 952		emif->plat_data->ip_rev = EMIF_4D5;
 953
 954	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 955
 956	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
 957		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 958
 959	of_get_ddr_info(np_emif, np_ddr, dev_info);
 960	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 961			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 962			emif->dev)) {
 963		dev_err(dev, "%s: invalid device data!!\n", __func__);
 964		goto error;
 965	}
 966	/*
 967	 * For EMIF instances other than EMIF1 see if the devices connected
 968	 * are exactly same as on EMIF1(which is typically the case). If so,
 969	 * mark it as a duplicate of EMIF1. This will save some memory and
 970	 * computation.
 971	 */
 972	if (emif1 && emif1->np_ddr == np_ddr) {
 973		emif->duplicate = true;
 974		goto out;
 975	} else if (emif1) {
 976		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 977			__func__);
 978	}
 979
 980	of_get_custom_configs(np_emif, emif);
 981	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 982					emif->plat_data->device_info->type,
 983					&emif->plat_data->timings_arr_size);
 984
 985	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 986	goto out;
 987
 988error:
 989	return NULL;
 990out:
 991	return emif;
 992}
 993
 994#else
 995
 996static struct emif_data * __init_or_module of_get_memory_device_details(
 997		struct device_node *np_emif, struct device *dev)
 998{
 999	return NULL;
1000}
1001#endif
1002
1003static struct emif_data *__init_or_module get_device_details(
1004		struct platform_device *pdev)
1005{
1006	u32				size;
1007	struct emif_data		*emif = NULL;
1008	struct ddr_device_info		*dev_info;
1009	struct emif_custom_configs	*cust_cfgs;
1010	struct emif_platform_data	*pd;
1011	struct device			*dev;
1012	void				*temp;
1013
1014	pd = pdev->dev.platform_data;
1015	dev = &pdev->dev;
1016
1017	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1018			pd->device_info->density, pd->device_info->io_width,
1019			pd->phy_type, pd->ip_rev, dev))) {
1020		dev_err(dev, "%s: invalid device data\n", __func__);
1021		goto error;
1022	}
1023
1024	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1025	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1026	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1027
1028	if (!emif || !temp || !dev_info)
 
1029		goto error;
 
1030
1031	memcpy(temp, pd, sizeof(*pd));
1032	pd = temp;
1033	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1034
1035	pd->device_info		= dev_info;
1036	emif->plat_data		= pd;
1037	emif->dev		= dev;
1038	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1039
1040	/*
1041	 * For EMIF instances other than EMIF1 see if the devices connected
1042	 * are exactly same as on EMIF1(which is typically the case). If so,
1043	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1044	 * This will save some memory and some computation later.
1045	 */
1046	emif->duplicate = emif1 && (memcmp(dev_info,
1047		emif1->plat_data->device_info,
1048		sizeof(struct ddr_device_info)) == 0);
1049
1050	if (emif->duplicate) {
1051		pd->timings = NULL;
1052		pd->min_tck = NULL;
1053		goto out;
1054	} else if (emif1) {
1055		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1056			__func__);
1057	}
1058
1059	/*
1060	 * Copy custom configs - ignore allocation error, if any, as
1061	 * custom_configs is not very critical
1062	 */
1063	cust_cfgs = pd->custom_configs;
1064	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1065		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1066		if (temp)
1067			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
 
 
 
1068		pd->custom_configs = temp;
1069	}
1070
1071	/*
1072	 * Copy timings and min-tck values from platform data. If it is not
1073	 * available or if memory allocation fails, use JEDEC defaults
1074	 */
1075	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1076	if (pd->timings) {
1077		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1078		if (temp) {
1079			memcpy(temp, pd->timings, size);
1080			pd->timings = temp;
1081		} else {
 
 
1082			get_default_timings(emif);
1083		}
1084	} else {
1085		get_default_timings(emif);
1086	}
1087
1088	if (pd->min_tck) {
1089		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1090		if (temp) {
1091			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1092			pd->min_tck = temp;
1093		} else {
 
 
1094			pd->min_tck = &lpddr2_jedec_min_tck;
1095		}
1096	} else {
1097		pd->min_tck = &lpddr2_jedec_min_tck;
1098	}
1099
1100out:
1101	return emif;
1102
1103error:
1104	return NULL;
1105}
1106
1107static int __init_or_module emif_probe(struct platform_device *pdev)
1108{
1109	struct emif_data	*emif;
1110	int			irq, ret;
 
1111
1112	if (pdev->dev.of_node)
1113		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1114	else
1115		emif = get_device_details(pdev);
1116
1117	if (!emif) {
1118		pr_err("%s: error getting device data\n", __func__);
1119		goto error;
1120	}
1121
1122	list_add(&emif->node, &device_list);
 
1123
1124	/* Save pointers to each other in emif and device structures */
1125	emif->dev = &pdev->dev;
1126	platform_set_drvdata(pdev, emif);
1127
1128	emif->base = devm_platform_ioremap_resource(pdev, 0);
 
1129	if (IS_ERR(emif->base))
1130		goto error;
1131
1132	irq = platform_get_irq(pdev, 0);
1133	if (irq < 0)
 
 
1134		goto error;
 
1135
1136	emif_onetime_settings(emif);
1137	emif_debugfs_init(emif);
1138	disable_and_clear_all_interrupts(emif);
1139	ret = setup_interrupts(emif, irq);
1140	if (ret)
1141		goto error;
1142
1143	/* One-time actions taken on probing the first device */
1144	if (!emif1) {
1145		emif1 = emif;
 
1146
1147		/*
1148		 * TODO: register notifiers for frequency and voltage
1149		 * change here once the respective frameworks are
1150		 * available
1151		 */
1152	}
1153
1154	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1155		__func__, emif->base, irq);
1156
1157	return 0;
1158error:
1159	return -ENODEV;
1160}
1161
1162static void __exit emif_remove(struct platform_device *pdev)
1163{
1164	struct emif_data *emif = platform_get_drvdata(pdev);
1165
1166	emif_debugfs_exit(emif);
 
 
1167}
1168
1169static void emif_shutdown(struct platform_device *pdev)
1170{
1171	struct emif_data	*emif = platform_get_drvdata(pdev);
1172
1173	disable_and_clear_all_interrupts(emif);
1174}
1175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176#if defined(CONFIG_OF)
1177static const struct of_device_id emif_of_match[] = {
1178		{ .compatible = "ti,emif-4d" },
1179		{ .compatible = "ti,emif-4d5" },
1180		{},
1181};
1182MODULE_DEVICE_TABLE(of, emif_of_match);
1183#endif
1184
1185static struct platform_driver emif_driver = {
1186	.remove_new	= __exit_p(emif_remove),
1187	.shutdown	= emif_shutdown,
1188	.driver = {
1189		.name = "emif",
1190		.of_match_table = of_match_ptr(emif_of_match),
1191	},
1192};
1193
1194module_platform_driver_probe(emif_driver, emif_probe);
1195
1196MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1197MODULE_LICENSE("GPL");
1198MODULE_ALIAS("platform:emif");
1199MODULE_AUTHOR("Texas Instruments Inc");
v4.17
 
   1/*
   2 * EMIF driver
   3 *
   4 * Copyright (C) 2012 Texas Instruments, Inc.
   5 *
   6 * Aneesh V <aneesh@ti.com>
   7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/err.h>
  14#include <linux/kernel.h>
  15#include <linux/reboot.h>
  16#include <linux/platform_data/emif_plat.h>
  17#include <linux/io.h>
  18#include <linux/device.h>
  19#include <linux/platform_device.h>
  20#include <linux/interrupt.h>
  21#include <linux/slab.h>
  22#include <linux/of.h>
  23#include <linux/debugfs.h>
  24#include <linux/seq_file.h>
  25#include <linux/module.h>
  26#include <linux/list.h>
  27#include <linux/spinlock.h>
  28#include <linux/pm.h>
  29#include <memory/jedec_ddr.h>
  30#include "emif.h"
 
