Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
  1/*
  2 * Copyright (C) 2016 CNEX Labs
  3 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
  4 *
  5 * Based upon the circular ringbuffer.
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License version
  9 * 2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful, but
 12 * WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * pblk-rb.c - pblk's write buffer
 17 */
 18
 19#include <linux/circ_buf.h>
 20
 21#include "pblk.h"
 22
 23static DECLARE_RWSEM(pblk_rb_lock);
 24
 25void pblk_rb_data_free(struct pblk_rb *rb)
 26{
 27	struct pblk_rb_pages *p, *t;
 28
 29	down_write(&pblk_rb_lock);
 30	list_for_each_entry_safe(p, t, &rb->pages, list) {
 31		free_pages((unsigned long)page_address(p->pages), p->order);
 32		list_del(&p->list);
 33		kfree(p);
 34	}
 35	up_write(&pblk_rb_lock);
 36}
 37
 38/*
 39 * Initialize ring buffer. The data and metadata buffers must be previously
 40 * allocated and their size must be a power of two
 41 * (Documentation/circular-buffers.txt)
 42 */
 43int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
 44		 unsigned int power_size, unsigned int power_seg_sz)
 45{
 46	struct pblk *pblk = container_of(rb, struct pblk, rwb);
 47	unsigned int init_entry = 0;
 48	unsigned int alloc_order = power_size;
 49	unsigned int max_order = MAX_ORDER - 1;
 50	unsigned int order, iter;
 51
 52	down_write(&pblk_rb_lock);
 53	rb->entries = rb_entry_base;
 54	rb->seg_size = (1 << power_seg_sz);
 55	rb->nr_entries = (1 << power_size);
 56	rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
 57	rb->flush_point = EMPTY_ENTRY;
 58
 59	spin_lock_init(&rb->w_lock);
 60	spin_lock_init(&rb->s_lock);
 61
 62	INIT_LIST_HEAD(&rb->pages);
 63
 64	if (alloc_order >= max_order) {
 65		order = max_order;
 66		iter = (1 << (alloc_order - max_order));
 67	} else {
 68		order = alloc_order;
 69		iter = 1;
 70	}
 71
 72	do {
 73		struct pblk_rb_entry *entry;
 74		struct pblk_rb_pages *page_set;
 75		void *kaddr;
 76		unsigned long set_size;
 77		int i;
 78
 79		page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
 80		if (!page_set) {
 81			up_write(&pblk_rb_lock);
 82			return -ENOMEM;
 83		}
 84
 85		page_set->order = order;
 86		page_set->pages = alloc_pages(GFP_KERNEL, order);
 87		if (!page_set->pages) {
 88			kfree(page_set);
 89			pblk_rb_data_free(rb);
 90			up_write(&pblk_rb_lock);
 91			return -ENOMEM;
 92		}
 93		kaddr = page_address(page_set->pages);
 94
 95		entry = &rb->entries[init_entry];
 96		entry->data = kaddr;
 97		entry->cacheline = pblk_cacheline_to_addr(init_entry++);
 98		entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
 99
100		set_size = (1 << order);
101		for (i = 1; i < set_size; i++) {
102			entry = &rb->entries[init_entry];
103			entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104			entry->data = kaddr + (i * rb->seg_size);
105			entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106			bio_list_init(&entry->w_ctx.bios);
107		}
108
109		list_add_tail(&page_set->list, &rb->pages);
110		iter--;
111	} while (iter > 0);
112	up_write(&pblk_rb_lock);
113
114#ifdef CONFIG_NVM_DEBUG
115	atomic_set(&rb->inflight_flush_point, 0);
116#endif
117
118	/*
119	 * Initialize rate-limiter, which controls access to the write buffer
120	 * but user and GC I/O
121	 */
122	pblk_rl_init(&pblk->rl, rb->nr_entries);
123
124	return 0;
125}
126
127/*
128 * pblk_rb_calculate_size -- calculate the size of the write buffer
129 */
130unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
131{
132	/* Alloc a write buffer that can at least fit 128 entries */
133	return (1 << max(get_count_order(nr_entries), 7));
134}
135
136void *pblk_rb_entries_ref(struct pblk_rb *rb)
137{
138	return rb->entries;
139}
140
141static void clean_wctx(struct pblk_w_ctx *w_ctx)
142{
143	int flags;
144
145try:
146	flags = READ_ONCE(w_ctx->flags);
147	if (!(flags & PBLK_SUBMITTED_ENTRY))
148		goto try;
149
150	/* Release flags on context. Protect from writes and reads */
151	smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
152	pblk_ppa_set_empty(&w_ctx->ppa);
153	w_ctx->lba = ADDR_EMPTY;
154}
155
156#define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
157#define pblk_rb_ring_space(rb, head, tail, size) \
158					(CIRC_SPACE(head, tail, size))
159
160/*
161 * Buffer space is calculated with respect to the back pointer signaling
162 * synchronized entries to the media.
