Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015-2018 Intel Corporation.
4 */
5
6#include <linux/delay.h>
7#include "hfi.h"
8#include "qp.h"
9#include "trace.h"
10
11#define SC(name) SEND_CTXT_##name
12/*
13 * Send Context functions
14 */
15static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
16
17/*
18 * Set the CM reset bit and wait for it to clear. Use the provided
19 * sendctrl register. This routine has no locking.
20 */
21void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
22{
23 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
24 while (1) {
25 udelay(1);
26 sendctrl = read_csr(dd, SEND_CTRL);
27 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
28 break;
29 }
30}
31
32/* global control of PIO send */
33void pio_send_control(struct hfi1_devdata *dd, int op)
34{
35 u64 reg, mask;
36 unsigned long flags;
37 int write = 1; /* write sendctrl back */
38 int flush = 0; /* re-read sendctrl to make sure it is flushed */
39 int i;
40
41 spin_lock_irqsave(&dd->sendctrl_lock, flags);
42
43 reg = read_csr(dd, SEND_CTRL);
44 switch (op) {
45 case PSC_GLOBAL_ENABLE:
46 reg |= SEND_CTRL_SEND_ENABLE_SMASK;
47 fallthrough;
48 case PSC_DATA_VL_ENABLE:
49 mask = 0;
50 for (i = 0; i < ARRAY_SIZE(dd->vld); i++)
51 if (!dd->vld[i].mtu)
52 mask |= BIT_ULL(i);
53 /* Disallow sending on VLs not enabled */
54 mask = (mask & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
55 SEND_CTRL_UNSUPPORTED_VL_SHIFT;
56 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
57 break;
58 case PSC_GLOBAL_DISABLE:
59 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
60 break;
61 case PSC_GLOBAL_VLARB_ENABLE:
62 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
63 break;
64 case PSC_GLOBAL_VLARB_DISABLE:
65 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
66 break;
67 case PSC_CM_RESET:
68 __cm_reset(dd, reg);
69 write = 0; /* CSR already written (and flushed) */
70 break;
71 case PSC_DATA_VL_DISABLE:
72 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
73 flush = 1;
74 break;
75 default:
76 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
77 break;
78 }
79
80 if (write) {
81 write_csr(dd, SEND_CTRL, reg);
82 if (flush)
83 (void)read_csr(dd, SEND_CTRL); /* flush write */
84 }
85
86 spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
87}
88
89/* number of send context memory pools */
90#define NUM_SC_POOLS 2
91
92/* Send Context Size (SCS) wildcards */
93#define SCS_POOL_0 -1
94#define SCS_POOL_1 -2
95
96/* Send Context Count (SCC) wildcards */
97#define SCC_PER_VL -1
98#define SCC_PER_CPU -2
99#define SCC_PER_KRCVQ -3
100
101/* Send Context Size (SCS) constants */
102#define SCS_ACK_CREDITS 32
103#define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
104
105#define PIO_THRESHOLD_CEILING 4096
106
107#define PIO_WAIT_BATCH_SIZE 5
108
109/* default send context sizes */
110static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
111 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */
112 .count = SCC_PER_VL }, /* one per NUMA */
113 [SC_ACK] = { .size = SCS_ACK_CREDITS,
114 .count = SCC_PER_KRCVQ },
115 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */
116 .count = SCC_PER_CPU }, /* one per CPU */
117 [SC_VL15] = { .size = SCS_VL15_CREDITS,
118 .count = 1 },
119
120};
121
122/* send context memory pool configuration */
123struct mem_pool_config {
124 int centipercent; /* % of memory, in 100ths of 1% */
125 int absolute_blocks; /* absolute block count */
126};
127
128/* default memory pool configuration: 100% in pool 0 */
129static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
130 /* centi%, abs blocks */
131 { 10000, -1 }, /* pool 0 */
132 { 0, -1 }, /* pool 1 */
133};
134
135/* memory pool information, used when calculating final sizes */
136struct mem_pool_info {
137 int centipercent; /*
138 * 100th of 1% of memory to use, -1 if blocks
139 * already set
140 */
141 int count; /* count of contexts in the pool */
142 int blocks; /* block size of the pool */
143 int size; /* context size, in blocks */
144};
145
146/*
147 * Convert a pool wildcard to a valid pool index. The wildcards
148 * start at -1 and increase negatively. Map them as:
149 * -1 => 0
150 * -2 => 1
151 * etc.
152 *
153 * Return -1 on non-wildcard input, otherwise convert to a pool number.
154 */
155static int wildcard_to_pool(int wc)
156{
157 if (wc >= 0)
158 return -1; /* non-wildcard */
159 return -wc - 1;
160}
161
162static const char *sc_type_names[SC_MAX] = {
163 "kernel",
164 "ack",
165 "user",
166 "vl15"
167};
168
169static const char *sc_type_name(int index)
170{
171 if (index < 0 || index >= SC_MAX)
172 return "unknown";
173 return sc_type_names[index];
174}
175
176/*
177 * Read the send context memory pool configuration and send context
178 * size configuration. Replace any wildcards and come up with final
179 * counts and sizes for the send context types.
180 */
181int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
182{
183 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
184 int total_blocks = (chip_pio_mem_size(dd) / PIO_BLOCK_SIZE) - 1;
185 int total_contexts = 0;
186 int fixed_blocks;
187 int pool_blocks;
188 int used_blocks;
189 int cp_total; /* centipercent total */
190 int ab_total; /* absolute block total */
191 int extra;
192 int i;
193
194 /*
195 * When SDMA is enabled, kernel context pio packet size is capped by
196 * "piothreshold". Reduce pio buffer allocation for kernel context by
197 * setting it to a fixed size. The allocation allows 3-deep buffering
198 * of the largest pio packets plus up to 128 bytes header, sufficient
199 * to maintain verbs performance.
200 *
201 * When SDMA is disabled, keep the default pooling allocation.
202 */
203 if (HFI1_CAP_IS_KSET(SDMA)) {
204 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
205 piothreshold : PIO_THRESHOLD_CEILING;
206 sc_config_sizes[SC_KERNEL].size =
207 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
208 }
209
210 /*
211 * Step 0:
212 * - copy the centipercents/absolute sizes from the pool config
213 * - sanity check these values
214 * - add up centipercents, then later check for full value
215 * - add up absolute blocks, then later check for over-commit
216 */
217 cp_total = 0;
218 ab_total = 0;
219 for (i = 0; i < NUM_SC_POOLS; i++) {
220 int cp = sc_mem_pool_config[i].centipercent;
221 int ab = sc_mem_pool_config[i].absolute_blocks;
222
223 /*
224 * A negative value is "unused" or "invalid". Both *can*
225 * be valid, but centipercent wins, so check that first
226 */
227 if (cp >= 0) { /* centipercent valid */
228 cp_total += cp;
229 } else if (ab >= 0) { /* absolute blocks valid */
230 ab_total += ab;
231 } else { /* neither valid */
232 dd_dev_err(
233 dd,
234 "Send context memory pool %d: both the block count and centipercent are invalid\n",
235 i);
236 return -EINVAL;
237 }
238
239 mem_pool_info[i].centipercent = cp;
240 mem_pool_info[i].blocks = ab;
241 }
242
243 /* do not use both % and absolute blocks for different pools */
244 if (cp_total != 0 && ab_total != 0) {
245 dd_dev_err(
246 dd,
247 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
248 return -EINVAL;
249 }
250
251 /* if any percentages are present, they must add up to 100% x 100 */
252 if (cp_total != 0 && cp_total != 10000) {
253 dd_dev_err(
254 dd,
255 "Send context memory pool centipercent is %d, expecting 10000\n",
256 cp_total);
257 return -EINVAL;
258 }
259
260 /* the absolute pool total cannot be more than the mem total */
261 if (ab_total > total_blocks) {
262 dd_dev_err(
263 dd,
264 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
265 ab_total, total_blocks);
266 return -EINVAL;
267 }
268
269 /*
270 * Step 2:
271 * - copy from the context size config
272 * - replace context type wildcard counts with real values
273 * - add up non-memory pool block sizes
274 * - add up memory pool user counts
275 */
276 fixed_blocks = 0;
277 for (i = 0; i < SC_MAX; i++) {
278 int count = sc_config_sizes[i].count;
279 int size = sc_config_sizes[i].size;
280 int pool;
281
282 /*
283 * Sanity check count: Either a positive value or
284 * one of the expected wildcards is valid. The positive
285 * value is checked later when we compare against total
286 * memory available.
287 */
288 if (i == SC_ACK) {
289 count = dd->n_krcv_queues;
290 } else if (i == SC_KERNEL) {
291 count = INIT_SC_PER_VL * num_vls;
292 } else if (count == SCC_PER_CPU) {
293 count = dd->num_rcv_contexts - dd->n_krcv_queues;
294 } else if (count < 0) {
295 dd_dev_err(
296 dd,
297 "%s send context invalid count wildcard %d\n",
298 sc_type_name(i), count);
299 return -EINVAL;
300 }
301 if (total_contexts + count > chip_send_contexts(dd))
302 count = chip_send_contexts(dd) - total_contexts;
303
304 total_contexts += count;
305
306 /*
307 * Sanity check pool: The conversion will return a pool
308 * number or -1 if a fixed (non-negative) value. The fixed
309 * value is checked later when we compare against
310 * total memory available.
311 */
312 pool = wildcard_to_pool(size);
313 if (pool == -1) { /* non-wildcard */
314 fixed_blocks += size * count;
315 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */
316 mem_pool_info[pool].count += count;
317 } else { /* invalid wildcard */
318 dd_dev_err(
319 dd,
320 "%s send context invalid pool wildcard %d\n",
321 sc_type_name(i), size);
322 return -EINVAL;
323 }
324
325 dd->sc_sizes[i].count = count;
326 dd->sc_sizes[i].size = size;
327 }
328 if (fixed_blocks > total_blocks) {
329 dd_dev_err(
330 dd,
331 "Send context fixed block count, %u, larger than total block count %u\n",
332 fixed_blocks, total_blocks);
333 return -EINVAL;
334 }
335
336 /* step 3: calculate the blocks in the pools, and pool context sizes */
337 pool_blocks = total_blocks - fixed_blocks;
338 if (ab_total > pool_blocks) {
339 dd_dev_err(
340 dd,
341 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
342 ab_total, pool_blocks);
343 return -EINVAL;
344 }
345 /* subtract off the fixed pool blocks */
346 pool_blocks -= ab_total;
347
348 for (i = 0; i < NUM_SC_POOLS; i++) {
349 struct mem_pool_info *pi = &mem_pool_info[i];
350
351 /* % beats absolute blocks */
352 if (pi->centipercent >= 0)
353 pi->blocks = (pool_blocks * pi->centipercent) / 10000;
354
355 if (pi->blocks == 0 && pi->count != 0) {
356 dd_dev_err(
357 dd,
358 "Send context memory pool %d has %u contexts, but no blocks\n",
359 i, pi->count);
360 return -EINVAL;
361 }
362 if (pi->count == 0) {
363 /* warn about wasted blocks */
364 if (pi->blocks != 0)
365 dd_dev_err(
366 dd,
367 "Send context memory pool %d has %u blocks, but zero contexts\n",
368 i, pi->blocks);
369 pi->size = 0;
370 } else {
371 pi->size = pi->blocks / pi->count;
372 }
373 }
374
375 /* step 4: fill in the context type sizes from the pool sizes */
376 used_blocks = 0;
377 for (i = 0; i < SC_MAX; i++) {
378 if (dd->sc_sizes[i].size < 0) {
379 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
380
381 WARN_ON_ONCE(pool >= NUM_SC_POOLS);
382 dd->sc_sizes[i].size = mem_pool_info[pool].size;
383 }
384 /* make sure we are not larger than what is allowed by the HW */
385#define PIO_MAX_BLOCKS 1024
386 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
387 dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
388
389 /* calculate our total usage */
390 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
391 }
392 extra = total_blocks - used_blocks;
393 if (extra != 0)
394 dd_dev_info(dd, "unused send context blocks: %d\n", extra);
395
396 return total_contexts;
397}
398
399int init_send_contexts(struct hfi1_devdata *dd)
400{
401 u16 base;
402 int ret, i, j, context;
403
404 ret = init_credit_return(dd);
405 if (ret)
406 return ret;
407
408 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
409 GFP_KERNEL);
410 dd->send_contexts = kcalloc(dd->num_send_contexts,
411 sizeof(struct send_context_info),
412 GFP_KERNEL);
413 if (!dd->send_contexts || !dd->hw_to_sw) {
414 kfree(dd->hw_to_sw);
415 kfree(dd->send_contexts);
416 free_credit_return(dd);
417 return -ENOMEM;
418 }
419
420 /* hardware context map starts with invalid send context indices */
421 for (i = 0; i < TXE_NUM_CONTEXTS; i++)
422 dd->hw_to_sw[i] = INVALID_SCI;
423
424 /*
425 * All send contexts have their credit sizes. Allocate credits
426 * for each context one after another from the global space.
427 */
428 context = 0;
429 base = 1;
430 for (i = 0; i < SC_MAX; i++) {
431 struct sc_config_sizes *scs = &dd->sc_sizes[i];
432
433 for (j = 0; j < scs->count; j++) {
434 struct send_context_info *sci =
435 &dd->send_contexts[context];
436 sci->type = i;
437 sci->base = base;
438 sci->credits = scs->size;
439
440 context++;
441 base += scs->size;
442 }
443 }
444
445 return 0;
446}
447
448/*
449 * Allocate a software index and hardware context of the given type.
450 *
451 * Must be called with dd->sc_lock held.
452 */
453static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
454 u32 *hw_context)
455{
456 struct send_context_info *sci;
457 u32 index;
458 u32 context;
459
460 for (index = 0, sci = &dd->send_contexts[0];
461 index < dd->num_send_contexts; index++, sci++) {
462 if (sci->type == type && sci->allocated == 0) {
463 sci->allocated = 1;
464 /* use a 1:1 mapping, but make them non-equal */
465 context = chip_send_contexts(dd) - index - 1;
466 dd->hw_to_sw[context] = index;
467 *sw_index = index;
468 *hw_context = context;
469 return 0; /* success */
470 }
471 }
472 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
473 return -ENOSPC;
474}
475
476/*
477 * Free the send context given by its software index.
478 *
479 * Must be called with dd->sc_lock held.
480 */
481static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
482{
483 struct send_context_info *sci;
484
485 sci = &dd->send_contexts[sw_index];
486 if (!sci->allocated) {
487 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
488 __func__, sw_index, hw_context);
489 }
490 sci->allocated = 0;
491 dd->hw_to_sw[hw_context] = INVALID_SCI;
492}
493
494/* return the base context of a context in a group */
495static inline u32 group_context(u32 context, u32 group)
496{
497 return (context >> group) << group;
498}
499
500/* return the size of a group */
501static inline u32 group_size(u32 group)
502{
503 return 1 << group;
504}
505
506/*
507 * Obtain the credit return addresses, kernel virtual and bus, for the
508 * given sc.
509 *
510 * To understand this routine:
511 * o va and dma are arrays of struct credit_return. One for each physical
512 * send context, per NUMA.
513 * o Each send context always looks in its relative location in a struct
514 * credit_return for its credit return.
515 * o Each send context in a group must have its return address CSR programmed
516 * with the same value. Use the address of the first send context in the
517 * group.
518 */
519static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
520{
521 u32 gc = group_context(sc->hw_context, sc->group);
522 u32 index = sc->hw_context & 0x7;
523
524 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
525 *dma = (unsigned long)
526 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
527}
528
529/*
530 * Work queue function triggered in error interrupt routine for
531 * kernel contexts.
532 */
533static void sc_halted(struct work_struct *work)
534{
535 struct send_context *sc;
536
537 sc = container_of(work, struct send_context, halt_work);
538 sc_restart(sc);
539}
540
541/*
542 * Calculate PIO block threshold for this send context using the given MTU.
543 * Trigger a return when one MTU plus optional header of credits remain.
544 *
545 * Parameter mtu is in bytes.
546 * Parameter hdrqentsize is in DWORDs.
547 *
548 * Return value is what to write into the CSR: trigger return when
549 * unreturned credits pass this count.
550 */
551u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
552{
553 u32 release_credits;
554 u32 threshold;
555
556 /* add in the header size, then divide by the PIO block size */
557 mtu += hdrqentsize << 2;
558 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
559
560 /* check against this context's credits */
561 if (sc->credits <= release_credits)
562 threshold = 1;
563 else
564 threshold = sc->credits - release_credits;
565
566 return threshold;
567}
568
569/*
570 * Calculate credit threshold in terms of percent of the allocated credits.
571 * Trigger when unreturned credits equal or exceed the percentage of the whole.
572 *
573 * Return value is what to write into the CSR: trigger return when
574 * unreturned credits pass this count.
575 */
576u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
577{
578 return (sc->credits * percent) / 100;
579}
580
581/*
582 * Set the credit return threshold.
583 */
584void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
585{
586 unsigned long flags;
587 u32 old_threshold;
588 int force_return = 0;
589
590 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
591
592 old_threshold = (sc->credit_ctrl >>
593 SC(CREDIT_CTRL_THRESHOLD_SHIFT))
594 & SC(CREDIT_CTRL_THRESHOLD_MASK);
595
596 if (new_threshold != old_threshold) {
597 sc->credit_ctrl =
598 (sc->credit_ctrl
599 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
600 | ((new_threshold
601 & SC(CREDIT_CTRL_THRESHOLD_MASK))
602 << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
603 write_kctxt_csr(sc->dd, sc->hw_context,
604 SC(CREDIT_CTRL), sc->credit_ctrl);
605
606 /* force a credit return on change to avoid a possible stall */
607 force_return = 1;
608 }
609
610 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
611
612 if (force_return)
613 sc_return_credits(sc);
614}
615
616/*
617 * set_pio_integrity
618 *
619 * Set the CHECK_ENABLE register for the send context 'sc'.