  31#include "of_memory.h"
  32
  33/**
  34 * struct emif_data - Per device static data for driver's use
  35 * @duplicate:			Whether the DDR devices attached to this EMIF
  36 *				instance are exactly same as that on EMIF1. In
  37 *				this case we can save some memory and processing
  38 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  39 *				to this EMIF - read from MR4 register. If there
  40 *				are two devices attached to this EMIF, this
  41 *				value is the maximum of the two temperature
  42 *				levels.
  43 * @node:			node in the device list
  44 * @base:			base address of memory-mapped IO registers.
  45 * @dev:			device pointer.
  46 * @addressing			table with addressing information from the spec
  47 * @regs_cache:			An array of 'struct emif_regs' that stores
  48 *				calculated register values for different
  49 *				frequencies, to avoid re-calculating them on
  50 *				each DVFS transition.
  51 * @curr_regs:			The set of register values used in the last
  52 *				frequency change (i.e. corresponding to the
  53 *				frequency in effect at the moment)
  54 * @plat_data:			Pointer to saved platform data.
  55 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  56 * @np_ddr:			Pointer to ddr device tree node
  57 */
  58struct emif_data {
  59	u8				duplicate;
  60	u8				temperature_level;
  61	u8				lpmode;
  62	struct list_head		node;
  63	unsigned long			irq_state;
  64	void __iomem			*base;
  65	struct device			*dev;
  66	const struct lpddr2_addressing	*addressing;
  67	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  68	struct emif_regs		*curr_regs;
  69	struct emif_platform_data	*plat_data;
  70	struct dentry			*debugfs_root;
  71	struct device_node		*np_ddr;
  72};
  73
  74static struct emif_data *emif1;
  75static spinlock_t	emif_lock;
  76static unsigned long	irq_state;
  77static u32		t_ck; /* DDR clock period in ps */
  78static LIST_HEAD(device_list);
  79
  80#ifdef CONFIG_DEBUG_FS
  81static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  82	struct emif_regs *regs)
  83{
  84	u32 type = emif->plat_data->device_info->type;
  85	u32 ip_rev = emif->plat_data->ip_rev;
  86
  87	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  88		regs->freq/1000000);
  89
  90	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  91	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  92	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  93	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  94
  95	if (ip_rev == EMIF_4D) {
  96		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  97			regs->read_idle_ctrl_shdw_normal);
  98		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  99			regs->read_idle_ctrl_shdw_volt_ramp);
 100	} else if (ip_rev == EMIF_4D5) {
 101		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
 102			regs->dll_calib_ctrl_shdw_normal);
 103		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
 104			regs->dll_calib_ctrl_shdw_volt_ramp);
 105	}
 106
 107	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 108		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 109			regs->ref_ctrl_shdw_derated);
 110		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 111			regs->sdram_tim1_shdw_derated);
 112		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 113			regs->sdram_tim3_shdw_derated);
 114	}
 115}
 116
 117static int emif_regdump_show(struct seq_file *s, void *unused)
 118{
 119	struct emif_data	*emif	= s->private;
 120	struct emif_regs	**regs_cache;
 121	int			i;
 122
 123	if (emif->duplicate)
 124		regs_cache = emif1->regs_cache;
 125	else
 126		regs_cache = emif->regs_cache;
 127
 128	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 129		do_emif_regdump_show(s, emif, regs_cache[i]);
 130		seq_putc(s, '\n');
 131	}
 132
 133	return 0;
 134}
 135
 136static int emif_regdump_open(struct inode *inode, struct file *file)
 137{
 138	return single_open(file, emif_regdump_show, inode->i_private);
 139}
 140
 141static const struct file_operations emif_regdump_fops = {
 142	.open			= emif_regdump_open,
 143	.read			= seq_read,
 144	.release		= single_release,
 145};
 146
 147static int emif_mr4_show(struct seq_file *s, void *unused)
 148{
 149	struct emif_data *emif = s->private;
 150
 151	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 152	return 0;
 153}
 154
 155static int emif_mr4_open(struct inode *inode, struct file *file)
 156{
 157	return single_open(file, emif_mr4_show, inode->i_private);
 158}
 159
 160static const struct file_operations emif_mr4_fops = {
 161	.open			= emif_mr4_open,
 162	.read			= seq_read,
 163	.release		= single_release,
 164};
 165
 166static int __init_or_module emif_debugfs_init(struct emif_data *emif)
 167{
 168	struct dentry	*dentry;
 169	int		ret;
 170
 171	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
 172	if (!dentry) {
 173		ret = -ENOMEM;
 174		goto err0;
 175	}
 176	emif->debugfs_root = dentry;
 177
 178	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
 179			emif->debugfs_root, emif, &emif_regdump_fops);
 180	if (!dentry) {
 181		ret = -ENOMEM;
 182		goto err1;
 183	}
 184
 185	dentry = debugfs_create_file("mr4", S_IRUGO,
 186			emif->debugfs_root, emif, &emif_mr4_fops);
 187	if (!dentry) {
 188		ret = -ENOMEM;
 189		goto err1;
 190	}
 191
 192	return 0;
 193err1:
 194	debugfs_remove_recursive(emif->debugfs_root);
 195err0:
 196	return ret;
 197}
 198
 199static void __exit emif_debugfs_exit(struct emif_data *emif)
 200{
 201	debugfs_remove_recursive(emif->debugfs_root);
 202	emif->debugfs_root = NULL;
 203}
 204#else
 205static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
 206{
 207	return 0;
 208}
 209
 210static inline void __exit emif_debugfs_exit(struct emif_data *emif)
 211{
 212}
 213#endif
 214
 215/*
 216 * Calculate the period of DDR clock from frequency value
 217 */
 218static void set_ddr_clk_period(u32 freq)
 219{
 220	/* Divide 10^12 by frequency to get period in ps */
 221	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
 222}
 223
 224/*
 225 * Get bus width used by EMIF. Note that this may be different from the
 226 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 227 * may be connected to a given CS of EMIF. In this case bus width as far
 228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 229 */
 230static u32 get_emif_bus_width(struct emif_data *emif)
 231{
 232	u32		width;
 233	void __iomem	*base = emif->base;
 234
 235	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 236			>> NARROW_MODE_SHIFT;
 237	width = width == 0 ? 32 : 16;
 238
 239	return width;
 240}
 241
 242/*
 243 * Get the CL from SDRAM_CONFIG register
 244 */
 245static u32 get_cl(struct emif_data *emif)
 246{
 247	u32		cl;
 248	void __iomem	*base = emif->base;
 249
 250	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
 251
 252	return cl;
 253}
 254
 255static void set_lpmode(struct emif_data *emif, u8 lpmode)
 256{
 257	u32 temp;
 258	void __iomem *base = emif->base;
 259
 260	/*
 261	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 262	 * Efficient
 263	 *
 264	 * i743 DESCRIPTION:
 265	 * The EMIF supports power-down state for low power. The EMIF
 266	 * automatically puts the SDRAM into power-down after the memory is
 267	 * not accessed for a defined number of cycles and the
 268	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 269	 * As the EMIF supports automatic output impedance calibration, a ZQ
 270	 * calibration long command is issued every time it exits active
 271	 * power-down and precharge power-down modes. The EMIF waits and
 272	 * blocks any other command during this calibration.
 273	 * The EMIF does not allow selective disabling of ZQ calibration upon
 274	 * exit of power-down mode. Due to very short periods of power-down
 275	 * cycles, ZQ calibration overhead creates bandwidth issues and
 276	 * increases overall system power consumption. On the other hand,
 277	 * issuing ZQ calibration long commands when exiting self-refresh is
 278	 * still required.
 279	 *
 280	 * WORKAROUND
 281	 * Because there is no power consumption benefit of the power-down due
 282	 * to the calibration and there is a performance risk, the guideline
 283	 * is to not allow power-down state and, therefore, to not have set