163 */
164static unsigned int pblk_rb_space(struct pblk_rb *rb)
165{
166	unsigned int mem = READ_ONCE(rb->mem);
167	unsigned int sync = READ_ONCE(rb->sync);
168
169	return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
170}
171
172/*
173 * Buffer count is calculated with respect to the submission entry signaling the
174 * entries that are available to send to the media
175 */
176unsigned int pblk_rb_read_count(struct pblk_rb *rb)
177{
178	unsigned int mem = READ_ONCE(rb->mem);
179	unsigned int subm = READ_ONCE(rb->subm);
180
181	return pblk_rb_ring_count(mem, subm, rb->nr_entries);
182}
183
184unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
185{
186	unsigned int mem = READ_ONCE(rb->mem);
187	unsigned int sync = READ_ONCE(rb->sync);
188
189	return pblk_rb_ring_count(mem, sync, rb->nr_entries);
190}
191
192unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
193{
194	unsigned int subm;
195
196	subm = READ_ONCE(rb->subm);
197	/* Commit read means updating submission pointer */
198	smp_store_release(&rb->subm,
199				(subm + nr_entries) & (rb->nr_entries - 1));
200
201	return subm;
202}
203
204static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int to_update)
205{
206	struct pblk *pblk = container_of(rb, struct pblk, rwb);
207	struct pblk_line *line;
208	struct pblk_rb_entry *entry;
209	struct pblk_w_ctx *w_ctx;
210	unsigned int user_io = 0, gc_io = 0;
211	unsigned int i;
212	int flags;
213
214	for (i = 0; i < to_update; i++) {
215		entry = &rb->entries[rb->l2p_update];
216		w_ctx = &entry->w_ctx;
217
218		flags = READ_ONCE(entry->w_ctx.flags);
219		if (flags & PBLK_IOTYPE_USER)
220			user_io++;
221		else if (flags & PBLK_IOTYPE_GC)
222			gc_io++;
223		else
224			WARN(1, "pblk: unknown IO type\n");
225
226		pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
227							entry->cacheline);
228
229		line = &pblk->lines[pblk_ppa_to_line(w_ctx->ppa)];
230		kref_put(&line->ref, pblk_line_put);
231		clean_wctx(w_ctx);
232		rb->l2p_update = (rb->l2p_update + 1) & (rb->nr_entries - 1);
233	}
234
235	pblk_rl_out(&pblk->rl, user_io, gc_io);
236
237	return 0;
238}
239
240/*
241 * When we move the l2p_update pointer, we update the l2p table - lookups will
242 * point to the physical address instead of to the cacheline in the write buffer
243 * from this moment on.
244 */
245static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
246			      unsigned int mem, unsigned int sync)
247{
248	unsigned int space, count;
249	int ret = 0;
250
251	lockdep_assert_held(&rb->w_lock);
252
253	/* Update l2p only as buffer entries are being overwritten */
254	space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
255	if (space > nr_entries)
256		goto out;
257
258	count = nr_entries - space;
259	/* l2p_update used exclusively under rb->w_lock */
260	ret = __pblk_rb_update_l2p(rb, count);
261
262out:
263	return ret;
264}
265
266/*
267 * Update the l2p entry for all sectors stored on the write buffer. This means
268 * that all future lookups to the l2p table will point to a device address, not
269 * to the cacheline in the write buffer.
270 */
271void pblk_rb_sync_l2p(struct pblk_rb *rb)
272{
273	unsigned int sync;
274	unsigned int to_update;
275
276	spin_lock(&rb->w_lock);
277
278	/* Protect from reads and writes */
279	sync = smp_load_acquire(&rb->sync);
280
281	to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
282	__pblk_rb_update_l2p(rb, to_update);
283
284	spin_unlock(&rb->w_lock);
285}
286
287/*
288 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
289 * Typically, 4KB data chunks coming from a bio will be copied to the ring
290 * buffer, thus the write will fail if not all incoming data can be copied.
