Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright(c) 2015 - 2017 Intel Corporation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/firmware.h>
   7#include <linux/mutex.h>
 
   8#include <linux/delay.h>
   9#include <linux/crc32.h>
  10
  11#include "hfi.h"
  12#include "trace.h"
  13
  14/*
  15 * Make it easy to toggle firmware file name and if it gets loaded by
  16 * editing the following. This may be something we do while in development
  17 * but not necessarily something a user would ever need to use.
  18 */
  19#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
  20#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
  21#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
  22#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
  23#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
  24#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
  25#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
  26#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
  27#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
  28
  29MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
  30MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
  31MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
  32MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
  33
  34static uint fw_8051_load = 1;
  35static uint fw_fabric_serdes_load = 1;
  36static uint fw_pcie_serdes_load = 1;
  37static uint fw_sbus_load = 1;
  38
  39/* Firmware file names get set in hfi1_firmware_init() based on the above */
  40static char *fw_8051_name;
  41static char *fw_fabric_serdes_name;
  42static char *fw_sbus_name;
  43static char *fw_pcie_serdes_name;
  44
  45#define SBUS_MAX_POLL_COUNT 100
  46#define SBUS_COUNTER(reg, name) \
  47	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
  48	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
  49
  50/*
  51 * Firmware security header.
  52 */
  53struct css_header {
  54	u32 module_type;
  55	u32 header_len;
  56	u32 header_version;
  57	u32 module_id;
  58	u32 module_vendor;
  59	u32 date;		/* BCD yyyymmdd */
  60	u32 size;		/* in DWORDs */
  61	u32 key_size;		/* in DWORDs */
  62	u32 modulus_size;	/* in DWORDs */
  63	u32 exponent_size;	/* in DWORDs */
  64	u32 reserved[22];
  65};
  66
  67/* expected field values */
  68#define CSS_MODULE_TYPE	   0x00000006
  69#define CSS_HEADER_LEN	   0x000000a1
  70#define CSS_HEADER_VERSION 0x00010000
  71#define CSS_MODULE_VENDOR  0x00008086
  72
  73#define KEY_SIZE      256
  74#define MU_SIZE		8
  75#define EXPONENT_SIZE	4
  76
  77/* size of platform configuration partition */
  78#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
  79
  80/* size of file of plaform configuration encoded in format version 4 */
  81#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
  82
  83/* the file itself */
  84struct firmware_file {
  85	struct css_header css_header;
  86	u8 modulus[KEY_SIZE];
  87	u8 exponent[EXPONENT_SIZE];
  88	u8 signature[KEY_SIZE];
  89	u8 firmware[];
  90};
  91
  92struct augmented_firmware_file {
  93	struct css_header css_header;
  94	u8 modulus[KEY_SIZE];
  95	u8 exponent[EXPONENT_SIZE];
  96	u8 signature[KEY_SIZE];
  97	u8 r2[KEY_SIZE];
  98	u8 mu[MU_SIZE];
  99	u8 firmware[];
 100};
 101
 102/* augmented file size difference */
 103#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
 104						sizeof(struct firmware_file))
 105
 106struct firmware_details {
 107	/* Linux core piece */
 108	const struct firmware *fw;
 109
 110	struct css_header *css_header;
 111	u8 *firmware_ptr;		/* pointer to binary data */
 112	u32 firmware_len;		/* length in bytes */
 113	u8 *modulus;			/* pointer to the modulus */
 114	u8 *exponent;			/* pointer to the exponent */
 115	u8 *signature;			/* pointer to the signature */
 116	u8 *r2;				/* pointer to r2 */
 117	u8 *mu;				/* pointer to mu */
 118	struct augmented_firmware_file dummy_header;
 119};
 120
 121/*
 122 * The mutex protects fw_state, fw_err, and all of the firmware_details
 123 * variables.
 124 */
 125static DEFINE_MUTEX(fw_mutex);
 126enum fw_state {
 127	FW_EMPTY,
 128	FW_TRY,
 129	FW_FINAL,
 130	FW_ERR
 131};
 132
 133static enum fw_state fw_state = FW_EMPTY;
 134static int fw_err;
 135static struct firmware_details fw_8051;
 136static struct firmware_details fw_fabric;
 137static struct firmware_details fw_pcie;
 138static struct firmware_details fw_sbus;
 139
 140/* flags for turn_off_spicos() */
 141#define SPICO_SBUS   0x1
 142#define SPICO_FABRIC 0x2
 143#define ENABLE_SPICO_SMASK 0x1
 144
 145/* security block commands */
 146#define RSA_CMD_INIT  0x1
 147#define RSA_CMD_START 0x2
 148
 149/* security block status */
 150#define RSA_STATUS_IDLE   0x0
 151#define RSA_STATUS_ACTIVE 0x1
 152#define RSA_STATUS_DONE   0x2
 153#define RSA_STATUS_FAILED 0x3
 154
 155/* RSA engine timeout, in ms */
 156#define RSA_ENGINE_TIMEOUT 100 /* ms */
 157
 158/* hardware mutex timeout, in ms */
 159#define HM_TIMEOUT 10 /* ms */
 160
 161/* 8051 memory access timeout, in us */
 162#define DC8051_ACCESS_TIMEOUT 100 /* us */
 163
 164/* the number of fabric SerDes on the SBus */
 165#define NUM_FABRIC_SERDES 4
 166
 167/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
 168#define SBUS_READ_COMPLETE 0x4
 169
 170/* SBus fabric SerDes addresses, one set per HFI */
 171static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
 172	{ 0x01, 0x02, 0x03, 0x04 },
 173	{ 0x28, 0x29, 0x2a, 0x2b }
 174};
 175
 176/* SBus PCIe SerDes addresses, one set per HFI */
 177static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
 178	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
 179	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
 180	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
 181	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
 182};
 183
 184/* SBus PCIe PCS addresses, one set per HFI */
 185const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
 186	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
 187	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
 188	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 189	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
 190};
 191
 192/* SBus fabric SerDes broadcast addresses, one per HFI */
 193static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
 194static const u8 all_fabric_serdes_broadcast = 0xe1;
 195
 196/* SBus PCIe SerDes broadcast addresses, one per HFI */
 197const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
 198static const u8 all_pcie_serdes_broadcast = 0xe0;
 199
 200static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
 201	0,
 202	SYSTEM_TABLE_MAX,
 203	PORT_TABLE_MAX,
 204	RX_PRESET_TABLE_MAX,
 205	TX_PRESET_TABLE_MAX,
 206	QSFP_ATTEN_TABLE_MAX,
 207	VARIABLE_SETTINGS_TABLE_MAX
 208};
 209
 210/* forwards */
 211static void dispose_one_firmware(struct firmware_details *fdet);
 212static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
 213				       struct firmware_details *fdet);
 214static void dump_fw_version(struct hfi1_devdata *dd);
 215
 216/*
 217 * Read a single 64-bit value from 8051 data memory.
 218 *
 219 * Expects:
 220 * o caller to have already set up data read, no auto increment
 221 * o caller to turn off read enable when finished
 222 *
 223 * The address argument is a byte offset.  Bits 0:2 in the address are
 224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
 225 * the lower bits are zero.
 226 *
 227 * Return 0 on success, -ENXIO on a read error (timeout).
 228 */
 229static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
 230{
 231	u64 reg;
 232	int count;
 233
 234	/* step 1: set the address, clear enable */
 235	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 236			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
 237	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 238	/* step 2: enable */
 239	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
 240		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
 241
 242	/* wait until ACCESS_COMPLETED is set */
 243	count = 0;
 244	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 245		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 246		    == 0) {
 247		count++;
 248		if (count > DC8051_ACCESS_TIMEOUT) {
 249			dd_dev_err(dd, "timeout reading 8051 data\n");
 250			return -ENXIO;
 251		}
 252		ndelay(10);
 253	}
 254
 255	/* gather the data */
 256	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
 257
 258	return 0;
 259}
 260
 261/*
 262 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
 263 * Return 0 on success, -errno on error.
 264 */
 265int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
 266{
 267	unsigned long flags;
 268	u32 done;
 269	int ret = 0;
 270
 271	spin_lock_irqsave(&dd->dc8051_memlock, flags);
 272
 273	/* data read set-up, no auto-increment */
 274	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 275
 276	for (done = 0; done < len; addr += 8, done += 8, result++) {
 277		ret = __read_8051_data(dd, addr, result);
 278		if (ret)
 279			break;
 280	}
 281
 282	/* turn off read enable */
 283	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 284
 285	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
 286
 287	return ret;
 288}
 289
 290/*
 291 * Write data or code to the 8051 code or data RAM.
 292 */
 293static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
 294		      const u8 *data, u32 len)
 295{
 296	u64 reg;
 297	u32 offset;
 298	int aligned, count;
 299
 300	/* check alignment */
 301	aligned = ((unsigned long)data & 0x7) == 0;
 302
 303	/* write set-up */
 304	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
 305		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
 306	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
 307
 308	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 309			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
 310		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
 311	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 312
 313	/* write */
 314	for (offset = 0; offset < len; offset += 8) {
 315		int bytes = len - offset;
 316
 317		if (bytes < 8) {
 318			reg = 0;
 319			memcpy(&reg, &data[offset], bytes);
 320		} else if (aligned) {
 321			reg = *(u64 *)&data[offset];
 322		} else {
 323			memcpy(&reg, &data[offset], 8);
 324		}
 325		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
 326
 327		/* wait until ACCESS_COMPLETED is set */
 328		count = 0;
 329		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 330		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 331		    == 0) {
 332			count++;
 333			if (count > DC8051_ACCESS_TIMEOUT) {
 334				dd_dev_err(dd, "timeout writing 8051 data\n");
 335				return -ENXIO;
 336			}
 337			udelay(1);
 338		}
 339	}
 340
 341	/* turn off write access, auto increment (also sets to data access) */
 342	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 343	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 344
 345	return 0;
 346}
 347
 348/* return 0 if values match, non-zero and complain otherwise */
 349static int invalid_header(struct hfi1_devdata *dd, const char *what,
 350			  u32 actual, u32 expected)
 351{
 352	if (actual == expected)
 353		return 0;
 354
 355	dd_dev_err(dd,
 356		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
 357		   what, expected, actual);
 358	return 1;
 359}
 360
 361/*
 362 * Verify that the static fields in the CSS header match.
 363 */
 364static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
 365{
 366	/* verify CSS header fields (most sizes are in DW, so add /4) */
 367	if (invalid_header(dd, "module_type", css->module_type,
 368			   CSS_MODULE_TYPE) ||
 369	    invalid_header(dd, "header_len", css->header_len,
 370			   (sizeof(struct firmware_file) / 4)) ||
 371	    invalid_header(dd, "header_version", css->header_version,
 372			   CSS_HEADER_VERSION) ||
 373	    invalid_header(dd, "module_vendor", css->module_vendor,
 374			   CSS_MODULE_VENDOR) ||
 375	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
 376	    invalid_header(dd, "modulus_size", css->modulus_size,
 377			   KEY_SIZE / 4) ||
 378	    invalid_header(dd, "exponent_size", css->exponent_size,
 379			   EXPONENT_SIZE / 4)) {
 380		return -EINVAL;
 381	}
 382	return 0;
 383}
 384
 385/*
 386 * Make sure there are at least some bytes after the prefix.
 387 */
 388static int payload_check(struct hfi1_devdata *dd, const char *name,
 389			 long file_size, long prefix_size)
 390{
 391	/* make sure we have some payload */
 392	if (prefix_size >= file_size) {
 393		dd_dev_err(dd,
 394			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
 395			   name, file_size, prefix_size);
 396		return -EINVAL;
 397	}
 398
 399	return 0;
 400}
 401
 402/*
 403 * Request the firmware from the system.  Extract the pieces and fill in
 404 * fdet.  If successful, the caller will need to call dispose_one_firmware().
 405 * Returns 0 on success, -ERRNO on error.
 406 */
 407static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
 408			       struct firmware_details *fdet)
 409{
 410	struct css_header *css;
 411	int ret;
 412
 413	memset(fdet, 0, sizeof(*fdet));
 414
 415	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
 416	if (ret) {
 417		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
 418			    name, ret);
 419		return ret;
 420	}
 421
 422	/* verify the firmware */
 423	if (fdet->fw->size < sizeof(struct css_header)) {
 424		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
 425		ret = -EINVAL;
 426		goto done;
 427	}
 428	css = (struct css_header *)fdet->fw->data;
 429
 430	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
 431	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
 432	hfi1_cdbg(FIRMWARE, "CSS structure:");
 433	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
 434	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
 435		  css->header_len, 4 * css->header_len);
 436	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
 437	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
 438	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
 439	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
 440	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
 441		  css->size, 4 * css->size);
 442	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
 443		  css->key_size, 4 * css->key_size);
 444	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
 445		  css->modulus_size, 4 * css->modulus_size);
 446	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
 447		  css->exponent_size, 4 * css->exponent_size);
 448	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
 449		  fdet->fw->size - sizeof(struct firmware_file));
 450
 451	/*
 452	 * If the file does not have a valid CSS header, fail.
 453	 * Otherwise, check the CSS size field for an expected size.
 454	 * The augmented file has r2 and mu inserted after the header
 455	 * was generated, so there will be a known difference between
 456	 * the CSS header size and the actual file size.  Use this
 457	 * difference to identify an augmented file.
 458	 *
 459	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
 460	 */
 461	ret = verify_css_header(dd, css);
 462	if (ret) {
 463		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
 464	} else if ((css->size * 4) == fdet->fw->size) {
 465		/* non-augmented firmware file */
 466		struct firmware_file *ff = (struct firmware_file *)
 467							fdet->fw->data;
 468
 469		/* make sure there are bytes in the payload */
 470		ret = payload_check(dd, name, fdet->fw->size,
 471				    sizeof(struct firmware_file));
 472		if (ret == 0) {
 473			fdet->css_header = css;
 474			fdet->modulus = ff->modulus;
 475			fdet->exponent = ff->exponent;
 476			fdet->signature = ff->signature;
 477			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
 478			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
 479			fdet->firmware_ptr = ff->firmware;
 480			fdet->firmware_len = fdet->fw->size -
 481						sizeof(struct firmware_file);
 482			/*
 483			 * Header does not include r2 and mu - generate here.
 484			 * For now, fail.
 485			 */
 486			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
 487			ret = -EINVAL;
 488		}
 489	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
 490		/* augmented firmware file */
 491		struct augmented_firmware_file *aff =
 492			(struct augmented_firmware_file *)fdet->fw->data;
 493
 494		/* make sure there are bytes in the payload */
 495		ret = payload_check(dd, name, fdet->fw->size,
 496				    sizeof(struct augmented_firmware_file));
 497		if (ret == 0) {
 498			fdet->css_header = css;
 499			fdet->modulus = aff->modulus;
 500			fdet->exponent = aff->exponent;
 501			fdet->signature = aff->signature;
 502			fdet->r2 = aff->r2;
 503			fdet->mu = aff->mu;
 504			fdet->firmware_ptr = aff->firmware;
 505			fdet->firmware_len = fdet->fw->size -
 506					sizeof(struct augmented_firmware_file);
 507		}
 508	} else {
 509		/* css->size check failed */
 510		dd_dev_err(dd,
 511			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
 512			   fdet->fw->size / 4,
 513			   (fdet->fw->size - AUGMENT_SIZE) / 4,
 514			   css->size);
 515
 516		ret = -EINVAL;
 517	}
 518
 519done:
 520	/* if returning an error, clean up after ourselves */
 521	if (ret)
 522		dispose_one_firmware(fdet);
 523	return ret;
 524}
 525
 526static void dispose_one_firmware(struct firmware_details *fdet)
 527{
 528	release_firmware(fdet->fw);
 529	/* erase all previous information */
 530	memset(fdet, 0, sizeof(*fdet));
 531}
 532
 533/*
 534 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
 535 * at all.  If called with the firmware state in FW_TRY, use alternate names.
 536 * On exit, this routine will have set the firmware state to one of FW_TRY,
 537 * FW_FINAL, or FW_ERR.
 538 *
 539 * Must be holding fw_mutex.
 540 */
 541static void __obtain_firmware(struct hfi1_devdata *dd)
 542{
 543	int err = 0;
 544
 545	if (fw_state == FW_FINAL)	/* nothing more to obtain */
 546		return;
 547	if (fw_state == FW_ERR)		/* already in error */
 548		return;
 549
 550	/* fw_state is FW_EMPTY or FW_TRY */
 551retry:
 552	if (fw_state == FW_TRY) {
 553		/*
 554		 * We tried the original and it failed.  Move to the
 555		 * alternate.
 556		 */
 557		dd_dev_warn(dd, "using alternate firmware names\n");
 558		/*
 559		 * Let others run.  Some systems, when missing firmware, does
 560		 * something that holds for 30 seconds.  If we do that twice
 561		 * in a row it triggers task blocked warning.
 562		 */
 563		cond_resched();
 564		if (fw_8051_load)
 565			dispose_one_firmware(&fw_8051);
 566		if (fw_fabric_serdes_load)
 567			dispose_one_firmware(&fw_fabric);
 568		if (fw_sbus_load)
 569			dispose_one_firmware(&fw_sbus);
 570		if (fw_pcie_serdes_load)
 571			dispose_one_firmware(&fw_pcie);
 572		fw_8051_name = ALT_FW_8051_NAME_ASIC;
 573		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
 574		fw_sbus_name = ALT_FW_SBUS_NAME;
 575		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
 576
 577		/*
 578		 * Add a delay before obtaining and loading debug firmware.
 579		 * Authorization will fail if the delay between firmware
 580		 * authorization events is shorter than 50us. Add 100us to
 581		 * make a delay time safe.
 582		 */
 583		usleep_range(100, 120);
 584	}
 585
 586	if (fw_sbus_load) {
 587		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