 284	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 285	 */
 286	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 287	    (EMIF_LP_MODE_PWR_DN == lpmode)) {
 288		WARN_ONCE(1,
 289			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
 290			  "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 291		/* rollback LP_MODE to Self-refresh mode */
 292		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 293	}
 294
 295	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 296	temp &= ~LP_MODE_MASK;
 297	temp |= (lpmode << LP_MODE_SHIFT);
 298	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 299}
 300
 301static void do_freq_update(void)
 302{
 303	struct emif_data *emif;
 304
 305	/*
 306	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 307	 *
 308	 * i728 DESCRIPTION:
 309	 * The EMIF automatically puts the SDRAM into self-refresh mode
 310	 * after the EMIF has not performed accesses during
 311	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 312	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 313	 * to 0x2. If during a small window the following three events
 314	 * occur:
 315	 * - The SR_TIMING counter expires
 316	 * - And frequency change is requested
 317	 * - And OCP access is requested
 318	 * Then it causes instable clock on the DDR interface.
 319	 *
 320	 * WORKAROUND
 321	 * To avoid the occurrence of the three events, the workaround
 322	 * is to disable the self-refresh when requesting a frequency
 323	 * change. Before requesting a frequency change the software must
 324	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 325	 * frequency change has been done, the software can reprogram
 326	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 327	 */
 328	list_for_each_entry(emif, &device_list, node) {
 329		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 330			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 331	}
 332
 333	/*
 334	 * TODO: Do FREQ_UPDATE here when an API
 335	 * is available for this as part of the new
 336	 * clock framework
 337	 */
 338
 339	list_for_each_entry(emif, &device_list, node) {
 340		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 341			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 342	}
 343}
 344
 345/* Find addressing table entry based on the device's type and density */
 346static const struct lpddr2_addressing *get_addressing_table(
 347	const struct ddr_device_info *device_info)
 348{
 349	u32		index, type, density;
 350
 351	type = device_info->type;
 352	density = device_info->density;
 353
 354	switch (type) {
 355	case DDR_TYPE_LPDDR2_S4:
 356		index = density - 1;
 357		break;
 358	case DDR_TYPE_LPDDR2_S2:
 359		switch (density) {
 360		case DDR_DENSITY_1Gb:
 361		case DDR_DENSITY_2Gb:
 362			index = density + 3;
 363			break;
 364		default:
 365			index = density - 1;
 366		}
 367		break;
 368	default:
 369		return NULL;
 370	}
 371
 372	return &lpddr2_jedec_addressing_table[index];
 373}
 374
 375/*
 376 * Find the the right timing table from the array of timing
 377 * tables of the device using DDR clock frequency
 378 */
 379static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
 380		u32 freq)
 381{
 382	u32				i, min, max, freq_nearest;
 383	const struct lpddr2_timings	*timings = NULL;
 384	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
 385	struct				device *dev = emif->dev;
 386
 387	/* Start with a very high frequency - 1GHz */
 388	freq_nearest = 1000000000;
 389
 390	/*
 391	 * Find the timings table such that:
 392	 *  1. the frequency range covers the required frequency(safe) AND
 393	 *  2. the max_freq is closest to the required frequency(optimal)
 394	 */
 395	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
 396		max = timings_arr[i].max_freq;
 397		min = timings_arr[i].min_freq;
 398		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
 399			freq_nearest = max;
 400			timings = &timings_arr[i];
 401		}
 402	}
 403
 404	if (!timings)
 405		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
 406			__func__, freq);
 407
 408	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
 409		__func__, freq, freq_nearest);
 410
 411	return timings;
 412}
 413
 414static u32 get_sdram_ref_ctrl_shdw(u32 freq,
 415		const struct lpddr2_addressing *addressing)
 416{
 417	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
 418
 419	/* Scale down frequency and t_refi to avoid overflow */
 420	freq_khz = freq / 1000;
 421	t_refi = addressing->tREFI_ns / 100;
 422
 423	/*
 424	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
 425	 * division by 10000 to account for change in units
 426	 */
 427	val = t_refi * freq_khz / 10000;
 428	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
 429
 430	return ref_ctrl_shdw;
 431}
 432
 433static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
 434		const struct lpddr2_min_tck *min_tck,
 435		const struct lpddr2_addressing *addressing)
 436{
 437	u32 tim1 = 0, val = 0;
 438
 439	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 440	tim1 |= val << T_WTR_SHIFT;
 441
 442	if (addressing->num_banks == B8)
 443		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
 444	else
 445		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
 446	tim1 |= (val - 1) << T_RRD_SHIFT;
 447
 448	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
 449	tim1 |= val << T_RC_SHIFT;
 450
 451	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
 452	tim1 |= (val - 1) << T_RAS_SHIFT;
 453
 454	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 455	tim1 |= val << T_WR_SHIFT;
 456
 457	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
 458	tim1 |= val << T_RCD_SHIFT;
 459
 460	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
 461	tim1 |= val << T_RP_SHIFT;
 462
 463	return tim1;
 464}
 465
 466static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
 467		const struct lpddr2_min_tck *min_tck,
 468		const struct lpddr2_addressing *addressing)
 469{
 470	u32 tim1 = 0, val = 0;
 471
 472	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
 473	tim1 = val << T_WTR_SHIFT;
 474
 475	/*
 476	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
 477	 * to tFAW for de-rating
 478	 */
 479	if (addressing->num_banks == B8) {
 480		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
 481	} else {
 482		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
 483		val = max(min_tck->tRRD, val) - 1;
 484	}
 485	tim1 |= val << T_RRD_SHIFT;
 486
 487	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
 488	tim1 |= (val - 1) << T_RC_SHIFT;
 489
 490	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
 491	val = max(min_tck->tRASmin, val) - 1;
 492	tim1 |= val << T_RAS_SHIFT;
 493
 494	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
 495	tim1 |= val << T_WR_SHIFT;
 496
 497	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
 498	tim1 |= (val - 1) << T_RCD_SHIFT;
 499
 500	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
 501	tim1 |= (val - 1) << T_RP_SHIFT;
 502
 503	return tim1;
 504}
 505
 506static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
 507		const struct lpddr2_min_tck *min_tck,
 508		const struct lpddr2_addressing *addressing,
 509		u32 type)
 510{
 511	u32 tim2 = 0, val = 0;
 512
 513	val = min_tck->tCKE - 1;
 514	tim2 |= val << T_CKE_SHIFT;
 515
 516	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
 517	tim2 |= val << T_RTP_SHIFT;
 518
 519	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
 520	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
 521	tim2 |= val << T_XSNR_SHIFT;
 522
 523	/* XSRD same as XSNR for LPDDR2 */
 524	tim2 |= val << T_XSRD_SHIFT;
 525
 526	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
 527	tim2 |= val << T_XP_SHIFT;
 528
 529	return tim2;
 530}
 531
 532static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
 533		const struct lpddr2_min_tck *min_tck,
 534		const struct lpddr2_addressing *addressing,
 535		u32 type, u32 ip_rev, u32 derated)
 536{
 537	u32 tim3 = 0, val = 0, t_dqsck;
 538
 539	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
 540	val = val > 0xF ? 0xF : val;
 541	tim3 |= val << T_RAS_MAX_SHIFT;
 542
 543	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
 544	tim3 |= val << T_RFC_SHIFT;
 545
 546	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
