Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2017 Intel Corporation.
4 */
5
6#include <linux/firmware.h>
7#include <linux/mutex.h>
8#include <linux/delay.h>
9#include <linux/crc32.h>
10
11#include "hfi.h"
12#include "trace.h"
13
14/*
15 * Make it easy to toggle firmware file name and if it gets loaded by
16 * editing the following. This may be something we do while in development
17 * but not necessarily something a user would ever need to use.
18 */
19#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
20#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
21#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
22#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
23#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
24#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
25#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
26#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
27#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
28
29MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
30MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
31MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
32MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
33
34static uint fw_8051_load = 1;
35static uint fw_fabric_serdes_load = 1;
36static uint fw_pcie_serdes_load = 1;
37static uint fw_sbus_load = 1;
38
39/* Firmware file names get set in hfi1_firmware_init() based on the above */
40static char *fw_8051_name;
41static char *fw_fabric_serdes_name;
42static char *fw_sbus_name;
43static char *fw_pcie_serdes_name;
44
45#define SBUS_MAX_POLL_COUNT 100
46#define SBUS_COUNTER(reg, name) \
47 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
48 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
49
50/*
51 * Firmware security header.
52 */
53struct css_header {
54 u32 module_type;
55 u32 header_len;
56 u32 header_version;
57 u32 module_id;
58 u32 module_vendor;
59 u32 date; /* BCD yyyymmdd */
60 u32 size; /* in DWORDs */
61 u32 key_size; /* in DWORDs */
62 u32 modulus_size; /* in DWORDs */
63 u32 exponent_size; /* in DWORDs */
64 u32 reserved[22];
65};
66
67/* expected field values */
68#define CSS_MODULE_TYPE 0x00000006
69#define CSS_HEADER_LEN 0x000000a1
70#define CSS_HEADER_VERSION 0x00010000
71#define CSS_MODULE_VENDOR 0x00008086
72
73#define KEY_SIZE 256
74#define MU_SIZE 8
75#define EXPONENT_SIZE 4
76
77/* size of platform configuration partition */
78#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
79
80/* size of file of plaform configuration encoded in format version 4 */
81#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
82
83/* the file itself */
84struct firmware_file {
85 struct css_header css_header;
86 u8 modulus[KEY_SIZE];
87 u8 exponent[EXPONENT_SIZE];
88 u8 signature[KEY_SIZE];
89 u8 firmware[];
90};
91
92struct augmented_firmware_file {
93 struct css_header css_header;
94 u8 modulus[KEY_SIZE];
95 u8 exponent[EXPONENT_SIZE];
96 u8 signature[KEY_SIZE];
97 u8 r2[KEY_SIZE];
98 u8 mu[MU_SIZE];
99 u8 firmware[];
100};
101
102/* augmented file size difference */
103#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
104 sizeof(struct firmware_file))
105
106struct firmware_details {
107 /* Linux core piece */
108 const struct firmware *fw;
109
110 struct css_header *css_header;
111 u8 *firmware_ptr; /* pointer to binary data */
112 u32 firmware_len; /* length in bytes */
113 u8 *modulus; /* pointer to the modulus */
114 u8 *exponent; /* pointer to the exponent */
115 u8 *signature; /* pointer to the signature */
116 u8 *r2; /* pointer to r2 */
117 u8 *mu; /* pointer to mu */
118 struct augmented_firmware_file dummy_header;
119};
120
121/*
122 * The mutex protects fw_state, fw_err, and all of the firmware_details
123 * variables.
124 */
125static DEFINE_MUTEX(fw_mutex);
126enum fw_state {
127 FW_EMPTY,
128 FW_TRY,
129 FW_FINAL,
130 FW_ERR
131};
132
133static enum fw_state fw_state = FW_EMPTY;
134static int fw_err;
135static struct firmware_details fw_8051;
136static struct firmware_details fw_fabric;
137static struct firmware_details fw_pcie;
138static struct firmware_details fw_sbus;
139
140/* flags for turn_off_spicos() */
141#define SPICO_SBUS 0x1
142#define SPICO_FABRIC 0x2
143#define ENABLE_SPICO_SMASK 0x1
144
145/* security block commands */
146#define RSA_CMD_INIT 0x1
147#define RSA_CMD_START 0x2
148
149/* security block status */
150#define RSA_STATUS_IDLE 0x0
151#define RSA_STATUS_ACTIVE 0x1
152#define RSA_STATUS_DONE 0x2
153#define RSA_STATUS_FAILED 0x3
154
155/* RSA engine timeout, in ms */
156#define RSA_ENGINE_TIMEOUT 100 /* ms */
157
158/* hardware mutex timeout, in ms */
159#define HM_TIMEOUT 10 /* ms */
160
161/* 8051 memory access timeout, in us */
162#define DC8051_ACCESS_TIMEOUT 100 /* us */
163
164/* the number of fabric SerDes on the SBus */
165#define NUM_FABRIC_SERDES 4
166
167/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
168#define SBUS_READ_COMPLETE 0x4
169
170/* SBus fabric SerDes addresses, one set per HFI */
171static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
172 { 0x01, 0x02, 0x03, 0x04 },
173 { 0x28, 0x29, 0x2a, 0x2b }
174};
175
176/* SBus PCIe SerDes addresses, one set per HFI */
177static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
178 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
179 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
180 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
181 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
182};
183
184/* SBus PCIe PCS addresses, one set per HFI */
185const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
186 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
187 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
188 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
189 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
190};
191
192/* SBus fabric SerDes broadcast addresses, one per HFI */
193static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
194static const u8 all_fabric_serdes_broadcast = 0xe1;
195
196/* SBus PCIe SerDes broadcast addresses, one per HFI */
197const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
198static const u8 all_pcie_serdes_broadcast = 0xe0;
199
200static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
201 0,
202 SYSTEM_TABLE_MAX,
203 PORT_TABLE_MAX,
204 RX_PRESET_TABLE_MAX,
205 TX_PRESET_TABLE_MAX,
206 QSFP_ATTEN_TABLE_MAX,
207 VARIABLE_SETTINGS_TABLE_MAX
208};
209
210/* forwards */
211static void dispose_one_firmware(struct firmware_details *fdet);
212static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
213 struct firmware_details *fdet);
214static void dump_fw_version(struct hfi1_devdata *dd);
215
216/*
217 * Read a single 64-bit value from 8051 data memory.
218 *
219 * Expects:
220 * o caller to have already set up data read, no auto increment
221 * o caller to turn off read enable when finished
222 *
223 * The address argument is a byte offset. Bits 0:2 in the address are
224 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
225 * the lower bits are zero.
226 *
227 * Return 0 on success, -ENXIO on a read error (timeout).
228 */
229static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
230{
231 u64 reg;
232 int count;
233
234 /* step 1: set the address, clear enable */
235 reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
236 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
237 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
238 /* step 2: enable */
239 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
240 reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
241
242 /* wait until ACCESS_COMPLETED is set */
243 count = 0;
244 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
245 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
246 == 0) {
247 count++;
248 if (count > DC8051_ACCESS_TIMEOUT) {
249 dd_dev_err(dd, "timeout reading 8051 data\n");
250 return -ENXIO;
251 }
252 ndelay(10);
253 }
254
255 /* gather the data */
256 *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
257
258 return 0;
259}
260
261/*
262 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
263 * Return 0 on success, -errno on error.
264 */
265int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
266{
267 unsigned long flags;
268 u32 done;
269 int ret = 0;
270
271 spin_lock_irqsave(&dd->dc8051_memlock, flags);
272
273 /* data read set-up, no auto-increment */
274 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
275
276 for (done = 0; done < len; addr += 8, done += 8, result++) {
277 ret = __read_8051_data(dd, addr, result);
278 if (ret)
279 break;
280 }
281
282 /* turn off read enable */
283 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
284
285 spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
286
287 return ret;
288}
289
290/*
291 * Write data or code to the 8051 code or data RAM.
292 */
293static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
294 const u8 *data, u32 len)
295{
296 u64 reg;
297 u32 offset;
298 int aligned, count;
299
300 /* check alignment */
301 aligned = ((unsigned long)data & 0x7) == 0;
302
303 /* write set-up */
304 reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
305 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
306 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
307
308 reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
309 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
310 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
311 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
312
313 /* write */
314 for (offset = 0; offset < len; offset += 8) {
315 int bytes = len - offset;
316
317 if (bytes < 8) {
318 reg = 0;
319 memcpy(®, &data[offset], bytes);
320 } else if (aligned) {
321 reg = *(u64 *)&data[offset];
322 } else {
323 memcpy(®, &data[offset], 8);
324 }
325 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
326
327 /* wait until ACCESS_COMPLETED is set */
328 count = 0;
329 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
330 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
331 == 0) {
332 count++;
333 if (count > DC8051_ACCESS_TIMEOUT) {
334 dd_dev_err(dd, "timeout writing 8051 data\n");
335 return -ENXIO;
336 }
337 udelay(1);
338 }
339 }
340
341 /* turn off write access, auto increment (also sets to data access) */
342 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
343 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
344
345 return 0;
346}
347
348/* return 0 if values match, non-zero and complain otherwise */
349static int invalid_header(struct hfi1_devdata *dd, const char *what,
350 u32 actual, u32 expected)
351{
352 if (actual == expected)
353 return 0;
354
355 dd_dev_err(dd,
356 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
357 what, expected, actual);
358 return 1;
359}
360
361/*
362 * Verify that the static fields in the CSS header match.
363 */
364static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
365{
366 /* verify CSS header fields (most sizes are in DW, so add /4) */
367 if (invalid_header(dd, "module_type", css->module_type,
368 CSS_MODULE_TYPE) ||
369 invalid_header(dd, "header_len", css->header_len,
370 (sizeof(struct firmware_file) / 4)) ||
371 invalid_header(dd, "header_version", css->header_version,
372 CSS_HEADER_VERSION) ||
373 invalid_header(dd, "module_vendor", css->module_vendor,
374 CSS_MODULE_VENDOR) ||
375 invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
376 invalid_header(dd, "modulus_size", css->modulus_size,
377 KEY_SIZE / 4) ||
378 invalid_header(dd, "exponent_size", css->exponent_size,
379 EXPONENT_SIZE / 4)) {
380 return -EINVAL;
381 }
382 return 0;
383}
384
385/*
386 * Make sure there are at least some bytes after the prefix.
387 */
388static int payload_check(struct hfi1_devdata *dd, const char *name,
389 long file_size, long prefix_size)
390{
391 /* make sure we have some payload */
392 if (prefix_size >= file_size) {
393 dd_dev_err(dd,
394 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
395 name, file_size, prefix_size);
396 return -EINVAL;
397 }
398
399 return 0;
400}
401
402/*
403 * Request the firmware from the system. Extract the pieces and fill in
404 * fdet. If successful, the caller will need to call dispose_one_firmware().
405 * Returns 0 on success, -ERRNO on error.
406 */
407static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
408 struct firmware_details *fdet)
409{
410 struct css_header *css;
411 int ret;
412
413 memset(fdet, 0, sizeof(*fdet));
414
415 ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
416 if (ret) {
417 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
418 name, ret);
419 return ret;
420 }
421
422 /* verify the firmware */
423 if (fdet->fw->size < sizeof(struct css_header)) {
424 dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
425 ret = -EINVAL;
426 goto done;
427 }
428 css = (struct css_header *)fdet->fw->data;
429
430 hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
431 hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
432 hfi1_cdbg(FIRMWARE, "CSS structure:");
433 hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type);
434 hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)",
435 css->header_len, 4 * css->header_len);
436 hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version);
437 hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id);
438 hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor);
439 hfi1_cdbg(FIRMWARE, " date 0x%x", css->date);
440 hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)",
441 css->size, 4 * css->size);
442 hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)",
443 css->key_size, 4 * css->key_size);
444 hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)",
445 css->modulus_size, 4 * css->modulus_size);
446 hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)",
447 css->exponent_size, 4 * css->exponent_size);
448 hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
449 fdet->fw->size - sizeof(struct firmware_file));
450
451 /*
452 * If the file does not have a valid CSS header, fail.
453 * Otherwise, check the CSS size field for an expected size.
454 * The augmented file has r2 and mu inserted after the header
455 * was generated, so there will be a known difference between
456 * the CSS header size and the actual file size. Use this
457 * difference to identify an augmented file.
458 *
459 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
460 */
461 ret = verify_css_header(dd, css);
462 if (ret) {
463 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
464 } else if ((css->size * 4) == fdet->fw->size) {
465 /* non-augmented firmware file */
466 struct firmware_file *ff = (struct firmware_file *)
467 fdet->fw->data;
468
469 /* make sure there are bytes in the payload */
470 ret = payload_check(dd, name, fdet->fw->size,
471 sizeof(struct firmware_file));
472 if (ret == 0) {
473 fdet->css_header = css;
474 fdet->modulus = ff->modulus;
475 fdet->exponent = ff->exponent;
476 fdet->signature = ff->signature;
477 fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
478 fdet->mu = fdet->dummy_header.mu; /* use dummy space */
479 fdet->firmware_ptr = ff->firmware;
480 fdet->firmware_len = fdet->fw->size -
481 sizeof(struct firmware_file);
482 /*
483 * Header does not include r2 and mu - generate here.
484 * For now, fail.
485 */
486 dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
487 ret = -EINVAL;
488 }
489 } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
490 /* augmented firmware file */
491 struct augmented_firmware_file *aff =
492 (struct augmented_firmware_file *)fdet->fw->data;
493
494 /* make sure there are bytes in the payload */
495 ret = payload_check(dd, name, fdet->fw->size,
496 sizeof(struct augmented_firmware_file));
497 if (ret == 0) {
498 fdet->css_header = css;
499 fdet->modulus = aff->modulus;
500 fdet->exponent = aff->exponent;
501 fdet->signature = aff->signature;
502 fdet->r2 = aff->r2;
503 fdet->mu = aff->mu;
504 fdet->firmware_ptr = aff->firmware;
505 fdet->firmware_len = fdet->fw->size -
506 sizeof(struct augmented_firmware_file);
507 }
508 } else {
509 /* css->size check failed */
510 dd_dev_err(dd,
511 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
512 fdet->fw->size / 4,
513 (fdet->fw->size - AUGMENT_SIZE) / 4,
514 css->size);
515
516 ret = -EINVAL;
517 }
518
519done:
520 /* if returning an error, clean up after ourselves */
521 if (ret)
522 dispose_one_firmware(fdet);
523 return ret;
524}
525
526static void dispose_one_firmware(struct firmware_details *fdet)
527{
528 release_firmware(fdet->fw);
529 /* erase all previous information */
530 memset(fdet, 0, sizeof(*fdet));
531}
532
533/*
534 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
535 * at all. If called with the firmware state in FW_TRY, use alternate names.
536 * On exit, this routine will have set the firmware state to one of FW_TRY,
537 * FW_FINAL, or FW_ERR.
538 *
539 * Must be holding fw_mutex.
540 */
541static void __obtain_firmware(struct hfi1_devdata *dd)
542{
543 int err = 0;
544
545 if (fw_state == FW_FINAL) /* nothing more to obtain */
546 return;
547 if (fw_state == FW_ERR) /* already in error */
548 return;
549
550 /* fw_state is FW_EMPTY or FW_TRY */
551retry:
552 if (fw_state == FW_TRY) {
553 /*
554 * We tried the original and it failed. Move to the
555 * alternate.
556 */
557 dd_dev_warn(dd, "using alternate firmware names\n");
558 /*
559 * Let others run. Some systems, when missing firmware, does
560 * something that holds for 30 seconds. If we do that twice
561 * in a row it triggers task blocked warning.
562 */
563 cond_resched();
564 if (fw_8051_load)
565 dispose_one_firmware(&fw_8051);
566 if (fw_fabric_serdes_load)
567 dispose_one_firmware(&fw_fabric);
568 if (fw_sbus_load)
569 dispose_one_firmware(&fw_sbus);
570 if (fw_pcie_serdes_load)
571 dispose_one_firmware(&fw_pcie);
572 fw_8051_name = ALT_FW_8051_NAME_ASIC;
573 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
574 fw_sbus_name = ALT_FW_SBUS_NAME;
575 fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
576
577 /*
578 * Add a delay before obtaining and loading debug firmware.
579 * Authorization will fail if the delay between firmware
580 * authorization events is shorter than 50us. Add 100us to
581 * make a delay time safe.
