Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
 
 
 
 
 
 
 
 
 
 
 
 
   3 *
   4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
 
   5 */
   6
   7#define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
   8
   9#include "fsl_pamu.h"
  10
  11#include <linux/fsl/guts.h>
  12#include <linux/interrupt.h>
  13#include <linux/genalloc.h>
  14#include <linux/of_address.h>
  15#include <linux/of_irq.h>
  16#include <linux/platform_device.h>
  17
  18#include <asm/mpc85xx.h>
  19
  20/* define indexes for each operation mapping scenario */
  21#define OMI_QMAN        0x00
  22#define OMI_FMAN        0x01
  23#define OMI_QMAN_PRIV   0x02
  24#define OMI_CAAM        0x03
  25
  26#define make64(high, low) (((u64)(high) << 32) | (low))
  27
  28struct pamu_isr_data {
  29	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
  30	unsigned int count;		/* The number of PAMUs */
  31};
  32
  33static struct paace *ppaact;
  34static struct paace *spaact;
  35
  36static bool probed;			/* Has PAMU been probed? */
  37
  38/*
  39 * Table for matching compatible strings, for device tree
  40 * guts node, for QorIQ SOCs.
  41 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
  42 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
  43 * string would be used.
  44 */
  45static const struct of_device_id guts_device_ids[] = {
  46	{ .compatible = "fsl,qoriq-device-config-1.0", },
  47	{ .compatible = "fsl,qoriq-device-config-2.0", },
  48	{}
  49};
  50
  51/*
  52 * Table for matching compatible strings, for device tree
  53 * L3 cache controller node.
  54 * "fsl,t4240-l3-cache-controller" corresponds to T4,
  55 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
  56 * "fsl,p4080-l3-cache-controller" corresponds to other,
  57 * SOCs.
  58 */
  59static const struct of_device_id l3_device_ids[] = {
  60	{ .compatible = "fsl,t4240-l3-cache-controller", },
  61	{ .compatible = "fsl,b4860-l3-cache-controller", },
  62	{ .compatible = "fsl,p4080-l3-cache-controller", },
  63	{}
  64};
  65
  66/* maximum subwindows permitted per liodn */
  67static u32 max_subwindow_count;
  68
 
 
 
 
 
 
 
 
 
 
 
 
 
  69/**
  70 * pamu_get_ppaace() - Return the primary PACCE
  71 * @liodn: liodn PAACT index for desired PAACE
  72 *
  73 * Returns the ppace pointer upon success else return
  74 * null.
  75 */
  76static struct paace *pamu_get_ppaace(int liodn)
  77{
  78	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
  79		pr_debug("PPAACT doesn't exist\n");
  80		return NULL;
  81	}
  82
  83	return &ppaact[liodn];
  84}
  85
  86/**
  87 * pamu_enable_liodn() - Set valid bit of PACCE
  88 * @liodn: liodn PAACT index for desired PAACE
  89 *
  90 * Returns 0 upon success else error code < 0 returned
  91 */
  92int pamu_enable_liodn(int liodn)
  93{
  94	struct paace *ppaace;
  95
  96	ppaace = pamu_get_ppaace(liodn);
  97	if (!ppaace) {
  98		pr_debug("Invalid primary paace entry\n");
  99		return -ENOENT;
 100	}
 101
 102	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
 103		pr_debug("liodn %d not configured\n", liodn);
 104		return -EINVAL;
 105	}
 106
 107	/* Ensure that all other stores to the ppaace complete first */
 108	mb();
 109
 110	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
 111	mb();
 112
 113	return 0;
 114}
 115
 116/**
 117 * pamu_disable_liodn() - Clears valid bit of PACCE
 118 * @liodn: liodn PAACT index for desired PAACE
 119 *
 120 * Returns 0 upon success else error code < 0 returned
 121 */
 122int pamu_disable_liodn(int liodn)
 123{
 124	struct paace *ppaace;
 125
 126	ppaace = pamu_get_ppaace(liodn);
 127	if (!ppaace) {
 128		pr_debug("Invalid primary paace entry\n");
 129		return -ENOENT;
 130	}
 131
 132	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
 133	mb();
 134
 135	return 0;
 136}
 137
 138/* Derive the window size encoding for a particular PAACE entry */
 139static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
 140{
 141	/* Bug if not a power of 2 */
 142	BUG_ON(addrspace_size & (addrspace_size - 1));
 143
 144	/* window size is 2^(WSE+1) bytes */
 145	return fls64(addrspace_size) - 2;
 146}
 147
 
 
 
 
 
 
 
 148/*
 149 * Set the PAACE type as primary and set the coherency required domain
 150 * attribute
 151 */
 152static void pamu_init_ppaace(struct paace *ppaace)
 153{
 154	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
 155
 156	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 157	       PAACE_M_COHERENCE_REQ);
 158}
 159
 160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161 * Function used for updating stash destination for the coressponding
 162 * LIODN.
 163 */
 164int pamu_update_paace_stash(int liodn, u32 value)
 165{
 166	struct paace *paace;
 167
 168	paace = pamu_get_ppaace(liodn);
 169	if (!paace) {
 170		pr_debug("Invalid liodn entry\n");
 171		return -ENOENT;
 172	}
 
 
 
 
 
 173	set_bf(paace->impl_attr, PAACE_IA_CID, value);
 174
 175	mb();
 176
 177	return 0;
 178}
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180/**
 181 * pamu_config_ppaace() - Sets up PPAACE entry for specified liodn
 182 *
 183 * @liodn: Logical IO device number
 
 
 184 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
 
 185 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
 186 *	     stashid not defined
 
 
 
 187 * @prot: window permissions
 188 *
 189 * Returns 0 upon success else error code < 0 returned
 190 */
 191int pamu_config_ppaace(int liodn, u32 omi, u32 stashid, int prot)
 
 
 192{
 193	struct paace *ppaace;
 
 
 
 
 
 
 
 
 
 
 
 
 194
 195	ppaace = pamu_get_ppaace(liodn);
 196	if (!ppaace)
 197		return -ENOENT;
 198
 199	/* window size is 2^(WSE+1) bytes */
 200	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
 201	       map_addrspace_size_to_wse(1ULL << 36));
 202
 203	pamu_init_ppaace(ppaace);
 204
 205	ppaace->wbah = 0;
 206	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
 