620 */
621void set_pio_integrity(struct send_context *sc)
622{
623 struct hfi1_devdata *dd = sc->dd;
624 u32 hw_context = sc->hw_context;
625 int type = sc->type;
626
627 write_kctxt_csr(dd, hw_context,
628 SC(CHECK_ENABLE),
629 hfi1_pkt_default_send_ctxt_mask(dd, type));
630}
631
632static u32 get_buffers_allocated(struct send_context *sc)
633{
634 int cpu;
635 u32 ret = 0;
636
637 for_each_possible_cpu(cpu)
638 ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
639 return ret;
640}
641
642static void reset_buffers_allocated(struct send_context *sc)
643{
644 int cpu;
645
646 for_each_possible_cpu(cpu)
647 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
648}
649
650/*
651 * Allocate a NUMA relative send context structure of the given type along
652 * with a HW context.
653 */
654struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
655 uint hdrqentsize, int numa)
656{
657 struct send_context_info *sci;
658 struct send_context *sc = NULL;
659 dma_addr_t dma;
660 unsigned long flags;
661 u64 reg;
662 u32 thresh;
663 u32 sw_index;
664 u32 hw_context;
665 int ret;
666 u8 opval, opmask;
667
668 /* do not allocate while frozen */
669 if (dd->flags & HFI1_FROZEN)
670 return NULL;
671
672 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
673 if (!sc)
674 return NULL;
675
676 sc->buffers_allocated = alloc_percpu(u32);
677 if (!sc->buffers_allocated) {
678 kfree(sc);
679 dd_dev_err(dd,
680 "Cannot allocate buffers_allocated per cpu counters\n"
681 );
682 return NULL;
683 }
684
685 spin_lock_irqsave(&dd->sc_lock, flags);
686 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
687 if (ret) {
688 spin_unlock_irqrestore(&dd->sc_lock, flags);
689 free_percpu(sc->buffers_allocated);
690 kfree(sc);
691 return NULL;
692 }
693
694 sci = &dd->send_contexts[sw_index];
695 sci->sc = sc;
696
697 sc->dd = dd;
698 sc->node = numa;
699 sc->type = type;
700 spin_lock_init(&sc->alloc_lock);
701 spin_lock_init(&sc->release_lock);
702 spin_lock_init(&sc->credit_ctrl_lock);
703 seqlock_init(&sc->waitlock);
704 INIT_LIST_HEAD(&sc->piowait);
705 INIT_WORK(&sc->halt_work, sc_halted);
706 init_waitqueue_head(&sc->halt_wait);
707
708 /* grouping is always single context for now */
709 sc->group = 0;
710
711 sc->sw_index = sw_index;
712 sc->hw_context = hw_context;
713 cr_group_addresses(sc, &dma);
714 sc->credits = sci->credits;
715 sc->size = sc->credits * PIO_BLOCK_SIZE;
716
717/* PIO Send Memory Address details */
718#define PIO_ADDR_CONTEXT_MASK 0xfful
719#define PIO_ADDR_CONTEXT_SHIFT 16
720 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
721 << PIO_ADDR_CONTEXT_SHIFT);
722
723 /* set base and credits */
724 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
725 << SC(CTRL_CTXT_DEPTH_SHIFT))
726 | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
727 << SC(CTRL_CTXT_BASE_SHIFT));
728 write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
729
730 set_pio_integrity(sc);
731
732 /* unmask all errors */
733 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
734
735 /* set the default partition key */
736 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
737 (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
738 DEFAULT_PKEY) <<
739 SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
740
741 /* per context type checks */
742 if (type == SC_USER) {
743 opval = USER_OPCODE_CHECK_VAL;
744 opmask = USER_OPCODE_CHECK_MASK;
745 } else {
746 opval = OPCODE_CHECK_VAL_DISABLED;
747 opmask = OPCODE_CHECK_MASK_DISABLED;
748 }
749
750 /* set the send context check opcode mask and value */
751 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
752 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
753 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
754
755 /* set up credit return */
756 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
757 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
758
759 /*
760 * Calculate the initial credit return threshold.
761 *
762 * For Ack contexts, set a threshold for half the credits.
763 * For User contexts use the given percentage. This has been
764 * sanitized on driver start-up.
765 * For Kernel contexts, use the default MTU plus a header
766 * or half the credits, whichever is smaller. This should
767 * work for both the 3-deep buffering allocation and the
768 * pooling allocation.
769 */
770 if (type == SC_ACK) {
771 thresh = sc_percent_to_threshold(sc, 50);
772 } else if (type == SC_USER) {
773 thresh = sc_percent_to_threshold(sc,
774 user_credit_return_threshold);
775 } else { /* kernel */
776 thresh = min(sc_percent_to_threshold(sc, 50),
777 sc_mtu_to_threshold(sc, hfi1_max_mtu,
778 hdrqentsize));
779 }
780 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
781 /* add in early return */
782 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
783 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
784 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
785 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
786
787 /* set up write-through credit_ctrl */
788 sc->credit_ctrl = reg;
789 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
790
791 /* User send contexts should not allow sending on VL15 */
792 if (type == SC_USER) {
793 reg = 1ULL << 15;
794 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
795 }
796
797 spin_unlock_irqrestore(&dd->sc_lock, flags);
798
799 /*
800 * Allocate shadow ring to track outstanding PIO buffers _after_
801 * unlocking. We don't know the size until the lock is held and
802 * we can't allocate while the lock is held. No one is using
803 * the context yet, so allocate it now.
804 *
805 * User contexts do not get a shadow ring.
806 */
807 if (type != SC_USER) {
808 /*
809 * Size the shadow ring 1 larger than the number of credits
810 * so head == tail can mean empty.
811 */
812 sc->sr_size = sci->credits + 1;
813 sc->sr = kcalloc_node(sc->sr_size,
814 sizeof(union pio_shadow_ring),
815 GFP_KERNEL, numa);
816 if (!sc->sr) {
817 sc_free(sc);
818 return NULL;
819 }
820 }
821
822 hfi1_cdbg(PIO,
823 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u",
824 sw_index,
825 hw_context,
826 sc_type_name(type),
827 sc->group,
828 sc->credits,
829 sc->credit_ctrl,
830 thresh);
831
832 return sc;
833}
834
835/* free a per-NUMA send context structure */
836void sc_free(struct send_context *sc)
837{
838 struct hfi1_devdata *dd;
839 unsigned long flags;
840 u32 sw_index;
841 u32 hw_context;
842
843 if (!sc)
844 return;
845
846 sc->flags |= SCF_IN_FREE; /* ensure no restarts */
847 dd = sc->dd;
848 if (!list_empty(&sc->piowait))
849 dd_dev_err(dd, "piowait list not empty!\n");
850 sw_index = sc->sw_index;
851 hw_context = sc->hw_context;
852 sc_disable(sc); /* make sure the HW is disabled */
853 flush_work(&sc->halt_work);
854
855 spin_lock_irqsave(&dd->sc_lock, flags);
856 dd->send_contexts[sw_index].sc = NULL;
857
858 /* clear/disable all registers set in sc_alloc */
859 write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
860 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
861 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
862 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
863 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
864 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
865 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
866
867 /* release the index and context for re-use */
868 sc_hw_free(dd, sw_index, hw_context);
869 spin_unlock_irqrestore(&dd->sc_lock, flags);
870
871 kfree(sc->sr);
872 free_percpu(sc->buffers_allocated);
873 kfree(sc);
874}
875
876/* disable the context */
877void sc_disable(struct send_context *sc)
878{
879 u64 reg;
880 struct pio_buf *pbuf;
881 LIST_HEAD(wake_list);
882
883 if (!sc)
884 return;
885
886 /* do all steps, even if already disabled */
887 spin_lock_irq(&sc->alloc_lock);
888 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
889 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
890 sc->flags &= ~SCF_ENABLED;
891 sc_wait_for_packet_egress(sc, 1);
892 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
893
894 /*
895 * Flush any waiters. Once the context is disabled,
896 * credit return interrupts are stopped (although there
897 * could be one in-process when the context is disabled).
898 * Wait one microsecond for any lingering interrupts, then
899 * proceed with the flush.
900 */
901 udelay(1);
902 spin_lock(&sc->release_lock);
903 if (sc->sr) { /* this context has a shadow ring */
904 while (sc->sr_tail != sc->sr_head) {
905 pbuf = &sc->sr[sc->sr_tail].pbuf;
906 if (pbuf->cb)
907 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
908 sc->sr_tail++;
909 if (sc->sr_tail >= sc->sr_size)
910 sc->sr_tail = 0;
911 }
912 }
913 spin_unlock(&sc->release_lock);
914
915 write_seqlock(&sc->waitlock);
916 list_splice_init(&sc->piowait, &wake_list);
917 write_sequnlock(&sc->waitlock);
918 while (!list_empty(&wake_list)) {
919 struct iowait *wait;
920 struct rvt_qp *qp;
921 struct hfi1_qp_priv *priv;
922
923 wait = list_first_entry(&wake_list, struct iowait, list);
924 qp = iowait_to_qp(wait);
925 priv = qp->priv;
926 list_del_init(&priv->s_iowait.list);
927 priv->s_iowait.lock = NULL;
928 hfi1_qp_wakeup(qp, RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
929 }
930
931 spin_unlock_irq(&sc->alloc_lock);
932}
933
934/* return SendEgressCtxtStatus.PacketOccupancy */
935static u64 packet_occupancy(u64 reg)
936{
937 return (reg &
938 SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)
939 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT;
940}
941
942/* is egress halted on the context? */
943static bool egress_halted(u64 reg)
944{
945 return !!(reg & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK);
946}
947
948/* is the send context halted? */
949static bool is_sc_halted(struct hfi1_devdata *dd, u32 hw_context)
950{
951 return !!(read_kctxt_csr(dd, hw_context, SC(STATUS)) &
952 SC(STATUS_CTXT_HALTED_SMASK));
953}
954
955/**
956 * sc_wait_for_packet_egress - wait for packet
957 * @sc: valid send context
958 * @pause: wait for credit return
959 *
960 * Wait for packet egress, optionally pause for credit return
961 *
962 * Egress halt and Context halt are not necessarily the same thing, so
963 * check for both.
964 *
965 * NOTE: The context halt bit may not be set immediately. Because of this,
966 * it is necessary to check the SW SFC_HALTED bit (set in the IRQ) and the HW
967 * context bit to determine if the context is halted.
968 */
969static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
970{
971 struct hfi1_devdata *dd = sc->dd;
972 u64 reg = 0;
973 u64 reg_prev;
974 u32 loop = 0;
975
976 while (1) {
977 reg_prev = reg;
978 reg = read_csr(dd, sc->hw_context * 8 +
979 SEND_EGRESS_CTXT_STATUS);
980 /* done if any halt bits, SW or HW are set */
981 if (sc->flags & SCF_HALTED ||
982 is_sc_halted(dd, sc->hw_context) || egress_halted(reg))
983 break;
984 reg = packet_occupancy(reg);
985 if (reg == 0)
986 break;
987 /* counter is reset if occupancy count changes */
988 if (reg != reg_prev)
989 loop = 0;
990 if (loop > 50000) {
991 /* timed out - bounce the link */
992 dd_dev_err(dd,
993 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
994 __func__, sc->sw_index,
995 sc->hw_context, (u32)reg);
996 queue_work(dd->pport->link_wq,
997 &dd->pport->link_bounce_work);
998 break;
999 }
1000 loop++;
1001 udelay(1);
1002 }
1003
1004 if (pause)
1005 /* Add additional delay to ensure chip returns all credits */
1006 pause_for_credit_return(dd);
1007}
1008
1009void sc_wait(struct hfi1_devdata *dd)
1010{
1011 int i;
1012
1013 for (i = 0; i < dd->num_send_contexts; i++) {
1014 struct send_context *sc = dd->send_contexts[i].sc;
1015
1016 if (!sc)
1017 continue;
1018 sc_wait_for_packet_egress(sc, 0);
1019 }
1020}
1021
1022/*
1023 * Restart a context after it has been halted due to error.
1024 *
1025 * If the first step fails - wait for the halt to be asserted, return early.
1026 * Otherwise complain about timeouts but keep going.
1027 *
1028 * It is expected that allocations (enabled flag bit) have been shut off
1029 * already (only applies to kernel contexts).
1030 */
1031int sc_restart(struct send_context *sc)
1032{
1033 struct hfi1_devdata *dd = sc->dd;
1034 u64 reg;
1035 u32 loop;
1036 int count;
1037
1038 /* bounce off if not halted, or being free'd */
1039 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1040 return -EINVAL;
1041
1042 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1043 sc->hw_context);
1044
1045 /*
1046 * Step 1: Wait for the context to actually halt.
1047 *
1048 * The error interrupt is asynchronous to actually setting halt
1049 * on the context.
1050 */
1051 loop = 0;
1052 while (1) {
1053 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1054 if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1055 break;
1056 if (loop > 100) {
1057 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1058 __func__, sc->sw_index, sc->hw_context);
1059 return -ETIME;
1060 }
1061 loop++;
1062 udelay(1);
1063 }
1064
1065 /*
1066 * Step 2: Ensure no users are still trying to write to PIO.
1067 *
1068 * For kernel contexts, we have already turned off buffer allocation.
1069 * Now wait for the buffer count to go to zero.
1070 *
1071 * For user contexts, the user handling code has cut off write access
1072 * to the context's PIO pages before calling this routine and will
1073 * restore write access after this routine returns.
1074 */
1075 if (sc->type != SC_USER) {
1076 /* kernel context */
1077 loop = 0;
1078 while (1) {
1079 count = get_buffers_allocated(sc);
1080 if (count == 0)
1081 break;
1082 if (loop > 100) {
1083 dd_dev_err(dd,
1084 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1085 __func__, sc->sw_index,
1086 sc->hw_context, count);
1087 }
1088 loop++;
1089 udelay(1);
1090 }
1091 }
1092
1093 /*
1094 * Step 3: Wait for all packets to egress.
1095 * This is done while disabling the send context
1096 *
1097 * Step 4: Disable the context
1098 *
1099 * This is a superset of the halt. After the disable, the
1100 * errors can be cleared.
1101 */
1102 sc_disable(sc);
1103
1104 /*
1105 * Step 5: Enable the context
1106 *
1107 * This enable will clear the halted flag and per-send context
1108 * error flags.
1109 */
1110 return sc_enable(sc);
1111}
1112
1113/*
1114 * PIO freeze processing. To be called after the TXE block is fully frozen.
1115 * Go through all frozen send contexts and disable them. The contexts are
1116 * already stopped by the freeze.
1117 */
1118void pio_freeze(struct hfi1_devdata *dd)
1119{
1120 struct send_context *sc;
1121 int i;
1122
1123 for (i = 0; i < dd->num_send_contexts; i++) {
1124 sc = dd->send_contexts[i].sc;
1125 /*
1126 * Don't disable unallocated, unfrozen, or user send contexts.
1127 * User send contexts will be disabled when the process
1128 * calls into the driver to reset its context.
1129 */
1130 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1131 continue;
1132
1133 /* only need to disable, the context is already stopped */
1134 sc_disable(sc);
1135 }
1136}
1137
1138/*
1139 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1140 * is that all PIO send contexts have been disabled and the SPC freeze has
1141 * been cleared. Now perform the last step and re-enable each kernel context.
1142 * User (PSM) processing will occur when PSM calls into the kernel to
1143 * acknowledge the freeze.
1144 */
1145void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1146{
1147 struct send_context *sc;
1148 int i;
1149
1150 for (i = 0; i < dd->num_send_contexts; i++) {
1151 sc = dd->send_contexts[i].sc;
1152 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1153 continue;
1154 if (sc->flags & SCF_LINK_DOWN)
1155 continue;
1156
1157 sc_enable(sc); /* will clear the sc frozen flag */
1158 }
1159}
1160
1161/**
1162 * pio_kernel_linkup() - Re-enable send contexts after linkup event
1163 * @dd: valid devive data
1164 *
1165 * When the link goes down, the freeze path is taken. However, a link down
1166 * event is different from a freeze because if the send context is re-enabled
1167 * whowever is sending data will start sending data again, which will hang
1168 * any QP that is sending data.
1169 *
1170 * The freeze path now looks at the type of event that occurs and takes this
1171 * path for link down event.
1172 */
1173void pio_kernel_linkup(struct hfi1_devdata *dd)
1174{
1175 struct send_context *sc;
1176 int i;
1177
1178 for (i = 0; i < dd->num_send_contexts; i++) {
1179 sc = dd->send_contexts[i].sc;
1180 if (!sc || !(sc->flags & SCF_LINK_DOWN) || sc->type == SC_USER)
1181 continue;
1182
1183 sc_enable(sc); /* will clear the sc link down flag */
1184 }
1185}
1186
1187/*
1188 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1189 * Returns:
1190 * -ETIMEDOUT - if we wait too long
1191 * -EIO - if there was an error
1192 */
1193static int pio_init_wait_progress(struct hfi1_devdata *dd)
1194{
1195 u64 reg;
1196 int max, count = 0;
1197
1198 /* max is the longest possible HW init time / delay */
1199 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1200 while (1) {
1201 reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1202 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1203 break;
1204 if (count >= max)
1205 return -ETIMEDOUT;
1206 udelay(5);
1207 count++;
1208 }
1209
1210 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1211}
1212
1213/*
1214 * Reset all of the send contexts to their power-on state. Used
1215 * only during manual init - no lock against sc_enable needed.