582 */
583 usleep_range(100, 120);
584 }
585
586 if (fw_sbus_load) {
587 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
588 if (err)
589 goto done;
590 }
591
592 if (fw_pcie_serdes_load) {
593 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
594 if (err)
595 goto done;
596 }
597
598 if (fw_fabric_serdes_load) {
599 err = obtain_one_firmware(dd, fw_fabric_serdes_name,
600 &fw_fabric);
601 if (err)
602 goto done;
603 }
604
605 if (fw_8051_load) {
606 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
607 if (err)
608 goto done;
609 }
610
611done:
612 if (err) {
613 /* oops, had problems obtaining a firmware */
614 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
615 /* retry with alternate (RTL only) */
616 fw_state = FW_TRY;
617 goto retry;
618 }
619 dd_dev_err(dd, "unable to obtain working firmware\n");
620 fw_state = FW_ERR;
621 fw_err = -ENOENT;
622 } else {
623 /* success */
624 if (fw_state == FW_EMPTY &&
625 dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
626 fw_state = FW_TRY; /* may retry later */
627 else
628 fw_state = FW_FINAL; /* cannot try again */
629 }
630}
631
632/*
633 * Called by all HFIs when loading their firmware - i.e. device probe time.
634 * The first one will do the actual firmware load. Use a mutex to resolve
635 * any possible race condition.
636 *
637 * The call to this routine cannot be moved to driver load because the kernel
638 * call request_firmware() requires a device which is only available after
639 * the first device probe.
640 */
641static int obtain_firmware(struct hfi1_devdata *dd)
642{
643 unsigned long timeout;
644
645 mutex_lock(&fw_mutex);
646
647 /* 40s delay due to long delay on missing firmware on some systems */
648 timeout = jiffies + msecs_to_jiffies(40000);
649 while (fw_state == FW_TRY) {
650 /*
651 * Another device is trying the firmware. Wait until it
652 * decides what works (or not).
653 */
654 if (time_after(jiffies, timeout)) {
655 /* waited too long */
656 dd_dev_err(dd, "Timeout waiting for firmware try");
657 fw_state = FW_ERR;
658 fw_err = -ETIMEDOUT;
659 break;
660 }
661 mutex_unlock(&fw_mutex);
662 msleep(20); /* arbitrary delay */
663 mutex_lock(&fw_mutex);
664 }
665 /* not in FW_TRY state */
666
667 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
668 if (fw_state == FW_EMPTY)
669 __obtain_firmware(dd);
670
671 mutex_unlock(&fw_mutex);
672 return fw_err;
673}
674
675/*
676 * Called when the driver unloads. The timing is asymmetric with its
677 * counterpart, obtain_firmware(). If called at device remove time,
678 * then it is conceivable that another device could probe while the
679 * firmware is being disposed. The mutexes can be moved to do that
680 * safely, but then the firmware would be requested from the OS multiple
681 * times.
682 *
683 * No mutex is needed as the driver is unloading and there cannot be any
684 * other callers.
685 */
686void dispose_firmware(void)
687{
688 dispose_one_firmware(&fw_8051);
689 dispose_one_firmware(&fw_fabric);
690 dispose_one_firmware(&fw_pcie);
691 dispose_one_firmware(&fw_sbus);
692
693 /* retain the error state, otherwise revert to empty */
694 if (fw_state != FW_ERR)
695 fw_state = FW_EMPTY;
696}
697
698/*
699 * Called with the result of a firmware download.
700 *
701 * Return 1 to retry loading the firmware, 0 to stop.
702 */
703static int retry_firmware(struct hfi1_devdata *dd, int load_result)
704{
705 int retry;
706
707 mutex_lock(&fw_mutex);
708
709 if (load_result == 0) {
710 /*
711 * The load succeeded, so expect all others to do the same.
712 * Do not retry again.
713 */
714 if (fw_state == FW_TRY)
715 fw_state = FW_FINAL;
716 retry = 0; /* do NOT retry */
717 } else if (fw_state == FW_TRY) {
718 /* load failed, obtain alternate firmware */
719 __obtain_firmware(dd);
720 retry = (fw_state == FW_FINAL);
721 } else {
722 /* else in FW_FINAL or FW_ERR, no retry in either case */
723 retry = 0;
724 }
725
726 mutex_unlock(&fw_mutex);
727 return retry;
728}
729
730/*
731 * Write a block of data to a given array CSR. All calls will be in
732 * multiples of 8 bytes.
733 */
734static void write_rsa_data(struct hfi1_devdata *dd, int what,
735 const u8 *data, int nbytes)
736{
737 int qw_size = nbytes / 8;
738 int i;
739
740 if (((unsigned long)data & 0x7) == 0) {
741 /* aligned */
742 u64 *ptr = (u64 *)data;
743
744 for (i = 0; i < qw_size; i++, ptr++)
745 write_csr(dd, what + (8 * i), *ptr);
746 } else {
747 /* not aligned */
748 for (i = 0; i < qw_size; i++, data += 8) {
749 u64 value;
750
751 memcpy(&value, data, 8);
752 write_csr(dd, what + (8 * i), value);
753 }
754 }
755}
756
757/*
758 * Write a block of data to a given CSR as a stream of writes. All calls will
759 * be in multiples of 8 bytes.
760 */
761static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
762 const u8 *data, int nbytes)
763{
764 u64 *ptr = (u64 *)data;
765 int qw_size = nbytes / 8;
766
767 for (; qw_size > 0; qw_size--, ptr++)
768 write_csr(dd, what, *ptr);
769}
770
771/*
772 * Download the signature and start the RSA mechanism. Wait for
773 * RSA_ENGINE_TIMEOUT before giving up.
774 */
775static int run_rsa(struct hfi1_devdata *dd, const char *who,
776 const u8 *signature)
777{
778 unsigned long timeout;
779 u64 reg;
780 u32 status;
781 int ret = 0;
782
783 /* write the signature */
784 write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
785
786 /* initialize RSA */
787 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
788
789 /*
790 * Make sure the engine is idle and insert a delay between the two
791 * writes to MISC_CFG_RSA_CMD.
792 */
793 status = (read_csr(dd, MISC_CFG_FW_CTRL)
794 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
795 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
796 if (status != RSA_STATUS_IDLE) {
797 dd_dev_err(dd, "%s security engine not idle - giving up\n",
798 who);
799 return -EBUSY;
800 }
801
802 /* start RSA */
803 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
804
805 /*
806 * Look for the result.
807 *
808 * The RSA engine is hooked up to two MISC errors. The driver
809 * masks these errors as they do not respond to the standard
810 * error "clear down" mechanism. Look for these errors here and
811 * clear them when possible. This routine will exit with the
812 * errors of the current run still set.
813 *
814 * MISC_FW_AUTH_FAILED_ERR
815 * Firmware authorization failed. This can be cleared by
816 * re-initializing the RSA engine, then clearing the status bit.
817 * Do not re-init the RSA angine immediately after a successful
818 * run - this will reset the current authorization.
819 *
820 * MISC_KEY_MISMATCH_ERR
821 * Key does not match. The only way to clear this is to load
822 * a matching key then clear the status bit. If this error
823 * is raised, it will persist outside of this routine until a
824 * matching key is loaded.
825 */
826 timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
827 while (1) {
828 status = (read_csr(dd, MISC_CFG_FW_CTRL)
829 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
830 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
831
832 if (status == RSA_STATUS_IDLE) {
833 /* should not happen */
834 dd_dev_err(dd, "%s firmware security bad idle state\n",
835 who);
836 ret = -EINVAL;
837 break;
838 } else if (status == RSA_STATUS_DONE) {
839 /* finished successfully */
840 break;
841 } else if (status == RSA_STATUS_FAILED) {
842 /* finished unsuccessfully */
843 ret = -EINVAL;
844 break;
845 }
846 /* else still active */
847
848 if (time_after(jiffies, timeout)) {
849 /*
850 * Timed out while active. We can't reset the engine
851 * if it is stuck active, but run through the
852 * error code to see what error bits are set.
853 */
854 dd_dev_err(dd, "%s firmware security time out\n", who);
855 ret = -ETIMEDOUT;
856 break;
857 }
858
859 msleep(20);
860 }
861
862 /*
863 * Arrive here on success or failure. Clear all RSA engine
864 * errors. All current errors will stick - the RSA logic is keeping
865 * error high. All previous errors will clear - the RSA logic
866 * is not keeping the error high.
867 */
868 write_csr(dd, MISC_ERR_CLEAR,
869 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
870 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
871 /*
872 * All that is left are the current errors. Print warnings on
873 * authorization failure details, if any. Firmware authorization
874 * can be retried, so these are only warnings.
875 */
876 reg = read_csr(dd, MISC_ERR_STATUS);
877 if (ret) {
878 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
879 dd_dev_warn(dd, "%s firmware authorization failed\n",
880 who);
881 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
882 dd_dev_warn(dd, "%s firmware key mismatch\n", who);
883 }
884
885 return ret;
886}
887
888static void load_security_variables(struct hfi1_devdata *dd,
889 struct firmware_details *fdet)
890{
891 /* Security variables a. Write the modulus */
892 write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
893 /* Security variables b. Write the r2 */
894 write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
895 /* Security variables c. Write the mu */
896 write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
897 /* Security variables d. Write the header */
898 write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
899 (u8 *)fdet->css_header,
900 sizeof(struct css_header));
901}
902
903/* return the 8051 firmware state */
904static inline u32 get_firmware_state(struct hfi1_devdata *dd)
905{
906 u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
907
908 return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
909 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
910}
911
912/*
913 * Wait until the firmware is up and ready to take host requests.
914 * Return 0 on success, -ETIMEDOUT on timeout.
915 */
916int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
917{
918 unsigned long timeout;
919
920 /* in the simulator, the fake 8051 is always ready */
921 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
922 return 0;
923
924 timeout = msecs_to_jiffies(mstimeout) + jiffies;
925 while (1) {
926 if (get_firmware_state(dd) == 0xa0) /* ready */
927 return 0;
928 if (time_after(jiffies, timeout)) /* timed out */
929 return -ETIMEDOUT;
930 usleep_range(1950, 2050); /* sleep 2ms-ish */
931 }
932}
933
934/*
935 * Load the 8051 firmware.
936 */
937static int load_8051_firmware(struct hfi1_devdata *dd,
938 struct firmware_details *fdet)
939{
940 u64 reg;
941 int ret;
942 u8 ver_major;
943 u8 ver_minor;
944 u8 ver_patch;
945
946 /*
947 * DC Reset sequence
948 * Load DC 8051 firmware
949 */
950 /*
951 * DC reset step 1: Reset DC8051
952 */
953 reg = DC_DC8051_CFG_RST_M8051W_SMASK
954 | DC_DC8051_CFG_RST_CRAM_SMASK
955 | DC_DC8051_CFG_RST_DRAM_SMASK
956 | DC_DC8051_CFG_RST_IRAM_SMASK
957 | DC_DC8051_CFG_RST_SFR_SMASK;
958 write_csr(dd, DC_DC8051_CFG_RST, reg);
959
960 /*
961 * DC reset step 2 (optional): Load 8051 data memory with link
962 * configuration
963 */
964
965 /*
966 * DC reset step 3: Load DC8051 firmware
967 */
968 /* release all but the core reset */
969 reg = DC_DC8051_CFG_RST_M8051W_SMASK;
970 write_csr(dd, DC_DC8051_CFG_RST, reg);
971
972 /* Firmware load step 1 */
973 load_security_variables(dd, fdet);
974
975 /*
976 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
977 */
978 write_csr(dd, MISC_CFG_FW_CTRL, 0);
979
980 /* Firmware load steps 3-5 */
981 ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
982 fdet->firmware_len);
983 if (ret)
984 return ret;
985
986 /*
987 * DC reset step 4. Host starts the DC8051 firmware
988 */
989 /*
990 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
991 */
992 write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
993
994 /* Firmware load steps 7-10 */
995 ret = run_rsa(dd, "8051", fdet->signature);
996 if (ret)
997 return ret;
998
999 /* clear all reset bits, releasing the 8051 */
1000 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1001
1002 /*
1003 * DC reset step 5. Wait for firmware to be ready to accept host
1004 * requests.
1005 */
1006 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1007 if (ret) { /* timed out */
1008 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1009 get_firmware_state(dd));
1010 return -ETIMEDOUT;
1011 }
1012
1013 read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1014 dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1015 (int)ver_major, (int)ver_minor, (int)ver_patch);
1016 dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1017 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1018 if (ret != HCMD_SUCCESS) {
1019 dd_dev_err(dd,
1020 "Failed to set host interface version, return 0x%x\n",
1021 ret);
1022 return -EIO;
1023 }
1024
1025 return 0;
1026}
1027
1028/*
1029 * Write the SBus request register
1030 *
1031 * No need for masking - the arguments are sized exactly.
1032 */
1033void sbus_request(struct hfi1_devdata *dd,
1034 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1035{
1036 write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1037 ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1038 ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1039 ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1040 ((u64)receiver_addr <<
1041 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1042}
1043
1044/*
1045 * Read a value from the SBus.
1046 *
1047 * Requires the caller to be in fast mode
1048 */
1049static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1050 u32 data_in)
1051{
1052 u64 reg;
1053 int retries;
1054 int success = 0;
1055 u32 result = 0;
1056 u32 result_code = 0;
1057
1058 sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1059
1060 for (retries = 0; retries < 100; retries++) {
1061 usleep_range(1000, 1200); /* arbitrary */
1062 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1063 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1064 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1065 if (result_code != SBUS_READ_COMPLETE)
1066 continue;
1067
1068 success = 1;
1069 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1070 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1071 break;
1072 }
1073
1074 if (!success) {
1075 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1076 result_code);
1077 }
1078
1079 return result;
1080}
1081
1082/*
1083 * Turn off the SBus and fabric serdes spicos.
1084 *
1085 * + Must be called with Sbus fast mode turned on.
1086 * + Must be called after fabric serdes broadcast is set up.
1087 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1088 * when using MISC_CFG_FW_CTRL.
1089 */
1090static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1091{
1092 /* only needed on A0 */
1093 if (!is_ax(dd))
1094 return;
1095
1096 dd_dev_info(dd, "Turning off spicos:%s%s\n",
1097 flags & SPICO_SBUS ? " SBus" : "",
1098 flags & SPICO_FABRIC ? " fabric" : "");
1099
1100 write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1101 /* disable SBus spico */
1102 if (flags & SPICO_SBUS)
1103 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1104 WRITE_SBUS_RECEIVER, 0x00000040);
1105
1106 /* disable the fabric serdes spicos */
1107 if (flags & SPICO_FABRIC)
1108 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1109 0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1110 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1111}
1112
1113/*
1114 * Reset all of the fabric serdes for this HFI in preparation to take the
1115 * link to Polling.
1116 *
1117 * To do a reset, we need to write to the serdes registers. Unfortunately,
1118 * the fabric serdes download to the other HFI on the ASIC will have turned
1119 * off the firmware validation on this HFI. This means we can't write to the
1120 * registers to reset the serdes. Work around this by performing a complete
1121 * re-download and validation of the fabric serdes firmware. This, as a
1122 * by-product, will reset the serdes. NOTE: the re-download requires that
1123 * the 8051 be in the Offline state. I.e. not actively trying to use the
1124 * serdes. This routine is called at the point where the link is Offline and
1125 * is getting ready to go to Polling.
1126 */
1127void fabric_serdes_reset(struct hfi1_devdata *dd)
1128{
1129 int ret;
1130
1131 if (!fw_fabric_serdes_load)
1132 return;
1133
1134 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1135 if (ret) {
1136 dd_dev_err(dd,
1137 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1138 return;
1139 }
1140 set_sbus_fast_mode(dd);
1141
1142 if (is_ax(dd)) {
1143 /* A0 serdes do not work with a re-download */
1144 u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1145
1146 /* place SerDes in reset and disable SPICO */
1147 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1148 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1149 udelay(1);
1150 /* remove SerDes reset */
1151 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1152 /* turn SPICO enable on */
1153 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1154 } else {
1155 turn_off_spicos(dd, SPICO_FABRIC);
1156 /*
1157 * No need for firmware retry - what to download has already
1158 * been decided.
1159 * No need to pay attention to the load return - the only
1160 * failure is a validation failure, which has already been
1161 * checked by the initial download.
1162 */
1163 (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1164 }
1165
1166 clear_sbus_fast_mode(dd);
1167 release_chip_resource(dd, CR_SBUS);
1168}
1169
1170/* Access to the SBus in this routine should probably be serialized */
1171int sbus_request_slow(struct hfi1_devdata *dd,
1172 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1173{
1174 u64 reg, count = 0;
1175
1176 /* make sure fast mode is clear */
1177 clear_sbus_fast_mode(dd);
1178
1179 sbus_request(dd, receiver_addr, data_addr, command, data_in);
1180 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1181 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1182 /* Wait for both DONE and RCV_DATA_VALID to go high */
1183 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1184 while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1185 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1186 if (count++ >= SBUS_MAX_POLL_COUNT) {
1187 u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1188 /*
1189 * If the loop has timed out, we are OK if DONE bit
1190 * is set and RCV_DATA_VALID and EXECUTE counters
1191 * are the same. If not, we cannot proceed.