 207
 208	/* set up operation mapping if it's configured */
 209	if (omi < OME_NUMBER_ENTRIES) {
 210		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 211		ppaace->op_encode.index_ot.omi = omi;
 212	} else if (~omi != 0) {
 213		pr_debug("bad operation mapping index: %d\n", omi);
 214		return -ENODEV;
 215	}
 216
 217	/* configure stash id */
 218	if (~stashid != 0)
 219		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
 220
 221	set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
 222	ppaace->twbah = 0;
 223	set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, 0);
 224	set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
 225	set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
 226	set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	mb();
 228
 229	return 0;
 230}
 231
 232/**
 233 * get_ome_index() - Returns the index in the operation mapping table
 234 *                   for device.
 235 * @omi_index: pointer for storing the index value
 236 * @dev: target device
 237 *
 238 */
 239void get_ome_index(u32 *omi_index, struct device *dev)
 240{
 241	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
 242		*omi_index = OMI_QMAN;
 243	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
 244		*omi_index = OMI_QMAN_PRIV;
 245}
 246
 247/**
 248 * get_stash_id - Returns stash destination id corresponding to a
 249 *                cache type and vcpu.
 250 * @stash_dest_hint: L1, L2 or L3
 251 * @vcpu: vpcu target for a particular cache type.
 252 *
 253 * Returs stash on success or ~(u32)0 on failure.
 254 *
 255 */
 256u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
 257{
 258	const u32 *prop;
 259	struct device_node *node;
 260	u32 cache_level;
 261	int len, found = 0;
 262	int i;
 263
 264	/* Fastpath, exit early if L3/CPC cache is target for stashing */
 265	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
 266		node = of_find_matching_node(NULL, l3_device_ids);
 267		if (node) {
 268			prop = of_get_property(node, "cache-stash-id", NULL);
 269			if (!prop) {
 270				pr_debug("missing cache-stash-id at %pOF\n",
 271					 node);
 272				of_node_put(node);
 273				return ~(u32)0;
 274			}
 275			of_node_put(node);
 276			return be32_to_cpup(prop);
 277		}
 278		return ~(u32)0;
 279	}
 280
 281	for_each_of_cpu_node(node) {
 282		prop = of_get_property(node, "reg", &len);
 283		for (i = 0; i < len / sizeof(u32); i++) {
 284			if (be32_to_cpup(&prop[i]) == vcpu) {
 285				found = 1;
 286				goto found_cpu_node;
 287			}
 288		}
 289	}
 290found_cpu_node:
 291
 292	/* find the hwnode that represents the cache */
 293	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
 294		if (stash_dest_hint == cache_level) {
 295			prop = of_get_property(node, "cache-stash-id", NULL);
 296			if (!prop) {
 297				pr_debug("missing cache-stash-id at %pOF\n",
 298					 node);
 299				of_node_put(node);
 300				return ~(u32)0;
 301			}
 302			of_node_put(node);
 303			return be32_to_cpup(prop);
 304		}
 305
 306		prop = of_get_property(node, "next-level-cache", NULL);
 307		if (!prop) {
 308			pr_debug("can't find next-level-cache at %pOF\n", node);
 309			of_node_put(node);
 310			return ~(u32)0;  /* can't traverse any further */
 311		}
 312		of_node_put(node);
 313
 314		/* advance to next node in cache hierarchy */
 315		node = of_find_node_by_phandle(*prop);
 316		if (!node) {
 317			pr_debug("Invalid node for cache hierarchy\n");
 318			return ~(u32)0;
 319		}
 320	}
 321
 322	pr_debug("stash dest not found for %d on vcpu %d\n",
 323		 stash_dest_hint, vcpu);
 324	return ~(u32)0;
 325}
 326
 327/* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
 328#define QMAN_PAACE 1
 329#define QMAN_PORTAL_PAACE 2
 330#define BMAN_PAACE 3
 331
 332/*
 333 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
 334 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
 335 * clear the PAACE entry coherency attribute for them.
 336 */
 337static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
 338{
 339	switch (paace_type) {
 340	case QMAN_PAACE:
 341		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 342		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
 343		/* setup QMAN Private data stashing for the L3 cache */
 344		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 345		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 346		       0);
 347		break;
 348	case QMAN_PORTAL_PAACE:
 349		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 350		ppaace->op_encode.index_ot.omi = OMI_QMAN;
 351		/* Set DQRR and Frame stashing for the L3 cache */
 352		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 353		break;
 354	case BMAN_PAACE:
 355		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 356		       0);
 357		break;
 358	}
 359}
 360
 361/*
 362 * Setup the operation mapping table for various devices. This is a static
 363 * table where each table index corresponds to a particular device. PAMU uses
 364 * this table to translate device transaction to appropriate corenet
 365 * transaction.
 366 */
 367static void setup_omt(struct ome *omt)
 368{
 369	struct ome *ome;
 370
 371	/* Configure OMI_QMAN */
 372	ome = &omt[OMI_QMAN];
 373
 374	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
 375	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 376	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 377	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
 378
 379	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
 380	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
 381
 382	/* Configure OMI_FMAN */
 383	ome = &omt[OMI_FMAN];
 384	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 385	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 386
 387	/* Configure OMI_QMAN private */
 388	ome = &omt[OMI_QMAN_PRIV];
 389	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
 390	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 391	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 392	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
 393
 394	/* Configure OMI_CAAM */
 395	ome = &omt[OMI_CAAM];
 396	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 397	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 398}
 399
 400/*
 401 * Get the maximum number of PAACT table entries
 402 * and subwindows supported by PAMU
 403 */
 404static void get_pamu_cap_values(unsigned long pamu_reg_base)
 405{
 406	u32 pc_val;
 407
 408	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
 409	/* Maximum number of subwindows per liodn */
 410	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
 411}
 412
 413/* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
 414static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
 415			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
 416			  phys_addr_t omt_phys)
 417{
 418	u32 *pc;
 419	struct pamu_mmap_regs *pamu_regs;
 420
 421	pc = (u32 *) (pamu_reg_base + PAMU_PC);
 422	pamu_regs = (struct pamu_mmap_regs *)
 423		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
 424
 425	/* set up pointers to corenet control blocks */
 426
 427	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
 428	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
 429	ppaact_phys = ppaact_phys + PAACT_SIZE;
 430	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
 431	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
 432
 433	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
 434	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
 435	spaact_phys = spaact_phys + SPAACT_SIZE;
 436	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
 437	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
 438
 439	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
 440	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
 441	omt_phys = omt_phys + OMT_SIZE;
 442	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
 443	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
 444
 445	/*
 446	 * set PAMU enable bit,
 447	 * allow ppaact & omt to be cached
 448	 * & enable PAMU access violation interrupts.
 449	 */
 450
 451	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
 452		 PAMU_ACCESS_VIOLATION_ENABLE);
 453	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
 454	return 0;
 455}
 456
 457/* Enable all device LIODNS */
 458static void setup_liodns(void)
 459{
 460	int i, len;
 461	struct paace *ppaace;
 462	struct device_node *node = NULL;
 463	const u32 *prop;
 464
 465	for_each_node_with_property(node, "fsl,liodn") {
 466		prop = of_get_property(node, "fsl,liodn", &len);
 467		for (i = 0; i < len / sizeof(u32); i++) {
 468			int liodn;
 469
 470			liodn = be32_to_cpup(&prop[i]);
 471			if (liodn >= PAACE_NUMBER_ENTRIES) {
 472				pr_debug("Invalid LIODN value %d\n", liodn);
 473				continue;
 474			}
 475			ppaace = pamu_get_ppaace(liodn);
 476			pamu_init_ppaace(ppaace);
 477			/* window size is 2^(WSE+1) bytes */
 478			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
 479			ppaace->wbah = 0;
 480			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
 481			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
 482			       PAACE_ATM_NO_XLATE);
 483			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
 484			       PAACE_AP_PERMS_ALL);
 485			if (of_device_is_compatible(node, "fsl,qman-portal"))
 486				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
 487			if (of_device_is_compatible(node, "fsl,qman"))
 488				setup_qbman_paace(ppaace, QMAN_PAACE);
 489			if (of_device_is_compatible(node, "fsl,bman"))
 490				setup_qbman_paace(ppaace, BMAN_PAACE);
 491			mb();
 492			pamu_enable_liodn(liodn);
 493		}
 494	}
 495}
 496
 497static irqreturn_t pamu_av_isr(int irq, void *arg)
 498{
 499	struct pamu_isr_data *data = arg;
 500	phys_addr_t phys;
 501	unsigned int i, j, ret;
 502
 503	pr_emerg("access violation interrupt\n");
 504
 505	for (i = 0; i < data->count; i++) {
 506		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
 507		u32 pics = in_be32(p + PAMU_PICS);
 508
 509		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
 510			u32 avs1 = in_be32(p + PAMU_AVS1);
 511			struct paace *paace;
 512
 513			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
 514			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
 515			pr_emerg("AVS1=%08x\n", avs1);
 516			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
 517			pr_emerg("AVA=%016llx\n",
 518				 make64(in_be32(p + PAMU_AVAH),