 588		if (err)
 589			goto done;
 590	}
 591
 592	if (fw_pcie_serdes_load) {
 593		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
 594		if (err)
 595			goto done;
 596	}
 597
 598	if (fw_fabric_serdes_load) {
 599		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
 600					  &fw_fabric);
 601		if (err)
 602			goto done;
 603	}
 604
 605	if (fw_8051_load) {
 606		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
 607		if (err)
 608			goto done;
 609	}
 610
 611done:
 612	if (err) {
 613		/* oops, had problems obtaining a firmware */
 614		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
 615			/* retry with alternate (RTL only) */
 616			fw_state = FW_TRY;
 617			goto retry;
 618		}
 619		dd_dev_err(dd, "unable to obtain working firmware\n");
 620		fw_state = FW_ERR;
 621		fw_err = -ENOENT;
 622	} else {
 623		/* success */
 624		if (fw_state == FW_EMPTY &&
 625		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
 626			fw_state = FW_TRY;	/* may retry later */
 627		else
 628			fw_state = FW_FINAL;	/* cannot try again */
 629	}
 630}
 631
 632/*
 633 * Called by all HFIs when loading their firmware - i.e. device probe time.
 634 * The first one will do the actual firmware load.  Use a mutex to resolve
 635 * any possible race condition.
 636 *
 637 * The call to this routine cannot be moved to driver load because the kernel
 638 * call request_firmware() requires a device which is only available after
 639 * the first device probe.
 640 */
 641static int obtain_firmware(struct hfi1_devdata *dd)
 642{
 643	unsigned long timeout;
 644
 645	mutex_lock(&fw_mutex);
 646
 647	/* 40s delay due to long delay on missing firmware on some systems */
 648	timeout = jiffies + msecs_to_jiffies(40000);
 649	while (fw_state == FW_TRY) {
 650		/*
 651		 * Another device is trying the firmware.  Wait until it
 652		 * decides what works (or not).
 653		 */
 654		if (time_after(jiffies, timeout)) {
 655			/* waited too long */
 656			dd_dev_err(dd, "Timeout waiting for firmware try");
 657			fw_state = FW_ERR;
 658			fw_err = -ETIMEDOUT;
 659			break;
 660		}
 661		mutex_unlock(&fw_mutex);
 662		msleep(20);	/* arbitrary delay */
 663		mutex_lock(&fw_mutex);
 664	}
 665	/* not in FW_TRY state */
 666
 667	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
 668	if (fw_state == FW_EMPTY)
 669		__obtain_firmware(dd);
 670
 671	mutex_unlock(&fw_mutex);
 672	return fw_err;
 673}
 674
 675/*
 676 * Called when the driver unloads.  The timing is asymmetric with its
 677 * counterpart, obtain_firmware().  If called at device remove time,
 678 * then it is conceivable that another device could probe while the
 679 * firmware is being disposed.  The mutexes can be moved to do that
 680 * safely, but then the firmware would be requested from the OS multiple
 681 * times.
 682 *
 683 * No mutex is needed as the driver is unloading and there cannot be any
 684 * other callers.
 685 */
 686void dispose_firmware(void)
 687{
 688	dispose_one_firmware(&fw_8051);
 689	dispose_one_firmware(&fw_fabric);
 690	dispose_one_firmware(&fw_pcie);
 691	dispose_one_firmware(&fw_sbus);
 692
 693	/* retain the error state, otherwise revert to empty */
 694	if (fw_state != FW_ERR)
 695		fw_state = FW_EMPTY;
 696}
 697
 698/*
 699 * Called with the result of a firmware download.
 700 *
 701 * Return 1 to retry loading the firmware, 0 to stop.
 702 */
 703static int retry_firmware(struct hfi1_devdata *dd, int load_result)
 704{
 705	int retry;
 706
 707	mutex_lock(&fw_mutex);
 708
 709	if (load_result == 0) {
 710		/*
 711		 * The load succeeded, so expect all others to do the same.
 712		 * Do not retry again.
 713		 */
 714		if (fw_state == FW_TRY)
 715			fw_state = FW_FINAL;
 716		retry = 0;	/* do NOT retry */
 717	} else if (fw_state == FW_TRY) {
 718		/* load failed, obtain alternate firmware */
 719		__obtain_firmware(dd);
 720		retry = (fw_state == FW_FINAL);
 721	} else {
 722		/* else in FW_FINAL or FW_ERR, no retry in either case */
 723		retry = 0;
 724	}
 725
 726	mutex_unlock(&fw_mutex);
 727	return retry;
 728}
 729
 730/*
 731 * Write a block of data to a given array CSR.  All calls will be in
 732 * multiples of 8 bytes.
 733 */
 734static void write_rsa_data(struct hfi1_devdata *dd, int what,
 735			   const u8 *data, int nbytes)
 736{
 737	int qw_size = nbytes / 8;
 738	int i;
 739
 740	if (((unsigned long)data & 0x7) == 0) {
 741		/* aligned */
 742		u64 *ptr = (u64 *)data;
 743
 744		for (i = 0; i < qw_size; i++, ptr++)
 745			write_csr(dd, what + (8 * i), *ptr);
 746	} else {
 747		/* not aligned */
 748		for (i = 0; i < qw_size; i++, data += 8) {
 749			u64 value;
 750
 751			memcpy(&value, data, 8);
 752			write_csr(dd, what + (8 * i), value);
 753		}
 754	}
 755}
 756
 757/*
 758 * Write a block of data to a given CSR as a stream of writes.  All calls will
 759 * be in multiples of 8 bytes.
 760 */
 761static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
 762				    const u8 *data, int nbytes)
 763{
 764	u64 *ptr = (u64 *)data;
 765	int qw_size = nbytes / 8;
 766
 767	for (; qw_size > 0; qw_size--, ptr++)
 768		write_csr(dd, what, *ptr);
 769}
 770
 771/*
 772 * Download the signature and start the RSA mechanism.  Wait for
 773 * RSA_ENGINE_TIMEOUT before giving up.
 774 */
 775static int run_rsa(struct hfi1_devdata *dd, const char *who,
 776		   const u8 *signature)
 777{
 778	unsigned long timeout;
 779	u64 reg;
 780	u32 status;
 781	int ret = 0;
 782
 783	/* write the signature */
 784	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
 785
 786	/* initialize RSA */
 787	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
 788
 789	/*
 790	 * Make sure the engine is idle and insert a delay between the two
 791	 * writes to MISC_CFG_RSA_CMD.
 792	 */
 793	status = (read_csr(dd, MISC_CFG_FW_CTRL)
 794			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 795			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 796	if (status != RSA_STATUS_IDLE) {
 797		dd_dev_err(dd, "%s security engine not idle - giving up\n",
 798			   who);
 799		return -EBUSY;
 800	}
 801
 802	/* start RSA */
 803	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
 804
 805	/*
 806	 * Look for the result.
 807	 *
 808	 * The RSA engine is hooked up to two MISC errors.  The driver
 809	 * masks these errors as they do not respond to the standard
 810	 * error "clear down" mechanism.  Look for these errors here and
 811	 * clear them when possible.  This routine will exit with the
 812	 * errors of the current run still set.
 813	 *
 814	 * MISC_FW_AUTH_FAILED_ERR
 815	 *	Firmware authorization failed.  This can be cleared by
 816	 *	re-initializing the RSA engine, then clearing the status bit.
 817	 *	Do not re-init the RSA angine immediately after a successful
 818	 *	run - this will reset the current authorization.
 819	 *
 820	 * MISC_KEY_MISMATCH_ERR
 821	 *	Key does not match.  The only way to clear this is to load
 822	 *	a matching key then clear the status bit.  If this error
 823	 *	is raised, it will persist outside of this routine until a
 824	 *	matching key is loaded.
 825	 */
 826	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
 827	while (1) {
 828		status = (read_csr(dd, MISC_CFG_FW_CTRL)
 829			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 830			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 831
 832		if (status == RSA_STATUS_IDLE) {
 833			/* should not happen */
 834			dd_dev_err(dd, "%s firmware security bad idle state\n",
 835				   who);
 836			ret = -EINVAL;
 837			break;
 838		} else if (status == RSA_STATUS_DONE) {
 839			/* finished successfully */
 840			break;
 841		} else if (status == RSA_STATUS_FAILED) {
 842			/* finished unsuccessfully */
 843			ret = -EINVAL;
 844			break;
 845		}
 846		/* else still active */
 847
 848		if (time_after(jiffies, timeout)) {
 849			/*
 850			 * Timed out while active.  We can't reset the engine
 851			 * if it is stuck active, but run through the
 852			 * error code to see what error bits are set.
 853			 */
 854			dd_dev_err(dd, "%s firmware security time out\n", who);
 855			ret = -ETIMEDOUT;
 856			break;
 857		}
 858
 859		msleep(20);
 860	}
 861
 862	/*
 863	 * Arrive here on success or failure.  Clear all RSA engine
 864	 * errors.  All current errors will stick - the RSA logic is keeping
 865	 * error high.  All previous errors will clear - the RSA logic
 866	 * is not keeping the error high.
 867	 */
 868	write_csr(dd, MISC_ERR_CLEAR,
 869		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
 870		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
 871	/*
 872	 * All that is left are the current errors.  Print warnings on
 873	 * authorization failure details, if any.  Firmware authorization
 874	 * can be retried, so these are only warnings.
 875	 */
 876	reg = read_csr(dd, MISC_ERR_STATUS);
 877	if (ret) {
 878		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
 879			dd_dev_warn(dd, "%s firmware authorization failed\n",
 880				    who);
 881		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
 882			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
 883	}
 884
 885	return ret;
 886}
 887
 888static void load_security_variables(struct hfi1_devdata *dd,
 889				    struct firmware_details *fdet)
 890{
 891	/* Security variables a.  Write the modulus */
 892	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
 893	/* Security variables b.  Write the r2 */
 894	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
 895	/* Security variables c.  Write the mu */
 896	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
 897	/* Security variables d.  Write the header */
 898	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
 899				(u8 *)fdet->css_header,
 900				sizeof(struct css_header));
 901}
 902
 903/* return the 8051 firmware state */
 904static inline u32 get_firmware_state(struct hfi1_devdata *dd)
 905{
 906	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
 907
 908	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
 909				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
 910}
 911
 912/*
 913 * Wait until the firmware is up and ready to take host requests.
 914 * Return 0 on success, -ETIMEDOUT on timeout.
 915 */
 916int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
 917{
 918	unsigned long timeout;
 919
 920	/* in the simulator, the fake 8051 is always ready */
 921	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
 922		return 0;
 923
 924	timeout = msecs_to_jiffies(mstimeout) + jiffies;
 925	while (1) {
 926		if (get_firmware_state(dd) == 0xa0)	/* ready */
 927			return 0;
 928		if (time_after(jiffies, timeout))	/* timed out */
 929			return -ETIMEDOUT;
 930		usleep_range(1950, 2050); /* sleep 2ms-ish */
 931	}
 932}
 933
 934/*
 935 * Load the 8051 firmware.
 936 */
 937static int load_8051_firmware(struct hfi1_devdata *dd,
 938			      struct firmware_details *fdet)
 939{
 940	u64 reg;
 941	int ret;
 942	u8 ver_major;
 943	u8 ver_minor;
 944	u8 ver_patch;
 945
 946	/*
 947	 * DC Reset sequence
 948	 * Load DC 8051 firmware
 949	 */
 950	/*
 951	 * DC reset step 1: Reset DC8051
 952	 */
 953	reg = DC_DC8051_CFG_RST_M8051W_SMASK
 954		| DC_DC8051_CFG_RST_CRAM_SMASK
 955		| DC_DC8051_CFG_RST_DRAM_SMASK
 956		| DC_DC8051_CFG_RST_IRAM_SMASK
 957		| DC_DC8051_CFG_RST_SFR_SMASK;
 958	write_csr(dd, DC_DC8051_CFG_RST, reg);
 959
 960	/*
 961	 * DC reset step 2 (optional): Load 8051 data memory with link
 962	 * configuration
 963	 */
 964
 965	/*
 966	 * DC reset step 3: Load DC8051 firmware
 967	 */
 968	/* release all but the core reset */
 969	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
 970	write_csr(dd, DC_DC8051_CFG_RST, reg);
 971
 972	/* Firmware load step 1 */
 973	load_security_variables(dd, fdet);
 974
 975	/*
 976	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
 977	 */
 978	write_csr(dd, MISC_CFG_FW_CTRL, 0);
 979
 980	/* Firmware load steps 3-5 */
 981	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
 982			 fdet->firmware_len);
 983	if (ret)
 984		return ret;
 985
 986	/*
 987	 * DC reset step 4. Host starts the DC8051 firmware
 988	 */
 989	/*
 990	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
 991	 */
 992	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
 993
 994	/* Firmware load steps 7-10 */
 995	ret = run_rsa(dd, "8051", fdet->signature);
 996	if (ret)
 997		return ret;
 998
 999	/* clear all reset bits, releasing the 8051 */
1000	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1001
1002	/*
1003	 * DC reset step 5. Wait for firmware to be ready to accept host
1004	 * requests.
1005	 */
1006	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1007	if (ret) { /* timed out */
1008		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1009			   get_firmware_state(dd));
1010		return -ETIMEDOUT;
1011	}
1012
1013	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1014	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1015		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1016	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1017	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1018	if (ret != HCMD_SUCCESS) {
1019		dd_dev_err(dd,
1020			   "Failed to set host interface version, return 0x%x\n",
1021			   ret);
1022		return -EIO;
1023	}
1024
1025	return 0;
1026}
1027
1028/*
1029 * Write the SBus request register
1030 *
1031 * No need for masking - the arguments are sized exactly.
1032 */
1033void sbus_request(struct hfi1_devdata *dd,
1034		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1035{
1036	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1037		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1038		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1039		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1040		  ((u64)receiver_addr <<
1041		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1042}
1043
1044/*
1045 * Read a value from the SBus.
1046 *
1047 * Requires the caller to be in fast mode
1048 */
1049static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1050		     u32 data_in)
1051{
1052	u64 reg;
1053	int retries;
1054	int success = 0;
1055	u32 result = 0;
1056	u32 result_code = 0;
1057
1058	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1059
1060	for (retries = 0; retries < 100; retries++) {
1061		usleep_range(1000, 1200); /* arbitrary */
1062		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1063		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1064				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1065		if (result_code != SBUS_READ_COMPLETE)
1066			continue;
1067
1068		success = 1;
1069		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1070			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1071		break;
1072	}
1073
1074	if (!success) {
1075		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1076			   result_code);
1077	}
1078
1079	return result;
1080}
1081
1082/*
1083 * Turn off the SBus and fabric serdes spicos.
1084 *
1085 * + Must be called with Sbus fast mode turned on.
1086 * + Must be called after fabric serdes broadcast is set up.
1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088 *   when using MISC_CFG_FW_CTRL.
1089 */
1090static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1091{
1092	/* only needed on A0 */
1093	if (!is_ax(dd))
1094		return;
1095
1096	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1097		    flags & SPICO_SBUS ? " SBus" : "",
1098		    flags & SPICO_FABRIC ? " fabric" : "");
1099
1100	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1101	/* disable SBus spico */
1102	if (flags & SPICO_SBUS)
1103		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1104			     WRITE_SBUS_RECEIVER, 0x00000040);
1105
1106	/* disable the fabric serdes spicos */
1107	if (flags & SPICO_FABRIC)
1108		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1109			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1110	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1111}
1112
1113/*
1114 * Reset all of the fabric serdes for this HFI in preparation to take the
1115 * link to Polling.
1116 *
1117 * To do a reset, we need to write to the serdes registers.  Unfortunately,
1118 * the fabric serdes download to the other HFI on the ASIC will have turned
1119 * off the firmware validation on this HFI.  This means we can't write to the
1120 * registers to reset the serdes.  Work around this by performing a complete
1121 * re-download and validation of the fabric serdes firmware.  This, as a
1122 * by-product, will reset the serdes.  NOTE: the re-download requires that
1123 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1124 * serdes.  This routine is called at the point where the link is Offline and
1125 * is getting ready to go to Polling.
1126 */
1127void fabric_serdes_reset(struct hfi1_devdata *dd)
1128{
1129	int ret;
1130
1131	if (!fw_fabric_serdes_load)
1132		return;
1133
1134	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1135	if (ret) {
1136		dd_dev_err(dd,
1137			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1138		return;
1139	}
1140	set_sbus_fast_mode(dd);
1141
1142	if (is_ax(dd)) {
1143		/* A0 serdes do not work with a re-download */
1144		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1145
1146		/* place SerDes in reset and disable SPICO */
1147		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1148		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1149		udelay(1);
1150		/* remove SerDes reset */
1151		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1152		/* turn SPICO enable on */
1153		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1154	} else {
1155		turn_off_spicos(dd, SPICO_FABRIC);
1156		/*
1157		 * No need for firmware retry - what to download has already
1158		 * been decided.
1159		 * No need to pay attention to the load return - the only
1160		 * failure is a validation failure, which has already been
1161		 * checked by the initial download.
1162		 */
1163		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1164	}
1165
1166	clear_sbus_fast_mode(dd);
1167	release_chip_resource(dd, CR_SBUS);
1168}
1169
1170/* Access to the SBus in this routine should probably be serialized */
1171int sbus_request_slow(struct hfi1_devdata *dd,
1172		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1173{
1174	u64 reg, count = 0;
1175
1176	/* make sure fast mode is clear */
1177	clear_sbus_fast_mode(dd);
1178
1179	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1180	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1181		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1182	/* Wait for both DONE and RCV_DATA_VALID to go high */
1183	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1184	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1185		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1186		if (count++ >= SBUS_MAX_POLL_COUNT) {
1187			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1188			/*
1189			 * If the loop has timed out, we are OK if DONE bit
1190			 * is set and RCV_DATA_VALID and EXECUTE counters
1191			 * are the same. If not, we cannot proceed.
1192			 */
1193			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1194			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1195			     SBUS_COUNTER(counts, EXECUTE)))
1196				break;
1197			return -ETIMEDOUT;
1198		}
1199		udelay(1);
1200		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1201	}