291 *
292 */
293static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
294				  struct pblk_w_ctx w_ctx,
295				  struct pblk_rb_entry *entry)
296{
297	memcpy(entry->data, data, rb->seg_size);
298
299	entry->w_ctx.lba = w_ctx.lba;
300	entry->w_ctx.ppa = w_ctx.ppa;
301}
302
303void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
304			      struct pblk_w_ctx w_ctx, unsigned int ring_pos)
305{
306	struct pblk *pblk = container_of(rb, struct pblk, rwb);
307	struct pblk_rb_entry *entry;
308	int flags;
309
310	entry = &rb->entries[ring_pos];
311	flags = READ_ONCE(entry->w_ctx.flags);
312#ifdef CONFIG_NVM_DEBUG
313	/* Caller must guarantee that the entry is free */
314	BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
315#endif
316
317	__pblk_rb_write_entry(rb, data, w_ctx, entry);
318
319	pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
320	flags = w_ctx.flags | PBLK_WRITTEN_DATA;
321
322	/* Release flags on write context. Protect from writes */
323	smp_store_release(&entry->w_ctx.flags, flags);
324}
325
326void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
327			    struct pblk_w_ctx w_ctx, struct pblk_line *line,
328			    u64 paddr, unsigned int ring_pos)
329{
330	struct pblk *pblk = container_of(rb, struct pblk, rwb);
331	struct pblk_rb_entry *entry;
332	int flags;
333
334	entry = &rb->entries[ring_pos];
335	flags = READ_ONCE(entry->w_ctx.flags);
336#ifdef CONFIG_NVM_DEBUG
337	/* Caller must guarantee that the entry is free */
338	BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
339#endif
340
341	__pblk_rb_write_entry(rb, data, w_ctx, entry);
342
343	if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, line, paddr))
344		entry->w_ctx.lba = ADDR_EMPTY;
345
346	flags = w_ctx.flags | PBLK_WRITTEN_DATA;
347
348	/* Release flags on write context. Protect from writes */
349	smp_store_release(&entry->w_ctx.flags, flags);
350}
351
352static int pblk_rb_flush_point_set(struct pblk_rb *rb, struct bio *bio,
353				  unsigned int pos)
354{
355	struct pblk_rb_entry *entry;
356	unsigned int sync, flush_point;
357
358	pblk_rb_sync_init(rb, NULL);
359	sync = READ_ONCE(rb->sync);
360
361	if (pos == sync) {
362		pblk_rb_sync_end(rb, NULL);
363		return 0;
364	}
365
366#ifdef CONFIG_NVM_DEBUG
367	atomic_inc(&rb->inflight_flush_point);
368#endif
369
370	flush_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
371	entry = &rb->entries[flush_point];
372
373	/* Protect flush points */
374	smp_store_release(&rb->flush_point, flush_point);
375
376	if (bio)
377		bio_list_add(&entry->w_ctx.bios, bio);
378
379	pblk_rb_sync_end(rb, NULL);
380
381	return bio ? 1 : 0;
382}
383
384static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
385			       unsigned int *pos)
386{
387	unsigned int mem;
388	unsigned int sync;
389
390	sync = READ_ONCE(rb->sync);
391	mem = READ_ONCE(rb->mem);
392
393	if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
394		return 0;
395
396	if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
397		return 0;
398
399	*pos = mem;
400
401	return 1;
402}
403
404static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
405			     unsigned int *pos)
406{
407	if (!__pblk_rb_may_write(rb, nr_entries, pos))
408		return 0;
409
410	/* Protect from read count */
411	smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
412	return 1;
413}
414
415void pblk_rb_flush(struct pblk_rb *rb)
416{
417	struct pblk *pblk = container_of(rb, struct pblk, rwb);
418	unsigned int mem = READ_ONCE(rb->mem);
419
420	if (pblk_rb_flush_point_set(rb, NULL, mem))
421		return;
422
423	pblk_write_should_kick(pblk);
424}
425
426static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
427				   unsigned int *pos, struct bio *bio,
428				   int *io_ret)
429{
430	unsigned int mem;
431
432	if (!__pblk_rb_may_write(rb, nr_entries, pos))
433		return 0;
434
435	mem = (*pos + nr_entries) & (rb->nr_entries - 1);
436	*io_ret = NVM_IO_DONE;
437
438	if (bio->bi_opf & REQ_PREFLUSH) {
439		struct pblk *pblk = container_of(rb, struct pblk, rwb);
440
441		atomic64_inc(&pblk->nr_flush);
442		if (pblk_rb_flush_point_set(&pblk->rwb, bio, mem))
443			*io_ret = NVM_IO_OK;
444	}
445
446	/* Protect from read count */
447	smp_store_release(&rb->mem, mem);
448
449	return 1;
450}
451
452/*
453 * Atomically check that (i) there is space on the write buffer for the
454 * incoming I/O, and (ii) the current I/O type has enough budget in the write
455 * buffer (rate-limiter).