 519					in_be32(p + PAMU_AVAL)));
 520			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
 521			pr_emerg("POEA=%016llx\n",
 522				 make64(in_be32(p + PAMU_POEAH),
 523					in_be32(p + PAMU_POEAL)));
 524
 525			phys = make64(in_be32(p + PAMU_POEAH),
 526				      in_be32(p + PAMU_POEAL));
 527
 528			/* Assume that POEA points to a PAACE */
 529			if (phys) {
 530				u32 *paace = phys_to_virt(phys);
 531
 532				/* Only the first four words are relevant */
 533				for (j = 0; j < 4; j++)
 534					pr_emerg("PAACE[%u]=%08x\n",
 535						 j, in_be32(paace + j));
 536			}
 537
 538			/* clear access violation condition */
 539			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
 540			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 541			BUG_ON(!paace);
 542			/* check if we got a violation for a disabled LIODN */
 543			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
 544				/*
 545				 * As per hardware erratum A-003638, access
 546				 * violation can be reported for a disabled
 547				 * LIODN. If we hit that condition, disable
 548				 * access violation reporting.
 549				 */
 550				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
 551			} else {
 552				/* Disable the LIODN */
 553				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 554				BUG_ON(ret);
 555				pr_emerg("Disabling liodn %x\n",
 556					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
 557			}
 558			out_be32((p + PAMU_PICS), pics);
 559		}
 560	}
 561
 562	return IRQ_HANDLED;
 563}
 564
 565#define LAWAR_EN		0x80000000
 566#define LAWAR_TARGET_MASK	0x0FF00000
 567#define LAWAR_TARGET_SHIFT	20
 568#define LAWAR_SIZE_MASK		0x0000003F
 569#define LAWAR_CSDID_MASK	0x000FF000
 570#define LAWAR_CSDID_SHIFT	12
 571
 572#define LAW_SIZE_4K		0xb
 573
 574struct ccsr_law {
 575	u32	lawbarh;	/* LAWn base address high */
 576	u32	lawbarl;	/* LAWn base address low */
 577	u32	lawar;		/* LAWn attributes */
 578	u32	reserved;
 579};
 580
 581/*
 582 * Create a coherence subdomain for a given memory block.
 583 */
 584static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
 585{
 586	struct device_node *np;
 587	const __be32 *iprop;
 588	void __iomem *lac = NULL;	/* Local Access Control registers */
 589	struct ccsr_law __iomem *law;
 590	void __iomem *ccm = NULL;
 591	u32 __iomem *csdids;
 592	unsigned int i, num_laws, num_csds;
 593	u32 law_target = 0;
 594	u32 csd_id = 0;
 595	int ret = 0;
 596
 597	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
 598	if (!np)
 599		return -ENODEV;
 600
 601	iprop = of_get_property(np, "fsl,num-laws", NULL);
 602	if (!iprop) {
 603		ret = -ENODEV;
 604		goto error;
 605	}
 606
 607	num_laws = be32_to_cpup(iprop);
 608	if (!num_laws) {
 609		ret = -ENODEV;
 610		goto error;
 611	}
 612
 613	lac = of_iomap(np, 0);
 614	if (!lac) {
 615		ret = -ENODEV;
 616		goto error;
 617	}
 618
 619	/* LAW registers are at offset 0xC00 */
 620	law = lac + 0xC00;
 621
 622	of_node_put(np);
 623
 624	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
 625	if (!np) {
 626		ret = -ENODEV;
 627		goto error;
 628	}
 629
 630	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
 631	if (!iprop) {
 632		ret = -ENODEV;
 633		goto error;
 634	}
 635
 636	num_csds = be32_to_cpup(iprop);
 637	if (!num_csds) {
 638		ret = -ENODEV;
 639		goto error;
 640	}
 641
 642	ccm = of_iomap(np, 0);
 643	if (!ccm) {
 644		ret = -ENOMEM;
 645		goto error;
 646	}
 647
 648	/* The undocumented CSDID registers are at offset 0x600 */
 649	csdids = ccm + 0x600;
 650
 651	of_node_put(np);
 652	np = NULL;
 653
 654	/* Find an unused coherence subdomain ID */
 655	for (csd_id = 0; csd_id < num_csds; csd_id++) {
 656		if (!csdids[csd_id])
 657			break;
 658	}
 659
 660	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
 661	csdids[csd_id] = csd_port_id;
 662
 663	/* Find the DDR LAW that maps to our buffer. */
 664	for (i = 0; i < num_laws; i++) {
 665		if (law[i].lawar & LAWAR_EN) {
 666			phys_addr_t law_start, law_end;
 667
 668			law_start = make64(law[i].lawbarh, law[i].lawbarl);
 669			law_end = law_start +
 670				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
 671
 672			if (law_start <= phys && phys < law_end) {
 673				law_target = law[i].lawar & LAWAR_TARGET_MASK;
 674				break;
 675			}
 676		}
 677	}
 678
 679	if (i == 0 || i == num_laws) {
 680		/* This should never happen */
 681		ret = -ENOENT;
 682		goto error;
 683	}
 684
 685	/* Find a free LAW entry */
 686	while (law[--i].lawar & LAWAR_EN) {
 687		if (i == 0) {
 688			/* No higher priority LAW slots available */
 689			ret = -ENOENT;
 690			goto error;
 691		}
 692	}
 693
 694	law[i].lawbarh = upper_32_bits(phys);
 695	law[i].lawbarl = lower_32_bits(phys);
 696	wmb();
 697	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
 698		(LAW_SIZE_4K + get_order(size));
 699	wmb();
 700
 701error:
 702	if (ccm)
 703		iounmap(ccm);
 704
 705	if (lac)
 706		iounmap(lac);
 707
 708	if (np)
 709		of_node_put(np);
 710
 711	return ret;
 712}
 713
 714/*
 715 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
 716 * bit map of snoopers for a given range of memory mapped by a LAW.
 717 *
 718 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
 719 * table should never need to be updated.  SVRs are guaranteed to be unique, so
 720 * there is no worry that a future SOC will inadvertently have one of these
 721 * values.
 722 */
 723static const struct {
 724	u32 svr;
 725	u32 port_id;
 726} port_id_map[] = {
 727	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
 728	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
 729	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
 730	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
 731	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
 732	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
 733	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
 734	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
 735	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
 736	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
 737	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
 738	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
 739	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
 740};
 741
 742#define SVR_SECURITY	0x80000	/* The Security (E) bit */
 743
 744static int fsl_pamu_probe(struct platform_device *pdev)
 745{
 746	struct device *dev = &pdev->dev;
 747	void __iomem *pamu_regs = NULL;
 748	struct ccsr_guts __iomem *guts_regs = NULL;
 749	u32 pamubypenr, pamu_counter;
 750	unsigned long pamu_reg_off;
 751	unsigned long pamu_reg_base;
 752	struct pamu_isr_data *data = NULL;
 753	struct device_node *guts_node;
 754	u64 size;
 755	struct page *p;
 756	int ret = 0;
 757	int irq;
 758	phys_addr_t ppaact_phys;
 759	phys_addr_t spaact_phys;
 760	struct ome *omt;
 761	phys_addr_t omt_phys;
 762	size_t mem_size = 0;
 763	unsigned int order = 0;
 764	u32 csd_port_id = 0;
 765	unsigned i;
 766	/*
 767	 * enumerate all PAMUs and allocate and setup PAMU tables
 768	 * for each of them,
 769	 * NOTE : All PAMUs share the same LIODN tables.
 770	 */
 771
 772	if (WARN_ON(probed))
 773		return -EBUSY;
 774
 775	pamu_regs = of_iomap(dev->of_node, 0);
 776	if (!pamu_regs) {
 777		dev_err(dev, "ioremap of PAMU node failed\n");
 778		return -ENOMEM;
 779	}
 780	of_get_address(dev->of_node, 0, &size, NULL);
 781
 782	irq = irq_of_parse_and_map(dev->of_node, 0);
 783	if (!irq) {
 784		dev_warn(dev, "no interrupts listed in PAMU node\n");
 785		goto error;
 786	}
 787
 788	data = kzalloc(sizeof(*data), GFP_KERNEL);
 789	if (!data) {
 790		ret = -ENOMEM;
 791		goto error;
 792	}
 793	data->pamu_reg_base = pamu_regs;
 794	data->count = size / PAMU_OFFSET;
 795
 796	/* The ISR needs access to the regs, so we won't iounmap them */
 797	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
 798	if (ret < 0) {
 799		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
 800		goto error;
 801	}
 802
 803	guts_node = of_find_matching_node(NULL, guts_device_ids);
 804	if (!guts_node) {
 805		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
 806		ret = -ENODEV;
 807		goto error;
 808	}
 809
 810	guts_regs = of_iomap(guts_node, 0);
 811	of_node_put(guts_node);
 812	if (!guts_regs) {
 813		dev_err(dev, "ioremap of GUTS node failed\n");
 814		ret = -ENODEV;
 815		goto error;
 816	}
 817
 818	/* read in the PAMU capability registers */
 819	get_pamu_cap_values((unsigned long)pamu_regs);
 820	/*
 821	 * To simplify the allocation of a coherency domain, we allocate the
 822	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
 823	 * wastes more memory compared to allocating the buffers separately.
 824	 */
 825	/* Determine how much memory we need */
 826	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
 827		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
 828		(PAGE_SIZE << get_order(OMT_SIZE));
 829	order = get_order(mem_size);
 830
 831	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
 832	if (!p) {
 833		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
 834		ret = -ENOMEM;
 835		goto error;
 836	}
 837
 838	ppaact = page_address(p);
 839	ppaact_phys = page_to_phys(p);
 840
 841	/* Make sure the memory is naturally aligned */
 842	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
 843		dev_err(dev, "PAACT/OMT block is unaligned\n");
 844		ret = -ENOMEM;
 845		goto error;
 846	}
 847
 848	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
 849	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
 850
 851	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
 852
 853	/* Check to see if we need to implement the work-around on this SOC */
 854
 855	/* Determine the Port ID for our coherence subdomain */
 856	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
 857		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
 858			csd_port_id = port_id_map[i].port_id;
 859			dev_dbg(dev, "found matching SVR %08x\n",
 860				port_id_map[i].svr);
 861			break;
 862		}
 863	}
 864
 865	if (csd_port_id) {
 866		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
 867			&ppaact_phys, mem_size, csd_port_id);
 868
 869		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
 870		if (ret) {
 871			dev_err(dev, "could not create coherence subdomain\n");
 872			goto error;
 873		}
 874	}
 875
 876	spaact_phys = virt_to_phys(spaact);
 877	omt_phys = virt_to_phys(omt);
 878
 