1216 */
1217void pio_reset_all(struct hfi1_devdata *dd)
1218{
1219 int ret;
1220
1221 /* make sure the init engine is not busy */
1222 ret = pio_init_wait_progress(dd);
1223 /* ignore any timeout */
1224 if (ret == -EIO) {
1225 /* clear the error */
1226 write_csr(dd, SEND_PIO_ERR_CLEAR,
1227 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1228 }
1229
1230 /* reset init all */
1231 write_csr(dd, SEND_PIO_INIT_CTXT,
1232 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1233 udelay(2);
1234 ret = pio_init_wait_progress(dd);
1235 if (ret < 0) {
1236 dd_dev_err(dd,
1237 "PIO send context init %s while initializing all PIO blocks\n",
1238 ret == -ETIMEDOUT ? "is stuck" : "had an error");
1239 }
1240}
1241
1242/* enable the context */
1243int sc_enable(struct send_context *sc)
1244{
1245 u64 sc_ctrl, reg, pio;
1246 struct hfi1_devdata *dd;
1247 unsigned long flags;
1248 int ret = 0;
1249
1250 if (!sc)
1251 return -EINVAL;
1252 dd = sc->dd;
1253
1254 /*
1255 * Obtain the allocator lock to guard against any allocation
1256 * attempts (which should not happen prior to context being
1257 * enabled). On the release/disable side we don't need to
1258 * worry about locking since the releaser will not do anything
1259 * if the context accounting values have not changed.
1260 */
1261 spin_lock_irqsave(&sc->alloc_lock, flags);
1262 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1263 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1264 goto unlock; /* already enabled */
1265
1266 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1267
1268 *sc->hw_free = 0;
1269 sc->free = 0;
1270 sc->alloc_free = 0;
1271 sc->fill = 0;
1272 sc->fill_wrap = 0;
1273 sc->sr_head = 0;
1274 sc->sr_tail = 0;
1275 sc->flags = 0;
1276 /* the alloc lock insures no fast path allocation */
1277 reset_buffers_allocated(sc);
1278
1279 /*
1280 * Clear all per-context errors. Some of these will be set when
1281 * we are re-enabling after a context halt. Now that the context
1282 * is disabled, the halt will not clear until after the PIO init
1283 * engine runs below.
1284 */
1285 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1286 if (reg)
1287 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1288
1289 /*
1290 * The HW PIO initialization engine can handle only one init
1291 * request at a time. Serialize access to each device's engine.
1292 */
1293 spin_lock(&dd->sc_init_lock);
1294 /*
1295 * Since access to this code block is serialized and
1296 * each access waits for the initialization to complete
1297 * before releasing the lock, the PIO initialization engine
1298 * should not be in use, so we don't have to wait for the
1299 * InProgress bit to go down.
1300 */
1301 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1302 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1303 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1304 write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1305 /*
1306 * Wait until the engine is done. Give the chip the required time
1307 * so, hopefully, we read the register just once.
1308 */
1309 udelay(2);
1310 ret = pio_init_wait_progress(dd);
1311 spin_unlock(&dd->sc_init_lock);
1312 if (ret) {
1313 dd_dev_err(dd,
1314 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1315 sc->sw_index, sc->hw_context, ret);
1316 goto unlock;
1317 }
1318
1319 /*
1320 * All is well. Enable the context.
1321 */
1322 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1323 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1324 /*
1325 * Read SendCtxtCtrl to force the write out and prevent a timing
1326 * hazard where a PIO write may reach the context before the enable.
1327 */
1328 read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1329 sc->flags |= SCF_ENABLED;
1330
1331unlock:
1332 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1333
1334 return ret;
1335}
1336
1337/* force a credit return on the context */
1338void sc_return_credits(struct send_context *sc)
1339{
1340 if (!sc)
1341 return;
1342
1343 /* a 0->1 transition schedules a credit return */
1344 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1345 SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1346 /*
1347 * Ensure that the write is flushed and the credit return is
1348 * scheduled. We care more about the 0 -> 1 transition.
1349 */
1350 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1351 /* set back to 0 for next time */
1352 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1353}
1354
1355/* allow all in-flight packets to drain on the context */
1356void sc_flush(struct send_context *sc)
1357{
1358 if (!sc)
1359 return;
1360
1361 sc_wait_for_packet_egress(sc, 1);
1362}
1363
1364/* drop all packets on the context, no waiting until they are sent */
1365void sc_drop(struct send_context *sc)
1366{
1367 if (!sc)
1368 return;
1369
1370 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1371 __func__, sc->sw_index, sc->hw_context);
1372}
1373
1374/*
1375 * Start the software reaction to a context halt or SPC freeze:
1376 * - mark the context as halted or frozen
1377 * - stop buffer allocations
1378 *
1379 * Called from the error interrupt. Other work is deferred until
1380 * out of the interrupt.
1381 */
1382void sc_stop(struct send_context *sc, int flag)
1383{
1384 unsigned long flags;
1385
1386 /* stop buffer allocations */
1387 spin_lock_irqsave(&sc->alloc_lock, flags);
1388 /* mark the context */
1389 sc->flags |= flag;
1390 sc->flags &= ~SCF_ENABLED;
1391 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1392 wake_up(&sc->halt_wait);
1393}
1394
1395#define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1396#define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1397
1398/*
1399 * The send context buffer "allocator".
1400 *
1401 * @sc: the PIO send context we are allocating from
1402 * @len: length of whole packet - including PBC - in dwords
1403 * @cb: optional callback to call when the buffer is finished sending
1404 * @arg: argument for cb
1405 *
1406 * Return a pointer to a PIO buffer, NULL if not enough room, -ECOMM
1407 * when link is down.
1408 */
1409struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1410 pio_release_cb cb, void *arg)
1411{
1412 struct pio_buf *pbuf = NULL;
1413 unsigned long flags;
1414 unsigned long avail;
1415 unsigned long blocks = dwords_to_blocks(dw_len);
1416 u32 fill_wrap;
1417 int trycount = 0;
1418 u32 head, next;
1419
1420 spin_lock_irqsave(&sc->alloc_lock, flags);
1421 if (!(sc->flags & SCF_ENABLED)) {
1422 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1423 return ERR_PTR(-ECOMM);
1424 }
1425
1426retry:
1427 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1428 if (blocks > avail) {
1429 /* not enough room */
1430 if (unlikely(trycount)) { /* already tried to get more room */
1431 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1432 goto done;
1433 }
1434 /* copy from receiver cache line and recalculate */
1435 sc->alloc_free = READ_ONCE(sc->free);
1436 avail =
1437 (unsigned long)sc->credits -
1438 (sc->fill - sc->alloc_free);
1439 if (blocks > avail) {
1440 /* still no room, actively update */
1441 sc_release_update(sc);
1442 sc->alloc_free = READ_ONCE(sc->free);
1443 trycount++;
1444 goto retry;
1445 }
1446 }
1447
1448 /* there is enough room */
1449
1450 preempt_disable();
1451 this_cpu_inc(*sc->buffers_allocated);
1452
1453 /* read this once */
1454 head = sc->sr_head;
1455
1456 /* "allocate" the buffer */
1457 sc->fill += blocks;
1458 fill_wrap = sc->fill_wrap;
1459 sc->fill_wrap += blocks;
1460 if (sc->fill_wrap >= sc->credits)
1461 sc->fill_wrap = sc->fill_wrap - sc->credits;
1462
1463 /*
1464 * Fill the parts that the releaser looks at before moving the head.
1465 * The only necessary piece is the sent_at field. The credits
1466 * we have just allocated cannot have been returned yet, so the
1467 * cb and arg will not be looked at for a "while". Put them
1468 * on this side of the memory barrier anyway.
1469 */
1470 pbuf = &sc->sr[head].pbuf;
1471 pbuf->sent_at = sc->fill;
1472 pbuf->cb = cb;
1473 pbuf->arg = arg;
1474 pbuf->sc = sc; /* could be filled in at sc->sr init time */
1475 /* make sure this is in memory before updating the head */
1476
1477 /* calculate next head index, do not store */
1478 next = head + 1;
1479 if (next >= sc->sr_size)
1480 next = 0;
1481 /*
1482 * update the head - must be last! - the releaser can look at fields
1483 * in pbuf once we move the head
1484 */
1485 smp_wmb();
1486 sc->sr_head = next;
1487 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1488
1489 /* finish filling in the buffer outside the lock */
1490 pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE;
1491 pbuf->end = sc->base_addr + sc->size;
1492 pbuf->qw_written = 0;
1493 pbuf->carry_bytes = 0;
1494 pbuf->carry.val64 = 0;
1495done:
1496 return pbuf;
1497}
1498
1499/*
1500 * There are at least two entities that can turn on credit return
1501 * interrupts and they can overlap. Avoid problems by implementing
1502 * a count scheme that is enforced by a lock. The lock is needed because
1503 * the count and CSR write must be paired.
1504 */
1505
1506/*
1507 * Start credit return interrupts. This is managed by a count. If already
1508 * on, just increment the count.
1509 */
1510void sc_add_credit_return_intr(struct send_context *sc)
1511{
1512 unsigned long flags;
1513
1514 /* lock must surround both the count change and the CSR update */
1515 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1516 if (sc->credit_intr_count == 0) {
1517 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1518 write_kctxt_csr(sc->dd, sc->hw_context,
1519 SC(CREDIT_CTRL), sc->credit_ctrl);
1520 }
1521 sc->credit_intr_count++;
1522 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1523}
1524
1525/*
1526 * Stop credit return interrupts. This is managed by a count. Decrement the
1527 * count, if the last user, then turn the credit interrupts off.
1528 */
1529void sc_del_credit_return_intr(struct send_context *sc)
1530{
1531 unsigned long flags;
1532
1533 WARN_ON(sc->credit_intr_count == 0);
1534
1535 /* lock must surround both the count change and the CSR update */
1536 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1537 sc->credit_intr_count--;
1538 if (sc->credit_intr_count == 0) {
1539 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1540 write_kctxt_csr(sc->dd, sc->hw_context,
1541 SC(CREDIT_CTRL), sc->credit_ctrl);
1542 }
1543 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1544}
1545
1546/*
1547 * The caller must be careful when calling this. All needint calls
1548 * must be paired with !needint.
1549 */
1550void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1551{
1552 if (needint)
1553 sc_add_credit_return_intr(sc);
1554 else
1555 sc_del_credit_return_intr(sc);
1556 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1557 if (needint)
1558 sc_return_credits(sc);
1559}
1560
1561/**
1562 * sc_piobufavail - callback when a PIO buffer is available
1563 * @sc: the send context
1564 *
1565 * This is called from the interrupt handler when a PIO buffer is
1566 * available after hfi1_verbs_send() returned an error that no buffers were
1567 * available. Disable the interrupt if there are no more QPs waiting.
1568 */
1569static void sc_piobufavail(struct send_context *sc)
1570{
1571 struct hfi1_devdata *dd = sc->dd;
1572 struct list_head *list;
1573 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1574 struct rvt_qp *qp;
1575 struct hfi1_qp_priv *priv;
1576 unsigned long flags;
1577 uint i, n = 0, top_idx = 0;
1578
1579 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1580 dd->send_contexts[sc->sw_index].type != SC_VL15)
1581 return;
1582 list = &sc->piowait;
1583 /*
1584 * Note: checking that the piowait list is empty and clearing
1585 * the buffer available interrupt needs to be atomic or we
1586 * could end up with QPs on the wait list with the interrupt
1587 * disabled.
1588 */
1589 write_seqlock_irqsave(&sc->waitlock, flags);
1590 while (!list_empty(list)) {
1591 struct iowait *wait;
1592
1593 if (n == ARRAY_SIZE(qps))
1594 break;
1595 wait = list_first_entry(list, struct iowait, list);
1596 iowait_get_priority(wait);
1597 qp = iowait_to_qp(wait);
1598 priv = qp->priv;
1599 list_del_init(&priv->s_iowait.list);
1600 priv->s_iowait.lock = NULL;
1601 if (n) {
1602 priv = qps[top_idx]->priv;
1603 top_idx = iowait_priority_update_top(wait,
1604 &priv->s_iowait,
1605 n, top_idx);
1606 }
1607
1608 /* refcount held until actual wake up */
1609 qps[n++] = qp;
1610 }
1611 /*
1612 * If there had been waiters and there are more
1613 * insure that we redo the force to avoid a potential hang.
1614 */
1615 if (n) {
1616 hfi1_sc_wantpiobuf_intr(sc, 0);
1617 if (!list_empty(list))
1618 hfi1_sc_wantpiobuf_intr(sc, 1);
1619 }
1620 write_sequnlock_irqrestore(&sc->waitlock, flags);
1621
1622 /* Wake up the top-priority one first */
1623 if (n)
1624 hfi1_qp_wakeup(qps[top_idx],
1625 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1626 for (i = 0; i < n; i++)
1627 if (i != top_idx)
1628 hfi1_qp_wakeup(qps[i],
1629 RVT_S_WAIT_PIO | HFI1_S_WAIT_PIO_DRAIN);
1630}
1631
1632/* translate a send credit update to a bit code of reasons */
1633static inline int fill_code(u64 hw_free)
1634{
1635 int code = 0;
1636
1637 if (hw_free & CR_STATUS_SMASK)
1638 code |= PRC_STATUS_ERR;
1639 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1640 code |= PRC_PBC;
1641 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1642 code |= PRC_THRESHOLD;
1643 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1644 code |= PRC_FILL_ERR;
1645 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1646 code |= PRC_SC_DISABLE;
1647 return code;
1648}
1649
1650/* use the jiffies compare to get the wrap right */
1651#define sent_before(a, b) time_before(a, b) /* a < b */
1652
1653/*
1654 * The send context buffer "releaser".
1655 */
1656void sc_release_update(struct send_context *sc)
1657{
1658 struct pio_buf *pbuf;
1659 u64 hw_free;
1660 u32 head, tail;
1661 unsigned long old_free;
1662 unsigned long free;
1663 unsigned long extra;
1664 unsigned long flags;
1665 int code;
1666
1667 if (!sc)
1668 return;
1669
1670 spin_lock_irqsave(&sc->release_lock, flags);
1671 /* update free */
1672 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */
1673 old_free = sc->free;
1674 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1675 - (old_free & CR_COUNTER_MASK))
1676 & CR_COUNTER_MASK;
1677 free = old_free + extra;
1678 trace_hfi1_piofree(sc, extra);
1679
1680 /* call sent buffer callbacks */
1681 code = -1; /* code not yet set */
1682 head = READ_ONCE(sc->sr_head); /* snapshot the head */
1683 tail = sc->sr_tail;
1684 while (head != tail) {
1685 pbuf = &sc->sr[tail].pbuf;
1686
1687 if (sent_before(free, pbuf->sent_at)) {
1688 /* not sent yet */
1689 break;
1690 }
1691 if (pbuf->cb) {
1692 if (code < 0) /* fill in code on first user */
1693 code = fill_code(hw_free);
1694 (*pbuf->cb)(pbuf->arg, code);
1695 }
1696
1697 tail++;
1698 if (tail >= sc->sr_size)
1699 tail = 0;
1700 }
1701 sc->sr_tail = tail;
1702 /* make sure tail is updated before free */
1703 smp_wmb();
1704 sc->free = free;
1705 spin_unlock_irqrestore(&sc->release_lock, flags);
1706 sc_piobufavail(sc);
1707}
1708
1709/*
1710 * Send context group releaser. Argument is the send context that caused
1711 * the interrupt. Called from the send context interrupt handler.
1712 *
1713 * Call release on all contexts in the group.
1714 *
1715 * This routine takes the sc_lock without an irqsave because it is only
1716 * called from an interrupt handler. Adjust if that changes.
1717 */
1718void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1719{
1720 struct send_context *sc;
1721 u32 sw_index;
1722 u32 gc, gc_end;
1723
1724 spin_lock(&dd->sc_lock);
1725 sw_index = dd->hw_to_sw[hw_context];
1726 if (unlikely(sw_index >= dd->num_send_contexts)) {
1727 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1728 __func__, hw_context, sw_index);
1729 goto done;
1730 }
1731 sc = dd->send_contexts[sw_index].sc;
1732 if (unlikely(!sc))
1733 goto done;
1734
1735 gc = group_context(hw_context, sc->group);
1736 gc_end = gc + group_size(sc->group);
1737 for (; gc < gc_end; gc++) {
1738 sw_index = dd->hw_to_sw[gc];
1739 if (unlikely(sw_index >= dd->num_send_contexts)) {
1740 dd_dev_err(dd,
1741 "%s: invalid hw (%u) to sw (%u) mapping\n",
1742 __func__, hw_context, sw_index);
1743 continue;
1744 }
1745 sc_release_update(dd->send_contexts[sw_index].sc);
1746 }
1747done:
1748 spin_unlock(&dd->sc_lock);
1749}
1750
1751/*
1752 * pio_select_send_context_vl() - select send context
1753 * @dd: devdata
1754 * @selector: a spreading factor
1755 * @vl: this vl
1756 *
1757 * This function returns a send context based on the selector and a vl.