456 */
457int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
458			   unsigned int nr_entries, unsigned int *pos)
459{
460	struct pblk *pblk = container_of(rb, struct pblk, rwb);
461	int io_ret;
462
463	spin_lock(&rb->w_lock);
464	io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
465	if (io_ret) {
466		spin_unlock(&rb->w_lock);
467		return io_ret;
468	}
469
470	if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
471		spin_unlock(&rb->w_lock);
472		return NVM_IO_REQUEUE;
473	}
474
475	pblk_rl_user_in(&pblk->rl, nr_entries);
476	spin_unlock(&rb->w_lock);
477
478	return io_ret;
479}
480
481/*
482 * Look at pblk_rb_may_write_user comment
483 */
484int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
485			 unsigned int *pos)
486{
487	struct pblk *pblk = container_of(rb, struct pblk, rwb);
488
489	spin_lock(&rb->w_lock);
490	if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
491		spin_unlock(&rb->w_lock);
492		return 0;
493	}
494
495	if (!pblk_rb_may_write(rb, nr_entries, pos)) {
496		spin_unlock(&rb->w_lock);
497		return 0;
498	}
499
500	pblk_rl_gc_in(&pblk->rl, nr_entries);
501	spin_unlock(&rb->w_lock);
502
503	return 1;
504}
505
506/*
507 * The caller of this function must ensure that the backpointer will not
508 * overwrite the entries passed on the list.
509 */
510unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio,
511				      struct list_head *list,
512				      unsigned int max)
513{
514	struct pblk_rb_entry *entry, *tentry;
515	struct page *page;
516	unsigned int read = 0;
517	int ret;
518
519	list_for_each_entry_safe(entry, tentry, list, index) {
520		if (read > max) {
521			pr_err("pblk: too many entries on list\n");
522			goto out;
523		}
524
525		page = virt_to_page(entry->data);
526		if (!page) {
527			pr_err("pblk: could not allocate write bio page\n");
528			goto out;
529		}
530
531		ret = bio_add_page(bio, page, rb->seg_size, 0);
532		if (ret != rb->seg_size) {
533			pr_err("pblk: could not add page to write bio\n");
534			goto out;
535		}
536
537		list_del(&entry->index);
538		read++;
539	}
540
541out:
542	return read;
543}
544
545/*
546 * Read available entries on rb and add them to the given bio. To avoid a memory
547 * copy, a page reference to the write buffer is used to be added to the bio.
548 *
549 * This function is used by the write thread to form the write bio that will
550 * persist data on the write buffer to the media.
551 */
552unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
553				 unsigned int pos, unsigned int nr_entries,
554				 unsigned int count)
555{
556	struct pblk *pblk = container_of(rb, struct pblk, rwb);
557	struct request_queue *q = pblk->dev->q;
558	struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
559	struct bio *bio = rqd->bio;
560	struct pblk_rb_entry *entry;
561	struct page *page;
562	unsigned int pad = 0, to_read = nr_entries;
563	unsigned int i;
564	int flags;
565
566	if (count < nr_entries) {
567		pad = nr_entries - count;
568		to_read = count;
569	}
570
571	c_ctx->sentry = pos;
572	c_ctx->nr_valid = to_read;
573	c_ctx->nr_padded = pad;
574
575	for (i = 0; i < to_read; i++) {
576		entry = &rb->entries[pos];
577
578		/* A write has been allowed into the buffer, but data is still
579		 * being copied to it. It is ok to busy wait.