1202	count = 0;
1203	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1204	/* Wait for DONE to clear after EXECUTE is cleared */
1205	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1206	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1207		if (count++ >= SBUS_MAX_POLL_COUNT)
1208			return -ETIME;
1209		udelay(1);
1210		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1211	}
1212	return 0;
1213}
1214
1215static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1216				       struct firmware_details *fdet)
1217{
1218	int i, err;
1219	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1220
1221	dd_dev_info(dd, "Downloading fabric firmware\n");
1222
1223	/* step 1: load security variables */
1224	load_security_variables(dd, fdet);
1225	/* step 2: place SerDes in reset and disable SPICO */
1226	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1227	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1228	udelay(1);
1229	/* step 3:  remove SerDes reset */
1230	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1231	/* step 4: assert IMEM override */
1232	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1233	/* step 5: download SerDes machine code */
1234	for (i = 0; i < fdet->firmware_len; i += 4) {
1235		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1236			     *(u32 *)&fdet->firmware_ptr[i]);
1237	}
1238	/* step 6: IMEM override off */
1239	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1240	/* step 7: turn ECC on */
1241	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1242
1243	/* steps 8-11: run the RSA engine */
1244	err = run_rsa(dd, "fabric serdes", fdet->signature);
1245	if (err)
1246		return err;
1247
1248	/* step 12: turn SPICO enable on */
1249	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1250	/* step 13: enable core hardware interrupts */
1251	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1252
1253	return 0;
1254}
1255
1256static int load_sbus_firmware(struct hfi1_devdata *dd,
1257			      struct firmware_details *fdet)
1258{
1259	int i, err;
1260	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1261
1262	dd_dev_info(dd, "Downloading SBus firmware\n");
1263
1264	/* step 1: load security variables */
1265	load_security_variables(dd, fdet);
1266	/* step 2: place SPICO into reset and enable off */
1267	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1268	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1270	/* step 4: set starting IMEM address for burst download */
1271	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1272	/* step 5: download the SBus Master machine code */
1273	for (i = 0; i < fdet->firmware_len; i += 4) {
1274		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1275			     *(u32 *)&fdet->firmware_ptr[i]);
1276	}
1277	/* step 6: set IMEM_CNTL_EN off */
1278	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1279	/* step 7: turn ECC on */
1280	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1281
1282	/* steps 8-11: run the RSA engine */
1283	err = run_rsa(dd, "SBus", fdet->signature);
1284	if (err)
1285		return err;
1286
1287	/* step 12: set SPICO_ENABLE on */
1288	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1289
1290	return 0;
1291}
1292
1293static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1294				     struct firmware_details *fdet)
1295{
1296	int i;
1297	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1298
1299	dd_dev_info(dd, "Downloading PCIe firmware\n");
1300
1301	/* step 1: load security variables */
1302	load_security_variables(dd, fdet);
1303	/* step 2: assert single step (halts the SBus Master spico) */
1304	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1305	/* step 3: enable XDMEM access */
1306	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1307	/* step 4: load firmware into SBus Master XDMEM */
1308	/*
1309	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310	 * we only need to pick up the bytes and write them
1311	 */
1312	for (i = 0; i < fdet->firmware_len; i += 4) {
1313		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1314			     *(u32 *)&fdet->firmware_ptr[i]);
1315	}
1316	/* step 5: disable XDMEM access */
1317	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1318	/* step 6: allow SBus Spico to run */
1319	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1320
1321	/*
1322	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1323	 * be swapped
1324	 */
1325	return run_rsa(dd, "PCIe serdes", fdet->signature);
1326}
1327
1328/*
1329 * Set the given broadcast values on the given list of devices.
1330 */
1331static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1332				 const u8 *addrs, int count)
1333{
1334	while (--count >= 0) {
1335		/*
1336		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337		 * defaults for everything else.  Do not read-modify-write,
1338		 * per instruction from the manufacturer.
1339		 *
1340		 * Register 0xfd:
1341		 *	bits    what
1342		 *	-----	---------------------------------
1343		 *	  0	IGNORE_BROADCAST  (default 0)
1344		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1345		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1346		 */
1347		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1348			     (u32)bg1 << 4 | (u32)bg2 << 16);
1349	}
1350}
1351
1352int acquire_hw_mutex(struct hfi1_devdata *dd)
1353{
1354	unsigned long timeout;
1355	int try = 0;
1356	u8 mask = 1 << dd->hfi1_id;
1357	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1358
1359	if (user == mask) {
1360		dd_dev_info(dd,
1361			    "Hardware mutex already acquired, mutex mask %u\n",
1362			    (u32)mask);
1363		return 0;
1364	}
1365
1366retry:
1367	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1368	while (1) {
1369		write_csr(dd, ASIC_CFG_MUTEX, mask);
1370		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1371		if (user == mask)
1372			return 0; /* success */
1373		if (time_after(jiffies, timeout))
1374			break; /* timed out */
1375		msleep(20);
1376	}
1377
1378	/* timed out */
1379	dd_dev_err(dd,
1380		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1382
1383	if (try == 0) {
1384		/* break mutex and retry */
1385		write_csr(dd, ASIC_CFG_MUTEX, 0);
1386		try++;
1387		goto retry;
1388	}
1389
1390	return -EBUSY;
1391}
1392
1393void release_hw_mutex(struct hfi1_devdata *dd)
1394{
1395	u8 mask = 1 << dd->hfi1_id;
1396	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397
1398	if (user != mask)
1399		dd_dev_warn(dd,
1400			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401			    (u32)user, (u32)mask);
1402	else
1403		write_csr(dd, ASIC_CFG_MUTEX, 0);
1404}
1405
1406/* return the given resource bit(s) as a mask for the given HFI */
1407static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1408{
1409	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1410}
1411
1412static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1413				       const char *func)
1414{
1415	dd_dev_err(dd,
1416		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1417		   func);
1418}
1419
1420/*
1421 * Acquire access to a chip resource.
1422 *
1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1424 */
1425static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1426{
1427	u64 scratch0, all_bits, my_bit;
1428	int ret;
1429
1430	if (resource & CR_DYN_MASK) {
1431		/* a dynamic resource is in use if either HFI has set the bit */
1432		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1433		    (resource & (CR_I2C1 | CR_I2C2))) {
1434			/* discrete devices must serialize across both chains */
1435			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1436					resource_mask(1, CR_I2C1 | CR_I2C2);
1437		} else {
1438			all_bits = resource_mask(0, resource) |
1439						resource_mask(1, resource);
1440		}
1441		my_bit = resource_mask(dd->hfi1_id, resource);
1442	} else {
1443		/* non-dynamic resources are not split between HFIs */
1444		all_bits = resource;
1445		my_bit = resource;
1446	}
1447
1448	/* lock against other callers within the driver wanting a resource */
1449	mutex_lock(&dd->asic_data->asic_resource_mutex);
1450
1451	ret = acquire_hw_mutex(dd);
1452	if (ret) {
1453		fail_mutex_acquire_message(dd, __func__);
1454		ret = -EIO;
1455		goto done;
1456	}
1457
1458	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1459	if (scratch0 & all_bits) {
1460		ret = -EBUSY;
1461	} else {
1462		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1463		/* force write to be visible to other HFI on another OS */
1464		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1465	}
1466
1467	release_hw_mutex(dd);
1468
1469done:
1470	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1471	return ret;
1472}
1473
1474/*
1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
1476 * the resource to become available.
1477 *
1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1479 * acquire failed.
1480 */
1481int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1482{
1483	unsigned long timeout;
1484	int ret;
1485
1486	timeout = jiffies + msecs_to_jiffies(mswait);
1487	while (1) {
1488		ret = __acquire_chip_resource(dd, resource);
1489		if (ret != -EBUSY)
1490			return ret;
1491		/* resource is busy, check our timeout */
1492		if (time_after_eq(jiffies, timeout))
1493			return -EBUSY;
1494		usleep_range(80, 120);	/* arbitrary delay */
1495	}
1496}
1497
1498/*
1499 * Release access to a chip resource
1500 */
1501void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1502{
1503	u64 scratch0, bit;
1504
1505	/* only dynamic resources should ever be cleared */
1506	if (!(resource & CR_DYN_MASK)) {
1507		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1508			   resource);
1509		return;
1510	}
1511	bit = resource_mask(dd->hfi1_id, resource);
1512
1513	/* lock against other callers within the driver wanting a resource */
1514	mutex_lock(&dd->asic_data->asic_resource_mutex);
1515
1516	if (acquire_hw_mutex(dd)) {
1517		fail_mutex_acquire_message(dd, __func__);
1518		goto done;
1519	}
1520
1521	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1522	if ((scratch0 & bit) != 0) {
1523		scratch0 &= ~bit;
1524		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1525		/* force write to be visible to other HFI on another OS */
1526		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1527	} else {
1528		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1529			    __func__, dd->hfi1_id, resource);
1530	}
1531
1532	release_hw_mutex(dd);
1533
1534done:
1535	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1536}
1537
1538/*
1539 * Return true if resource is set, false otherwise.  Print a warning
1540 * if not set and a function is supplied.
1541 */
1542bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1543			 const char *func)
1544{
1545	u64 scratch0, bit;
1546
1547	if (resource & CR_DYN_MASK)
1548		bit = resource_mask(dd->hfi1_id, resource);
1549	else
1550		bit = resource;
1551
1552	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1553	if ((scratch0 & bit) == 0) {
1554		if (func)
1555			dd_dev_warn(dd,
1556				    "%s: id %d, resource 0x%x, not acquired!\n",
1557				    func, dd->hfi1_id, resource);
1558		return false;
1559	}
1560	return true;
1561}
1562
1563static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1564{
1565	u64 scratch0;
1566
1567	/* lock against other callers within the driver wanting a resource */
1568	mutex_lock(&dd->asic_data->asic_resource_mutex);
1569
1570	if (acquire_hw_mutex(dd)) {
1571		fail_mutex_acquire_message(dd, func);
1572		goto done;
1573	}
1574
1575	/* clear all dynamic access bits for this HFI */
1576	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1577	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1578	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1579	/* force write to be visible to other HFI on another OS */
1580	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1581
1582	release_hw_mutex(dd);
1583
1584done:
1585	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1586}
1587
1588void init_chip_resources(struct hfi1_devdata *dd)
1589{
1590	/* clear any holds left by us */
1591	clear_chip_resources(dd, __func__);
1592}
1593
1594void finish_chip_resources(struct hfi1_devdata *dd)
1595{
1596	/* clear any holds left by us */
1597	clear_chip_resources(dd, __func__);
1598}
1599
1600void set_sbus_fast_mode(struct hfi1_devdata *dd)
1601{
1602	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1603		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1604}
1605
1606void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1607{
1608	u64 reg, count = 0;
1609
1610	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1611	while (SBUS_COUNTER(reg, EXECUTE) !=
1612	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1613		if (count++ >= SBUS_MAX_POLL_COUNT)
1614			break;
1615		udelay(1);
1616		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1617	}
1618	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1619}
1620
1621int load_firmware(struct hfi1_devdata *dd)
1622{
1623	int ret;
1624
1625	if (fw_fabric_serdes_load) {
1626		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1627		if (ret)
1628			return ret;
1629
1630		set_sbus_fast_mode(dd);
1631
1632		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1633				     fabric_serdes_broadcast[dd->hfi1_id],
1634				     fabric_serdes_addrs[dd->hfi1_id],
1635				     NUM_FABRIC_SERDES);
1636		turn_off_spicos(dd, SPICO_FABRIC);
1637		do {
1638			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1639		} while (retry_firmware(dd, ret));
1640
1641		clear_sbus_fast_mode(dd);
1642		release_chip_resource(dd, CR_SBUS);
1643		if (ret)
1644			return ret;
1645	}
1646
1647	if (fw_8051_load) {
1648		do {
1649			ret = load_8051_firmware(dd, &fw_8051);
1650		} while (retry_firmware(dd, ret));
1651		if (ret)
1652			return ret;
1653	}
1654
1655	dump_fw_version(dd);
1656	return 0;
1657}
1658
1659int hfi1_firmware_init(struct hfi1_devdata *dd)
1660{
1661	/* only RTL can use these */
1662	if (dd->icode != ICODE_RTL_SILICON) {
1663		fw_fabric_serdes_load = 0;
1664		fw_pcie_serdes_load = 0;
1665		fw_sbus_load = 0;
1666	}
1667
1668	/* no 8051 or QSFP on simulator */
1669	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1670		fw_8051_load = 0;
1671
1672	if (!fw_8051_name) {
1673		if (dd->icode == ICODE_RTL_SILICON)
1674			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1675		else
1676			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1677	}
1678	if (!fw_fabric_serdes_name)
1679		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1680	if (!fw_sbus_name)
1681		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1682	if (!fw_pcie_serdes_name)
1683		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1684
1685	return obtain_firmware(dd);
1686}
1687
1688/*
1689 * This function is a helper function for parse_platform_config(...) and
1690 * does not check for validity of the platform configuration cache
1691 * (because we know it is invalid as we are building up the cache).
1692 * As such, this should not be called from anywhere other than
1693 * parse_platform_config
1694 */
1695static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1696{
1697	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1698	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1699
1700	if (!system_table)
1701		return -EINVAL;
1702
1703	meta_ver_meta =
1704	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1705	+ SYSTEM_TABLE_META_VERSION);
1706
1707	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1708	ver_start = meta_ver_meta & mask;
1709
1710	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1711
1712	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1713	ver_len = meta_ver_meta & mask;
1714
1715	ver_start /= 8;
1716	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1717
1718	if (meta_ver < 4) {
1719		dd_dev_info(
1720			dd, "%s:Please update platform config\n", __func__);
1721		return -EINVAL;
1722	}
1723	return 0;
1724}
1725
1726int parse_platform_config(struct hfi1_devdata *dd)
1727{
1728	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729	struct hfi1_pportdata *ppd = dd->pport;
1730	u32 *ptr = NULL;
1731	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1732	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1733	int ret = -EINVAL; /* assume failure */
1734
1735	/*
1736	 * For integrated devices that did not fall back to the default file,
1737	 * the SI tuning information for active channels is acquired from the
1738	 * scratch register bitmap, thus there is no platform config to parse.
1739	 * Skip parsing in these situations.
1740	 */
1741	if (ppd->config_from_scratch)
1742		return 0;
1743
1744	if (!dd->platform_config.data) {
1745		dd_dev_err(dd, "%s: Missing config file\n", __func__);
1746		ret = -EINVAL;
1747		goto bail;
1748	}
1749	ptr = (u32 *)dd->platform_config.data;
1750
1751	magic_num = *ptr;
1752	ptr++;
1753	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1754		dd_dev_err(dd, "%s: Bad config file\n", __func__);
1755		ret = -EINVAL;
1756		goto bail;
1757	}
1758
1759	/* Field is file size in DWORDs */
1760	file_length = (*ptr) * 4;
1761
1762	/*
1763	 * Length can't be larger than partition size. Assume platform
1764	 * config format version 4 is being used. Interpret the file size
1765	 * field as header instead by not moving the pointer.
1766	 */
1767	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1768		dd_dev_info(dd,
1769			    "%s:File length out of bounds, using alternative format\n",
1770			    __func__);
1771		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1772	} else {
1773		ptr++;
1774	}
1775
1776	if (file_length > dd->platform_config.size) {
1777		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1778			    __func__);
1779		ret = -EINVAL;
1780		goto bail;
1781	} else if (file_length < dd->platform_config.size) {
1782		dd_dev_info(dd,
1783			    "%s:File claims to be smaller than read size, continuing\n",
1784			    __func__);
1785	}
1786	/* exactly equal, perfection */
1787
1788	/*
1789	 * In both cases where we proceed, using the self-reported file length
1790	 * is the safer option. In case of old format a predefined value is
1791	 * being used.
1792	 */
1793	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1794		header1 = *ptr;
1795		header2 = *(ptr + 1);
1796		if (header1 != ~header2) {
1797			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1798				   __func__, (ptr - (u32 *)
1799					      dd->platform_config.data));
1800			ret = -EINVAL;
1801			goto bail;
1802		}
1803
1804		record_idx = *ptr &
1805			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1806
1807		table_length_dwords = (*ptr >>
1808				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1809		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1810
1811		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1812			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1813
1814		/* Done with this set of headers */
1815		ptr += 2;
1816
1817		if (record_idx) {
1818			/* data table */
1819			switch (table_type) {
1820			case PLATFORM_CONFIG_SYSTEM_TABLE:
1821				pcfgcache->config_tables[table_type].num_table =
1822									1;
1823				ret = check_meta_version(dd, ptr);
1824				if (ret)
1825					goto bail;
1826				break;
1827			case PLATFORM_CONFIG_PORT_TABLE:
1828				pcfgcache->config_tables[table_type].num_table =
1829									2;
1830				break;
1831			case PLATFORM_CONFIG_RX_PRESET_TABLE:
 