 
 
 
 
 
 
 
 
 
 
 879	pamubypenr = in_be32(&guts_regs->pamubypenr);
 880
 881	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
 882	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
 883
 884		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
 885		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
 886			       spaact_phys, omt_phys);
 887		/* Disable PAMU bypass for this PAMU */
 888		pamubypenr &= ~pamu_counter;
 889	}
 890
 891	setup_omt(omt);
 892
 893	/* Enable all relevant PAMU(s) */
 894	out_be32(&guts_regs->pamubypenr, pamubypenr);
 895
 896	iounmap(guts_regs);
 897
 898	/* Enable DMA for the LIODNs in the device tree */
 899
 900	setup_liodns();
 901
 902	probed = true;
 903
 904	return 0;
 905
 
 
 
 906error:
 907	if (irq)
 908		free_irq(irq, data);
 909
 910	kfree_sensitive(data);
 
 
 
 911
 912	if (pamu_regs)
 913		iounmap(pamu_regs);
 914
 915	if (guts_regs)
 916		iounmap(guts_regs);
 917
 918	if (ppaact)
 919		free_pages((unsigned long)ppaact, order);
 920
 921	ppaact = NULL;
 922
 923	return ret;
 924}
 925
 926static struct platform_driver fsl_of_pamu_driver = {
 927	.driver = {
 928		.name = "fsl-of-pamu",
 929	},
 930	.probe = fsl_pamu_probe,
 931};
 932
 933static __init int fsl_pamu_init(void)
 934{
 935	struct platform_device *pdev = NULL;
 936	struct device_node *np;
 937	int ret;
 938
 939	/*
 940	 * The normal OF process calls the probe function at some
 941	 * indeterminate later time, after most drivers have loaded.  This is
 942	 * too late for us, because PAMU clients (like the Qman driver)
 943	 * depend on PAMU being initialized early.
 944	 *
 945	 * So instead, we "manually" call our probe function by creating the
 946	 * platform devices ourselves.
 947	 */
 948
 949	/*
 950	 * We assume that there is only one PAMU node in the device tree.  A
 951	 * single PAMU node represents all of the PAMU devices in the SOC
 952	 * already.   Everything else already makes that assumption, and the
 953	 * binding for the PAMU nodes doesn't allow for any parent-child
 954	 * relationships anyway.  In other words, support for more than one
 955	 * PAMU node would require significant changes to a lot of code.
 956	 */
 957
 958	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
 959	if (!np) {
 960		pr_err("could not find a PAMU node\n");
 961		return -ENODEV;
 962	}
 963
 964	ret = platform_driver_register(&fsl_of_pamu_driver);
 965	if (ret) {
 966		pr_err("could not register driver (err=%i)\n", ret);
 967		goto error_driver_register;
 968	}
 969
 970	pdev = platform_device_alloc("fsl-of-pamu", 0);
 971	if (!pdev) {
 972		pr_err("could not allocate device %pOF\n", np);
 973		ret = -ENOMEM;
 974		goto error_device_alloc;
 975	}
 976	pdev->dev.of_node = of_node_get(np);
 977
 978	ret = pamu_domain_init();
 979	if (ret)
 980		goto error_device_add;
 981
 982	ret = platform_device_add(pdev);
 983	if (ret) {
 984		pr_err("could not add device %pOF (err=%i)\n", np, ret);
 985		goto error_device_add;
 986	}
 987
 988	return 0;
 989
 990error_device_add:
 991	of_node_put(pdev->dev.of_node);
 992	pdev->dev.of_node = NULL;
 993
 994	platform_device_put(pdev);
 995
 996error_device_alloc:
 997	platform_driver_unregister(&fsl_of_pamu_driver);
 998
 999error_driver_register:
1000	of_node_put(np);
1001
1002	return ret;
1003}
1004arch_initcall(fsl_pamu_init);
v4.17
 