1192 */
1193 if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1194 (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1195 SBUS_COUNTER(counts, EXECUTE)))
1196 break;
1197 return -ETIMEDOUT;
1198 }
1199 udelay(1);
1200 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1201 }
1202 count = 0;
1203 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1204 /* Wait for DONE to clear after EXECUTE is cleared */
1205 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1206 while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1207 if (count++ >= SBUS_MAX_POLL_COUNT)
1208 return -ETIME;
1209 udelay(1);
1210 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1211 }
1212 return 0;
1213}
1214
1215static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1216 struct firmware_details *fdet)
1217{
1218 int i, err;
1219 const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1220
1221 dd_dev_info(dd, "Downloading fabric firmware\n");
1222
1223 /* step 1: load security variables */
1224 load_security_variables(dd, fdet);
1225 /* step 2: place SerDes in reset and disable SPICO */
1226 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1227 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1228 udelay(1);
1229 /* step 3: remove SerDes reset */
1230 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1231 /* step 4: assert IMEM override */
1232 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1233 /* step 5: download SerDes machine code */
1234 for (i = 0; i < fdet->firmware_len; i += 4) {
1235 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1236 *(u32 *)&fdet->firmware_ptr[i]);
1237 }
1238 /* step 6: IMEM override off */
1239 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1240 /* step 7: turn ECC on */
1241 sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1242
1243 /* steps 8-11: run the RSA engine */
1244 err = run_rsa(dd, "fabric serdes", fdet->signature);
1245 if (err)
1246 return err;
1247
1248 /* step 12: turn SPICO enable on */
1249 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1250 /* step 13: enable core hardware interrupts */
1251 sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1252
1253 return 0;
1254}
1255
1256static int load_sbus_firmware(struct hfi1_devdata *dd,
1257 struct firmware_details *fdet)
1258{
1259 int i, err;
1260 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1261
1262 dd_dev_info(dd, "Downloading SBus firmware\n");
1263
1264 /* step 1: load security variables */
1265 load_security_variables(dd, fdet);
1266 /* step 2: place SPICO into reset and enable off */
1267 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1268 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1269 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1270 /* step 4: set starting IMEM address for burst download */
1271 sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1272 /* step 5: download the SBus Master machine code */
1273 for (i = 0; i < fdet->firmware_len; i += 4) {
1274 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1275 *(u32 *)&fdet->firmware_ptr[i]);
1276 }
1277 /* step 6: set IMEM_CNTL_EN off */
1278 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1279 /* step 7: turn ECC on */
1280 sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1281
1282 /* steps 8-11: run the RSA engine */
1283 err = run_rsa(dd, "SBus", fdet->signature);
1284 if (err)
1285 return err;
1286
1287 /* step 12: set SPICO_ENABLE on */
1288 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1289
1290 return 0;
1291}
1292
1293static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1294 struct firmware_details *fdet)
1295{
1296 int i;
1297 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1298
1299 dd_dev_info(dd, "Downloading PCIe firmware\n");
1300
1301 /* step 1: load security variables */
1302 load_security_variables(dd, fdet);
1303 /* step 2: assert single step (halts the SBus Master spico) */
1304 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1305 /* step 3: enable XDMEM access */
1306 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1307 /* step 4: load firmware into SBus Master XDMEM */
1308 /*
1309 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1310 * we only need to pick up the bytes and write them
1311 */
1312 for (i = 0; i < fdet->firmware_len; i += 4) {
1313 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1314 *(u32 *)&fdet->firmware_ptr[i]);
1315 }
1316 /* step 5: disable XDMEM access */
1317 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1318 /* step 6: allow SBus Spico to run */
1319 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1320
1321 /*
1322 * steps 7-11: run RSA, if it succeeds, firmware is available to
1323 * be swapped
1324 */
1325 return run_rsa(dd, "PCIe serdes", fdet->signature);
1326}
1327
1328/*
1329 * Set the given broadcast values on the given list of devices.
1330 */
1331static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1332 const u8 *addrs, int count)
1333{
1334 while (--count >= 0) {
1335 /*
1336 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1337 * defaults for everything else. Do not read-modify-write,
1338 * per instruction from the manufacturer.
1339 *
1340 * Register 0xfd:
1341 * bits what
1342 * ----- ---------------------------------
1343 * 0 IGNORE_BROADCAST (default 0)
1344 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1345 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1346 */
1347 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1348 (u32)bg1 << 4 | (u32)bg2 << 16);
1349 }
1350}
1351
1352int acquire_hw_mutex(struct hfi1_devdata *dd)
1353{
1354 unsigned long timeout;
1355 int try = 0;
1356 u8 mask = 1 << dd->hfi1_id;
1357 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1358
1359 if (user == mask) {
1360 dd_dev_info(dd,
1361 "Hardware mutex already acquired, mutex mask %u\n",
1362 (u32)mask);
1363 return 0;
1364 }
1365
1366retry:
1367 timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1368 while (1) {
1369 write_csr(dd, ASIC_CFG_MUTEX, mask);
1370 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1371 if (user == mask)
1372 return 0; /* success */
1373 if (time_after(jiffies, timeout))
1374 break; /* timed out */
1375 msleep(20);
1376 }
1377
1378 /* timed out */
1379 dd_dev_err(dd,
1380 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1381 (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1382
1383 if (try == 0) {
1384 /* break mutex and retry */
1385 write_csr(dd, ASIC_CFG_MUTEX, 0);
1386 try++;
1387 goto retry;
1388 }
1389
1390 return -EBUSY;
1391}
1392
1393void release_hw_mutex(struct hfi1_devdata *dd)
1394{
1395 u8 mask = 1 << dd->hfi1_id;
1396 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1397
1398 if (user != mask)
1399 dd_dev_warn(dd,
1400 "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1401 (u32)user, (u32)mask);
1402 else
1403 write_csr(dd, ASIC_CFG_MUTEX, 0);
1404}
1405
1406/* return the given resource bit(s) as a mask for the given HFI */
1407static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1408{
1409 return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1410}
1411
1412static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1413 const char *func)
1414{
1415 dd_dev_err(dd,
1416 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1417 func);
1418}
1419
1420/*
1421 * Acquire access to a chip resource.
1422 *
1423 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1424 */
1425static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1426{
1427 u64 scratch0, all_bits, my_bit;
1428 int ret;
1429
1430 if (resource & CR_DYN_MASK) {
1431 /* a dynamic resource is in use if either HFI has set the bit */
1432 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1433 (resource & (CR_I2C1 | CR_I2C2))) {
1434 /* discrete devices must serialize across both chains */
1435 all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1436 resource_mask(1, CR_I2C1 | CR_I2C2);
1437 } else {
1438 all_bits = resource_mask(0, resource) |
1439 resource_mask(1, resource);
1440 }
1441 my_bit = resource_mask(dd->hfi1_id, resource);
1442 } else {
1443 /* non-dynamic resources are not split between HFIs */
1444 all_bits = resource;
1445 my_bit = resource;
1446 }
1447
1448 /* lock against other callers within the driver wanting a resource */
1449 mutex_lock(&dd->asic_data->asic_resource_mutex);
1450
1451 ret = acquire_hw_mutex(dd);
1452 if (ret) {
1453 fail_mutex_acquire_message(dd, __func__);
1454 ret = -EIO;
1455 goto done;
1456 }
1457
1458 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1459 if (scratch0 & all_bits) {
1460 ret = -EBUSY;
1461 } else {
1462 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1463 /* force write to be visible to other HFI on another OS */
1464 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1465 }
1466
1467 release_hw_mutex(dd);
1468
1469done:
1470 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1471 return ret;
1472}
1473
1474/*
1475 * Acquire access to a chip resource, wait up to mswait milliseconds for
1476 * the resource to become available.
1477 *
1478 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1479 * acquire failed.
1480 */
1481int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1482{
1483 unsigned long timeout;
1484 int ret;
1485
1486 timeout = jiffies + msecs_to_jiffies(mswait);
1487 while (1) {
1488 ret = __acquire_chip_resource(dd, resource);
1489 if (ret != -EBUSY)
1490 return ret;
1491 /* resource is busy, check our timeout */
1492 if (time_after_eq(jiffies, timeout))
1493 return -EBUSY;
1494 usleep_range(80, 120); /* arbitrary delay */
1495 }
1496}
1497
1498/*
1499 * Release access to a chip resource
1500 */
1501void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1502{
1503 u64 scratch0, bit;
1504
1505 /* only dynamic resources should ever be cleared */
1506 if (!(resource & CR_DYN_MASK)) {
1507 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1508 resource);
1509 return;
1510 }
1511 bit = resource_mask(dd->hfi1_id, resource);
1512
1513 /* lock against other callers within the driver wanting a resource */
1514 mutex_lock(&dd->asic_data->asic_resource_mutex);
1515
1516 if (acquire_hw_mutex(dd)) {
1517 fail_mutex_acquire_message(dd, __func__);
1518 goto done;
1519 }
1520
1521 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1522 if ((scratch0 & bit) != 0) {
1523 scratch0 &= ~bit;
1524 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1525 /* force write to be visible to other HFI on another OS */
1526 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1527 } else {
1528 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1529 __func__, dd->hfi1_id, resource);
1530 }
1531
1532 release_hw_mutex(dd);
1533
1534done:
1535 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1536}
1537
1538/*
1539 * Return true if resource is set, false otherwise. Print a warning
1540 * if not set and a function is supplied.
1541 */
1542bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1543 const char *func)
1544{
1545 u64 scratch0, bit;
1546
1547 if (resource & CR_DYN_MASK)
1548 bit = resource_mask(dd->hfi1_id, resource);
1549 else
1550 bit = resource;
1551
1552 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1553 if ((scratch0 & bit) == 0) {
1554 if (func)
1555 dd_dev_warn(dd,
1556 "%s: id %d, resource 0x%x, not acquired!\n",
1557 func, dd->hfi1_id, resource);
1558 return false;
1559 }
1560 return true;
1561}
1562
1563static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1564{
1565 u64 scratch0;
1566
1567 /* lock against other callers within the driver wanting a resource */
1568 mutex_lock(&dd->asic_data->asic_resource_mutex);
1569
1570 if (acquire_hw_mutex(dd)) {
1571 fail_mutex_acquire_message(dd, func);
1572 goto done;
1573 }
1574
1575 /* clear all dynamic access bits for this HFI */
1576 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1577 scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1578 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1579 /* force write to be visible to other HFI on another OS */
1580 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1581
1582 release_hw_mutex(dd);
1583
1584done:
1585 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1586}
1587
1588void init_chip_resources(struct hfi1_devdata *dd)
1589{
1590 /* clear any holds left by us */
1591 clear_chip_resources(dd, __func__);
1592}
1593
1594void finish_chip_resources(struct hfi1_devdata *dd)
1595{
1596 /* clear any holds left by us */
1597 clear_chip_resources(dd, __func__);
1598}
1599
1600void set_sbus_fast_mode(struct hfi1_devdata *dd)
1601{
1602 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1603 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1604}
1605
1606void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1607{
1608 u64 reg, count = 0;
1609
1610 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1611 while (SBUS_COUNTER(reg, EXECUTE) !=
1612 SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1613 if (count++ >= SBUS_MAX_POLL_COUNT)
1614 break;
1615 udelay(1);
1616 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1617 }
1618 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1619}
1620
1621int load_firmware(struct hfi1_devdata *dd)
1622{
1623 int ret;
1624
1625 if (fw_fabric_serdes_load) {
1626 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1627 if (ret)
1628 return ret;
1629
1630 set_sbus_fast_mode(dd);
1631
1632 set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1633 fabric_serdes_broadcast[dd->hfi1_id],
1634 fabric_serdes_addrs[dd->hfi1_id],
1635 NUM_FABRIC_SERDES);
1636 turn_off_spicos(dd, SPICO_FABRIC);
1637 do {
1638 ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1639 } while (retry_firmware(dd, ret));
1640
1641 clear_sbus_fast_mode(dd);
1642 release_chip_resource(dd, CR_SBUS);
1643 if (ret)
1644 return ret;
1645 }
1646
1647 if (fw_8051_load) {
1648 do {
1649 ret = load_8051_firmware(dd, &fw_8051);
1650 } while (retry_firmware(dd, ret));
1651 if (ret)
1652 return ret;
1653 }
1654
1655 dump_fw_version(dd);
1656 return 0;
1657}
1658
1659int hfi1_firmware_init(struct hfi1_devdata *dd)
1660{
1661 /* only RTL can use these */
1662 if (dd->icode != ICODE_RTL_SILICON) {
1663 fw_fabric_serdes_load = 0;
1664 fw_pcie_serdes_load = 0;
1665 fw_sbus_load = 0;
1666 }
1667
1668 /* no 8051 or QSFP on simulator */
1669 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1670 fw_8051_load = 0;
1671
1672 if (!fw_8051_name) {
1673 if (dd->icode == ICODE_RTL_SILICON)
1674 fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1675 else
1676 fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1677 }
1678 if (!fw_fabric_serdes_name)
1679 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1680 if (!fw_sbus_name)
1681 fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1682 if (!fw_pcie_serdes_name)
1683 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1684
1685 return obtain_firmware(dd);
1686}
1687
1688/*
1689 * This function is a helper function for parse_platform_config(...) and
1690 * does not check for validity of the platform configuration cache
1691 * (because we know it is invalid as we are building up the cache).
1692 * As such, this should not be called from anywhere other than
1693 * parse_platform_config
1694 */
1695static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1696{
1697 u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1698 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1699
1700 if (!system_table)
1701 return -EINVAL;
1702
1703 meta_ver_meta =
1704 *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1705 + SYSTEM_TABLE_META_VERSION);
1706
1707 mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1708 ver_start = meta_ver_meta & mask;
1709
1710 meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1711
1712 mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1713 ver_len = meta_ver_meta & mask;
1714
1715 ver_start /= 8;
1716 meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1717
1718 if (meta_ver < 4) {
1719 dd_dev_info(
1720 dd, "%s:Please update platform config\n", __func__);
1721 return -EINVAL;
1722 }
1723 return 0;
1724}
1725
1726int parse_platform_config(struct hfi1_devdata *dd)
1727{
1728 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1729 struct hfi1_pportdata *ppd = dd->pport;
1730 u32 *ptr = NULL;
1731 u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1732 u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1733 int ret = -EINVAL; /* assume failure */
1734
1735 /*
1736 * For integrated devices that did not fall back to the default file,
1737 * the SI tuning information for active channels is acquired from the
1738 * scratch register bitmap, thus there is no platform config to parse.
1739 * Skip parsing in these situations.
1740 */
1741 if (ppd->config_from_scratch)
1742 return 0;
1743
1744 if (!dd->platform_config.data) {
1745 dd_dev_err(dd, "%s: Missing config file\n", __func__);
1746 ret = -EINVAL;
1747 goto bail;
1748 }
1749 ptr = (u32 *)dd->platform_config.data;
1750
1751 magic_num = *ptr;
1752 ptr++;
1753 if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1754 dd_dev_err(dd, "%s: Bad config file\n", __func__);
1755 ret = -EINVAL;
1756 goto bail;
1757 }
1758
1759 /* Field is file size in DWORDs */
1760 file_length = (*ptr) * 4;
1761
1762 /*
1763 * Length can't be larger than partition size. Assume platform
1764 * config format version 4 is being used. Interpret the file size
1765 * field as header instead by not moving the pointer.
1766 */
1767 if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1768 dd_dev_info(dd,
1769 "%s:File length out of bounds, using alternative format\n",
1770 __func__);
1771 file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1772 } else {
1773 ptr++;
1774 }
1775
1776 if (file_length > dd->platform_config.size) {
1777 dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1778 __func__);
1779 ret = -EINVAL;
1780 goto bail;
1781 } else if (file_length < dd->platform_config.size) {
1782 dd_dev_info(dd,
1783 "%s:File claims to be smaller than read size, continuing\n",
1784 __func__);
1785 }
1786 /* exactly equal, perfection */
1787
1788 /*
1789 * In both cases where we proceed, using the self-reported file length
1790 * is the safer option. In case of old format a predefined value is
1791 * being used.