1832			case PLATFORM_CONFIG_TX_PRESET_TABLE:
 
1833			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
 
1834			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1835				pcfgcache->config_tables[table_type].num_table =
1836							table_length_dwords;
1837				break;
1838			default:
1839				dd_dev_err(dd,
1840					   "%s: Unknown data table %d, offset %ld\n",
1841					   __func__, table_type,
1842					   (ptr - (u32 *)
1843					    dd->platform_config.data));
1844				ret = -EINVAL;
1845				goto bail; /* We don't trust this file now */
1846			}
1847			pcfgcache->config_tables[table_type].table = ptr;
1848		} else {
1849			/* metadata table */
1850			switch (table_type) {
1851			case PLATFORM_CONFIG_SYSTEM_TABLE:
 
1852			case PLATFORM_CONFIG_PORT_TABLE:
 
1853			case PLATFORM_CONFIG_RX_PRESET_TABLE:
 
1854			case PLATFORM_CONFIG_TX_PRESET_TABLE:
 
1855			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
 
1856			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1857				break;
1858			default:
1859				dd_dev_err(dd,
1860					   "%s: Unknown meta table %d, offset %ld\n",
1861					   __func__, table_type,
1862					   (ptr -
1863					    (u32 *)dd->platform_config.data));
1864				ret = -EINVAL;
1865				goto bail; /* We don't trust this file now */
1866			}
1867			pcfgcache->config_tables[table_type].table_metadata =
1868									ptr;
1869		}
1870
1871		/* Calculate and check table crc */
1872		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1873			       (table_length_dwords * 4));
1874		crc ^= ~(u32)0;
1875
1876		/* Jump the table */
1877		ptr += table_length_dwords;
1878		if (crc != *ptr) {
1879			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1880				   __func__, (ptr -
1881				   (u32 *)dd->platform_config.data));
1882			ret = -EINVAL;
1883			goto bail;
1884		}
1885		/* Jump the CRC DWORD */
1886		ptr++;
1887	}
1888
1889	pcfgcache->cache_valid = 1;
1890	return 0;
1891bail:
1892	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1893	return ret;
1894}
1895
1896static void get_integrated_platform_config_field(
1897		struct hfi1_devdata *dd,
1898		enum platform_config_table_type_encoding table_type,
1899		int field_index, u32 *data)
1900{
1901	struct hfi1_pportdata *ppd = dd->pport;
1902	u8 *cache = ppd->qsfp_info.cache;
1903	u32 tx_preset = 0;
1904
1905	switch (table_type) {
1906	case PLATFORM_CONFIG_SYSTEM_TABLE:
1907		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1908			*data = ppd->max_power_class;
1909		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1910			*data = ppd->default_atten;
1911		break;
1912	case PLATFORM_CONFIG_PORT_TABLE:
1913		if (field_index == PORT_TABLE_PORT_TYPE)
1914			*data = ppd->port_type;
1915		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1916			*data = ppd->local_atten;
1917		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1918			*data = ppd->remote_atten;
1919		break;
1920	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1921		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1922			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1923				QSFP_RX_CDR_APPLY_SHIFT;
1924		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1925			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1926				QSFP_RX_EMP_APPLY_SHIFT;
1927		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1928			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1929				QSFP_RX_AMP_APPLY_SHIFT;
1930		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1931			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1932				QSFP_RX_CDR_SHIFT;
1933		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1934			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1935				QSFP_RX_EMP_SHIFT;
1936		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1937			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1938				QSFP_RX_AMP_SHIFT;
1939		break;
1940	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1941		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1942			tx_preset = ppd->tx_preset_eq;
1943		else
1944			tx_preset = ppd->tx_preset_noeq;
1945		if (field_index == TX_PRESET_TABLE_PRECUR)
1946			*data = (tx_preset & TX_PRECUR_SMASK) >>
1947				TX_PRECUR_SHIFT;
1948		else if (field_index == TX_PRESET_TABLE_ATTN)
1949			*data = (tx_preset & TX_ATTN_SMASK) >>
1950				TX_ATTN_SHIFT;
1951		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1952			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1953				TX_POSTCUR_SHIFT;
1954		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1955			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1956				QSFP_TX_CDR_APPLY_SHIFT;
1957		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1958			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1959				QSFP_TX_EQ_APPLY_SHIFT;
1960		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1961			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1962				QSFP_TX_CDR_SHIFT;
1963		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1964			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1965				QSFP_TX_EQ_SHIFT;
1966		break;
1967	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1968	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1969	default:
1970		break;
1971	}
1972}
1973
1974static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1975					  int field, u32 *field_len_bits,
1976					  u32 *field_start_bits)
1977{
1978	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1979	u32 *src_ptr = NULL;
1980
1981	if (!pcfgcache->cache_valid)
1982		return -EINVAL;
1983
1984	switch (table) {
1985	case PLATFORM_CONFIG_SYSTEM_TABLE:
 
1986	case PLATFORM_CONFIG_PORT_TABLE:
 
1987	case PLATFORM_CONFIG_RX_PRESET_TABLE:
 
1988	case PLATFORM_CONFIG_TX_PRESET_TABLE:
 
1989	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
 
1990	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1991		if (field && field < platform_config_table_limits[table])
1992			src_ptr =
1993			pcfgcache->config_tables[table].table_metadata + field;
1994		break;
1995	default:
1996		dd_dev_info(dd, "%s: Unknown table\n", __func__);
1997		break;
1998	}
1999
2000	if (!src_ptr)
2001		return -EINVAL;
2002
2003	if (field_start_bits)
2004		*field_start_bits = *src_ptr &
2005		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2006
2007	if (field_len_bits)
2008		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2009		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2010
2011	return 0;
2012}
2013
2014/* This is the central interface to getting data out of the platform config
2015 * file. It depends on parse_platform_config() having populated the
2016 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2017 * validate the sanity of the cache.
2018 *
2019 * The non-obvious parameters:
2020 * @table_index: Acts as a look up key into which instance of the tables the
2021 * relevant field is fetched from.
2022 *
2023 * This applies to the data tables that have multiple instances. The port table
2024 * is an exception to this rule as each HFI only has one port and thus the
2025 * relevant table can be distinguished by hfi_id.
2026 *
2027 * @data: pointer to memory that will be populated with the field requested.
2028 * @len: length of memory pointed by @data in bytes.
2029 */
2030int get_platform_config_field(struct hfi1_devdata *dd,
2031			      enum platform_config_table_type_encoding
2032			      table_type, int table_index, int field_index,
2033			      u32 *data, u32 len)
2034{
2035	int ret = 0, wlen = 0, seek = 0;
2036	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2037	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2038	struct hfi1_pportdata *ppd = dd->pport;
2039
2040	if (data)
2041		memset(data, 0, len);
2042	else
2043		return -EINVAL;
2044
2045	if (ppd->config_from_scratch) {
2046		/*
2047		 * Use saved configuration from ppd for integrated platforms
2048		 */
2049		get_integrated_platform_config_field(dd, table_type,
2050						     field_index, data);
2051		return 0;
2052	}
2053
2054	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2055					     &field_len_bits,
2056					     &field_start_bits);
2057	if (ret)
2058		return -EINVAL;
2059
2060	/* Convert length to bits */
2061	len *= 8;
2062
2063	/* Our metadata function checked cache_valid and field_index for us */
2064	switch (table_type) {
2065	case PLATFORM_CONFIG_SYSTEM_TABLE:
2066		src_ptr = pcfgcache->config_tables[table_type].table;
2067
2068		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2069			if (len < field_len_bits)
2070				return -EINVAL;
2071
2072			seek = field_start_bits / 8;
2073			wlen = field_len_bits / 8;
2074
2075			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2076
2077			/*
2078			 * We expect the field to be byte aligned and whole byte
2079			 * lengths if we are here
2080			 */
2081			memcpy(data, src_ptr, wlen);
2082			return 0;
2083		}
2084		break;
2085	case PLATFORM_CONFIG_PORT_TABLE:
2086		/* Port table is 4 DWORDS */
2087		src_ptr = dd->hfi1_id ?
2088			pcfgcache->config_tables[table_type].table + 4 :
2089			pcfgcache->config_tables[table_type].table;
2090		break;
2091	case PLATFORM_CONFIG_RX_PRESET_TABLE:
 
2092	case PLATFORM_CONFIG_TX_PRESET_TABLE:
 
2093	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
 
2094	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2095		src_ptr = pcfgcache->config_tables[table_type].table;
2096
2097		if (table_index <
2098			pcfgcache->config_tables[table_type].num_table)
2099			src_ptr += table_index;
2100		else
2101			src_ptr = NULL;
2102		break;
2103	default:
2104		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2105		break;
2106	}
2107
2108	if (!src_ptr || len < field_len_bits)
2109		return -EINVAL;
2110
2111	src_ptr += (field_start_bits / 32);
2112	*data = (*src_ptr >> (field_start_bits % 32)) &
2113			((1 << field_len_bits) - 1);
2114
2115	return 0;
2116}
2117
2118/*
2119 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2120 * to the SBus firmware is needed before updating the PCIe firmware.
2121 *
2122 * Note: caller must be holding the SBus resource.
2123 */
2124int load_pcie_firmware(struct hfi1_devdata *dd)
2125{
2126	int ret = 0;
2127
2128	/* both firmware loads below use the SBus */
2129	set_sbus_fast_mode(dd);
2130
2131	if (fw_sbus_load) {
2132		turn_off_spicos(dd, SPICO_SBUS);
2133		do {
2134			ret = load_sbus_firmware(dd, &fw_sbus);
2135		} while (retry_firmware(dd, ret));
2136		if (ret)
2137			goto done;
2138	}
2139
2140	if (fw_pcie_serdes_load) {
2141		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2142		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2143				     pcie_serdes_broadcast[dd->hfi1_id],
2144				     pcie_serdes_addrs[dd->hfi1_id],
2145				     NUM_PCIE_SERDES);
2146		do {
2147			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2148		} while (retry_firmware(dd, ret));
2149		if (ret)
2150			goto done;
2151	}
2152
2153done:
2154	clear_sbus_fast_mode(dd);
2155
2156	return ret;
2157}
2158
2159/*
2160 * Read the GUID from the hardware, store it in dd.
2161 */
2162void read_guid(struct hfi1_devdata *dd)
2163{
2164	/* Take the DC out of reset to get a valid GUID value */
2165	write_csr(dd, CCE_DC_CTRL, 0);
2166	(void)read_csr(dd, CCE_DC_CTRL);
2167
2168	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2169	dd_dev_info(dd, "GUID %llx",
2170		    (unsigned long long)dd->base_guid);
2171}
2172
2173/* read and display firmware version info */
2174static void dump_fw_version(struct hfi1_devdata *dd)
2175{
2176	u32 pcie_vers[NUM_PCIE_SERDES];
2177	u32 fabric_vers[NUM_FABRIC_SERDES];
2178	u32 sbus_vers;
2179	int i;
2180	int all_same;
2181	int ret;
2182	u8 rcv_addr;
2183
2184	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2185	if (ret) {
2186		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2187		return;
2188	}
2189
2190	/* set fast mode */
2191	set_sbus_fast_mode(dd);
2192
2193	/* read version for SBus Master */
2194	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2195	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2196	/* wait for interrupt to be processed */
2197	usleep_range(10000, 11000);
2198	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2199	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2200
2201	/* read version for PCIe SerDes */
2202	all_same = 1;
2203	pcie_vers[0] = 0;
2204	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2205		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2206		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2207		/* wait for interrupt to be processed */
2208		usleep_range(10000, 11000);
2209		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2210		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2211			all_same = 0;
2212	}
2213
2214	if (all_same) {
2215		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2216			    pcie_vers[0]);
2217	} else {
2218		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2219		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2220			dd_dev_info(dd,
2221				    "PCIe SerDes lane %d firmware version 0x%x\n",
2222				    i, pcie_vers[i]);
2223		}
2224	}
2225
2226	/* read version for fabric SerDes */
2227	all_same = 1;
2228	fabric_vers[0] = 0;
2229	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2230		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2231		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2232		/* wait for interrupt to be processed */
2233		usleep_range(10000, 11000);
2234		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2235		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2236			all_same = 0;
2237	}
2238
2239	if (all_same) {
2240		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2241			    fabric_vers[0]);
2242	} else {
2243		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2244		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2245			dd_dev_info(dd,
2246				    "Fabric SerDes lane %d firmware version 0x%x\n",
2247				    i, fabric_vers[i]);
2248		}
2249	}
2250
2251	clear_sbus_fast_mode(dd);
2252	release_chip_resource(dd, CR_SBUS);
2253}
v4.17
 