1758 * The mapping fields are protected by RCU
1759 */
1760struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1761 u32 selector, u8 vl)
1762{
1763 struct pio_vl_map *m;
1764 struct pio_map_elem *e;
1765 struct send_context *rval;
1766
1767 /*
1768 * NOTE This should only happen if SC->VL changed after the initial
1769 * checks on the QP/AH
1770 * Default will return VL0's send context below
1771 */
1772 if (unlikely(vl >= num_vls)) {
1773 rval = NULL;
1774 goto done;
1775 }
1776
1777 rcu_read_lock();
1778 m = rcu_dereference(dd->pio_map);
1779 if (unlikely(!m)) {
1780 rcu_read_unlock();
1781 return dd->vld[0].sc;
1782 }
1783 e = m->map[vl & m->mask];
1784 rval = e->ksc[selector & e->mask];
1785 rcu_read_unlock();
1786
1787done:
1788 rval = !rval ? dd->vld[0].sc : rval;
1789 return rval;
1790}
1791
1792/*
1793 * pio_select_send_context_sc() - select send context
1794 * @dd: devdata
1795 * @selector: a spreading factor
1796 * @sc5: the 5 bit sc
1797 *
1798 * This function returns an send context based on the selector and an sc
1799 */
1800struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1801 u32 selector, u8 sc5)
1802{
1803 u8 vl = sc_to_vlt(dd, sc5);
1804
1805 return pio_select_send_context_vl(dd, selector, vl);
1806}
1807
1808/*
1809 * Free the indicated map struct
1810 */
1811static void pio_map_free(struct pio_vl_map *m)
1812{
1813 int i;
1814
1815 for (i = 0; m && i < m->actual_vls; i++)
1816 kfree(m->map[i]);
1817 kfree(m);
1818}
1819
1820/*
1821 * Handle RCU callback
1822 */
1823static void pio_map_rcu_callback(struct rcu_head *list)
1824{
1825 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1826
1827 pio_map_free(m);
1828}
1829
1830/*
1831 * Set credit return threshold for the kernel send context
1832 */
1833static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1834{
1835 u32 thres;
1836
1837 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1838 50),
1839 sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1840 dd->vld[i].mtu,
1841 dd->rcd[0]->rcvhdrqentsize));
1842 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1843}
1844
1845/*
1846 * pio_map_init - called when #vls change
1847 * @dd: hfi1_devdata
1848 * @port: port number
1849 * @num_vls: number of vls
1850 * @vl_scontexts: per vl send context mapping (optional)
1851 *
1852 * This routine changes the mapping based on the number of vls.
1853 *
1854 * vl_scontexts is used to specify a non-uniform vl/send context
1855 * loading. NULL implies auto computing the loading and giving each
1856 * VL an uniform distribution of send contexts per VL.
1857 *
1858 * The auto algorithm computers the sc_per_vl and the number of extra
1859 * send contexts. Any extra send contexts are added from the last VL
1860 * on down
1861 *
1862 * rcu locking is used here to control access to the mapping fields.
1863 *
1864 * If either the num_vls or num_send_contexts are non-power of 2, the
1865 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1866 * rounded up to the next highest power of 2 and the first entry is
1867 * reused in a round robin fashion.
1868 *
1869 * If an error occurs the map change is not done and the mapping is not
1870 * chaged.
1871 *
1872 */
1873int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1874{
1875 int i, j;
1876 int extra, sc_per_vl;
1877 int scontext = 1;
1878 int num_kernel_send_contexts = 0;
1879 u8 lvl_scontexts[OPA_MAX_VLS];
1880 struct pio_vl_map *oldmap, *newmap;
1881
1882 if (!vl_scontexts) {
1883 for (i = 0; i < dd->num_send_contexts; i++)
1884 if (dd->send_contexts[i].type == SC_KERNEL)
1885 num_kernel_send_contexts++;
1886 /* truncate divide */
1887 sc_per_vl = num_kernel_send_contexts / num_vls;
1888 /* extras */
1889 extra = num_kernel_send_contexts % num_vls;
1890 vl_scontexts = lvl_scontexts;
1891 /* add extras from last vl down */
1892 for (i = num_vls - 1; i >= 0; i--, extra--)
1893 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1894 }
1895 /* build new map */
1896 newmap = kzalloc(struct_size(newmap, map, roundup_pow_of_two(num_vls)),
1897 GFP_KERNEL);
1898 if (!newmap)
1899 goto bail;
1900 newmap->actual_vls = num_vls;
1901 newmap->vls = roundup_pow_of_two(num_vls);
1902 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1903 for (i = 0; i < newmap->vls; i++) {
1904 /* save for wrap around */
1905 int first_scontext = scontext;
1906
1907 if (i < newmap->actual_vls) {
1908 int sz = roundup_pow_of_two(vl_scontexts[i]);
1909
1910 /* only allocate once */
1911 newmap->map[i] = kzalloc(struct_size(newmap->map[i],
1912 ksc, sz),
1913 GFP_KERNEL);
1914 if (!newmap->map[i])
1915 goto bail;
1916 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1917 /*
1918 * assign send contexts and
1919 * adjust credit return threshold
1920 */
1921 for (j = 0; j < sz; j++) {
1922 if (dd->kernel_send_context[scontext]) {
1923 newmap->map[i]->ksc[j] =
1924 dd->kernel_send_context[scontext];
1925 set_threshold(dd, scontext, i);
1926 }
1927 if (++scontext >= first_scontext +
1928 vl_scontexts[i])
1929 /* wrap back to first send context */
1930 scontext = first_scontext;
1931 }
1932 } else {
1933 /* just re-use entry without allocating */
1934 newmap->map[i] = newmap->map[i % num_vls];
1935 }
1936 scontext = first_scontext + vl_scontexts[i];
1937 }
1938 /* newmap in hand, save old map */
1939 spin_lock_irq(&dd->pio_map_lock);
1940 oldmap = rcu_dereference_protected(dd->pio_map,
1941 lockdep_is_held(&dd->pio_map_lock));
1942
1943 /* publish newmap */
1944 rcu_assign_pointer(dd->pio_map, newmap);
1945
1946 spin_unlock_irq(&dd->pio_map_lock);
1947 /* success, free any old map after grace period */
1948 if (oldmap)
1949 call_rcu(&oldmap->list, pio_map_rcu_callback);
1950 return 0;
1951bail:
1952 /* free any partial allocation */
1953 pio_map_free(newmap);
1954 return -ENOMEM;
1955}
1956
1957void free_pio_map(struct hfi1_devdata *dd)
1958{
1959 /* Free PIO map if allocated */
1960 if (rcu_access_pointer(dd->pio_map)) {
1961 spin_lock_irq(&dd->pio_map_lock);
1962 pio_map_free(rcu_access_pointer(dd->pio_map));
1963 RCU_INIT_POINTER(dd->pio_map, NULL);
1964 spin_unlock_irq(&dd->pio_map_lock);
1965 synchronize_rcu();
1966 }
1967 kfree(dd->kernel_send_context);
1968 dd->kernel_send_context = NULL;
1969}
1970
1971int init_pervl_scs(struct hfi1_devdata *dd)
1972{
1973 int i;
1974 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1975 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1976 u32 ctxt;
1977 struct hfi1_pportdata *ppd = dd->pport;
1978
1979 dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1980 dd->rcd[0]->rcvhdrqentsize, dd->node);
1981 if (!dd->vld[15].sc)
1982 return -ENOMEM;
1983
1984 hfi1_init_ctxt(dd->vld[15].sc);
1985 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1986
1987 dd->kernel_send_context = kcalloc_node(dd->num_send_contexts,
1988 sizeof(struct send_context *),
1989 GFP_KERNEL, dd->node);
1990 if (!dd->kernel_send_context)
1991 goto freesc15;
1992
1993 dd->kernel_send_context[0] = dd->vld[15].sc;
1994
1995 for (i = 0; i < num_vls; i++) {
1996 /*
1997 * Since this function does not deal with a specific
1998 * receive context but we need the RcvHdrQ entry size,
1999 * use the size from rcd[0]. It is guaranteed to be
2000 * valid at this point and will remain the same for all
2001 * receive contexts.
2002 */
2003 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
2004 dd->rcd[0]->rcvhdrqentsize, dd->node);
2005 if (!dd->vld[i].sc)
2006 goto nomem;
2007 dd->kernel_send_context[i + 1] = dd->vld[i].sc;
2008 hfi1_init_ctxt(dd->vld[i].sc);
2009 /* non VL15 start with the max MTU */
2010 dd->vld[i].mtu = hfi1_max_mtu;
2011 }
2012 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2013 dd->kernel_send_context[i + 1] =
2014 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
2015 if (!dd->kernel_send_context[i + 1])
2016 goto nomem;
2017 hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
2018 }
2019
2020 sc_enable(dd->vld[15].sc);
2021 ctxt = dd->vld[15].sc->hw_context;
2022 mask = all_vl_mask & ~(1LL << 15);
2023 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2024 dd_dev_info(dd,
2025 "Using send context %u(%u) for VL15\n",
2026 dd->vld[15].sc->sw_index, ctxt);
2027
2028 for (i = 0; i < num_vls; i++) {
2029 sc_enable(dd->vld[i].sc);
2030 ctxt = dd->vld[i].sc->hw_context;
2031 mask = all_vl_mask & ~(data_vls_mask);
2032 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2033 }
2034 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2035 sc_enable(dd->kernel_send_context[i + 1]);
2036 ctxt = dd->kernel_send_context[i + 1]->hw_context;
2037 mask = all_vl_mask & ~(data_vls_mask);
2038 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2039 }
2040
2041 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2042 goto nomem;
2043 return 0;
2044
2045nomem:
2046 for (i = 0; i < num_vls; i++) {
2047 sc_free(dd->vld[i].sc);
2048 dd->vld[i].sc = NULL;
2049 }
2050
2051 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2052 sc_free(dd->kernel_send_context[i + 1]);
2053
2054 kfree(dd->kernel_send_context);
2055 dd->kernel_send_context = NULL;
2056
2057freesc15:
2058 sc_free(dd->vld[15].sc);
2059 return -ENOMEM;
2060}
2061
2062int init_credit_return(struct hfi1_devdata *dd)
2063{
2064 int ret;
2065 int i;
2066
2067 dd->cr_base = kcalloc(
2068 node_affinity.num_possible_nodes,
2069 sizeof(struct credit_return_base),
2070 GFP_KERNEL);
2071 if (!dd->cr_base) {
2072 ret = -ENOMEM;
2073 goto done;
2074 }
2075 for_each_node_with_cpus(i) {
2076 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2077
2078 set_dev_node(&dd->pcidev->dev, i);
2079 dd->cr_base[i].va = dma_alloc_coherent(&dd->pcidev->dev,
2080 bytes,
2081 &dd->cr_base[i].dma,
2082 GFP_KERNEL);
2083 if (!dd->cr_base[i].va) {
2084 set_dev_node(&dd->pcidev->dev, dd->node);
2085 dd_dev_err(dd,
2086 "Unable to allocate credit return DMA range for NUMA %d\n",
2087 i);
2088 ret = -ENOMEM;
2089 goto free_cr_base;
2090 }
2091 }
2092 set_dev_node(&dd->pcidev->dev, dd->node);
2093
2094 ret = 0;
2095done:
2096 return ret;
2097
2098free_cr_base:
2099 free_credit_return(dd);
2100 goto done;
2101}
2102
2103void free_credit_return(struct hfi1_devdata *dd)
2104{
2105 int i;
2106
2107 if (!dd->cr_base)
2108 return;
2109 for (i = 0; i < node_affinity.num_possible_nodes; i++) {
2110 if (dd->cr_base[i].va) {
2111 dma_free_coherent(&dd->pcidev->dev,
2112 TXE_NUM_CONTEXTS *
2113 sizeof(struct credit_return),
2114 dd->cr_base[i].va,
2115 dd->cr_base[i].dma);
2116 }
2117 }
2118 kfree(dd->cr_base);
2119 dd->cr_base = NULL;
2120}
2121
2122void seqfile_dump_sci(struct seq_file *s, u32 i,
2123 struct send_context_info *sci)
2124{
2125 struct send_context *sc = sci->sc;
2126 u64 reg;
2127
2128 seq_printf(s, "SCI %u: type %u base %u credits %u\n",
2129 i, sci->type, sci->base, sci->credits);
2130 seq_printf(s, " flags 0x%x sw_inx %u hw_ctxt %u grp %u\n",
2131 sc->flags, sc->sw_index, sc->hw_context, sc->group);
2132 seq_printf(s, " sr_size %u credits %u sr_head %u sr_tail %u\n",
2133 sc->sr_size, sc->credits, sc->sr_head, sc->sr_tail);
2134 seq_printf(s, " fill %lu free %lu fill_wrap %u alloc_free %lu\n",
2135 sc->fill, sc->free, sc->fill_wrap, sc->alloc_free);
2136 seq_printf(s, " credit_intr_count %u credit_ctrl 0x%llx\n",
2137 sc->credit_intr_count, sc->credit_ctrl);
2138 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_STATUS));
2139 seq_printf(s, " *hw_free %llu CurrentFree %llu LastReturned %llu\n",
2140 (le64_to_cpu(*sc->hw_free) & CR_COUNTER_SMASK) >>
2141 CR_COUNTER_SHIFT,
2142 (reg >> SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_SHIFT)) &
2143 SC(CREDIT_STATUS_CURRENT_FREE_COUNTER_MASK),
2144 reg & SC(CREDIT_STATUS_LAST_RETURNED_COUNTER_SMASK));
2145}
1/*
2 * Copyright(c) 2015-2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/delay.h>
49#include "hfi.h"
50#include "qp.h"
51#include "trace.h"
52
53#define SC_CTXT_PACKET_EGRESS_TIMEOUT 350 /* in chip cycles */
54
55#define SC(name) SEND_CTXT_##name
56/*
57 * Send Context functions
58 */
59static void sc_wait_for_packet_egress(struct send_context *sc, int pause);
60
61/*
62 * Set the CM reset bit and wait for it to clear. Use the provided
63 * sendctrl register. This routine has no locking.
64 */
65void __cm_reset(struct hfi1_devdata *dd, u64 sendctrl)
66{
67 write_csr(dd, SEND_CTRL, sendctrl | SEND_CTRL_CM_RESET_SMASK);
68 while (1) {
69 udelay(1);
70 sendctrl = read_csr(dd, SEND_CTRL);
71 if ((sendctrl & SEND_CTRL_CM_RESET_SMASK) == 0)
72 break;
73 }
74}
75
76/* defined in header release 48 and higher */
77#ifndef SEND_CTRL_UNSUPPORTED_VL_SHIFT
78#define SEND_CTRL_UNSUPPORTED_VL_SHIFT 3
79#define SEND_CTRL_UNSUPPORTED_VL_MASK 0xffull
80#define SEND_CTRL_UNSUPPORTED_VL_SMASK (SEND_CTRL_UNSUPPORTED_VL_MASK \
81 << SEND_CTRL_UNSUPPORTED_VL_SHIFT)
82#endif
83
84/* global control of PIO send */
85void pio_send_control(struct hfi1_devdata *dd, int op)
86{
87 u64 reg, mask;
88 unsigned long flags;
89 int write = 1; /* write sendctrl back */
90 int flush = 0; /* re-read sendctrl to make sure it is flushed */
91
92 spin_lock_irqsave(&dd->sendctrl_lock, flags);
93
94 reg = read_csr(dd, SEND_CTRL);
95 switch (op) {
96 case PSC_GLOBAL_ENABLE:
97 reg |= SEND_CTRL_SEND_ENABLE_SMASK;
98 /* Fall through */
99 case PSC_DATA_VL_ENABLE:
100 /* Disallow sending on VLs not enabled */
101 mask = (((~0ull) << num_vls) & SEND_CTRL_UNSUPPORTED_VL_MASK) <<
102 SEND_CTRL_UNSUPPORTED_VL_SHIFT;
103 reg = (reg & ~SEND_CTRL_UNSUPPORTED_VL_SMASK) | mask;
104 break;
105 case PSC_GLOBAL_DISABLE:
106 reg &= ~SEND_CTRL_SEND_ENABLE_SMASK;
107 break;
108 case PSC_GLOBAL_VLARB_ENABLE:
109 reg |= SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
110 break;
111 case PSC_GLOBAL_VLARB_DISABLE:
112 reg &= ~SEND_CTRL_VL_ARBITER_ENABLE_SMASK;
113 break;
114 case PSC_CM_RESET:
115 __cm_reset(dd, reg);
116 write = 0; /* CSR already written (and flushed) */
117 break;
118 case PSC_DATA_VL_DISABLE:
119 reg |= SEND_CTRL_UNSUPPORTED_VL_SMASK;
120 flush = 1;
121 break;
122 default:
123 dd_dev_err(dd, "%s: invalid control %d\n", __func__, op);
124 break;
125 }
126
127 if (write) {
128 write_csr(dd, SEND_CTRL, reg);
129 if (flush)
130 (void)read_csr(dd, SEND_CTRL); /* flush write */
131 }
132
133 spin_unlock_irqrestore(&dd->sendctrl_lock, flags);
134}
135
136/* number of send context memory pools */
137#define NUM_SC_POOLS 2
138
139/* Send Context Size (SCS) wildcards */
140#define SCS_POOL_0 -1
141#define SCS_POOL_1 -2
142
143/* Send Context Count (SCC) wildcards */
144#define SCC_PER_VL -1
145#define SCC_PER_CPU -2
146#define SCC_PER_KRCVQ -3
147
148/* Send Context Size (SCS) constants */
149#define SCS_ACK_CREDITS 32
150#define SCS_VL15_CREDITS 102 /* 3 pkts of 2048B data + 128B header */
151
152#define PIO_THRESHOLD_CEILING 4096
153
154#define PIO_WAIT_BATCH_SIZE 5
155
156/* default send context sizes */
157static struct sc_config_sizes sc_config_sizes[SC_MAX] = {
158 [SC_KERNEL] = { .size = SCS_POOL_0, /* even divide, pool 0 */
159 .count = SCC_PER_VL }, /* one per NUMA */
160 [SC_ACK] = { .size = SCS_ACK_CREDITS,
161 .count = SCC_PER_KRCVQ },
162 [SC_USER] = { .size = SCS_POOL_0, /* even divide, pool 0 */
163 .count = SCC_PER_CPU }, /* one per CPU */
164 [SC_VL15] = { .size = SCS_VL15_CREDITS,
165 .count = 1 },
166
167};
168
169/* send context memory pool configuration */
170struct mem_pool_config {
171 int centipercent; /* % of memory, in 100ths of 1% */
172 int absolute_blocks; /* absolute block count */
173};
174
175/* default memory pool configuration: 100% in pool 0 */
176static struct mem_pool_config sc_mem_pool_config[NUM_SC_POOLS] = {
177 /* centi%, abs blocks */
178 { 10000, -1 }, /* pool 0 */
179 { 0, -1 }, /* pool 1 */
180};
181
182/* memory pool information, used when calculating final sizes */
183struct mem_pool_info {
184 int centipercent; /*
185 * 100th of 1% of memory to use, -1 if blocks
186 * already set
187 */
188 int count; /* count of contexts in the pool */
189 int blocks; /* block size of the pool */
190 int size; /* context size, in blocks */
191};
192
193/*
194 * Convert a pool wildcard to a valid pool index. The wildcards
195 * start at -1 and increase negatively. Map them as:
196 * -1 => 0
197 * -2 => 1
198 * etc.