1792 */
1793 while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1794 header1 = *ptr;
1795 header2 = *(ptr + 1);
1796 if (header1 != ~header2) {
1797 dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1798 __func__, (ptr - (u32 *)
1799 dd->platform_config.data));
1800 ret = -EINVAL;
1801 goto bail;
1802 }
1803
1804 record_idx = *ptr &
1805 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1806
1807 table_length_dwords = (*ptr >>
1808 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1809 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1810
1811 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1812 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1813
1814 /* Done with this set of headers */
1815 ptr += 2;
1816
1817 if (record_idx) {
1818 /* data table */
1819 switch (table_type) {
1820 case PLATFORM_CONFIG_SYSTEM_TABLE:
1821 pcfgcache->config_tables[table_type].num_table =
1822 1;
1823 ret = check_meta_version(dd, ptr);
1824 if (ret)
1825 goto bail;
1826 break;
1827 case PLATFORM_CONFIG_PORT_TABLE:
1828 pcfgcache->config_tables[table_type].num_table =
1829 2;
1830 break;
1831 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1832 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1833 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1834 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1835 pcfgcache->config_tables[table_type].num_table =
1836 table_length_dwords;
1837 break;
1838 default:
1839 dd_dev_err(dd,
1840 "%s: Unknown data table %d, offset %ld\n",
1841 __func__, table_type,
1842 (ptr - (u32 *)
1843 dd->platform_config.data));
1844 ret = -EINVAL;
1845 goto bail; /* We don't trust this file now */
1846 }
1847 pcfgcache->config_tables[table_type].table = ptr;
1848 } else {
1849 /* metadata table */
1850 switch (table_type) {
1851 case PLATFORM_CONFIG_SYSTEM_TABLE:
1852 case PLATFORM_CONFIG_PORT_TABLE:
1853 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1854 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1855 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1856 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1857 break;
1858 default:
1859 dd_dev_err(dd,
1860 "%s: Unknown meta table %d, offset %ld\n",
1861 __func__, table_type,
1862 (ptr -
1863 (u32 *)dd->platform_config.data));
1864 ret = -EINVAL;
1865 goto bail; /* We don't trust this file now */
1866 }
1867 pcfgcache->config_tables[table_type].table_metadata =
1868 ptr;
1869 }
1870
1871 /* Calculate and check table crc */
1872 crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1873 (table_length_dwords * 4));
1874 crc ^= ~(u32)0;
1875
1876 /* Jump the table */
1877 ptr += table_length_dwords;
1878 if (crc != *ptr) {
1879 dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1880 __func__, (ptr -
1881 (u32 *)dd->platform_config.data));
1882 ret = -EINVAL;
1883 goto bail;
1884 }
1885 /* Jump the CRC DWORD */
1886 ptr++;
1887 }
1888
1889 pcfgcache->cache_valid = 1;
1890 return 0;
1891bail:
1892 memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1893 return ret;
1894}
1895
1896static void get_integrated_platform_config_field(
1897 struct hfi1_devdata *dd,
1898 enum platform_config_table_type_encoding table_type,
1899 int field_index, u32 *data)
1900{
1901 struct hfi1_pportdata *ppd = dd->pport;
1902 u8 *cache = ppd->qsfp_info.cache;
1903 u32 tx_preset = 0;
1904
1905 switch (table_type) {
1906 case PLATFORM_CONFIG_SYSTEM_TABLE:
1907 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1908 *data = ppd->max_power_class;
1909 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1910 *data = ppd->default_atten;
1911 break;
1912 case PLATFORM_CONFIG_PORT_TABLE:
1913 if (field_index == PORT_TABLE_PORT_TYPE)
1914 *data = ppd->port_type;
1915 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1916 *data = ppd->local_atten;
1917 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1918 *data = ppd->remote_atten;
1919 break;
1920 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1921 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1922 *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1923 QSFP_RX_CDR_APPLY_SHIFT;
1924 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1925 *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1926 QSFP_RX_EMP_APPLY_SHIFT;
1927 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1928 *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1929 QSFP_RX_AMP_APPLY_SHIFT;
1930 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1931 *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1932 QSFP_RX_CDR_SHIFT;
1933 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1934 *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1935 QSFP_RX_EMP_SHIFT;
1936 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1937 *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1938 QSFP_RX_AMP_SHIFT;
1939 break;
1940 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1941 if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1942 tx_preset = ppd->tx_preset_eq;
1943 else
1944 tx_preset = ppd->tx_preset_noeq;
1945 if (field_index == TX_PRESET_TABLE_PRECUR)
1946 *data = (tx_preset & TX_PRECUR_SMASK) >>
1947 TX_PRECUR_SHIFT;
1948 else if (field_index == TX_PRESET_TABLE_ATTN)
1949 *data = (tx_preset & TX_ATTN_SMASK) >>
1950 TX_ATTN_SHIFT;
1951 else if (field_index == TX_PRESET_TABLE_POSTCUR)
1952 *data = (tx_preset & TX_POSTCUR_SMASK) >>
1953 TX_POSTCUR_SHIFT;
1954 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1955 *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
1956 QSFP_TX_CDR_APPLY_SHIFT;
1957 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
1958 *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
1959 QSFP_TX_EQ_APPLY_SHIFT;
1960 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
1961 *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
1962 QSFP_TX_CDR_SHIFT;
1963 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
1964 *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
1965 QSFP_TX_EQ_SHIFT;
1966 break;
1967 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1968 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1969 default:
1970 break;
1971 }
1972}
1973
1974static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
1975 int field, u32 *field_len_bits,
1976 u32 *field_start_bits)
1977{
1978 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1979 u32 *src_ptr = NULL;
1980
1981 if (!pcfgcache->cache_valid)
1982 return -EINVAL;
1983
1984 switch (table) {
1985 case PLATFORM_CONFIG_SYSTEM_TABLE:
1986 case PLATFORM_CONFIG_PORT_TABLE:
1987 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1988 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1989 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1990 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1991 if (field && field < platform_config_table_limits[table])
1992 src_ptr =
1993 pcfgcache->config_tables[table].table_metadata + field;
1994 break;
1995 default:
1996 dd_dev_info(dd, "%s: Unknown table\n", __func__);
1997 break;
1998 }
1999
2000 if (!src_ptr)
2001 return -EINVAL;
2002
2003 if (field_start_bits)
2004 *field_start_bits = *src_ptr &
2005 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2006
2007 if (field_len_bits)
2008 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2009 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2010
2011 return 0;
2012}
2013
2014/* This is the central interface to getting data out of the platform config
2015 * file. It depends on parse_platform_config() having populated the
2016 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2017 * validate the sanity of the cache.
2018 *
2019 * The non-obvious parameters:
2020 * @table_index: Acts as a look up key into which instance of the tables the
2021 * relevant field is fetched from.
2022 *
2023 * This applies to the data tables that have multiple instances. The port table
2024 * is an exception to this rule as each HFI only has one port and thus the
2025 * relevant table can be distinguished by hfi_id.
2026 *
2027 * @data: pointer to memory that will be populated with the field requested.
2028 * @len: length of memory pointed by @data in bytes.
2029 */
2030int get_platform_config_field(struct hfi1_devdata *dd,
2031 enum platform_config_table_type_encoding
2032 table_type, int table_index, int field_index,
2033 u32 *data, u32 len)
2034{
2035 int ret = 0, wlen = 0, seek = 0;
2036 u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2037 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2038 struct hfi1_pportdata *ppd = dd->pport;
2039
2040 if (data)
2041 memset(data, 0, len);
2042 else
2043 return -EINVAL;
2044
2045 if (ppd->config_from_scratch) {
2046 /*
2047 * Use saved configuration from ppd for integrated platforms
2048 */
2049 get_integrated_platform_config_field(dd, table_type,
2050 field_index, data);
2051 return 0;
2052 }
2053
2054 ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2055 &field_len_bits,
2056 &field_start_bits);
2057 if (ret)
2058 return -EINVAL;
2059
2060 /* Convert length to bits */
2061 len *= 8;
2062
2063 /* Our metadata function checked cache_valid and field_index for us */
2064 switch (table_type) {
2065 case PLATFORM_CONFIG_SYSTEM_TABLE:
2066 src_ptr = pcfgcache->config_tables[table_type].table;
2067
2068 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2069 if (len < field_len_bits)
2070 return -EINVAL;
2071
2072 seek = field_start_bits / 8;
2073 wlen = field_len_bits / 8;
2074
2075 src_ptr = (u32 *)((u8 *)src_ptr + seek);
2076
2077 /*
2078 * We expect the field to be byte aligned and whole byte
2079 * lengths if we are here
2080 */
2081 memcpy(data, src_ptr, wlen);
2082 return 0;
2083 }
2084 break;
2085 case PLATFORM_CONFIG_PORT_TABLE:
2086 /* Port table is 4 DWORDS */
2087 src_ptr = dd->hfi1_id ?
2088 pcfgcache->config_tables[table_type].table + 4 :
2089 pcfgcache->config_tables[table_type].table;
2090 break;
2091 case PLATFORM_CONFIG_RX_PRESET_TABLE:
2092 case PLATFORM_CONFIG_TX_PRESET_TABLE:
2093 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2094 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2095 src_ptr = pcfgcache->config_tables[table_type].table;
2096
2097 if (table_index <
2098 pcfgcache->config_tables[table_type].num_table)
2099 src_ptr += table_index;
2100 else
2101 src_ptr = NULL;
2102 break;
2103 default:
2104 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2105 break;
2106 }
2107
2108 if (!src_ptr || len < field_len_bits)
2109 return -EINVAL;
2110
2111 src_ptr += (field_start_bits / 32);
2112 *data = (*src_ptr >> (field_start_bits % 32)) &
2113 ((1 << field_len_bits) - 1);
2114
2115 return 0;
2116}
2117
2118/*
2119 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2120 * to the SBus firmware is needed before updating the PCIe firmware.
2121 *
2122 * Note: caller must be holding the SBus resource.
2123 */
2124int load_pcie_firmware(struct hfi1_devdata *dd)
2125{
2126 int ret = 0;
2127
2128 /* both firmware loads below use the SBus */
2129 set_sbus_fast_mode(dd);
2130
2131 if (fw_sbus_load) {
2132 turn_off_spicos(dd, SPICO_SBUS);
2133 do {
2134 ret = load_sbus_firmware(dd, &fw_sbus);
2135 } while (retry_firmware(dd, ret));
2136 if (ret)
2137 goto done;
2138 }
2139
2140 if (fw_pcie_serdes_load) {
2141 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2142 set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2143 pcie_serdes_broadcast[dd->hfi1_id],
2144 pcie_serdes_addrs[dd->hfi1_id],
2145 NUM_PCIE_SERDES);
2146 do {
2147 ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2148 } while (retry_firmware(dd, ret));
2149 if (ret)
2150 goto done;
2151 }
2152
2153done:
2154 clear_sbus_fast_mode(dd);
2155
2156 return ret;
2157}
2158
2159/*
2160 * Read the GUID from the hardware, store it in dd.
2161 */
2162void read_guid(struct hfi1_devdata *dd)
2163{
2164 /* Take the DC out of reset to get a valid GUID value */
2165 write_csr(dd, CCE_DC_CTRL, 0);
2166 (void)read_csr(dd, CCE_DC_CTRL);
2167
2168 dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2169 dd_dev_info(dd, "GUID %llx",
2170 (unsigned long long)dd->base_guid);
2171}
2172
2173/* read and display firmware version info */
2174static void dump_fw_version(struct hfi1_devdata *dd)
2175{
2176 u32 pcie_vers[NUM_PCIE_SERDES];
2177 u32 fabric_vers[NUM_FABRIC_SERDES];
2178 u32 sbus_vers;
2179 int i;
2180 int all_same;
2181 int ret;
2182 u8 rcv_addr;
2183
2184 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2185 if (ret) {
2186 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2187 return;
2188 }
2189
2190 /* set fast mode */
2191 set_sbus_fast_mode(dd);
2192
2193 /* read version for SBus Master */
2194 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2195 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2196 /* wait for interrupt to be processed */
2197 usleep_range(10000, 11000);
2198 sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2199 dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2200
2201 /* read version for PCIe SerDes */
2202 all_same = 1;
2203 pcie_vers[0] = 0;
2204 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2205 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2206 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2207 /* wait for interrupt to be processed */
2208 usleep_range(10000, 11000);
2209 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2210 if (i > 0 && pcie_vers[0] != pcie_vers[i])
2211 all_same = 0;
2212 }
2213
2214 if (all_same) {
2215 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2216 pcie_vers[0]);
2217 } else {
2218 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2219 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2220 dd_dev_info(dd,
2221 "PCIe SerDes lane %d firmware version 0x%x\n",
2222 i, pcie_vers[i]);
2223 }
2224 }
2225
2226 /* read version for fabric SerDes */
2227 all_same = 1;
2228 fabric_vers[0] = 0;
2229 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2230 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2231 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2232 /* wait for interrupt to be processed */
2233 usleep_range(10000, 11000);
2234 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2235 if (i > 0 && fabric_vers[0] != fabric_vers[i])
2236 all_same = 0;
2237 }
2238
2239 if (all_same) {
2240 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2241 fabric_vers[0]);
2242 } else {
2243 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2244 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2245 dd_dev_info(dd,
2246 "Fabric SerDes lane %d firmware version 0x%x\n",
2247 i, fabric_vers[i]);
2248 }
2249 }
2250
2251 clear_sbus_fast_mode(dd);
2252 release_chip_resource(dd, CR_SBUS);
2253}
1/*
2 * Copyright(c) 2015 - 2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48#include <linux/firmware.h>
49#include <linux/mutex.h>
50#include <linux/module.h>
51#include <linux/delay.h>
52#include <linux/crc32.h>
53
54#include "hfi.h"
55#include "trace.h"
56
57/*
58 * Make it easy to toggle firmware file name and if it gets loaded by
59 * editing the following. This may be something we do while in development
60 * but not necessarily something a user would ever need to use.
61 */
62#define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin"
63#define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw"
64#define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw"
65#define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw"
66#define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw"
67#define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw"
68#define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw"
69#define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw"
70#define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw"
71
72MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC);
73MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME);
74MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME);
75MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME);
76
77static uint fw_8051_load = 1;
78static uint fw_fabric_serdes_load = 1;
79static uint fw_pcie_serdes_load = 1;
80static uint fw_sbus_load = 1;
81
82/* Firmware file names get set in hfi1_firmware_init() based on the above */
83static char *fw_8051_name;
84static char *fw_fabric_serdes_name;
85static char *fw_sbus_name;
86static char *fw_pcie_serdes_name;
87
88#define SBUS_MAX_POLL_COUNT 100
89#define SBUS_COUNTER(reg, name) \
90 (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \
91 ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK)
92
93/*
94 * Firmware security header.
95 */
96struct css_header {
97 u32 module_type;
98 u32 header_len;
99 u32 header_version;
100 u32 module_id;
101 u32 module_vendor;
102 u32 date; /* BCD yyyymmdd */
103 u32 size; /* in DWORDs */
104 u32 key_size; /* in DWORDs */
105 u32 modulus_size; /* in DWORDs */
106 u32 exponent_size; /* in DWORDs */
107 u32 reserved[22];
108};
109
110/* expected field values */
111#define CSS_MODULE_TYPE 0x00000006
112#define CSS_HEADER_LEN 0x000000a1
113#define CSS_HEADER_VERSION 0x00010000
114#define CSS_MODULE_VENDOR 0x00008086
115
116#define KEY_SIZE 256
117#define MU_SIZE 8
118#define EXPONENT_SIZE 4
119
120/* size of platform configuration partition */
121#define MAX_PLATFORM_CONFIG_FILE_SIZE 4096
122
123/* size of file of plaform configuration encoded in format version 4 */
124#define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528
125
126/* the file itself */
127struct firmware_file {
128 struct css_header css_header;
129 u8 modulus[KEY_SIZE];
130 u8 exponent[EXPONENT_SIZE];
131 u8 signature[KEY_SIZE];
132 u8 firmware[];
133};
134
135struct augmented_firmware_file {
136 struct css_header css_header;
137 u8 modulus[KEY_SIZE];
138 u8 exponent[EXPONENT_SIZE];
139 u8 signature[KEY_SIZE];
140 u8 r2[KEY_SIZE];
141 u8 mu[MU_SIZE];
142 u8 firmware[];
143};
144
145/* augmented file size difference */
146#define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \
147 sizeof(struct firmware_file))
148
149struct firmware_details {
150 /* Linux core piece */
151 const struct firmware *fw;
152
153 struct css_header *css_header;
154 u8 *firmware_ptr; /* pointer to binary data */
155 u32 firmware_len; /* length in bytes */
156 u8 *modulus; /* pointer to the modulus */
157 u8 *exponent; /* pointer to the exponent */
158 u8 *signature; /* pointer to the signature */
159 u8 *r2; /* pointer to r2 */
160 u8 *mu; /* pointer to mu */
161 struct augmented_firmware_file dummy_header;
162};
163
164/*
165 * The mutex protects fw_state, fw_err, and all of the firmware_details
166 * variables.