 547		timings->tDQSCK_max_derated : timings->tDQSCK_max;
 548	if (ip_rev == EMIF_4D5)
 549		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
 550	else
 551		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
 552
 553	tim3 |= val << T_TDQSCKMAX_SHIFT;
 554
 555	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
 556	tim3 |= val << ZQ_ZQCS_SHIFT;
 557
 558	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
 559	val = max(min_tck->tCKESR, val) - 1;
 560	tim3 |= val << T_CKESR_SHIFT;
 561
 562	if (ip_rev == EMIF_4D5) {
 563		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
 564
 565		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
 566		tim3 |= val << T_PDLL_UL_SHIFT;
 567	}
 568
 569	return tim3;
 570}
 571
 572static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 573		bool cs1_used, bool cal_resistors_per_cs)
 574{
 575	u32 zq = 0, val = 0;
 576
 577	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 578	zq |= val << ZQ_REFINTERVAL_SHIFT;
 579
 580	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 581	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 582
 583	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 584	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 585
 586	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 587
 588	if (cal_resistors_per_cs)
 589		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 590	else
 591		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 592
 593	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 594
 595	val = cs1_used ? 1 : 0;
 596	zq |= val << ZQ_CS1EN_SHIFT;
 597
 598	return zq;
 599}
 600
 601static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 602		const struct emif_custom_configs *custom_configs, bool cs1_used,
 603		u32 sdram_io_width, u32 emif_bus_width)
 604{
 605	u32 alert = 0, interval, devcnt;
 606
 607	if (custom_configs && (custom_configs->mask &
 608				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 609		interval = custom_configs->temp_alert_poll_interval_ms;
 610	else
 611		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 612
 613	interval *= 1000000;			/* Convert to ns */
 614	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 615	alert |= (interval << TA_REFINTERVAL_SHIFT);
 616
 617	/*
 618	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 619	 * also to this form and subtract to get TA_DEVCNT, which is
 620	 * in log2(x) form.
 621	 */
 622	emif_bus_width = __fls(emif_bus_width) - 1;
 623	devcnt = emif_bus_width - sdram_io_width;
 624	alert |= devcnt << TA_DEVCNT_SHIFT;
 625
 626	/* DEVWDT is in 'log2(x) - 3' form */
 627	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 628
 629	alert |= 1 << TA_SFEXITEN_SHIFT;
 630	alert |= 1 << TA_CS0EN_SHIFT;
 631	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 632
 633	return alert;
 634}
 635
 636static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
 637{
 638	u32 idle = 0, val = 0;
 639
 640	/*
 641	 * Maximum value in normal conditions and increased frequency
 642	 * when voltage is ramping
 643	 */
 644	if (volt_ramp)
 645		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
 646	else
 647		val = 0x1FF;
 648
 649	/*
 650	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
 651	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
 652	 */
 653	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
 654	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
 655
 656	return idle;
 657}
 658
 659static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
 660{
 661	u32 calib = 0, val = 0;
 662
 663	if (volt_ramp == DDR_VOLTAGE_RAMPING)
 664		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
 665	else
 666		val = 0; /* Disabled when voltage is stable */
 667
 668	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
 669	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
 670
 671	return calib;
 672}
 673
 674static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
 675	u32 freq, u8 RL)
 676{
 677	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
 678
 679	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
 680	phy |= val << READ_LATENCY_SHIFT_4D;
 681
 682	if (freq <= 100000000)
 683		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
 684	else if (freq <= 200000000)
 685		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
 686	else
 687		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
 688
 689	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
 690
 691	return phy;
 692}
 693
 694static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
 695{
 696	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
 697
 698	/*
 699	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
 700	 * half-delay is not needed else set half-delay
 701	 */
 702	if (freq >= 265000000 && freq < 267000000)
 703		half_delay = 0;
 704	else
 705		half_delay = 1;
 706
 707	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
 708	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
 709			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
 710
 711	return phy;
 712}
 713
 714static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
 715{
 716	u32 fifo_we_slave_ratio;
 717
 718	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 719		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 720
 721	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
 722		fifo_we_slave_ratio << 22;
 723}
 724
 725static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
 726{
 727	u32 fifo_we_slave_ratio;
 728
 729	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 730		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 731
 732	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
 733		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
 734}
 735
 736static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
 737{
 738	u32 fifo_we_slave_ratio;
 739
 740	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
 741		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
 742
 743	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
 744		fifo_we_slave_ratio << 13;
 745}
 746
 747static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 748{
 749	u32 pwr_mgmt_ctrl	= 0, timeout;
 750	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 751	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 752	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 753	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 754	u32 mask;
 755	u8 shift;
 756
 757	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 758
 759	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 760		lpmode		= cust_cfgs->lpmode;
 761		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 762		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 763		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 764	}
 765
 766	/* Timeout based on DDR frequency */
 767	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 768
 769	/*
 770	 * The value to be set in register is "log2(timeout) - 3"
 771	 * if timeout < 16 load 0 in register
 772	 * if timeout is not a power of 2, round to next highest power of 2
 773	 */
 774	if (timeout < 16) {
 775		timeout = 0;
 776	} else {
 777		if (timeout & (timeout - 1))
 778			timeout <<= 1;
 779		timeout = __fls(timeout) - 3;
 780	}
 781
 782	switch (lpmode) {
 783	case EMIF_LP_MODE_CLOCK_STOP:
 784		shift = CS_TIM_SHIFT;
 785		mask = CS_TIM_MASK;
 786		break;
 787	case EMIF_LP_MODE_SELF_REFRESH:
 788		/* Workaround for errata i735 */
 789		if (timeout < 6)
 790			timeout = 6;
 791
 792		shift = SR_TIM_SHIFT;
 793		mask = SR_TIM_MASK;
 794		break;
 795	case EMIF_LP_MODE_PWR_DN:
 796		shift = PD_TIM_SHIFT;
 797		mask = PD_TIM_MASK;
 798		break;
 799	case EMIF_LP_MODE_DISABLE:
 800	default:
 801		mask = 0;
 802		shift = 0;
 803		break;
 804	}
 805	/* Round to maximum in case of overflow, BUT warn! */
 806	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 807		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 808		       lpmode,
 809		       timeout_perf,
 810		       timeout_pwr,
 811		       freq_threshold);
 812		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 813		     timeout, mask >> shift);
 814		timeout = mask >> shift;
 815	}
 816
 817	/* Setup required timing */
 818	pwr_mgmt_ctrl = (timeout << shift) & mask;