580		 */
581try:
582		flags = READ_ONCE(entry->w_ctx.flags);
583		if (!(flags & PBLK_WRITTEN_DATA)) {
584			io_schedule();
585			goto try;
586		}
587
588		page = virt_to_page(entry->data);
589		if (!page) {
590			pr_err("pblk: could not allocate write bio page\n");
591			flags &= ~PBLK_WRITTEN_DATA;
592			flags |= PBLK_SUBMITTED_ENTRY;
593			/* Release flags on context. Protect from writes */
594			smp_store_release(&entry->w_ctx.flags, flags);
595			return NVM_IO_ERR;
596		}
597
598		if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
599								rb->seg_size) {
600			pr_err("pblk: could not add page to write bio\n");
601			flags &= ~PBLK_WRITTEN_DATA;
602			flags |= PBLK_SUBMITTED_ENTRY;
603			/* Release flags on context. Protect from writes */
604			smp_store_release(&entry->w_ctx.flags, flags);
605			return NVM_IO_ERR;
606		}
607
608		flags &= ~PBLK_WRITTEN_DATA;
609		flags |= PBLK_SUBMITTED_ENTRY;
610
611		/* Release flags on context. Protect from writes */
612		smp_store_release(&entry->w_ctx.flags, flags);
613
614		pos = (pos + 1) & (rb->nr_entries - 1);
615	}
616
617	if (pad) {
618		if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
619			pr_err("pblk: could not pad page in write bio\n");
620			return NVM_IO_ERR;
621		}
622
623		if (pad < pblk->min_write_pgs)
624			atomic64_inc(&pblk->pad_dist[pad - 1]);
625		else
626			pr_warn("pblk: padding more than min. sectors\n");
627
628		atomic64_add(pad, &pblk->pad_wa);
629	}
630
631#ifdef CONFIG_NVM_DEBUG
632	atomic_long_add(pad, &pblk->padded_writes);
633#endif
634
635	return NVM_IO_OK;
636}
637
638/*
639 * Copy to bio only if the lba matches the one on the given cache entry.
640 * Otherwise, it means that the entry has been overwritten, and the bio should
641 * be directed to disk.
642 */
643int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
644			struct ppa_addr ppa, int bio_iter, bool advanced_bio)
645{
646	struct pblk *pblk = container_of(rb, struct pblk, rwb);
647	struct pblk_rb_entry *entry;
648	struct pblk_w_ctx *w_ctx;
649	struct ppa_addr l2p_ppa;
650	u64 pos = pblk_addr_to_cacheline(ppa);
651	void *data;
652	int flags;
653	int ret = 1;
654
655
656#ifdef CONFIG_NVM_DEBUG
657	/* Caller must ensure that the access will not cause an overflow */
658	BUG_ON(pos >= rb->nr_entries);
659#endif
660	entry = &rb->entries[pos];
661	w_ctx = &entry->w_ctx;
662	flags = READ_ONCE(w_ctx->flags);
663
664	spin_lock(&rb->w_lock);
665	spin_lock(&pblk->trans_lock);
666	l2p_ppa = pblk_trans_map_get(pblk, lba);
667	spin_unlock(&pblk->trans_lock);
668
669	/* Check if the entry has been overwritten or is scheduled to be */
670	if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
671						flags & PBLK_WRITABLE_ENTRY) {
672		ret = 0;
673		goto out;
674	}
675
676	/* Only advance the bio if it hasn't been advanced already. If advanced,
677	 * this bio is at least a partial bio (i.e., it has partially been
678	 * filled with data from the cache). If part of the data resides on the
679	 * media, we will read later on
680	 */
681	if (unlikely(!advanced_bio))
682		bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
683
684	data = bio_data(bio);
685	memcpy(data, entry->data, rb->seg_size);
686
687out:
688	spin_unlock(&rb->w_lock);
689	return ret;
690}
691
692struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
693{
694	unsigned int entry = pos & (rb->nr_entries - 1);
695
696	return &rb->entries[entry].w_ctx;
697}
698
699unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
700	__acquires(&rb->s_lock)
701{
702	if (flags)
703		spin_lock_irqsave(&rb->s_lock, *flags);
704	else
705		spin_lock_irq(&rb->s_lock);
706
707	return rb->sync;
708}
709
710void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
711	__releases(&rb->s_lock)
712{
713	lockdep_assert_held(&rb->s_lock);
714
715	if (flags)
716		spin_unlock_irqrestore(&rb->s_lock, *flags);
717	else
718		spin_unlock_irq(&rb->s_lock);
719}
720
721unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
722{
723	unsigned int sync, flush_point;
724	lockdep_assert_held(&rb->s_lock);
725
726	sync = READ_ONCE(rb->sync);
727	flush_point = READ_ONCE(rb->flush_point);
728
729	if (flush_point != EMPTY_ENTRY) {
730		unsigned int secs_to_flush;
731
732		secs_to_flush = pblk_rb_ring_count(flush_point, sync,
733					rb->nr_entries);
734		if (secs_to_flush < nr_entries) {
735			/* Protect flush points */
736			smp_store_release(&rb->flush_point, EMPTY_ENTRY);
737		}
738	}
739
740	sync = (sync + nr_entries) & (rb->nr_entries - 1);
741
742	/* Protect from counts */
743	smp_store_release(&rb->sync, sync);
744
745	return sync;
746}
747
748/* Calculate how many sectors to submit up to the current flush point. */
749unsigned int pblk_rb_flush_point_count(struct pblk_rb *rb)
750{
751	unsigned int subm, sync, flush_point;
752	unsigned int submitted, to_flush;
753
754	/* Protect flush points */
755	flush_point = smp_load_acquire(&rb->flush_point);
756	if (flush_point == EMPTY_ENTRY)
757		return 0;
758
759	/* Protect syncs */
760	sync = smp_load_acquire(&rb->sync);
761
762	subm = READ_ONCE(rb->subm);
763	submitted = pblk_rb_ring_count(subm, sync, rb->nr_entries);
764
765	/* The sync point itself counts as a sector to sync */
766	to_flush = pblk_rb_ring_count(flush_point, sync, rb->nr_entries) + 1;
767
768	return (submitted < to_flush) ? (to_flush - submitted) : 0;
769}
770
771/*
772 * Scan from the current position of the sync pointer to find the entry that
773 * corresponds to the given ppa. This is necessary since write requests can be
774 * completed out of order. The assumption is that the ppa is close to the sync
775 * pointer thus the search will not take long.