   1/*
   2 * Copyright(c) 2015 - 2017 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <linux/firmware.h>
  49#include <linux/mutex.h>
  50#include <linux/module.h>
  51#include <linux/delay.h>
  52#include <linux/crc32.h>
  53
  54#include "hfi.h"
  55#include "trace.h"
  56
  57/*
  58 * Make it easy to toggle firmware file name and if it gets loaded by
  59 * editing the following. This may be something we do while in development
  60 * but not necessarily something a user would ever need to use.
  61 */
  62#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
  63#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
  64#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
  65#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
  66#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
  67#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
  68#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
  69#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
  70#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
  71
  72MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
  73MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
  74MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
  75MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
  76
  77static uint fw_8051_load = 1;
  78static uint fw_fabric_serdes_load = 1;
  79static uint fw_pcie_serdes_load = 1;
  80static uint fw_sbus_load = 1;
  81
  82/* Firmware file names get set in hfi1_firmware_init() based on the above */
  83static char *fw_8051_name;
  84static char *fw_fabric_serdes_name;
  85static char *fw_sbus_name;
  86static char *fw_pcie_serdes_name;
  87
  88#define SBUS_MAX_POLL_COUNT 100
  89#define SBUS_COUNTER(reg, name) \
  90	(((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
  91	 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
  92
  93/*
  94 * Firmware security header.
  95 */
  96struct css_header {
  97	u32 module_type;
  98	u32 header_len;
  99	u32 header_version;
 100	u32 module_id;
 101	u32 module_vendor;
 102	u32 date;		/* BCD yyyymmdd */
 103	u32 size;		/* in DWORDs */
 104	u32 key_size;		/* in DWORDs */
 105	u32 modulus_size;	/* in DWORDs */
 106	u32 exponent_size;	/* in DWORDs */
 107	u32 reserved[22];
 108};
 109
 110/* expected field values */
 111#define CSS_MODULE_TYPE	   0x00000006
 112#define CSS_HEADER_LEN	   0x000000a1
 113#define CSS_HEADER_VERSION 0x00010000
 114#define CSS_MODULE_VENDOR  0x00008086
 115
 116#define KEY_SIZE      256
 117#define MU_SIZE		8
 118#define EXPONENT_SIZE	4
 119
 120/* size of platform configuration partition */
 121#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
 122
 123/* size of file of plaform configuration encoded in format version 4 */
 124#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
 125
 126/* the file itself */
 127struct firmware_file {
 128	struct css_header css_header;
 129	u8 modulus[KEY_SIZE];
 130	u8 exponent[EXPONENT_SIZE];
 131	u8 signature[KEY_SIZE];
 132	u8 firmware[];
 133};
 134
 135struct augmented_firmware_file {
 136	struct css_header css_header;
 137	u8 modulus[KEY_SIZE];
 138	u8 exponent[EXPONENT_SIZE];
 139	u8 signature[KEY_SIZE];
 140	u8 r2[KEY_SIZE];
 141	u8 mu[MU_SIZE];
 142	u8 firmware[];
 143};
 144
 145/* augmented file size difference */
 146#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
 147						sizeof(struct firmware_file))
 148
 149struct firmware_details {
 150	/* Linux core piece */
 151	const struct firmware *fw;
 152
 153	struct css_header *css_header;
 154	u8 *firmware_ptr;		/* pointer to binary data */
 155	u32 firmware_len;		/* length in bytes */
 156	u8 *modulus;			/* pointer to the modulus */
 157	u8 *exponent;			/* pointer to the exponent */
 158	u8 *signature;			/* pointer to the signature */
 159	u8 *r2;				/* pointer to r2 */
 160	u8 *mu;				/* pointer to mu */
 161	struct augmented_firmware_file dummy_header;
 162};
 163
 164/*
 165 * The mutex protects fw_state, fw_err, and all of the firmware_details
 166 * variables.
 167 */
 168static DEFINE_MUTEX(fw_mutex);
 169enum fw_state {
 170	FW_EMPTY,
 171	FW_TRY,
 172	FW_FINAL,
 173	FW_ERR
 174};
 175
 176static enum fw_state fw_state = FW_EMPTY;
 177static int fw_err;
 178static struct firmware_details fw_8051;
 179static struct firmware_details fw_fabric;
 180static struct firmware_details fw_pcie;
 181static struct firmware_details fw_sbus;
 182
 183/* flags for turn_off_spicos() */
 184#define SPICO_SBUS   0x1
 185#define SPICO_FABRIC 0x2
 186#define ENABLE_SPICO_SMASK 0x1
 187
 188/* security block commands */
 189#define RSA_CMD_INIT  0x1
 190#define RSA_CMD_START 0x2
 191
 192/* security block status */
 193#define RSA_STATUS_IDLE   0x0
 194#define RSA_STATUS_ACTIVE 0x1
 195#define RSA_STATUS_DONE   0x2
 196#define RSA_STATUS_FAILED 0x3
 197
 198/* RSA engine timeout, in ms */
 199#define RSA_ENGINE_TIMEOUT 100 /* ms */
 200
 201/* hardware mutex timeout, in ms */
 202#define HM_TIMEOUT 10 /* ms */
 203
 204/* 8051 memory access timeout, in us */
 205#define DC8051_ACCESS_TIMEOUT 100 /* us */
 206
 207/* the number of fabric SerDes on the SBus */
 208#define NUM_FABRIC_SERDES 4
 209
 210/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
 211#define SBUS_READ_COMPLETE 0x4
 212
 213/* SBus fabric SerDes addresses, one set per HFI */
 214static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
 215	{ 0x01, 0x02, 0x03, 0x04 },
 216	{ 0x28, 0x29, 0x2a, 0x2b }
 217};
 218
 219/* SBus PCIe SerDes addresses, one set per HFI */
 220static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
 221	{ 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
 222	  0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
 223	{ 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
 224	  0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
 225};
 226
 227/* SBus PCIe PCS addresses, one set per HFI */
 228const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
 229	{ 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
 230	  0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
 231	{ 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
 232	  0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
 233};
 234
 235/* SBus fabric SerDes broadcast addresses, one per HFI */
 236static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
 237static const u8 all_fabric_serdes_broadcast = 0xe1;
 238
 239/* SBus PCIe SerDes broadcast addresses, one per HFI */
 240const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
 241static const u8 all_pcie_serdes_broadcast = 0xe0;
 242
 243static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
 244	0,
 245	SYSTEM_TABLE_MAX,
 246	PORT_TABLE_MAX,
 247	RX_PRESET_TABLE_MAX,
 248	TX_PRESET_TABLE_MAX,
 249	QSFP_ATTEN_TABLE_MAX,
 250	VARIABLE_SETTINGS_TABLE_MAX
 251};
 252
 253/* forwards */
 254static void dispose_one_firmware(struct firmware_details *fdet);
 255static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
 256				       struct firmware_details *fdet);
 257static void dump_fw_version(struct hfi1_devdata *dd);
 258
 259/*
 260 * Read a single 64-bit value from 8051 data memory.
 261 *
 262 * Expects:
 263 * o caller to have already set up data read, no auto increment
 264 * o caller to turn off read enable when finished
 265 *
 266 * The address argument is a byte offset.  Bits 0:2 in the address are
 267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
 268 * the lower bits are zero.
 269 *
 270 * Return 0 on success, -ENXIO on a read error (timeout).
 271 */
 272static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
 273{
 274	u64 reg;
 275	int count;
 276
 277	/* step 1: set the address, clear enable */
 278	reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 279			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
 280	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 281	/* step 2: enable */
 282	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
 283		  reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
 284
 285	/* wait until ACCESS_COMPLETED is set */
 286	count = 0;
 287	while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 288		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 289		    == 0) {
 290		count++;
 291		if (count > DC8051_ACCESS_TIMEOUT) {
 292			dd_dev_err(dd, "timeout reading 8051 data\n");
 293			return -ENXIO;
 294		}
 295		ndelay(10);
 296	}
 297
 298	/* gather the data */
 299	*result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
 300
 301	return 0;
 302}
 303
 304/*
 305 * Read 8051 data starting at addr, for len bytes.  Will read in 8-byte chunks.
 306 * Return 0 on success, -errno on error.
 307 */
 308int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
 309{
 310	unsigned long flags;
 311	u32 done;
 312	int ret = 0;
 313
 314	spin_lock_irqsave(&dd->dc8051_memlock, flags);
 315
 316	/* data read set-up, no auto-increment */
 317	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 318
 319	for (done = 0; done < len; addr += 8, done += 8, result++) {
 320		ret = __read_8051_data(dd, addr, result);
 321		if (ret)
 322			break;
 323	}
 324
 325	/* turn off read enable */
 326	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 327
 328	spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
 329
 330	return ret;
 331}
 332
 333/*
 334 * Write data or code to the 8051 code or data RAM.
 335 */
 336static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
 337		      const u8 *data, u32 len)
 338{
 339	u64 reg;
 340	u32 offset;
 341	int aligned, count;
 342
 343	/* check alignment */
 344	aligned = ((unsigned long)data & 0x7) == 0;
 345
 346	/* write set-up */
 347	reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
 348		| DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
 349	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
 350
 351	reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
 352			<< DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
 353		| DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
 354	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
 355
 356	/* write */
 357	for (offset = 0; offset < len; offset += 8) {
 358		int bytes = len - offset;
 359
 360		if (bytes < 8) {
 361			reg = 0;
 362			memcpy(&reg, &data[offset], bytes);
 363		} else if (aligned) {
 364			reg = *(u64 *)&data[offset];
 365		} else {
 366			memcpy(&reg, &data[offset], 8);
 367		}
 368		write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
 369
 370		/* wait until ACCESS_COMPLETED is set */
 371		count = 0;
 372		while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
 373		    & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
 374		    == 0) {
 375			count++;
 376			if (count > DC8051_ACCESS_TIMEOUT) {
 377				dd_dev_err(dd, "timeout writing 8051 data\n");
 378				return -ENXIO;
 379			}
 380			udelay(1);
 381		}
 382	}
 383
 384	/* turn off write access, auto increment (also sets to data access) */
 385	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
 386	write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
 387
 388	return 0;
 389}
 390
 391/* return 0 if values match, non-zero and complain otherwise */
 392static int invalid_header(struct hfi1_devdata *dd, const char *what,
 393			  u32 actual, u32 expected)
 394{
 395	if (actual == expected)
 396		return 0;
 397
 398	dd_dev_err(dd,
 399		   "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
 400		   what, expected, actual);
 401	return 1;
 402}
 403
 404/*
 405 * Verify that the static fields in the CSS header match.
 406 */
 407static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
 408{
 409	/* verify CSS header fields (most sizes are in DW, so add /4) */
 410	if (invalid_header(dd, "module_type", css->module_type,
 411			   CSS_MODULE_TYPE) ||
 412	    invalid_header(dd, "header_len", css->header_len,
 413			   (sizeof(struct firmware_file) / 4)) ||
 414	    invalid_header(dd, "header_version", css->header_version,
 415			   CSS_HEADER_VERSION) ||
 416	    invalid_header(dd, "module_vendor", css->module_vendor,
 417			   CSS_MODULE_VENDOR) ||
 418	    invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
 419	    invalid_header(dd, "modulus_size", css->modulus_size,
 420			   KEY_SIZE / 4) ||
 421	    invalid_header(dd, "exponent_size", css->exponent_size,
 422			   EXPONENT_SIZE / 4)) {
 423		return -EINVAL;
 424	}
 425	return 0;
 426}
 427
 428/*
 429 * Make sure there are at least some bytes after the prefix.
 430 */
 431static int payload_check(struct hfi1_devdata *dd, const char *name,
 432			 long file_size, long prefix_size)
 433{
 434	/* make sure we have some payload */
 435	if (prefix_size >= file_size) {
 436		dd_dev_err(dd,
 437			   "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
 438			   name, file_size, prefix_size);
 439		return -EINVAL;
 440	}
 441
 442	return 0;
 443}
 444
 445/*
 446 * Request the firmware from the system.  Extract the pieces and fill in
 447 * fdet.  If successful, the caller will need to call dispose_one_firmware().
 448 * Returns 0 on success, -ERRNO on error.
 449 */
 450static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
 451			       struct firmware_details *fdet)
 452{
 453	struct css_header *css;
 454	int ret;
 455
 456	memset(fdet, 0, sizeof(*fdet));
 457
 458	ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
 459	if (ret) {
 460		dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
 461			    name, ret);
 462		return ret;
 463	}
 464
 465	/* verify the firmware */
 466	if (fdet->fw->size < sizeof(struct css_header)) {
 467		dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
 468		ret = -EINVAL;
 469		goto done;
 470	}
 471	css = (struct css_header *)fdet->fw->data;
 472
 473	hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
 474	hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
 475	hfi1_cdbg(FIRMWARE, "CSS structure:");
 476	hfi1_cdbg(FIRMWARE, "  module_type    0x%x", css->module_type);
 477	hfi1_cdbg(FIRMWARE, "  header_len     0x%03x (0x%03x bytes)",
 478		  css->header_len, 4 * css->header_len);
 479	hfi1_cdbg(FIRMWARE, "  header_version 0x%x", css->header_version);
 480	hfi1_cdbg(FIRMWARE, "  module_id      0x%x", css->module_id);
 481	hfi1_cdbg(FIRMWARE, "  module_vendor  0x%x", css->module_vendor);
 482	hfi1_cdbg(FIRMWARE, "  date           0x%x", css->date);
 483	hfi1_cdbg(FIRMWARE, "  size           0x%03x (0x%03x bytes)",
 484		  css->size, 4 * css->size);
 485	hfi1_cdbg(FIRMWARE, "  key_size       0x%03x (0x%03x bytes)",
 486		  css->key_size, 4 * css->key_size);
 487	hfi1_cdbg(FIRMWARE, "  modulus_size   0x%03x (0x%03x bytes)",
 488		  css->modulus_size, 4 * css->modulus_size);
 489	hfi1_cdbg(FIRMWARE, "  exponent_size  0x%03x (0x%03x bytes)",
 490		  css->exponent_size, 4 * css->exponent_size);
 491	hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
 492		  fdet->fw->size - sizeof(struct firmware_file));
 493
 494	/*
 495	 * If the file does not have a valid CSS header, fail.
 496	 * Otherwise, check the CSS size field for an expected size.
 497	 * The augmented file has r2 and mu inserted after the header
 498	 * was generated, so there will be a known difference between
 499	 * the CSS header size and the actual file size.  Use this
 500	 * difference to identify an augmented file.
 501	 *
 502	 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
 503	 */
 504	ret = verify_css_header(dd, css);
 505	if (ret) {
 506		dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
 507	} else if ((css->size * 4) == fdet->fw->size) {
 508		/* non-augmented firmware file */
 509		struct firmware_file *ff = (struct firmware_file *)
 510							fdet->fw->data;
 511
 512		/* make sure there are bytes in the payload */
 513		ret = payload_check(dd, name, fdet->fw->size,
 514				    sizeof(struct firmware_file));
 515		if (ret == 0) {
 516			fdet->css_header = css;
 517			fdet->modulus = ff->modulus;
 518			fdet->exponent = ff->exponent;
 519			fdet->signature = ff->signature;
 520			fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
 521			fdet->mu = fdet->dummy_header.mu; /* use dummy space */
 522			fdet->firmware_ptr = ff->firmware;
 523			fdet->firmware_len = fdet->fw->size -
 524						sizeof(struct firmware_file);
 525			/*
 526			 * Header does not include r2 and mu - generate here.
 527			 * For now, fail.
 528			 */
 529			dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
 530			ret = -EINVAL;
 531		}
 532	} else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
 533		/* augmented firmware file */
 534		struct augmented_firmware_file *aff =
 535			(struct augmented_firmware_file *)fdet->fw->data;
 536
 537		/* make sure there are bytes in the payload */
 538		ret = payload_check(dd, name, fdet->fw->size,
 539				    sizeof(struct augmented_firmware_file));
 540		if (ret == 0) {
 541			fdet->css_header = css;
 542			fdet->modulus = aff->modulus;
 543			fdet->exponent = aff->exponent;
 544			fdet->signature = aff->signature;
 545			fdet->r2 = aff->r2;
 546			fdet->mu = aff->mu;
 547			fdet->firmware_ptr = aff->firmware;
 548			fdet->firmware_len = fdet->fw->size -
 549					sizeof(struct augmented_firmware_file);
 550		}
 551	} else {
 552		/* css->size check failed */
 553		dd_dev_err(dd,
 554			   "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
 555			   fdet->fw->size / 4,
 556			   (fdet->fw->size - AUGMENT_SIZE) / 4,
 557			   css->size);
 558
 559		ret = -EINVAL;
 560	}
 561
 562done:
 563	/* if returning an error, clean up after ourselves */
 564	if (ret)
 565		dispose_one_firmware(fdet);
 566	return ret;
 567}
 568
 569static void dispose_one_firmware(struct firmware_details *fdet)
 570{
 571	release_firmware(fdet->fw);
 572	/* erase all previous information */
 573	memset(fdet, 0, sizeof(*fdet));
 574}
 575
 576/*
 577 * Obtain the 4 firmwares from the OS.  All must be obtained at once or not
 578 * at all.  If called with the firmware state in FW_TRY, use alternate names.
 579 * On exit, this routine will have set the firmware state to one of FW_TRY,
 580 * FW_FINAL, or FW_ERR.
 581 *
 582 * Must be holding fw_mutex.
 583 */
 584static void __obtain_firmware(struct hfi1_devdata *dd)
 585{
 586	int err = 0;
 587
 588	if (fw_state == FW_FINAL)	/* nothing more to obtain */
 589		return;
 590	if (fw_state == FW_ERR)		/* already in error */
 591		return;
 592
 593	/* fw_state is FW_EMPTY or FW_TRY */
 594retry:
 595	if (fw_state == FW_TRY) {
 596		/*
 597		 * We tried the original and it failed.  Move to the
 598		 * alternate.
 599		 */
 600		dd_dev_warn(dd, "using alternate firmware names\n");
 601		/*
 602		 * Let others run.  Some systems, when missing firmware, does