 819	/* setup a default mask for rest of the modes */
 820	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 821			  ~mask;
 822
 823	/* No CS_TIM in EMIF_4D5 */
 824	if (ip_rev == EMIF_4D5)
 825		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 826
 827	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 828
 829	return pwr_mgmt_ctrl;
 830}
 831
 832/*
 833 * Get the temperature level of the EMIF instance:
 834 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 835 * level. If there are two parts attached(one on each CS), then the temperature
 836 * level for the EMIF instance is the higher of the two temperatures.
 837 */
 838static void get_temperature_level(struct emif_data *emif)
 839{
 840	u32		temp, temperature_level;
 841	void __iomem	*base;
 842
 843	base = emif->base;
 844
 845	/* Read mode register 4 */
 846	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 847	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 848	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 849				MR4_SDRAM_REF_RATE_SHIFT;
 850
 851	if (emif->plat_data->device_info->cs1_used) {
 852		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 853		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 854		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 855				>> MR4_SDRAM_REF_RATE_SHIFT;
 856		temperature_level = max(temp, temperature_level);
 857	}
 858
 859	/* treat everything less than nominal(3) in MR4 as nominal */
 860	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 861		temperature_level = SDRAM_TEMP_NOMINAL;
 862
 863	/* if we get reserved value in MR4 persist with the existing value */
 864	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 865		emif->temperature_level = temperature_level;
 866}
 867
 868/*
 869 * Program EMIF shadow registers that are not dependent on temperature
 870 * or voltage
 871 */
 872static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
 873{
 874	void __iomem	*base = emif->base;
 875
 876	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
 877	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
 878	writel(regs->pwr_mgmt_ctrl_shdw,
 879	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
 880
 881	/* Settings specific for EMIF4D5 */
 882	if (emif->plat_data->ip_rev != EMIF_4D5)
 883		return;
 884	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
 885	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
 886	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
 887}
 888
 889/*
 890 * When voltage ramps dll calibration and forced read idle should
 891 * happen more often
 892 */
 893static void setup_volt_sensitive_regs(struct emif_data *emif,
 894		struct emif_regs *regs, u32 volt_state)
 895{
 896	u32		calib_ctrl;
 897	void __iomem	*base = emif->base;
 898
 899	/*
 900	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
 901	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
 902	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
 903	 * a union). So, the below code takes care of both cases
 904	 */
 905	if (volt_state == DDR_VOLTAGE_RAMPING)
 906		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
 907	else
 908		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
 909
 910	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
 911}
 912
 913/*
 914 * setup_temperature_sensitive_regs() - set the timings for temperature
 915 * sensitive registers. This happens once at initialisation time based
 916 * on the temperature at boot time and subsequently based on the temperature
 917 * alert interrupt. Temperature alert can happen when the temperature
 918 * increases or drops. So this function can have the effect of either
 919 * derating the timings or going back to nominal values.
 920 */
 921static void setup_temperature_sensitive_regs(struct emif_data *emif,
 922		struct emif_regs *regs)
 923{
 924	u32		tim1, tim3, ref_ctrl, type;
 925	void __iomem	*base = emif->base;
 926	u32		temperature;
 927
 928	type = emif->plat_data->device_info->type;
 929
 930	tim1 = regs->sdram_tim1_shdw;
 931	tim3 = regs->sdram_tim3_shdw;
 932	ref_ctrl = regs->ref_ctrl_shdw;
 933
 934	/* No de-rating for non-lpddr2 devices */
 935	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 936		goto out;
 937
 938	temperature = emif->temperature_level;
 939	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 940		ref_ctrl = regs->ref_ctrl_shdw_derated;
 941	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 942		tim1 = regs->sdram_tim1_shdw_derated;
 943		tim3 = regs->sdram_tim3_shdw_derated;
 944		ref_ctrl = regs->ref_ctrl_shdw_derated;
 945	}
 946
 947out:
 948	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 949	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 950	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 951}
 952
 953static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 954{
 955	u32		old_temp_level;
 956	irqreturn_t	ret = IRQ_HANDLED;
 957	struct emif_custom_configs *custom_configs;
 958
 959	spin_lock_irqsave(&emif_lock, irq_state);
 960	old_temp_level = emif->temperature_level;
 961	get_temperature_level(emif);
 962
 963	if (unlikely(emif->temperature_level == old_temp_level)) {
 964		goto out;
 965	} else if (!emif->curr_regs) {
 966		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 967		goto out;
 968	}
 969
 970	custom_configs = emif->plat_data->custom_configs;
 971
 972	/*
 973	 * IF we detect higher than "nominal rating" from DDR sensor
 974	 * on an unsupported DDR part, shutdown system
 975	 */
 976	if (custom_configs && !(custom_configs->mask &
 977				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 978		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 979			dev_err(emif->dev,
 980				"%s:NOT Extended temperature capable memory."
 981				"Converting MR4=0x%02x as shutdown event\n",
 982				__func__, emif->temperature_level);
 983			/*
 984			 * Temperature far too high - do kernel_power_off()
 985			 * from thread context
 986			 */
 987			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 988			ret = IRQ_WAKE_THREAD;
 989			goto out;
 990		}
 991	}
 992
 993	if (emif->temperature_level < old_temp_level ||
 994		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 995		/*
 996		 * Temperature coming down - defer handling to thread OR
 997		 * Temperature far too high - do kernel_power_off() from
 998		 * thread context
 999		 */
1000		ret = IRQ_WAKE_THREAD;
1001	} else {
1002		/* Temperature is going up - handle immediately */
1003		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1004		do_freq_update();
1005	}
1006
1007out:
1008	spin_unlock_irqrestore(&emif_lock, irq_state);
1009	return ret;
1010}
1011
1012static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1013{
1014	u32			interrupts;
1015	struct emif_data	*emif = dev_id;
1016	void __iomem		*base = emif->base;
1017	struct device		*dev = emif->dev;
1018	irqreturn_t		ret = IRQ_HANDLED;
1019
1020	/* Save the status and clear it */
1021	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1022	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1023
1024	/*
1025	 * Handle temperature alert
1026	 * Temperature alert should be same for all ports
1027	 * So, it's enough to process it only for one of the ports
1028	 */
1029	if (interrupts & TA_SYS_MASK)
1030		ret = handle_temp_alert(base, emif);
1031
1032	if (interrupts & ERR_SYS_MASK)
1033		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1034
1035	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1036		/* Save the status and clear it */
1037		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1038		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1039
1040		if (interrupts & ERR_LL_MASK)
1041			dev_err(dev, "Access error from LL port - %x\n",
1042				interrupts);
1043	}
1044
1045	return ret;
1046}
1047
1048static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1049{
1050	struct emif_data	*emif = dev_id;
1051
1052	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1053		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1054
1055		/* If we have Power OFF ability, use it, else try restarting */
1056		if (pm_power_off) {
1057			kernel_power_off();
1058		} else {
1059			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1060			kernel_restart("SDRAM Over-temp Emergency restart");
1061		}