167 */
168static DEFINE_MUTEX(fw_mutex);
169enum fw_state {
170 FW_EMPTY,
171 FW_TRY,
172 FW_FINAL,
173 FW_ERR
174};
175
176static enum fw_state fw_state = FW_EMPTY;
177static int fw_err;
178static struct firmware_details fw_8051;
179static struct firmware_details fw_fabric;
180static struct firmware_details fw_pcie;
181static struct firmware_details fw_sbus;
182
183/* flags for turn_off_spicos() */
184#define SPICO_SBUS 0x1
185#define SPICO_FABRIC 0x2
186#define ENABLE_SPICO_SMASK 0x1
187
188/* security block commands */
189#define RSA_CMD_INIT 0x1
190#define RSA_CMD_START 0x2
191
192/* security block status */
193#define RSA_STATUS_IDLE 0x0
194#define RSA_STATUS_ACTIVE 0x1
195#define RSA_STATUS_DONE 0x2
196#define RSA_STATUS_FAILED 0x3
197
198/* RSA engine timeout, in ms */
199#define RSA_ENGINE_TIMEOUT 100 /* ms */
200
201/* hardware mutex timeout, in ms */
202#define HM_TIMEOUT 10 /* ms */
203
204/* 8051 memory access timeout, in us */
205#define DC8051_ACCESS_TIMEOUT 100 /* us */
206
207/* the number of fabric SerDes on the SBus */
208#define NUM_FABRIC_SERDES 4
209
210/* ASIC_STS_SBUS_RESULT.RESULT_CODE value */
211#define SBUS_READ_COMPLETE 0x4
212
213/* SBus fabric SerDes addresses, one set per HFI */
214static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = {
215 { 0x01, 0x02, 0x03, 0x04 },
216 { 0x28, 0x29, 0x2a, 0x2b }
217};
218
219/* SBus PCIe SerDes addresses, one set per HFI */
220static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = {
221 { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16,
222 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 },
223 { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d,
224 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d }
225};
226
227/* SBus PCIe PCS addresses, one set per HFI */
228const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = {
229 { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17,
230 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 },
231 { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
232 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e }
233};
234
235/* SBus fabric SerDes broadcast addresses, one per HFI */
236static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 };
237static const u8 all_fabric_serdes_broadcast = 0xe1;
238
239/* SBus PCIe SerDes broadcast addresses, one per HFI */
240const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 };
241static const u8 all_pcie_serdes_broadcast = 0xe0;
242
243static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = {
244 0,
245 SYSTEM_TABLE_MAX,
246 PORT_TABLE_MAX,
247 RX_PRESET_TABLE_MAX,
248 TX_PRESET_TABLE_MAX,
249 QSFP_ATTEN_TABLE_MAX,
250 VARIABLE_SETTINGS_TABLE_MAX
251};
252
253/* forwards */
254static void dispose_one_firmware(struct firmware_details *fdet);
255static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
256 struct firmware_details *fdet);
257static void dump_fw_version(struct hfi1_devdata *dd);
258
259/*
260 * Read a single 64-bit value from 8051 data memory.
261 *
262 * Expects:
263 * o caller to have already set up data read, no auto increment
264 * o caller to turn off read enable when finished
265 *
266 * The address argument is a byte offset. Bits 0:2 in the address are
267 * ignored - i.e. the hardware will always do aligned 8-byte reads as if
268 * the lower bits are zero.
269 *
270 * Return 0 on success, -ENXIO on a read error (timeout).
271 */
272static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result)
273{
274 u64 reg;
275 int count;
276
277 /* step 1: set the address, clear enable */
278 reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
279 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT;
280 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
281 /* step 2: enable */
282 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL,
283 reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK);
284
285 /* wait until ACCESS_COMPLETED is set */
286 count = 0;
287 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
288 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
289 == 0) {
290 count++;
291 if (count > DC8051_ACCESS_TIMEOUT) {
292 dd_dev_err(dd, "timeout reading 8051 data\n");
293 return -ENXIO;
294 }
295 ndelay(10);
296 }
297
298 /* gather the data */
299 *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA);
300
301 return 0;
302}
303
304/*
305 * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks.
306 * Return 0 on success, -errno on error.
307 */
308int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result)
309{
310 unsigned long flags;
311 u32 done;
312 int ret = 0;
313
314 spin_lock_irqsave(&dd->dc8051_memlock, flags);
315
316 /* data read set-up, no auto-increment */
317 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
318
319 for (done = 0; done < len; addr += 8, done += 8, result++) {
320 ret = __read_8051_data(dd, addr, result);
321 if (ret)
322 break;
323 }
324
325 /* turn off read enable */
326 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
327
328 spin_unlock_irqrestore(&dd->dc8051_memlock, flags);
329
330 return ret;
331}
332
333/*
334 * Write data or code to the 8051 code or data RAM.
335 */
336static int write_8051(struct hfi1_devdata *dd, int code, u32 start,
337 const u8 *data, u32 len)
338{
339 u64 reg;
340 u32 offset;
341 int aligned, count;
342
343 /* check alignment */
344 aligned = ((unsigned long)data & 0x7) == 0;
345
346 /* write set-up */
347 reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull)
348 | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK;
349 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg);
350
351 reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK)
352 << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT)
353 | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK;
354 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg);
355
356 /* write */
357 for (offset = 0; offset < len; offset += 8) {
358 int bytes = len - offset;
359
360 if (bytes < 8) {
361 reg = 0;
362 memcpy(®, &data[offset], bytes);
363 } else if (aligned) {
364 reg = *(u64 *)&data[offset];
365 } else {
366 memcpy(®, &data[offset], 8);
367 }
368 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg);
369
370 /* wait until ACCESS_COMPLETED is set */
371 count = 0;
372 while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS)
373 & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK)
374 == 0) {
375 count++;
376 if (count > DC8051_ACCESS_TIMEOUT) {
377 dd_dev_err(dd, "timeout writing 8051 data\n");
378 return -ENXIO;
379 }
380 udelay(1);
381 }
382 }
383
384 /* turn off write access, auto increment (also sets to data access) */
385 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0);
386 write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0);
387
388 return 0;
389}
390
391/* return 0 if values match, non-zero and complain otherwise */
392static int invalid_header(struct hfi1_devdata *dd, const char *what,
393 u32 actual, u32 expected)
394{
395 if (actual == expected)
396 return 0;
397
398 dd_dev_err(dd,
399 "invalid firmware header field %s: expected 0x%x, actual 0x%x\n",
400 what, expected, actual);
401 return 1;
402}
403
404/*
405 * Verify that the static fields in the CSS header match.
406 */
407static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css)
408{
409 /* verify CSS header fields (most sizes are in DW, so add /4) */
410 if (invalid_header(dd, "module_type", css->module_type,
411 CSS_MODULE_TYPE) ||
412 invalid_header(dd, "header_len", css->header_len,
413 (sizeof(struct firmware_file) / 4)) ||
414 invalid_header(dd, "header_version", css->header_version,
415 CSS_HEADER_VERSION) ||
416 invalid_header(dd, "module_vendor", css->module_vendor,
417 CSS_MODULE_VENDOR) ||
418 invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) ||
419 invalid_header(dd, "modulus_size", css->modulus_size,
420 KEY_SIZE / 4) ||
421 invalid_header(dd, "exponent_size", css->exponent_size,
422 EXPONENT_SIZE / 4)) {
423 return -EINVAL;
424 }
425 return 0;
426}
427
428/*
429 * Make sure there are at least some bytes after the prefix.
430 */
431static int payload_check(struct hfi1_devdata *dd, const char *name,
432 long file_size, long prefix_size)
433{
434 /* make sure we have some payload */
435 if (prefix_size >= file_size) {
436 dd_dev_err(dd,
437 "firmware \"%s\", size %ld, must be larger than %ld bytes\n",
438 name, file_size, prefix_size);
439 return -EINVAL;
440 }
441
442 return 0;
443}
444
445/*
446 * Request the firmware from the system. Extract the pieces and fill in
447 * fdet. If successful, the caller will need to call dispose_one_firmware().
448 * Returns 0 on success, -ERRNO on error.
449 */
450static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name,
451 struct firmware_details *fdet)
452{
453 struct css_header *css;
454 int ret;
455
456 memset(fdet, 0, sizeof(*fdet));
457
458 ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev);
459 if (ret) {
460 dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n",
461 name, ret);
462 return ret;
463 }
464
465 /* verify the firmware */
466 if (fdet->fw->size < sizeof(struct css_header)) {
467 dd_dev_err(dd, "firmware \"%s\" is too small\n", name);
468 ret = -EINVAL;
469 goto done;
470 }
471 css = (struct css_header *)fdet->fw->data;
472
473 hfi1_cdbg(FIRMWARE, "Firmware %s details:", name);
474 hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size);
475 hfi1_cdbg(FIRMWARE, "CSS structure:");
476 hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type);
477 hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)",
478 css->header_len, 4 * css->header_len);
479 hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version);
480 hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id);
481 hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor);
482 hfi1_cdbg(FIRMWARE, " date 0x%x", css->date);
483 hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)",
484 css->size, 4 * css->size);
485 hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)",
486 css->key_size, 4 * css->key_size);
487 hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)",
488 css->modulus_size, 4 * css->modulus_size);
489 hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)",
490 css->exponent_size, 4 * css->exponent_size);
491 hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes",
492 fdet->fw->size - sizeof(struct firmware_file));
493
494 /*
495 * If the file does not have a valid CSS header, fail.
496 * Otherwise, check the CSS size field for an expected size.
497 * The augmented file has r2 and mu inserted after the header
498 * was generated, so there will be a known difference between
499 * the CSS header size and the actual file size. Use this
500 * difference to identify an augmented file.
501 *
502 * Note: css->size is in DWORDs, multiply by 4 to get bytes.
503 */
504 ret = verify_css_header(dd, css);
505 if (ret) {
506 dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name);
507 } else if ((css->size * 4) == fdet->fw->size) {
508 /* non-augmented firmware file */
509 struct firmware_file *ff = (struct firmware_file *)
510 fdet->fw->data;
511
512 /* make sure there are bytes in the payload */
513 ret = payload_check(dd, name, fdet->fw->size,
514 sizeof(struct firmware_file));
515 if (ret == 0) {
516 fdet->css_header = css;
517 fdet->modulus = ff->modulus;
518 fdet->exponent = ff->exponent;
519 fdet->signature = ff->signature;
520 fdet->r2 = fdet->dummy_header.r2; /* use dummy space */
521 fdet->mu = fdet->dummy_header.mu; /* use dummy space */
522 fdet->firmware_ptr = ff->firmware;
523 fdet->firmware_len = fdet->fw->size -
524 sizeof(struct firmware_file);
525 /*
526 * Header does not include r2 and mu - generate here.
527 * For now, fail.
528 */
529 dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n");
530 ret = -EINVAL;
531 }
532 } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) {
533 /* augmented firmware file */
534 struct augmented_firmware_file *aff =
535 (struct augmented_firmware_file *)fdet->fw->data;
536
537 /* make sure there are bytes in the payload */
538 ret = payload_check(dd, name, fdet->fw->size,
539 sizeof(struct augmented_firmware_file));
540 if (ret == 0) {
541 fdet->css_header = css;
542 fdet->modulus = aff->modulus;
543 fdet->exponent = aff->exponent;
544 fdet->signature = aff->signature;
545 fdet->r2 = aff->r2;
546 fdet->mu = aff->mu;
547 fdet->firmware_ptr = aff->firmware;
548 fdet->firmware_len = fdet->fw->size -
549 sizeof(struct augmented_firmware_file);
550 }
551 } else {
552 /* css->size check failed */
553 dd_dev_err(dd,
554 "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n",
555 fdet->fw->size / 4,
556 (fdet->fw->size - AUGMENT_SIZE) / 4,
557 css->size);
558
559 ret = -EINVAL;
560 }
561
562done:
563 /* if returning an error, clean up after ourselves */
564 if (ret)
565 dispose_one_firmware(fdet);
566 return ret;
567}
568
569static void dispose_one_firmware(struct firmware_details *fdet)
570{
571 release_firmware(fdet->fw);
572 /* erase all previous information */
573 memset(fdet, 0, sizeof(*fdet));
574}
575
576/*
577 * Obtain the 4 firmwares from the OS. All must be obtained at once or not
578 * at all. If called with the firmware state in FW_TRY, use alternate names.
579 * On exit, this routine will have set the firmware state to one of FW_TRY,
580 * FW_FINAL, or FW_ERR.
581 *
582 * Must be holding fw_mutex.
583 */
584static void __obtain_firmware(struct hfi1_devdata *dd)
585{
586 int err = 0;
587
588 if (fw_state == FW_FINAL) /* nothing more to obtain */
589 return;
590 if (fw_state == FW_ERR) /* already in error */
591 return;
592
593 /* fw_state is FW_EMPTY or FW_TRY */
594retry:
595 if (fw_state == FW_TRY) {
596 /*
597 * We tried the original and it failed. Move to the
598 * alternate.
599 */
600 dd_dev_warn(dd, "using alternate firmware names\n");
601 /*
602 * Let others run. Some systems, when missing firmware, does
603 * something that holds for 30 seconds. If we do that twice
604 * in a row it triggers task blocked warning.
605 */
606 cond_resched();
607 if (fw_8051_load)
608 dispose_one_firmware(&fw_8051);
609 if (fw_fabric_serdes_load)
610 dispose_one_firmware(&fw_fabric);
611 if (fw_sbus_load)
612 dispose_one_firmware(&fw_sbus);
613 if (fw_pcie_serdes_load)
614 dispose_one_firmware(&fw_pcie);
615 fw_8051_name = ALT_FW_8051_NAME_ASIC;
616 fw_fabric_serdes_name = ALT_FW_FABRIC_NAME;
617 fw_sbus_name = ALT_FW_SBUS_NAME;
618 fw_pcie_serdes_name = ALT_FW_PCIE_NAME;
619
620 /*
621 * Add a delay before obtaining and loading debug firmware.
622 * Authorization will fail if the delay between firmware
623 * authorization events is shorter than 50us. Add 100us to
624 * make a delay time safe.
625 */
626 usleep_range(100, 120);
627 }
628
629 if (fw_sbus_load) {
630 err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus);
631 if (err)
632 goto done;
633 }
634
635 if (fw_pcie_serdes_load) {
636 err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie);
637 if (err)
638 goto done;
639 }
640
641 if (fw_fabric_serdes_load) {
642 err = obtain_one_firmware(dd, fw_fabric_serdes_name,
643 &fw_fabric);
644 if (err)
645 goto done;
646 }
647
648 if (fw_8051_load) {
649 err = obtain_one_firmware(dd, fw_8051_name, &fw_8051);
650 if (err)
651 goto done;
652 }
653
654done:
655 if (err) {
656 /* oops, had problems obtaining a firmware */
657 if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) {
658 /* retry with alternate (RTL only) */
659 fw_state = FW_TRY;
660 goto retry;
661 }
662 dd_dev_err(dd, "unable to obtain working firmware\n");
663 fw_state = FW_ERR;
664 fw_err = -ENOENT;
665 } else {
666 /* success */
667 if (fw_state == FW_EMPTY &&
668 dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
669 fw_state = FW_TRY; /* may retry later */
670 else
671 fw_state = FW_FINAL; /* cannot try again */
672 }
673}
674
675/*
676 * Called by all HFIs when loading their firmware - i.e. device probe time.
677 * The first one will do the actual firmware load. Use a mutex to resolve
678 * any possible race condition.
679 *
680 * The call to this routine cannot be moved to driver load because the kernel
681 * call request_firmware() requires a device which is only available after
682 * the first device probe.
683 */
684static int obtain_firmware(struct hfi1_devdata *dd)
685{
686 unsigned long timeout;
687
688 mutex_lock(&fw_mutex);
689
690 /* 40s delay due to long delay on missing firmware on some systems */
691 timeout = jiffies + msecs_to_jiffies(40000);
692 while (fw_state == FW_TRY) {
693 /*
694 * Another device is trying the firmware. Wait until it
695 * decides what works (or not).
696 */
697 if (time_after(jiffies, timeout)) {
698 /* waited too long */
699 dd_dev_err(dd, "Timeout waiting for firmware try");
700 fw_state = FW_ERR;
701 fw_err = -ETIMEDOUT;
702 break;
703 }
704 mutex_unlock(&fw_mutex);
705 msleep(20); /* arbitrary delay */
706 mutex_lock(&fw_mutex);
707 }
708 /* not in FW_TRY state */
709
710 /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */
711 if (fw_state == FW_EMPTY)
712 __obtain_firmware(dd);
713
714 mutex_unlock(&fw_mutex);
715 return fw_err;
716}
717
718/*
719 * Called when the driver unloads. The timing is asymmetric with its
720 * counterpart, obtain_firmware(). If called at device remove time,
721 * then it is conceivable that another device could probe while the
722 * firmware is being disposed. The mutexes can be moved to do that
723 * safely, but then the firmware would be requested from the OS multiple
724 * times.