 603		 * something that holds for 30 seconds.  If we do that twice
 604		 * in a row it triggers task blocked warning.
 605		 */
 606		cond_resched();
 607		if (fw_8051_load)
 608			dispose_one_firmware(&fw_8051);
 609		if (fw_fabric_serdes_load)
 610			dispose_one_firmware(&fw_fabric);
 611		if (fw_sbus_load)
 612			dispose_one_firmware(&fw_sbus);
 613		if (fw_pcie_serdes_load)
 614			dispose_one_firmware(&fw_pcie);
 615		fw_8051_name = ALT_FW_8051_NAME_ASIC;
 616		fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
 617		fw_sbus_name = ALT_FW_SBUS_NAME;
 618		fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
 619
 620		/*
 621		 * Add a delay before obtaining and loading debug firmware.
 622		 * Authorization will fail if the delay between firmware
 623		 * authorization events is shorter than 50us. Add 100us to
 624		 * make a delay time safe.
 625		 */
 626		usleep_range(100, 120);
 627	}
 628
 629	if (fw_sbus_load) {
 630		err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
 631		if (err)
 632			goto done;
 633	}
 634
 635	if (fw_pcie_serdes_load) {
 636		err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
 637		if (err)
 638			goto done;
 639	}
 640
 641	if (fw_fabric_serdes_load) {
 642		err = obtain_one_firmware(dd, fw_fabric_serdes_name,
 643					  &fw_fabric);
 644		if (err)
 645			goto done;
 646	}
 647
 648	if (fw_8051_load) {
 649		err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
 650		if (err)
 651			goto done;
 652	}
 653
 654done:
 655	if (err) {
 656		/* oops, had problems obtaining a firmware */
 657		if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
 658			/* retry with alternate (RTL only) */
 659			fw_state = FW_TRY;
 660			goto retry;
 661		}
 662		dd_dev_err(dd, "unable to obtain working firmware\n");
 663		fw_state = FW_ERR;
 664		fw_err = -ENOENT;
 665	} else {
 666		/* success */
 667		if (fw_state == FW_EMPTY &&
 668		    dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
 669			fw_state = FW_TRY;	/* may retry later */
 670		else
 671			fw_state = FW_FINAL;	/* cannot try again */
 672	}
 673}
 674
 675/*
 676 * Called by all HFIs when loading their firmware - i.e. device probe time.
 677 * The first one will do the actual firmware load.  Use a mutex to resolve
 678 * any possible race condition.
 679 *
 680 * The call to this routine cannot be moved to driver load because the kernel
 681 * call request_firmware() requires a device which is only available after
 682 * the first device probe.
 683 */
 684static int obtain_firmware(struct hfi1_devdata *dd)
 685{
 686	unsigned long timeout;
 687
 688	mutex_lock(&fw_mutex);
 689
 690	/* 40s delay due to long delay on missing firmware on some systems */
 691	timeout = jiffies + msecs_to_jiffies(40000);
 692	while (fw_state == FW_TRY) {
 693		/*
 694		 * Another device is trying the firmware.  Wait until it
 695		 * decides what works (or not).
 696		 */
 697		if (time_after(jiffies, timeout)) {
 698			/* waited too long */
 699			dd_dev_err(dd, "Timeout waiting for firmware try");
 700			fw_state = FW_ERR;
 701			fw_err = -ETIMEDOUT;
 702			break;
 703		}
 704		mutex_unlock(&fw_mutex);
 705		msleep(20);	/* arbitrary delay */
 706		mutex_lock(&fw_mutex);
 707	}
 708	/* not in FW_TRY state */
 709
 710	/* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
 711	if (fw_state == FW_EMPTY)
 712		__obtain_firmware(dd);
 713
 714	mutex_unlock(&fw_mutex);
 715	return fw_err;
 716}
 717
 718/*
 719 * Called when the driver unloads.  The timing is asymmetric with its
 720 * counterpart, obtain_firmware().  If called at device remove time,
 721 * then it is conceivable that another device could probe while the
 722 * firmware is being disposed.  The mutexes can be moved to do that
 723 * safely, but then the firmware would be requested from the OS multiple
 724 * times.
 725 *
 726 * No mutex is needed as the driver is unloading and there cannot be any
 727 * other callers.
 728 */
 729void dispose_firmware(void)
 730{
 731	dispose_one_firmware(&fw_8051);
 732	dispose_one_firmware(&fw_fabric);
 733	dispose_one_firmware(&fw_pcie);
 734	dispose_one_firmware(&fw_sbus);
 735
 736	/* retain the error state, otherwise revert to empty */
 737	if (fw_state != FW_ERR)
 738		fw_state = FW_EMPTY;
 739}
 740
 741/*
 742 * Called with the result of a firmware download.
 743 *
 744 * Return 1 to retry loading the firmware, 0 to stop.
 745 */
 746static int retry_firmware(struct hfi1_devdata *dd, int load_result)
 747{
 748	int retry;
 749
 750	mutex_lock(&fw_mutex);
 751
 752	if (load_result == 0) {
 753		/*
 754		 * The load succeeded, so expect all others to do the same.
 755		 * Do not retry again.
 756		 */
 757		if (fw_state == FW_TRY)
 758			fw_state = FW_FINAL;
 759		retry = 0;	/* do NOT retry */
 760	} else if (fw_state == FW_TRY) {
 761		/* load failed, obtain alternate firmware */
 762		__obtain_firmware(dd);
 763		retry = (fw_state == FW_FINAL);
 764	} else {
 765		/* else in FW_FINAL or FW_ERR, no retry in either case */
 766		retry = 0;
 767	}
 768
 769	mutex_unlock(&fw_mutex);
 770	return retry;
 771}
 772
 773/*
 774 * Write a block of data to a given array CSR.  All calls will be in
 775 * multiples of 8 bytes.
 776 */
 777static void write_rsa_data(struct hfi1_devdata *dd, int what,
 778			   const u8 *data, int nbytes)
 779{
 780	int qw_size = nbytes / 8;
 781	int i;
 782
 783	if (((unsigned long)data & 0x7) == 0) {
 784		/* aligned */
 785		u64 *ptr = (u64 *)data;
 786
 787		for (i = 0; i < qw_size; i++, ptr++)
 788			write_csr(dd, what + (8 * i), *ptr);
 789	} else {
 790		/* not aligned */
 791		for (i = 0; i < qw_size; i++, data += 8) {
 792			u64 value;
 793
 794			memcpy(&value, data, 8);
 795			write_csr(dd, what + (8 * i), value);
 796		}
 797	}
 798}
 799
 800/*
 801 * Write a block of data to a given CSR as a stream of writes.  All calls will
 802 * be in multiples of 8 bytes.
 803 */
 804static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
 805				    const u8 *data, int nbytes)
 806{
 807	u64 *ptr = (u64 *)data;
 808	int qw_size = nbytes / 8;
 809
 810	for (; qw_size > 0; qw_size--, ptr++)
 811		write_csr(dd, what, *ptr);
 812}
 813
 814/*
 815 * Download the signature and start the RSA mechanism.  Wait for
 816 * RSA_ENGINE_TIMEOUT before giving up.
 817 */
 818static int run_rsa(struct hfi1_devdata *dd, const char *who,
 819		   const u8 *signature)
 820{
 821	unsigned long timeout;
 822	u64 reg;
 823	u32 status;
 824	int ret = 0;
 825
 826	/* write the signature */
 827	write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
 828
 829	/* initialize RSA */
 830	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
 831
 832	/*
 833	 * Make sure the engine is idle and insert a delay between the two
 834	 * writes to MISC_CFG_RSA_CMD.
 835	 */
 836	status = (read_csr(dd, MISC_CFG_FW_CTRL)
 837			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 838			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 839	if (status != RSA_STATUS_IDLE) {
 840		dd_dev_err(dd, "%s security engine not idle - giving up\n",
 841			   who);
 842		return -EBUSY;
 843	}
 844
 845	/* start RSA */
 846	write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
 847
 848	/*
 849	 * Look for the result.
 850	 *
 851	 * The RSA engine is hooked up to two MISC errors.  The driver
 852	 * masks these errors as they do not respond to the standard
 853	 * error "clear down" mechanism.  Look for these errors here and
 854	 * clear them when possible.  This routine will exit with the
 855	 * errors of the current run still set.
 856	 *
 857	 * MISC_FW_AUTH_FAILED_ERR
 858	 *	Firmware authorization failed.  This can be cleared by
 859	 *	re-initializing the RSA engine, then clearing the status bit.
 860	 *	Do not re-init the RSA angine immediately after a successful
 861	 *	run - this will reset the current authorization.
 862	 *
 863	 * MISC_KEY_MISMATCH_ERR
 864	 *	Key does not match.  The only way to clear this is to load
 865	 *	a matching key then clear the status bit.  If this error
 866	 *	is raised, it will persist outside of this routine until a
 867	 *	matching key is loaded.
 868	 */
 869	timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
 870	while (1) {
 871		status = (read_csr(dd, MISC_CFG_FW_CTRL)
 872			   & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
 873			     >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
 874
 875		if (status == RSA_STATUS_IDLE) {
 876			/* should not happen */
 877			dd_dev_err(dd, "%s firmware security bad idle state\n",
 878				   who);
 879			ret = -EINVAL;
 880			break;
 881		} else if (status == RSA_STATUS_DONE) {
 882			/* finished successfully */
 883			break;
 884		} else if (status == RSA_STATUS_FAILED) {
 885			/* finished unsuccessfully */
 886			ret = -EINVAL;
 887			break;
 888		}
 889		/* else still active */
 890
 891		if (time_after(jiffies, timeout)) {
 892			/*
 893			 * Timed out while active.  We can't reset the engine
 894			 * if it is stuck active, but run through the
 895			 * error code to see what error bits are set.
 896			 */
 897			dd_dev_err(dd, "%s firmware security time out\n", who);
 898			ret = -ETIMEDOUT;
 899			break;
 900		}
 901
 902		msleep(20);
 903	}
 904
 905	/*
 906	 * Arrive here on success or failure.  Clear all RSA engine
 907	 * errors.  All current errors will stick - the RSA logic is keeping
 908	 * error high.  All previous errors will clear - the RSA logic
 909	 * is not keeping the error high.
 910	 */
 911	write_csr(dd, MISC_ERR_CLEAR,
 912		  MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
 913		  MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
 914	/*
 915	 * All that is left are the current errors.  Print warnings on
 916	 * authorization failure details, if any.  Firmware authorization
 917	 * can be retried, so these are only warnings.
 918	 */
 919	reg = read_csr(dd, MISC_ERR_STATUS);
 920	if (ret) {
 921		if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
 922			dd_dev_warn(dd, "%s firmware authorization failed\n",
 923				    who);
 924		if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
 925			dd_dev_warn(dd, "%s firmware key mismatch\n", who);
 926	}
 927
 928	return ret;
 929}
 930
 931static void load_security_variables(struct hfi1_devdata *dd,
 932				    struct firmware_details *fdet)
 933{
 934	/* Security variables a.  Write the modulus */
 935	write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
 936	/* Security variables b.  Write the r2 */
 937	write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
 938	/* Security variables c.  Write the mu */
 939	write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
 940	/* Security variables d.  Write the header */
 941	write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
 942				(u8 *)fdet->css_header,
 943				sizeof(struct css_header));
 944}
 945
 946/* return the 8051 firmware state */
 947static inline u32 get_firmware_state(struct hfi1_devdata *dd)
 948{
 949	u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
 950
 951	return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
 952				& DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
 953}
 954
 955/*
 956 * Wait until the firmware is up and ready to take host requests.
 957 * Return 0 on success, -ETIMEDOUT on timeout.
 958 */
 959int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
 960{
 961	unsigned long timeout;
 962
 963	/* in the simulator, the fake 8051 is always ready */
 964	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
 965		return 0;
 966
 967	timeout = msecs_to_jiffies(mstimeout) + jiffies;
 968	while (1) {
 969		if (get_firmware_state(dd) == 0xa0)	/* ready */
 970			return 0;
 971		if (time_after(jiffies, timeout))	/* timed out */
 972			return -ETIMEDOUT;
 973		usleep_range(1950, 2050); /* sleep 2ms-ish */
 974	}
 975}
 976
 977/*
 978 * Load the 8051 firmware.
 979 */
 980static int load_8051_firmware(struct hfi1_devdata *dd,
 981			      struct firmware_details *fdet)
 982{
 983	u64 reg;
 984	int ret;
 985	u8 ver_major;
 986	u8 ver_minor;
 987	u8 ver_patch;
 988
 989	/*
 990	 * DC Reset sequence
 991	 * Load DC 8051 firmware
 992	 */
 993	/*
 994	 * DC reset step 1: Reset DC8051
 995	 */
 996	reg = DC_DC8051_CFG_RST_M8051W_SMASK
 997		| DC_DC8051_CFG_RST_CRAM_SMASK
 998		| DC_DC8051_CFG_RST_DRAM_SMASK
 999		| DC_DC8051_CFG_RST_IRAM_SMASK
1000		| DC_DC8051_CFG_RST_SFR_SMASK;
1001	write_csr(dd, DC_DC8051_CFG_RST, reg);
1002
1003	/*
1004	 * DC reset step 2 (optional): Load 8051 data memory with link
1005	 * configuration
1006	 */
1007
1008	/*
1009	 * DC reset step 3: Load DC8051 firmware
1010	 */
1011	/* release all but the core reset */
1012	reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013	write_csr(dd, DC_DC8051_CFG_RST, reg);
1014
1015	/* Firmware load step 1 */
1016	load_security_variables(dd, fdet);
1017
1018	/*
1019	 * Firmware load step 2.  Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020	 */
1021	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022
1023	/* Firmware load steps 3-5 */
1024	ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025			 fdet->firmware_len);
1026	if (ret)
1027		return ret;
1028
1029	/*
1030	 * DC reset step 4. Host starts the DC8051 firmware
1031	 */
1032	/*
1033	 * Firmware load step 6.  Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034	 */
1035	write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036
1037	/* Firmware load steps 7-10 */
1038	ret = run_rsa(dd, "8051", fdet->signature);
1039	if (ret)
1040		return ret;
1041
1042	/* clear all reset bits, releasing the 8051 */
1043	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044
1045	/*
1046	 * DC reset step 5. Wait for firmware to be ready to accept host
1047	 * requests.
1048	 */
1049	ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050	if (ret) { /* timed out */
1051		dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052			   get_firmware_state(dd));
1053		return -ETIMEDOUT;
1054	}
1055
1056	read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057	dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058		    (int)ver_major, (int)ver_minor, (int)ver_patch);
1059	dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061	if (ret != HCMD_SUCCESS) {
1062		dd_dev_err(dd,
1063			   "Failed to set host interface version, return 0x%x\n",
1064			   ret);
1065		return -EIO;
1066	}
1067
1068	return 0;
1069}
1070
1071/*
1072 * Write the SBus request register
1073 *
1074 * No need for masking - the arguments are sized exactly.
1075 */
1076void sbus_request(struct hfi1_devdata *dd,
1077		  u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078{
1079	write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080		  ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081		  ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082		  ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083		  ((u64)receiver_addr <<
1084		   ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085}
1086
1087/*
1088 * Read a value from the SBus.
1089 *
1090 * Requires the caller to be in fast mode
1091 */
1092static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093		     u32 data_in)
1094{
1095	u64 reg;
1096	int retries;
1097	int success = 0;
1098	u32 result = 0;
1099	u32 result_code = 0;
1100
1101	sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102
1103	for (retries = 0; retries < 100; retries++) {
1104		usleep_range(1000, 1200); /* arbitrary */
1105		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106		result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107				& ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108		if (result_code != SBUS_READ_COMPLETE)
1109			continue;
1110
1111		success = 1;
1112		result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113			   & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114		break;
1115	}
1116
1117	if (!success) {
1118		dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119			   result_code);
1120	}
1121
1122	return result;
1123}
1124
1125/*
1126 * Turn off the SBus and fabric serdes spicos.
1127 *
1128 * + Must be called with Sbus fast mode turned on.
1129 * + Must be called after fabric serdes broadcast is set up.
1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131 *   when using MISC_CFG_FW_CTRL.
1132 */
1133static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134{
1135	/* only needed on A0 */
1136	if (!is_ax(dd))
1137		return;
1138
1139	dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140		    flags & SPICO_SBUS ? " SBus" : "",
1141		    flags & SPICO_FABRIC ? " fabric" : "");
1142
1143	write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144	/* disable SBus spico */
1145	if (flags & SPICO_SBUS)
1146		sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147			     WRITE_SBUS_RECEIVER, 0x00000040);
1148
1149	/* disable the fabric serdes spicos */
1150	if (flags & SPICO_FABRIC)
1151		sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152			     0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153	write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154}
1155
1156/*
1157 * Reset all of the fabric serdes for this HFI in preparation to take the
1158 * link to Polling.
1159 *
1160 * To do a reset, we need to write to to the serdes registers.  Unfortunately,
1161 * the fabric serdes download to the other HFI on the ASIC will have turned
1162 * off the firmware validation on this HFI.  This means we can't write to the
1163 * registers to reset the serdes.  Work around this by performing a complete
1164 * re-download and validation of the fabric serdes firmware.  This, as a
1165 * by-product, will reset the serdes.  NOTE: the re-download requires that
1166 * the 8051 be in the Offline state.  I.e. not actively trying to use the
1167 * serdes.  This routine is called at the point where the link is Offline and
1168 * is getting ready to go to Polling.
1169 */
1170void fabric_serdes_reset(struct hfi1_devdata *dd)
1171{
1172	int ret;
1173
1174	if (!fw_fabric_serdes_load)
1175		return;
1176
1177	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178	if (ret) {
1179		dd_dev_err(dd,
1180			   "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181		return;
1182	}
1183	set_sbus_fast_mode(dd);
1184
1185	if (is_ax(dd)) {
1186		/* A0 serdes do not work with a re-download */
1187		u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188
1189		/* place SerDes in reset and disable SPICO */
1190		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191		/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192		udelay(1);
1193		/* remove SerDes reset */