1062		return IRQ_HANDLED;
1063	}
1064
1065	spin_lock_irqsave(&emif_lock, irq_state);
1066
1067	if (emif->curr_regs) {
1068		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1069		do_freq_update();
1070	} else {
1071		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1072	}
1073
1074	spin_unlock_irqrestore(&emif_lock, irq_state);
1075
1076	return IRQ_HANDLED;
1077}
1078
1079static void clear_all_interrupts(struct emif_data *emif)
1080{
1081	void __iomem	*base = emif->base;
1082
1083	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1084		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1085	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1086		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1087			base + EMIF_LL_OCP_INTERRUPT_STATUS);
1088}
1089
1090static void disable_and_clear_all_interrupts(struct emif_data *emif)
1091{
1092	void __iomem		*base = emif->base;
1093
1094	/* Disable all interrupts */
1095	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1096		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1097	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1098		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1099			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1100
1101	/* Clear all interrupts */
1102	clear_all_interrupts(emif);
1103}
1104
1105static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1106{
1107	u32		interrupts, type;
1108	void __iomem	*base = emif->base;
1109
1110	type = emif->plat_data->device_info->type;
1111
1112	clear_all_interrupts(emif);
1113
1114	/* Enable interrupts for SYS interface */
1115	interrupts = EN_ERR_SYS_MASK;
1116	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1117		interrupts |= EN_TA_SYS_MASK;
1118	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1119
1120	/* Enable interrupts for LL interface */
1121	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1122		/* TA need not be enabled for LL */
1123		interrupts = EN_ERR_LL_MASK;
1124		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1125	}
1126
1127	/* setup IRQ handlers */
1128	return devm_request_threaded_irq(emif->dev, irq,
1129				    emif_interrupt_handler,
1130				    emif_threaded_isr,
1131				    0, dev_name(emif->dev),
1132				    emif);
1133
1134}
1135
1136static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1137{
1138	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
1139	void __iomem			*base = emif->base;
1140	const struct lpddr2_addressing	*addressing;
1141	const struct ddr_device_info	*device_info;
1142
1143	device_info = emif->plat_data->device_info;
1144	addressing = get_addressing_table(device_info);
1145
1146	/*
1147	 * Init power management settings
1148	 * We don't know the frequency yet. Use a high frequency
1149	 * value for a conservative timeout setting
1150	 */
1151	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1152			emif->plat_data->ip_rev);
1153	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1154	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1155
1156	/* Init ZQ calibration settings */
1157	zq = get_zq_config_reg(addressing, device_info->cs1_used,
1158		device_info->cal_resistors_per_cs);
1159	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1160
1161	/* Check temperature level temperature level*/
1162	get_temperature_level(emif);
1163	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1164		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1165
1166	/* Init temperature polling */
1167	temp_alert_cfg = get_temp_alert_config(addressing,
1168		emif->plat_data->custom_configs, device_info->cs1_used,
1169		device_info->io_width, get_emif_bus_width(emif));
1170	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1171
1172	/*
1173	 * Program external PHY control registers that are not frequency
1174	 * dependent
1175	 */
1176	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1177		return;
1178	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1179	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1180	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1181	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1182	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1183	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1184	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1185	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1186	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1187	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1188	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1189	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1190	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1191	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1192	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1193	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1194	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1195	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1196	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1197	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1198	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1199}
1200
1201static void get_default_timings(struct emif_data *emif)
1202{
1203	struct emif_platform_data *pd = emif->plat_data;
1204
1205	pd->timings		= lpddr2_jedec_timings;
1206	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
1207
1208	dev_warn(emif->dev, "%s: using default timings\n", __func__);
1209}
1210
1211static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1212		u32 ip_rev, struct device *dev)
1213{
1214	int valid;
1215
1216	valid = (type == DDR_TYPE_LPDDR2_S4 ||
1217			type == DDR_TYPE_LPDDR2_S2)
1218		&& (density >= DDR_DENSITY_64Mb
1219			&& density <= DDR_DENSITY_8Gb)
1220		&& (io_width >= DDR_IO_WIDTH_8
1221			&& io_width <= DDR_IO_WIDTH_32);
1222
1223	/* Combinations of EMIF and PHY revisions that we support today */
1224	switch (ip_rev) {
1225	case EMIF_4D:
1226		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1227		break;
1228	case EMIF_4D5:
1229		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1230		break;
1231	default:
1232		valid = 0;
1233	}
1234
1235	if (!valid)
1236		dev_err(dev, "%s: invalid DDR details\n", __func__);
1237	return valid;
1238}
1239
1240static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1241		struct device *dev)
1242{
1243	int valid = 1;
1244
1245	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1246		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1247		valid = cust_cfgs->lpmode_freq_threshold &&
1248			cust_cfgs->lpmode_timeout_performance &&
1249			cust_cfgs->lpmode_timeout_power;
1250
1251	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1252		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1253
1254	if (!valid)
1255		dev_warn(dev, "%s: invalid custom configs\n", __func__);
1256
1257	return valid;
1258}
1259
1260#if defined(CONFIG_OF)
1261static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1262		struct emif_data *emif)
1263{
1264	struct emif_custom_configs	*cust_cfgs = NULL;
1265	int				len;
1266	const __be32			*lpmode, *poll_intvl;
1267
1268	lpmode = of_get_property(np_emif, "low-power-mode", &len);
1269	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1270
1271	if (lpmode || poll_intvl)
1272		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1273			GFP_KERNEL);
1274
1275	if (!cust_cfgs)
1276		return;
1277
1278	if (lpmode) {
1279		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1280		cust_cfgs->lpmode = be32_to_cpup(lpmode);
1281		of_property_read_u32(np_emif,
1282				"low-power-mode-timeout-performance",
1283				&cust_cfgs->lpmode_timeout_performance);
1284		of_property_read_u32(np_emif,
1285				"low-power-mode-timeout-power",
1286				&cust_cfgs->lpmode_timeout_power);
1287		of_property_read_u32(np_emif,
1288				"low-power-mode-freq-threshold",
1289				&cust_cfgs->lpmode_freq_threshold);
1290	}
1291
1292	if (poll_intvl) {
1293		cust_cfgs->mask |=
1294				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1295		cust_cfgs->temp_alert_poll_interval_ms =
1296						be32_to_cpup(poll_intvl);
1297	}
1298
1299	if (of_find_property(np_emif, "extended-temp-part", &len))
1300		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1301
1302	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1303		devm_kfree(emif->dev, cust_cfgs);
1304		return;