725 *
726 * No mutex is needed as the driver is unloading and there cannot be any
727 * other callers.
728 */
729void dispose_firmware(void)
730{
731 dispose_one_firmware(&fw_8051);
732 dispose_one_firmware(&fw_fabric);
733 dispose_one_firmware(&fw_pcie);
734 dispose_one_firmware(&fw_sbus);
735
736 /* retain the error state, otherwise revert to empty */
737 if (fw_state != FW_ERR)
738 fw_state = FW_EMPTY;
739}
740
741/*
742 * Called with the result of a firmware download.
743 *
744 * Return 1 to retry loading the firmware, 0 to stop.
745 */
746static int retry_firmware(struct hfi1_devdata *dd, int load_result)
747{
748 int retry;
749
750 mutex_lock(&fw_mutex);
751
752 if (load_result == 0) {
753 /*
754 * The load succeeded, so expect all others to do the same.
755 * Do not retry again.
756 */
757 if (fw_state == FW_TRY)
758 fw_state = FW_FINAL;
759 retry = 0; /* do NOT retry */
760 } else if (fw_state == FW_TRY) {
761 /* load failed, obtain alternate firmware */
762 __obtain_firmware(dd);
763 retry = (fw_state == FW_FINAL);
764 } else {
765 /* else in FW_FINAL or FW_ERR, no retry in either case */
766 retry = 0;
767 }
768
769 mutex_unlock(&fw_mutex);
770 return retry;
771}
772
773/*
774 * Write a block of data to a given array CSR. All calls will be in
775 * multiples of 8 bytes.
776 */
777static void write_rsa_data(struct hfi1_devdata *dd, int what,
778 const u8 *data, int nbytes)
779{
780 int qw_size = nbytes / 8;
781 int i;
782
783 if (((unsigned long)data & 0x7) == 0) {
784 /* aligned */
785 u64 *ptr = (u64 *)data;
786
787 for (i = 0; i < qw_size; i++, ptr++)
788 write_csr(dd, what + (8 * i), *ptr);
789 } else {
790 /* not aligned */
791 for (i = 0; i < qw_size; i++, data += 8) {
792 u64 value;
793
794 memcpy(&value, data, 8);
795 write_csr(dd, what + (8 * i), value);
796 }
797 }
798}
799
800/*
801 * Write a block of data to a given CSR as a stream of writes. All calls will
802 * be in multiples of 8 bytes.
803 */
804static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what,
805 const u8 *data, int nbytes)
806{
807 u64 *ptr = (u64 *)data;
808 int qw_size = nbytes / 8;
809
810 for (; qw_size > 0; qw_size--, ptr++)
811 write_csr(dd, what, *ptr);
812}
813
814/*
815 * Download the signature and start the RSA mechanism. Wait for
816 * RSA_ENGINE_TIMEOUT before giving up.
817 */
818static int run_rsa(struct hfi1_devdata *dd, const char *who,
819 const u8 *signature)
820{
821 unsigned long timeout;
822 u64 reg;
823 u32 status;
824 int ret = 0;
825
826 /* write the signature */
827 write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE);
828
829 /* initialize RSA */
830 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT);
831
832 /*
833 * Make sure the engine is idle and insert a delay between the two
834 * writes to MISC_CFG_RSA_CMD.
835 */
836 status = (read_csr(dd, MISC_CFG_FW_CTRL)
837 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
838 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
839 if (status != RSA_STATUS_IDLE) {
840 dd_dev_err(dd, "%s security engine not idle - giving up\n",
841 who);
842 return -EBUSY;
843 }
844
845 /* start RSA */
846 write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START);
847
848 /*
849 * Look for the result.
850 *
851 * The RSA engine is hooked up to two MISC errors. The driver
852 * masks these errors as they do not respond to the standard
853 * error "clear down" mechanism. Look for these errors here and
854 * clear them when possible. This routine will exit with the
855 * errors of the current run still set.
856 *
857 * MISC_FW_AUTH_FAILED_ERR
858 * Firmware authorization failed. This can be cleared by
859 * re-initializing the RSA engine, then clearing the status bit.
860 * Do not re-init the RSA angine immediately after a successful
861 * run - this will reset the current authorization.
862 *
863 * MISC_KEY_MISMATCH_ERR
864 * Key does not match. The only way to clear this is to load
865 * a matching key then clear the status bit. If this error
866 * is raised, it will persist outside of this routine until a
867 * matching key is loaded.
868 */
869 timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies;
870 while (1) {
871 status = (read_csr(dd, MISC_CFG_FW_CTRL)
872 & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK)
873 >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT;
874
875 if (status == RSA_STATUS_IDLE) {
876 /* should not happen */
877 dd_dev_err(dd, "%s firmware security bad idle state\n",
878 who);
879 ret = -EINVAL;
880 break;
881 } else if (status == RSA_STATUS_DONE) {
882 /* finished successfully */
883 break;
884 } else if (status == RSA_STATUS_FAILED) {
885 /* finished unsuccessfully */
886 ret = -EINVAL;
887 break;
888 }
889 /* else still active */
890
891 if (time_after(jiffies, timeout)) {
892 /*
893 * Timed out while active. We can't reset the engine
894 * if it is stuck active, but run through the
895 * error code to see what error bits are set.
896 */
897 dd_dev_err(dd, "%s firmware security time out\n", who);
898 ret = -ETIMEDOUT;
899 break;
900 }
901
902 msleep(20);
903 }
904
905 /*
906 * Arrive here on success or failure. Clear all RSA engine
907 * errors. All current errors will stick - the RSA logic is keeping
908 * error high. All previous errors will clear - the RSA logic
909 * is not keeping the error high.
910 */
911 write_csr(dd, MISC_ERR_CLEAR,
912 MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK |
913 MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK);
914 /*
915 * All that is left are the current errors. Print warnings on
916 * authorization failure details, if any. Firmware authorization
917 * can be retried, so these are only warnings.
918 */
919 reg = read_csr(dd, MISC_ERR_STATUS);
920 if (ret) {
921 if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK)
922 dd_dev_warn(dd, "%s firmware authorization failed\n",
923 who);
924 if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK)
925 dd_dev_warn(dd, "%s firmware key mismatch\n", who);
926 }
927
928 return ret;
929}
930
931static void load_security_variables(struct hfi1_devdata *dd,
932 struct firmware_details *fdet)
933{
934 /* Security variables a. Write the modulus */
935 write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE);
936 /* Security variables b. Write the r2 */
937 write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE);
938 /* Security variables c. Write the mu */
939 write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE);
940 /* Security variables d. Write the header */
941 write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD,
942 (u8 *)fdet->css_header,
943 sizeof(struct css_header));
944}
945
946/* return the 8051 firmware state */
947static inline u32 get_firmware_state(struct hfi1_devdata *dd)
948{
949 u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
950
951 return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT)
952 & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK;
953}
954
955/*
956 * Wait until the firmware is up and ready to take host requests.
957 * Return 0 on success, -ETIMEDOUT on timeout.
958 */
959int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout)
960{
961 unsigned long timeout;
962
963 /* in the simulator, the fake 8051 is always ready */
964 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
965 return 0;
966
967 timeout = msecs_to_jiffies(mstimeout) + jiffies;
968 while (1) {
969 if (get_firmware_state(dd) == 0xa0) /* ready */
970 return 0;
971 if (time_after(jiffies, timeout)) /* timed out */
972 return -ETIMEDOUT;
973 usleep_range(1950, 2050); /* sleep 2ms-ish */
974 }
975}
976
977/*
978 * Load the 8051 firmware.
979 */
980static int load_8051_firmware(struct hfi1_devdata *dd,
981 struct firmware_details *fdet)
982{
983 u64 reg;
984 int ret;
985 u8 ver_major;
986 u8 ver_minor;
987 u8 ver_patch;
988
989 /*
990 * DC Reset sequence
991 * Load DC 8051 firmware
992 */
993 /*
994 * DC reset step 1: Reset DC8051
995 */
996 reg = DC_DC8051_CFG_RST_M8051W_SMASK
997 | DC_DC8051_CFG_RST_CRAM_SMASK
998 | DC_DC8051_CFG_RST_DRAM_SMASK
999 | DC_DC8051_CFG_RST_IRAM_SMASK
1000 | DC_DC8051_CFG_RST_SFR_SMASK;
1001 write_csr(dd, DC_DC8051_CFG_RST, reg);
1002
1003 /*
1004 * DC reset step 2 (optional): Load 8051 data memory with link
1005 * configuration
1006 */
1007
1008 /*
1009 * DC reset step 3: Load DC8051 firmware
1010 */
1011 /* release all but the core reset */
1012 reg = DC_DC8051_CFG_RST_M8051W_SMASK;
1013 write_csr(dd, DC_DC8051_CFG_RST, reg);
1014
1015 /* Firmware load step 1 */
1016 load_security_variables(dd, fdet);
1017
1018 /*
1019 * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED
1020 */
1021 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1022
1023 /* Firmware load steps 3-5 */
1024 ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr,
1025 fdet->firmware_len);
1026 if (ret)
1027 return ret;
1028
1029 /*
1030 * DC reset step 4. Host starts the DC8051 firmware
1031 */
1032 /*
1033 * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED
1034 */
1035 write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK);
1036
1037 /* Firmware load steps 7-10 */
1038 ret = run_rsa(dd, "8051", fdet->signature);
1039 if (ret)
1040 return ret;
1041
1042 /* clear all reset bits, releasing the 8051 */
1043 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
1044
1045 /*
1046 * DC reset step 5. Wait for firmware to be ready to accept host
1047 * requests.
1048 */
1049 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
1050 if (ret) { /* timed out */
1051 dd_dev_err(dd, "8051 start timeout, current state 0x%x\n",
1052 get_firmware_state(dd));
1053 return -ETIMEDOUT;
1054 }
1055
1056 read_misc_status(dd, &ver_major, &ver_minor, &ver_patch);
1057 dd_dev_info(dd, "8051 firmware version %d.%d.%d\n",
1058 (int)ver_major, (int)ver_minor, (int)ver_patch);
1059 dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch);
1060 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
1061 if (ret != HCMD_SUCCESS) {
1062 dd_dev_err(dd,
1063 "Failed to set host interface version, return 0x%x\n",
1064 ret);
1065 return -EIO;
1066 }
1067
1068 return 0;
1069}
1070
1071/*
1072 * Write the SBus request register
1073 *
1074 * No need for masking - the arguments are sized exactly.
1075 */
1076void sbus_request(struct hfi1_devdata *dd,
1077 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1078{
1079 write_csr(dd, ASIC_CFG_SBUS_REQUEST,
1080 ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) |
1081 ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) |
1082 ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) |
1083 ((u64)receiver_addr <<
1084 ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT));
1085}
1086
1087/*
1088 * Read a value from the SBus.
1089 *
1090 * Requires the caller to be in fast mode
1091 */
1092static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr,
1093 u32 data_in)
1094{
1095 u64 reg;
1096 int retries;
1097 int success = 0;
1098 u32 result = 0;
1099 u32 result_code = 0;
1100
1101 sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in);
1102
1103 for (retries = 0; retries < 100; retries++) {
1104 usleep_range(1000, 1200); /* arbitrary */
1105 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1106 result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT)
1107 & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK;
1108 if (result_code != SBUS_READ_COMPLETE)
1109 continue;
1110
1111 success = 1;
1112 result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT)
1113 & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK;
1114 break;
1115 }
1116
1117 if (!success) {
1118 dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__,
1119 result_code);
1120 }
1121
1122 return result;
1123}
1124
1125/*
1126 * Turn off the SBus and fabric serdes spicos.
1127 *
1128 * + Must be called with Sbus fast mode turned on.
1129 * + Must be called after fabric serdes broadcast is set up.
1130 * + Must be called before the 8051 is loaded - assumes 8051 is not loaded
1131 * when using MISC_CFG_FW_CTRL.
1132 */
1133static void turn_off_spicos(struct hfi1_devdata *dd, int flags)
1134{
1135 /* only needed on A0 */
1136 if (!is_ax(dd))
1137 return;
1138
1139 dd_dev_info(dd, "Turning off spicos:%s%s\n",
1140 flags & SPICO_SBUS ? " SBus" : "",
1141 flags & SPICO_FABRIC ? " fabric" : "");
1142
1143 write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK);
1144 /* disable SBus spico */
1145 if (flags & SPICO_SBUS)
1146 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01,
1147 WRITE_SBUS_RECEIVER, 0x00000040);
1148
1149 /* disable the fabric serdes spicos */
1150 if (flags & SPICO_FABRIC)
1151 sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id],
1152 0x07, WRITE_SBUS_RECEIVER, 0x00000000);
1153 write_csr(dd, MISC_CFG_FW_CTRL, 0);
1154}
1155
1156/*
1157 * Reset all of the fabric serdes for this HFI in preparation to take the
1158 * link to Polling.
1159 *
1160 * To do a reset, we need to write to to the serdes registers. Unfortunately,
1161 * the fabric serdes download to the other HFI on the ASIC will have turned
1162 * off the firmware validation on this HFI. This means we can't write to the
1163 * registers to reset the serdes. Work around this by performing a complete
1164 * re-download and validation of the fabric serdes firmware. This, as a
1165 * by-product, will reset the serdes. NOTE: the re-download requires that
1166 * the 8051 be in the Offline state. I.e. not actively trying to use the
1167 * serdes. This routine is called at the point where the link is Offline and
1168 * is getting ready to go to Polling.
1169 */
1170void fabric_serdes_reset(struct hfi1_devdata *dd)
1171{
1172 int ret;
1173
1174 if (!fw_fabric_serdes_load)
1175 return;
1176
1177 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1178 if (ret) {
1179 dd_dev_err(dd,
1180 "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n");
1181 return;
1182 }
1183 set_sbus_fast_mode(dd);
1184
1185 if (is_ax(dd)) {
1186 /* A0 serdes do not work with a re-download */
1187 u8 ra = fabric_serdes_broadcast[dd->hfi1_id];
1188
1189 /* place SerDes in reset and disable SPICO */
1190 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1191 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1192 udelay(1);
1193 /* remove SerDes reset */
1194 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1195 /* turn SPICO enable on */
1196 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1197 } else {
1198 turn_off_spicos(dd, SPICO_FABRIC);
1199 /*
1200 * No need for firmware retry - what to download has already
1201 * been decided.
1202 * No need to pay attention to the load return - the only
1203 * failure is a validation failure, which has already been
1204 * checked by the initial download.
1205 */
1206 (void)load_fabric_serdes_firmware(dd, &fw_fabric);
1207 }
1208
1209 clear_sbus_fast_mode(dd);
1210 release_chip_resource(dd, CR_SBUS);
1211}
1212
1213/* Access to the SBus in this routine should probably be serialized */
1214int sbus_request_slow(struct hfi1_devdata *dd,
1215 u8 receiver_addr, u8 data_addr, u8 command, u32 data_in)
1216{
1217 u64 reg, count = 0;
1218
1219 /* make sure fast mode is clear */
1220 clear_sbus_fast_mode(dd);
1221
1222 sbus_request(dd, receiver_addr, data_addr, command, data_in);
1223 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1224 ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK);
1225 /* Wait for both DONE and RCV_DATA_VALID to go high */
1226 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1227 while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1228 (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) {
1229 if (count++ >= SBUS_MAX_POLL_COUNT) {
1230 u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1231 /*
1232 * If the loop has timed out, we are OK if DONE bit
1233 * is set and RCV_DATA_VALID and EXECUTE counters
1234 * are the same. If not, we cannot proceed.