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright (C) 2013 Freescale Semiconductor, Inc.
  16 *
  17 */
  18
  19#define pr_fmt(fmt)    "fsl-pamu: %s: " fmt, __func__
  20
  21#include "fsl_pamu.h"
  22
  23#include <linux/fsl/guts.h>
  24#include <linux/interrupt.h>
  25#include <linux/genalloc.h>
 
 
 
  26
  27#include <asm/mpc85xx.h>
  28
  29/* define indexes for each operation mapping scenario */
  30#define OMI_QMAN        0x00
  31#define OMI_FMAN        0x01
  32#define OMI_QMAN_PRIV   0x02
  33#define OMI_CAAM        0x03
  34
  35#define make64(high, low) (((u64)(high) << 32) | (low))
  36
  37struct pamu_isr_data {
  38	void __iomem *pamu_reg_base;	/* Base address of PAMU regs */
  39	unsigned int count;		/* The number of PAMUs */
  40};
  41
  42static struct paace *ppaact;
  43static struct paace *spaact;
  44
  45static bool probed;			/* Has PAMU been probed? */
  46
  47/*
  48 * Table for matching compatible strings, for device tree
  49 * guts node, for QorIQ SOCs.
  50 * "fsl,qoriq-device-config-2.0" corresponds to T4 & B4
  51 * SOCs. For the older SOCs "fsl,qoriq-device-config-1.0"
  52 * string would be used.
  53 */
  54static const struct of_device_id guts_device_ids[] = {
  55	{ .compatible = "fsl,qoriq-device-config-1.0", },
  56	{ .compatible = "fsl,qoriq-device-config-2.0", },
  57	{}
  58};
  59
  60/*
  61 * Table for matching compatible strings, for device tree
  62 * L3 cache controller node.
  63 * "fsl,t4240-l3-cache-controller" corresponds to T4,
  64 * "fsl,b4860-l3-cache-controller" corresponds to B4 &
  65 * "fsl,p4080-l3-cache-controller" corresponds to other,
  66 * SOCs.
  67 */
  68static const struct of_device_id l3_device_ids[] = {
  69	{ .compatible = "fsl,t4240-l3-cache-controller", },
  70	{ .compatible = "fsl,b4860-l3-cache-controller", },
  71	{ .compatible = "fsl,p4080-l3-cache-controller", },
  72	{}
  73};
  74
  75/* maximum subwindows permitted per liodn */
  76static u32 max_subwindow_count;
  77
  78/* Pool for fspi allocation */
  79static struct gen_pool *spaace_pool;
  80
  81/**
  82 * pamu_get_max_subwin_cnt() - Return the maximum supported
  83 * subwindow count per liodn.
  84 *
  85 */
  86u32 pamu_get_max_subwin_cnt(void)
  87{
  88	return max_subwindow_count;
  89}
  90
  91/**
  92 * pamu_get_ppaace() - Return the primary PACCE
  93 * @liodn: liodn PAACT index for desired PAACE
  94 *
  95 * Returns the ppace pointer upon success else return
  96 * null.
  97 */
  98static struct paace *pamu_get_ppaace(int liodn)
  99{
 100	if (!ppaact || liodn >= PAACE_NUMBER_ENTRIES) {
 101		pr_debug("PPAACT doesn't exist\n");
 102		return NULL;
 103	}
 104
 105	return &ppaact[liodn];
 106}
 107
 108/**
 109 * pamu_enable_liodn() - Set valid bit of PACCE
 110 * @liodn: liodn PAACT index for desired PAACE
 111 *
 112 * Returns 0 upon success else error code < 0 returned
 113 */
 114int pamu_enable_liodn(int liodn)
 115{
 116	struct paace *ppaace;
 117
 118	ppaace = pamu_get_ppaace(liodn);
 119	if (!ppaace) {
 120		pr_debug("Invalid primary paace entry\n");
 121		return -ENOENT;
 122	}
 123
 124	if (!get_bf(ppaace->addr_bitfields, PPAACE_AF_WSE)) {
 125		pr_debug("liodn %d not configured\n", liodn);
 126		return -EINVAL;
 127	}
 128
 129	/* Ensure that all other stores to the ppaace complete first */
 130	mb();
 131
 132	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
 133	mb();
 134
 135	return 0;
 136}
 137
 138/**
 139 * pamu_disable_liodn() - Clears valid bit of PACCE
 140 * @liodn: liodn PAACT index for desired PAACE
 141 *
 142 * Returns 0 upon success else error code < 0 returned
 143 */
 144int pamu_disable_liodn(int liodn)
 145{
 146	struct paace *ppaace;
 147
 148	ppaace = pamu_get_ppaace(liodn);
 149	if (!ppaace) {
 150		pr_debug("Invalid primary paace entry\n");
 151		return -ENOENT;
 152	}
 153
 154	set_bf(ppaace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
 155	mb();
 156
 157	return 0;
 158}
 159
 160/* Derive the window size encoding for a particular PAACE entry */
 161static unsigned int map_addrspace_size_to_wse(phys_addr_t addrspace_size)
 162{
 163	/* Bug if not a power of 2 */
 164	BUG_ON(addrspace_size & (addrspace_size - 1));
 165
 166	/* window size is 2^(WSE+1) bytes */
 167	return fls64(addrspace_size) - 2;
 168}
 169
 170/* Derive the PAACE window count encoding for the subwindow count */
 171static unsigned int map_subwindow_cnt_to_wce(u32 subwindow_cnt)
 172{
 173	/* window count is 2^(WCE+1) bytes */
 174	return __ffs(subwindow_cnt) - 1;
 175}
 176
 177/*
 178 * Set the PAACE type as primary and set the coherency required domain
 179 * attribute
 180 */
 181static void pamu_init_ppaace(struct paace *ppaace)
 182{
 183	set_bf(ppaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_PRIMARY);
 184
 185	set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 186	       PAACE_M_COHERENCE_REQ);
 187}
 188
 189/*
 190 * Set the PAACE type as secondary and set the coherency required domain
 191 * attribute.
 192 */
 193static void pamu_init_spaace(struct paace *spaace)
 194{
 195	set_bf(spaace->addr_bitfields, PAACE_AF_PT, PAACE_PT_SECONDARY);
 196	set_bf(spaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 197	       PAACE_M_COHERENCE_REQ);
 198}
 199
 200/*
 201 * Return the spaace (corresponding to the secondary window index)
 202 * for a particular ppaace.
 203 */
 204static struct paace *pamu_get_spaace(struct paace *paace, u32 wnum)
 205{
 206	u32 subwin_cnt;
 207	struct paace *spaace = NULL;
 208
 209	subwin_cnt = 1UL << (get_bf(paace->impl_attr, PAACE_IA_WCE) + 1);
 210
 211	if (wnum < subwin_cnt)
 212		spaace = &spaact[paace->fspi + wnum];
 213	else
 214		pr_debug("secondary paace out of bounds\n");
 215
 216	return spaace;
 217}
 218
 219/**
 220 * pamu_get_fspi_and_allocate() - Allocates fspi index and reserves subwindows
 221 *                                required for primary PAACE in the secondary
 222 *                                PAACE table.
 223 * @subwin_cnt: Number of subwindows to be reserved.
 224 *
 225 * A PPAACE entry may have a number of associated subwindows. A subwindow
 226 * corresponds to a SPAACE entry in the SPAACT table. Each PAACE entry stores
 227 * the index (fspi) of the first SPAACE entry in the SPAACT table. This
 228 * function returns the index of the first SPAACE entry. The remaining
 229 * SPAACE entries are reserved contiguously from that index.
 230 *
 231 * Returns a valid fspi index in the range of 0 - SPAACE_NUMBER_ENTRIES on success.
 232 * If no SPAACE entry is available or the allocator can not reserve the required
 233 * number of contiguous entries function returns ULONG_MAX indicating a failure.
 234 *
 235 */
 236static unsigned long pamu_get_fspi_and_allocate(u32 subwin_cnt)
 237{
 238	unsigned long spaace_addr;
 239
 240	spaace_addr = gen_pool_alloc(spaace_pool, subwin_cnt * sizeof(struct paace));
 241	if (!spaace_addr)
 242		return ULONG_MAX;
 243
 244	return (spaace_addr - (unsigned long)spaact) / (sizeof(struct paace));
 245}
 246
 247/* Release the subwindows reserved for a particular LIODN */
 248void pamu_free_subwins(int liodn)
 249{
 250	struct paace *ppaace;
 251	u32 subwin_cnt, size;
 252
 253	ppaace = pamu_get_ppaace(liodn);
 254	if (!ppaace) {
 255		pr_debug("Invalid liodn entry\n");
 256		return;
 257	}
 258
 259	if (get_bf(ppaace->addr_bitfields, PPAACE_AF_MW)) {
 260		subwin_cnt = 1UL << (get_bf(ppaace->impl_attr, PAACE_IA_WCE) + 1);
 261		size = (subwin_cnt - 1) * sizeof(struct paace);
 262		gen_pool_free(spaace_pool, (unsigned long)&spaact[ppaace->fspi], size);
 263		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
 264	}
 265}
 266
 267/*
 268 * Function used for updating stash destination for the coressponding
 269 * LIODN.
 270 */
 271int  pamu_update_paace_stash(int liodn, u32 subwin, u32 value)
 272{
 273	struct paace *paace;
 274
 275	paace = pamu_get_ppaace(liodn);
 276	if (!paace) {
 277		pr_debug("Invalid liodn entry\n");
 278		return -ENOENT;
 279	}
 280	if (subwin) {
 281		paace = pamu_get_spaace(paace, subwin - 1);
 282		if (!paace)
 283			return -ENOENT;
 284	}
 285	set_bf(paace->impl_attr, PAACE_IA_CID, value);
 286
 287	mb();
 288
 289	return 0;
 290}
 291
 292/* Disable a subwindow corresponding to the LIODN */
 293int pamu_disable_spaace(int liodn, u32 subwin)
 294{
 295	struct paace *paace;
 296
 297	paace = pamu_get_ppaace(liodn);
 298	if (!paace) {
 299		pr_debug("Invalid liodn entry\n");
 300		return -ENOENT;
 301	}
 302	if (subwin) {
 303		paace = pamu_get_spaace(paace, subwin - 1);
 304		if (!paace)
 305			return -ENOENT;
 306		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_INVALID);
 307	} else {
 308		set_bf(paace->addr_bitfields, PAACE_AF_AP,
 309		       PAACE_AP_PERMS_DENIED);
 310	}
 311
 312	mb();
 313
 314	return 0;
 315}
 316
 317/**
 318 * pamu_config_paace() - Sets up PPAACE entry for specified liodn
 319 *
 320 * @liodn: Logical IO device number
 321 * @win_addr: starting address of DSA window
 322 * @win-size: size of DSA window
 323 * @omi: Operation mapping index -- if ~omi == 0 then omi not defined
 324 * @rpn: real (true physical) page number
 325 * @stashid: cache stash id for associated cpu -- if ~stashid == 0 then
 326 *	     stashid not defined
 327 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
 328 *	     snoopid not defined
 329 * @subwin_cnt: number of sub-windows
 330 * @prot: window permissions
 331 *
 332 * Returns 0 upon success else error code < 0 returned
 333 */
 334int pamu_config_ppaace(int liodn, phys_addr_t win_addr, phys_addr_t win_size,
 335		       u32 omi, unsigned long rpn, u32 snoopid, u32 stashid,
 336		       u32 subwin_cnt, int prot)
 337{
 338	struct paace *ppaace;
 339	unsigned long fspi;
 340
 341	if ((win_size & (win_size - 1)) || win_size < PAMU_PAGE_SIZE) {
 342		pr_debug("window size too small or not a power of two %pa\n",
 343			 &win_size);
 344		return -EINVAL;
 345	}
 346
 347	if (win_addr & (win_size - 1)) {
 348		pr_debug("window address is not aligned with window size\n");
 349		return -EINVAL;
 350	}
 351
 352	ppaace = pamu_get_ppaace(liodn);
 353	if (!ppaace)
 354		return -ENOENT;
 355
 356	/* window size is 2^(WSE+1) bytes */
 357	set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE,
 358	       map_addrspace_size_to_wse(win_size));
 359
 360	pamu_init_ppaace(ppaace);
 361
 362	ppaace->wbah = win_addr >> (PAMU_PAGE_SHIFT + 20);
 363	set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL,
 364	       (win_addr >> PAMU_PAGE_SHIFT));
 365
 366	/* set up operation mapping if it's configured */
 367	if (omi < OME_NUMBER_ENTRIES) {
 368		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 369		ppaace->op_encode.index_ot.omi = omi;
 370	} else if (~omi != 0) {
 371		pr_debug("bad operation mapping index: %d\n", omi);
 372		return -EINVAL;
 373	}
 374
 375	/* configure stash id */
 376	if (~stashid != 0)
 377		set_bf(ppaace->impl_attr, PAACE_IA_CID, stashid);
 378
 379	/* configure snoop id */
 380	if (~snoopid != 0)
 381		ppaace->domain_attr.to_host.snpid = snoopid;
 382
 383	if (subwin_cnt) {
 384		/* The first entry is in the primary PAACE instead */
 385		fspi = pamu_get_fspi_and_allocate(subwin_cnt - 1);
 386		if (fspi == ULONG_MAX) {
 387			pr_debug("spaace indexes exhausted\n");
 388			return -EINVAL;
 389		}
 390
 391		/* window count is 2^(WCE+1) bytes */
 392		set_bf(ppaace->impl_attr, PAACE_IA_WCE,
 393		       map_subwindow_cnt_to_wce(subwin_cnt));
 394		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0x1);
 395		ppaace->fspi = fspi;
 396	} else {
 397		set_bf(ppaace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
 398		ppaace->twbah = rpn >> 20;
 399		set_bf(ppaace->win_bitfields, PAACE_WIN_TWBAL, rpn);
 400		set_bf(ppaace->addr_bitfields, PAACE_AF_AP, prot);
 401		set_bf(ppaace->impl_attr, PAACE_IA_WCE, 0);
 402		set_bf(ppaace->addr_bitfields, PPAACE_AF_MW, 0);
 403	}
 404	mb();
 405
 406	return 0;
 407}
 408
 409/**
 410 * pamu_config_spaace() - Sets up SPAACE entry for specified subwindow
 411 *
 412 * @liodn:  Logical IO device number
 413 * @subwin_cnt:  number of sub-windows associated with dma-window
 414 * @subwin: subwindow index
 415 * @subwin_size: size of subwindow
 416 * @omi: Operation mapping index
 417 * @rpn: real (true physical) page number
 418 * @snoopid: snoop id for hardware coherency -- if ~snoopid == 0 then
 419 *			  snoopid not defined
 420 * @stashid: cache stash id for associated cpu
 421 * @enable: enable/disable subwindow after reconfiguration
 422 * @prot: sub window permissions
 423 *
 424 * Returns 0 upon success else error code < 0 returned
 425 */
 426int pamu_config_spaace(int liodn, u32 subwin_cnt, u32 subwin,
 427		       phys_addr_t subwin_size, u32 omi, unsigned long rpn,
 428		       u32 snoopid, u32 stashid, int enable, int prot)
 429{
 430	struct paace *paace;
 431
 432	/* setup sub-windows */
 433	if (!subwin_cnt) {
 434		pr_debug("Invalid subwindow count\n");
 435		return -EINVAL;
 436	}
 437
 438	paace = pamu_get_ppaace(liodn);
 439	if (subwin > 0 && subwin < subwin_cnt && paace) {
 440		paace = pamu_get_spaace(paace, subwin - 1);
 441
 442		if (paace && !(paace->addr_bitfields & PAACE_V_VALID)) {
 443			pamu_init_spaace(paace);
 444			set_bf(paace->addr_bitfields, SPAACE_AF_LIODN, liodn);
 445		}
 446	}
 447
 448	if (!paace) {
 449		pr_debug("Invalid liodn entry\n");
 450		return -ENOENT;
 451	}
 452
 453	if ((subwin_size & (subwin_size - 1)) || subwin_size < PAMU_PAGE_SIZE) {
 454		pr_debug("subwindow size out of range, or not a power of 2\n");
 455		return -EINVAL;
 456	}
 457
 458	if (rpn == ULONG_MAX) {
 459		pr_debug("real page number out of range\n");
 460		return -EINVAL;
 461	}
 462
 463	/* window size is 2^(WSE+1) bytes */
 464	set_bf(paace->win_bitfields, PAACE_WIN_SWSE,
 465	       map_addrspace_size_to_wse(subwin_size));
 466
 467	set_bf(paace->impl_attr, PAACE_IA_ATM, PAACE_ATM_WINDOW_XLATE);
 468	paace->twbah = rpn >> 20;
 469	set_bf(paace->win_bitfields, PAACE_WIN_TWBAL, rpn);
 470	set_bf(paace->addr_bitfields, PAACE_AF_AP, prot);
 471
 472	/* configure snoop id */
 473	if (~snoopid != 0)
 474		paace->domain_attr.to_host.snpid = snoopid;
 475
 476	/* set up operation mapping if it's configured */
 477	if (omi < OME_NUMBER_ENTRIES) {
 478		set_bf(paace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 479		paace->op_encode.index_ot.omi = omi;
 480	} else if (~omi != 0) {
 481		pr_debug("bad operation mapping index: %d\n", omi);
 482		return -EINVAL;
 483	}
 484
 485	if (~stashid != 0)
 486		set_bf(paace->impl_attr, PAACE_IA_CID, stashid);
 487
 488	smp_wmb();
 489
 490	if (enable)
 491		set_bf(paace->addr_bitfields, PAACE_AF_V, PAACE_V_VALID);
 492
 493	mb();
 494
 495	return 0;
 496}
 497
 498/**
 499 * get_ome_index() - Returns the index in the operation mapping table
 500 *                   for device.
 501 * @*omi_index: pointer for storing the index value
 