1194		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195		/* turn SPICO enable on */
1196		sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197	} else {
1198		turn_off_spicos(dd, SPICO_FABRIC);
1199		/*
1200		 * No need for firmware retry - what to download has already
1201		 * been decided.
1202		 * No need to pay attention to the load return - the only
1203		 * failure is a validation failure, which has already been
1204		 * checked by the initial download.
1205		 */
1206		(void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207	}
1208
1209	clear_sbus_fast_mode(dd);
1210	release_chip_resource(dd, CR_SBUS);
1211}
1212
1213/* Access to the SBus in this routine should probably be serialized */
1214int sbus_request_slow(struct hfi1_devdata *dd,
1215		      u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216{
1217	u64 reg, count = 0;
1218
1219	/* make sure fast mode is clear */
1220	clear_sbus_fast_mode(dd);
1221
1222	sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224		  ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225	/* Wait for both DONE and RCV_DATA_VALID to go high */
1226	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227	while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228		 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229		if (count++ >= SBUS_MAX_POLL_COUNT) {
1230			u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231			/*
1232			 * If the loop has timed out, we are OK if DONE bit
1233			 * is set and RCV_DATA_VALID and EXECUTE counters
1234			 * are the same. If not, we cannot proceed.
1235			 */
1236			if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237			    (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238			     SBUS_COUNTER(counts, EXECUTE)))
1239				break;
1240			return -ETIMEDOUT;
1241		}
1242		udelay(1);
1243		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244	}
1245	count = 0;
1246	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247	/* Wait for DONE to clear after EXECUTE is cleared */
1248	reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249	while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250		if (count++ >= SBUS_MAX_POLL_COUNT)
1251			return -ETIME;
1252		udelay(1);
1253		reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254	}
1255	return 0;
1256}
1257
1258static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259				       struct firmware_details *fdet)
1260{
1261	int i, err;
1262	const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263
1264	dd_dev_info(dd, "Downloading fabric firmware\n");
1265
1266	/* step 1: load security variables */
1267	load_security_variables(dd, fdet);
1268	/* step 2: place SerDes in reset and disable SPICO */
1269	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270	/* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271	udelay(1);
1272	/* step 3:  remove SerDes reset */
1273	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274	/* step 4: assert IMEM override */
1275	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276	/* step 5: download SerDes machine code */
1277	for (i = 0; i < fdet->firmware_len; i += 4) {
1278		sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279			     *(u32 *)&fdet->firmware_ptr[i]);
1280	}
1281	/* step 6: IMEM override off */
1282	sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283	/* step 7: turn ECC on */
1284	sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285
1286	/* steps 8-11: run the RSA engine */
1287	err = run_rsa(dd, "fabric serdes", fdet->signature);
1288	if (err)
1289		return err;
1290
1291	/* step 12: turn SPICO enable on */
1292	sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293	/* step 13: enable core hardware interrupts */
1294	sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295
1296	return 0;
1297}
1298
1299static int load_sbus_firmware(struct hfi1_devdata *dd,
1300			      struct firmware_details *fdet)
1301{
1302	int i, err;
1303	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304
1305	dd_dev_info(dd, "Downloading SBus firmware\n");
1306
1307	/* step 1: load security variables */
1308	load_security_variables(dd, fdet);
1309	/* step 2: place SPICO into reset and enable off */
1310	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311	/* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313	/* step 4: set starting IMEM address for burst download */
1314	sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315	/* step 5: download the SBus Master machine code */
1316	for (i = 0; i < fdet->firmware_len; i += 4) {
1317		sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318			     *(u32 *)&fdet->firmware_ptr[i]);
1319	}
1320	/* step 6: set IMEM_CNTL_EN off */
1321	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322	/* step 7: turn ECC on */
1323	sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324
1325	/* steps 8-11: run the RSA engine */
1326	err = run_rsa(dd, "SBus", fdet->signature);
1327	if (err)
1328		return err;
1329
1330	/* step 12: set SPICO_ENABLE on */
1331	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332
1333	return 0;
1334}
1335
1336static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337				     struct firmware_details *fdet)
1338{
1339	int i;
1340	const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341
1342	dd_dev_info(dd, "Downloading PCIe firmware\n");
1343
1344	/* step 1: load security variables */
1345	load_security_variables(dd, fdet);
1346	/* step 2: assert single step (halts the SBus Master spico) */
1347	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348	/* step 3: enable XDMEM access */
1349	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350	/* step 4: load firmware into SBus Master XDMEM */
1351	/*
1352	 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353	 * we only need to pick up the bytes and write them
1354	 */
1355	for (i = 0; i < fdet->firmware_len; i += 4) {
1356		sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357			     *(u32 *)&fdet->firmware_ptr[i]);
1358	}
1359	/* step 5: disable XDMEM access */
1360	sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361	/* step 6: allow SBus Spico to run */
1362	sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363
1364	/*
1365	 * steps 7-11: run RSA, if it succeeds, firmware is available to
1366	 * be swapped
1367	 */
1368	return run_rsa(dd, "PCIe serdes", fdet->signature);
1369}
1370
1371/*
1372 * Set the given broadcast values on the given list of devices.
1373 */
1374static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375				 const u8 *addrs, int count)
1376{
1377	while (--count >= 0) {
1378		/*
1379		 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380		 * defaults for everything else.  Do not read-modify-write,
1381		 * per instruction from the manufacturer.
1382		 *
1383		 * Register 0xfd:
1384		 *	bits    what
1385		 *	-----	---------------------------------
1386		 *	  0	IGNORE_BROADCAST  (default 0)
1387		 *	11:4	BROADCAST_GROUP_1 (default 0xff)
1388		 *	23:16	BROADCAST_GROUP_2 (default 0xff)
1389		 */
1390		sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391			     (u32)bg1 << 4 | (u32)bg2 << 16);
1392	}
1393}
1394
1395int acquire_hw_mutex(struct hfi1_devdata *dd)
1396{
1397	unsigned long timeout;
1398	int try = 0;
1399	u8 mask = 1 << dd->hfi1_id;
1400	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401
1402	if (user == mask) {
1403		dd_dev_info(dd,
1404			    "Hardware mutex already acquired, mutex mask %u\n",
1405			    (u32)mask);
1406		return 0;
1407	}
1408
1409retry:
1410	timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411	while (1) {
1412		write_csr(dd, ASIC_CFG_MUTEX, mask);
1413		user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414		if (user == mask)
1415			return 0; /* success */
1416		if (time_after(jiffies, timeout))
1417			break; /* timed out */
1418		msleep(20);
1419	}
1420
1421	/* timed out */
1422	dd_dev_err(dd,
1423		   "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424		   (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425
1426	if (try == 0) {
1427		/* break mutex and retry */
1428		write_csr(dd, ASIC_CFG_MUTEX, 0);
1429		try++;
1430		goto retry;
1431	}
1432
1433	return -EBUSY;
1434}
1435
1436void release_hw_mutex(struct hfi1_devdata *dd)
1437{
1438	u8 mask = 1 << dd->hfi1_id;
1439	u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440
1441	if (user != mask)
1442		dd_dev_warn(dd,
1443			    "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444			    (u32)user, (u32)mask);
1445	else
1446		write_csr(dd, ASIC_CFG_MUTEX, 0);
1447}
1448
1449/* return the given resource bit(s) as a mask for the given HFI */
1450static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451{
1452	return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453}
1454
1455static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456				       const char *func)
1457{
1458	dd_dev_err(dd,
1459		   "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460		   func);
1461}
1462
1463/*
1464 * Acquire access to a chip resource.
1465 *
1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467 */
1468static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469{
1470	u64 scratch0, all_bits, my_bit;
1471	int ret;
1472
1473	if (resource & CR_DYN_MASK) {
1474		/* a dynamic resource is in use if either HFI has set the bit */
1475		if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476		    (resource & (CR_I2C1 | CR_I2C2))) {
1477			/* discrete devices must serialize across both chains */
1478			all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479					resource_mask(1, CR_I2C1 | CR_I2C2);
1480		} else {
1481			all_bits = resource_mask(0, resource) |
1482						resource_mask(1, resource);
1483		}
1484		my_bit = resource_mask(dd->hfi1_id, resource);
1485	} else {
1486		/* non-dynamic resources are not split between HFIs */
1487		all_bits = resource;
1488		my_bit = resource;
1489	}
1490
1491	/* lock against other callers within the driver wanting a resource */
1492	mutex_lock(&dd->asic_data->asic_resource_mutex);
1493
1494	ret = acquire_hw_mutex(dd);
1495	if (ret) {
1496		fail_mutex_acquire_message(dd, __func__);
1497		ret = -EIO;
1498		goto done;
1499	}
1500
1501	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502	if (scratch0 & all_bits) {
1503		ret = -EBUSY;
1504	} else {
1505		write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506		/* force write to be visible to other HFI on another OS */
1507		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1508	}
1509
1510	release_hw_mutex(dd);
1511
1512done:
1513	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514	return ret;
1515}
1516
1517/*
1518 * Acquire access to a chip resource, wait up to mswait milliseconds for
1519 * the resource to become available.
1520 *
1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522 * acquire failed.
1523 */
1524int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525{
1526	unsigned long timeout;
1527	int ret;
1528
1529	timeout = jiffies + msecs_to_jiffies(mswait);
1530	while (1) {
1531		ret = __acquire_chip_resource(dd, resource);
1532		if (ret != -EBUSY)
1533			return ret;
1534		/* resource is busy, check our timeout */
1535		if (time_after_eq(jiffies, timeout))
1536			return -EBUSY;
1537		usleep_range(80, 120);	/* arbitrary delay */
1538	}
1539}
1540
1541/*
1542 * Release access to a chip resource
1543 */
1544void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545{
1546	u64 scratch0, bit;
1547
1548	/* only dynamic resources should ever be cleared */
1549	if (!(resource & CR_DYN_MASK)) {
1550		dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551			   resource);
1552		return;
1553	}
1554	bit = resource_mask(dd->hfi1_id, resource);
1555
1556	/* lock against other callers within the driver wanting a resource */
1557	mutex_lock(&dd->asic_data->asic_resource_mutex);
1558
1559	if (acquire_hw_mutex(dd)) {
1560		fail_mutex_acquire_message(dd, __func__);
1561		goto done;
1562	}
1563
1564	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565	if ((scratch0 & bit) != 0) {
1566		scratch0 &= ~bit;
1567		write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568		/* force write to be visible to other HFI on another OS */
1569		(void)read_csr(dd, ASIC_CFG_SCRATCH);
1570	} else {
1571		dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572			    __func__, dd->hfi1_id, resource);
1573	}
1574
1575	release_hw_mutex(dd);
1576
1577done:
1578	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579}
1580
1581/*
1582 * Return true if resource is set, false otherwise.  Print a warning
1583 * if not set and a function is supplied.
1584 */
1585bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586			 const char *func)
1587{
1588	u64 scratch0, bit;
1589
1590	if (resource & CR_DYN_MASK)
1591		bit = resource_mask(dd->hfi1_id, resource);
1592	else
1593		bit = resource;
1594
1595	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596	if ((scratch0 & bit) == 0) {
1597		if (func)
1598			dd_dev_warn(dd,
1599				    "%s: id %d, resource 0x%x, not acquired!\n",
1600				    func, dd->hfi1_id, resource);
1601		return false;
1602	}
1603	return true;
1604}
1605
1606static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607{
1608	u64 scratch0;
1609
1610	/* lock against other callers within the driver wanting a resource */
1611	mutex_lock(&dd->asic_data->asic_resource_mutex);
1612
1613	if (acquire_hw_mutex(dd)) {
1614		fail_mutex_acquire_message(dd, func);
1615		goto done;
1616	}
1617
1618	/* clear all dynamic access bits for this HFI */
1619	scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620	scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621	write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622	/* force write to be visible to other HFI on another OS */
1623	(void)read_csr(dd, ASIC_CFG_SCRATCH);
1624
1625	release_hw_mutex(dd);
1626
1627done:
1628	mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629}
1630
1631void init_chip_resources(struct hfi1_devdata *dd)
1632{
1633	/* clear any holds left by us */
1634	clear_chip_resources(dd, __func__);
1635}
1636
1637void finish_chip_resources(struct hfi1_devdata *dd)
1638{
1639	/* clear any holds left by us */
1640	clear_chip_resources(dd, __func__);
1641}
1642
1643void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644{
1645	write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646		  ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647}
1648
1649void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650{
1651	u64 reg, count = 0;
1652
1653	reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654	while (SBUS_COUNTER(reg, EXECUTE) !=
1655	       SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656		if (count++ >= SBUS_MAX_POLL_COUNT)
1657			break;
1658		udelay(1);
1659		reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660	}
1661	write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662}
1663
1664int load_firmware(struct hfi1_devdata *dd)
1665{
1666	int ret;
1667
1668	if (fw_fabric_serdes_load) {
1669		ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670		if (ret)
1671			return ret;
1672
1673		set_sbus_fast_mode(dd);
1674
1675		set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676				     fabric_serdes_broadcast[dd->hfi1_id],
1677				     fabric_serdes_addrs[dd->hfi1_id],
1678				     NUM_FABRIC_SERDES);
1679		turn_off_spicos(dd, SPICO_FABRIC);
1680		do {
1681			ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682		} while (retry_firmware(dd, ret));
1683
1684		clear_sbus_fast_mode(dd);
1685		release_chip_resource(dd, CR_SBUS);
1686		if (ret)
1687			return ret;
1688	}
1689
1690	if (fw_8051_load) {
1691		do {
1692			ret = load_8051_firmware(dd, &fw_8051);
1693		} while (retry_firmware(dd, ret));
1694		if (ret)
1695			return ret;
1696	}
1697
1698	dump_fw_version(dd);
1699	return 0;
1700}
1701
1702int hfi1_firmware_init(struct hfi1_devdata *dd)
1703{
1704	/* only RTL can use these */
1705	if (dd->icode != ICODE_RTL_SILICON) {
1706		fw_fabric_serdes_load = 0;
1707		fw_pcie_serdes_load = 0;
1708		fw_sbus_load = 0;
1709	}
1710
1711	/* no 8051 or QSFP on simulator */
1712	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713		fw_8051_load = 0;
1714
1715	if (!fw_8051_name) {
1716		if (dd->icode == ICODE_RTL_SILICON)
1717			fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718		else
1719			fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720	}
1721	if (!fw_fabric_serdes_name)
1722		fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723	if (!fw_sbus_name)
1724		fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725	if (!fw_pcie_serdes_name)
1726		fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727
1728	return obtain_firmware(dd);
1729}
1730
1731/*
1732 * This function is a helper function for parse_platform_config(...) and
1733 * does not check for validity of the platform configuration cache
1734 * (because we know it is invalid as we are building up the cache).
1735 * As such, this should not be called from anywhere other than
1736 * parse_platform_config
1737 */
1738static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739{
1740	u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742
1743	if (!system_table)
1744		return -EINVAL;
1745
1746	meta_ver_meta =
1747	*(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748	+ SYSTEM_TABLE_META_VERSION);
1749
1750	mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751	ver_start = meta_ver_meta & mask;
1752
1753	meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754
1755	mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756	ver_len = meta_ver_meta & mask;
1757
1758	ver_start /= 8;
1759	meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760
1761	if (meta_ver < 4) {
1762		dd_dev_info(
1763			dd, "%s:Please update platform config\n", __func__);
1764		return -EINVAL;
1765	}
1766	return 0;
1767}
1768
1769int parse_platform_config(struct hfi1_devdata *dd)
1770{
1771	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772	struct hfi1_pportdata *ppd = dd->pport;
1773	u32 *ptr = NULL;
1774	u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775	u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776	int ret = -EINVAL; /* assume failure */
1777
1778	/*
1779	 * For integrated devices that did not fall back to the default file,
1780	 * the SI tuning information for active channels is acquired from the
1781	 * scratch register bitmap, thus there is no platform config to parse.
1782	 * Skip parsing in these situations.
1783	 */
1784	if (ppd->config_from_scratch)
1785		return 0;
1786
1787	if (!dd->platform_config.data) {
1788		dd_dev_err(dd, "%s: Missing config file\n", __func__);
 