199 *
200 * Return -1 on non-wildcard input, otherwise convert to a pool number.
201 */
202static int wildcard_to_pool(int wc)
203{
204 if (wc >= 0)
205 return -1; /* non-wildcard */
206 return -wc - 1;
207}
208
209static const char *sc_type_names[SC_MAX] = {
210 "kernel",
211 "ack",
212 "user",
213 "vl15"
214};
215
216static const char *sc_type_name(int index)
217{
218 if (index < 0 || index >= SC_MAX)
219 return "unknown";
220 return sc_type_names[index];
221}
222
223/*
224 * Read the send context memory pool configuration and send context
225 * size configuration. Replace any wildcards and come up with final
226 * counts and sizes for the send context types.
227 */
228int init_sc_pools_and_sizes(struct hfi1_devdata *dd)
229{
230 struct mem_pool_info mem_pool_info[NUM_SC_POOLS] = { { 0 } };
231 int total_blocks = (dd->chip_pio_mem_size / PIO_BLOCK_SIZE) - 1;
232 int total_contexts = 0;
233 int fixed_blocks;
234 int pool_blocks;
235 int used_blocks;
236 int cp_total; /* centipercent total */
237 int ab_total; /* absolute block total */
238 int extra;
239 int i;
240
241 /*
242 * When SDMA is enabled, kernel context pio packet size is capped by
243 * "piothreshold". Reduce pio buffer allocation for kernel context by
244 * setting it to a fixed size. The allocation allows 3-deep buffering
245 * of the largest pio packets plus up to 128 bytes header, sufficient
246 * to maintain verbs performance.
247 *
248 * When SDMA is disabled, keep the default pooling allocation.
249 */
250 if (HFI1_CAP_IS_KSET(SDMA)) {
251 u16 max_pkt_size = (piothreshold < PIO_THRESHOLD_CEILING) ?
252 piothreshold : PIO_THRESHOLD_CEILING;
253 sc_config_sizes[SC_KERNEL].size =
254 3 * (max_pkt_size + 128) / PIO_BLOCK_SIZE;
255 }
256
257 /*
258 * Step 0:
259 * - copy the centipercents/absolute sizes from the pool config
260 * - sanity check these values
261 * - add up centipercents, then later check for full value
262 * - add up absolute blocks, then later check for over-commit
263 */
264 cp_total = 0;
265 ab_total = 0;
266 for (i = 0; i < NUM_SC_POOLS; i++) {
267 int cp = sc_mem_pool_config[i].centipercent;
268 int ab = sc_mem_pool_config[i].absolute_blocks;
269
270 /*
271 * A negative value is "unused" or "invalid". Both *can*
272 * be valid, but centipercent wins, so check that first
273 */
274 if (cp >= 0) { /* centipercent valid */
275 cp_total += cp;
276 } else if (ab >= 0) { /* absolute blocks valid */
277 ab_total += ab;
278 } else { /* neither valid */
279 dd_dev_err(
280 dd,
281 "Send context memory pool %d: both the block count and centipercent are invalid\n",
282 i);
283 return -EINVAL;
284 }
285
286 mem_pool_info[i].centipercent = cp;
287 mem_pool_info[i].blocks = ab;
288 }
289
290 /* do not use both % and absolute blocks for different pools */
291 if (cp_total != 0 && ab_total != 0) {
292 dd_dev_err(
293 dd,
294 "All send context memory pools must be described as either centipercent or blocks, no mixing between pools\n");
295 return -EINVAL;
296 }
297
298 /* if any percentages are present, they must add up to 100% x 100 */
299 if (cp_total != 0 && cp_total != 10000) {
300 dd_dev_err(
301 dd,
302 "Send context memory pool centipercent is %d, expecting 10000\n",
303 cp_total);
304 return -EINVAL;
305 }
306
307 /* the absolute pool total cannot be more than the mem total */
308 if (ab_total > total_blocks) {
309 dd_dev_err(
310 dd,
311 "Send context memory pool absolute block count %d is larger than the memory size %d\n",
312 ab_total, total_blocks);
313 return -EINVAL;
314 }
315
316 /*
317 * Step 2:
318 * - copy from the context size config
319 * - replace context type wildcard counts with real values
320 * - add up non-memory pool block sizes
321 * - add up memory pool user counts
322 */
323 fixed_blocks = 0;
324 for (i = 0; i < SC_MAX; i++) {
325 int count = sc_config_sizes[i].count;
326 int size = sc_config_sizes[i].size;
327 int pool;
328
329 /*
330 * Sanity check count: Either a positive value or
331 * one of the expected wildcards is valid. The positive
332 * value is checked later when we compare against total
333 * memory available.
334 */
335 if (i == SC_ACK) {
336 count = dd->n_krcv_queues;
337 } else if (i == SC_KERNEL) {
338 count = INIT_SC_PER_VL * num_vls;
339 } else if (count == SCC_PER_CPU) {
340 count = dd->num_rcv_contexts - dd->n_krcv_queues;
341 } else if (count < 0) {
342 dd_dev_err(
343 dd,
344 "%s send context invalid count wildcard %d\n",
345 sc_type_name(i), count);
346 return -EINVAL;
347 }
348 if (total_contexts + count > dd->chip_send_contexts)
349 count = dd->chip_send_contexts - total_contexts;
350
351 total_contexts += count;
352
353 /*
354 * Sanity check pool: The conversion will return a pool
355 * number or -1 if a fixed (non-negative) value. The fixed
356 * value is checked later when we compare against
357 * total memory available.
358 */
359 pool = wildcard_to_pool(size);
360 if (pool == -1) { /* non-wildcard */
361 fixed_blocks += size * count;
362 } else if (pool < NUM_SC_POOLS) { /* valid wildcard */
363 mem_pool_info[pool].count += count;
364 } else { /* invalid wildcard */
365 dd_dev_err(
366 dd,
367 "%s send context invalid pool wildcard %d\n",
368 sc_type_name(i), size);
369 return -EINVAL;
370 }
371
372 dd->sc_sizes[i].count = count;
373 dd->sc_sizes[i].size = size;
374 }
375 if (fixed_blocks > total_blocks) {
376 dd_dev_err(
377 dd,
378 "Send context fixed block count, %u, larger than total block count %u\n",
379 fixed_blocks, total_blocks);
380 return -EINVAL;
381 }
382
383 /* step 3: calculate the blocks in the pools, and pool context sizes */
384 pool_blocks = total_blocks - fixed_blocks;
385 if (ab_total > pool_blocks) {
386 dd_dev_err(
387 dd,
388 "Send context fixed pool sizes, %u, larger than pool block count %u\n",
389 ab_total, pool_blocks);
390 return -EINVAL;
391 }
392 /* subtract off the fixed pool blocks */
393 pool_blocks -= ab_total;
394
395 for (i = 0; i < NUM_SC_POOLS; i++) {
396 struct mem_pool_info *pi = &mem_pool_info[i];
397
398 /* % beats absolute blocks */
399 if (pi->centipercent >= 0)
400 pi->blocks = (pool_blocks * pi->centipercent) / 10000;
401
402 if (pi->blocks == 0 && pi->count != 0) {
403 dd_dev_err(
404 dd,
405 "Send context memory pool %d has %u contexts, but no blocks\n",
406 i, pi->count);
407 return -EINVAL;
408 }
409 if (pi->count == 0) {
410 /* warn about wasted blocks */
411 if (pi->blocks != 0)
412 dd_dev_err(
413 dd,
414 "Send context memory pool %d has %u blocks, but zero contexts\n",
415 i, pi->blocks);
416 pi->size = 0;
417 } else {
418 pi->size = pi->blocks / pi->count;
419 }
420 }
421
422 /* step 4: fill in the context type sizes from the pool sizes */
423 used_blocks = 0;
424 for (i = 0; i < SC_MAX; i++) {
425 if (dd->sc_sizes[i].size < 0) {
426 unsigned pool = wildcard_to_pool(dd->sc_sizes[i].size);
427
428 WARN_ON_ONCE(pool >= NUM_SC_POOLS);
429 dd->sc_sizes[i].size = mem_pool_info[pool].size;
430 }
431 /* make sure we are not larger than what is allowed by the HW */
432#define PIO_MAX_BLOCKS 1024
433 if (dd->sc_sizes[i].size > PIO_MAX_BLOCKS)
434 dd->sc_sizes[i].size = PIO_MAX_BLOCKS;
435
436 /* calculate our total usage */
437 used_blocks += dd->sc_sizes[i].size * dd->sc_sizes[i].count;
438 }
439 extra = total_blocks - used_blocks;
440 if (extra != 0)
441 dd_dev_info(dd, "unused send context blocks: %d\n", extra);
442
443 return total_contexts;
444}
445
446int init_send_contexts(struct hfi1_devdata *dd)
447{
448 u16 base;
449 int ret, i, j, context;
450
451 ret = init_credit_return(dd);
452 if (ret)
453 return ret;
454
455 dd->hw_to_sw = kmalloc_array(TXE_NUM_CONTEXTS, sizeof(u8),
456 GFP_KERNEL);
457 dd->send_contexts = kcalloc(dd->num_send_contexts,
458 sizeof(struct send_context_info),
459 GFP_KERNEL);
460 if (!dd->send_contexts || !dd->hw_to_sw) {
461 kfree(dd->hw_to_sw);
462 kfree(dd->send_contexts);
463 free_credit_return(dd);
464 return -ENOMEM;
465 }
466
467 /* hardware context map starts with invalid send context indices */
468 for (i = 0; i < TXE_NUM_CONTEXTS; i++)
469 dd->hw_to_sw[i] = INVALID_SCI;
470
471 /*
472 * All send contexts have their credit sizes. Allocate credits
473 * for each context one after another from the global space.
474 */
475 context = 0;
476 base = 1;
477 for (i = 0; i < SC_MAX; i++) {
478 struct sc_config_sizes *scs = &dd->sc_sizes[i];
479
480 for (j = 0; j < scs->count; j++) {
481 struct send_context_info *sci =
482 &dd->send_contexts[context];
483 sci->type = i;
484 sci->base = base;
485 sci->credits = scs->size;
486
487 context++;
488 base += scs->size;
489 }
490 }
491
492 return 0;
493}
494
495/*
496 * Allocate a software index and hardware context of the given type.
497 *
498 * Must be called with dd->sc_lock held.
499 */
500static int sc_hw_alloc(struct hfi1_devdata *dd, int type, u32 *sw_index,
501 u32 *hw_context)
502{
503 struct send_context_info *sci;
504 u32 index;
505 u32 context;
506
507 for (index = 0, sci = &dd->send_contexts[0];
508 index < dd->num_send_contexts; index++, sci++) {
509 if (sci->type == type && sci->allocated == 0) {
510 sci->allocated = 1;
511 /* use a 1:1 mapping, but make them non-equal */
512 context = dd->chip_send_contexts - index - 1;
513 dd->hw_to_sw[context] = index;
514 *sw_index = index;
515 *hw_context = context;
516 return 0; /* success */
517 }
518 }
519 dd_dev_err(dd, "Unable to locate a free type %d send context\n", type);
520 return -ENOSPC;
521}
522
523/*
524 * Free the send context given by its software index.
525 *
526 * Must be called with dd->sc_lock held.
527 */
528static void sc_hw_free(struct hfi1_devdata *dd, u32 sw_index, u32 hw_context)
529{
530 struct send_context_info *sci;
531
532 sci = &dd->send_contexts[sw_index];
533 if (!sci->allocated) {
534 dd_dev_err(dd, "%s: sw_index %u not allocated? hw_context %u\n",
535 __func__, sw_index, hw_context);
536 }
537 sci->allocated = 0;
538 dd->hw_to_sw[hw_context] = INVALID_SCI;
539}
540
541/* return the base context of a context in a group */
542static inline u32 group_context(u32 context, u32 group)
543{
544 return (context >> group) << group;
545}
546
547/* return the size of a group */
548static inline u32 group_size(u32 group)
549{
550 return 1 << group;
551}
552
553/*
554 * Obtain the credit return addresses, kernel virtual and bus, for the
555 * given sc.
556 *
557 * To understand this routine:
558 * o va and dma are arrays of struct credit_return. One for each physical
559 * send context, per NUMA.
560 * o Each send context always looks in its relative location in a struct
561 * credit_return for its credit return.
562 * o Each send context in a group must have its return address CSR programmed
563 * with the same value. Use the address of the first send context in the
564 * group.
565 */
566static void cr_group_addresses(struct send_context *sc, dma_addr_t *dma)
567{
568 u32 gc = group_context(sc->hw_context, sc->group);
569 u32 index = sc->hw_context & 0x7;
570
571 sc->hw_free = &sc->dd->cr_base[sc->node].va[gc].cr[index];
572 *dma = (unsigned long)
573 &((struct credit_return *)sc->dd->cr_base[sc->node].dma)[gc];
574}
575
576/*
577 * Work queue function triggered in error interrupt routine for
578 * kernel contexts.
579 */
580static void sc_halted(struct work_struct *work)
581{
582 struct send_context *sc;
583
584 sc = container_of(work, struct send_context, halt_work);
585 sc_restart(sc);
586}
587
588/*
589 * Calculate PIO block threshold for this send context using the given MTU.
590 * Trigger a return when one MTU plus optional header of credits remain.
591 *
592 * Parameter mtu is in bytes.
593 * Parameter hdrqentsize is in DWORDs.
594 *
595 * Return value is what to write into the CSR: trigger return when
596 * unreturned credits pass this count.
597 */
598u32 sc_mtu_to_threshold(struct send_context *sc, u32 mtu, u32 hdrqentsize)
599{
600 u32 release_credits;
601 u32 threshold;
602
603 /* add in the header size, then divide by the PIO block size */
604 mtu += hdrqentsize << 2;
605 release_credits = DIV_ROUND_UP(mtu, PIO_BLOCK_SIZE);
606
607 /* check against this context's credits */
608 if (sc->credits <= release_credits)
609 threshold = 1;
610 else
611 threshold = sc->credits - release_credits;
612
613 return threshold;
614}
615
616/*
617 * Calculate credit threshold in terms of percent of the allocated credits.
618 * Trigger when unreturned credits equal or exceed the percentage of the whole.
619 *
620 * Return value is what to write into the CSR: trigger return when
621 * unreturned credits pass this count.
622 */
623u32 sc_percent_to_threshold(struct send_context *sc, u32 percent)
624{
625 return (sc->credits * percent) / 100;
626}
627
628/*
629 * Set the credit return threshold.
630 */
631void sc_set_cr_threshold(struct send_context *sc, u32 new_threshold)
632{
633 unsigned long flags;
634 u32 old_threshold;
635 int force_return = 0;
636
637 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
638
639 old_threshold = (sc->credit_ctrl >>
640 SC(CREDIT_CTRL_THRESHOLD_SHIFT))
641 & SC(CREDIT_CTRL_THRESHOLD_MASK);
642
643 if (new_threshold != old_threshold) {
644 sc->credit_ctrl =
645 (sc->credit_ctrl
646 & ~SC(CREDIT_CTRL_THRESHOLD_SMASK))
647 | ((new_threshold
648 & SC(CREDIT_CTRL_THRESHOLD_MASK))
649 << SC(CREDIT_CTRL_THRESHOLD_SHIFT));
650 write_kctxt_csr(sc->dd, sc->hw_context,
651 SC(CREDIT_CTRL), sc->credit_ctrl);
652
653 /* force a credit return on change to avoid a possible stall */
654 force_return = 1;
655 }
656
657 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
658
659 if (force_return)
660 sc_return_credits(sc);
661}
662
663/*
664 * set_pio_integrity
665 *
666 * Set the CHECK_ENABLE register for the send context 'sc'.