 502 *
 503 */
 504void get_ome_index(u32 *omi_index, struct device *dev)
 505{
 506	if (of_device_is_compatible(dev->of_node, "fsl,qman-portal"))
 507		*omi_index = OMI_QMAN;
 508	if (of_device_is_compatible(dev->of_node, "fsl,qman"))
 509		*omi_index = OMI_QMAN_PRIV;
 510}
 511
 512/**
 513 * get_stash_id - Returns stash destination id corresponding to a
 514 *                cache type and vcpu.
 515 * @stash_dest_hint: L1, L2 or L3
 516 * @vcpu: vpcu target for a particular cache type.
 517 *
 518 * Returs stash on success or ~(u32)0 on failure.
 519 *
 520 */
 521u32 get_stash_id(u32 stash_dest_hint, u32 vcpu)
 522{
 523	const u32 *prop;
 524	struct device_node *node;
 525	u32 cache_level;
 526	int len, found = 0;
 527	int i;
 528
 529	/* Fastpath, exit early if L3/CPC cache is target for stashing */
 530	if (stash_dest_hint == PAMU_ATTR_CACHE_L3) {
 531		node = of_find_matching_node(NULL, l3_device_ids);
 532		if (node) {
 533			prop = of_get_property(node, "cache-stash-id", NULL);
 534			if (!prop) {
 535				pr_debug("missing cache-stash-id at %pOF\n",
 536					 node);
 537				of_node_put(node);
 538				return ~(u32)0;
 539			}
 540			of_node_put(node);
 541			return be32_to_cpup(prop);
 542		}
 543		return ~(u32)0;
 544	}
 545
 546	for_each_node_by_type(node, "cpu") {
 547		prop = of_get_property(node, "reg", &len);
 548		for (i = 0; i < len / sizeof(u32); i++) {
 549			if (be32_to_cpup(&prop[i]) == vcpu) {
 550				found = 1;
 551				goto found_cpu_node;
 552			}
 553		}
 554	}
 555found_cpu_node:
 556
 557	/* find the hwnode that represents the cache */
 558	for (cache_level = PAMU_ATTR_CACHE_L1; (cache_level < PAMU_ATTR_CACHE_L3) && found; cache_level++) {
 559		if (stash_dest_hint == cache_level) {
 560			prop = of_get_property(node, "cache-stash-id", NULL);
 561			if (!prop) {
 562				pr_debug("missing cache-stash-id at %pOF\n",
 563					 node);
 564				of_node_put(node);
 565				return ~(u32)0;
 566			}
 567			of_node_put(node);
 568			return be32_to_cpup(prop);
 569		}
 570
 571		prop = of_get_property(node, "next-level-cache", NULL);
 572		if (!prop) {
 573			pr_debug("can't find next-level-cache at %pOF\n", node);
 574			of_node_put(node);
 575			return ~(u32)0;  /* can't traverse any further */
 576		}
 577		of_node_put(node);
 578
 579		/* advance to next node in cache hierarchy */
 580		node = of_find_node_by_phandle(*prop);
 581		if (!node) {
 582			pr_debug("Invalid node for cache hierarchy\n");
 583			return ~(u32)0;
 584		}
 585	}
 586
 587	pr_debug("stash dest not found for %d on vcpu %d\n",
 588		 stash_dest_hint, vcpu);
 589	return ~(u32)0;
 590}
 591
 592/* Identify if the PAACT table entry belongs to QMAN, BMAN or QMAN Portal */
 593#define QMAN_PAACE 1
 594#define QMAN_PORTAL_PAACE 2
 595#define BMAN_PAACE 3
 596
 597/**
 598 * Setup operation mapping and stash destinations for QMAN and QMAN portal.
 599 * Memory accesses to QMAN and BMAN private memory need not be coherent, so
 600 * clear the PAACE entry coherency attribute for them.
 601 */
 602static void setup_qbman_paace(struct paace *ppaace, int  paace_type)
 603{
 604	switch (paace_type) {
 605	case QMAN_PAACE:
 606		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 607		ppaace->op_encode.index_ot.omi = OMI_QMAN_PRIV;
 608		/* setup QMAN Private data stashing for the L3 cache */
 609		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 610		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 611		       0);
 612		break;
 613	case QMAN_PORTAL_PAACE:
 614		set_bf(ppaace->impl_attr, PAACE_IA_OTM, PAACE_OTM_INDEXED);
 615		ppaace->op_encode.index_ot.omi = OMI_QMAN;
 616		/* Set DQRR and Frame stashing for the L3 cache */
 617		set_bf(ppaace->impl_attr, PAACE_IA_CID, get_stash_id(PAMU_ATTR_CACHE_L3, 0));
 618		break;
 619	case BMAN_PAACE:
 620		set_bf(ppaace->domain_attr.to_host.coherency_required, PAACE_DA_HOST_CR,
 621		       0);
 622		break;
 623	}
 624}
 625
 626/**
 627 * Setup the operation mapping table for various devices. This is a static
 628 * table where each table index corresponds to a particular device. PAMU uses
 629 * this table to translate device transaction to appropriate corenet
 630 * transaction.
 631 */
 632static void setup_omt(struct ome *omt)
 633{
 634	struct ome *ome;
 635
 636	/* Configure OMI_QMAN */
 637	ome = &omt[OMI_QMAN];
 638
 639	ome->moe[IOE_READ_IDX] = EOE_VALID | EOE_READ;
 640	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 641	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 642	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSAO;
 643
 644	ome->moe[IOE_DIRECT0_IDX] = EOE_VALID | EOE_LDEC;
 645	ome->moe[IOE_DIRECT1_IDX] = EOE_VALID | EOE_LDECPE;
 646
 647	/* Configure OMI_FMAN */
 648	ome = &omt[OMI_FMAN];
 649	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 650	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 651
 652	/* Configure OMI_QMAN private */
 653	ome = &omt[OMI_QMAN_PRIV];
 654	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READ;
 655	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 656	ome->moe[IOE_EREAD0_IDX] = EOE_VALID | EOE_RSA;
 657	ome->moe[IOE_EWRITE0_IDX] = EOE_VALID | EOE_WWSA;
 658
 659	/* Configure OMI_CAAM */
 660	ome = &omt[OMI_CAAM];
 661	ome->moe[IOE_READ_IDX]  = EOE_VALID | EOE_READI;
 662	ome->moe[IOE_WRITE_IDX] = EOE_VALID | EOE_WRITE;
 663}
 664
 665/*
 666 * Get the maximum number of PAACT table entries
 667 * and subwindows supported by PAMU
 668 */
 669static void get_pamu_cap_values(unsigned long pamu_reg_base)
 670{
 671	u32 pc_val;
 672
 673	pc_val = in_be32((u32 *)(pamu_reg_base + PAMU_PC3));
 674	/* Maximum number of subwindows per liodn */
 675	max_subwindow_count = 1 << (1 + PAMU_PC3_MWCE(pc_val));
 676}
 677
 678/* Setup PAMU registers pointing to PAACT, SPAACT and OMT */
 679static int setup_one_pamu(unsigned long pamu_reg_base, unsigned long pamu_reg_size,
 680			  phys_addr_t ppaact_phys, phys_addr_t spaact_phys,
 681			  phys_addr_t omt_phys)
 682{
 683	u32 *pc;
 684	struct pamu_mmap_regs *pamu_regs;
 685
 686	pc = (u32 *) (pamu_reg_base + PAMU_PC);
 687	pamu_regs = (struct pamu_mmap_regs *)
 688		(pamu_reg_base + PAMU_MMAP_REGS_BASE);
 689
 690	/* set up pointers to corenet control blocks */
 691
 692	out_be32(&pamu_regs->ppbah, upper_32_bits(ppaact_phys));
 693	out_be32(&pamu_regs->ppbal, lower_32_bits(ppaact_phys));
 694	ppaact_phys = ppaact_phys + PAACT_SIZE;
 695	out_be32(&pamu_regs->pplah, upper_32_bits(ppaact_phys));
 696	out_be32(&pamu_regs->pplal, lower_32_bits(ppaact_phys));
 697
 698	out_be32(&pamu_regs->spbah, upper_32_bits(spaact_phys));
 699	out_be32(&pamu_regs->spbal, lower_32_bits(spaact_phys));
 700	spaact_phys = spaact_phys + SPAACT_SIZE;
 701	out_be32(&pamu_regs->splah, upper_32_bits(spaact_phys));
 702	out_be32(&pamu_regs->splal, lower_32_bits(spaact_phys));
 703
 704	out_be32(&pamu_regs->obah, upper_32_bits(omt_phys));
 705	out_be32(&pamu_regs->obal, lower_32_bits(omt_phys));
 706	omt_phys = omt_phys + OMT_SIZE;
 707	out_be32(&pamu_regs->olah, upper_32_bits(omt_phys));
 708	out_be32(&pamu_regs->olal, lower_32_bits(omt_phys));
 709
 710	/*
 711	 * set PAMU enable bit,
 712	 * allow ppaact & omt to be cached
 713	 * & enable PAMU access violation interrupts.
 714	 */
 715
 716	out_be32((u32 *)(pamu_reg_base + PAMU_PICS),
 717		 PAMU_ACCESS_VIOLATION_ENABLE);
 718	out_be32(pc, PAMU_PC_PE | PAMU_PC_OCE | PAMU_PC_SPCC | PAMU_PC_PPCC);
 719	return 0;
 720}
 721
 722/* Enable all device LIODNS */
 723static void setup_liodns(void)
 724{
 725	int i, len;
 726	struct paace *ppaace;
 727	struct device_node *node = NULL;
 728	const u32 *prop;
 729
 730	for_each_node_with_property(node, "fsl,liodn") {
 731		prop = of_get_property(node, "fsl,liodn", &len);
 732		for (i = 0; i < len / sizeof(u32); i++) {
 733			int liodn;
 734
 735			liodn = be32_to_cpup(&prop[i]);
 736			if (liodn >= PAACE_NUMBER_ENTRIES) {
 737				pr_debug("Invalid LIODN value %d\n", liodn);
 738				continue;
 739			}