1235 */
1236 if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) &&
1237 (SBUS_COUNTER(counts, RCV_DATA_VALID) ==
1238 SBUS_COUNTER(counts, EXECUTE)))
1239 break;
1240 return -ETIMEDOUT;
1241 }
1242 udelay(1);
1243 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1244 }
1245 count = 0;
1246 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1247 /* Wait for DONE to clear after EXECUTE is cleared */
1248 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1249 while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) {
1250 if (count++ >= SBUS_MAX_POLL_COUNT)
1251 return -ETIME;
1252 udelay(1);
1253 reg = read_csr(dd, ASIC_STS_SBUS_RESULT);
1254 }
1255 return 0;
1256}
1257
1258static int load_fabric_serdes_firmware(struct hfi1_devdata *dd,
1259 struct firmware_details *fdet)
1260{
1261 int i, err;
1262 const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */
1263
1264 dd_dev_info(dd, "Downloading fabric firmware\n");
1265
1266 /* step 1: load security variables */
1267 load_security_variables(dd, fdet);
1268 /* step 2: place SerDes in reset and disable SPICO */
1269 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011);
1270 /* wait 100 refclk cycles @ 156.25MHz => 640ns */
1271 udelay(1);
1272 /* step 3: remove SerDes reset */
1273 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010);
1274 /* step 4: assert IMEM override */
1275 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000);
1276 /* step 5: download SerDes machine code */
1277 for (i = 0; i < fdet->firmware_len; i += 4) {
1278 sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER,
1279 *(u32 *)&fdet->firmware_ptr[i]);
1280 }
1281 /* step 6: IMEM override off */
1282 sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000);
1283 /* step 7: turn ECC on */
1284 sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000);
1285
1286 /* steps 8-11: run the RSA engine */
1287 err = run_rsa(dd, "fabric serdes", fdet->signature);
1288 if (err)
1289 return err;
1290
1291 /* step 12: turn SPICO enable on */
1292 sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002);
1293 /* step 13: enable core hardware interrupts */
1294 sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000);
1295
1296 return 0;
1297}
1298
1299static int load_sbus_firmware(struct hfi1_devdata *dd,
1300 struct firmware_details *fdet)
1301{
1302 int i, err;
1303 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1304
1305 dd_dev_info(dd, "Downloading SBus firmware\n");
1306
1307 /* step 1: load security variables */
1308 load_security_variables(dd, fdet);
1309 /* step 2: place SPICO into reset and enable off */
1310 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0);
1311 /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */
1312 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240);
1313 /* step 4: set starting IMEM address for burst download */
1314 sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000);
1315 /* step 5: download the SBus Master machine code */
1316 for (i = 0; i < fdet->firmware_len; i += 4) {
1317 sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER,
1318 *(u32 *)&fdet->firmware_ptr[i]);
1319 }
1320 /* step 6: set IMEM_CNTL_EN off */
1321 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040);
1322 /* step 7: turn ECC on */
1323 sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000);
1324
1325 /* steps 8-11: run the RSA engine */
1326 err = run_rsa(dd, "SBus", fdet->signature);
1327 if (err)
1328 return err;
1329
1330 /* step 12: set SPICO_ENABLE on */
1331 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1332
1333 return 0;
1334}
1335
1336static int load_pcie_serdes_firmware(struct hfi1_devdata *dd,
1337 struct firmware_details *fdet)
1338{
1339 int i;
1340 const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */
1341
1342 dd_dev_info(dd, "Downloading PCIe firmware\n");
1343
1344 /* step 1: load security variables */
1345 load_security_variables(dd, fdet);
1346 /* step 2: assert single step (halts the SBus Master spico) */
1347 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001);
1348 /* step 3: enable XDMEM access */
1349 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40);
1350 /* step 4: load firmware into SBus Master XDMEM */
1351 /*
1352 * NOTE: the dmem address, write_en, and wdata are all pre-packed,
1353 * we only need to pick up the bytes and write them
1354 */
1355 for (i = 0; i < fdet->firmware_len; i += 4) {
1356 sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER,
1357 *(u32 *)&fdet->firmware_ptr[i]);
1358 }
1359 /* step 5: disable XDMEM access */
1360 sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140);
1361 /* step 6: allow SBus Spico to run */
1362 sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000);
1363
1364 /*
1365 * steps 7-11: run RSA, if it succeeds, firmware is available to
1366 * be swapped
1367 */
1368 return run_rsa(dd, "PCIe serdes", fdet->signature);
1369}
1370
1371/*
1372 * Set the given broadcast values on the given list of devices.
1373 */
1374static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2,
1375 const u8 *addrs, int count)
1376{
1377 while (--count >= 0) {
1378 /*
1379 * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave
1380 * defaults for everything else. Do not read-modify-write,
1381 * per instruction from the manufacturer.
1382 *
1383 * Register 0xfd:
1384 * bits what
1385 * ----- ---------------------------------
1386 * 0 IGNORE_BROADCAST (default 0)
1387 * 11:4 BROADCAST_GROUP_1 (default 0xff)
1388 * 23:16 BROADCAST_GROUP_2 (default 0xff)
1389 */
1390 sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER,
1391 (u32)bg1 << 4 | (u32)bg2 << 16);
1392 }
1393}
1394
1395int acquire_hw_mutex(struct hfi1_devdata *dd)
1396{
1397 unsigned long timeout;
1398 int try = 0;
1399 u8 mask = 1 << dd->hfi1_id;
1400 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1401
1402 if (user == mask) {
1403 dd_dev_info(dd,
1404 "Hardware mutex already acquired, mutex mask %u\n",
1405 (u32)mask);
1406 return 0;
1407 }
1408
1409retry:
1410 timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies;
1411 while (1) {
1412 write_csr(dd, ASIC_CFG_MUTEX, mask);
1413 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1414 if (user == mask)
1415 return 0; /* success */
1416 if (time_after(jiffies, timeout))
1417 break; /* timed out */
1418 msleep(20);
1419 }
1420
1421 /* timed out */
1422 dd_dev_err(dd,
1423 "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n",
1424 (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up");
1425
1426 if (try == 0) {
1427 /* break mutex and retry */
1428 write_csr(dd, ASIC_CFG_MUTEX, 0);
1429 try++;
1430 goto retry;
1431 }
1432
1433 return -EBUSY;
1434}
1435
1436void release_hw_mutex(struct hfi1_devdata *dd)
1437{
1438 u8 mask = 1 << dd->hfi1_id;
1439 u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX);
1440
1441 if (user != mask)
1442 dd_dev_warn(dd,
1443 "Unable to release hardware mutex, mutex mask %u, my mask %u\n",
1444 (u32)user, (u32)mask);
1445 else
1446 write_csr(dd, ASIC_CFG_MUTEX, 0);
1447}
1448
1449/* return the given resource bit(s) as a mask for the given HFI */
1450static inline u64 resource_mask(u32 hfi1_id, u32 resource)
1451{
1452 return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0);
1453}
1454
1455static void fail_mutex_acquire_message(struct hfi1_devdata *dd,
1456 const char *func)
1457{
1458 dd_dev_err(dd,
1459 "%s: hardware mutex stuck - suggest rebooting the machine\n",
1460 func);
1461}
1462
1463/*
1464 * Acquire access to a chip resource.
1465 *
1466 * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed.
1467 */
1468static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource)
1469{
1470 u64 scratch0, all_bits, my_bit;
1471 int ret;
1472
1473 if (resource & CR_DYN_MASK) {
1474 /* a dynamic resource is in use if either HFI has set the bit */
1475 if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 &&
1476 (resource & (CR_I2C1 | CR_I2C2))) {
1477 /* discrete devices must serialize across both chains */
1478 all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) |
1479 resource_mask(1, CR_I2C1 | CR_I2C2);
1480 } else {
1481 all_bits = resource_mask(0, resource) |
1482 resource_mask(1, resource);
1483 }
1484 my_bit = resource_mask(dd->hfi1_id, resource);
1485 } else {
1486 /* non-dynamic resources are not split between HFIs */
1487 all_bits = resource;
1488 my_bit = resource;
1489 }
1490
1491 /* lock against other callers within the driver wanting a resource */
1492 mutex_lock(&dd->asic_data->asic_resource_mutex);
1493
1494 ret = acquire_hw_mutex(dd);
1495 if (ret) {
1496 fail_mutex_acquire_message(dd, __func__);
1497 ret = -EIO;
1498 goto done;
1499 }
1500
1501 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1502 if (scratch0 & all_bits) {
1503 ret = -EBUSY;
1504 } else {
1505 write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit);
1506 /* force write to be visible to other HFI on another OS */
1507 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1508 }
1509
1510 release_hw_mutex(dd);
1511
1512done:
1513 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1514 return ret;
1515}
1516
1517/*
1518 * Acquire access to a chip resource, wait up to mswait milliseconds for
1519 * the resource to become available.
1520 *
1521 * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex
1522 * acquire failed.
1523 */
1524int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait)
1525{
1526 unsigned long timeout;
1527 int ret;
1528
1529 timeout = jiffies + msecs_to_jiffies(mswait);
1530 while (1) {
1531 ret = __acquire_chip_resource(dd, resource);
1532 if (ret != -EBUSY)
1533 return ret;
1534 /* resource is busy, check our timeout */
1535 if (time_after_eq(jiffies, timeout))
1536 return -EBUSY;
1537 usleep_range(80, 120); /* arbitrary delay */
1538 }
1539}
1540
1541/*
1542 * Release access to a chip resource
1543 */
1544void release_chip_resource(struct hfi1_devdata *dd, u32 resource)
1545{
1546 u64 scratch0, bit;
1547
1548 /* only dynamic resources should ever be cleared */
1549 if (!(resource & CR_DYN_MASK)) {
1550 dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__,
1551 resource);
1552 return;
1553 }
1554 bit = resource_mask(dd->hfi1_id, resource);
1555
1556 /* lock against other callers within the driver wanting a resource */
1557 mutex_lock(&dd->asic_data->asic_resource_mutex);
1558
1559 if (acquire_hw_mutex(dd)) {
1560 fail_mutex_acquire_message(dd, __func__);
1561 goto done;
1562 }
1563
1564 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1565 if ((scratch0 & bit) != 0) {
1566 scratch0 &= ~bit;
1567 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1568 /* force write to be visible to other HFI on another OS */
1569 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1570 } else {
1571 dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n",
1572 __func__, dd->hfi1_id, resource);
1573 }
1574
1575 release_hw_mutex(dd);
1576
1577done:
1578 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1579}
1580
1581/*
1582 * Return true if resource is set, false otherwise. Print a warning
1583 * if not set and a function is supplied.
1584 */
1585bool check_chip_resource(struct hfi1_devdata *dd, u32 resource,
1586 const char *func)
1587{
1588 u64 scratch0, bit;
1589
1590 if (resource & CR_DYN_MASK)
1591 bit = resource_mask(dd->hfi1_id, resource);
1592 else
1593 bit = resource;
1594
1595 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1596 if ((scratch0 & bit) == 0) {
1597 if (func)
1598 dd_dev_warn(dd,
1599 "%s: id %d, resource 0x%x, not acquired!\n",
1600 func, dd->hfi1_id, resource);
1601 return false;
1602 }
1603 return true;
1604}
1605
1606static void clear_chip_resources(struct hfi1_devdata *dd, const char *func)
1607{
1608 u64 scratch0;
1609
1610 /* lock against other callers within the driver wanting a resource */
1611 mutex_lock(&dd->asic_data->asic_resource_mutex);
1612
1613 if (acquire_hw_mutex(dd)) {
1614 fail_mutex_acquire_message(dd, func);
1615 goto done;
1616 }
1617
1618 /* clear all dynamic access bits for this HFI */
1619 scratch0 = read_csr(dd, ASIC_CFG_SCRATCH);
1620 scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK);
1621 write_csr(dd, ASIC_CFG_SCRATCH, scratch0);
1622 /* force write to be visible to other HFI on another OS */
1623 (void)read_csr(dd, ASIC_CFG_SCRATCH);
1624
1625 release_hw_mutex(dd);
1626
1627done:
1628 mutex_unlock(&dd->asic_data->asic_resource_mutex);
1629}
1630
1631void init_chip_resources(struct hfi1_devdata *dd)
1632{
1633 /* clear any holds left by us */
1634 clear_chip_resources(dd, __func__);
1635}
1636
1637void finish_chip_resources(struct hfi1_devdata *dd)
1638{
1639 /* clear any holds left by us */
1640 clear_chip_resources(dd, __func__);
1641}
1642
1643void set_sbus_fast_mode(struct hfi1_devdata *dd)
1644{
1645 write_csr(dd, ASIC_CFG_SBUS_EXECUTE,
1646 ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK);
1647}
1648
1649void clear_sbus_fast_mode(struct hfi1_devdata *dd)
1650{
1651 u64 reg, count = 0;
1652
1653 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1654 while (SBUS_COUNTER(reg, EXECUTE) !=
1655 SBUS_COUNTER(reg, RCV_DATA_VALID)) {
1656 if (count++ >= SBUS_MAX_POLL_COUNT)
1657 break;
1658 udelay(1);
1659 reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS);
1660 }
1661 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
1662}
1663
1664int load_firmware(struct hfi1_devdata *dd)
1665{
1666 int ret;
1667
1668 if (fw_fabric_serdes_load) {
1669 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
1670 if (ret)
1671 return ret;
1672
1673 set_sbus_fast_mode(dd);
1674
1675 set_serdes_broadcast(dd, all_fabric_serdes_broadcast,
1676 fabric_serdes_broadcast[dd->hfi1_id],
1677 fabric_serdes_addrs[dd->hfi1_id],
1678 NUM_FABRIC_SERDES);
1679 turn_off_spicos(dd, SPICO_FABRIC);
1680 do {
1681 ret = load_fabric_serdes_firmware(dd, &fw_fabric);
1682 } while (retry_firmware(dd, ret));
1683
1684 clear_sbus_fast_mode(dd);
1685 release_chip_resource(dd, CR_SBUS);
1686 if (ret)
1687 return ret;
1688 }
1689
1690 if (fw_8051_load) {
1691 do {
1692 ret = load_8051_firmware(dd, &fw_8051);
1693 } while (retry_firmware(dd, ret));
1694 if (ret)
1695 return ret;
1696 }
1697
1698 dump_fw_version(dd);
1699 return 0;
1700}
1701
1702int hfi1_firmware_init(struct hfi1_devdata *dd)
1703{
1704 /* only RTL can use these */
1705 if (dd->icode != ICODE_RTL_SILICON) {
1706 fw_fabric_serdes_load = 0;
1707 fw_pcie_serdes_load = 0;
1708 fw_sbus_load = 0;
1709 }
1710
1711 /* no 8051 or QSFP on simulator */
1712 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
1713 fw_8051_load = 0;
1714
1715 if (!fw_8051_name) {
1716 if (dd->icode == ICODE_RTL_SILICON)
1717 fw_8051_name = DEFAULT_FW_8051_NAME_ASIC;
1718 else
1719 fw_8051_name = DEFAULT_FW_8051_NAME_FPGA;
1720 }
1721 if (!fw_fabric_serdes_name)
1722 fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME;
1723 if (!fw_sbus_name)
1724 fw_sbus_name = DEFAULT_FW_SBUS_NAME;
1725 if (!fw_pcie_serdes_name)
1726 fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME;
1727
1728 return obtain_firmware(dd);
1729}
1730
1731/*
1732 * This function is a helper function for parse_platform_config(...) and
1733 * does not check for validity of the platform configuration cache
1734 * (because we know it is invalid as we are building up the cache).
1735 * As such, this should not be called from anywhere other than
1736 * parse_platform_config
1737 */
1738static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table)
1739{
1740 u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask;
1741 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1742
1743 if (!system_table)
1744 return -EINVAL;
1745
1746 meta_ver_meta =
1747 *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata
1748 + SYSTEM_TABLE_META_VERSION);
1749
1750 mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
1751 ver_start = meta_ver_meta & mask;
1752
1753 meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT;
1754
1755 mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
1756 ver_len = meta_ver_meta & mask;
1757
1758 ver_start /= 8;
1759 meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1);
1760
1761 if (meta_ver < 4) {
1762 dd_dev_info(
1763 dd, "%s:Please update platform config\n", __func__);
1764 return -EINVAL;
1765 }
1766 return 0;
1767}
1768
1769int parse_platform_config(struct hfi1_devdata *dd)
1770{
1771 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
1772 struct hfi1_pportdata *ppd = dd->pport;
1773 u32 *ptr = NULL;
1774 u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0;
1775 u32 record_idx = 0, table_type = 0, table_length_dwords = 0;
1776 int ret = -EINVAL; /* assume failure */
1777
1778 /*
1779 * For integrated devices that did not fall back to the default file,
1780 * the SI tuning information for active channels is acquired from the
1781 * scratch register bitmap, thus there is no platform config to parse.
1782 * Skip parsing in these situations.
1783 */
1784 if (ppd->config_from_scratch)
1785 return 0;
1786
1787 if (!dd->platform_config.data) {
1788 dd_dev_err(dd, "%s: Missing config file\n", __func__);
1789 goto bail;
1790 }
1791 ptr = (u32 *)dd->platform_config.data;
1792
1793 magic_num = *ptr;
1794 ptr++;
1795 if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) {
1796 dd_dev_err(dd, "%s: Bad config file\n", __func__);
1797 goto bail;
1798 }
1799
1800 /* Field is file size in DWORDs */
1801 file_length = (*ptr) * 4;
1802
1803 /*
1804 * Length can't be larger than partition size. Assume platform
1805 * config format version 4 is being used. Interpret the file size
1806 * field as header instead by not moving the pointer.