667 */
668void set_pio_integrity(struct send_context *sc)
669{
670 struct hfi1_devdata *dd = sc->dd;
671 u32 hw_context = sc->hw_context;
672 int type = sc->type;
673
674 write_kctxt_csr(dd, hw_context,
675 SC(CHECK_ENABLE),
676 hfi1_pkt_default_send_ctxt_mask(dd, type));
677}
678
679static u32 get_buffers_allocated(struct send_context *sc)
680{
681 int cpu;
682 u32 ret = 0;
683
684 for_each_possible_cpu(cpu)
685 ret += *per_cpu_ptr(sc->buffers_allocated, cpu);
686 return ret;
687}
688
689static void reset_buffers_allocated(struct send_context *sc)
690{
691 int cpu;
692
693 for_each_possible_cpu(cpu)
694 (*per_cpu_ptr(sc->buffers_allocated, cpu)) = 0;
695}
696
697/*
698 * Allocate a NUMA relative send context structure of the given type along
699 * with a HW context.
700 */
701struct send_context *sc_alloc(struct hfi1_devdata *dd, int type,
702 uint hdrqentsize, int numa)
703{
704 struct send_context_info *sci;
705 struct send_context *sc = NULL;
706 dma_addr_t dma;
707 unsigned long flags;
708 u64 reg;
709 u32 thresh;
710 u32 sw_index;
711 u32 hw_context;
712 int ret;
713 u8 opval, opmask;
714
715 /* do not allocate while frozen */
716 if (dd->flags & HFI1_FROZEN)
717 return NULL;
718
719 sc = kzalloc_node(sizeof(*sc), GFP_KERNEL, numa);
720 if (!sc)
721 return NULL;
722
723 sc->buffers_allocated = alloc_percpu(u32);
724 if (!sc->buffers_allocated) {
725 kfree(sc);
726 dd_dev_err(dd,
727 "Cannot allocate buffers_allocated per cpu counters\n"
728 );
729 return NULL;
730 }
731
732 spin_lock_irqsave(&dd->sc_lock, flags);
733 ret = sc_hw_alloc(dd, type, &sw_index, &hw_context);
734 if (ret) {
735 spin_unlock_irqrestore(&dd->sc_lock, flags);
736 free_percpu(sc->buffers_allocated);
737 kfree(sc);
738 return NULL;
739 }
740
741 sci = &dd->send_contexts[sw_index];
742 sci->sc = sc;
743
744 sc->dd = dd;
745 sc->node = numa;
746 sc->type = type;
747 spin_lock_init(&sc->alloc_lock);
748 spin_lock_init(&sc->release_lock);
749 spin_lock_init(&sc->credit_ctrl_lock);
750 INIT_LIST_HEAD(&sc->piowait);
751 INIT_WORK(&sc->halt_work, sc_halted);
752 init_waitqueue_head(&sc->halt_wait);
753
754 /* grouping is always single context for now */
755 sc->group = 0;
756
757 sc->sw_index = sw_index;
758 sc->hw_context = hw_context;
759 cr_group_addresses(sc, &dma);
760 sc->credits = sci->credits;
761 sc->size = sc->credits * PIO_BLOCK_SIZE;
762
763/* PIO Send Memory Address details */
764#define PIO_ADDR_CONTEXT_MASK 0xfful
765#define PIO_ADDR_CONTEXT_SHIFT 16
766 sc->base_addr = dd->piobase + ((hw_context & PIO_ADDR_CONTEXT_MASK)
767 << PIO_ADDR_CONTEXT_SHIFT);
768
769 /* set base and credits */
770 reg = ((sci->credits & SC(CTRL_CTXT_DEPTH_MASK))
771 << SC(CTRL_CTXT_DEPTH_SHIFT))
772 | ((sci->base & SC(CTRL_CTXT_BASE_MASK))
773 << SC(CTRL_CTXT_BASE_SHIFT));
774 write_kctxt_csr(dd, hw_context, SC(CTRL), reg);
775
776 set_pio_integrity(sc);
777
778 /* unmask all errors */
779 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), (u64)-1);
780
781 /* set the default partition key */
782 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY),
783 (SC(CHECK_PARTITION_KEY_VALUE_MASK) &
784 DEFAULT_PKEY) <<
785 SC(CHECK_PARTITION_KEY_VALUE_SHIFT));
786
787 /* per context type checks */
788 if (type == SC_USER) {
789 opval = USER_OPCODE_CHECK_VAL;
790 opmask = USER_OPCODE_CHECK_MASK;
791 } else {
792 opval = OPCODE_CHECK_VAL_DISABLED;
793 opmask = OPCODE_CHECK_MASK_DISABLED;
794 }
795
796 /* set the send context check opcode mask and value */
797 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE),
798 ((u64)opmask << SC(CHECK_OPCODE_MASK_SHIFT)) |
799 ((u64)opval << SC(CHECK_OPCODE_VALUE_SHIFT)));
800
801 /* set up credit return */
802 reg = dma & SC(CREDIT_RETURN_ADDR_ADDRESS_SMASK);
803 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), reg);
804
805 /*
806 * Calculate the initial credit return threshold.
807 *
808 * For Ack contexts, set a threshold for half the credits.
809 * For User contexts use the given percentage. This has been
810 * sanitized on driver start-up.
811 * For Kernel contexts, use the default MTU plus a header
812 * or half the credits, whichever is smaller. This should
813 * work for both the 3-deep buffering allocation and the
814 * pooling allocation.
815 */
816 if (type == SC_ACK) {
817 thresh = sc_percent_to_threshold(sc, 50);
818 } else if (type == SC_USER) {
819 thresh = sc_percent_to_threshold(sc,
820 user_credit_return_threshold);
821 } else { /* kernel */
822 thresh = min(sc_percent_to_threshold(sc, 50),
823 sc_mtu_to_threshold(sc, hfi1_max_mtu,
824 hdrqentsize));
825 }
826 reg = thresh << SC(CREDIT_CTRL_THRESHOLD_SHIFT);
827 /* add in early return */
828 if (type == SC_USER && HFI1_CAP_IS_USET(EARLY_CREDIT_RETURN))
829 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
830 else if (HFI1_CAP_IS_KSET(EARLY_CREDIT_RETURN)) /* kernel, ack */
831 reg |= SC(CREDIT_CTRL_EARLY_RETURN_SMASK);
832
833 /* set up write-through credit_ctrl */
834 sc->credit_ctrl = reg;
835 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), reg);
836
837 /* User send contexts should not allow sending on VL15 */
838 if (type == SC_USER) {
839 reg = 1ULL << 15;
840 write_kctxt_csr(dd, hw_context, SC(CHECK_VL), reg);
841 }
842
843 spin_unlock_irqrestore(&dd->sc_lock, flags);
844
845 /*
846 * Allocate shadow ring to track outstanding PIO buffers _after_
847 * unlocking. We don't know the size until the lock is held and
848 * we can't allocate while the lock is held. No one is using
849 * the context yet, so allocate it now.
850 *
851 * User contexts do not get a shadow ring.
852 */
853 if (type != SC_USER) {
854 /*
855 * Size the shadow ring 1 larger than the number of credits
856 * so head == tail can mean empty.
857 */
858 sc->sr_size = sci->credits + 1;
859 sc->sr = kcalloc_node(sc->sr_size,
860 sizeof(union pio_shadow_ring),
861 GFP_KERNEL, numa);
862 if (!sc->sr) {
863 sc_free(sc);
864 return NULL;
865 }
866 }
867
868 hfi1_cdbg(PIO,
869 "Send context %u(%u) %s group %u credits %u credit_ctrl 0x%llx threshold %u\n",
870 sw_index,
871 hw_context,
872 sc_type_name(type),
873 sc->group,
874 sc->credits,
875 sc->credit_ctrl,
876 thresh);
877
878 return sc;
879}
880
881/* free a per-NUMA send context structure */
882void sc_free(struct send_context *sc)
883{
884 struct hfi1_devdata *dd;
885 unsigned long flags;
886 u32 sw_index;
887 u32 hw_context;
888
889 if (!sc)
890 return;
891
892 sc->flags |= SCF_IN_FREE; /* ensure no restarts */
893 dd = sc->dd;
894 if (!list_empty(&sc->piowait))
895 dd_dev_err(dd, "piowait list not empty!\n");
896 sw_index = sc->sw_index;
897 hw_context = sc->hw_context;
898 sc_disable(sc); /* make sure the HW is disabled */
899 flush_work(&sc->halt_work);
900
901 spin_lock_irqsave(&dd->sc_lock, flags);
902 dd->send_contexts[sw_index].sc = NULL;
903
904 /* clear/disable all registers set in sc_alloc */
905 write_kctxt_csr(dd, hw_context, SC(CTRL), 0);
906 write_kctxt_csr(dd, hw_context, SC(CHECK_ENABLE), 0);
907 write_kctxt_csr(dd, hw_context, SC(ERR_MASK), 0);
908 write_kctxt_csr(dd, hw_context, SC(CHECK_PARTITION_KEY), 0);
909 write_kctxt_csr(dd, hw_context, SC(CHECK_OPCODE), 0);
910 write_kctxt_csr(dd, hw_context, SC(CREDIT_RETURN_ADDR), 0);
911 write_kctxt_csr(dd, hw_context, SC(CREDIT_CTRL), 0);
912
913 /* release the index and context for re-use */
914 sc_hw_free(dd, sw_index, hw_context);
915 spin_unlock_irqrestore(&dd->sc_lock, flags);
916
917 kfree(sc->sr);
918 free_percpu(sc->buffers_allocated);
919 kfree(sc);
920}
921
922/* disable the context */
923void sc_disable(struct send_context *sc)
924{
925 u64 reg;
926 unsigned long flags;
927 struct pio_buf *pbuf;
928
929 if (!sc)
930 return;
931
932 /* do all steps, even if already disabled */
933 spin_lock_irqsave(&sc->alloc_lock, flags);
934 reg = read_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL));
935 reg &= ~SC(CTRL_CTXT_ENABLE_SMASK);
936 sc->flags &= ~SCF_ENABLED;
937 sc_wait_for_packet_egress(sc, 1);
938 write_kctxt_csr(sc->dd, sc->hw_context, SC(CTRL), reg);
939 spin_unlock_irqrestore(&sc->alloc_lock, flags);
940
941 /*
942 * Flush any waiters. Once the context is disabled,
943 * credit return interrupts are stopped (although there
944 * could be one in-process when the context is disabled).
945 * Wait one microsecond for any lingering interrupts, then
946 * proceed with the flush.
947 */
948 udelay(1);
949 spin_lock_irqsave(&sc->release_lock, flags);
950 if (sc->sr) { /* this context has a shadow ring */
951 while (sc->sr_tail != sc->sr_head) {
952 pbuf = &sc->sr[sc->sr_tail].pbuf;
953 if (pbuf->cb)
954 (*pbuf->cb)(pbuf->arg, PRC_SC_DISABLE);
955 sc->sr_tail++;
956 if (sc->sr_tail >= sc->sr_size)
957 sc->sr_tail = 0;
958 }
959 }
960 spin_unlock_irqrestore(&sc->release_lock, flags);
961}
962
963/* return SendEgressCtxtStatus.PacketOccupancy */
964#define packet_occupancy(r) \
965 (((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SMASK)\
966 >> SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_PACKET_OCCUPANCY_SHIFT)
967
968/* is egress halted on the context? */
969#define egress_halted(r) \
970 ((r) & SEND_EGRESS_CTXT_STATUS_CTXT_EGRESS_HALT_STATUS_SMASK)
971
972/* wait for packet egress, optionally pause for credit return */
973static void sc_wait_for_packet_egress(struct send_context *sc, int pause)
974{
975 struct hfi1_devdata *dd = sc->dd;
976 u64 reg = 0;
977 u64 reg_prev;
978 u32 loop = 0;
979
980 while (1) {
981 reg_prev = reg;
982 reg = read_csr(dd, sc->hw_context * 8 +
983 SEND_EGRESS_CTXT_STATUS);
984 /* done if egress is stopped */
985 if (egress_halted(reg))
986 break;
987 reg = packet_occupancy(reg);
988 if (reg == 0)
989 break;
990 /* counter is reset if occupancy count changes */
991 if (reg != reg_prev)
992 loop = 0;
993 if (loop > 50000) {
994 /* timed out - bounce the link */
995 dd_dev_err(dd,
996 "%s: context %u(%u) timeout waiting for packets to egress, remaining count %u, bouncing link\n",
997 __func__, sc->sw_index,
998 sc->hw_context, (u32)reg);
999 queue_work(dd->pport->link_wq,
1000 &dd->pport->link_bounce_work);
1001 break;
1002 }
1003 loop++;
1004 udelay(1);
1005 }
1006
1007 if (pause)
1008 /* Add additional delay to ensure chip returns all credits */
1009 pause_for_credit_return(dd);
1010}
1011
1012void sc_wait(struct hfi1_devdata *dd)
1013{
1014 int i;
1015
1016 for (i = 0; i < dd->num_send_contexts; i++) {
1017 struct send_context *sc = dd->send_contexts[i].sc;
1018
1019 if (!sc)
1020 continue;
1021 sc_wait_for_packet_egress(sc, 0);
1022 }
1023}
1024
1025/*
1026 * Restart a context after it has been halted due to error.
1027 *
1028 * If the first step fails - wait for the halt to be asserted, return early.
1029 * Otherwise complain about timeouts but keep going.
1030 *
1031 * It is expected that allocations (enabled flag bit) have been shut off
1032 * already (only applies to kernel contexts).
1033 */
1034int sc_restart(struct send_context *sc)
1035{
1036 struct hfi1_devdata *dd = sc->dd;
1037 u64 reg;
1038 u32 loop;
1039 int count;
1040
1041 /* bounce off if not halted, or being free'd */
1042 if (!(sc->flags & SCF_HALTED) || (sc->flags & SCF_IN_FREE))
1043 return -EINVAL;
1044
1045 dd_dev_info(dd, "restarting send context %u(%u)\n", sc->sw_index,
1046 sc->hw_context);
1047
1048 /*
1049 * Step 1: Wait for the context to actually halt.
1050 *
1051 * The error interrupt is asynchronous to actually setting halt
1052 * on the context.
1053 */
1054 loop = 0;
1055 while (1) {
1056 reg = read_kctxt_csr(dd, sc->hw_context, SC(STATUS));
1057 if (reg & SC(STATUS_CTXT_HALTED_SMASK))
1058 break;
1059 if (loop > 100) {
1060 dd_dev_err(dd, "%s: context %u(%u) not halting, skipping\n",
1061 __func__, sc->sw_index, sc->hw_context);
1062 return -ETIME;
1063 }
1064 loop++;
1065 udelay(1);
1066 }
1067
1068 /*
1069 * Step 2: Ensure no users are still trying to write to PIO.
1070 *
1071 * For kernel contexts, we have already turned off buffer allocation.
1072 * Now wait for the buffer count to go to zero.
1073 *
1074 * For user contexts, the user handling code has cut off write access
1075 * to the context's PIO pages before calling this routine and will
1076 * restore write access after this routine returns.
1077 */
1078 if (sc->type != SC_USER) {
1079 /* kernel context */
1080 loop = 0;
1081 while (1) {
1082 count = get_buffers_allocated(sc);
1083 if (count == 0)
1084 break;
1085 if (loop > 100) {
1086 dd_dev_err(dd,
1087 "%s: context %u(%u) timeout waiting for PIO buffers to zero, remaining %d\n",
1088 __func__, sc->sw_index,
1089 sc->hw_context, count);
1090 }
1091 loop++;
1092 udelay(1);
1093 }
1094 }
1095
1096 /*
1097 * Step 3: Wait for all packets to egress.
1098 * This is done while disabling the send context
1099 *
1100 * Step 4: Disable the context
1101 *
1102 * This is a superset of the halt. After the disable, the
1103 * errors can be cleared.
1104 */
1105 sc_disable(sc);
1106
1107 /*
1108 * Step 5: Enable the context
1109 *
1110 * This enable will clear the halted flag and per-send context
1111 * error flags.
1112 */
1113 return sc_enable(sc);
1114}
1115
1116/*
1117 * PIO freeze processing. To be called after the TXE block is fully frozen.
1118 * Go through all frozen send contexts and disable them. The contexts are
1119 * already stopped by the freeze.
1120 */
1121void pio_freeze(struct hfi1_devdata *dd)
1122{
1123 struct send_context *sc;
1124 int i;
1125
1126 for (i = 0; i < dd->num_send_contexts; i++) {
1127 sc = dd->send_contexts[i].sc;
1128 /*
1129 * Don't disable unallocated, unfrozen, or user send contexts.
1130 * User send contexts will be disabled when the process
1131 * calls into the driver to reset its context.
1132 */
1133 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1134 continue;
1135
1136 /* only need to disable, the context is already stopped */
1137 sc_disable(sc);
1138 }
1139}
1140
1141/*
1142 * Unfreeze PIO for kernel send contexts. The precondition for calling this
1143 * is that all PIO send contexts have been disabled and the SPC freeze has
1144 * been cleared. Now perform the last step and re-enable each kernel context.
1145 * User (PSM) processing will occur when PSM calls into the kernel to
1146 * acknowledge the freeze.
1147 */
1148void pio_kernel_unfreeze(struct hfi1_devdata *dd)
1149{
1150 struct send_context *sc;
1151 int i;
1152
1153 for (i = 0; i < dd->num_send_contexts; i++) {
1154 sc = dd->send_contexts[i].sc;
1155 if (!sc || !(sc->flags & SCF_FROZEN) || sc->type == SC_USER)
1156 continue;
1157
1158 sc_enable(sc); /* will clear the sc frozen flag */
1159 }
1160}
1161
1162/*
1163 * Wait for the SendPioInitCtxt.PioInitInProgress bit to clear.