1789		goto bail;
1790	}
1791	ptr = (u32 *)dd->platform_config.data;
1792
1793	magic_num = *ptr;
1794	ptr++;
1795	if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1796		dd_dev_err(dd, "%s: Bad config file\n", __func__);
 
1797		goto bail;
1798	}
1799
1800	/* Field is file size in DWORDs */
1801	file_length = (*ptr) * 4;
1802
1803	/*
1804	 * Length can't be larger than partition size. Assume platform
1805	 * config format version 4 is being used. Interpret the file size
1806	 * field as header instead by not moving the pointer.
1807	 */
1808	if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1809		dd_dev_info(dd,
1810			    "%s:File length out of bounds, using alternative format\n",
1811			    __func__);
1812		file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1813	} else {
1814		ptr++;
1815	}
1816
1817	if (file_length > dd->platform_config.size) {
1818		dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1819			    __func__);
 
1820		goto bail;
1821	} else if (file_length < dd->platform_config.size) {
1822		dd_dev_info(dd,
1823			    "%s:File claims to be smaller than read size, continuing\n",
1824			    __func__);
1825	}
1826	/* exactly equal, perfection */
1827
1828	/*
1829	 * In both cases where we proceed, using the self-reported file length
1830	 * is the safer option. In case of old format a predefined value is
1831	 * being used.
1832	 */
1833	while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1834		header1 = *ptr;
1835		header2 = *(ptr + 1);
1836		if (header1 != ~header2) {
1837			dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1838				   __func__, (ptr - (u32 *)
1839					      dd->platform_config.data));
 
1840			goto bail;
1841		}
1842
1843		record_idx = *ptr &
1844			((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1845
1846		table_length_dwords = (*ptr >>
1847				PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1848		      ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1849
1850		table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1851			((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1852
1853		/* Done with this set of headers */
1854		ptr += 2;
1855
1856		if (record_idx) {
1857			/* data table */
1858			switch (table_type) {
1859			case PLATFORM_CONFIG_SYSTEM_TABLE:
1860				pcfgcache->config_tables[table_type].num_table =
1861									1;
1862				ret = check_meta_version(dd, ptr);
1863				if (ret)
1864					goto bail;
1865				break;
1866			case PLATFORM_CONFIG_PORT_TABLE:
1867				pcfgcache->config_tables[table_type].num_table =
1868									2;
1869				break;
1870			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1871				/* fall through */
1872			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1873				/* fall through */
1874			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1875				/* fall through */
1876			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1877				pcfgcache->config_tables[table_type].num_table =
1878							table_length_dwords;
1879				break;
1880			default:
1881				dd_dev_err(dd,
1882					   "%s: Unknown data table %d, offset %ld\n",
1883					   __func__, table_type,
1884					   (ptr - (u32 *)
1885					    dd->platform_config.data));
 
1886				goto bail; /* We don't trust this file now */
1887			}
1888			pcfgcache->config_tables[table_type].table = ptr;
1889		} else {
1890			/* metadata table */
1891			switch (table_type) {
1892			case PLATFORM_CONFIG_SYSTEM_TABLE:
1893				/* fall through */
1894			case PLATFORM_CONFIG_PORT_TABLE:
1895				/* fall through */
1896			case PLATFORM_CONFIG_RX_PRESET_TABLE:
1897				/* fall through */
1898			case PLATFORM_CONFIG_TX_PRESET_TABLE:
1899				/* fall through */
1900			case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1901				/* fall through */
1902			case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1903				break;
1904			default:
1905				dd_dev_err(dd,
1906					   "%s: Unknown meta table %d, offset %ld\n",
1907					   __func__, table_type,
1908					   (ptr -
1909					    (u32 *)dd->platform_config.data));
 
1910				goto bail; /* We don't trust this file now */
1911			}
1912			pcfgcache->config_tables[table_type].table_metadata =
1913									ptr;
1914		}
1915
1916		/* Calculate and check table crc */
1917		crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1918			       (table_length_dwords * 4));
1919		crc ^= ~(u32)0;
1920
1921		/* Jump the table */
1922		ptr += table_length_dwords;
1923		if (crc != *ptr) {
1924			dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1925				   __func__, (ptr -
1926				   (u32 *)dd->platform_config.data));
 
1927			goto bail;
1928		}
1929		/* Jump the CRC DWORD */
1930		ptr++;
1931	}
1932
1933	pcfgcache->cache_valid = 1;
1934	return 0;
1935bail:
1936	memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1937	return ret;
1938}
1939
1940static void get_integrated_platform_config_field(
1941		struct hfi1_devdata *dd,
1942		enum platform_config_table_type_encoding table_type,
1943		int field_index, u32 *data)
1944{
1945	struct hfi1_pportdata *ppd = dd->pport;
1946	u8 *cache = ppd->qsfp_info.cache;
1947	u32 tx_preset = 0;
1948
1949	switch (table_type) {
1950	case PLATFORM_CONFIG_SYSTEM_TABLE:
1951		if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1952			*data = ppd->max_power_class;
1953		else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1954			*data = ppd->default_atten;
1955		break;
1956	case PLATFORM_CONFIG_PORT_TABLE:
1957		if (field_index == PORT_TABLE_PORT_TYPE)
1958			*data = ppd->port_type;
1959		else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1960			*data = ppd->local_atten;
1961		else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1962			*data = ppd->remote_atten;
1963		break;
1964	case PLATFORM_CONFIG_RX_PRESET_TABLE:
1965		if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1966			*data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1967				QSFP_RX_CDR_APPLY_SHIFT;
1968		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1969			*data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1970				QSFP_RX_EMP_APPLY_SHIFT;
1971		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1972			*data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1973				QSFP_RX_AMP_APPLY_SHIFT;
1974		else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1975			*data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1976				QSFP_RX_CDR_SHIFT;
1977		else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1978			*data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1979				QSFP_RX_EMP_SHIFT;
1980		else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1981			*data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1982				QSFP_RX_AMP_SHIFT;
1983		break;
1984	case PLATFORM_CONFIG_TX_PRESET_TABLE:
1985		if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1986			tx_preset = ppd->tx_preset_eq;
1987		else
1988			tx_preset = ppd->tx_preset_noeq;
1989		if (field_index == TX_PRESET_TABLE_PRECUR)
1990			*data = (tx_preset & TX_PRECUR_SMASK) >>
1991				TX_PRECUR_SHIFT;
1992		else if (field_index == TX_PRESET_TABLE_ATTN)
1993			*data = (tx_preset & TX_ATTN_SMASK) >>
1994				TX_ATTN_SHIFT;
1995		else if (field_index == TX_PRESET_TABLE_POSTCUR)
1996			*data = (tx_preset & TX_POSTCUR_SMASK) >>
1997				TX_POSTCUR_SHIFT;
1998		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1999			*data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
2000				QSFP_TX_CDR_APPLY_SHIFT;
2001		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2002			*data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2003				QSFP_TX_EQ_APPLY_SHIFT;
2004		else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2005			*data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2006				QSFP_TX_CDR_SHIFT;
2007		else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2008			*data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2009				QSFP_TX_EQ_SHIFT;
2010		break;
2011	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2012	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2013	default:
2014		break;
2015	}
2016}
2017
2018static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2019					  int field, u32 *field_len_bits,
2020					  u32 *field_start_bits)
2021{
2022	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2023	u32 *src_ptr = NULL;
2024
2025	if (!pcfgcache->cache_valid)
2026		return -EINVAL;
2027
2028	switch (table) {
2029	case PLATFORM_CONFIG_SYSTEM_TABLE:
2030		/* fall through */
2031	case PLATFORM_CONFIG_PORT_TABLE:
2032		/* fall through */
2033	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2034		/* fall through */
2035	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2036		/* fall through */
2037	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2038		/* fall through */
2039	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2040		if (field && field < platform_config_table_limits[table])
2041			src_ptr =
2042			pcfgcache->config_tables[table].table_metadata + field;
2043		break;
2044	default:
2045		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2046		break;
2047	}
2048
2049	if (!src_ptr)
2050		return -EINVAL;
2051
2052	if (field_start_bits)
2053		*field_start_bits = *src_ptr &
2054		      ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2055
2056	if (field_len_bits)
2057		*field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2058		       & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2059
2060	return 0;
2061}
2062
2063/* This is the central interface to getting data out of the platform config
2064 * file. It depends on parse_platform_config() having populated the
2065 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2066 * validate the sanity of the cache.
2067 *
2068 * The non-obvious parameters:
2069 * @table_index: Acts as a look up key into which instance of the tables the
2070 * relevant field is fetched from.
2071 *
2072 * This applies to the data tables that have multiple instances. The port table
2073 * is an exception to this rule as each HFI only has one port and thus the
2074 * relevant table can be distinguished by hfi_id.
2075 *
2076 * @data: pointer to memory that will be populated with the field requested.
2077 * @len: length of memory pointed by @data in bytes.
2078 */
2079int get_platform_config_field(struct hfi1_devdata *dd,
2080			      enum platform_config_table_type_encoding
2081			      table_type, int table_index, int field_index,
2082			      u32 *data, u32 len)
2083{
2084	int ret = 0, wlen = 0, seek = 0;
2085	u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2086	struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2087	struct hfi1_pportdata *ppd = dd->pport;
2088
2089	if (data)
2090		memset(data, 0, len);
2091	else
2092		return -EINVAL;
2093
2094	if (ppd->config_from_scratch) {
2095		/*
2096		 * Use saved configuration from ppd for integrated platforms
2097		 */
2098		get_integrated_platform_config_field(dd, table_type,
2099						     field_index, data);
2100		return 0;
2101	}
2102
2103	ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2104					     &field_len_bits,
2105					     &field_start_bits);
2106	if (ret)
2107		return -EINVAL;
2108
2109	/* Convert length to bits */
2110	len *= 8;
2111
2112	/* Our metadata function checked cache_valid and field_index for us */
2113	switch (table_type) {
2114	case PLATFORM_CONFIG_SYSTEM_TABLE:
2115		src_ptr = pcfgcache->config_tables[table_type].table;
2116
2117		if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2118			if (len < field_len_bits)
2119				return -EINVAL;
2120
2121			seek = field_start_bits / 8;
2122			wlen = field_len_bits / 8;
2123
2124			src_ptr = (u32 *)((u8 *)src_ptr + seek);
2125
2126			/*
2127			 * We expect the field to be byte aligned and whole byte
2128			 * lengths if we are here
2129			 */
2130			memcpy(data, src_ptr, wlen);
2131			return 0;
2132		}
2133		break;
2134	case PLATFORM_CONFIG_PORT_TABLE:
2135		/* Port table is 4 DWORDS */
2136		src_ptr = dd->hfi1_id ?
2137			pcfgcache->config_tables[table_type].table + 4 :
2138			pcfgcache->config_tables[table_type].table;
2139		break;
2140	case PLATFORM_CONFIG_RX_PRESET_TABLE:
2141		/* fall through */
2142	case PLATFORM_CONFIG_TX_PRESET_TABLE:
2143		/* fall through */
2144	case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2145		/* fall through */
2146	case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2147		src_ptr = pcfgcache->config_tables[table_type].table;
2148
2149		if (table_index <
2150			pcfgcache->config_tables[table_type].num_table)
2151			src_ptr += table_index;
2152		else
2153			src_ptr = NULL;
2154		break;
2155	default:
2156		dd_dev_info(dd, "%s: Unknown table\n", __func__);
2157		break;
2158	}
2159
2160	if (!src_ptr || len < field_len_bits)
2161		return -EINVAL;
2162
2163	src_ptr += (field_start_bits / 32);
2164	*data = (*src_ptr >> (field_start_bits % 32)) &
2165			((1 << field_len_bits) - 1);
2166
2167	return 0;
2168}
2169
2170/*
2171 * Download the firmware needed for the Gen3 PCIe SerDes.  An update
2172 * to the SBus firmware is needed before updating the PCIe firmware.
2173 *
2174 * Note: caller must be holding the SBus resource.
2175 */
2176int load_pcie_firmware(struct hfi1_devdata *dd)
2177{
2178	int ret = 0;
2179
2180	/* both firmware loads below use the SBus */
2181	set_sbus_fast_mode(dd);
2182
2183	if (fw_sbus_load) {
2184		turn_off_spicos(dd, SPICO_SBUS);
2185		do {
2186			ret = load_sbus_firmware(dd, &fw_sbus);
2187		} while (retry_firmware(dd, ret));
2188		if (ret)
2189			goto done;
2190	}
2191
2192	if (fw_pcie_serdes_load) {
2193		dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2194		set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2195				     pcie_serdes_broadcast[dd->hfi1_id],
2196				     pcie_serdes_addrs[dd->hfi1_id],
2197				     NUM_PCIE_SERDES);
2198		do {
2199			ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2200		} while (retry_firmware(dd, ret));
2201		if (ret)
2202			goto done;
2203	}
2204
2205done:
2206	clear_sbus_fast_mode(dd);
2207
2208	return ret;
2209}
2210
2211/*
2212 * Read the GUID from the hardware, store it in dd.
2213 */
2214void read_guid(struct hfi1_devdata *dd)
2215{
2216	/* Take the DC out of reset to get a valid GUID value */
2217	write_csr(dd, CCE_DC_CTRL, 0);
2218	(void)read_csr(dd, CCE_DC_CTRL);
2219
2220	dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2221	dd_dev_info(dd, "GUID %llx",
2222		    (unsigned long long)dd->base_guid);
2223}
2224
2225/* read and display firmware version info */
2226static void dump_fw_version(struct hfi1_devdata *dd)
2227{
2228	u32 pcie_vers[NUM_PCIE_SERDES];
2229	u32 fabric_vers[NUM_FABRIC_SERDES];
2230	u32 sbus_vers;
2231	int i;
2232	int all_same;
2233	int ret;
2234	u8 rcv_addr;
2235
2236	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2237	if (ret) {
2238		dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2239		return;
2240	}
2241
2242	/* set fast mode */
2243	set_sbus_fast_mode(dd);
2244
2245	/* read version for SBus Master */
2246	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2247	sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2248	/* wait for interrupt to be processed */
2249	usleep_range(10000, 11000);
2250	sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2251	dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2252
2253	/* read version for PCIe SerDes */
2254	all_same = 1;
2255	pcie_vers[0] = 0;
2256	for (i = 0; i < NUM_PCIE_SERDES; i++) {
2257		rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2258		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2259		/* wait for interrupt to be processed */
2260		usleep_range(10000, 11000);
2261		pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2262		if (i > 0 && pcie_vers[0] != pcie_vers[i])
2263			all_same = 0;
2264	}
2265
2266	if (all_same) {
2267		dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2268			    pcie_vers[0]);
2269	} else {
2270		dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2271		for (i = 0; i < NUM_PCIE_SERDES; i++) {
2272			dd_dev_info(dd,
2273				    "PCIe SerDes lane %d firmware version 0x%x\n",
2274				    i, pcie_vers[i]);
2275		}
2276	}
2277
2278	/* read version for fabric SerDes */
2279	all_same = 1;
2280	fabric_vers[0] = 0;
2281	for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2282		rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2283		sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2284		/* wait for interrupt to be processed */
2285		usleep_range(10000, 11000);
2286		fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2287		if (i > 0 && fabric_vers[0] != fabric_vers[i])
2288			all_same = 0;
2289	}
2290
2291	if (all_same) {
2292		dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2293			    fabric_vers[0]);
2294	} else {
2295		dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2296		for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2297			dd_dev_info(dd,
2298				    "Fabric SerDes lane %d firmware version 0x%x\n",
2299				    i, fabric_vers[i]);
2300		}
2301	}
2302
2303	clear_sbus_fast_mode(dd);
2304	release_chip_resource(dd, CR_SBUS);
2305}