1807 */
1808 if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) {
1809 dd_dev_info(dd,
1810 "%s:File length out of bounds, using alternative format\n",
1811 __func__);
1812 file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE;
1813 } else {
1814 ptr++;
1815 }
1816
1817 if (file_length > dd->platform_config.size) {
1818 dd_dev_info(dd, "%s:File claims to be larger than read size\n",
1819 __func__);
1820 goto bail;
1821 } else if (file_length < dd->platform_config.size) {
1822 dd_dev_info(dd,
1823 "%s:File claims to be smaller than read size, continuing\n",
1824 __func__);
1825 }
1826 /* exactly equal, perfection */
1827
1828 /*
1829 * In both cases where we proceed, using the self-reported file length
1830 * is the safer option. In case of old format a predefined value is
1831 * being used.
1832 */
1833 while (ptr < (u32 *)(dd->platform_config.data + file_length)) {
1834 header1 = *ptr;
1835 header2 = *(ptr + 1);
1836 if (header1 != ~header2) {
1837 dd_dev_err(dd, "%s: Failed validation at offset %ld\n",
1838 __func__, (ptr - (u32 *)
1839 dd->platform_config.data));
1840 goto bail;
1841 }
1842
1843 record_idx = *ptr &
1844 ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1);
1845
1846 table_length_dwords = (*ptr >>
1847 PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) &
1848 ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1);
1849
1850 table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) &
1851 ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1);
1852
1853 /* Done with this set of headers */
1854 ptr += 2;
1855
1856 if (record_idx) {
1857 /* data table */
1858 switch (table_type) {
1859 case PLATFORM_CONFIG_SYSTEM_TABLE:
1860 pcfgcache->config_tables[table_type].num_table =
1861 1;
1862 ret = check_meta_version(dd, ptr);
1863 if (ret)
1864 goto bail;
1865 break;
1866 case PLATFORM_CONFIG_PORT_TABLE:
1867 pcfgcache->config_tables[table_type].num_table =
1868 2;
1869 break;
1870 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1871 /* fall through */
1872 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1873 /* fall through */
1874 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1875 /* fall through */
1876 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1877 pcfgcache->config_tables[table_type].num_table =
1878 table_length_dwords;
1879 break;
1880 default:
1881 dd_dev_err(dd,
1882 "%s: Unknown data table %d, offset %ld\n",
1883 __func__, table_type,
1884 (ptr - (u32 *)
1885 dd->platform_config.data));
1886 goto bail; /* We don't trust this file now */
1887 }
1888 pcfgcache->config_tables[table_type].table = ptr;
1889 } else {
1890 /* metadata table */
1891 switch (table_type) {
1892 case PLATFORM_CONFIG_SYSTEM_TABLE:
1893 /* fall through */
1894 case PLATFORM_CONFIG_PORT_TABLE:
1895 /* fall through */
1896 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1897 /* fall through */
1898 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1899 /* fall through */
1900 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
1901 /* fall through */
1902 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
1903 break;
1904 default:
1905 dd_dev_err(dd,
1906 "%s: Unknown meta table %d, offset %ld\n",
1907 __func__, table_type,
1908 (ptr -
1909 (u32 *)dd->platform_config.data));
1910 goto bail; /* We don't trust this file now */
1911 }
1912 pcfgcache->config_tables[table_type].table_metadata =
1913 ptr;
1914 }
1915
1916 /* Calculate and check table crc */
1917 crc = crc32_le(~(u32)0, (unsigned char const *)ptr,
1918 (table_length_dwords * 4));
1919 crc ^= ~(u32)0;
1920
1921 /* Jump the table */
1922 ptr += table_length_dwords;
1923 if (crc != *ptr) {
1924 dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n",
1925 __func__, (ptr -
1926 (u32 *)dd->platform_config.data));
1927 goto bail;
1928 }
1929 /* Jump the CRC DWORD */
1930 ptr++;
1931 }
1932
1933 pcfgcache->cache_valid = 1;
1934 return 0;
1935bail:
1936 memset(pcfgcache, 0, sizeof(struct platform_config_cache));
1937 return ret;
1938}
1939
1940static void get_integrated_platform_config_field(
1941 struct hfi1_devdata *dd,
1942 enum platform_config_table_type_encoding table_type,
1943 int field_index, u32 *data)
1944{
1945 struct hfi1_pportdata *ppd = dd->pport;
1946 u8 *cache = ppd->qsfp_info.cache;
1947 u32 tx_preset = 0;
1948
1949 switch (table_type) {
1950 case PLATFORM_CONFIG_SYSTEM_TABLE:
1951 if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX)
1952 *data = ppd->max_power_class;
1953 else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G)
1954 *data = ppd->default_atten;
1955 break;
1956 case PLATFORM_CONFIG_PORT_TABLE:
1957 if (field_index == PORT_TABLE_PORT_TYPE)
1958 *data = ppd->port_type;
1959 else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G)
1960 *data = ppd->local_atten;
1961 else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G)
1962 *data = ppd->remote_atten;
1963 break;
1964 case PLATFORM_CONFIG_RX_PRESET_TABLE:
1965 if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY)
1966 *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >>
1967 QSFP_RX_CDR_APPLY_SHIFT;
1968 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY)
1969 *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >>
1970 QSFP_RX_EMP_APPLY_SHIFT;
1971 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY)
1972 *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >>
1973 QSFP_RX_AMP_APPLY_SHIFT;
1974 else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR)
1975 *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >>
1976 QSFP_RX_CDR_SHIFT;
1977 else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP)
1978 *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >>
1979 QSFP_RX_EMP_SHIFT;
1980 else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP)
1981 *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >>
1982 QSFP_RX_AMP_SHIFT;
1983 break;
1984 case PLATFORM_CONFIG_TX_PRESET_TABLE:
1985 if (cache[QSFP_EQ_INFO_OFFS] & 0x4)
1986 tx_preset = ppd->tx_preset_eq;
1987 else
1988 tx_preset = ppd->tx_preset_noeq;
1989 if (field_index == TX_PRESET_TABLE_PRECUR)
1990 *data = (tx_preset & TX_PRECUR_SMASK) >>
1991 TX_PRECUR_SHIFT;
1992 else if (field_index == TX_PRESET_TABLE_ATTN)
1993 *data = (tx_preset & TX_ATTN_SMASK) >>
1994 TX_ATTN_SHIFT;
1995 else if (field_index == TX_PRESET_TABLE_POSTCUR)
1996 *data = (tx_preset & TX_POSTCUR_SMASK) >>
1997 TX_POSTCUR_SHIFT;
1998 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY)
1999 *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >>
2000 QSFP_TX_CDR_APPLY_SHIFT;
2001 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY)
2002 *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >>
2003 QSFP_TX_EQ_APPLY_SHIFT;
2004 else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR)
2005 *data = (tx_preset & QSFP_TX_CDR_SMASK) >>
2006 QSFP_TX_CDR_SHIFT;
2007 else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ)
2008 *data = (tx_preset & QSFP_TX_EQ_SMASK) >>
2009 QSFP_TX_EQ_SHIFT;
2010 break;
2011 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2012 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2013 default:
2014 break;
2015 }
2016}
2017
2018static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table,
2019 int field, u32 *field_len_bits,
2020 u32 *field_start_bits)
2021{
2022 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2023 u32 *src_ptr = NULL;
2024
2025 if (!pcfgcache->cache_valid)
2026 return -EINVAL;
2027
2028 switch (table) {
2029 case PLATFORM_CONFIG_SYSTEM_TABLE:
2030 /* fall through */
2031 case PLATFORM_CONFIG_PORT_TABLE:
2032 /* fall through */
2033 case PLATFORM_CONFIG_RX_PRESET_TABLE:
2034 /* fall through */
2035 case PLATFORM_CONFIG_TX_PRESET_TABLE:
2036 /* fall through */
2037 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2038 /* fall through */
2039 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2040 if (field && field < platform_config_table_limits[table])
2041 src_ptr =
2042 pcfgcache->config_tables[table].table_metadata + field;
2043 break;
2044 default:
2045 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2046 break;
2047 }
2048
2049 if (!src_ptr)
2050 return -EINVAL;
2051
2052 if (field_start_bits)
2053 *field_start_bits = *src_ptr &
2054 ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1);
2055
2056 if (field_len_bits)
2057 *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT)
2058 & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1);
2059
2060 return 0;
2061}
2062
2063/* This is the central interface to getting data out of the platform config
2064 * file. It depends on parse_platform_config() having populated the
2065 * platform_config_cache in hfi1_devdata, and checks the cache_valid member to
2066 * validate the sanity of the cache.
2067 *
2068 * The non-obvious parameters:
2069 * @table_index: Acts as a look up key into which instance of the tables the
2070 * relevant field is fetched from.
2071 *
2072 * This applies to the data tables that have multiple instances. The port table
2073 * is an exception to this rule as each HFI only has one port and thus the
2074 * relevant table can be distinguished by hfi_id.
2075 *
2076 * @data: pointer to memory that will be populated with the field requested.
2077 * @len: length of memory pointed by @data in bytes.
2078 */
2079int get_platform_config_field(struct hfi1_devdata *dd,
2080 enum platform_config_table_type_encoding
2081 table_type, int table_index, int field_index,
2082 u32 *data, u32 len)
2083{
2084 int ret = 0, wlen = 0, seek = 0;
2085 u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL;
2086 struct platform_config_cache *pcfgcache = &dd->pcfg_cache;
2087 struct hfi1_pportdata *ppd = dd->pport;
2088
2089 if (data)
2090 memset(data, 0, len);
2091 else
2092 return -EINVAL;
2093
2094 if (ppd->config_from_scratch) {
2095 /*
2096 * Use saved configuration from ppd for integrated platforms
2097 */
2098 get_integrated_platform_config_field(dd, table_type,
2099 field_index, data);
2100 return 0;
2101 }
2102
2103 ret = get_platform_fw_field_metadata(dd, table_type, field_index,
2104 &field_len_bits,
2105 &field_start_bits);
2106 if (ret)
2107 return -EINVAL;
2108
2109 /* Convert length to bits */
2110 len *= 8;
2111
2112 /* Our metadata function checked cache_valid and field_index for us */
2113 switch (table_type) {
2114 case PLATFORM_CONFIG_SYSTEM_TABLE:
2115 src_ptr = pcfgcache->config_tables[table_type].table;
2116
2117 if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) {
2118 if (len < field_len_bits)
2119 return -EINVAL;
2120
2121 seek = field_start_bits / 8;
2122 wlen = field_len_bits / 8;
2123
2124 src_ptr = (u32 *)((u8 *)src_ptr + seek);
2125
2126 /*
2127 * We expect the field to be byte aligned and whole byte
2128 * lengths if we are here
2129 */
2130 memcpy(data, src_ptr, wlen);
2131 return 0;
2132 }
2133 break;
2134 case PLATFORM_CONFIG_PORT_TABLE:
2135 /* Port table is 4 DWORDS */
2136 src_ptr = dd->hfi1_id ?
2137 pcfgcache->config_tables[table_type].table + 4 :
2138 pcfgcache->config_tables[table_type].table;
2139 break;
2140 case PLATFORM_CONFIG_RX_PRESET_TABLE:
2141 /* fall through */
2142 case PLATFORM_CONFIG_TX_PRESET_TABLE:
2143 /* fall through */
2144 case PLATFORM_CONFIG_QSFP_ATTEN_TABLE:
2145 /* fall through */
2146 case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE:
2147 src_ptr = pcfgcache->config_tables[table_type].table;
2148
2149 if (table_index <
2150 pcfgcache->config_tables[table_type].num_table)
2151 src_ptr += table_index;
2152 else
2153 src_ptr = NULL;
2154 break;
2155 default:
2156 dd_dev_info(dd, "%s: Unknown table\n", __func__);
2157 break;
2158 }
2159
2160 if (!src_ptr || len < field_len_bits)
2161 return -EINVAL;
2162
2163 src_ptr += (field_start_bits / 32);
2164 *data = (*src_ptr >> (field_start_bits % 32)) &
2165 ((1 << field_len_bits) - 1);
2166
2167 return 0;
2168}
2169
2170/*
2171 * Download the firmware needed for the Gen3 PCIe SerDes. An update
2172 * to the SBus firmware is needed before updating the PCIe firmware.
2173 *
2174 * Note: caller must be holding the SBus resource.
2175 */
2176int load_pcie_firmware(struct hfi1_devdata *dd)
2177{
2178 int ret = 0;
2179
2180 /* both firmware loads below use the SBus */
2181 set_sbus_fast_mode(dd);
2182
2183 if (fw_sbus_load) {
2184 turn_off_spicos(dd, SPICO_SBUS);
2185 do {
2186 ret = load_sbus_firmware(dd, &fw_sbus);
2187 } while (retry_firmware(dd, ret));
2188 if (ret)
2189 goto done;
2190 }
2191
2192 if (fw_pcie_serdes_load) {
2193 dd_dev_info(dd, "Setting PCIe SerDes broadcast\n");
2194 set_serdes_broadcast(dd, all_pcie_serdes_broadcast,
2195 pcie_serdes_broadcast[dd->hfi1_id],
2196 pcie_serdes_addrs[dd->hfi1_id],
2197 NUM_PCIE_SERDES);
2198 do {
2199 ret = load_pcie_serdes_firmware(dd, &fw_pcie);
2200 } while (retry_firmware(dd, ret));
2201 if (ret)
2202 goto done;
2203 }
2204
2205done:
2206 clear_sbus_fast_mode(dd);
2207
2208 return ret;
2209}
2210
2211/*
2212 * Read the GUID from the hardware, store it in dd.
2213 */
2214void read_guid(struct hfi1_devdata *dd)
2215{
2216 /* Take the DC out of reset to get a valid GUID value */
2217 write_csr(dd, CCE_DC_CTRL, 0);
2218 (void)read_csr(dd, CCE_DC_CTRL);
2219
2220 dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID);
2221 dd_dev_info(dd, "GUID %llx",
2222 (unsigned long long)dd->base_guid);
2223}
2224
2225/* read and display firmware version info */
2226static void dump_fw_version(struct hfi1_devdata *dd)
2227{
2228 u32 pcie_vers[NUM_PCIE_SERDES];
2229 u32 fabric_vers[NUM_FABRIC_SERDES];
2230 u32 sbus_vers;
2231 int i;
2232 int all_same;
2233 int ret;
2234 u8 rcv_addr;
2235
2236 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
2237 if (ret) {
2238 dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n");
2239 return;
2240 }
2241
2242 /* set fast mode */
2243 set_sbus_fast_mode(dd);
2244
2245 /* read version for SBus Master */
2246 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0);
2247 sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1);
2248 /* wait for interrupt to be processed */
2249 usleep_range(10000, 11000);
2250 sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1);
2251 dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers);
2252
2253 /* read version for PCIe SerDes */
2254 all_same = 1;
2255 pcie_vers[0] = 0;
2256 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2257 rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i];
2258 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2259 /* wait for interrupt to be processed */
2260 usleep_range(10000, 11000);
2261 pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2262 if (i > 0 && pcie_vers[0] != pcie_vers[i])
2263 all_same = 0;
2264 }
2265
2266 if (all_same) {
2267 dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n",
2268 pcie_vers[0]);
2269 } else {
2270 dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n");
2271 for (i = 0; i < NUM_PCIE_SERDES; i++) {
2272 dd_dev_info(dd,
2273 "PCIe SerDes lane %d firmware version 0x%x\n",
2274 i, pcie_vers[i]);
2275 }
2276 }
2277
2278 /* read version for fabric SerDes */
2279 all_same = 1;
2280 fabric_vers[0] = 0;
2281 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2282 rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i];
2283 sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0);
2284 /* wait for interrupt to be processed */
2285 usleep_range(10000, 11000);
2286 fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0);
2287 if (i > 0 && fabric_vers[0] != fabric_vers[i])
2288 all_same = 0;
2289 }
2290
2291 if (all_same) {
2292 dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n",
2293 fabric_vers[0]);
2294 } else {
2295 dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n");
2296 for (i = 0; i < NUM_FABRIC_SERDES; i++) {
2297 dd_dev_info(dd,
2298 "Fabric SerDes lane %d firmware version 0x%x\n",
2299 i, fabric_vers[i]);
2300 }
2301 }
2302
2303 clear_sbus_fast_mode(dd);
2304 release_chip_resource(dd, CR_SBUS);
2305}