1164 * Returns:
1165 * -ETIMEDOUT - if we wait too long
1166 * -EIO - if there was an error
1167 */
1168static int pio_init_wait_progress(struct hfi1_devdata *dd)
1169{
1170 u64 reg;
1171 int max, count = 0;
1172
1173 /* max is the longest possible HW init time / delay */
1174 max = (dd->icode == ICODE_FPGA_EMULATION) ? 120 : 5;
1175 while (1) {
1176 reg = read_csr(dd, SEND_PIO_INIT_CTXT);
1177 if (!(reg & SEND_PIO_INIT_CTXT_PIO_INIT_IN_PROGRESS_SMASK))
1178 break;
1179 if (count >= max)
1180 return -ETIMEDOUT;
1181 udelay(5);
1182 count++;
1183 }
1184
1185 return reg & SEND_PIO_INIT_CTXT_PIO_INIT_ERR_SMASK ? -EIO : 0;
1186}
1187
1188/*
1189 * Reset all of the send contexts to their power-on state. Used
1190 * only during manual init - no lock against sc_enable needed.
1191 */
1192void pio_reset_all(struct hfi1_devdata *dd)
1193{
1194 int ret;
1195
1196 /* make sure the init engine is not busy */
1197 ret = pio_init_wait_progress(dd);
1198 /* ignore any timeout */
1199 if (ret == -EIO) {
1200 /* clear the error */
1201 write_csr(dd, SEND_PIO_ERR_CLEAR,
1202 SEND_PIO_ERR_CLEAR_PIO_INIT_SM_IN_ERR_SMASK);
1203 }
1204
1205 /* reset init all */
1206 write_csr(dd, SEND_PIO_INIT_CTXT,
1207 SEND_PIO_INIT_CTXT_PIO_ALL_CTXT_INIT_SMASK);
1208 udelay(2);
1209 ret = pio_init_wait_progress(dd);
1210 if (ret < 0) {
1211 dd_dev_err(dd,
1212 "PIO send context init %s while initializing all PIO blocks\n",
1213 ret == -ETIMEDOUT ? "is stuck" : "had an error");
1214 }
1215}
1216
1217/* enable the context */
1218int sc_enable(struct send_context *sc)
1219{
1220 u64 sc_ctrl, reg, pio;
1221 struct hfi1_devdata *dd;
1222 unsigned long flags;
1223 int ret = 0;
1224
1225 if (!sc)
1226 return -EINVAL;
1227 dd = sc->dd;
1228
1229 /*
1230 * Obtain the allocator lock to guard against any allocation
1231 * attempts (which should not happen prior to context being
1232 * enabled). On the release/disable side we don't need to
1233 * worry about locking since the releaser will not do anything
1234 * if the context accounting values have not changed.
1235 */
1236 spin_lock_irqsave(&sc->alloc_lock, flags);
1237 sc_ctrl = read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1238 if ((sc_ctrl & SC(CTRL_CTXT_ENABLE_SMASK)))
1239 goto unlock; /* already enabled */
1240
1241 /* IMPORTANT: only clear free and fill if transitioning 0 -> 1 */
1242
1243 *sc->hw_free = 0;
1244 sc->free = 0;
1245 sc->alloc_free = 0;
1246 sc->fill = 0;
1247 sc->fill_wrap = 0;
1248 sc->sr_head = 0;
1249 sc->sr_tail = 0;
1250 sc->flags = 0;
1251 /* the alloc lock insures no fast path allocation */
1252 reset_buffers_allocated(sc);
1253
1254 /*
1255 * Clear all per-context errors. Some of these will be set when
1256 * we are re-enabling after a context halt. Now that the context
1257 * is disabled, the halt will not clear until after the PIO init
1258 * engine runs below.
1259 */
1260 reg = read_kctxt_csr(dd, sc->hw_context, SC(ERR_STATUS));
1261 if (reg)
1262 write_kctxt_csr(dd, sc->hw_context, SC(ERR_CLEAR), reg);
1263
1264 /*
1265 * The HW PIO initialization engine can handle only one init
1266 * request at a time. Serialize access to each device's engine.
1267 */
1268 spin_lock(&dd->sc_init_lock);
1269 /*
1270 * Since access to this code block is serialized and
1271 * each access waits for the initialization to complete
1272 * before releasing the lock, the PIO initialization engine
1273 * should not be in use, so we don't have to wait for the
1274 * InProgress bit to go down.
1275 */
1276 pio = ((sc->hw_context & SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_MASK) <<
1277 SEND_PIO_INIT_CTXT_PIO_CTXT_NUM_SHIFT) |
1278 SEND_PIO_INIT_CTXT_PIO_SINGLE_CTXT_INIT_SMASK;
1279 write_csr(dd, SEND_PIO_INIT_CTXT, pio);
1280 /*
1281 * Wait until the engine is done. Give the chip the required time
1282 * so, hopefully, we read the register just once.
1283 */
1284 udelay(2);
1285 ret = pio_init_wait_progress(dd);
1286 spin_unlock(&dd->sc_init_lock);
1287 if (ret) {
1288 dd_dev_err(dd,
1289 "sctxt%u(%u): Context not enabled due to init failure %d\n",
1290 sc->sw_index, sc->hw_context, ret);
1291 goto unlock;
1292 }
1293
1294 /*
1295 * All is well. Enable the context.
1296 */
1297 sc_ctrl |= SC(CTRL_CTXT_ENABLE_SMASK);
1298 write_kctxt_csr(dd, sc->hw_context, SC(CTRL), sc_ctrl);
1299 /*
1300 * Read SendCtxtCtrl to force the write out and prevent a timing
1301 * hazard where a PIO write may reach the context before the enable.
1302 */
1303 read_kctxt_csr(dd, sc->hw_context, SC(CTRL));
1304 sc->flags |= SCF_ENABLED;
1305
1306unlock:
1307 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1308
1309 return ret;
1310}
1311
1312/* force a credit return on the context */
1313void sc_return_credits(struct send_context *sc)
1314{
1315 if (!sc)
1316 return;
1317
1318 /* a 0->1 transition schedules a credit return */
1319 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE),
1320 SC(CREDIT_FORCE_FORCE_RETURN_SMASK));
1321 /*
1322 * Ensure that the write is flushed and the credit return is
1323 * scheduled. We care more about the 0 -> 1 transition.
1324 */
1325 read_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE));
1326 /* set back to 0 for next time */
1327 write_kctxt_csr(sc->dd, sc->hw_context, SC(CREDIT_FORCE), 0);
1328}
1329
1330/* allow all in-flight packets to drain on the context */
1331void sc_flush(struct send_context *sc)
1332{
1333 if (!sc)
1334 return;
1335
1336 sc_wait_for_packet_egress(sc, 1);
1337}
1338
1339/* drop all packets on the context, no waiting until they are sent */
1340void sc_drop(struct send_context *sc)
1341{
1342 if (!sc)
1343 return;
1344
1345 dd_dev_info(sc->dd, "%s: context %u(%u) - not implemented\n",
1346 __func__, sc->sw_index, sc->hw_context);
1347}
1348
1349/*
1350 * Start the software reaction to a context halt or SPC freeze:
1351 * - mark the context as halted or frozen
1352 * - stop buffer allocations
1353 *
1354 * Called from the error interrupt. Other work is deferred until
1355 * out of the interrupt.
1356 */
1357void sc_stop(struct send_context *sc, int flag)
1358{
1359 unsigned long flags;
1360
1361 /* mark the context */
1362 sc->flags |= flag;
1363
1364 /* stop buffer allocations */
1365 spin_lock_irqsave(&sc->alloc_lock, flags);
1366 sc->flags &= ~SCF_ENABLED;
1367 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1368 wake_up(&sc->halt_wait);
1369}
1370
1371#define BLOCK_DWORDS (PIO_BLOCK_SIZE / sizeof(u32))
1372#define dwords_to_blocks(x) DIV_ROUND_UP(x, BLOCK_DWORDS)
1373
1374/*
1375 * The send context buffer "allocator".
1376 *
1377 * @sc: the PIO send context we are allocating from
1378 * @len: length of whole packet - including PBC - in dwords
1379 * @cb: optional callback to call when the buffer is finished sending
1380 * @arg: argument for cb
1381 *
1382 * Return a pointer to a PIO buffer if successful, NULL if not enough room.
1383 */
1384struct pio_buf *sc_buffer_alloc(struct send_context *sc, u32 dw_len,
1385 pio_release_cb cb, void *arg)
1386{
1387 struct pio_buf *pbuf = NULL;
1388 unsigned long flags;
1389 unsigned long avail;
1390 unsigned long blocks = dwords_to_blocks(dw_len);
1391 u32 fill_wrap;
1392 int trycount = 0;
1393 u32 head, next;
1394
1395 spin_lock_irqsave(&sc->alloc_lock, flags);
1396 if (!(sc->flags & SCF_ENABLED)) {
1397 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1398 goto done;
1399 }
1400
1401retry:
1402 avail = (unsigned long)sc->credits - (sc->fill - sc->alloc_free);
1403 if (blocks > avail) {
1404 /* not enough room */
1405 if (unlikely(trycount)) { /* already tried to get more room */
1406 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1407 goto done;
1408 }
1409 /* copy from receiver cache line and recalculate */
1410 sc->alloc_free = READ_ONCE(sc->free);
1411 avail =
1412 (unsigned long)sc->credits -
1413 (sc->fill - sc->alloc_free);
1414 if (blocks > avail) {
1415 /* still no room, actively update */
1416 sc_release_update(sc);
1417 sc->alloc_free = READ_ONCE(sc->free);
1418 trycount++;
1419 goto retry;
1420 }
1421 }
1422
1423 /* there is enough room */
1424
1425 preempt_disable();
1426 this_cpu_inc(*sc->buffers_allocated);
1427
1428 /* read this once */
1429 head = sc->sr_head;
1430
1431 /* "allocate" the buffer */
1432 sc->fill += blocks;
1433 fill_wrap = sc->fill_wrap;
1434 sc->fill_wrap += blocks;
1435 if (sc->fill_wrap >= sc->credits)
1436 sc->fill_wrap = sc->fill_wrap - sc->credits;
1437
1438 /*
1439 * Fill the parts that the releaser looks at before moving the head.
1440 * The only necessary piece is the sent_at field. The credits
1441 * we have just allocated cannot have been returned yet, so the
1442 * cb and arg will not be looked at for a "while". Put them
1443 * on this side of the memory barrier anyway.
1444 */
1445 pbuf = &sc->sr[head].pbuf;
1446 pbuf->sent_at = sc->fill;
1447 pbuf->cb = cb;
1448 pbuf->arg = arg;
1449 pbuf->sc = sc; /* could be filled in at sc->sr init time */
1450 /* make sure this is in memory before updating the head */
1451
1452 /* calculate next head index, do not store */
1453 next = head + 1;
1454 if (next >= sc->sr_size)
1455 next = 0;
1456 /*
1457 * update the head - must be last! - the releaser can look at fields
1458 * in pbuf once we move the head
1459 */
1460 smp_wmb();
1461 sc->sr_head = next;
1462 spin_unlock_irqrestore(&sc->alloc_lock, flags);
1463
1464 /* finish filling in the buffer outside the lock */
1465 pbuf->start = sc->base_addr + fill_wrap * PIO_BLOCK_SIZE;
1466 pbuf->end = sc->base_addr + sc->size;
1467 pbuf->qw_written = 0;
1468 pbuf->carry_bytes = 0;
1469 pbuf->carry.val64 = 0;
1470done:
1471 return pbuf;
1472}
1473
1474/*
1475 * There are at least two entities that can turn on credit return
1476 * interrupts and they can overlap. Avoid problems by implementing
1477 * a count scheme that is enforced by a lock. The lock is needed because
1478 * the count and CSR write must be paired.
1479 */
1480
1481/*
1482 * Start credit return interrupts. This is managed by a count. If already
1483 * on, just increment the count.
1484 */
1485void sc_add_credit_return_intr(struct send_context *sc)
1486{
1487 unsigned long flags;
1488
1489 /* lock must surround both the count change and the CSR update */
1490 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1491 if (sc->credit_intr_count == 0) {
1492 sc->credit_ctrl |= SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1493 write_kctxt_csr(sc->dd, sc->hw_context,
1494 SC(CREDIT_CTRL), sc->credit_ctrl);
1495 }
1496 sc->credit_intr_count++;
1497 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1498}
1499
1500/*
1501 * Stop credit return interrupts. This is managed by a count. Decrement the
1502 * count, if the last user, then turn the credit interrupts off.
1503 */
1504void sc_del_credit_return_intr(struct send_context *sc)
1505{
1506 unsigned long flags;
1507
1508 WARN_ON(sc->credit_intr_count == 0);
1509
1510 /* lock must surround both the count change and the CSR update */
1511 spin_lock_irqsave(&sc->credit_ctrl_lock, flags);
1512 sc->credit_intr_count--;
1513 if (sc->credit_intr_count == 0) {
1514 sc->credit_ctrl &= ~SC(CREDIT_CTRL_CREDIT_INTR_SMASK);
1515 write_kctxt_csr(sc->dd, sc->hw_context,
1516 SC(CREDIT_CTRL), sc->credit_ctrl);
1517 }
1518 spin_unlock_irqrestore(&sc->credit_ctrl_lock, flags);
1519}
1520
1521/*
1522 * The caller must be careful when calling this. All needint calls
1523 * must be paired with !needint.
1524 */
1525void hfi1_sc_wantpiobuf_intr(struct send_context *sc, u32 needint)
1526{
1527 if (needint)
1528 sc_add_credit_return_intr(sc);
1529 else
1530 sc_del_credit_return_intr(sc);
1531 trace_hfi1_wantpiointr(sc, needint, sc->credit_ctrl);
1532 if (needint) {
1533 mmiowb();
1534 sc_return_credits(sc);
1535 }
1536}
1537
1538/**
1539 * sc_piobufavail - callback when a PIO buffer is available
1540 * @sc: the send context
1541 *
1542 * This is called from the interrupt handler when a PIO buffer is
1543 * available after hfi1_verbs_send() returned an error that no buffers were
1544 * available. Disable the interrupt if there are no more QPs waiting.
1545 */
1546static void sc_piobufavail(struct send_context *sc)
1547{
1548 struct hfi1_devdata *dd = sc->dd;
1549 struct hfi1_ibdev *dev = &dd->verbs_dev;
1550 struct list_head *list;
1551 struct rvt_qp *qps[PIO_WAIT_BATCH_SIZE];
1552 struct rvt_qp *qp;
1553 struct hfi1_qp_priv *priv;
1554 unsigned long flags;
1555 uint i, n = 0, max_idx = 0;
1556 u8 max_starved_cnt = 0;
1557
1558 if (dd->send_contexts[sc->sw_index].type != SC_KERNEL &&
1559 dd->send_contexts[sc->sw_index].type != SC_VL15)
1560 return;
1561 list = &sc->piowait;
1562 /*
1563 * Note: checking that the piowait list is empty and clearing
1564 * the buffer available interrupt needs to be atomic or we
1565 * could end up with QPs on the wait list with the interrupt
1566 * disabled.
1567 */
1568 write_seqlock_irqsave(&dev->iowait_lock, flags);
1569 while (!list_empty(list)) {
1570 struct iowait *wait;
1571
1572 if (n == ARRAY_SIZE(qps))
1573 break;
1574 wait = list_first_entry(list, struct iowait, list);
1575 qp = iowait_to_qp(wait);
1576 priv = qp->priv;
1577 list_del_init(&priv->s_iowait.list);
1578 priv->s_iowait.lock = NULL;
1579 iowait_starve_find_max(wait, &max_starved_cnt, n, &max_idx);
1580 /* refcount held until actual wake up */
1581 qps[n++] = qp;
1582 }
1583 /*
1584 * If there had been waiters and there are more
1585 * insure that we redo the force to avoid a potential hang.
1586 */
1587 if (n) {
1588 hfi1_sc_wantpiobuf_intr(sc, 0);
1589 if (!list_empty(list))
1590 hfi1_sc_wantpiobuf_intr(sc, 1);
1591 }
1592 write_sequnlock_irqrestore(&dev->iowait_lock, flags);
1593
1594 /* Wake up the most starved one first */
1595 if (n)
1596 hfi1_qp_wakeup(qps[max_idx],
1597 RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN);
1598 for (i = 0; i < n; i++)
1599 if (i != max_idx)
1600 hfi1_qp_wakeup(qps[i],
1601 RVT_S_WAIT_PIO | RVT_S_WAIT_PIO_DRAIN);
1602}
1603
1604/* translate a send credit update to a bit code of reasons */
1605static inline int fill_code(u64 hw_free)
1606{
1607 int code = 0;
1608
1609 if (hw_free & CR_STATUS_SMASK)
1610 code |= PRC_STATUS_ERR;
1611 if (hw_free & CR_CREDIT_RETURN_DUE_TO_PBC_SMASK)
1612 code |= PRC_PBC;
1613 if (hw_free & CR_CREDIT_RETURN_DUE_TO_THRESHOLD_SMASK)
1614 code |= PRC_THRESHOLD;
1615 if (hw_free & CR_CREDIT_RETURN_DUE_TO_ERR_SMASK)
1616 code |= PRC_FILL_ERR;
1617 if (hw_free & CR_CREDIT_RETURN_DUE_TO_FORCE_SMASK)
1618 code |= PRC_SC_DISABLE;
1619 return code;
1620}
1621
1622/* use the jiffies compare to get the wrap right */
1623#define sent_before(a, b) time_before(a, b) /* a < b */
1624
1625/*
1626 * The send context buffer "releaser".