 740			ppaace = pamu_get_ppaace(liodn);
 741			pamu_init_ppaace(ppaace);
 742			/* window size is 2^(WSE+1) bytes */
 743			set_bf(ppaace->addr_bitfields, PPAACE_AF_WSE, 35);
 744			ppaace->wbah = 0;
 745			set_bf(ppaace->addr_bitfields, PPAACE_AF_WBAL, 0);
 746			set_bf(ppaace->impl_attr, PAACE_IA_ATM,
 747			       PAACE_ATM_NO_XLATE);
 748			set_bf(ppaace->addr_bitfields, PAACE_AF_AP,
 749			       PAACE_AP_PERMS_ALL);
 750			if (of_device_is_compatible(node, "fsl,qman-portal"))
 751				setup_qbman_paace(ppaace, QMAN_PORTAL_PAACE);
 752			if (of_device_is_compatible(node, "fsl,qman"))
 753				setup_qbman_paace(ppaace, QMAN_PAACE);
 754			if (of_device_is_compatible(node, "fsl,bman"))
 755				setup_qbman_paace(ppaace, BMAN_PAACE);
 756			mb();
 757			pamu_enable_liodn(liodn);
 758		}
 759	}
 760}
 761
 762static irqreturn_t pamu_av_isr(int irq, void *arg)
 763{
 764	struct pamu_isr_data *data = arg;
 765	phys_addr_t phys;
 766	unsigned int i, j, ret;
 767
 768	pr_emerg("access violation interrupt\n");
 769
 770	for (i = 0; i < data->count; i++) {
 771		void __iomem *p = data->pamu_reg_base + i * PAMU_OFFSET;
 772		u32 pics = in_be32(p + PAMU_PICS);
 773
 774		if (pics & PAMU_ACCESS_VIOLATION_STAT) {
 775			u32 avs1 = in_be32(p + PAMU_AVS1);
 776			struct paace *paace;
 777
 778			pr_emerg("POES1=%08x\n", in_be32(p + PAMU_POES1));
 779			pr_emerg("POES2=%08x\n", in_be32(p + PAMU_POES2));
 780			pr_emerg("AVS1=%08x\n", avs1);
 781			pr_emerg("AVS2=%08x\n", in_be32(p + PAMU_AVS2));
 782			pr_emerg("AVA=%016llx\n",
 783				 make64(in_be32(p + PAMU_AVAH),
 784					in_be32(p + PAMU_AVAL)));
 785			pr_emerg("UDAD=%08x\n", in_be32(p + PAMU_UDAD));
 786			pr_emerg("POEA=%016llx\n",
 787				 make64(in_be32(p + PAMU_POEAH),
 788					in_be32(p + PAMU_POEAL)));
 789
 790			phys = make64(in_be32(p + PAMU_POEAH),
 791				      in_be32(p + PAMU_POEAL));
 792
 793			/* Assume that POEA points to a PAACE */
 794			if (phys) {
 795				u32 *paace = phys_to_virt(phys);
 796
 797				/* Only the first four words are relevant */
 798				for (j = 0; j < 4; j++)
 799					pr_emerg("PAACE[%u]=%08x\n",
 800						 j, in_be32(paace + j));
 801			}
 802
 803			/* clear access violation condition */
 804			out_be32(p + PAMU_AVS1, avs1 & PAMU_AV_MASK);
 805			paace = pamu_get_ppaace(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 806			BUG_ON(!paace);
 807			/* check if we got a violation for a disabled LIODN */
 808			if (!get_bf(paace->addr_bitfields, PAACE_AF_V)) {
 809				/*
 810				 * As per hardware erratum A-003638, access
 811				 * violation can be reported for a disabled
 812				 * LIODN. If we hit that condition, disable
 813				 * access violation reporting.
 814				 */
 815				pics &= ~PAMU_ACCESS_VIOLATION_ENABLE;
 816			} else {
 817				/* Disable the LIODN */
 818				ret = pamu_disable_liodn(avs1 >> PAMU_AVS1_LIODN_SHIFT);
 819				BUG_ON(ret);
 820				pr_emerg("Disabling liodn %x\n",
 821					 avs1 >> PAMU_AVS1_LIODN_SHIFT);
 822			}
 823			out_be32((p + PAMU_PICS), pics);
 824		}
 825	}
 826
 827	return IRQ_HANDLED;
 828}
 829
 830#define LAWAR_EN		0x80000000
 831#define LAWAR_TARGET_MASK	0x0FF00000
 832#define LAWAR_TARGET_SHIFT	20
 833#define LAWAR_SIZE_MASK		0x0000003F
 834#define LAWAR_CSDID_MASK	0x000FF000
 835#define LAWAR_CSDID_SHIFT	12
 836
 837#define LAW_SIZE_4K		0xb
 838
 839struct ccsr_law {
 840	u32	lawbarh;	/* LAWn base address high */
 841	u32	lawbarl;	/* LAWn base address low */
 842	u32	lawar;		/* LAWn attributes */
 843	u32	reserved;
 844};
 845
 846/*
 847 * Create a coherence subdomain for a given memory block.
 848 */
 849static int create_csd(phys_addr_t phys, size_t size, u32 csd_port_id)
 850{
 851	struct device_node *np;
 852	const __be32 *iprop;
 853	void __iomem *lac = NULL;	/* Local Access Control registers */
 854	struct ccsr_law __iomem *law;
 855	void __iomem *ccm = NULL;
 856	u32 __iomem *csdids;
 857	unsigned int i, num_laws, num_csds;
 858	u32 law_target = 0;
 859	u32 csd_id = 0;
 860	int ret = 0;
 861
 862	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-law");
 863	if (!np)
 864		return -ENODEV;
 865
 866	iprop = of_get_property(np, "fsl,num-laws", NULL);
 867	if (!iprop) {
 868		ret = -ENODEV;
 869		goto error;
 870	}
 871
 872	num_laws = be32_to_cpup(iprop);
 873	if (!num_laws) {
 874		ret = -ENODEV;
 875		goto error;
 876	}
 877
 878	lac = of_iomap(np, 0);
 879	if (!lac) {
 880		ret = -ENODEV;
 881		goto error;
 882	}
 883
 884	/* LAW registers are at offset 0xC00 */
 885	law = lac + 0xC00;
 886
 887	of_node_put(np);
 888
 889	np = of_find_compatible_node(NULL, NULL, "fsl,corenet-cf");
 890	if (!np) {
 891		ret = -ENODEV;
 892		goto error;
 893	}
 894
 895	iprop = of_get_property(np, "fsl,ccf-num-csdids", NULL);
 896	if (!iprop) {
 897		ret = -ENODEV;
 898		goto error;
 899	}
 900
 901	num_csds = be32_to_cpup(iprop);
 902	if (!num_csds) {
 903		ret = -ENODEV;
 904		goto error;
 905	}
 906
 907	ccm = of_iomap(np, 0);
 908	if (!ccm) {
 909		ret = -ENOMEM;
 910		goto error;
 911	}
 912
 913	/* The undocumented CSDID registers are at offset 0x600 */
 914	csdids = ccm + 0x600;
 915
 916	of_node_put(np);
 917	np = NULL;
 918
 919	/* Find an unused coherence subdomain ID */
 920	for (csd_id = 0; csd_id < num_csds; csd_id++) {
 921		if (!csdids[csd_id])
 922			break;
 923	}
 924
 925	/* Store the Port ID in the (undocumented) proper CIDMRxx register */
 926	csdids[csd_id] = csd_port_id;
 927
 928	/* Find the DDR LAW that maps to our buffer. */
 929	for (i = 0; i < num_laws; i++) {
 930		if (law[i].lawar & LAWAR_EN) {
 931			phys_addr_t law_start, law_end;
 932
 933			law_start = make64(law[i].lawbarh, law[i].lawbarl);
 934			law_end = law_start +
 935				(2ULL << (law[i].lawar & LAWAR_SIZE_MASK));
 936
 937			if (law_start <= phys && phys < law_end) {
 938				law_target = law[i].lawar & LAWAR_TARGET_MASK;
 939				break;
 940			}
 941		}
 942	}
 943
 944	if (i == 0 || i == num_laws) {
 945		/* This should never happen */
 946		ret = -ENOENT;
 947		goto error;
 948	}
 949
 950	/* Find a free LAW entry */
 951	while (law[--i].lawar & LAWAR_EN) {
 952		if (i == 0) {
 953			/* No higher priority LAW slots available */
 954			ret = -ENOENT;
 955			goto error;
 956		}
 957	}
 958
 959	law[i].lawbarh = upper_32_bits(phys);
 960	law[i].lawbarl = lower_32_bits(phys);
 961	wmb();
 962	law[i].lawar = LAWAR_EN | law_target | (csd_id << LAWAR_CSDID_SHIFT) |
 963		(LAW_SIZE_4K + get_order(size));
 964	wmb();
 965
 966error:
 967	if (ccm)
 968		iounmap(ccm);
 969
 970	if (lac)
 971		iounmap(lac);
 972
 973	if (np)
 974		of_node_put(np);
 975
 976	return ret;
 977}
 978
 979/*
 980 * Table of SVRs and the corresponding PORT_ID values. Port ID corresponds to a
 981 * bit map of snoopers for a given range of memory mapped by a LAW.
 982 *
 983 * All future CoreNet-enabled SOCs will have this erratum(A-004510) fixed, so this
 984 * table should never need to be updated.  SVRs are guaranteed to be unique, so
 985 * there is no worry that a future SOC will inadvertently have one of these
 986 * values.
 987 */
 988static const struct {
 989	u32 svr;
 990	u32 port_id;
 991} port_id_map[] = {
 992	{(SVR_P2040 << 8) | 0x10, 0xFF000000},	/* P2040 1.0 */
 993	{(SVR_P2040 << 8) | 0x11, 0xFF000000},	/* P2040 1.1 */
 994	{(SVR_P2041 << 8) | 0x10, 0xFF000000},	/* P2041 1.0 */
 995	{(SVR_P2041 << 8) | 0x11, 0xFF000000},	/* P2041 1.1 */
 996	{(SVR_P3041 << 8) | 0x10, 0xFF000000},	/* P3041 1.0 */
 997	{(SVR_P3041 << 8) | 0x11, 0xFF000000},	/* P3041 1.1 */
 998	{(SVR_P4040 << 8) | 0x20, 0xFFF80000},	/* P4040 2.0 */
 999	{(SVR_P4080 << 8) | 0x20, 0xFFF80000},	/* P4080 2.0 */
1000	{(SVR_P5010 << 8) | 0x10, 0xFC000000},	/* P5010 1.0 */
1001	{(SVR_P5010 << 8) | 0x20, 0xFC000000},	/* P5010 2.0 */
1002	{(SVR_P5020 << 8) | 0x10, 0xFC000000},	/* P5020 1.0 */
1003	{(SVR_P5021 << 8) | 0x10, 0xFF800000},	/* P5021 1.0 */
1004	{(SVR_P5040 << 8) | 0x10, 0xFF800000},	/* P5040 1.0 */
1005};
1006
1007#define SVR_SECURITY	0x80000	/* The Security (E) bit */
1008