1305	}
1306
1307	emif->plat_data->custom_configs = cust_cfgs;
1308}
1309
1310static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1311		struct device_node *np_ddr,
1312		struct ddr_device_info *dev_info)
1313{
1314	u32 density = 0, io_width = 0;
1315	int len;
1316
1317	if (of_find_property(np_emif, "cs1-used", &len))
1318		dev_info->cs1_used = true;
1319
1320	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1321		dev_info->cal_resistors_per_cs = true;
1322
1323	if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1324		dev_info->type = DDR_TYPE_LPDDR2_S4;
1325	else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1326		dev_info->type = DDR_TYPE_LPDDR2_S2;
1327
1328	of_property_read_u32(np_ddr, "density", &density);
1329	of_property_read_u32(np_ddr, "io-width", &io_width);
1330
1331	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
1332	if (density & (density - 1))
1333		dev_info->density = 0;
1334	else
1335		dev_info->density = __fls(density) - 5;
1336
1337	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1338	if (io_width & (io_width - 1))
1339		dev_info->io_width = 0;
1340	else
1341		dev_info->io_width = __fls(io_width) - 1;
1342}
1343
1344static struct emif_data * __init_or_module of_get_memory_device_details(
1345		struct device_node *np_emif, struct device *dev)
1346{
1347	struct emif_data		*emif = NULL;
1348	struct ddr_device_info		*dev_info = NULL;
1349	struct emif_platform_data	*pd = NULL;
1350	struct device_node		*np_ddr;
1351	int				len;
1352
1353	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1354	if (!np_ddr)
1355		goto error;
1356	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1357	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1358	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1359
1360	if (!emif || !pd || !dev_info) {
1361		dev_err(dev, "%s: Out of memory!!\n",
1362			__func__);
1363		goto error;
1364	}
1365
1366	emif->plat_data		= pd;
1367	pd->device_info		= dev_info;
1368	emif->dev		= dev;
1369	emif->np_ddr		= np_ddr;
1370	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1371
1372	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1373		emif->plat_data->ip_rev = EMIF_4D;
1374	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1375		emif->plat_data->ip_rev = EMIF_4D5;
1376
1377	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1378
1379	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1380		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1381
1382	of_get_ddr_info(np_emif, np_ddr, dev_info);
1383	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1384			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1385			emif->dev)) {
1386		dev_err(dev, "%s: invalid device data!!\n", __func__);
1387		goto error;
1388	}
1389	/*
1390	 * For EMIF instances other than EMIF1 see if the devices connected
1391	 * are exactly same as on EMIF1(which is typically the case). If so,
1392	 * mark it as a duplicate of EMIF1. This will save some memory and
1393	 * computation.
1394	 */
1395	if (emif1 && emif1->np_ddr == np_ddr) {
1396		emif->duplicate = true;
1397		goto out;
1398	} else if (emif1) {
1399		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1400			__func__);
1401	}
1402
1403	of_get_custom_configs(np_emif, emif);
1404	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1405					emif->plat_data->device_info->type,
1406					&emif->plat_data->timings_arr_size);
1407
1408	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1409	goto out;
1410
1411error:
1412	return NULL;
1413out:
1414	return emif;
1415}
1416
1417#else
1418
1419static struct emif_data * __init_or_module of_get_memory_device_details(
1420		struct device_node *np_emif, struct device *dev)
1421{
1422	return NULL;
1423}
1424#endif
1425
1426static struct emif_data *__init_or_module get_device_details(
1427		struct platform_device *pdev)
1428{
1429	u32				size;
1430	struct emif_data		*emif = NULL;
1431	struct ddr_device_info		*dev_info;
1432	struct emif_custom_configs	*cust_cfgs;
1433	struct emif_platform_data	*pd;
1434	struct device			*dev;
1435	void				*temp;
1436
1437	pd = pdev->dev.platform_data;
1438	dev = &pdev->dev;
1439
1440	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1441			pd->device_info->density, pd->device_info->io_width,
1442			pd->phy_type, pd->ip_rev, dev))) {
1443		dev_err(dev, "%s: invalid device data\n", __func__);
1444		goto error;
1445	}
1446
1447	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1448	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1449	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1450
1451	if (!emif || !pd || !dev_info) {
1452		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1453		goto error;
1454	}
1455
1456	memcpy(temp, pd, sizeof(*pd));
1457	pd = temp;
1458	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1459
1460	pd->device_info		= dev_info;
1461	emif->plat_data		= pd;
1462	emif->dev		= dev;
1463	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1464
1465	/*
1466	 * For EMIF instances other than EMIF1 see if the devices connected
1467	 * are exactly same as on EMIF1(which is typically the case). If so,
1468	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1469	 * This will save some memory and some computation later.
1470	 */
1471	emif->duplicate = emif1 && (memcmp(dev_info,
1472		emif1->plat_data->device_info,
1473		sizeof(struct ddr_device_info)) == 0);
1474
1475	if (emif->duplicate) {
1476		pd->timings = NULL;
1477		pd->min_tck = NULL;
1478		goto out;
1479	} else if (emif1) {
1480		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1481			__func__);
1482	}
1483
1484	/*
1485	 * Copy custom configs - ignore allocation error, if any, as
1486	 * custom_configs is not very critical
1487	 */
1488	cust_cfgs = pd->custom_configs;
1489	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1490		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1491		if (temp)
1492			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1493		else
1494			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1495				__LINE__);
1496		pd->custom_configs = temp;
1497	}
1498
1499	/*
1500	 * Copy timings and min-tck values from platform data. If it is not
1501	 * available or if memory allocation fails, use JEDEC defaults
1502	 */
1503	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1504	if (pd->timings) {
1505		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1506		if (temp) {
1507			memcpy(temp, pd->timings, size);
1508			pd->timings = temp;
1509		} else {
1510			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1511				__LINE__);
1512			get_default_timings(emif);
1513		}
1514	} else {
1515		get_default_timings(emif);
1516	}
1517
1518	if (pd->min_tck) {
1519		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1520		if (temp) {
1521			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1522			pd->min_tck = temp;
1523		} else {
1524			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1525				__LINE__);
1526			pd->min_tck = &lpddr2_jedec_min_tck;
1527		}
1528	} else {
1529		pd->min_tck = &lpddr2_jedec_min_tck;
1530	}
1531
1532out:
1533	return emif;
1534
1535error:
1536	return NULL;
1537}
1538
1539static int __init_or_module emif_probe(struct platform_device *pdev)
1540{
1541	struct emif_data	*emif;
1542	struct resource		*res;
1543	int			irq;
1544
1545	if (pdev->dev.of_node)
1546		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1547	else
1548		emif = get_device_details(pdev);
1549
1550	if (!emif) {
1551		pr_err("%s: error getting device data\n", __func__);
1552		goto error;
1553	}
1554
1555	list_add(&emif->node, &device_list);
1556	emif->addressing = get_addressing_table(emif->plat_data->device_info);
1557
1558	/* Save pointers to each other in emif and device structures */
1559	emif->dev = &pdev->dev;
1560	platform_set_drvdata(pdev, emif);
1561
1562	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563	emif->base = devm_ioremap_resource(emif->dev, res);
1564	if (IS_ERR(emif->base))
1565		goto error;
1566
1567	irq = platform_get_irq(pdev, 0);
1568	if (irq < 0) {
1569		dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1570			__func__, irq);
1571		goto error;
1572	}
1573
1574	emif_onetime_settings(emif);
1575	emif_debugfs_init(emif);
1576	disable_and_clear_all_interrupts(emif);
1577	setup_interrupts(emif, irq);
 