1627 */
1628void sc_release_update(struct send_context *sc)
1629{
1630 struct pio_buf *pbuf;
1631 u64 hw_free;
1632 u32 head, tail;
1633 unsigned long old_free;
1634 unsigned long free;
1635 unsigned long extra;
1636 unsigned long flags;
1637 int code;
1638
1639 if (!sc)
1640 return;
1641
1642 spin_lock_irqsave(&sc->release_lock, flags);
1643 /* update free */
1644 hw_free = le64_to_cpu(*sc->hw_free); /* volatile read */
1645 old_free = sc->free;
1646 extra = (((hw_free & CR_COUNTER_SMASK) >> CR_COUNTER_SHIFT)
1647 - (old_free & CR_COUNTER_MASK))
1648 & CR_COUNTER_MASK;
1649 free = old_free + extra;
1650 trace_hfi1_piofree(sc, extra);
1651
1652 /* call sent buffer callbacks */
1653 code = -1; /* code not yet set */
1654 head = READ_ONCE(sc->sr_head); /* snapshot the head */
1655 tail = sc->sr_tail;
1656 while (head != tail) {
1657 pbuf = &sc->sr[tail].pbuf;
1658
1659 if (sent_before(free, pbuf->sent_at)) {
1660 /* not sent yet */
1661 break;
1662 }
1663 if (pbuf->cb) {
1664 if (code < 0) /* fill in code on first user */
1665 code = fill_code(hw_free);
1666 (*pbuf->cb)(pbuf->arg, code);
1667 }
1668
1669 tail++;
1670 if (tail >= sc->sr_size)
1671 tail = 0;
1672 }
1673 sc->sr_tail = tail;
1674 /* make sure tail is updated before free */
1675 smp_wmb();
1676 sc->free = free;
1677 spin_unlock_irqrestore(&sc->release_lock, flags);
1678 sc_piobufavail(sc);
1679}
1680
1681/*
1682 * Send context group releaser. Argument is the send context that caused
1683 * the interrupt. Called from the send context interrupt handler.
1684 *
1685 * Call release on all contexts in the group.
1686 *
1687 * This routine takes the sc_lock without an irqsave because it is only
1688 * called from an interrupt handler. Adjust if that changes.
1689 */
1690void sc_group_release_update(struct hfi1_devdata *dd, u32 hw_context)
1691{
1692 struct send_context *sc;
1693 u32 sw_index;
1694 u32 gc, gc_end;
1695
1696 spin_lock(&dd->sc_lock);
1697 sw_index = dd->hw_to_sw[hw_context];
1698 if (unlikely(sw_index >= dd->num_send_contexts)) {
1699 dd_dev_err(dd, "%s: invalid hw (%u) to sw (%u) mapping\n",
1700 __func__, hw_context, sw_index);
1701 goto done;
1702 }
1703 sc = dd->send_contexts[sw_index].sc;
1704 if (unlikely(!sc))
1705 goto done;
1706
1707 gc = group_context(hw_context, sc->group);
1708 gc_end = gc + group_size(sc->group);
1709 for (; gc < gc_end; gc++) {
1710 sw_index = dd->hw_to_sw[gc];
1711 if (unlikely(sw_index >= dd->num_send_contexts)) {
1712 dd_dev_err(dd,
1713 "%s: invalid hw (%u) to sw (%u) mapping\n",
1714 __func__, hw_context, sw_index);
1715 continue;
1716 }
1717 sc_release_update(dd->send_contexts[sw_index].sc);
1718 }
1719done:
1720 spin_unlock(&dd->sc_lock);
1721}
1722
1723/*
1724 * pio_select_send_context_vl() - select send context
1725 * @dd: devdata
1726 * @selector: a spreading factor
1727 * @vl: this vl
1728 *
1729 * This function returns a send context based on the selector and a vl.
1730 * The mapping fields are protected by RCU
1731 */
1732struct send_context *pio_select_send_context_vl(struct hfi1_devdata *dd,
1733 u32 selector, u8 vl)
1734{
1735 struct pio_vl_map *m;
1736 struct pio_map_elem *e;
1737 struct send_context *rval;
1738
1739 /*
1740 * NOTE This should only happen if SC->VL changed after the initial
1741 * checks on the QP/AH
1742 * Default will return VL0's send context below
1743 */
1744 if (unlikely(vl >= num_vls)) {
1745 rval = NULL;
1746 goto done;
1747 }
1748
1749 rcu_read_lock();
1750 m = rcu_dereference(dd->pio_map);
1751 if (unlikely(!m)) {
1752 rcu_read_unlock();
1753 return dd->vld[0].sc;
1754 }
1755 e = m->map[vl & m->mask];
1756 rval = e->ksc[selector & e->mask];
1757 rcu_read_unlock();
1758
1759done:
1760 rval = !rval ? dd->vld[0].sc : rval;
1761 return rval;
1762}
1763
1764/*
1765 * pio_select_send_context_sc() - select send context
1766 * @dd: devdata
1767 * @selector: a spreading factor
1768 * @sc5: the 5 bit sc
1769 *
1770 * This function returns an send context based on the selector and an sc
1771 */
1772struct send_context *pio_select_send_context_sc(struct hfi1_devdata *dd,
1773 u32 selector, u8 sc5)
1774{
1775 u8 vl = sc_to_vlt(dd, sc5);
1776
1777 return pio_select_send_context_vl(dd, selector, vl);
1778}
1779
1780/*
1781 * Free the indicated map struct
1782 */
1783static void pio_map_free(struct pio_vl_map *m)
1784{
1785 int i;
1786
1787 for (i = 0; m && i < m->actual_vls; i++)
1788 kfree(m->map[i]);
1789 kfree(m);
1790}
1791
1792/*
1793 * Handle RCU callback
1794 */
1795static void pio_map_rcu_callback(struct rcu_head *list)
1796{
1797 struct pio_vl_map *m = container_of(list, struct pio_vl_map, list);
1798
1799 pio_map_free(m);
1800}
1801
1802/*
1803 * Set credit return threshold for the kernel send context
1804 */
1805static void set_threshold(struct hfi1_devdata *dd, int scontext, int i)
1806{
1807 u32 thres;
1808
1809 thres = min(sc_percent_to_threshold(dd->kernel_send_context[scontext],
1810 50),
1811 sc_mtu_to_threshold(dd->kernel_send_context[scontext],
1812 dd->vld[i].mtu,
1813 dd->rcd[0]->rcvhdrqentsize));
1814 sc_set_cr_threshold(dd->kernel_send_context[scontext], thres);
1815}
1816
1817/*
1818 * pio_map_init - called when #vls change
1819 * @dd: hfi1_devdata
1820 * @port: port number
1821 * @num_vls: number of vls
1822 * @vl_scontexts: per vl send context mapping (optional)
1823 *
1824 * This routine changes the mapping based on the number of vls.
1825 *
1826 * vl_scontexts is used to specify a non-uniform vl/send context
1827 * loading. NULL implies auto computing the loading and giving each
1828 * VL an uniform distribution of send contexts per VL.
1829 *
1830 * The auto algorithm computers the sc_per_vl and the number of extra
1831 * send contexts. Any extra send contexts are added from the last VL
1832 * on down
1833 *
1834 * rcu locking is used here to control access to the mapping fields.
1835 *
1836 * If either the num_vls or num_send_contexts are non-power of 2, the
1837 * array sizes in the struct pio_vl_map and the struct pio_map_elem are
1838 * rounded up to the next highest power of 2 and the first entry is
1839 * reused in a round robin fashion.
1840 *
1841 * If an error occurs the map change is not done and the mapping is not
1842 * chaged.
1843 *
1844 */
1845int pio_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_scontexts)
1846{
1847 int i, j;
1848 int extra, sc_per_vl;
1849 int scontext = 1;
1850 int num_kernel_send_contexts = 0;
1851 u8 lvl_scontexts[OPA_MAX_VLS];
1852 struct pio_vl_map *oldmap, *newmap;
1853
1854 if (!vl_scontexts) {
1855 for (i = 0; i < dd->num_send_contexts; i++)
1856 if (dd->send_contexts[i].type == SC_KERNEL)
1857 num_kernel_send_contexts++;
1858 /* truncate divide */
1859 sc_per_vl = num_kernel_send_contexts / num_vls;
1860 /* extras */
1861 extra = num_kernel_send_contexts % num_vls;
1862 vl_scontexts = lvl_scontexts;
1863 /* add extras from last vl down */
1864 for (i = num_vls - 1; i >= 0; i--, extra--)
1865 vl_scontexts[i] = sc_per_vl + (extra > 0 ? 1 : 0);
1866 }
1867 /* build new map */
1868 newmap = kzalloc(sizeof(*newmap) +
1869 roundup_pow_of_two(num_vls) *
1870 sizeof(struct pio_map_elem *),
1871 GFP_KERNEL);
1872 if (!newmap)
1873 goto bail;
1874 newmap->actual_vls = num_vls;
1875 newmap->vls = roundup_pow_of_two(num_vls);
1876 newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1877 for (i = 0; i < newmap->vls; i++) {
1878 /* save for wrap around */
1879 int first_scontext = scontext;
1880
1881 if (i < newmap->actual_vls) {
1882 int sz = roundup_pow_of_two(vl_scontexts[i]);
1883
1884 /* only allocate once */
1885 newmap->map[i] = kzalloc(sizeof(*newmap->map[i]) +
1886 sz * sizeof(struct
1887 send_context *),
1888 GFP_KERNEL);
1889 if (!newmap->map[i])
1890 goto bail;
1891 newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1892 /*
1893 * assign send contexts and
1894 * adjust credit return threshold
1895 */
1896 for (j = 0; j < sz; j++) {
1897 if (dd->kernel_send_context[scontext]) {
1898 newmap->map[i]->ksc[j] =
1899 dd->kernel_send_context[scontext];
1900 set_threshold(dd, scontext, i);
1901 }
1902 if (++scontext >= first_scontext +
1903 vl_scontexts[i])
1904 /* wrap back to first send context */
1905 scontext = first_scontext;
1906 }
1907 } else {
1908 /* just re-use entry without allocating */
1909 newmap->map[i] = newmap->map[i % num_vls];
1910 }
1911 scontext = first_scontext + vl_scontexts[i];
1912 }
1913 /* newmap in hand, save old map */
1914 spin_lock_irq(&dd->pio_map_lock);
1915 oldmap = rcu_dereference_protected(dd->pio_map,
1916 lockdep_is_held(&dd->pio_map_lock));
1917
1918 /* publish newmap */
1919 rcu_assign_pointer(dd->pio_map, newmap);
1920
1921 spin_unlock_irq(&dd->pio_map_lock);
1922 /* success, free any old map after grace period */
1923 if (oldmap)
1924 call_rcu(&oldmap->list, pio_map_rcu_callback);
1925 return 0;
1926bail:
1927 /* free any partial allocation */
1928 pio_map_free(newmap);
1929 return -ENOMEM;
1930}
1931
1932void free_pio_map(struct hfi1_devdata *dd)
1933{
1934 /* Free PIO map if allocated */
1935 if (rcu_access_pointer(dd->pio_map)) {
1936 spin_lock_irq(&dd->pio_map_lock);
1937 pio_map_free(rcu_access_pointer(dd->pio_map));
1938 RCU_INIT_POINTER(dd->pio_map, NULL);
1939 spin_unlock_irq(&dd->pio_map_lock);
1940 synchronize_rcu();
1941 }
1942 kfree(dd->kernel_send_context);
1943 dd->kernel_send_context = NULL;
1944}
1945
1946int init_pervl_scs(struct hfi1_devdata *dd)
1947{
1948 int i;
1949 u64 mask, all_vl_mask = (u64)0x80ff; /* VLs 0-7, 15 */
1950 u64 data_vls_mask = (u64)0x00ff; /* VLs 0-7 */
1951 u32 ctxt;
1952 struct hfi1_pportdata *ppd = dd->pport;
1953
1954 dd->vld[15].sc = sc_alloc(dd, SC_VL15,
1955 dd->rcd[0]->rcvhdrqentsize, dd->node);
1956 if (!dd->vld[15].sc)
1957 return -ENOMEM;
1958
1959 hfi1_init_ctxt(dd->vld[15].sc);
1960 dd->vld[15].mtu = enum_to_mtu(OPA_MTU_2048);
1961
1962 dd->kernel_send_context = kcalloc_node(dd->num_send_contexts,
1963 sizeof(struct send_context *),
1964 GFP_KERNEL, dd->node);
1965 if (!dd->kernel_send_context)
1966 goto freesc15;
1967
1968 dd->kernel_send_context[0] = dd->vld[15].sc;
1969
1970 for (i = 0; i < num_vls; i++) {
1971 /*
1972 * Since this function does not deal with a specific
1973 * receive context but we need the RcvHdrQ entry size,
1974 * use the size from rcd[0]. It is guaranteed to be
1975 * valid at this point and will remain the same for all
1976 * receive contexts.
1977 */
1978 dd->vld[i].sc = sc_alloc(dd, SC_KERNEL,
1979 dd->rcd[0]->rcvhdrqentsize, dd->node);
1980 if (!dd->vld[i].sc)
1981 goto nomem;
1982 dd->kernel_send_context[i + 1] = dd->vld[i].sc;
1983 hfi1_init_ctxt(dd->vld[i].sc);
1984 /* non VL15 start with the max MTU */
1985 dd->vld[i].mtu = hfi1_max_mtu;
1986 }
1987 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
1988 dd->kernel_send_context[i + 1] =
1989 sc_alloc(dd, SC_KERNEL, dd->rcd[0]->rcvhdrqentsize, dd->node);
1990 if (!dd->kernel_send_context[i + 1])
1991 goto nomem;
1992 hfi1_init_ctxt(dd->kernel_send_context[i + 1]);
1993 }
1994
1995 sc_enable(dd->vld[15].sc);
1996 ctxt = dd->vld[15].sc->hw_context;
1997 mask = all_vl_mask & ~(1LL << 15);
1998 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
1999 dd_dev_info(dd,
2000 "Using send context %u(%u) for VL15\n",
2001 dd->vld[15].sc->sw_index, ctxt);
2002
2003 for (i = 0; i < num_vls; i++) {
2004 sc_enable(dd->vld[i].sc);
2005 ctxt = dd->vld[i].sc->hw_context;
2006 mask = all_vl_mask & ~(data_vls_mask);
2007 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2008 }
2009 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++) {
2010 sc_enable(dd->kernel_send_context[i + 1]);
2011 ctxt = dd->kernel_send_context[i + 1]->hw_context;
2012 mask = all_vl_mask & ~(data_vls_mask);
2013 write_kctxt_csr(dd, ctxt, SC(CHECK_VL), mask);
2014 }
2015
2016 if (pio_map_init(dd, ppd->port - 1, num_vls, NULL))
2017 goto nomem;
2018 return 0;
2019
2020nomem:
2021 for (i = 0; i < num_vls; i++) {
2022 sc_free(dd->vld[i].sc);
2023 dd->vld[i].sc = NULL;
2024 }
2025
2026 for (i = num_vls; i < INIT_SC_PER_VL * num_vls; i++)
2027 sc_free(dd->kernel_send_context[i + 1]);
2028
2029 kfree(dd->kernel_send_context);
2030 dd->kernel_send_context = NULL;
2031
2032freesc15:
2033 sc_free(dd->vld[15].sc);
2034 return -ENOMEM;
2035}
2036
2037int init_credit_return(struct hfi1_devdata *dd)
2038{
2039 int ret;
2040 int i;
2041
2042 dd->cr_base = kcalloc(
2043 node_affinity.num_possible_nodes,
2044 sizeof(struct credit_return_base),
2045 GFP_KERNEL);
2046 if (!dd->cr_base) {
2047 ret = -ENOMEM;
2048 goto done;
2049 }
2050 for_each_node_with_cpus(i) {
2051 int bytes = TXE_NUM_CONTEXTS * sizeof(struct credit_return);
2052
2053 set_dev_node(&dd->pcidev->dev, i);
2054 dd->cr_base[i].va = dma_zalloc_coherent(
2055 &dd->pcidev->dev,
2056 bytes,
2057 &dd->cr_base[i].dma,
2058 GFP_KERNEL);
2059 if (!dd->cr_base[i].va) {
2060 set_dev_node(&dd->pcidev->dev, dd->node);
2061 dd_dev_err(dd,
2062 "Unable to allocate credit return DMA range for NUMA %d\n",
2063 i);
2064 ret = -ENOMEM;
2065 goto done;
2066 }
2067 }
2068 set_dev_node(&dd->pcidev->dev, dd->node);
2069
2070 ret = 0;
2071done:
2072 return ret;
2073}
2074
2075void free_credit_return(struct hfi1_devdata *dd)
2076{
2077 int i;
2078
2079 if (!dd->cr_base)
2080 return;
2081 for (i = 0; i < node_affinity.num_possible_nodes; i++) {
2082 if (dd->cr_base[i].va) {
2083 dma_free_coherent(&dd->pcidev->dev,
2084 TXE_NUM_CONTEXTS *
2085 sizeof(struct credit_return),
2086 dd->cr_base[i].va,
2087 dd->cr_base[i].dma);
2088 }
2089 }
2090 kfree(dd->cr_base);
2091 dd->cr_base = NULL;
2092}