1009static int fsl_pamu_probe(struct platform_device *pdev)
1010{
1011	struct device *dev = &pdev->dev;
1012	void __iomem *pamu_regs = NULL;
1013	struct ccsr_guts __iomem *guts_regs = NULL;
1014	u32 pamubypenr, pamu_counter;
1015	unsigned long pamu_reg_off;
1016	unsigned long pamu_reg_base;
1017	struct pamu_isr_data *data = NULL;
1018	struct device_node *guts_node;
1019	u64 size;
1020	struct page *p;
1021	int ret = 0;
1022	int irq;
1023	phys_addr_t ppaact_phys;
1024	phys_addr_t spaact_phys;
1025	struct ome *omt;
1026	phys_addr_t omt_phys;
1027	size_t mem_size = 0;
1028	unsigned int order = 0;
1029	u32 csd_port_id = 0;
1030	unsigned i;
1031	/*
1032	 * enumerate all PAMUs and allocate and setup PAMU tables
1033	 * for each of them,
1034	 * NOTE : All PAMUs share the same LIODN tables.
1035	 */
1036
1037	if (WARN_ON(probed))
1038		return -EBUSY;
1039
1040	pamu_regs = of_iomap(dev->of_node, 0);
1041	if (!pamu_regs) {
1042		dev_err(dev, "ioremap of PAMU node failed\n");
1043		return -ENOMEM;
1044	}
1045	of_get_address(dev->of_node, 0, &size, NULL);
1046
1047	irq = irq_of_parse_and_map(dev->of_node, 0);
1048	if (irq == NO_IRQ) {
1049		dev_warn(dev, "no interrupts listed in PAMU node\n");
1050		goto error;
1051	}
1052
1053	data = kzalloc(sizeof(*data), GFP_KERNEL);
1054	if (!data) {
1055		ret = -ENOMEM;
1056		goto error;
1057	}
1058	data->pamu_reg_base = pamu_regs;
1059	data->count = size / PAMU_OFFSET;
1060
1061	/* The ISR needs access to the regs, so we won't iounmap them */
1062	ret = request_irq(irq, pamu_av_isr, 0, "pamu", data);
1063	if (ret < 0) {
1064		dev_err(dev, "error %i installing ISR for irq %i\n", ret, irq);
1065		goto error;
1066	}
1067
1068	guts_node = of_find_matching_node(NULL, guts_device_ids);
1069	if (!guts_node) {
1070		dev_err(dev, "could not find GUTS node %pOF\n", dev->of_node);
1071		ret = -ENODEV;
1072		goto error;
1073	}
1074
1075	guts_regs = of_iomap(guts_node, 0);
1076	of_node_put(guts_node);
1077	if (!guts_regs) {
1078		dev_err(dev, "ioremap of GUTS node failed\n");
1079		ret = -ENODEV;
1080		goto error;
1081	}
1082
1083	/* read in the PAMU capability registers */
1084	get_pamu_cap_values((unsigned long)pamu_regs);
1085	/*
1086	 * To simplify the allocation of a coherency domain, we allocate the
1087	 * PAACT and the OMT in the same memory buffer.  Unfortunately, this
1088	 * wastes more memory compared to allocating the buffers separately.
1089	 */
1090	/* Determine how much memory we need */
1091	mem_size = (PAGE_SIZE << get_order(PAACT_SIZE)) +
1092		(PAGE_SIZE << get_order(SPAACT_SIZE)) +
1093		(PAGE_SIZE << get_order(OMT_SIZE));
1094	order = get_order(mem_size);
1095
1096	p = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1097	if (!p) {
1098		dev_err(dev, "unable to allocate PAACT/SPAACT/OMT block\n");
1099		ret = -ENOMEM;
1100		goto error;
1101	}
1102
1103	ppaact = page_address(p);
1104	ppaact_phys = page_to_phys(p);
1105
1106	/* Make sure the memory is naturally aligned */
1107	if (ppaact_phys & ((PAGE_SIZE << order) - 1)) {
1108		dev_err(dev, "PAACT/OMT block is unaligned\n");
1109		ret = -ENOMEM;
1110		goto error;
1111	}
1112
1113	spaact = (void *)ppaact + (PAGE_SIZE << get_order(PAACT_SIZE));
1114	omt = (void *)spaact + (PAGE_SIZE << get_order(SPAACT_SIZE));
1115
1116	dev_dbg(dev, "ppaact virt=%p phys=%pa\n", ppaact, &ppaact_phys);
1117
1118	/* Check to see if we need to implement the work-around on this SOC */
1119
1120	/* Determine the Port ID for our coherence subdomain */
1121	for (i = 0; i < ARRAY_SIZE(port_id_map); i++) {
1122		if (port_id_map[i].svr == (mfspr(SPRN_SVR) & ~SVR_SECURITY)) {
1123			csd_port_id = port_id_map[i].port_id;
1124			dev_dbg(dev, "found matching SVR %08x\n",
1125				port_id_map[i].svr);
1126			break;
1127		}
1128	}
1129
1130	if (csd_port_id) {
1131		dev_dbg(dev, "creating coherency subdomain at address %pa, size %zu, port id 0x%08x",
1132			&ppaact_phys, mem_size, csd_port_id);
1133
1134		ret = create_csd(ppaact_phys, mem_size, csd_port_id);
1135		if (ret) {
1136			dev_err(dev, "could not create coherence subdomain\n");
1137			return ret;
1138		}
1139	}
1140
1141	spaact_phys = virt_to_phys(spaact);
1142	omt_phys = virt_to_phys(omt);
1143
1144	spaace_pool = gen_pool_create(ilog2(sizeof(struct paace)), -1);
1145	if (!spaace_pool) {
1146		ret = -ENOMEM;
1147		dev_err(dev, "Failed to allocate spaace gen pool\n");
1148		goto error;
1149	}
1150
1151	ret = gen_pool_add(spaace_pool, (unsigned long)spaact, SPAACT_SIZE, -1);
1152	if (ret)
1153		goto error_genpool;
1154
1155	pamubypenr = in_be32(&guts_regs->pamubypenr);
1156
1157	for (pamu_reg_off = 0, pamu_counter = 0x80000000; pamu_reg_off < size;
1158	     pamu_reg_off += PAMU_OFFSET, pamu_counter >>= 1) {
1159
1160		pamu_reg_base = (unsigned long)pamu_regs + pamu_reg_off;
1161		setup_one_pamu(pamu_reg_base, pamu_reg_off, ppaact_phys,
1162			       spaact_phys, omt_phys);
1163		/* Disable PAMU bypass for this PAMU */
1164		pamubypenr &= ~pamu_counter;
1165	}
1166
1167	setup_omt(omt);
1168
1169	/* Enable all relevant PAMU(s) */
1170	out_be32(&guts_regs->pamubypenr, pamubypenr);
1171
1172	iounmap(guts_regs);
1173
1174	/* Enable DMA for the LIODNs in the device tree */
1175
1176	setup_liodns();
1177
1178	probed = true;
1179
1180	return 0;
1181
1182error_genpool:
1183	gen_pool_destroy(spaace_pool);
1184
1185error:
1186	if (irq != NO_IRQ)
1187		free_irq(irq, data);
1188
1189	if (data) {
1190		memset(data, 0, sizeof(struct pamu_isr_data));
1191		kfree(data);
1192	}
1193
1194	if (pamu_regs)
1195		iounmap(pamu_regs);
1196
1197	if (guts_regs)
1198		iounmap(guts_regs);
1199
1200	if (ppaact)
1201		free_pages((unsigned long)ppaact, order);
1202
1203	ppaact = NULL;
1204
1205	return ret;
1206}
1207
1208static struct platform_driver fsl_of_pamu_driver = {
1209	.driver = {
1210		.name = "fsl-of-pamu",
1211	},
1212	.probe = fsl_pamu_probe,
1213};
1214
1215static __init int fsl_pamu_init(void)
1216{
1217	struct platform_device *pdev = NULL;
1218	struct device_node *np;
1219	int ret;
1220
1221	/*
1222	 * The normal OF process calls the probe function at some
1223	 * indeterminate later time, after most drivers have loaded.  This is
1224	 * too late for us, because PAMU clients (like the Qman driver)
1225	 * depend on PAMU being initialized early.
1226	 *
1227	 * So instead, we "manually" call our probe function by creating the
1228	 * platform devices ourselves.
1229	 */
1230
1231	/*
1232	 * We assume that there is only one PAMU node in the device tree.  A
1233	 * single PAMU node represents all of the PAMU devices in the SOC
1234	 * already.   Everything else already makes that assumption, and the
1235	 * binding for the PAMU nodes doesn't allow for any parent-child
1236	 * relationships anyway.  In other words, support for more than one
1237	 * PAMU node would require significant changes to a lot of code.
1238	 */
1239
1240	np = of_find_compatible_node(NULL, NULL, "fsl,pamu");
1241	if (!np) {
1242		pr_err("could not find a PAMU node\n");
1243		return -ENODEV;
1244	}
1245
1246	ret = platform_driver_register(&fsl_of_pamu_driver);
1247	if (ret) {
1248		pr_err("could not register driver (err=%i)\n", ret);
1249		goto error_driver_register;
1250	}
1251
1252	pdev = platform_device_alloc("fsl-of-pamu", 0);
1253	if (!pdev) {
1254		pr_err("could not allocate device %pOF\n", np);
1255		ret = -ENOMEM;
1256		goto error_device_alloc;
1257	}
1258	pdev->dev.of_node = of_node_get(np);
1259
1260	ret = pamu_domain_init();
1261	if (ret)
1262		goto error_device_add;
1263
1264	ret = platform_device_add(pdev);
1265	if (ret) {
1266		pr_err("could not add device %pOF (err=%i)\n", np, ret);
1267		goto error_device_add;
1268	}
1269
1270	return 0;
1271
1272error_device_add:
1273	of_node_put(pdev->dev.of_node);
1274	pdev->dev.of_node = NULL;
1275
1276	platform_device_put(pdev);
1277
1278error_device_alloc:
1279	platform_driver_unregister(&fsl_of_pamu_driver);
1280
1281error_driver_register:
1282	of_node_put(np);
1283
1284	return ret;
1285}
1286arch_initcall(fsl_pamu_init);