776 *
777 * The caller of this function must guarantee that the sync pointer will no
778 * reach the entry while it is using the metadata associated with it. With this
779 * assumption in mind, there is no need to take the sync lock.
780 */
781struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
782					      struct ppa_addr *ppa)
783{
784	unsigned int sync, subm, count;
785	unsigned int i;
786
787	sync = READ_ONCE(rb->sync);
788	subm = READ_ONCE(rb->subm);
789	count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
790
791	for (i = 0; i < count; i++)
792		sync = (sync + 1) & (rb->nr_entries - 1);
793
794	return NULL;
795}
796
797int pblk_rb_tear_down_check(struct pblk_rb *rb)
798{
799	struct pblk_rb_entry *entry;
800	int i;
801	int ret = 0;
802
803	spin_lock(&rb->w_lock);
804	spin_lock_irq(&rb->s_lock);
805
806	if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
807				(rb->sync == rb->l2p_update) &&
808				(rb->flush_point == EMPTY_ENTRY)) {
809		goto out;
810	}
811
812	if (!rb->entries) {
813		ret = 1;
814		goto out;
815	}
816
817	for (i = 0; i < rb->nr_entries; i++) {
818		entry = &rb->entries[i];
819
820		if (!entry->data) {
821			ret = 1;
822			goto out;
823		}
824	}
825
826out:
827	spin_unlock(&rb->w_lock);
828	spin_unlock_irq(&rb->s_lock);
829
830	return ret;
831}
832
833unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
834{
835	return (pos & (rb->nr_entries - 1));
836}
837
838int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
839{
840	return (pos >= rb->nr_entries);
841}
842
843ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
844{
845	struct pblk *pblk = container_of(rb, struct pblk, rwb);
846	struct pblk_c_ctx *c;
847	ssize_t offset;
848	int queued_entries = 0;
849
850	spin_lock_irq(&rb->s_lock);
851	list_for_each_entry(c, &pblk->compl_list, list)
852		queued_entries++;
853	spin_unlock_irq(&rb->s_lock);
854
855	if (rb->flush_point != EMPTY_ENTRY)
856		offset = scnprintf(buf, PAGE_SIZE,
857			"%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
858			rb->nr_entries,
859			rb->mem,
860			rb->subm,
861			rb->sync,
862			rb->l2p_update,
863#ifdef CONFIG_NVM_DEBUG
864			atomic_read(&rb->inflight_flush_point),
865#else
866			0,
867#endif
868			rb->flush_point,
869			pblk_rb_read_count(rb),
870			pblk_rb_space(rb),
871			pblk_rb_flush_point_count(rb),
872			queued_entries);
873	else
874		offset = scnprintf(buf, PAGE_SIZE,
875			"%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
876			rb->nr_entries,
877			rb->mem,
878			rb->subm,
879			rb->sync,
880			rb->l2p_update,
881#ifdef CONFIG_NVM_DEBUG
882			atomic_read(&rb->inflight_flush_point),
883#else
884			0,
885#endif
886			pblk_rb_read_count(rb),
887			pblk_rb_space(rb),
888			pblk_rb_flush_point_count(rb),
889			queued_entries);
890
891	return offset;
892}