 
1578
1579	/* One-time actions taken on probing the first device */
1580	if (!emif1) {
1581		emif1 = emif;
1582		spin_lock_init(&emif_lock);
1583
1584		/*
1585		 * TODO: register notifiers for frequency and voltage
1586		 * change here once the respective frameworks are
1587		 * available
1588		 */
1589	}
1590
1591	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1592		__func__, emif->base, irq);
1593
1594	return 0;
1595error:
1596	return -ENODEV;
1597}
1598
1599static int __exit emif_remove(struct platform_device *pdev)
1600{
1601	struct emif_data *emif = platform_get_drvdata(pdev);
1602
1603	emif_debugfs_exit(emif);
1604
1605	return 0;
1606}
1607
1608static void emif_shutdown(struct platform_device *pdev)
1609{
1610	struct emif_data	*emif = platform_get_drvdata(pdev);
1611
1612	disable_and_clear_all_interrupts(emif);
1613}
1614
1615static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1616		struct emif_regs *regs)
1617{
1618	u32				cs1_used, ip_rev, phy_type;
1619	u32				cl, type;
1620	const struct lpddr2_timings	*timings;
1621	const struct lpddr2_min_tck	*min_tck;
1622	const struct ddr_device_info	*device_info;
1623	const struct lpddr2_addressing	*addressing;
1624	struct emif_data		*emif_for_calc;
1625	struct device			*dev;
1626	const struct emif_custom_configs *custom_configs;
1627
1628	dev = emif->dev;
1629	/*
1630	 * If the devices on this EMIF instance is duplicate of EMIF1,
1631	 * use EMIF1 details for the calculation
1632	 */
1633	emif_for_calc	= emif->duplicate ? emif1 : emif;
1634	timings		= get_timings_table(emif_for_calc, freq);
1635	addressing	= emif_for_calc->addressing;
1636	if (!timings || !addressing) {
1637		dev_err(dev, "%s: not enough data available for %dHz",
1638			__func__, freq);
1639		return -1;
1640	}
1641
1642	device_info	= emif_for_calc->plat_data->device_info;
1643	type		= device_info->type;
1644	cs1_used	= device_info->cs1_used;
1645	ip_rev		= emif_for_calc->plat_data->ip_rev;
1646	phy_type	= emif_for_calc->plat_data->phy_type;
1647
1648	min_tck		= emif_for_calc->plat_data->min_tck;
1649	custom_configs	= emif_for_calc->plat_data->custom_configs;
1650
1651	set_ddr_clk_period(freq);
1652
1653	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1654	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1655			addressing);
1656	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1657			addressing, type);
1658	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1659		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1660
1661	cl = get_cl(emif);
1662
1663	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1664		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1665			timings, freq, cl);
1666	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1667		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1668		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1669		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1670		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1671	} else {
1672		return -1;
1673	}
1674
1675	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
1676	regs->pwr_mgmt_ctrl_shdw =
1677		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1678		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1679
1680	if (ip_rev & EMIF_4D) {
1681		regs->read_idle_ctrl_shdw_normal =
1682			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1683
1684		regs->read_idle_ctrl_shdw_volt_ramp =
1685			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1686	} else if (ip_rev & EMIF_4D5) {
1687		regs->dll_calib_ctrl_shdw_normal =
1688			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1689
1690		regs->dll_calib_ctrl_shdw_volt_ramp =
1691			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1692	}
1693
1694	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1695		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1696			addressing);
1697
1698		regs->sdram_tim1_shdw_derated =
1699			get_sdram_tim_1_shdw_derated(timings, min_tck,
1700				addressing);
1701
1702		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1703			min_tck, addressing, type, ip_rev,
1704			EMIF_DERATED_TIMINGS);
1705	}
1706
1707	regs->freq = freq;
1708
1709	return 0;
1710}
1711
1712/*
1713 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1714 * given frequency(freq):
1715 *
1716 * As an optimisation, every EMIF instance other than EMIF1 shares the
1717 * register cache with EMIF1 if the devices connected on this instance
1718 * are same as that on EMIF1(indicated by the duplicate flag)
1719 *
1720 * If we do not have an entry corresponding to the frequency given, we
1721 * allocate a new entry and calculate the values
1722 *
1723 * Upon finding the right reg dump, save it in curr_regs. It can be
1724 * directly used for thermal de-rating and voltage ramping changes.
1725 */
1726static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1727{
1728	int			i;
1729	struct emif_regs	**regs_cache;
1730	struct emif_regs	*regs = NULL;
1731	struct device		*dev;
1732
1733	dev = emif->dev;
1734	if (emif->curr_regs && emif->curr_regs->freq == freq) {
1735		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1736		return emif->curr_regs;
1737	}
1738
1739	if (emif->duplicate)
1740		regs_cache = emif1->regs_cache;
1741	else
1742		regs_cache = emif->regs_cache;
1743
1744	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1745		if (regs_cache[i]->freq == freq) {
1746			regs = regs_cache[i];
1747			dev_dbg(dev,
1748				"%s: reg dump found in reg cache for %u Hz\n",
1749				__func__, freq);
1750			break;
1751		}
1752	}
1753
1754	/*
1755	 * If we don't have an entry for this frequency in the cache create one
1756	 * and calculate the values
1757	 */
1758	if (!regs) {
1759		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1760		if (!regs)
1761			return NULL;
1762
1763		if (get_emif_reg_values(emif, freq, regs)) {
1764			devm_kfree(emif->dev, regs);
1765			return NULL;
1766		}
1767
1768		/*
1769		 * Now look for an un-used entry in the cache and save the
1770		 * newly created struct. If there are no free entries
1771		 * over-write the last entry
1772		 */
1773		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1774			;
1775
1776		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1777			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1778				__func__);
1779			i = EMIF_MAX_NUM_FREQUENCIES - 1;
1780			devm_kfree(emif->dev, regs_cache[i]);
1781		}
1782		regs_cache[i] = regs;
1783	}
1784
1785	return regs;
1786}
1787
1788static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1789{
1790	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1791		volt_state);
1792
1793	if (!emif->curr_regs) {
1794		dev_err(emif->dev,
1795			"%s: volt-notify before registers are ready: %d\n",
1796			__func__, volt_state);
1797		return;
1798	}
1799
1800	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1801}
1802
1803/*
1804 * TODO: voltage notify handling should be hooked up to
1805 * regulator framework as soon as the necessary support
1806 * is available in mainline kernel. This function is un-used
1807 * right now.
1808 */
1809static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1810{
1811	struct emif_data *emif;
1812
1813	spin_lock_irqsave(&emif_lock, irq_state);
1814
1815	list_for_each_entry(emif, &device_list, node)
1816		do_volt_notify_handling(emif, volt_state);
1817	do_freq_update();
1818
1819	spin_unlock_irqrestore(&emif_lock, irq_state);
1820}
1821
1822static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1823{
1824	struct emif_regs *regs;
1825
1826	regs = get_regs(emif, new_freq);
1827	if (!regs)
1828		return;
1829
1830	emif->curr_regs = regs;
1831
1832	/*
1833	 * Update the shadow registers:
1834	 * Temperature and voltage-ramp sensitive settings are also configured
1835	 * in terms of DDR cycles. So, we need to update them too when there
1836	 * is a freq change
1837	 */
1838	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1839		__func__, new_freq);
1840	setup_registers(emif, regs);
1841	setup_temperature_sensitive_regs(emif, regs);
1842	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1843
1844	/*
1845	 * Part of workaround for errata i728. See do_freq_update()
1846	 * for more details
1847	 */
1848	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1849		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1850}
1851
1852/*
1853 * TODO: frequency notify handling should be hooked up to
1854 * clock framework as soon as the necessary support is
1855 * available in mainline kernel. This function is un-used
1856 * right now.
1857 */
1858static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1859{
1860	struct emif_data *emif;
1861
1862	/*
1863	 * NOTE: we are taking the spin-lock here and releases it
1864	 * only in post-notifier. This doesn't look good and
1865	 * Sparse complains about it, but this seems to be
1866	 * un-avoidable. We need to lock a sequence of events
1867	 * that is split between EMIF and clock framework.
1868	 *
1869	 * 1. EMIF driver updates EMIF timings in shadow registers in the
1870	 *    frequency pre-notify callback from clock framework
1871	 * 2. clock framework sets up the registers for the new frequency
1872	 * 3. clock framework initiates a hw-sequence that updates
1873	 *    the frequency EMIF timings synchronously.
1874	 *
1875	 * All these 3 steps should be performed as an atomic operation
1876	 * vis-a-vis similar sequence in the EMIF interrupt handler
1877	 * for temperature events. Otherwise, there could be race
1878	 * conditions that could result in incorrect EMIF timings for
1879	 * a given frequency
1880	 */
1881	spin_lock_irqsave(&emif_lock, irq_state);
1882
1883	list_for_each_entry(emif, &device_list, node)
1884		do_freq_pre_notify_handling(emif, new_freq);
1885}
1886
1887static void do_freq_post_notify_handling(struct emif_data *emif)
1888{
1889	/*
1890	 * Part of workaround for errata i728. See do_freq_update()
1891	 * for more details
1892	 */
1893	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1894		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1895}
1896
1897/*
1898 * TODO: frequency notify handling should be hooked up to
1899 * clock framework as soon as the necessary support is
1900 * available in mainline kernel. This function is un-used
1901 * right now.
1902 */
1903static void __attribute__((unused)) freq_post_notify_handling(void)
1904{
1905	struct emif_data *emif;
1906
1907	list_for_each_entry(emif, &device_list, node)
1908		do_freq_post_notify_handling(emif);
1909
1910	/*
1911	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1912	 * for more details
1913	 */
1914	spin_unlock_irqrestore(&emif_lock, irq_state);
1915}
1916
1917#if defined(CONFIG_OF)
1918static const struct of_device_id emif_of_match[] = {
1919		{ .compatible = "ti,emif-4d" },
1920		{ .compatible = "ti,emif-4d5" },
1921		{},
1922};
1923MODULE_DEVICE_TABLE(of, emif_of_match);
1924#endif
1925
1926static struct platform_driver emif_driver = {
1927	.remove		= __exit_p(emif_remove),
1928	.shutdown	= emif_shutdown,
1929	.driver = {
1930		.name = "emif",
1931		.of_match_table = of_match_ptr(emif_of_match),
1932	},
1933};
1934
1935module_platform_driver_probe(emif_driver, emif_probe);
1936
1937MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1938MODULE_LICENSE("GPL");
1939MODULE_ALIAS("platform:emif");
1940MODULE_AUTHOR("Texas Instruments Inc");